Science.gov

Sample records for rot fungus pleurotus

  1. Molecular Karyotype of the White Rot Fungus Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Pérez, Gumer; Peñas, María M.; Baars, Johan J. P.; Mikosch, Thomas S. P.; Pisabarro, Antonio G.; Ramírez, Lucía

    1999-01-01

    The white rot fungus Pleurotus ostreatus is an edible basidiomycete with increasing agricultural and biotechnological importance. Genetic manipulation and breeding of this organism are restricted because of the lack of knowledge about its genomic structure. In this study, we analyzed the genomic constitution of P. ostreatus by using pulsed-field gel electrophoresis optimized for the separation of its chromosomes. We have determined that it contains 11 pairs of chromosomes with sizes ranging from 1.4 to 4.7 Mbp. In addition to chromosome separation, the use of single-copy DNA probes allowed us to resolve the ambiguities caused by chromosome comigration. When the two nuclei present in the dikaryon were separated by protoplasting, analysis of their karyotypes revealed length polymorphisms affecting various chromosomes. This is, to our knowledge, the clearest chromosome separation available for this species. PMID:10427028

  2. Bioremediation of crude oil polluted soil by the white rot fungus, Pleurotus tuberregium (Fr.) Sing.

    PubMed

    Isikhuemhen, Omoanghe S; Anoliefo, Geoffrey O; Oghale, Okelezo I

    2003-01-01

    Bioremediation has become an attractive alternative to physicochemical methods of remediation of polluted sites. White rot fungi (WRF) are increasingly being investigated and used in bioremediation, because of their ability to degrade an extremely diverse range of very persistent or toxic environmental pollutants. The white rot fungus, Pleurotus tuberregium, was examined for its ability to ameliorate crude oil polluted soil. This was inferred from the ability of the polluted soil to support seed germination and seedling growth in Vigna unguiculata, at 0, 7 and 14 days post treatment. Results obtained from the present study showed that bioremediation of soil contaminated with crude oil was possible, especially when the fungus had been allowed to establish and fully colonize the substrate mixed with the soil. There were significant improvements in % germination, plant height and root elongation values of test plants, when seeds were planted 14 days post soil treatment. At 1 to 5% crude oil pollution, % germination values were comparable with the values in control plants in the 14 days treatment, and significantly higher than values obtained in the day 0 treatment. Also, at the highest level of crude oil pollution (15%), there was about 25% improvement in % germination value over the 0 day treatment. This trend of improvement in values was also observed for plant height, root elongation and biomass accumulation as well as decreased total hydrocarbon content.

  3. Biodegradation of Aldrin and Dieldrin by the White-Rot Fungus Pleurotus ostreatus.

    PubMed

    Purnomo, Adi Setyo; Nawfa, Refdinal; Martak, Fahimah; Shimizu, Kuniyoshi; Kamei, Ichiro

    2017-03-01

    Aldrin and its metabolite dieldrin are persistent organic pollutants that contaminate soil in many parts of the world. Given the potential hazards associated with these pollutants, an efficient degradation method is required. In this study, we investigated the ability of Pleurotus ostreatus to transform aldrin as well as dieldrin in pure liquid cultures. This fungus completely eliminated aldrin in potato dextrose broth (PDB) medium during a 14-day incubation period. Dieldrin was detected as the main metabolite, and 9-hydroxylaldrin and 9-hydroxyldieldrin were less abundant metabolites. The proposed route of aldrin biotransformation is initial metabolism by epoxidation, followed by hydroxylation. The fungus was also capable of degrading dieldrin, a recalcitrant metabolite of aldrin. Approximately 3, 9, and 18% of dieldrin were eliminated by P. ostreatus in low-nitrogen, high-nitrogen, and PDB media, respectively, during a 14-day incubation period. 9-Dihydroxydieldrin was detected as a metabolite in the PDB culture, suggesting that the hydroxylation reaction occurred in the epoxide ring. These results indicate that P. ostreatus has potential applications in the transformation of aldrin as well as dieldrin.

  4. Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2014-02-01

    The white-rot fungus Pleurotus eryngii F032 showed the capability to degrade a three fused-ring aromatic hydrocarbons fluorene. The elimination of fluorene through sorption was also investigated. Enzyme production is accompanied by an increase in biomass of P. eryngii F032 during degradation process. The fungus totally degraded fluorine within 23 d at 10-mg l(-1) solution. Fluorene degradation was affected with initial fluorene concentrations. The highest enzyme activity was shown by laccase in the 10-mg l(-1) culture after 30 d of incubation (1620 U l(-1)). Few activities of enzymes were observed in the fungal cell at the varying concentration of fluorene. Three metabolic were detected and separated in ethylacetate extract, after isolated by column chromatography. The metabolites, 9-fluorenone, phthalic acid, and benzoic acid were identified using UV-vis spectrophotometer and gas chromatography-mass spectrometry (GC-MS). The results show the presence of a complex mechanism for the regulation of fluorene-degrading enzymes.

  5. Transformation Pathways of the Recalcitrant Pharmaceutical Compound Carbamazepine by the White-Rot Fungus Pleurotus ostreatus: Effects of Growth Conditions.

    PubMed

    Golan-Rozen, Naama; Seiwert, Bettina; Riemenschneider, Christina; Reemtsma, Thorsten; Chefetz, Benny; Hadar, Yitzhak

    2015-10-20

    The widely used anticonvulsant pharmaceutical carbamazepine is recalcitrant in many environmental niches and thus poses a challenge in wastewater treatment. We followed the decomposition of carbamazepine by the white-rot fungus Pleurotus ostreatus in liquid culture compared to solid-state fermentation on lignocellulosic substrate where different enzymatic systems are active. Carbamazepine metabolites were identified using liquid chromatography-high-resolution mass spectrometry (LC-Q-TOF-MS). In liquid culture, carbamazepine was only transformed to 10,11-epoxy carbamazepine and 10,11-dihydroxy carbamazepine as a dead-end product. During solid-state fermentation, carbamazepine metabolism resulted in the generation of an additional 22 transformation products, some of which are toxic. Under solid-state-fermentation conditions, 10,11-epoxy carbamazepine was further metabolized via acridine and 10,11-dihydroxy carbamazepine pathways. The latter was further metabolized via five subpathways. When (14)C-carbonyl-labeled carbamazepine was used as the substrate, (14)C-CO2 release amounted to 17.4% of the initial radioactivity after 63 days of incubation. The proposed pathways were validated using metabolites (10,11-epoxy carbamazepine, 10,11-dihydroxy carbamazepine, and acridine) as primary substrates and following their fate at different time points. This work highlights the effect of growth conditions on the transformation pathways of xenobiotics. A better understanding of the fate of pollutants during bioremediation treatments is important for establishment of such technologies.

  6. [Effects of microbial pretreatment of kenaf stalk by the white-rot fungus Pleurotus sajor-caju on bioconversion of fuel ethanol production].

    PubMed

    Ruan, Qicheng; Qi, Jianmin; Hu, Kaihui; Fang, Pingping; Lin, Haihong; Xu, Jiantang; Tao, Aifen; Lin, Guolong; Yi, Lifu

    2011-10-01

    Kenaf stalk was pretreated by the white-rot fungus Pleurotus sajor-caju incubated in solid-state kenaf stalk cultivation medium. Delignification and subsequent enzymatic saccharification and fermentation of kenaf stalk were investigated in order to evaluate effects of microbial pretreatment on bioconversion of kenaf lignocellulose to fuel ethanol production. The highest delignification rate of 50.20% was obtained after 25-35 days cultivation by P. sajor-caju, which could improve subsequent enzymatic hydrolysis efficiency of kenaf cellulose. And the saccharification rate of pretreated kenaf stalk reached 69.33 to 78.64%, 4.5-5.1 times higher than the control. Simultaneous saccharification and fermentation (SSF) with microbial-pretreatment kenaf stalk as substrate was performed. The highest overall ethanol yield of 68.31% with 18.35 to 18.90 mg/mL was achieved after 72 h of SSF.

  7. Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity.

    PubMed Central

    Masaphy, S; Henis, Y; Levanon, D

    1996-01-01

    Manganese enhanced atrazine transformation by the fungus Pleurotus pulmonarius when added to a liquid culture medium at concentrations of up to 300 microM. Both N-dealkylated and propylhydroxylated metabolites accumulated in the culture medium, with the former accumulating to a greater extent than did the latter. Lipid peroxidation, oxygenase and peroxidase activities, and the cytochrome P-450 concentration increased. In addition, an increase in the spectral interactions between atrazine and components in the cell extract was observed. Antioxidants, mainly nordihydroguaiaretic acid, which inhibits lipoxygenase, peroxidase, and P-450 activities, and piperonyl butoxide, which inhibits P-450 activity, inhibited atrazine transformation by the mycelium. It is suggested that the stimulation of oxidative activity by Mn might be responsible for increasing the biotransformation of atrazine and for nonspecific transformations of other xenobiotic compounds. PMID:8967773

  8. Electrochemistry Combined with LC-HRMS: Elucidating Transformation Products of the Recalcitrant Pharmaceutical Compound Carbamazepine Generated by the White-Rot Fungus Pleurotus ostreatus.

    PubMed

    Seiwert, Bettina; Golan-Rozen, Naama; Weidauer, Cindy; Riemenschneider, Christina; Chefetz, Benny; Hadar, Yitzhak; Reemtsma, Thorsten

    2015-10-20

    Transformation products (TPs) of environmental pollutants must be identified to understand biodegradation processes and reaction mechanisms and to assess the efficiency of treatment processes. The combination of oxidation by an electrochemical cell (EC) with analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a rapid approach for the determination and identification of TPs generated by natural microbial processes. Electrochemically generated TPs of the recalcitrant pharmaceutical carbamazepine (CBZ) were used for a target screening for TPs formed by the white-rot fungus Pleurotus ostreatus. EC with LC-HRMS facilitates detection and identification of TPs because the product spectrum is not superimposed with biogenic metabolites and elevated substrate concentrations can be used. A group of 10 TPs formed in the microbial process were detected by target screening for molecular ions, and another 4 were detected by screening on the basis of characteristic fragment ions. Three of these TPs have never been reported before. For CBZ, EC with LC-HRMS was found to be more effective than software tools in defining targets for the screening and faster than nontarget screening alone in TP identification. EC with LC-HRMS may be used to feed MS databases with spectra of possible TPs of larger numbers of environmental contaminants for an efficient target screening.

  9. Marker recycling via 5-fluoroorotic acid and 5-fluorocytosine counter-selection in the white-rot agaricomycete Pleurotus ostreatus.

    PubMed

    Nakazawa, Takehito; Tsuzuki, Masami; Irie, Toshikazu; Sakamoto, Masahiro; Honda, Yoichi

    2016-09-01

    Of all of the natural polymers, lignin, an aromatic heteropolymer in plant secondary cell walls, is the most resistant to biological degradation. White-rot fungi are the only known organisms that can depolymerize or modify wood lignin. Investigating the mechanisms underlying lignin biodegradation by white-rot fungi would contribute to the ecofriendly utilization of woody biomass as renewable resources in the future. Efficient gene disruption, which is generally very challenging in the white-rot fungi, was established in Pleurotus ostreatus (the oyster mushroom). Some of the genes encoding manganese peroxidases, enzymes that are considered to be involved in lignin biodegradation, were disrupted separately, and the phenotype of each single-gene disruptant was analysed. However, it remains difficult to generate multi-gene disruptants in this fungus. Here we developed a new genetic transformation marker in P. ostreatus and demonstrated two marker recycling methods that use counter-selection to generate a multigene disruptant. This study will enable future genetic studies of white-rot fungi, and it will increase our understanding of the complicated mechanisms, which involve various enzymes, including lignin-degrading enzymes, underlying lignin biodegradation by these fungi.

  10. OXIDATION OF PERSISTANT ENVIRONMENTAL POLLUTANTS BY A WHITE ROT FUNGUS

    EPA Science Inventory

    The white rot fungus Phanerochaete chrysosporium degraded DDT [1,1,-bis(4-chlorophenyl)-2,2,2-trichloroethane], 3,4,3',4'-tetrachlorobiphenyl, 2,4,5,2',-4',5'-hexachlorobiphenyl, 2,3,7,8-tetrachlorodibenzo-p-dioxin, lindane (1,2,3,4,5,6-hexachlorocylohexane), and benzo[a]pyrene t...

  11. Disposable diapers biodegradation by the fungus Pleurotus ostreatus.

    PubMed

    Espinosa-Valdemar, Rosa María; Turpin-Marion, Sylvie; Delfín-Alcalá, Irma; Vázquez-Morillas, Alethia

    2011-08-01

    This research assesses the feasibility of degrading used disposable diapers, an important component (5-15% in weight) of urban solid waste in Mexico, by the activity of the fungus Pleurotus ostreatus, also known as oyster mushroom. Disposable diapers contain polyethylene, polypropylene and a super absorbent polymer. Nevertheless, its main component is cellulose, which degrades slowly. P. ostreatus has been utilized extensively to degrade cellulosic materials of agroindustrial sources, using in situ techniques. The practice has been extended to the commercial farming of the mushroom. This degradation capacity was assayed to reduce mass and volume of used disposable diapers. Pilot laboratory assays were performed to estimate the usefulness of the following variables on conditioning of used diapers before they act as substrate for P. ostreatus: (1) permanence vs removal of plastic cover; (2) shredding vs grinding; (3) addition of grape wastes to improve structure, nitrogen and trace elements content. Wheat straw was used as a positive control. After 68 days, decrease of the mass of diapers and productivity of fungus was measured. Weight and volume of degradable materials was reduced up to 90%. Cellulose content was diminished in 50% and lignine content in 47%. The highest efficiency for degradation of cellulosic materials corresponded to the substrates that showed highest biological efficiency, which varied from 0% to 34%. Harvested mushrooms had good appearance and protein content and were free of human disease pathogens. This research indicates that growing P. ostreatus on disposable diapers could be a good alternative for two current problems: reduction of urban solid waste and availability of high protein food sources.

  12. Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus, and earthworms.

    PubMed

    Deng, Shuguang; Zeng, Defang

    2017-01-23

    The aim of this study was to investigate the removal of phenanthrene by combination of alfalfa, white-rot fungus, and earthworms in soil. A 60-day experiment was conducted. Inoculation with earthworms and/or white-rot fungus increased alfalfa biomass and phenanthrene accumulation in alfalfa. However, inoculations of alfalfa and white-rot fungus can significantly decrease the accumulation of phenanthrene in earthworms. The removal rates for phenanthrene in soil were 33, 48, 66, 74, 85, and 93% under treatments control, only earthworms, only alfalfa, earthworms + alfalfa, alfalfa + white-rot fungus, and alfalfa + earthworms + white-rot fungus, respectively. The present study demonstrated that the combination of alfalfa, earthworms, and white-rot fungus is an effective way to remove phenanthrene in the soil. The removal is mainly via stimulating both microbial development and soil enzyme activity.

  13. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.

    PubMed

    Okamoto, Kenji; Kanawaku, Ryuichi; Masumoto, Masaru; Yanase, Hideshi

    2012-02-10

    The efficient production of bioethanol on an industrial scale requires the use of renewable lignocellulosic biomass as a starting material. A limiting factor in developing efficient processes is identifying microorganisms that are able to effectively ferment xylose, the major pentose sugar found in hemicellulose, and break down carbohydrate polymers without pre-treatment steps. Here, a basidiomycete brown rot fungus was isolated as a new biocatalyst with unprecedented fermentability, as it was capable of converting not only the 6-carbon sugars constituting cellulose, but also the major 5-carbon sugar xylose in hemicelluloses, to ethanol. The fungus was identified as Neolentinus lepideus and was capable of assimilating and fermenting xylose to ethanol in yields of 0.30, 0.33, and 0.34 g of ethanol per g of xylose consumed under aerobic, oxygen-limited, and anaerobic conditions, respectively. A small amount of xylitol was detected as the major by-product of xylose metabolism. N. lepideus produced ethanol from glucose, mannose, galactose, cellobiose, maltose, and lactose with yields ranging from 0.34 to 0.38 g ethanol per g sugar consumed, and also exhibited relatively favorable conversion of non-pretreated starch, xylan, and wheat bran. These results suggest that N. lepideus is a promising candidate for cost-effective and environmentally friendly ethanol production from lignocellulosic biomass. To our knowledge, this is the first report on efficient ethanol fermentation from various carbohydrates, including xylose, by a naturally occurring brown rot fungus.

  14. [Bioremediation of oil-polluted soil with an association including the fungus Pleurotus ostreatus and soil microflora].

    PubMed

    Pozdniakova, N N; Nikitina, V E; Turkovskaia, O V

    2008-01-01

    The possibility of application of the Pleurotus ostreatus D1-soil microflora to bioremediation of oil-polluted soils was studied. The fungus degraded mainly the aromatic fraction, whereas soil microflora intensely degraded paraffin and naphthene oil fractions. Introduction of the fungus Pleurotus ostreatus D to soil induces degradation of a wider range of oil hydrocarbons. It is reasonable to further investigate the discovered phenomenon in order to improve procedures of remediation of oil-polluted soils.

  15. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    SciTech Connect

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.

  16. Genome Sequence of the Basidiomycete White-Rot Fungus Trametes pubescens FBCC735

    PubMed Central

    Granchi, Zoraide; Peng, Mao; Chi-A-Woeng, Thomas; de Vries, Ronald P.

    2017-01-01

    ABSTRACT Here, we report the genome sequence of the basidiomycete white-rot fungus Trametes pubescens FBCC735, isolated from Finland. The 39.67-Mb genome containing 14,451 gene models is typical among saprobic wood-rotting species. PMID:28232439

  17. Bioremediation with white rot fungus. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of white rot fungus to degrade a variety of hazardous materials. The citations examine the application of the fungus to the remediation of petroleum hydrocarbons, polychlorinated biphenyls, 2,4,6-trinitrotoluene (TNT), pentachlorophenol, herbicides, insecticides, and other environmentally persistent organic compounds. The results of laboratory and field studies are presented. The use of white rot fungus in biological pulping and delignification is also discussed. (Contains a minimum of 50 citations and includes a subject term index and title list.)

  18. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. However, fungal pretreatment can cause carbohydrate loss and it is, th...

  19. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium (1988)

    EPA Science Inventory

    Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble met...

  20. Draft Genome Sequence of the White-Rot Fungus Obba rivulosa 3A-2

    PubMed Central

    Riley, Robert; Barry, Kerrie; Cullen, Dan; de Vries, Ronald P.; Hainaut, Matthieu; Hatakka, Annele; Henrissat, Bernard; Kuo, Rita; LaButti, Kurt; Lipzen, Anna; Mäkelä, Miia R.; Sandor, Laura; Spatafora, Joseph W.; Grigoriev, Igor V.; Hibbett, David S.

    2016-01-01

    We report here the first genome sequence of the white-rot fungus Obba rivulosa (Polyporales, Basidiomycota), a polypore known for its lignin-decomposing ability. The genome is based on the homokaryon 3A-2 originating in Finland. The genome is typical in size and carbohydrate active enzyme (CAZy) content for wood-decomposing basidiomycetes. PMID:27634999

  1. Short read sequencing for Genomic Analysis of the brown rot fungus Fibroporia radiculosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The practical capability of short read sequencing for whole genome gene prediction was investigated for Fibroporia radiculosa, a copper-tolerant basidiomycete fungus that causes brown rot decay of wood. Illumina GAIIX reads from a single run of a paired-end library (75 nt read length, 300 bp insert...

  2. Capacity of a newly isolated fungus Pleurotus eryngii from Tunceli, Ovacik for chemical oxygen demand reduction and biodecolorization of Azo-Dye Congo Red.

    PubMed

    Yildirim, N; Gonen, U

    2015-06-07

    Biodecolorization of Congo red dye in both agar—plate and agitated liquid culture mediums by newly isolated white rot fungus Pleurotus eryngii has been studied. This fungus isolated from Tunceli—Ovacik province of Turkey. We have also examined the chemical oxygen demand reduction after decolorization under agitated liquid culture medium. For agar plate screening the decolorization capacity of P. eryngii, growth and decolorization halos were determined on saboroud dextrose agar (SDA) plates containing 0.05, 0.1, 0.5, 1 and 2 g/l of Congo red. P. eryngii showed certain decolorization capacities and was able to decolorize all studied concentrations of Congo red, but not to the same extent. Our results indicated that the new isolate P. eryngii had maximum decolorization (87% at 100 mg/l initial dye concentration) and chemical oxygen demand reduction (82% at 25 mg/l initial dye concentration) activities after 7 days under agitated submerged culture conditions. This new isolate could be an effective bioremediation tool for treatment of Congo red containing textile wastewater.

  3. EVIDENCE FOR CLEAVAGE OF LIGNIN BY A BROWN ROT FUNGUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradation by brown-rot fungi is quantitatively one of the most important fates of lignocellulose in nature. It has long been thought that these fungi do not degrade lignin significantly, and that their activities on this abundant aromatic biopolymer are limited to minor oxidative modifications....

  4. Characterization of a brown rot fungus isolated from dwarf flowering almond in Korea.

    PubMed

    Shim, Myoung Yong; Jeon, Young Jae; Kim, Seong Hwan

    2007-03-01

    The fruits showing brown rot symptom on dwarf flowering almond were found in Gongju, Chungchungnam-Do in Korea in July 2005. Small water-soaked lesions on the fruits were initiated, and gradually developed to soft rot covered with gray conidia. Then the diseased fruits were shrunk and became grayish-black mummies. A fungus was isolated from the diseased fruit and its morphological, cultural and molecular genetic characteristics were investigated. Typical blastospores of Monilinia spp. were observed under a light microscope both from tissues of the diseased fruits and from PDA-grown cultures. The fungus grew well at 25℃ and on PDA. The ITS ribosomal DNA region (650 bp) of the fungus was amplified by PCR and analyzed. Comparative data on ITS sequence homology among Monilinia spp., ITS sequence-based phylogram and morphological characteristics showed that the fungus is Monilinia fructicola. This is the first report on Monilinia fructicola causing brown rot on fruits of dwarf flowering almond in Korea.

  5. Biological decolourisation of pulp mill effluent using white rot fungus Trametes versicolor.

    PubMed

    Srinivasan, S V; Murthy, D V S; Swaminathan, T

    2012-07-01

    The conventional biological treatment methods employed in the pulp and paper industries are not effective in reducing the colour and chemical oxygen demand (COD). The white-rot fungi are reported to have the ability to biodegrade the lignin and its derivatives. This paper is focused on the biological treatment of pulp mill effluent from a bagasse-based pulp and paper industry using fungal treatment. Experiments were conducted using the white rot fungus, Trametes versicolor in shake flasks operated in batch mode with different carbon sources. The decolourisation efficiencies of 82.5% and 80.3% were obtained in the presence of 15 g/L and 5 g/L of glucose and sucrose concentrations respectively with a considerable COD reduction. The possibility of reusing the grown fungus was examined for repeated treatment studies.

  6. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium

    SciTech Connect

    Paszczynski, A.; Crawford, R.L.

    1995-07-01

    The white-rot fungi produce an unusual enzyme system, characterized by a specialized group of peroxidases, that catalyzes the degradation of the complex plant polymer lignin. This ligninolytic system shows a high degree of nonspecificity and oxidizes a very large variety of compounds in addition to lignin. Among these compounds are numerous environmental pollutants. Thus, the white-rot fungi show considerable promise as bioremediation agents for use in the restoration of environments contaminated by xenobiotic molecules. One white-rot fungus, Phanerochaete chrysosporium, has been studied in great detail with regard to ligninolytic enzymes and the degradation of anthropogenic chemicals. It has been widely promoted as a bioremediation agent. This article examines literature concerning the degradation of xenobiotic compounds by Phanerochaete chrysosporium and attempts to critically assess this organism`s real potential as a bioremediation tool. 130 refs., 5 figs.

  7. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    EPA Science Inventory

    The white-rot fungus Phanrochaete chrysosporium has the ability to degrade a wide variety of structurally diverse organic compounds, including a number of environmentally persistent organopollutants. The unique biodegradative abilities of this fungus appears to be depend...

  8. Biodegradation of ddt (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) by the white rot fungus phanerochaete chrysosporium

    SciTech Connect

    Bumpus, J.A.; Aust, S.D.

    1987-01-01

    Extensive biodegradation of 1,1,1-trichloro-2,2bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of (14C) DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the formation of polar and water-soluble metabolites during degradation. Hexane-extractable metabolites identified by gas chromatography-mass spectrometry included 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane(DDD), 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol), 2,2-dichloro-1,1-bis(4-chlorophenyl) ethanol (FW-152), and 4,4'-dichlorobenzophenone (DBP). DDD was the first metabolite observed; it appeared after 3 days of incubation and disappeared from culture upon continued incubation. This, as well as the fact that ((14)C) dicofol was mineralized, demonstrates that intermediates formed during DDT degradation are also metabolized. These results demonstrate that the pathway for DDT degradation in P. chrysosporium is clearly different from the major pathway proposed for microbial or environmental degradation of DDT. Like P. chrysosporium ME-446 and BKM-F-1767, the white rot fungi Pleurotus ostreatus, Phellinus weirii, and Polyporus versicolor also mineralized DDT.

  9. Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses.

    PubMed

    Zhang, Shimin; Zhang, Xiaolin; Chang, Cheng; Yuan, Zhiyong; Wang, Ting; Zhao, Yong; Yang, Xitian; Zhang, Yuting; La, Guixiao; Wu, Kun; Zhang, Zhiming; Li, Xuanzhen

    2016-05-01

    Wastewater contaminated with heavy metals is a world-wide concern. One biological treatment strategy includes filamentous fungi capable of extracellular adsorption and intracellular bioaccumulation. Here we report that an acclimated strain of filamentous fungus Pleurotus ostreatus HAU-2 can withstand Pb up to 1500 mg L(-1) Pb, conditions in which the wildtype strain cannot grow. The acclimated strain grew in liquid culture under 500 mg L(-1) Pb without significant abnormity in biomass and morphology, and was able to remove significant amounts of heavy metals with rate of 99.1% at 200 mg L(-1) and 63.3% at 1500 mg L(-1). Intracellular bioaccumulation as well as extracellular adsorption both contributed the Pb reduction. Pb induced levels of H2O2, and its concentration reached 72.9-100.9 μmol g(-1) under 200-1000 mg L(-1) Pb. A relatively higher malonaldehyde (MDA) concentration (8.06-7.59 nmol g(-1)) was also observed at 500-1500 mg L(-1) Pb, indicating that Pb exposure resulted in oxidative damage. The fungal cells also defended against the attack of reactive oxygen species by producing antioxidants. Of the three antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), CAT was the most responsive and the maximal enzyme activity was 15.8 U mg(-1) protein. Additionally, glutathione (GSH) might also play a role (3.16-3.21 mg g(-1) protein) in detoxification under relatively low Pb concentration (100-200 mg L(-1)). Our findings suggested that filamentous fungus could be selected for increased tolerance to heavy metals and that CAT and GSH might be important components of this tolerance.

  10. Polluting macrophytes Colombian lake Fúquene used as substrate by edible fungus Pleurotus ostreatus.

    PubMed

    Martínez-Nieto, Patricia; García-Gómez, Gustavo; Mora-Ortiz, Laura; Robles-Camargo, George

    2014-01-01

    Invasive aquatic plants from Lake Fúquene (Cundinamarca, Colombia), water hyacinth (Eichhornia crassipes C. Mart.) and Brazilian elodea (Egeria densa Planch.) have been removed mechanically from the lake and can be used for edible mushrooms production. The growth of the oyster mushroom (Pleurotus ostreatus) on these aquatic macrophytes was investigated in order to evaluate the possible use of fruiting bodies and spent biomass in food production for human and animal nutrition, respectively. Treatments included: water hyacinth, Brazilian elodea, sawdust, rice hulls and their combinations, inoculated with P. ostreatus at 3%. Water hyacinth mixed with sawdust stimulated significantly fruiting bodies production (P = 3.3 × 10(-7)) with 71% biological efficacy, followed by water hyacinth with rice husk (55%) and elodea with rice husk (48%), all of these have protein contents between 26 and 47%. Loss of lignin (0.9-21.6%), cellulose (3.7-58.3%) and hemicellulose (1.9-53.8%) and increment in vitro digestibility (16.7-139.3%) and reducing sugars (73.4-838.4%) were observed in most treatments. Treatments spent biomass presented Relative Forage Values (RFV) from 46.1 to 232.4%. The results demonstrated the fungus degrading ability and its potential use in aquatic macrophytes conversion biomass into digestible ruminant feed as added value to the fruiting bodies production for human nutrition.

  11. A novel stirrer design and its application in submerged fermentation of the edible fungus Pleurotus ostreatus.

    PubMed

    Zhu, Hu; Sun, Jiao; Tian, Baozhen; Wang, Honglin

    2015-03-01

    In this study, a straight diagonal-pitched blade stirrer was designed, built and characterized in a 5-L fermenter. Compared with the six straight blade Rushton turbine, the power consumption of the new stirrer is lower at a given speed under conditions of no ventilation. The oxygen transference is poorer at the same agitation speed in the cultivation conditions and scales investigated, which confirms that the shear stress of the new stirrer is lower and the gas dispersion is weaker. The new stirrer was installed in a 5-L bioreactor and evaluated in submerged fermentation of the edible fungus Pleurotus ostreatus. The results showed that the maximum dry weight of mycelium is increased by 47 % and reached 7.47 g/L, and the maximum laccase activity is increased by 15 % up to 2,277 U/L. Glucose consumption was also found to be relatively faster. The power consumption is 2.8 % lower than that of the Rushton turbine.

  12. Identification and Characterization of Small Noncoding RNAs in Genome Sequences of the Edible Fungus Pleurotus ostreatus

    PubMed Central

    Zhao, Mengran; Hsiang, Tom; Feng, Xiaoxing

    2016-01-01

    Noncoding RNAs (ncRNAs) have been identified in many fungi. However, no genome-scale identification of ncRNAs has been inventoried for basidiomycetes. In this research, we detected 254 small noncoding RNAs (sncRNAs) in a genome assembly of an isolate (CCEF00389) of Pleurotus ostreatus, which is a widely cultivated edible basidiomycetous fungus worldwide. The identified sncRNAs include snRNAs, snoRNAs, tRNAs, and miRNAs. SnRNA U1 was not found in CCEF00389 genome assembly and some other basidiomycetous genomes by BLASTn. This implies that if snRNA U1 of basidiomycetes exists, it has a sequence that varies significantly from other organisms. By analyzing the distribution of sncRNA loci, we found that snRNAs and most tRNAs (88.6%) were located in pseudo-UTR regions, while miRNAs are commonly found in introns. To analyze the evolutionary conservation of the sncRNAs in P. ostreatus, we aligned all 254 sncRNAs to the genome assemblies of some other Agaricomycotina fungi. The results suggest that most sncRNAs (77.56%) were highly conserved in P. ostreatus, and 20% were conserved in Agaricomycotina fungi. These findings indicate that most sncRNAs of P. ostreatus were not conserved across Agaricomycotina fungi. PMID:27703969

  13. Evidence of Subterranean Termite Feeding Deterrent Produced by Brown Rot Fungus Fibroporia radiculosa (Peck) Parmasto 1968 (Polyporales, Fomitopsidaceae)

    PubMed Central

    Kamaluddin, Nadia Nuraniya; Nakagawa-Izumi, Akiko; Nishizawa, Shota; Fukunaga, Ayuko; Doi, Shuichi; Yoshimura, Tsuyoshi; Horisawa, Sakae

    2016-01-01

    We found that decayed wood stakes with no termite damage collected from a termite-infested field exhibited a deterrent effect against the termite Reticulitermes speratus, Kolbe, 1885. The effect was observed to be lost or reduced by drying. After identification, it was found that the decayed stakes were infected by brown rot fungus Fibroporia radiculosa (Peck) Parmasto, 1968. In a no-choice feeding test, wood blocks decayed by this fungus under laboratory condition deterred R. speratus feeding and n-hexane extract from the decayed stake and blocks induced termite mortality. These data provided an insight into the interaction between wood-rot fungi and wood-feeding termites. PMID:27548231

  14. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus

    PubMed Central

    Inácio, Fabíola Dorneles; Ferreira, Roselene Oliveira; de Araujo, Caroline Aparecida Vaz; Brugnari, Tatiane; Castoldi, Rafael; Peralta, Rosane Marina; de Souza, Cristina Giatti Marques

    2015-01-01

    Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine. PMID:26180792

  15. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus

    PubMed Central

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk

    2016-01-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously. PMID:27103854

  16. Biodegradation of crystal violet by the white rot fungus phanerochaete chrysosporium

    SciTech Connect

    Bumpus, J.A.; Brock, B.J.

    1988-01-01

    Biodegradation of crystal violet (N,N,N',N',N',N''- hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N'' -pentamethylpararosaniline, N,N,N',N'' -tetramethylpararosaniline, and N,N',N'' -trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus.

  17. Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer).

    PubMed

    Adenipekun, Clementina O; Isikhuemhen, Omoanghe S

    2008-06-15

    This study was conducted to test the efficacy of an indigenous white rot fungus Lentinus squarrosulus in degrading engine oil in soil. Flasks containing sterilized garden soil (100 g) moistened with 75% distilled water (w/v) were contaminated with engine oil 1, 2.5, 5, 10, 20 and 40% w/w concentrations, inoculated with L. squarrosulus and incubated at room temperature for 90 days. Levels of organic matter, pH, total hydrocarbon and elemental content (C, Cu, Fe, K, N, Ni, Zn and available P) were determined post-fungal treatment. Results indicate that contaminated soils inoculated with L. squarrosulus had increased organic matter, carbon and available phosphorus, while the nitrogen and available potassium was reduced. A relatively high percentage degradation of Total Petroleum Hydrocarbon (TPH) was observed at 1% engine oil concentration (94.46%), which decreased to 64.05% TPH degradation at 40% engine oil contaminated soil after 90 days of incubation. The concentrations of Fe, Cu, Zn and Ni recovered from straw/fungal biomass complex increased with the increase of engine-oil contamination and bio-accumulation by the white-rot fungus. The improvement of nutrient content values as well as the bioaccumulation of heavy metals at all levels of engine oil concentrations tested through inoculations with L. squarrosulus is of importance for the bioremediation of engine-oil polluted soils.

  18. Draft Genome Sequence of Methylobacterium sp. Strain ARG-1 Isolated from the White-Rot Fungus Armillaria gallica

    PubMed Central

    Collins, Caitlin; Kowalski, Caitlin; Zebrowski, Jessica; Tulchinskaya, Yevgeniya; Tai, Albert K.; James-Pederson, Magdalena

    2016-01-01

    Methylobacterium sp. strain ARG-1 was isolated from a cell culture of hyphal tips of the white-rot fungus Armillaria gallica. We describe here the sequencing, assembly, and annotation of its genome, confirming the presence of genes involved in methylotrophy. This is the first genome announcement of a strain of Methylobacterium associated with A. gallica. PMID:27257212

  19. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum.

    PubMed

    Rasmussen, M L; Shrestha, P; Khanal, S K; Pometto, A L; Hans van Leeuwen, J

    2010-05-01

    Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product.

  20. Application of a white-rot fungus to biodegrade benzo(a)pyrene in soil

    SciTech Connect

    Field, J.A.; Feiken, H.; Hage, A.; Kotterman, M.J.J.

    1995-12-31

    The white-rot fungus, Bjerkandera sp. BOS55, recently has been identified as an outstanding degrader of polycyclic aromatic hydrocarbons (PAHs). In this study, the ability of this fungus to degrade a five-ring PAH model compound, benzo(a)pyrene [B(a)P] in soil medium was investigated. An unpolluted sandy loam soil was sterilized and artificially contaminated with 100 mg/kg B(a)P. The B(a)P-laden soil was inoculated with 10-day-old cultures of BOS55 grown on either rice grain or chipped hemp stems. Rapid degradation of B(a)P occurred with up to 80% elimination within 22 days. B(a)P on the other hand was completely recovered from soils inoculated with the dead fungus, indicating that the elimination was biologically mediated. The biodegradation rates achieved in various experiments ranged from 8 to 14 mg B(a)P/kg soil per day. Although, the results are promising, an important drawback is that the last 20% of B(a)P was not bioavailable for further degradation by Bjerkandera sp. BOS55. However, the nonbioavailable fraction of B(a)P could be rendered bioavailable by adding acetone (10% v/v of soil water) to the soil cultures.

  1. The secretome of Pleurotus sapidus.

    PubMed

    Zorn, Holger; Peters, Thilo; Nimtz, Manfred; Berger, Ralf G

    2005-12-01

    Due to their unique capability to attack lignified biopolymers, extracellular enzymes of white-rot fungi enjoy an increasing interest in various fields of white biotechnology. The edible fungus Pleurotus sapidus was selected as a model organism for the analysis of the secretome by means of 2-DE. For enzyme production, the fungus was grown in submerged cultures either on peanut shells or on glass wool as a carrier material. Identification of the secreted enzymes was performed by tryptic digestion, ESI-MS/MS ab initio sequencing, and homology searches against public databases. The spectrum of secreted enzymes comprised various types of hydrolases and lignolytic enzymes of the manganese peroxidase/versatile peroxidase family. While peptidases were secreted mainly by the cultures grown on peanut shells, versatile peroxidase type enzymes dominated in the cultures grown on glass wool.

  2. Decoloration of Amaranth by the white-rot fungus Trametes versicolor. Part I. Statistical analysis.

    PubMed

    Gavril, Mihaela; Hodson, Peter V; McLellan, Jim

    2007-02-01

    The white-rot fungus Trametes versicolor decolorized the mono-azo-substituted naphthalenic dye Amaranth. The relationship between the amount of enzymes present in the system and the efficiency of the decoloration process was investigated. The two responses used to quantify the process of decoloration (i.e., initial decoloration rate, v0, and the percent concentration of dye decolorized in 1 h, %c) were correlated with the amount of three enzymes considered for the study (lignin peroxidase, manganese peroxidase, and laccase) and analyzed through stepwise regression analysis (forward, backward, and mixed). The results of the correlation analysis and those of the regression analysis indicated that lignin peroxidase is the enzyme having the greatest influence on the two responses.

  3. Immobilization of the white-rot fungus Anthracophyllum discolor to degrade the herbicide atrazine.

    PubMed

    Elgueta, S; Santos, C; Lima, N; Diez, M C

    2016-12-01

    Herbicides cause environmental concerns because they are toxic and accumulate in the environment, food products and water supplies. There is a need to develop safe, efficient and economical methods to remove them from the environment, often by biodegradation. Atrazine is such herbicide. White-rot fungi have the ability to degrade herbicides of potential utility. This study formulated a novel pelletized support to immobilize the white-rot fungus Anthracophyllum discolor to improve its capability to degrade the atrazine using a biopurification system (BS). Different proportions of sawdust, starch, corn meal and flaxseed were used to generate three pelletized supports (F1, F2 and F3). In addition, immobilization with coated and uncoated pelletized supports (CPS and UPS, respectively) was assessed. UPS-F1 was determined as the most effective system as it provided high level of manganese peroxidase activity and fungal viability. The half-life (t1/2) of atrazine decreased from 14 to 6 days for the control and inoculated samples respectively. Inoculation with immobilized A. discolor produced an increase in the fungal taxa assessed by DGGE and on phenoloxidase activity determined. The treatment improves atrazine degradation and reduces migration to surface and groundwater.

  4. Direct three-dimensional characterization and multiscale visualization of wheat straw deconstruction by white rot fungus.

    PubMed

    Liu, Li; Qian, Chen; Jiang, Lei; Yu, Han-Qing

    2014-08-19

    Microbial degradation of lignocellulose for resource and energy recovery has received increasing interest. Despite its obvious importance, the mechanism behind the biodegradation, especially the changes of morphological structure and surface characteristics, has not been fully understood. Here, we used three-dimensional (3D) characterization and multiscale visualization methods, in combination with chemical compositional analyses, to elucidate the degradation process of wheat straw by a white rot fungus, Phanerochaete chrysosporium. It was found that the fungal attack initiated from stomata. Lignin of the straw decayed in both size and quantity, and heterogeneity in the biodegradation was observed. After treatment with the fungus, the straw surface turned from hydrophobic to hydrophilic, and the adhesion of the straw surface increased in the fungal degradation. The morphology of the straw outer layer became heterogeneous and loose with the formation of many holes with various sizes. The wasp-tunnels-like structure of the collenchyma and parenchyma of the straw as well as the fungal hyphae interspersed inside the straw structure were clearly visualized in the 3D reconstruction structure. This work offers a new insight into the mechanism of lignocellulose biodegradation and demonstrates that multiscale visualization methods could be a useful tool to explore such complex processes.

  5. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Mäkinen, Susanna; Vehmaanperä, Jari; Hatakka, Annele; Mäkelä, Miia R.

    2015-01-01

    White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A) of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification. PMID:26660105

  6. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  7. Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products.

    PubMed

    Schwarze, Francis W M R; Schubert, Mark

    2011-11-01

    The credo of every scientist working in the field of applied science is to transfer knowledge "from science to market," a process that combines (1) science (fundamental discoveries and basic research) with (2) technology development (performance assessment and optimization) and (3) technology transfer (industrial application). Over the past 7 years, we have intensively investigated the potential of the white rot fungus, Physisporinus vitreus, for engineering value-added wood products. Because of its exceptional wood degradation pattern, i.e., selective lignification without significant wood strength losses and a preferential degradation of bordered pit membranes, it is possible to use this fungus under controlled conditions to improve the acoustic properties of tonewood (i.e., "mycowood") as well as to enhance the uptake of preservatives and wood modification substances in refractory wood species (e.g., Norway spruce), a process known as "bioincising." This minireview summarizes the research that we have performed with P. vitreus and critically discusses the challenges encountered during the development of two distinct processes for engineering value-added wood products. Finally, we peep into the future potential of the bioincising and mycowood processes for additional applications in the forest and wood industry.

  8. Bio-Treatment of Energetic Materials Using White-Rot Fungus

    SciTech Connect

    MM Shah

    1998-11-12

    The nitramine explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), is used by militaries around the world in high yield munitions and often in combination with hexahydro- 1,3,5-trirdtro- 1,3,5- triazine (RDX). Improper handling and disposal of manufacturing wastewater may lead to environmental contamination. In the past wastewater was collected in disposal lagoons where it evaporated, and deposited large amounts of explosives on the lagoon floor. Although lagoon disposal is no longer practiced, thousands of acres have been already contaminated. RDX and, to a lesser extent, HMX have leached through the soil subsurface and contaminated groundwater ( 1,2). Likewjse, burning of substandard material or demilitarization of out-of-date muriitions has also led to environmental contamination. The current stockpile of energetic materials at DOE sites requires resource recovery or disposition (RRD). A related challenge exists in the clean-up of the DOE sites where soil and ground water are contaminated with explosives. Current technologies such as incineration, molten salt process, supercritical water oxidation are expensive and have technical hurdles. Open burning and open detonation(OB/OD) is not encouraged by regulatory agencies for disposal of explosives. Hence, there is need for a safe . technology to degrade these contaminants. The fi.mgal process does not employ open burning or open detonation to destroy energetic materials. The fimgal process can be used by itself, or it can augment or support other technologies for the treatment of energetic materials. The proposed enzyme technology will not release any air pollutants and will meet the regulations of Clean Air Act amendments, the Resource Conservation and Recovery Act, and the Federal. Facilities Compliance Act. The goal for this project was to test the ability of white-rot fungus to degrade HMX. In our study, we investigated the biodegradation of HMX using white-rot fungus in liquid and solid cultures

  9. P450monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium

    PubMed Central

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-01-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system (LDS), mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosporium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed. PMID:22624627

  10. Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor.

    PubMed

    Acevedo, Francisca; Pizzul, Leticia; Castillo, María Del Pilar; Cuevas, Raphael; Diez, María Cristina

    2011-01-15

    The degradation of three- and four-ring polycyclic aromatic hydrocarbons (PAHs) in Kirk medium by Anthracophyllum discolor, a white-rot fungus isolated from the forest of southern Chile, was evaluated. In addition, the removal efficiency of three-, four- and five-ring PAHs in contaminated soil bioaugmented with A. discolor in the absence and presence of indigenous soil microorganisms was investigated. Production of lignin-degrading enzymes and PAH mineralization in the soil were also determined. A. discolor was able to degrade PAHs in Kirk medium with the highest removal occurring in a PAH mixture, suggesting synergistic effects between PAHs or possible cometabolism. A high removal capability for phenanthrene (62%), anthracene (73%), fluoranthene (54%), pyrene (60%) and benzo(a)pyrene (75%) was observed in autoclaved soil inoculated with A. discolor in the absence of indigenous microorganisms, associated with the production of manganese peroxidase (MnP). The metabolites found in the PAH degradation were anthraquinone, phthalic acid, 4-hydroxy-9-fluorenone, 9-fluorenone and 4,5-dihydropyrene. A. discolor was able to mineralize 9% of the phenanthrene. In non-autoclaved soil, the inoculation with A. discolor did not improve the removal efficiency of PAHs. Suitable conditions must be found to promote a successful fungal bioaugmentation in non-autoclaved soils.

  11. An extracellular laccase with potent dye decolorizing ability from white rot fungus Trametes sp. LAC-01.

    PubMed

    Ling, Zhuo-Ren; Wang, Shan-Shan; Zhu, Meng-Juan; Ning, Ying-Jie; Wang, Shou-Nan; Li, Bing; Yang, Ai-Zhen; Zhang, Guo-Qing; Zhao, Xiao-Meng

    2015-11-01

    A novel laccase was purified from fermentation broth of white rot fungus Trametes sp. LAC-01 using an isolation procedure involving three ion-exchange chromatography steps on DEAE-cellulose, SP-Sepharose, and Q-Sepharose, and one gel-filtration step. The purified enzyme (TSL) was proved as a monomeric protein with a Mr of 59kDa based on SDS-PAGE and FPLC. Partial amino acid sequences were obtained by LC-MS/MS sharing considerably high sequence similarity with that of other laccases. It possessed optimal pH of 2.6 and temperature of 60°C using ABTS as the substrate. The Km of the laccase toward ABTS was estimated to 30.28μM at pH 2.6 and 40°C. TSL manifested considerably high oxidizing activity toward ABTS, but was avoid of degradative activity toward benzidine, caftaric acid, etc. It was effective in the decolorization of phenolic dyes - Bromothymol Blue and Malachite Green with decolorization rate higher than 60% after 24h of incubation. Adjunction of Cu(2+) with the final concentration of 2.0mmol/L significantly activated laccase production with a steady high level of 275.8-282.2U/mL in 96-144h. The high yield and short production period makes Trametes sp. LAC-01 and TSL potentially useful for industrial and environmental application and commercialization.

  12. Differentially expressed genes under simulated microgravity in fruiting bodies of the fungus Pleurotus ostreatus.

    PubMed

    Miyazaki, Yasumasa; Sunagawa, Masahide; Higashibata, Akira; Ishioka, Noriaki; Babasaki, Katsuhiko; Yamazaki, Takashi

    2010-06-01

    In response to a change in the direction of gravity, morphogenetic changes of fruiting bodies of fungi are usually observed as gravitropism. Although gravitropism in higher fungi has been studied for over 100 years, there is no convincing evidence regarding the graviperception mechanism in mushrooms. To understand gravitropism in mushrooms, we isolated differentially expressed genes in Pleurotus ostreatus (oyster mushroom) fruiting bodies developed under three-dimensional clinostat-simulated microgravity. Subtractive hybridization, cDNA representational difference analysis was used for gene analysis and resulted in the isolation of 36 individual genes (17 upregulated and 19 downregulated) under clinorotation. The phenotype of fruiting bodies developed under simulated microgravity vividly depicted the gravitropism in mushrooms. Our results suggest that the differentially expressed genes responding to gravitational change are involved in several potential cellular mechanisms during fruiting body formation of P. ostreatus.

  13. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane.

    PubMed

    Kaur, Harsimran; Kapoor, Shammi; Kaur, Gaganjyot

    2016-10-01

    Lindane, a broad-spectrum organochlorine pesticide, has caused a widespread environmental contamination along with other pesticides due to wrong agricultural practices. The high efficiency, sustainability and eco-friendly nature of the bioremediation process provide an edge over traditional physico-chemical remediation for managing pesticide pollution. In the present study, lindane degradation was studied by using a white-rot fungus, Ganoderma lucidum GL-2 strain, grown on rice bran substrate for ligninolytic enzyme induction at 30 °C and pH 5.6 after incorporation of 4 and 40 ppm lindane in liquid as well as solid-state fermentation. The estimation of lindane residue was carried out by gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring mode. In liquid-state fermentation, 100.13 U/ml laccase, 50.96 U/ml manganese peroxidase and 17.43 U/ml lignin peroxidase enzymes were obtained with a maximum of 75.50 % lindane degradation on the 28th day of incubation period, whereas under the solid-state fermentation system, 156.82 U/g laccase, 80.11 U/g manganese peroxidase and 18.61 U/g lignin peroxidase enzyme activities with 37.50 % lindane degradation were obtained. The lindane incorporation was inhibitory to the production of ligninolytic enzymes and its own degradation but was stimulatory for extracellular protein production. The dialysed crude enzyme extracts of ligninolytic enzymes were though efficient in lindane degradation during in vitro studies, but their efficiencies tend to decrease with an increase in the incubation period. Hence, lindane-degrading capabilities of G. lucidum GL-2 strain make it a potential candidate for managing lindane bioremediation at contaminated sites.

  14. Bioremediation of PCP and creosote contaminated soil using white-rot fungus Phanerochaete sordida

    SciTech Connect

    Patel, D.M.; Barkley, N.

    1995-11-01

    The ability of white-rot fungus to deplete pentachlorophenol (PCP) and polynuclear aromatic hydrocarbons (PAHs) from soil, which was contaminated with commercial wood preservatives, was demonstrated in a field study. Inoculation of soil containing 968 {micro}g of PCP g{sup {minus}1} and 1,420 {micro}g of total PAHs g{sup {minus}1} with Phanerochaete sordida resulted in an overall decrease of 71% of PCP and 59% of total PAHs in the soil in 20 weeks. Over the same period, in soil containing 855 {micro}g of PCP g{sup {minus}1} and 1,050 {micro}g of total PAHs g{sup {minus}1} which was amended with sterile spawn (i.e., not containing P. sordida) material, an overall decrease of 69% of PCP and 66% of total PAHs was observed. And, in soil containing 746 {micro}g of PCP g{sup {minus}1} and 1,100 {micro}g of total PAHs g{sup {minus}1}, which was neither inoculated with P. sordida nor amended with the sterile spawn material, an overall decrease of 14% of PCP and 65% of total PAHs was observed. Results indicate that the degradation rates and percent reductions of PCP and PAHs in the inoculated and the amended soils were statistically the same. Percent reductions and degradation rates of PCP and the 4- and 5-ring PAHs in the inoculated and amended soils were significantly higher than in the nonamended soil. In contrast, reductions and degradation rates of 2- and 3-ring PAHs in the nonamended soil were significantly higher than in either the inoculated or amended soils. Overall reductions in total PAHs in the three soils were statistically identical.

  15. Degradation of selected agrochemicals by the white rot fungus Trametes versicolor.

    PubMed

    Mir-Tutusaus, Josep Anton; Masís-Mora, Mario; Corcellas, Cayo; Eljarrat, Ethel; Barceló, Damià; Sarrà, Montserrat; Caminal, Glòria; Vicent, Teresa; Rodríguez-Rodríguez, Carlos E

    2014-12-01

    Use of agrochemicals is a worldwide practice that exerts an important effect on the environment; therefore the search of approaches for the elimination of such pollutants should be encouraged. The degradation of the insecticides imiprothrin (IP) and cypermethrin (CP), the insecticide/nematicide carbofuran (CBF) and the antibiotic of agricultural use oxytetracycline (OTC) were assayed with the white rot fungus Trametes versicolor. Experiments with fungal pellets demonstrated extensive degradation of the four tested agrochemicals, at rates that followed the pattern IP>OTC>CP>CBF. In vitro assays with laccase-mediator systems showed that this extracellular enzyme participates in the transformation of IP but not in the cases of CBF and OTC. On the other hand, in vivo studies with inhibitors of cytochrome P450 revealed that this intracellular system plays an important role in the degradation of IP, OTC and CBF, but not for CP. The compounds 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA) and 3-phenoxybenzoic acid (PBA) were detected as transformation products of CP, as a result of the breakdown of the molecule. Meanwhile, 3-hydroxycarbofuran was detected as a transformation product of CBF; this metabolite tended to accumulate during the process, nonetheless, the toxicity of the system was effectively reduced. Simultaneous degradation of CBF and OTC showed a reduction in toxicity; similarly, when successive additions of OTC were done during the slower degradation of CBF, the fungal pellets were able to degrade both compounds. The simultaneous degradation of the four compounds successfully took place with minimal inhibition of fungal activity and resulted in the reduction of the global toxicity, thus supporting the potential use of T. versicolor for the treatment of diverse agrochemicals.

  16. Degradation, dechlorination, and decolorization of chlorolignins in bleach plant effluent by the white-rot fungus Phanerochaete chrysosporium

    SciTech Connect

    Joyce, T.W.; Yin, C.F.; Chang, H.M. . Dept. of Wood and Paper Science)

    1988-01-01

    A white-rot fungus Phanerochaete chrysosporium effectively removes COD, color, and TOCl from bleach plant effluents due to its enzymatic ligninolytic system. The effects of glucose, a required cosubstrate, and Tween 80, a surfactant, on the degradation of chlorolignins, and thereby, the COD, color, TOCl are studied. A glucose concentration exceeding 2,000 mg/1 during the fungal treatment does not adversely effect the decolorization rate. However, it does effect the rate of degradation and dechlorination of chlorolignins. Tween 80 appears to have an effect on color removal, but not on degradation and dechlorination. However, the addition of 0.1% Tween 80 during fungal treatment prolongs the fungal lifetime.

  17. Biochemical response of crayfish Astacus leptodactylus exposed to textile wastewater treated by indigenous white rot fungus Coriolus versicolor.

    PubMed

    Aksu, Onder; Yildirim, Nuran Cikcikoglu; Yildirim, Numan; Danabas, Durali; Danabas, Seval

    2015-02-01

    The discharge of textile effluents into the environment without appropriate treatment poses a serious threat for the aquatic organisms. The present study was undertaken to investigate biochemical response of crayfish Astacus leptodactylus exposed to textile wastewater (TW) treated by indigenous white rot fungus Coriolus versicolor. Glutathione S-transferase (GST), cytochrome P450 1A1 (CYP1A1), and acetylcholinesterase (AchE) levels in hepatopancreas and abdomen tissues of crayfish exposed to untreated, treated, and diluted rates (1/10) in both TW during 24 and 96 h were tested. Physiochemical parameters (electrical conductivity (EC), chemical oxygen demand (COD), pH, and total dissolved solid (TDS)) of TW were determined before and after treatment. Physiochemical parameters of TW decreased after treatment. The GST activity and AchE were generally increased, but CYP1A1 activity was decreased in hepatopancreas tissue of crayfish exposed to different kinds of untreated TW. After treatment by indigenous white rot fungus (C. versicolor), GST and CYP1A1 activities were returned to control values, while AchE activities were increasing further. In this study, only GST and CYP1A1 activities of A. leptodactylus confirmed the efficiency of TW treatment with C. versicolor.

  18. BIODEGRATION OF 2,4,5-TRICHLOROPHENOXYACETIC ACID IN LIQUID CULTURE AND IN SOIL BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    Extensive biodegradation of [14C]-2,4,5-trichlorophenoxyacetic acid ([[14C]-2,4,5-T) by the white rot fungus Phanerochaete chrysosporium was demonstrated in nutrient nitrogen-limited aqueous cultures and in [14C]-2,4,5-T-contaminated soil inoculat...

  19. BIODEGRADATION OF DDT [1,1,1-TRICHLORO-2,2-BIS(4- CHLOROPHENYL) ETHANE] BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the form...

  20. Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6.

    PubMed

    Chakraborty, Samayita; Basak, Bikram; Dutta, Subhasish; Bhunia, Biswanath; Dey, Apurba

    2013-11-01

    A novel white rot fungus Alternaria alternata CMERI F6 decolorized 99.99% of 600 mg/L congo red within 48 h in yeast extract-glucose medium at 25 °C, pH 5 and 150 rpm. Physicochemical parameters like carbon and nitrogen sources, temperature, pH and aeration were optimized to develop faster decolorization process. Dye decolorization rate was maximal (20.21 mg/L h) at 25 °C, pH 5, 150 rpm and 800 mg/L dye, giving 78% final decolorization efficiency. Scanning electron microscopy and X-ray Diffraction analysis revealed that the fungus become amorphous after dye adsorption. HPLC and FTIR analysis of the extracted metabolites suggested that the decolorization occurred through biosorption and biodegradation. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and acid-alkali and 70% ethanol treatment revealed the efficient dye retention capability of the fungus. The foregoing results justify the applicability of the strain in removal of congo red from textile wastewaters and their safe disposal.

  1. Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to the enzyme molecular structure.

    PubMed

    Ruiz-Dueñas, Francisco J; Fernández, Elena; Martínez, María Jesús; Martínez, Angel T

    2011-11-01

    An exhaustive screening of the Pleurotus ostreatus genome was performed to search for nucleotide sequences of heme peroxidases in this white-rot fungus, which could be useful for different biotechnological applications. After sequence identification and manual curation of the corresponding genes and cDNAs, the deduced amino acid sequences were converted into structural homology models. A comparative study of these sequences and their structural models with those of known fungal peroxidases revealed the complete inventory of heme peroxidases of this fungus. This consists of cytochrome c peroxidase and ligninolytic peroxidases, including manganese peroxidase and versatile peroxidase but not lignin peroxidase, as representative of the "classical" superfamily of plant, fungal, and bacterial peroxidases; and members of two relatively "new" peroxidase superfamilies, namely heme-thiolate peroxidases, here described for the first time in a fungus from the genus Pleurotus, and dye-decolorizing peroxidases, already known in P. ostreatus but still to be thoroughly explored and characterized.

  2. Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsute by hot pressing without adhesive.

    PubMed

    Wu, Jianguo; Zhang, Xin; Wan, Jilin; Ma, Fuying; Tang, Yong; Zhang, Xiaoyu

    2011-12-01

    Corn stalk pretreated with white-rot fungus Trametes hirsute was used to produce fiberboard by hot pressing without adhesive. The moduli of rupture and elasticity of the corn-stalk-based fiberboard were increased 3.40- and 8.87-fold when bio-pretreated rather than untreated corn stalk was used. Fourier transform infra-red spectroscopy, X-ray diffraction, and chemical analysis showed that bio-pretreated corn stalk increased the mechanical properties of the fiberboard because it had more than twice the number of hydroxyl group, an 18% higher crystallinity, and twice the polysaccharide content of untreated corn stalk. Its laccase content was 4.65 ± 0.38 U/g. Corn stalk-based fiberboard production did not require adhesives, thus eliminating a potential source of toxic emissions such as formaldehyde gas.

  3. Morphological Characterization and Quantification of the Mycelial Growth of the Brown-Rot Fungus Postia placenta for Modeling Purposes

    PubMed Central

    Lv, Pin; Ayouz, Mehdi; Besserer, Arnaud; Perré, Patrick

    2016-01-01

    Continuous observation was performed using confocal laser scanning microscopy to visualize the three-dimensional microscopic growth of the brown-rot fungus, Postia placenta, for seventeen days. The morphological characterization of Postia placenta was quantitatively determined, including the tip extension rate, branch angle and branching length, (hyphal length between two adjacent branch sites). A voxel method has been developed to measure the growth of the biomass. Additionally, the tip extension rate distribution, the branch angle distribution and the branching length distribution, which quantified the hyphal growth characteristics, were evaluated. Statistical analysis revealed that the extension rate of tips was randomly distributed in space. The branch angle distribution did not change with the development of the colony, however, the branching length distribution did vary with the development of the colony. The experimental data will be incorporated into a lattice-based model simulating the growth of Postia placenta. PMID:27602575

  4. Evaluation of chicken manure, kenaf, and phanerochaete chrysosporium (white rot fungus) as enhancers of polychlorinated biphenyl biodegradation

    SciTech Connect

    Hurt, K.; Borazjani, A.; Diehl, S.V.

    1995-12-31

    In this 150-day study, chicken manure, kenaf, and white rot fungus were added to soil microcosms in an attempt to enhance the degradation of polychlorinated biphenyls. The soil was contaminated with commercial PCB mixtures. Dishes were ammended with 5% dry weight chicken manure, 1% dry weight kenaf, and 1% dry weight kenaf plus Phanerochaete chrysosporium inoculant. PCB concentrations were determined at 30 day intervals by soxhlet extraction and gas chromatography analyses. Preliminary results of microbial populations and PCB degradation are presented. At 90 days, the microcosms amended with chicken manure had significantly higher populations of bacteria, fungi, and actinomycetes. However, at 120 days, these soils underwent great reductions in actinomycete and bacterial populations. Through 60 days, the concentration of the PCBs Aroclor 1242 and 1248 had its greatest reduction in the kenaf amended soils. The concentration of Aroclor 1260 either increased or stayed at high levels for 30 days before stabilizing or decreasing by day 60.

  5. Direct lactic acid production from beech wood by transgenic white-rot fungus Phanerochaete sordida YK-624.

    PubMed

    Mori, Toshio; Kako, Hiroko; Sumiya, Tomoki; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-12-10

    A lactic acid (LA)-producing strain of the hyper-lignin-degrading fungus Phanerochaete sordida YK-624 with the lactate dehydrogenase-encoding gene from Bifidobacterium longum (Blldh) was constructed. When the endogenous pyruvate decarboxylase gene-knocked down and Blldh-expressing transformant was cultured with beech wood meal, the transformant was able to successively delignify and ferment the substrate. Supplementation of calcium carbonate into the culture medium, significantly increased the level of LA accumulation. Direct LA production (at 0.29g/l) from wood was confirmed, and additional inclusion of exogenous cellulase in this fermentation yielded significant further improvement in LA accumulation (up to 1.44g/l). This study provides the first report of direct production of LA by fermentation from woody biomass by a single microorganism, and indicates that transgenic white-rot fungi have a potential use for development of simple/easy applications for wood biorefinery.

  6. Acid and neutral trehalase activities in mutants of the corn rot fungus Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a fungal pathogen known to cause corn rot and other plant diseases and to contaminate grain with toxic metabolites. We are characterizing trehalose metabolism in F. verticillioides with the hope that this pathway might serve as a target for controlling Fusarium disease. T...

  7. Gene expression analysis of copper tolerance and wood decay in the brown rot fungus Fibroporia radiculosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many brown rot fungi are capable of rapidly degrading wood and are copper-tolerant. To better understand the genes that control these processes, we examined gene expression of Fibroporia radiculosa growing on wood treated with a copper-based preservative that combined copper carbonate with dimethyld...

  8. Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.

    PubMed

    Aguiar, André; Gavioli, Daniela; Ferraz, André

    2014-11-01

    Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation.

  9. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta

    PubMed Central

    Zhang, Jiwei; Presley, Gerald N.; Ryu, Jae-San; Menke, Jon R.; Figueroa, Melania; Orr, Galya; Schilling, Jonathan S.

    2016-01-01

    Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization. PMID:27621450

  10. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta.

    PubMed

    Zhang, Jiwei; Presley, Gerald N; Hammel, Kenneth E; Ryu, Jae-San; Menke, Jon R; Figueroa, Melania; Hu, Dehong; Orr, Galya; Schilling, Jonathan S

    2016-09-27

    Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.

  11. The integrative omics of white-rot fungus Pycnoporus coccineus reveals co-regulated CAZymes for orchestrated lignocellulose breakdown.

    PubMed

    Miyauchi, Shingo; Navarro, David; Grisel, Sacha; Chevret, Didier; Berrin, Jean-Guy; Rosso, Marie-Noelle

    2017-01-01

    Innovative green technologies are of importance for converting plant wastes into renewable sources for materials, chemicals and energy. However, recycling agricultural and forestry wastes is a challenge. A solution may be found in the forest. Saprotrophic white-rot fungi are able to convert dead plants into consumable carbon sources. Specialized fungal enzymes can be utilized for breaking down hard plant biopolymers. Thus, understanding the enzymatic machineries of such fungi gives us hints for the efficient decomposition of plant materials. Using the saprotrophic white-rot fungus Pycnoporus coccineus as a fungal model, we examined the dynamics of transcriptomic and secretomic responses to different types of lignocellulosic substrates at two time points. Our integrative omics pipeline (SHIN+GO) enabled us to compress layers of biological information into simple heatmaps, allowing for visual inspection of the data. We identified co-regulated genes with corresponding co-secreted enzymes, and the biological roles were extrapolated with the enriched Carbohydrate-Active Enzyme (CAZymes) and functional annotations. We observed the fungal early responses for the degradation of lignocellulosic substrates including; 1) simultaneous expression of CAZy genes and secretion of the enzymes acting on diverse glycosidic bonds in cellulose, hemicelluloses and their side chains or lignin (i.e. hydrolases, esterases and oxido-reductases); 2) the key role of lytic polysaccharide monooxygenases (LPMO); 3) the early transcriptional regulation of lignin active peroxidases; 4) the induction of detoxification processes dealing with biomass-derived compounds; and 5) the frequent attachments of the carbohydrate binding module 1 (CBM1) to enzymes from the lignocellulose-responsive genes. Our omics combining methods and related biological findings may contribute to the knowledge of fungal systems biology and facilitate the optimization of fungal enzyme cocktails for various industrial

  12. Enhancement of β-Glucosidase Activity from a Brown Rot Fungus Fomitopsis pinicola KCTC 6208 by Medium Optimization

    PubMed Central

    Park, Ah Reum; Park, Jeong-Hoon; Ahn, Hye-Jin; Jang, Ji Yeon; Yu, Byung Jo; Um, Byung-Hwan

    2015-01-01

    β-Glucosidase, which hydrolyzes cellobiose into two glucoses, plays an important role in the process of saccharification of the lignocellulosic biomass. In this study, we optimized the activity of β-glucosidase of brown-rot fungus Fomitopsis pinicola KCTC 6208 using the response surface methodology (RSM) with various concentrations of glucose, yeast extract and ascorbic acid, which are the most significant nutrients for activity of β-glucosidase. The highest activity of β-glucosidase was achieved 3.02% of glucose, 4.35% of yeast extract, and 7.41% ascorbic acid where ascorbic acid was most effective. The maximum activity of β-glucosidase predicted by the RSM was 15.34 U/mg, which was similar to the experimental value 14.90 U/mg at the 16th day of incubation. This optimized activity of β-glucosidase was 23.6 times higher than the preliminary activity value, 0.63 U/mg, and was also much higher than previous values reported in other fungi strains. Therefore, a simplified medium supplemented with a cheap vitamin source, such as ascorbic acid, could be a cost effective mean of increasing β-glucosidase activity. PMID:25892916

  13. Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family

    PubMed Central

    Vasina, Daria V.; Moiseenko, Konstantin V.; Fedorova, Tatiana V.; Tyazhelova, Tatiana V.

    2017-01-01

    Ligninolytic heme peroxidases comprise an extensive family of enzymes, which production is characteristic for white-rot Basidiomycota. The majority of fungal heme peroxidases are encoded by multigene families that differentially express closely related proteins. Currently, there were very few attempts to characterize the complete multigene family of heme peroxidases in a single fungus. Here we are focusing on identification and characterization of peroxidase genes, which are transcribed and secreted by basidiomycete Trametes hirsuta 072, an efficient lignin degrader. The T. hirsuta genome contains 18 ligninolytic peroxidase genes encoding 9 putative lignin peroxidases (LiP), 7 putative short manganese peroxidases (MnP) and 2 putative versatile peroxidases (VP). Using ddPCR method we have quantified the absolute expression of the 18 peroxidase genes under different culture conditions and on different growth stages of basidiomycete. It was shown that only two genes (one MnP and one VP) were prevalently expressed as well as secreted into cultural broth under all conditions investigated. However their transcriptome and protein profiles differed in time depending on the effector used. The expression of other peroxidase genes revealed a significant variability, so one can propose the specific roles of these enzymes in fungal development and lifestyle. PMID:28301519

  14. Differential production of lignocellulolytic enzymes by a white rot fungus Termitomyces sp. OE147 on cellulose and lactose.

    PubMed

    Bashir, Humayra; Gangwar, Rishabh; Mishra, Saroj

    2015-10-01

    White-rot fungi are the only organisms known to degrade all basic wood polymers using different strategies of employing a variety of hydrolytic and oxidative enzymes. A comparative secretome analysis of Termitomyces sp. OE147 cultivated on cellulose and lactose was carried out by two-dimensional gel electrophoresis followed by MALDI-TOF/TOF-MS analysis to identify the enzymes coordinately expressed on cellulose. A total of 29 proteins, belonging to CAZy hydrolases (11), CAZy oxidoreductases (13) and some 'other' (5) proteins were identified. Among the CAZy hydrolases, a distinct repertoire of cellulolytic and hemicellulolytic enzymes were produced while among the CAZy oxidoreductases, cellobiose dehydrogenase and laccase were the predominant enzymes along with H2O2 dependent peroxidases. This coordinated expression indicated a unique and integrated system for degradation of not only crystalline cellulose but also other components of lignocellulolytic substrates, namely lignin and xylan. Activities of the identified proteins were confirmed by plate assays and activity measurements. Many of the enzyme activities were also correlated with reduction in the crystallinity index of cellulose. Based on the enhanced production of CDH, β-glucosidases and several oxidoreductases, a more prominent role of these enzymes is indicated in this fungus in cellulose breakdown.

  15. Three Native Cellulose-Depolymerizing Endoglucanases from Solid-Substrate Cultures of the Brown Rot Fungus Meruliporia (Serpula) incrassata

    PubMed Central

    Kleman-Leyer, Karen M.; Kirk, T. Kent

    1994-01-01

    Three extracellular cellulose-depolymerizing enzymes from cotton undergoing decay by the brown rot fungus Meruliporia (Serpula) incrassata were isolated by anion-exchange and hydrophobic interaction chromatographies. Depolymerization was detected by analyzing the changes in the molecular size distribution of cotton cellulose by high-performance size-exclusion chromatography. The average degree of polymerization (DP; number of glucosyl residues per cellulose chain) was calculated from the size-exclusion chromatography data. The very acidic purified endoglucanases, Cel 25, Cel 49, and Cel 57, were glycosylated and had molecular weights of 25,200, 48,500, and 57,100, respectively. Two, Cel 25 and Cel 49, depolymerized cotton cellulose and were also very active on carboxymethyl cellulose (CMC). Cel 57, by contrast, significantly depolymerized cotton cellulose but did not release reducing sugars from CMC and only very slightly reduced the viscosity of CMC solutions. Molecular size distributions of cotton cellulose attacked by the three endoglucanases revealed single major peaks that shifted to lower DP positions. A second smaller peak (DP, 10 to 20) was also observed in the size-exclusion chromatograms of cotton attacked by Cel 49 and Cel 57. Under the reaction conditions used, Cel 25, the most active of the cellulases, reduced the weight average DP from 3,438 to 315, solubilizing approximately 20% of the cellulose. The weight average DP values of cotton attacked under the same conditions by Cel 49 and Cel 57 were 814 and 534; weight losses were 9 and 11% respectively. Images PMID:16349351

  16. The tropical white rot fungus, Lentinus squarrosulus Mont.: lignocellulolytic enzymes activities and sugar release from cornstalks under solid state fermentation.

    PubMed

    Isikhuemhen, Omoanghe S; Mikiashvili, Nona A; Adenipekun, Clementina O; Ohimain, Elijah I; Shahbazi, Ghasem

    2012-05-01

    Lentinus squarrosulus Mont., a high temperature tolerant white rot fungus that is found across sub-Saharan Africa and many parts of Asia, is attracting attention due to its rapid mycelia growth and potential for use in food and biodegradation. A solid state fermentation (SSF) experiment with L. squarrosulus (strain MBFBL 201) on cornstalks was conducted. The study evaluated lignocellulolytic enzymes activity, loss of organic matter (LOM), exopolysaccharide content, and the release of water soluble sugars from degraded substrate. The results showed that L. squarrosulus was able to degrade cornstalks significantly, with 58.8% LOM after 30 days of SSF. Maximum lignocellulolytic enzyme activities were obtained on day 6 of cultivation: laccase = 154.5 U/L, MnP = 13 U/L, peroxidase = 27.4 U/L, CMCase = 6.0 U/mL and xylanase = 14.5 U/mL. L. squarrosulus is a good producer of exopolysaccharides (3.0-5.13 mg/mL). Glucose and galactose were the most abundant sugars detected in the substrate during SSF, while fructose, xylose and trehalose, although detected on day zero of the experiment, were absent in treated substrates. The preference for hemicellulose over cellulose, combined with the high temperature tolerance and the very fast growth rate characteristics of L. squarrosulus could make it an ideal candidate for application in industrial pretreatment and biodelignification of lignocellulosic biomass.

  17. A promising inert support for laccase production and decolouration of textile wastewater by the white-rot fungus Trametes pubescesns.

    PubMed

    Rodríguez-Couto, Susana

    2012-09-30

    Cubes of nylon sponge, cubes of polyurethane foam (PUF), cuttings of stainless steel sponges and the commercial carriers Kaldnes™ K1 were tested as inert supports for laccase production by the white-rot fungus Trametes pubescens under semi-solid-state fermentation conditions. The cultures operating with Kaldnes™ K1 led to the highest laccase activity (3667 U/l). In addition this support could be re-utilised, making the whole process more economical. Subsequently, the decolouration of simulated textile wastewater (STW) by T. pubescens grown on the different tested supports under semi-solid-state fermentation conditions was studied. Decolouration percentages around 66-80% were obtained in 96 h. It was found that STW decolouration was due to two mechanisms: laccase action (biodegradation) and adsorption onto fungal mycelium, save for the PUF cultures in which decolouration was mainly due to adsorption onto the support. Further, the decolouration of STW by Kaldnes™ K1 cultures in three successive batches of 96 h each was studied. Decolouration percentages of 51.3, 70.0 and 69.8%, were attained for each batch, respectively.

  18. Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune.

    PubMed

    Horisawa, Sakae; Ando, Hiromasa; Ariga, Osamu; Sakuma, Yoh

    2015-12-01

    In the present study, ethanol production from polysaccharides or wood chips was conducted in a single reactor under anaerobic conditions using the white rot fungus Schizophyllum commune NBRC 4928, which produces enzymes that degrade lignin, cellulose and hemicellulose. The ethanol yields produced from glucose and xylose were 80.5%, and 52.5%, respectively. The absolute yields of ethanol per microcrystalline cellulose (MCC), xylan and arabinogalactan were 0.26g/g-MCC, 0.0419g/g-xylan and 0.0508g/g-arabinogalactan, respectively. By comparing the actual ethanol yields from polysaccharides with monosaccharide fermentation, it was shown that the rate of saccharification was slower than that in fermentation. S. commune NBRC 4928 is concluded to be suitable for CBP because it can produce ethanol from various types of sugar. From the autoclaved cedar chip, only little ethanol was produced by S. commune NBRC 4928 alone but ethanol production was enhanced by combined use of ethanol fermenting and lignin degrading fungi.

  19. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06.

    PubMed

    Asgher, Muhammad; Yasmeen, Qamar; Iqbal, Hafiz Muhammad Nasir

    2013-10-01

    An indigenously isolated white rot fungus, Schizophyllum commune IBL-06 was used to decolorize Solar brilliant red 80 direct dye in Kirk's basal salts medium. In initial screening study, the maximum decolorization (84.8%) of Solar brilliant red 80 was achieved in 7 days shaking incubation period at pH 4.5 and 30 °C. Different physical and nutritional factors including pH, temperature and fungal inoculum density were statistically optimized through Completely Randomized Design (CRD), to enhance the efficiency of S. commune IBL-06 for maximum decolorization of Solar brilliant red 80 dye. The effects of inexpensive carbon and nitrogen sources were also investigated. Percent dye decolorization was determined by a reduction in optical density at the wavelength of maximum absorbance (λ max, 590 nm). Under optimum conditions, the S. commune IBL-06 completely decolorized (100%) the Solar brilliant red 80 dye using maltose and ammonium sulfate as inexpensive carbon and nitrogen sources, respectively in 3 days. S. commune IBL-06 produced the three major ligninolytic enzymes lignin peroxidase (LiP), manganase peroxidase (MnP) and lacaase (Lac) during the decolorization of Solar brilliant red 80. LiP was the major enzyme (944 U/mL) secreted by S. commune IBL-06 along with comparatively lower activities of MnP and Laccase.

  20. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06

    PubMed Central

    Asgher, Muhammad; Yasmeen, Qamar; Iqbal, Hafiz Muhammad Nasir

    2013-01-01

    An indigenously isolated white rot fungus, Schizophyllum commune IBL-06 was used to decolorize Solar brilliant red 80 direct dye in Kirk’s basal salts medium. In initial screening study, the maximum decolorization (84.8%) of Solar brilliant red 80 was achieved in 7 days shaking incubation period at pH 4.5 and 30 °C. Different physical and nutritional factors including pH, temperature and fungal inoculum density were statistically optimized through Completely Randomized Design (CRD), to enhance the efficiency of S. commune IBL-06 for maximum decolorization of Solar brilliant red 80 dye. The effects of inexpensive carbon and nitrogen sources were also investigated. Percent dye decolorization was determined by a reduction in optical density at the wavelength of maximum absorbance (λmax, 590 nm). Under optimum conditions, the S. commune IBL-06 completely decolorized (100%) the Solar brilliant red 80 dye using maltose and ammonium sulfate as inexpensive carbon and nitrogen sources, respectively in 3 days. S. commune IBL-06 produced the three major ligninolytic enzymes lignin peroxidase (LiP), manganase peroxidase (MnP) and lacaase (Lac) during the decolorization of Solar brilliant red 80. LiP was the major enzyme (944 U/mL) secreted by S. commune IBL-06 along with comparatively lower activities of MnP and Laccase. PMID:24235871

  1. Effect of metal ions on autofluorescence of the dry rot fungus Serpula lacrymans grown on spruce wood.

    PubMed

    Gabriel, Jiří; Žižka, Zdeněk; Švec, Karel; Nasswettrová, Andrea; Šmíra, Pavel; Kofroňová, Olga; Benada, Oldřich

    2016-03-01

    This work describes autofluorescence of the mycelium of the dry rot fungus Serpula lacrymans grown on spruce wood blocks impregnated with various metals. Live mycelium, as opposed to dead mycelium, exhibited yellow autofluorescence upon blue excitation, blue fluorescence with ultraviolet (UV) excitation, orange-red and light-blue fluorescence with violet excitation, and red fluorescence with green excitation. Distinctive autofluorescence was observed in the fungal cell wall and in granula localized in the cytoplasm. In dead mycelium, the intensity of autofluorescence decreased and the signal was diffused throughout the cytoplasm. Metal treatment affected both the color and intensity of autofluorescence and also the morphology of the mycelium. The strongest yellow signal was observed with blue excitation in Cd-treated samples, in conjunction with increased branching and the formation of mycelial loops and protrusions. For the first time, we describe pink autofluorescence that was observed in Mn-, Zn-, and Cu-treated samples with UV, violet or. blue excitation. The lowest signals were obtained in Cu- and Fe-treated samples. Chitin, an important part of the fungal cell wall exhibited intensive primary fluorescence with UV, violet, blue, and green excitation.

  2. Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2012-03-01

    Armillaria sp. F022, a white-rot fungus isolated from a tropical rain forest in Samarinda, Indonesia, was used to biodegrade benzo[a]pyrene (BaP). Transformation of BaP, a 5-ring polycyclic aromatic hydrocarbon (PAH), by Armillaria sp. F022, which uses BaP as a source of carbon and energy, was investigated. However, biodegradation of BaP has been limited because of its bioavailability and toxicity. Five cosubstrates were selected as cometabolic carbon and energy sources. The results showed that Armillaria sp. F022 used BaP with and without cosubstrates. A 2.5-fold increase in degradation efficiency was achieved after addition of glucose. Meanwhile, the use of glucose as a cosubstrate could significantly stimulate laccase production compared with other cosubstrates and not using any cosubstrate. The metabolic pathway was elucidated by identifying metabolites, conducting biotransformation studies, and monitoring enzyme activities in cell-free extracts. The degradation mechanism was determined through the identification of several metabolites: benzo[a]pyrene-1,6-quinone, 1-hydroxy-2-benzoic acid, and benzoic acid.

  3. Regulation of cellulolytic activity in the white-rot fungus Ischonderma resinosum

    SciTech Connect

    Sutherland, J.B.

    1986-01-01

    The fungus, which can selectively remove lignin from wood, was grown on soluble media in stationary submerged cultures to investigate the effects of various carbohydrates on cellulolytic activity. The activities of extracellular cellulases (filter paper activity and carboxymethyl cellulase) were higher in cultures grown on carboxymethyl cellulose than in those on xylan or glucose. Carboxymethyl cellulase was induced in succinate-grown cultures after the addition of cellobiose or carboxymethyl cellulose; ..beta..-glucosidase was induced by cellobiose. Supplemental xylose, arabinose, fucose, glucuronic acid, and several other carbohydrates were catabolite repressors of cellulase activity. 21 references.

  4. Charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot is reported occasionally on alfalfa in the U.S. and has also been found in Australia, Pakistan, Uganda, east Africa, and the former Soviet Union. The fungus causing the disease is widespread throughout tropical and subtropical countries. It causes disease on more than 500 crop and we...

  5. Biochemical Characterization of Chloromethane Emission from the Wood-Rotting Fungus Phellinus pomaceus

    PubMed Central

    Saxena, Deepti; Aouad, Saleh; Attieh, Jihad; Saini, Hargurdeep S.

    1998-01-01

    Many wood-rotting fungi, including Phellinus pomaceus, produce chloromethane (CH3Cl). P. pomaceus can be cultured in undisturbed glucose mycological peptone liquid medium to produce high amounts of CH3Cl. The biosynthesis of CH3Cl is catalyzed by a methyl chloride transferase (MCT), which appears to be membrane bound. The enzyme is labile upon removal from its natural location and upon storage at low temperature in its bound state. Various detergents failed to solubilize the enzyme in active form, and hence it was characterized by using a membrane fraction. The enzyme had a sharp pH optimum between 7 and 7.2. Its apparent Km for Cl− (ca. 300 mM) was much higher than that for I− (250 μM) or Br− (11 mM). A comparison of these Km values to the relative in vivo methylation rates for different halides suggests that the real Km for Cl− may be much lower, but the calculated value is high because the CH3Cl produced is used immediately in a coupled reaction. Among various methyl donors tested, S-adenosyl-l-methionine (SAM) was the only one that supported significant methylation by MCT. The reaction was inhibited by S-adenosyl-l-homocysteine, an inhibitor of SAM-dependent methylation, suggesting that SAM is the natural methyl donor. These findings advance our comprehension of a poorly understood metabolic sector at the origin of biogenic emissions of halomethanes, which play an important role in atmospheric chemistry. PMID:9687437

  6. Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022.

    PubMed

    Hadibarata, Tony; Zubir, Meor Mohd Fikri Ahmad; Rubiyatno; Chuang, Teh Zee; Yusoff, Abdull Rahim Mohd; Salim, Mohd Razman; Fulazzaky, Mohammad Ali; Seng, Bunrith; Nugroho, Agung Endro

    2013-09-01

    Characterization of anthracene metabolites produced by Armillaria sp. F022 was performed in the enzymatic system. The fungal culture was conducted in 100-mL Erlenmeyer flask containing mineral salt broth medium (20 mL) and incubated at 120 rpm for 5-30 days. The culture broth was then centrifuged at 10,000 rpm for 45 min to obtain the extract. Additionally, the effect of glucose consumption, laccase activity, and biomass production in degradation of anthracene were also investigated. Approximately, 92 % of the initial concentration of anthracene was degraded within 30 days of incubation. Dynamic pattern of the biomass production was affected the laccase activity during the experiment. The biomass of the fungus increased with the increasing of laccase activity. The isolation and characterization of four metabolites indicated that the structure of anthracene was transformed by Armillaria sp. F022 in two routes. First, anthracene was oxidized to form anthraquinone, benzoic acid, and second, converted into other products, 2-hydroxy-3-naphthoic acid and coumarin. Gas chromatography-mass spectrometry analysis also revealed that the molecular structure of anthracene was transformed by the action of the enzyme, generating a series of intermediate compounds such as anthraquinone by ring-cleavage reactions. The ligninolytic enzymes expecially free extracellular laccase played an important role in the transformation of anthracene during degradation period.

  7. Identification of a novel cytochrome P-450 gene from the white rot fungus Phanerochaete chrysosporium.

    PubMed Central

    Kullman, S W; Matsumura, F

    1997-01-01

    A gene fragment belonging to the cytochrome P-450 superfamily has been cloned and identified from stationary cultures of the filamentous fungus Phanerochaete chrysosporium by reverse transcriptase (RT)-PCR. A set of degenerate primers homologous to highly conserved regions of known cytochrome P-450 sequences were used for initial RT-PCRs. Individual PCR products were cloned, sequenced, and identified as those belonging to the cytochrome P-450 superfamily based on amino acid sequence homologies and the presence of the highly conserved heme binding region. The nucleotide sequence of a single cDNA clone indicated the presence of an open reading frame encoding a partial cytochrome P-450 protein of 208 amino acids. Comparisons of the deduced amino acid sequence of the partial protein to other known cytochrome P-450 sequences indicate that it is the first member of a new family of cytochrome P-450s, designated CYP63-1A. Northern blot analysis suggests that CYP63-1A is expressed under both nitrogen-rich and nitrogen-deficient culture conditions and thus not under the same regulatory constraints as the well-studied lignin and manganese peroxidases. Western blot analyses using antibodies raised to the heme binding region of CYP63-1A indicate that the protein has a molecular mass of approximately 44,000 Da. PMID:9212420

  8. Gene Expression Analysis of Copper Tolerance and Wood Decay in the Brown Rot Fungus Fibroporia radiculosa

    PubMed Central

    Parker, Leslie A.; Perkins, Andy D.; Sonstegard, Tad S.; Schroeder, Steven G.; Nicholas, Darrel D.; Diehl, Susan V.

    2013-01-01

    High-throughput transcriptomics was used to identify Fibroporia radiculosa genes that were differentially regulated during colonization of wood treated with a copper-based preservative. The transcriptome was profiled at two time points while the fungus was growing on wood treated with micronized copper quat (MCQ). A total of 917 transcripts were differentially expressed. Fifty-eight of these genes were more highly expressed when the MCQ was protecting the wood from strength loss and had putative functions related to oxalate production/degradation, laccase activity, quinone biosynthesis, pectin degradation, ATP production, cytochrome P450 activity, signal transduction, and transcriptional regulation. Sixty-one genes were more highly expressed when the MCQ lost its effectiveness (>50% strength loss) and had functions related to oxalate degradation; cytochrome P450 activity; H2O2 production and degradation; degradation of cellulose, hemicellulose, and pectin; hexose transport; membrane glycerophospholipid metabolism; and cell wall chemistry. Ten of these differentially regulated genes were quantified by reverse transcriptase PCR for a more in-depth study (4 time points on wood with or without MCQ treatment). Our results showed that MCQ induced higher than normal levels of expression for four genes (putative annotations for isocitrate lyase, glyoxylate dehydrogenase, laccase, and oxalate decarboxylase 1), while four other genes (putative annotations for oxalate decarboxylase 2, aryl alcohol oxidase, glycoside hydrolase 5, and glycoside hydrolase 10) were repressed. The significance of these results is that we have identified several genes that appear to be coregulated, with putative functions related to copper tolerance and/or wood decay. PMID:23263965

  9. Biotransformation of (-)-α-pinene and geraniol to α-terpineol and p-menthane-3,8-diol by the white rot fungus, Polyporus brumalis.

    PubMed

    Lee, Su-Yeon; Kim, Seon-Hong; Hong, Chang-Young; Park, Se-Yeong; Choi, In-Gyu

    2015-07-01

    In this study, the monoterpenes, α-pinene and geraniol, were biotransformed to synthesize monoterpene alcohol compounds. Polyporus brumalis which is classified as a white rot fungus was used as a biocatalyst. Consequently α-terpineol was synthesized from α-pinene by P. brumalis mycelium, after three days. Moreover, another substrate, the acyclic monoterpenoids geraniol was transformed into the cyclic compound, p-menthane-3, 8-diol (PMD). The main metabolites, i.e., α-terpineol and PMD, are known to be bioactive monoterpene alcohol compounds. This study highlights the potential of fungal biocatalysts for monoterpene transformation.

  10. Nitrogen-removal with protease as a method to improve the selective delignification of hemp stemwood by the white-rot fungus Bjerkandera sp. strain BOS55.

    PubMed

    Dorado, J; Field, J A; Almendros, G; Sierra-Alvarez, R

    2001-10-01

    Certain white-rot fungi cause selective removal of lignin from woody substrates. Selective delignification can potentially be applied to biopulping and upgrading animal feeds. Nitrogen nutrient limitation is known to enhance the selectivity of lignin degradation. The relatively high N-content of annual fiber crops is an important drawback for utilizing white-rot fungi for their selective delignification. In this study, removal of N from hemp stemwood with protease was explored as a means of improving the selectivity of lignin degradation by the white-rot fungus Bjerkandera sp. strain BOS55. Various protease treatments followed by hot-water extraction were found to be suitable in lowering the N-content of hemp stemwood by up to 70%. The removal was significantly higher than with hot-water extraction alone, which caused a 39% N-removal. The selectivity of lignin degradation was compared in protease-treated, hot-water treated, untreated and ammonium-spiked hemp stemwood, providing N levels that were, respectively, 0.32-, 0.61-, 1.0- and 5.0-fold relative to the natural N-content in the substrate. Removal of N by hot-water extraction alone or in combination with protease greatly protected the holocellulose fraction from excessive decay during 10 weeks of solid state fermentation. However, the selectivity of lignin decay was only greatly enhanced (three-fold) by the protease treatment, due mostly to a highly improved lignin degradation at the lowest N-level.

  11. Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation

    PubMed Central

    Neifar, Mohamed; Kamoun, Amel; Jaouani, Atef; Ellouze-Ghorbel, Raoudha; Ellouze-Chaabouni, Semia

    2011-01-01

    Statistical approaches were employed for the optimization of different cultural parameters for the production of laccase by the white rot fungus Fomes fomentarius MUCL 35117 in wheat bran-based solid medium. first, screening of production parameters was performed using an asymmetrical design 2533//16, and the variables with statistically significant effects on laccase production were identified. Second, inoculum size, CaCl2 concentration, CuSO4 concentration, and incubation time were selected for further optimization studies using a Hoke design. The application of the response surface methodology allows us to determine a set of optimal conditions (CaCl2, 5.5 mg/gs, CuSO4, 2.5 mg/gs, inoculum size, 3 fungal discs (6 mm Ø), and 13 days of static cultivation). Experiments carried out under these conditions led to a laccase production yield of 150 U/g dry substrate. PMID:23008760

  12. Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60.

    PubMed

    Khuong, Le Duy; Kondo, Ryuichiro; De Leon, Rizalinda; Anh, To Kim; Meguro, Sadatoshi; Shimizu, Kuniyoshi; Kamei, Ichiro

    2014-09-01

    Bioethanol production through integrated fungal fermentation (IFF), involving a unified process for biological delignification with consolidated biological processing by the white-rot fungus Phlebia sp. MG-60, was applied to sugarcane bagasse. Initial moisture content of the bagasse was found to affect biological delignification by MG-60, and 75% moisture content was suitable for selective lignin degradation and subsequent ethanol production. Additives, such as basal media, organic compounds, or minerals, also affected biological delignification of bagasse by MG-60. Basal medium addition improved both delignification and ethanol production. Some inorganic chemical factors, such as Fe(2+), Mn(2+), or Cu(2+), reduced bagasse carbohydrate degradation by MG-60 during delignifying incubations and resulted in increased ethanol production. The present results indicated that suitable culture conditions could significantly improve IFF efficiency.

  13. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.

    PubMed

    Rineau, Francois; Roth, Doris; Shah, Firoz; Smits, Mark; Johansson, Tomas; Canbäck, Björn; Olsen, Peter Bjarke; Persson, Per; Grell, Morten Nedergaard; Lindquist, Erika; Grigoriev, Igor V; Lange, Lene; Tunlid, Anders

    2012-06-01

    Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.

  14. An anamorph of the white-rot fungus Bjerkandera adusta capable of colonizing and degrading compact disc components.

    PubMed

    Romero, Elvira; Speranza, Mariela; García-Guinea, Javier; Martínez, Angel T; Martínez, María Jesús

    2007-10-01

    A Geotrichum-like fungus isolated from a biodeteriorated compact disc (CD) was able to degrade in vitro the components of different CD types. The fungal hyphae inside the CD fragments grew through the aluminium layer and produced the solubilization of this metal. Furthermore, examination of CDs by scanning electron microscopy showed that the fungus was able to destroy the pits and lands structures grooved in the polycarbonate layer, confirming degradation of this aromatic polymer. The fungus secretes aryl-alcohol oxidase and Mn2+-oxidizing peroxidase, two kinds of oxidoreductases characteristic of ligninolytic basidiomycetes. Analysis of the ITS region of ribosomal DNA, as well as the morphological characteristics, the lack of sexual forms and the profile of enzymes secreted in liquid medium identified the fungus as a Geotrichum-like anamorph of Bjerkandera adusta (Willd.) P. Karst.

  15. Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose.

    PubMed

    Rytioja, Johanna; Hildén, Kristiina; Hatakka, Annele; Mäkelä, Miia R

    2014-11-01

    The recent discovery of oxidative cellulose degradation enhancing enzymes has considerably changed the traditional concept of hydrolytic cellulose degradation. The relative expression levels of ten cellulose-acting enzyme encoding genes of the white-rot fungus Dichomitus squalens were studied on solid-state spruce wood and in microcrystalline Avicel cellulose cultures. From the cellobiohydrolase encoding genes, cel7c was detected at the highest level and showed constitutive expression whereas variable transcript levels were detected for cel7a, cel7b and cel6 in the course of four-week spruce cultivation. The cellulolytic enzyme activities detected in the liquid cultures were consistent with the transcript levels. Interestingly, the selected lytic polysaccharide monooxygenase (LPMO) encoding genes were expressed in both cultures, but showed different transcription patterns on wood compared to those in submerged microcrystalline cellulose cultures. On spruce wood, higher transcript levels were detected for the lpmos carrying cellulose binding module (CBM) than for the lpmos without CBMs. In both cultures, the expression levels of the lpmo genes were generally higher than the levels of cellobiose dehydrogenase (CDH) encoding genes. Based on the results of this work, the oxidative cellulose cleaving enzymes of D. squalens have essential role in cellulose degrading machinery of the fungus.

  16. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta

    SciTech Connect

    Zhang, Jiwei; Presley, Gerald N.; Hammel, Kenneth E.; Ryu, Jae-San; Menke, Jon R.; Figueroa, Melania; Hu, Dehong; Orr, Galya; Schilling, Jonathan S.

    2016-09-12

    The fungi that cause brown rot of wood are essential contributors to biomass recycling in forest ecosystems. Their highly efficient cellulolytic systems, which may have practical applications, apparently depend on a combination of two mechanisms: nonselective oxidation of the lignocellulose by reactive oxygen species (ROS) coupled with hydrolysis of the polysaccharide components by a limited set of glycoside hydrolases (GHs). Since the production of strongly oxidizing ROS appears incompatible with the operation of GHs, it has been proposed that the fungi regulate ROS production by maintaining concentration gradients of the chelated metal ions they use to generate extracellular oxidants. However, calculations have indicated that this protective mechanism is physically infeasible. We examined a different hypothesis, that expression of ROS and GH components is temporally staggered by brown rot fungi in wood. We sectioned thin wafers of spruce and aspen that had been colonized directionally by Postia placenta and measured expression of relevant genes and some of the encoded enzymes, thus using the spatial distribution of fungal hyphae to resolve a fine-scale temporal sequence. Hierarchical clustering of gene expression for eight oxidoreductases thought to have a role in ROS production and of eight GHs revealed a zone of oxidoreductase upregulation at the hyphal front that persisted about 48 h before upregulation of the GHs. Additional evidence for differential expression was provided by localization of endoglucanase, xylanase, mannanase, and laccase activities in the colonized wood. Our results support a two-step mechanism for brown rot, in which substrate oxidation precedes enzymatic hydrolysis.

  17. EXTRACELLULAR ENZYME SYSTEM UTILIZED BY THE ROT FUNGUS STEREUM SANGUINOLENTUM FOR THE BREAKDOWN OF CELLULOSE: I. STUDIES ON THE ENZYME PRODUCTION. II. PURIFICATION OF THE CELLULASE. III. CHARACTERIZATION OF TWO PURIFIED CELLULASE FRACTIONS,

    DTIC Science & Technology

    focusing method. Also, the separation of two cellulase peaks from culture solutions of the rot fungus Stereum sanguinolentum has been demonstrated...homogeneous cellulase peak upon rechromatography on a DEAE-Sephadex A-50 column as well as on column electrophoresis. The results strongly indicate that S...sanguinolentum only excretes one cellulase enzyme in a culture solution with powdered cellulose as the carbon source. (Author)

  18. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    PubMed

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection.

  19. Characterisation of the initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana.

    PubMed

    Irbe, Ilze; Andersone, Ingeborga; Andersons, Bruno; Noldt, Guna; Dizhbite, Tatiana; Kurnosova, Nina; Nuopponen, Mari; Stewart, Derek

    2011-07-01

    In our study, early period degradation (10 days) of Scots pine (Pinus sylvestris L.) sapwood by the brown-rot fungus Coniophora puteana (Schum.: Fr.) Karst. (BAM Ebw.15) was followed at the wood chemical composition and ultrastructure-level, and highlighted the generation of reactive oxygen species (ROS). An advanced decay period of 50 days was chosen for comparison of the degradation dynamics. Scanning UV microspectrophotometry (UMSP) analyses of lignin distribution in wood cells revealed that the linkages of lignin and polysaccharides were already disrupted in the early period of fungal attack. An increase in the lignin absorption A(280) value from 0.24 (control) to 0.44 in decayed wood was attributed to its oxidative modification which has been proposed to be generated by Fenton reaction derived ROS. The wood weight loss in the initial degradation period was 2%, whilst cellulose and lignin content decreased by 6.7% and 1%, respectively. Lignin methoxyl (-OCH3) content decreased from 15.1% (control) to 14.2% in decayed wood. Diffuse reflectance Fourier-transform infrared (DRIFT) spectroscopy corroborated the moderate loss in the hemicellulose and lignin degradation accompanying degradation. Electron paramagnetic resonance spectra and spin trapping confirmed the generation of ROS, such as hydroxyl radicals (HO∙), in the early wood degradation period. Our results showed that irreversible changes in wood structure started immediately after wood colonisation by fungal hyphae and the results generated here will assist in the understanding of the biochemical mechanisms of wood biodegradation by brown-rot fungi with the ultimate aim of developing novel wood protection methods.

  20. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes.

    PubMed

    Faraco, V; Pezzella, C; Miele, A; Giardina, P; Sannia, G

    2009-04-01

    The effect of Phanerochaete chrysosporium and Pleurotus ostreatus whole cells and their ligninolytic enzymes on models of colored industrial wastewaters was evaluated. Models of acid, direct and reactive dye wastewaters from textile industry have been defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of the contained dyes. Phanerochaete chrysosporium provided an effective decolourization of direct dye wastewater model, reaching about 45% decolourization in only 1 day of treatment, and about 90% decolourization within 7 days, whilst P. ostreatus was able to decolorize and detoxify acid dye wastewater model providing 40% decolourization in only 1 day, and 60% in 7 days. P. ostreatus growth conditions that induce laccase production (up to 130,000 U/l) were identified, and extra-cellular enzyme mixtures, with known laccase isoenzyme composition, were produced and used in wastewater models decolourization. The mixtures decolorized and detoxified the acid dye wastewater model, suggesting laccases as the main agents of wastewater decolourization by P. ostreatus. A laccase mixture was immobilized by entrapment in Cu-alginate beads, and the immobilized enzymes were shown to be effective in batch decolourization, even after 15 stepwise additions of dye for a total exposure of about 1 month.

  1. The pathogenic white-rot fungus Heterobasidion parviporum responds to spruce xylem defense by enhanced production of oxalic acid.

    PubMed

    Nagy, Nina Elisabeth; Kvaalen, Harald; Fongen, Monica; Fossdal, Carl Gunnar; Clarke, Nicholas; Solheim, Halvor; Hietala, Ari M

    2012-11-01

    Pathogen challenge of tree sapwood induces the formation of reaction zones with antimicrobial properties such as elevated pH and cation content. Many fungi lower substrate pH by secreting oxalic acid, its conjugate base oxalate being a reductant as well as a chelating agent for cations. To examine the role of oxalic acid in pathogenicity of white-rot fungi, we conducted spatial quantification of oxalate, transcript levels of related fungal genes, and element concentrations in heartwood of Norway spruce challenged naturally by Heterobasidion parviporum. In the pathogen-compromised reaction zone, upregulation of an oxaloacetase gene generating oxalic acid coincided with oxalate and cation accumulation and presence of calcium oxalate crystals. The colonized inner heartwood showed trace amounts of oxalate. Moreover, fungal exposure to the reaction zone under laboratory conditions induced oxaloacetase and oxalate accumulation, whereas heartwood induced a decarboxylase gene involved in degradation of oxalate. The excess level of cations in defense xylem inactivates pathogen-secreted oxalate through precipitation and, presumably, only after cation neutralization can oxalic acid participate in lignocellulose degradation. This necessitates enhanced production of oxalic acid by H. parviporum. This study is the first to determine the true influence of white-rot fungi on oxalate crystal formation in tree xylem.

  2. The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications.

    PubMed

    Knop, Doriv; Yarden, Oded; Hadar, Yitzhak

    2015-02-01

    Mushrooms of the genus Pleurotus are comprised of cultivated edible ligninolytic fungi with medicinal properties and a wide array of biotechnological and environmental applications. Like other white-rot fungi (WRF), they are able to grow on a variety of lignocellulosic biomass substrates and degrade both natural and anthropogenic aromatic compounds. This is due to the presence of the non-specific oxidative enzymatic systems, which are mainly consisted of lacasses, versatile peroxidases (VPs), and short manganese peroxidases (short-MnPs). Additional, less studied, peroxidase are dye-decolorizing peroxidases (DyPs) and heme-thiolate peroxidases (HTPs). During the past two decades, substantial information has accumulated concerning the biochemistry, structure and function of the Pleurotus ligninolytic peroxidases, which are considered to play a key role in many biodegradation processes. The production of these enzymes is dependent on growth media composition, pH, and temperature as well as the growth phase of the fungus. Mn(2+) concentration differentially affects the expression of the different genes. It also severs as a preferred substrate for these preoxidases. Recently, sequencing of the Pleurotus ostreatus genome was completed, and a comprehensive picture of the ligninolytic peroxidase gene family, consisting of three VPs and six short-MnPs, has been established. Similar enzymes were also discovered and studied in other Pleurotus species. In addition, progress has been made in the development of molecular tools for targeted gene replacement, RNAi-based gene silencing and overexpression of genes of interest. These advances increase the fundamental understanding of the ligninolytic system and provide the opportunity for harnessing the unique attributes of these WRF for applied purposes.

  3. Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01.

    PubMed

    Wang, Shan-Shan; Ning, Ying-Jie; Wang, Shou-Nan; Zhang, Jing; Zhang, Guo-Qing; Chen, Qing-Jun

    2017-02-01

    A novel laccase was purified from fermentation broth of the white rot fungus Cerrena unicolor strain GSM-01 following three ion-exchange chromatography steps and one gel-filtration step. The purified enzyme was determined to be a monomeric protein of 63.2kDa and demonstrated high oxidation activity of 2.05×10(4)U/mg towards ABTS. Its cDNA, gene, and amino acid sequences were obtained. It possessed high sequence similarity with that of other laccases but different enzymatic properties. It manifested optimal pH and temperature of 2.6 and 45°C, respectively. Fe(3+) and Fe(2+) were the most efficient inhibitors towards Cerrena unicolor laccase (CUL), while Mn(2+) can slightly enhance the laccase activity of 3.8-10.5%. The Km and Vmax of CUL were estimated to 302.7μM and 13.6μMm(-1), respectively. CUL was effective in the decolorization of bromothymol blue, evans blue, methyl orange, and malachite green with decolorization efficiencies of 50%-85%. It possesses potential application in textile and environmental industries.

  4. Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase.

    PubMed

    Wengel, Marcus; Kothe, Erika; Schmidt, Christian M; Heide, Klaus; Gleixner, Gerd

    2006-08-15

    We investigated the degradation of refractory organic matter (OM) by the basidiomycete fungus Schizophyllum commune to understand the release of dissolved organic compounds, heavy metals and sulfur. The investigated OM consisted of: charcoal, the short time end product of high temperature wood alteration in the absence of oxygen and composed mainly of pure OM; and black shales composed of clay minerals, quartz, sulfides and OM formed geogenically in an abiotic long-term process. In both cases, the OM fraction contains mainly polyaromatic hydrocarbons. We investigated the degradation of these fractions by a wood-rotting basidiomycete, which is able to produce exoenzymes like peroxidases and laccases. These enzymes can perform radical reactions to oxidize OM (like lignin) and therefore hypothetically are able to degrade OM from charcoal and/or low grade metamorphic black shales. Release of new components into dissolved organic carbon (DOC) could be detected in both cases. The attack on OM in the case of black shales coincided with the release of the heavy metals Fe, Mn and Ni. By following sulfur concentrations throughout the experiment, it was shown that heavy metal release is not due to pyrite oxidation. Ground black shale and charcoal samples were inoculated with S. commune in a diluted minimal medium containing aspartic acid and glucose. The aqueous and solid phases were sampled after 1, 7, 28 and 84 days. DOC was measured as non purgeable carbon and characterized by size exclusion chromatography and UV detection. Carbon concentrations of the solid phase were determined by element analyses. After initial decrease of the DOC concentrations due to the degradation of the carbon source provided with the medium, DOC increased up to 80 mg/l after 84 days. Carbon decreased in the solid fraction confirming that this carbon was released as DOC by the fungus. The newly generated DOC formed larger agglomerations than the DOC of the growth medium. The investigation proved

  5. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus.

    PubMed

    Olivieri, Giuseppe; Russo, Maria Elena; Giardina, Paola; Marzocchella, Antonio; Sannia, Giovanni; Salatino, Piero

    2012-05-01

    The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO₄). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42-68% for five cycles).

  6. Differential Proteomic Profiles of Pleurotus ostreatus in Response to Lignocellulosic Components Provide Insights into Divergent Adaptive Mechanisms

    PubMed Central

    Xiao, Qiuyun; Ma, Fuying; Li, Yan; Yu, Hongbo; Li, Chengyun; Zhang, Xiaoyu

    2017-01-01

    Pleurotus ostreatus is a white rot fungus that grows on lignocellulosic biomass by metabolizing the main constituents. Extracellular enzymes play a key role in this process. During the hydrolysis of lignocellulose, potentially toxic molecules are released from lignin, and the molecules are derived from hemicellulose or cellulose that trigger various responses in fungus, thereby influencing mycelial growth. In order to characterize the mechanism underlying the response of P. ostreatus to lignin, we conducted a comparative proteomic analysis of P. ostreatus grown on different lignocellulose substrates. In this work, the mycelium proteome of P. ostreatus grown in liquid minimal medium with lignin, xylan, and carboxymethyl cellulose (CMC) was analyzed using the complementary two-dimensional gel electrophoresis (2-DE) approach; 115 proteins were identified, most of which were classified into five types according to their function. Proteins with an antioxidant function that play a role in the stress response were upregulated in response to lignin. Most proteins involving in carbohydrate and energy metabolism were less abundant in lignin. Xylan and CMC may enhanced the process of carbohydrate metabolism by regulating the level of expression of various carbohydrate metabolism-related proteins. The change of protein expression level was related to the adaptability of P. ostreatus to lignocellulose. These findings provide novel insights into the mechanisms underlying the response of white-rot fungus to lignocellulose. PMID:28386251

  7. Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus.

    PubMed

    Kalpana, Duraisamy; Velmurugan, Natarajan; Shim, Jae Hong; Oh, Byung-Taek; Senthil, Kalaiselvi; Lee, Yang Soo

    2012-11-30

    The treatment of effluents from textile industry with microorganisms, especially bacteria and fungi, has recently gained attention. The present study was conducted using white rot fungi Irpex lacteus, Trametes hirsuta, Trametes sp., and Lentinula edodes for the decolorization of reactive textile Levafix Blue E-RA granulate dye. I. lacteus resulted in the best decolorization and degradation of the dye within four days. Therefore, more detailed studies were carried out using I. lacteus. The decolorization was evaluated at various concentration, pH values, and temperatures. The activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were estimated to reveal the roles of enzymes in decolorization. The colorless nature of the fungal cells revealed that decolorization occurred through degradation, and confirmed by analysis of the metabolites by UV-visible spectroscopy and High Performance Liquid Chromatography after decolorization. The metabolites were identified by Gas Chromatography-Mass Spectrometry, and functional group analysis was performed by Fourier Transform Infrared Spectroscopy. The degraded dye metabolites were assessed for phytotoxicity using Vigna radiata and Brassica juncea, which demonstrated nontoxic nature of the metabolites formed after degradation of dye.

  8. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624.

    PubMed

    Wang, Jianqiao; Hirabayashi, Sho; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-07-01

    To improve ethanol production by Phanerochaete sordida YK-624, the pyruvate decarboxylase (PDC) gene was cloned from and reintroduced into this hyper lignin-degrading fungus; the gene encodes a key enzyme in alcoholic fermentation. We screened 16 transformant P. sordida YK-624 strains that each expressed a second, recombinant PDC gene (pdc) and then identified the transformant strain (designated GP7) with the highest ethanol production. Direct ethanol production from hardwood was 1.41 higher with GP7 than with wild-type P. sordida YK-624. RT-PCR analysis indicated that the increased PDC activity was caused by elevated recombinant pdc expression. Taken together, these results suggested that ethanol production by P. sordida YK-624 can be improved by the stable expression of an additional, recombinant pdc.

  9. Use of stable isotope probing to assess the fate of emerging contaminants degraded by white-rot fungus.

    PubMed

    Badia-Fabregat, Marina; Rosell, Mònica; Caminal, Glòria; Vicent, Teresa; Marco-Urrea, Ernest

    2014-05-01

    The widespread of emerging contaminants in the environment and their potential impact on humans is a matter of concern. White-rot fungi are cosmopolitan organisms able to remove a wide range of pharmaceuticals and personal care products (PPCP) through cometabolism (i.e. laccases and peroxidases) or detoxification mechanisms (i.e. cytochrome P450 system). However, the use of PPCP as carbon source for these organisms is largely unexplored. Here, we used carbon stable isotope tracer experiments to assess the fate of anti-inflammatory diclofenac (DCF) and UV filter benzophenone-3 (BP3) during degradation by Trametes versicolor. The comparison between carbon isotopic composition of emitted carbon dioxide from 13C-labelled DCF ([acetophenyl ring-13C6]-DCF) and 13C-BP3 ([phenyl-13C6]-BP3) versus their 12C-homologue compounds showed mineralization of about 45% and 10% of the 13C contained in their respective molecules after 9 days of incubation. The carbon isotopic composition of the bulk biomass and the application of amino acid-stable isotope probing (SIP) allowed distinguishing between incorporation of 13C from BP3 into amino acids, which implies the use of this emerging contaminant as carbon source, and major intracellular accumulation of 13C from DCF without implying the transformation of its labelled phenyl ring into anabolic products. A mass balance of 13C in different compartments over time provided a comprehensive picture of the fate of DCF and BP3 across their different transformation processes. This is the first report assessing biodegradation of PPCP by SIP techniques and the use of emerging contaminants as carbon source for amino acid biosynthesis.

  10. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes

    PubMed Central

    Kojima, Yuka; Várnai, Anikó; Ishida, Takuya; Sunagawa, Naoki; Petrovic, Dejan M.; Igarashi, Kiyohiko; Jellison, Jody; Goodell, Barry; Alfredsen, Gry; Westereng, Bjørge

    2016-01-01

    only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall. PMID:27590806

  11. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products.

    PubMed

    Prieto, Ailette; Möder, Monika; Rodil, Rosario; Adrian, Lorenz; Marco-Urrea, Ernest

    2011-12-01

    More than 90% of the antibiotics ciprofloxacin (CIPRO) and norfloxacin (NOR) at 2 mg L(-1) were degraded by Trametes versicolor after 7 days of incubation in malt extract liquid medium. In in vitro assays with purified laccase (16.7 nkat mL(-1)), an extracellular enzyme excreted constitutively by this fungus, 16% of CIPRO was removed after 20 h. The addition of the laccase mediator 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt led to 97.7% and 33.7% degradation of CIPRO and NOR, respectively. Inhibition of CIPRO and NOR degradation by the cytochrome P450 inhibitor 1-aminobenzotriazole suggests that the P450 system also plays a role in the degradation of the two antibiotics. Transformation products of CIPRO and NOR were monitored at different incubation times by triple-quadrupole and quadrupole time-of-flight mass spectrometry, and can be assigned to three different reaction pathways: (i) oxidation of the piperazinyl substituent, (ii) monohydroxylation, and (iii) formation of dimeric products.

  12. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress.

    PubMed

    Huang, Dan-Lian; Zeng, Guang-Ming; Feng, Chong-Ling; Hu, Shuang; Zhao, Mei-Hua; Lai, Cui; Zhang, Yu; Jiang, Xiao-Yun; Liu, Hong-Liang

    2010-11-01

    Lignocellulosic biomass is an abundant renewable resource difficult to degrade. Its bioconversion plays important roles in carbon cycles in nature, which may be influenced by heavy metals in environment. Mycelial growth and the degradation of lignocellulosic waste by lignin-degrading fungus Phanerochaete chrysosporium under lead stress were studied. It was shown that P. chrysosporium could grow in liquid media with 400 mg L⁻¹ Pb(II), and mycelial dry weight was reduced by 54% compared to the control. Yellow mycelia in irregular short-strip shape formed in Pb-containing media, whereas the control showed ivory-white regular mycelial pellets. Two possible responses to Pb stress were: dense hyphae, and secretion from mycelia to resist Pb. During solid-state fermentation of straw, fungal colonization capability under Pb stress was positively correlated with the removal efficiency of soluble-exchangeable Pb when its content was higher than 8.2 mg kg⁻¹ dry mass. Carboxymethyl cellulase activity and cellulose degradation were inhibited at different Pb concentrations, whereas low Pb concentrations increased xylanase and ligninolytic enzyme activities and the hemicellulose and lignin degradation. Cluster analyses indicated that Pb had similar effects on the different microbial indexes related to lignin and hemicellulose degradation. The present findings will advance the understandings of lignocellulose degradation by fungi under Pb pollution, which could provide useful references for developing metal-polluted waste biotreatment technology.

  13. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.

    PubMed

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W M R

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles.

  14. Improved bioconversion of poplar by synergistic treatments with white-rot fungus Trametes velutina D10149 pretreatment and alkaline fractionation.

    PubMed

    Yang, Haiyan; Wang, Kun; Wang, Wei; Sun, Run-Cang

    2013-02-01

    Successive treatments with fungus and alkali were proposed to reduce the recalcitrance and improved the enzymatic digestibility of triploid poplar. Biopretreatment with Trametes velutina D10149 for 0, 4, 8, 12 and 16weeks gradually degraded hemicelluloses and lignin, and improved the digestibility of cellulose from 4.0% to 19.5% with the increasing dry mass loss of lignocelluloses from 15.5% to 53.4%. Combining with alkaline fractionation, biopretreatment for 4weeks significantly enhanced the availability of cellulose and achieved a maximum glucose yield (38.8% of the original cellulose) with a dry mass loss of 24.4%. The BET surface area of lignocelluloses increased from 1.7 to 10.6m(2)/g after combination of 8weeks biopretreatment and alkaline fractionation. Moreover, alkaline fractionation removed amorphous and low molecular components, which incurred a higher crystalline index and narrower molecular weight distribution of residual carbohydrates in synergistically treated samples as compared to biopretreated samples.

  15. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta

    PubMed Central

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W. M. R.

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles. PMID:26554706

  16. Cellobiose quinone oxidoreductase from the white rot fungus Phanerochaete chrysosporium is produced by intracellular proteolysis of cellobiose dehydrogenase.

    PubMed

    Raíces, Manuel; Montesino, Raquel; Cremata, José; García, Bianca; Perdomo, Walmer; Szabó, István; Henriksson, Gunnar; Hallberg, B Martin; Pettersson, Göran; Johansson, Gunnar

    2002-06-07

    The fungus Phanerochaete chrysosporium was grown in a 10-l automatic fermenter using cellobiose as carbon source to monitor the induction of cellobiose dehydrogenase (CDH) and cellobiose quinone oxidoreductase (CBQ) enzymes, and to search for tentative cbq and cdh genes and their transcriptional products. After 24 h of induction, CDH was detected in the culture supernatant and a protein was recognized by a specific anti-CDH polyclonal antibody in the sonicated biomass. Northern blot experiments performed with several fungal RNA samples showed, after 24 h of induction, only one single species of an mRNA transcript corresponding in size to the cdh gene (2.5 kb) The relative amount of this transcript decreased as a function of time. Southern blot experiments done with genomic DNA and database search in the recently available genome information also ruled out the presence in this strain of a separate cbq gene distinct from the cdh gene. Taken together, these results demonstrated that CBQ originates from the cdh gene. Furthermore, it is not produced by differential splicing but by a posttranslational, predominantly intracellular, proteolytic cleavage.

  17. Treatment of wheat straw using tannase and white-rot fungus to improve feed utilization by ruminants

    PubMed Central

    2014-01-01

    Background Current research to enrich cattle feed has primarily focused on treatment using white rot fungi, while there are scarce reports using the enzyme tannase, which is discussed only in reviews or in the form of a hypothesis. In this context, the aim of the present study was to evaluate the effect of tannase on wheat straw (WS) and also the effect of lyophilized tannase at concentrations of 0.1%, 0.2%, and 0.3% (w/w) on WS followed by fermentation with Ganoderma sp. for 10 d and compared in relation to biochemical parameters, crude protein (CP) content, and nutritional value by calculating the C/N ratio in order to improve the nutritional value of cattle feed. Results Penicillium charlesii, a tannase-producing microorganism, produced 61.4 IU/mL of tannase in 54 h when 2% (w/v) tannic acid (TA) was initially used as a substrate in medium containing (% w/v) sucrose (1.0), NaNO3 (1.0), and MgSO4 (0.08 pH, 5.0) in a 300-L fermentor (working volume 220 L), and concomitantly fed with 1.0% (w/v) TA after 24 h. The yield of partially purified and lyophilized tannase was 5.8 IU/mg. The tannin-free myco-straw at 0.1% (w/w) tannase showed 37.8% (w/w) lignin degradation with only a 20.4% (w/w) decrease in cellulose content and the in vitro feed digestibility was 32.2%. An increase in CP content (up to 1.28-fold) along with a lower C/N ratio of 25.0%, as compared to myco-straw, was obtained. Conclusions The use of tannin-free myco-straw has potential to improve the nutritional content of cattle feed. This biological treatment process was safe, eco-friendly, easy to perform, and was less expensive as compared to other treatment methods. PMID:24555694

  18. Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition.

    PubMed

    Zhang, Chengdong; Li, Mingzhu; Chen, Xiaoyan; Li, Mingchun

    2015-08-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical that is ubiquitous in the environment because of its broad industrial use. The authors report that the most widely cultivated mushroom in the world (i.e., white-rot fungus, Pleurotus ostreatus) efficiently degraded 10mg/L of BPA in 7 days. Extracellular laccase was identified as the enzyme responsible for this activity. LC-MS analysis of the metabolites revealed the presence of both low- and high-molecular-weight products obtained via oxidative cleavage and coupling reactions, respectively. In particular, an analysis of the fatty acid composition and chemical structure of the fungal mycelium demonstrated that exposure to BPA resulted in no harmful effects on this edible fungus. The results provide a better understanding of the environmental fate of BPA and its potential impact on food crops.

  19. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation.

    PubMed

    Young, Darcy; Rice, James; Martin, Rachael; Lindquist, Erika; Lipzen, Anna; Grigoriev, Igor; Hibbett, David

    2015-01-01

    Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 "Bunker C" fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes). Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold) greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels.

  20. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation

    PubMed Central

    Young, Darcy; Rice, James; Martin, Rachael; Lindquist, Erika; Lipzen, Anna; Grigoriev, Igor; Hibbett, David

    2015-01-01

    Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 “Bunker C” fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes). Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold) greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels. PMID:26111162

  1. A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium.

    PubMed

    Bhattacharya, Sukanta S; Syed, Khajamohiddin; Shann, Jodi; Yadav, Jagjit S

    2013-10-15

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) such as benzo[a]pyrene (BaP) are resistant to biodegradation in soil. Conventionally, white rot fungus Phanerochaete chrysosporium has been investigated for HMW-PAH degradation in soil primarily using nutrient-deficient (ligninolytic) conditions, albeit with limited and non-sustainable biodegradation outcomes. In this study, we report development of an alternative novel biphasic process initiated under nutrient-sufficient (non-ligninolytic) culture conditions, by employing an advanced experimental design strategy. During the initial nutrient-sufficient non-ligninolytic phase (16 days), the process showed upregulation (3.6- and 22.3-fold, respectively) of two key PAH-oxidizing P450 monooxygenases pc2 (CYP63A2) and pah4 (CYP5136A3) and formation of typical P450-hydroxylated metabolite. This along with abrogation (84.9%) of BaP degradation activity in response to a P450-specific inhibitor implied key role of these monooxygenases. The subsequent phase triggered on continued incubation (to 25 days) switched the process from non-ligninolytic to ligninolytic resulting in a significantly higher net degradation (91.6% as against 67.4% in the control nutrient-limited set) of BaP with concomitant de novo ligninolytic enzyme expression making it a biphasic process yielding improved sustainable bioremediation of PAH-contaminated soil. To our knowledge this is the first report on development of such biphasic process for bioremediation application of a white rot fungus.

  2. Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium : Evidence for gene duplications and extensive gene clustering

    PubMed Central

    Doddapaneni, Harshavardhan; Chakraborty, Ranajit; Yadav, Jagjit S

    2005-01-01

    Background Phanerochaete chrysosporium, the model white rot basidiomycetous fungus, has the extraordinary ability to mineralize (to CO2) lignin and detoxify a variety of chemical pollutants. Its cytochrome P450 monooxygenases have recently been implied in several of these biotransformations. Our initial P450 cloning efforts in P. chrysosporium and its subsequent whole genome sequencing have revealed an extraordinary P450 repertoire ("P450ome") containing at least 150 P450 genes with yet unknown function. In order to understand the functional diversity and the evolutionary mechanisms and significance of these hemeproteins, here we report a genome-wide structural and evolutionary analysis of the P450ome of this fungus. Results Our analysis showed that P. chrysosporium P450ome could be classified into 12 families and 23 sub-families and is characterized by the presence of multigene families. A genome-level structural analysis revealed 16 organizationally homogeneous and heterogeneous clusters of tandem P450 genes. Analysis of our cloned cDNAs revealed structurally conserved characteristics (intron numbers and locations, and functional domains) among members of the two representative multigene P450 families CYP63 and CYP505 (P450foxy). Considering the unusually complex structural features of the P450 genes in this genome, including microexons (2–10 aa) and frequent small introns (45–55 bp), alternative splicing, as experimentally observed for CYP63, may be a more widespread event in the P450ome of this fungus. Clan-level phylogenetic comparison revealed that P. chrysosporium P450 families fall under 11 fungal clans and the majority of these multigene families appear to have evolved locally in this genome from their respective progenitor genes, as a result of extensive gene duplications and rearrangements. Conclusion P. chrysosporium P450ome, the largest known todate among fungi, is characterized by tandem gene clusters and multigene families. This enormous P450

  3. Selective natural induction of laccases in Pleurotus sajor-caju, suitable for application at a biofuel cell cathode at neutral pH.

    PubMed

    Fokina, Oleksandra; Eipper, Jens; Kerzenmacher, Sven; Fischer, Reinhard

    2016-10-01

    Laccases are multicopper oxidoreductases with broad substrate specificity and are applied in biofuel cells at the cathode to improve its oxygen reduction performance. However, the production of laccases by e.g. fungi is often accompanied by the need of synthetic growth supplements for increased enzyme production. In this study we present a strategy for the white-rot fungus Pleurotus sajor-caju for natural laccase activity induction using lignocellulose substrates and culture supernatant of Aspergillus nidulans. P. sajor-caju laccases were secreted into the supernatant, which was directly used at a carbon-nanotube buckypaper cathode in a biofuel cell. Maximal current densities of -148±3μAcm(-2) and -102±9μAcm(-2) at 400mV were achieved at pH 5 and 7, respectively. Variations in cathode performance were observed with culture supernatants produced under different conditions due to the induction of specific laccases.

  4. A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium

    PubMed Central

    Bhattacharya, Sukanta S.; Syed, Khajamohiddin; Shann, Jodi; Yadav, Jagjit S.

    2013-01-01

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) such as benzo[a]pyrene (BaP) are resistant to biodegradation in soil. Conventionally, white rot fungus Phanerochaete chrysosporium has been investigated for HMW-PAH degradation in soil primarily using nutrient-deficient (ligninolytic) conditions, albeit with limited and non-sustainable biodegradation outcomes. In this study, we report development of an alternative novel biphasic process initiated under nutrient-sufficient (non-ligninolytic) culture conditions, by employing an advanced experimental design strategy. During the initial nutrient-sufficient non-ligninolytic phase (16 days), the process showed upregulation (3.6-and 22.3-fold, respectively) of two key PAH-oxidizing P450 monooxygenases pc2 (CYP63A2) and pah4 (CYP5136A3) and formation of typical P450-hydroxylated metabolite. This along with abrogation (84.9%) of BaP degradation activity in response to a P450-specific inhibitor implied key role of these monooxygenases. The subsequent phase triggered on continued incubation (to 25 days) switched the process from non-ligninolytic to ligninolytic resulting in a significantly higher net degradation (91.6% as against 67.4% in the control nutrient-limited set) of BaP with concomitant de novo ligninolytic enzyme expression making it a biphasic process yielding improved sustainable bioremediation of PAH-contaminated soil. To our knowledge this is the first report on development of such biphasic process for bioremediation application of a white rot fungus. PMID:24051002

  5. Enhancing the Laccase Production and Laccase Gene Expression in the White-Rot Fungus Trametes velutina 5930 with Great Potential for Biotechnological Applications by Different Metal Ions and Aromatic Compounds

    PubMed Central

    Yang, Yang; Wei, Fuxiang; Zhuo, Rui; Fan, Fangfang; Liu, Huahua; Zhang, Chen; Ma, Li; Jiang, Mulan; Zhang, Xiaoyu

    2013-01-01

    Laccase is useful for various biotechnological and industrial applications. The white-rot fungus Trametes velutina 5930 and its laccase, isolated from the Shennongjia Nature Reserve in China by our laboratory, has great potential for practical application in environmental biotechnology. However, the original level of laccase produced by Trametes velutina 5930 was relatively low in the absence of any inducer. Therefore, in order to enhance the laccase production by Trametes velutina 5930 and make better use of this fungus in the field of environmental biotechnology, the regulation of laccase production and laccase gene expression in Trametes velutina 5930 were investigated in this study. Different metal ions such as Cu2+ and Fe2+ could stimulate the laccase synthesis and laccase gene transcription in Trametes velutina 5930. Some aromatic compounds structurally related to lignin, such as tannic acid, syringic acid, cinnamic acid, gallic acid and guaiacol, could also enhance the level of laccase activity and laccase gene transcription. We also found that there existed a positive synergistic effect of aromatic compound and metal ion on the laccase production and laccase gene transcription in Trametes velutina 5930. Taken together, our study may contribute to the improvement of laccase productivity by Trametes velutina 5930. PMID:24244475

  6. Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi

    PubMed Central

    Kleman-Leyer, Karen; Agosin, Eduardo; Conner, Anthony H.; Kirk, T. Kent

    1992-01-01

    The kinetics of cotton cellulose depolymerization by the brown rot fungus Postia placenta and the white rot fungus Phanerochaete chrysosporium were investigated with solid-state cultures. The degree of polymerization (DP; the average number of glucosyl residues per cellulose molecule) of cellulose removed from soil-block cultures during degradation by P. placenta was first determined viscosimetrically. Changes in molecular size distribution of cellulose attacked by either fungus were then determined by size exclusion chromatography as the tricarbanilate derivative. The first study with P. placenta revealed two phases of depolymerization: a rapid decrease to a DP of approximately 800 and then a slower decrease to a DP of approximately 250. Almost all depolymerization occurred before weight loss. Determination of the molecular size distribution of cellulose during attack by the brown rot fungus revealed single major peaks centered over progressively lower DPs. Cellulose attacked by P. chrysosporium was continuously consumed and showed a different pattern of change in molecular size distribution than cellulose attacked by P. placenta. At first, a broad peak which shifted at a slightly lower average DP appeared, but as attack progressed the peak narrowed and the average DP increased slightly. From these results, it is apparent that the mechanism of cellulose degradation differs fundamentally between brown and white rot fungi, as represented by the species studied here. We conclude that the brown rot fungus cleaved completely through the amorphous regions of the cellulose microfibrils, whereas the white rot fungus attacked the surfaces of the microfibrils, resulting in a progressive erosion. PMID:16348694

  7. Investigation of Pleurotus ostreatus pretreatment on switchgrass for ethanol production

    NASA Astrophysics Data System (ADS)

    Slavens, Shelyn Gehle

    Fungal pretreatment using the white-rot fungus Pleurotus ostreatus on switchgrass for ethanol production was studied. In a small-scale storage study, small switchgrass bales were inoculated with fungal spawn and automatically watered to maintain moisture. Sampled at 25, 53, and 81 d, the switchgrass composition was determined and liquid hot water (LHW) pretreatment was conducted. Fungal pretreatment significantly decreased the xylan and lignin content; glucan was not significantly affected by fungal loading. The glucan, xylan, and lignin contents significantly decreased with increased fungal pretreatment time. The effects of the fungal pretreatment were not highly evident after the LHW pretreatment, showing only changes based on sampling time. Although other biological activity within the bales increased cellulose degradation, the fungal pretreatment successfully reduced the switchgrass lignin and hemicellulose contents. In a laboratory-scale nutrient supplementation study, copper, manganese, glucose, or water was added to switchgrass to induce production of ligninolytic enzymes by P. ostreatus. After 40 d, ligninolytic enzyme activities and biomass composition were determined and simultaneous saccharification and fermentation (SSF) was conducted to determine ethanol yield. Laccase activity was similar for all supplements and manganese peroxidase (MnP) activity was significantly less in copper-treated samples than in the other fungal-inoculated samples. The fungal pretreatment reduced glucan, xylan, and lignin content, while increasing extractable sugars content. The lowest lignin contents occurred in the water-fungal treated samples and produced the greatest ethanol yields. The greatest lignin contents occurred in the copper-fungal treated samples and produced the lowest ethanol yields. Manganese-fungal and glucose-fungal treated samples had similar, intermediate lignin contents and produced similar, intermediate ethanol yields. Ethanol yields from switchgrass

  8. Bioremediation of long-term PCB-contaminated soil by white-rot fungi.

    PubMed

    Stella, Tatiana; Covino, Stefano; Čvančarová, Monika; Filipová, Alena; Petruccioli, Maurizio; D'Annibale, Alessandro; Cajthaml, Tomáš

    2017-02-15

    The objective of this work was to test the PCB-degrading abilities of two white-rot fungi, namely Pleurotus ostreatus and Irpex lacteus, in real contaminated soils with different chemical properties and autochthonous microflora. In addition to the efficiency in PCB removal, attention was given to other important parameters, such as changes in the toxicity and formation of PCB transformation products. Moreover, structural shifts and dynamics of both bacterial and fungal communities were monitored using next-generation sequencing and phospholipid fatty acid analysis. The best results were obtained with P. ostreatus, which resulted in PCB removals of 18.5, 41.3 and 50.5% from the bulk, top (surface) and rhizosphere, respectively, of dumpsite soils after 12 weeks of treatment. Numerous transformation products were detected (hydoxylated and methoxylated PCBs, chlorobenzoates and chlorobenzyl alcohols), which indicates that both fungi were able to oxidize and decompose the aromatic moiety of PCBs in the soils. Microbial community analysis revealed that P. ostreatus efficiently colonized the soil samples and suppressed other fungal genera. However, the same fungus substantially stimulated bacterial taxa that encompass putative PCB degraders. The results of this study finally demonstrated the feasibility of using this fungus for possible scaled-up bioremediation applications.

  9. Enhanced simultaneous saccharification and fermentation of pretreated beech wood by in situ treatment with the white rot fungus Irpex lacteus in a membrane aerated biofilm reactor.

    PubMed

    Brethauer, Simone; Robert Lawrence, Shahab; Michael Hans-Peter, Studer

    2017-03-18

    The aim of the present study was to investigate the combination of steam pretreatment and biological treatment with lignin degrading fungal strains in order to enable efficient bioprocessing of beech wood to ethanol. In a sequential process of steam and fungal pretreatment followed by enzymatic hydrolysis, Irpex lacteus almost doubled the glucose yield for mildly pretreated beech wood, but could not improve yields for more severely pretreated substrates. However, when simultaneous saccharification and fermentation is combined with in situ I. lacteus treatment, which is enabled by the application of a membrane aerated biofilm reactor, ethanol yields of optimally steam pretreated beech could be improved from 65 to 80%. Generally, in situ fungal treatment during bioprocessing of lignocellulose is an interesting method to harness the versatile abilities of white rot fungi.

  10. Management of Rhizoctonia root and crown rot of subarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root and crown rot is caused by the fungus Rhizoctonia solani and is one of the most severe soil-borne diseases of sugarbeet in Minnesota and North Dakota. Rhizoctonia root and crown rot may reduce yield significantly, and diseased beets may cause problems in storage piles. Fields with...

  11. Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels.

    PubMed

    Jogi, Ansuya; Kerry, John W; Brenneman, Timothy B; Leebens-Mack, James H; Gold, Scott E

    2016-03-01

    Sclerotium rolfsii, a destructive soil-borne fungal pathogen causes stem rot of the cultivated peanut, Arachis hypogaea. This study aimed to identify differentially expressed genes associated with peanut resistance and fungal virulence. Four peanut cultivars (A100-32, Georgia Green, GA-07W and York) with increasing resistance levels were inoculated with a virulent S. rolfsii strain to study the early plant-pathogen interaction. 454 sequencing was performed on RNAs from infected tissue collected at 4 days post inoculation, generating 225,793 high-quality reads. Normalized read counts and fold changes were calculated and statistical analysis used to identify differentially expressed genes. Several genes identified as differential in the RNA-seq experiment were selected based on functions of interest and real-time PCR employed to corroborate their differential expression. Expanding the analysis to include all four cultivars revealed a small but interesting set of genes showing colinearity between cultivar resistance and expression levels. This study identified a set of genes possibly related to pathogen response that may be useful marker assisted selection or transgenic disease control strategies. Additionally, a set of differentially expressed genes that have not been functionally characterized in peanut or other plants and warrant additional investigation were identified.

  12. Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system.

    PubMed

    Yang, Yang; Fan, Fangfang; Zhuo, Rui; Ma, Fuying; Gong, Yangmin; Wan, Xia; Jiang, Mulan; Zhang, Xiaoyu

    2012-08-01

    Laccase is a copper-containing polyphenol oxidase that has great potential in industrial and biotechnological applications. Previous research has suggested that fungal laccase may be involved in the defense against oxidative stress, but there is little direct evidence supporting this hypothesis, and the mechanism by which laccase protects cells from oxidative stress also remains unclear. Here, we report that the expression of the laccase gene from white rot fungus in Pichia pastoris can significantly enhance the resistance of yeast to H(2)O(2)-mediated oxidative stress. The expression of laccase in yeast was found to confer a strong ability to scavenge intracellular H(2)O(2) and to protect cells from lipid oxidative damage. The mechanism by which laccase gene expression increases resistance to oxidative stress was then investigated further. We found that laccase gene expression in Pichia pastoris could increase the level of glutathione-based antioxidative activity, including the intracellular glutathione levels and the enzymatic activity of glutathione peroxidase, glutathione reductase, and γ-glutamylcysteine synthetase. The transcription of the laccase gene in Pichia pastoris was found to be enhanced by the oxidative stress caused by exogenous H(2)O(2). The stimulation of laccase gene expression in response to exogenous H(2)O(2) stress further contributed to the transcriptional induction of the genes involved in the glutathione-dependent antioxidative system, including PpYAP1, PpGPX1, PpPMP20, PpGLR1, and PpGSH1. Taken together, these results suggest that the expression of the laccase gene in Pichia pastoris can enhance the resistance of yeast to H(2)O(2)-mediated oxidative stress by stimulating the glutathione-based antioxidative system to protect the cell from oxidative damage.

  13. Low impact strategies to improve ligninolytic enzyme production in filamentous fungi: the case of laccase in Pleurotus ostreatus.

    PubMed

    Lettera, Vincenzo; Del Vecchio, Claudia; Piscitelli, Alessandra; Sannia, Giovanni

    2011-11-01

    The ever-increasing demand of laccases for biodelignification, industrial oxidative processes and environmental bioremediation requires the production of large quantities of enzymes at low cost. The present work was carried out to reduce laccase production costs in liquid fermentations of the white-rot fungus Pleurotus ostreatus through two different approaches. In the first, screening of fungal spent media as natural laccase inducer was performed, eliminating the presence of potentially toxic/recalcitrant and expensive exogenous inducers in the culture broth. In the latter, breeding of different strains of P. ostreatus, screened for their laccase productivity, was performed by cross-hybridisation, avoiding genetic transformation and mutagenic treatments that could produce organisms not suitable for "natural or safe processes". A laccase production level close to 80,000U/L by combining the two approaches was achieved. Autoinduction and classical breeding represent promising tools for the improvement of fungal fermentation without affecting the disposable costs that also depend on the eco-compatibility of the whole process.

  14. An unstructured mathematical model for growth of Pleurotus ostreatus on lignocellulosic material in solid-state fermentation systems

    SciTech Connect

    Sarikaya, A.; Ladisch, M.R.

    1997-01-01

    Inedible plant material, generated in a Controlled Ecological Life Support System (CELSS), should be recycled preferably by bioregenerative methods that utilize enzymes or micro-organisms. This material consists of hemicellulose, cellulose, and lignin with the lignin fraction representing a recalcitrant component that is not readily treated by enzymatic methods. Consequently, the white-rot fungus, Pleurotus ostreatus, is attractive since it effectively degrades lignin and produces edible mushrooms. This work describes an unstructured model for the growth of P. ostreatus in a solid-state fermentation system using lignocellulosic plant materials from Brassica napus (rapeseed) as a substrate at three different particle sizes. A logistic function model based on area was found to fit the surface growth of the mycelium on the solid substrate with respect to time, whereas a model based on diameter, alone, did not fit the data as well. The difference between the two measures of growth was also evident for mycelial growth in a bioreactor designed to facilitate a slow flowrate of air through the 1.5 cm thick mat of lignocellulosic biomass particles. The result is consistent with the concept of competition of the mycelium for the substrate that surrounds it, rather than just substrate that is immediately available to single cells. This approach provides a quantitative measure of P. ostreatus growth on lignocellulosic biomass in a solid-state fermentation system. The experimental data show that the best growth is obtained for the largest particles (1 cm) of the lignocellulosic substrate. 13 refs., 6 figs., 2 tabs.

  15. Production of laccase and manganese peroxidase by Pleurotus pulmonarius in solid-state cultures and application in dye decolorization.

    PubMed

    dos Santos Bazanella, Gisele Cristina; de Souza, Daniela Farani; Castoldi, Rafael; Oliveira, Roselene Ferreira; Bracht, Adelar; Peralta, Rosane Marina

    2013-11-01

    The production of ligninolytic enzymes (laccase and Mn-dependent peroxidase) by the white-rot fungus Pleurotus pulmonarius (FR.) Quélet was studied in solid-state cultures using agricultural and food wastes as substrate. The highest activities of laccase were found in wheat bran (2,860 ± 250 U/L), pineapple peel (2,450 ± 230 U/L), and orange bagasse (2,100 ± 270 U/L) cultures, all of them at an initial moisture level of 85 %. The highest activities of Mn peroxidase were obtained in pineapple peel cultures (2,200 ± 205 U/L) at an initial moisture level of 75 %. In general, the condition of high initial moisture level (80-90 %) was the best condition for laccase activity, while the best condition for Mn peroxidase activity was cultivation at low initial moisture (50-70 %). Cultures containing high Mn peroxidase activities were more efficient in the decolorization of the industrial dyes remazol brilliant blue R (RBBR), Congo red, methylene blue, and ethyl violet than those containing high laccase activity. Also, crude enzymatic extracts with high Mn peroxidase activity were more efficient in the in vitro decolorization of methylene blue, ethyl violet, and Congo red. The dye RBBR was efficiently decolorized by both crude extracts, rich in Mn peroxidase activity or rich in laccase activity.

  16. The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw.

    PubMed

    Jafari, M A; Nikkhah, A; Sadeghi, A A; Chamani, M

    2007-08-01

    This study was carried out to test the potentially of using rice straw substrate for the cultivation of four Pleurotus species including Pleurotus florida, Pleurotus djamor, Pleurotus sajor-caju and Pleurotus ostreatus and the effect of these species on the chemical composition, cell wall degradation and digestibility of rice straw. Rice straw soaked in water for 24 h and then it was pasteurized at 100 degrees C for 6 h. Rice straw was inoculated with spawns of four Pleurotus fungi (Pleurotus florida, Pleurotus djamor, Pleurotus sajor-caju and Pleurotus ostreatus) and packed in the plastic bags and incubated in a fermentation chamber at 23-27 degrees C and 75-85% relative humidity. After 60th day, rice straw samples from all groups were taken and analyzed for chemical composition and in vitro digestibility. The data obtained were analyzed according to the complete randomized design model consisting of four treatments plus one control and four replicates. The results of this study showed that fungal treatment increased (p<0.05) the Crude Protein (CP), silica, Ca and P contents of the rice straw but the hemicellulose, Organic Matter (OM), Acid Detergent Fiber (ADF), Neutral Detergent Fiber (NDF) and Acid Detergent Lignin (ADL) contents decreased. However, the ability of the fungi to degrade these components varied among the species. The ability of Pleurotus sajor-caju and Pleurotus ostreatus were higher than the other species in decreasing the hemicellulose, NDF, ADF and ADL contents. The highest Biological Efficiency (BE) was produced by sajor-caju species with 56.02 and the lowest was belong to Pleurotus djamor species with an average 51.17%. All species of fungi incubated on rice straw showed increased (p<0.05) the in vitro dry mater and organic matter digestibility. Rice straw treated with sajor-caju fungus had the highest in vitro dry matter digestibility (IVDMD) and in vitro organic matter digestibility (IVOMD) with 80.10 and 82.18%, respectively. In general

  17. Biodegradation of sugarcane bagasse by Pleurotus citrinopileatus.

    PubMed

    Pandey, V K; Singh, M P; Srivastava, A K; Vishwakarma, S K; Takshak, S

    2012-12-22

    The chemically as well as hot water treated agrowaste sugarcane bagasse was subjected to degradation by Pleurotus citrinopileatus. The fungus degraded lignin, cellulose, hemicellulose, and carbon content of both chemically as well as hot water treated waste and produced in turn the edible and nutritious fruiting body. Biodegradation of the waste in terms of loss of lignin, cellulose and hemicellulose showed positive correlation with cellulases, xylanase, laccase and polyphenol oxidase (PPO) activity of the fungus. During mycelial growth of the fungus, lignin degradation was faster and during fructification, lignin degradation was slower than cellulose and hemicellulose. The carbon content of the sugarcane bagasse decreased while, nitrogen content increased during degradation of the waste. Hot water treated substrate supported better production of enzymatic activity and degraded more efficiently than chemically sterilized substrate. The total yield and biological efficiency of the mushroom was maximum on the hot water treated substrates. Degradation of the hot water treated sugarcane bagasse was better and faster than chemically treated substrates.

  18. Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus.

    PubMed

    Salame, Tomer M; Knop, Doriv; Tal, Dana; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2012-08-01

    Pleurotus ostreatus (the oyster mushroom) and other white rot filamentous basidiomycetes are key players in the global carbon cycle. P. ostreatus is also a commercially important edible fungus with medicinal properties and is important for biotechnological and environmental applications. Efficient gene targeting via homologous recombination (HR) is a fundamental tool for facilitating comprehensive gene function studies. Since the natural HR frequency in Pleurotus transformations is low (2.3%), transformed DNA is predominantly integrated ectopically. To overcome this limitation, a general gene targeting system was developed by producing a P. ostreatus PC9 homokaryon Δku80 strain, using carboxin resistance complemented by the development of a protocol for hygromycin B resistance protoplast-based DNA transformation and homokaryon isolation. The Δku80 strain exhibited exclusive (100%) HR in the integration of transforming DNA, providing a high efficiency of gene targeting. Furthermore, the Δku80 strains produced showed a phenotype similar to that of the wild-type PC9 strain, with similar growth fitness, ligninolytic functionality, and capability of mating with the incompatible strain PC15 to produce a dikaryon which retained its resistance to the corresponding selection and was capable of producing typical fruiting bodies. The applicability of this system is demonstrated by inactivation of the versatile peroxidase (VP) encoded by mnp4. This enzyme is part of the ligninolytic system of P. ostreatus, being one of the nine members of the manganese-peroxidase (MnP) gene family, and is the predominantly expressed VP in Mn(2+)-deficient media. mnp4 inactivation provided a direct proof that mnp4 encodes a key VP responsible for the Mn(2+)-dependent and Mn(2+)-independent peroxidase activity under Mn(2+)-deficient culture conditions.

  19. First report of brown rot on apple fruit caused by Monilinia fructicola in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown rot, caused by Monilinia fructicola (G. Wint.) Honey, is the most devastating disease of stone fruits in North America resulting in significant economic losses. The fungus has been recently reported to cause pre and postharvest brown rot on apple fruit in Germany, Italy, and Serbia. However, M...

  20. Preharvest applications of fungicides for control of Sphaeropsis rot in stored apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sphaeropsis rot caused by Sphaeropsis pyriputrescens is a recently reported postharvest fruit rot disease of apple in Washington State and causes significant economic losses. Infection of apple fruit by the fungus occurs in the orchard, but decay symptoms develop during storage or in the market. The...

  1. Monitoring cotton root rot progression within a growing season using airborne multispectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the fungus Phymatotrichopsis omnivora, is a serious and destructive disease affecting cotton production in the southwestern United States. Accurate delineation of cotton root rot infections is important for cost-effective management of the disease. The objective of this st...

  2. Control of speck rot in apple fruit caused by Phacidiopycnis washingtonensis with pre- and postharvest fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Speck rot caused by Phacidiopycnis washingtonensis is a recently reported postharvest fruit rot disease of apple. Infection of apple fruit by the fungus occurs in the orchard, but symptoms develop during storage. In this study, selected pre- and postharvest fungicides were evaluated for control of s...

  3. Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus.

    PubMed

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Antoniou, Theodoros; Merhautová, Věra; Zervakis, Georgios I

    2012-07-01

    Thirty-nine white-rot fungi belonging to nine species of Agaricomycotina (Basidiomycota) were initially screened for their ability to decrease olive-mill wastewater (OMW) phenolics. Four strains of Ganoderma australe, Ganoderma carnosum, Pleurotus eryngii and Pleurotus ostreatus, were selected and further examined for key-aspects of the OMW biodegradation process. Fungal growth in OMW-containing batch cultures resulted in significant decolorization (by 40-46% and 60-65% for Ganoderma and Pleurotus spp. respectively) and reduction of phenolics (by 64-67% and 74-81% for Ganoderma and Pleurotus spp. respectively). COD decrease was less pronounced (12-29%). Cress-seeds germination increased by 30-40% when OMW was treated by Pleurotus strains. Toxicity expressed as inhibition of Aliivibrio fischeri luminescence was reduced in fungal-treated OMW samples by approximately 5-15 times compared to the control. As regards the pertinent enzyme activities, laccase and Mn-independent peroxidase were detected for Ganoderma spp. during the entire incubation period. In contrast, Pleurotus spp. did not exhibit any enzyme activities at early growth stages; instead, high laccase (five times greater than those of Ganoderma spp.) and Mn peroxidases activities were determined at the end of treatment. OMW decolorization by Ganoderma strains was strongly correlated to the reduction of phenolics, whereas P. eryngii laccase activity was correlated with the effluent's decolorization.

  4. Effect of fungus gnat Bradysia impatiens (Diptera: Sciaridae) feeding on subsequent Pythium aphanidermatum infection of geranium seedlings (Pelargonium x hortorum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dark-winged fungus gnats in the genus Bradysia (Diptera: Sciaridae) and root rot pathogens in the genus Pythium (Oomycetes) are important pests of greenhouse floriculture. Observations have pointed to a possible correlation between Pythium root rot disease and fungus gnat infestations; however, inte...

  5. Degradation of Green Polyethylene by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi

    2015-01-01

    We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers. PMID:26076188

  6. Degradation of Green Polyethylene by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi

    2015-01-01

    We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers.

  7. Redundancy among Manganese Peroxidases in Pleurotus ostreatus

    PubMed Central

    Salame, Tomer M.; Knop, Doriv; Levinson, Dana; Yarden, Oded

    2013-01-01

    Manganese peroxidases (MnPs) are key players in the ligninolytic system of white rot fungi. In Pleurotus ostreatus (the oyster mushroom) these enzymes are encoded by a gene family comprising nine members, mnp1 to -9 (mnp genes). Mn2+ amendment to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds (such as the azo dye orange II) and lignin. In Mn2+-amended glucose-peptone medium, mnp3, mnp4, and mnp9 were the most highly expressed mnp genes. After 7 days of incubation, the time point at which the greatest capacity for orange II decolorization was observed, mnp3 expression and the presence of MnP3 in the extracellular culture fluids were predominant. To determine the significance of MnP3 for ligninolytic functionality in Mn2+-sufficient cultures, mnp3 was inactivated via the Δku80 strain-based P. ostreatus gene-targeting system. In Mn2+-sufficient medium, inactivation of mnp3 did not significantly affect expression of nontargeted MnPs or their genes, nor did it considerably diminish the fungal Mn2+-mediated orange II decolorization capacity, despite the significant reduction in total MnP activity. Similarly, inactivation of either mnp4 or mnp9 did not affect orange II decolorization ability. These results indicate functional redundancy within the P. ostreatus MnP gene family, enabling compensation upon deficiency of one of its members. PMID:23377936

  8. Fungal bioremediation of creosote-treated wood: a laboratory scale study on creosote components degradation by Pleurotus ostreatus mycelium.

    PubMed

    Polcaro, C M; Brancaleoni, E; Donati, E; Frattoni, M; Galli, E; Migliore, L; Rapanà, P

    2008-08-01

    A bioremediation system for creosote-treated wood is proposed, based on the detoxifying capability of Pleurotus ostreatus, a ligninolythic fungus. Non-sterilized chipped contaminated wood was mixed at various ratios with wheat straw on which Pleurotus mycelia was grown. At 1:2 initial ratio contaminated wood:wheat straw, chemical analyses demonstrated an almost complete degradation of creosote oil components after 44 days, also confirmed by a significant reduction of ecotoxicity. Lower ratios, i.e. higher amount of contaminated wood, lower system efficiency, although a better creosote degradation was obtained by a stepped up wood addition.

  9. Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe.

    PubMed

    Nakada, Yuji; Nakaba, Satoshi; Matsunaga, Hiroshi; Funada, Ryo; Yoshida, Makoto

    2013-01-01

    White rot fungus, Phanerochaete chrysosporium, and brown rot fungus, Postia placenta, grown on agar plates, were visualized by fluorescence in situ hybridization (FISH) using a peptide nucleic acid (PNA) probe. Mycelia grown on wood chips were also clearly detected by PNA-FISH following blocking treatment. To the best of our knowledge, this is the first report on the visualization of fungi in wood by FISH.

  10. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  11. Use of maize wastewater for the cultivation of the Pleurotus spp. mushroom and optimization of its biological efficiency.

    PubMed

    Loss, Edenes; Royer, Andrea Rafaela; Barreto-Rodrigues, Marcio; Barana, Ana Claudia

    2009-07-30

    This study evaluated the Pleurotus spp. mushroom production process using an effluent from the maize agroindustrial process as a carbon and nitrogen source and as a wetting agent. A complete experimental design based on factorial planning was used to optimize the biological efficiency and evaluate the effect of the concentration of effluent, pH and species of Pleurotus. The results indicated that the effluent affects the biological efficiency for the production of both species of mushrooms at all pH values studied. The maximum biological efficiency predicted by the model (81.36%) corresponded to the point defined by the effluent contents (X(1)=1), pH (X(2)=-1) and fungus species (X(3)=1), specifically 50%, 5.0 and P. floridae, respectively. The results demonstrated that the effluent is a good alternative for the production of Pleurotus mushrooms.

  12. Identification of Calonectria colhounii Associated with Basal Stem Rot on Blueberry Seedlings Imported from the United States of America

    PubMed Central

    Jeon, Nak Beom; Kim, Wan Gyu; Park, Myung Soo; Hyun, Ik-Hwa; Heo, Noh-Youl

    2010-01-01

    Basal stem rot symptoms were found on blueberry seedlings imported from the United States of America in 2008. The fungus obtained from the diseased seedlings was identified as Calonectria colhounii based on morphological and molecular characteristics. The consignments of the blueberry seedlings infected with C. colhounii were destroyed to prevent introduction of the fungus to Korea. PMID:23956678

  13. Rotting softly and stealthily.

    PubMed

    Toth, Ian K; Birch, Paul R J

    2005-08-01

    The soft rot erwiniae, which are plant pathogens on potato and other crops world-wide, synthesize and secrete large quantities of plant cell wall degrading enzymes that are responsible for the soft rot phenotype, earning them the epithet 'brute force' pathogens. They have been distinguished from classic 'stealth' pathogens, such as Pseudomonas syringae, which possesses an extensive battery of Type III secreted effector proteins and phytotoxins to manipulate and suppress host defences. However, recent studies, including whole-genome sequencing, are revealing many components of stealth pathogenesis within the soft rot erwiniae (SRE), suggesting that 'stealth' and 'brute force' should not be regarded as mutually exclusive modes of pathogenesis.

  14. First Report of Sclerotium Rot on Cymbidium Orchids Caused by Sclerotium rolfsii in Korea

    PubMed Central

    Lee, Seong-Chan; Lee, Jung-Sup; Soh, Jae-Woo; Kim, Su

    2012-01-01

    Sclerotium rot was found on Cymbidium orchids at Seosan-si, Chungcheongnam-do, Korea, in July, 2010. Symptoms occurred on low leaves, which turned yellowish, after which the entire plant wilted. Severely infected plants were blighted and eventually died. White mycelial mats and sclerotia appeared on pseudobulbs. Based on the mycological characteristics and pathogenicity, the causal fungus was identified as Sclerotium rolfsii. This is the first report of new Sclerotium rot on Cymbidium spp. caused by S. rolfsii in Korea. PMID:23323053

  15. Fungus gnats and Pythium in the attack on greenhouse plants: conspirators or just cohabitants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research conducted by collaborating Cornell University and USDA-ARS scientists investigated the potential for fungus gnats to vector Pythium root-rot pathogens. Fungus gnat larvae readily consumed Pythium oospores; the spores survived passage through the larval gut and, upon defecation, were able to...

  16. The famous cultivated mushroom Bailinggu is a separate species of the Pleurotus eryngii species complex

    PubMed Central

    Zhao, Mengran; Zhang, Jinxia; Chen, Qiang; Wu, Xiangli; Gao, Wei; Deng, Wangqiu; Huang, Chenyang

    2016-01-01

    The mushroom of the genus Pleurotus in western China, called Bailinggu, is a precious edible fungus with high economic value. However, its taxonomical position is unclear. Some researchers regard it as a variety of P. eryngii, namely P. eryngii var. tuoliensis, whereas others consider it to be a subspecies of P. eryngii, viz. P. eryngii subsp. tuoliensis. A total of 51 samples representing seven genetic groups of the genus Pleurotus were subjected to a phylogenetic analysis of partial sequences of the translation elongation factor 1 alpha gene (ef1a), the RNA polymerase II largest subunit gene (rpb1), the RNA polymerase II second largest subunit gene (rpb2) and nuc rDNA internal transcribed spacers (ITS). Our data indicate that the mushroom Bailinggu is a lineage independent of P. eryngii and should be lifted as its own species, namely P. tuoliensis. In addition, its known distribution range consists of both western China and Iran. PMID:27629112

  17. Production and Degradation of Oxalic Acid by Brown Rot Fungi

    PubMed Central

    Espejo, Eduardo; Agosin, Eduardo

    1991-01-01

    Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted 14C-labeled oxalic acid to CO2 during cellulose depolymerization. The other brown rot fungi also oxidized 14C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize 14C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi. PMID:16348522

  18. Feed intake, digestibility, nitrogen utilization, ruminal condition and blood metabolites in wethers fed ground bamboo pellets cultured with white-rot fungus (Ceriporiopsis subvermispora) and mixed with soybean curd residue and soy sauce cake.

    PubMed

    Oguri, Michimasa; Okano, Kanji; Ieki, Hajime; Kitagawa, Masayuki; Tadokoro, Osamu; Sano, Yoshinori; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2013-09-01

    Three types of bamboo pellets as a ruminant feed: P1 (ground bamboo (GB) cultured with the fungus Ceriporiopsis subvermispora (CGB) : soybean curd residue (T) : soy sauce cake (S) in a 5:4:1 ratio on a dry matter (DM) basis); P2 (GB : T : S = 5:4:1 on a DM basis); and P3 (CGB : T : S = 5.5:0.8:3.7 on a DM basis) were prepared. Four wethers were assigned in a 4 × 4 Latin square design experiment to evaluate the applicability of the bamboo pellets. The experimental treatments were C (control): fed alfalfa hay cubes (AC) only, and T1, T2 and T3: fed P1, P2, and P3 with AC by 1:1 on a DM basis, respectively. The digestibility of the DM, organic matter and acid detergent fiber of P1 were significantly higher than those of P2 and P3 (P < 0.05). The total digestible nutrient (TDN) contents of AC, P1, P2 and P3 were 56.5%, 60.2%, 53.2% and 47.0%, respectively. No significant differences in nitrogen retention or ruminal pH and NH₃ were observed among the treatment groups. The results indicate that bamboo pellets cultured with C. subvermispora and mainly mixed with soybean curd residue improved nutritional quality of ground bamboo because of its high digestibility and TDN content.

  19. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  20. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  1. A new postharvest fruit rot in apple and pear caused by Phacidium lacerum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During surveys for postharvest diseases of apples and pears, an unknown postharvest fruit rot was observed in Washington State. The disease appeared to originate from infection of the stem and calyx tissue of the fruit or wounds on the fruit. An unknown pycnidial fungus was consistently isolated fro...

  2. Seed treatment with live or dead Fusarium verticillioides equivalently reduces the severity of subsequent stalk rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a widely distributed fungus that can associate with maize as a deleterious pathogen and an advantageous endophyte. Here, we show that seed treatment with live F.verticillioides enhances maize resistance to secondary stalk rot infection, and demonstrate that dead F.vertici...

  3. Creating prescription maps from historical imagery for site-specific management of cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is a severe plant disease that has affected cotton production for over a century. Recent research found that a commercial fungicide, Topguard (flutriafol), was able to control this disease. As a result, Topguard Terra Fungic...

  4. Evaluating spectral measures derived from airborne multispectral imagery for detecting cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for more than 100 years, but effective practices for its control are still lacki...

  5. Evaluating unsupervised and supervised image classification methods for mapping cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivora, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for over a century, but effective practices for its control are still lacking. R...

  6. Distribution of Rhizoctonia Bare Patch and Root Rot in Eastern Washington and Relation to Climatic Variables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia is a fungus that attacks the roots of wheat and barley, causing a root rot and bare patch in the dryland wheat cropping area of the inland Pacific Northwest. Over the last 7 years, we have been investigating the distribution of this pathogen, using molecular methods based on extracting a...

  7. Monitoring cotton root rot progression within and across growing seasons using remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore Shear (Duggar), is one of the most destructive plant diseases occurring throughout the southwestern U.S. More recently, a fungicide, flutriafol, has been evaluated in Texas and was found to have the potential for controlling ...

  8. Diallel analysis of resistance to fusarium ear rot and fumonisin contamination in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium verticillioides infects maize ears and kernels, resulting in Fusarium ear rot disease, reduced grain yields, and contamination of grain with the mycotoxin fumonisin. Typical hybrid maize breeding programs involve selection for both favorable inbred and hybrid performance, and the...

  9. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    NASA Astrophysics Data System (ADS)

    Shrestha, Prachand

    no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.

  10. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus

    PubMed Central

    Yehia, Ramy Sayed

    2014-01-01

    Manganese peroxidase (MnP) was produced from white rot edible mushroom Pleurotus ostreatus on the culture filtrate. The enzyme was purified to homogeneity using (NH4)2SO4 precipitation, DEAE-Sepharose and Sephadex G-100 column chromatography. The final enzyme activity achieved 81 U mL−1, specific activity 78 U mg−1 with purification fold of 130 and recovery 1.2% of the crude enzyme. SDS-PAGE indicated that the pure enzyme have a molecular mass of approximately 42 kDa. The optimum pH was between 4–5 and the optimum temperature was 25 °C. The pure MnP activity was enhanced by Mn2+, Cu2+, Ca2+ and K+ and inhibited by Hg+2 and Cd+2. H2O2 at 5 mM enhanced MnP activity while at 10 mM inhibited it significantly. The MnP-cDNA encoding gene was sequenced and determined (GenBank accession no. AB698450.1). The MnP-cDNA was found to consist of 497 bp in an Open Reading Frame (ORF) encoding 165 amino acids. MnP from P. ostreatus could detoxify aflatoxin B1 (AFB1) depending on enzyme concentration and incubation period. The highest detoxification power (90%) was observed after 48 h incubation at 1.5 U mL−1 enzyme activities. PMID:24948923

  11. Isolation of Fungal Pathogens to an Edible Mushroom, Pleurotus eryngii, and Development of Specific ITS Primers.

    PubMed

    Kim, Sang-Woo; Kim, Sinil; Lee, Hyun-Jun; Park, Ju-Wan; Ro, Hyeon-Su

    2013-12-01

    Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens.

  12. Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato crown and root rot or tomato foot and root rot (TFRR) is caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici (Forl). The disease occurs in both greenhouse and outdoor tomato cultivations and cannot be treated efficiently with the existing fungicides. We conducte...

  13. Nutritional Analysis of Cultivated Mushrooms in Bangladesh - Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica.

    PubMed

    Alam, Nuhu; Amin, Ruhul; Khan, Asaduzzaman; Ara, Ismot; Shim, Mi Ja; Lee, Min Woong; Lee, Tae Soo

    2008-12-01

    Mushroom cultivation has been started recently in Bangladesh. Awareness of the nutritional and medicinal importance of mushrooms is not extensive. In this study, the nutritional values of dietary mushrooms- Pleurotus ostreatus, Pleurotus sajorcaju, Pleurotus florida and Calocybe indica that are very popular among the cultivated mushrooms in Bangladesh have been determined. These mushrooms were rich in proteins (20~25%) and fibers (13~24% in dry samples) and contained a lower amount of lipid (4 to 5%). The carbohydrate contents ranged from 37 to 48% (on the basis of dry weight). These were also rich in mineral contents (total ash content is 8~13%). The pileus and gills were protein and lipid rich and stripe was carbohydrate and fiber-rich. The moisture content of mushrooms ranged from 86 to 87.5%. Data of this study suggest that mushrooms are rich in nutritional value.

  14. Nutritional Analysis of Cultivated Mushrooms in Bangladesh - Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica

    PubMed Central

    Alam, Nuhu; Amin, Ruhul; Khan, Asaduzzaman; Ara, Ismot; Shim, Mi Ja; Lee, Min Woong

    2008-01-01

    Mushroom cultivation has been started recently in Bangladesh. Awareness of the nutritional and medicinal importance of mushrooms is not extensive. In this study, the nutritional values of dietary mushrooms- Pleurotus ostreatus, Pleurotus sajorcaju, Pleurotus florida and Calocybe indica that are very popular among the cultivated mushrooms in Bangladesh have been determined. These mushrooms were rich in proteins (20~25%) and fibers (13~24% in dry samples) and contained a lower amount of lipid (4 to 5%). The carbohydrate contents ranged from 37 to 48% (on the basis of dry weight). These were also rich in mineral contents (total ash content is 8~13%). The pileus and gills were protein and lipid rich and stripe was carbohydrate and fiber-rich. The moisture content of mushrooms ranged from 86 to 87.5%. Data of this study suggest that mushrooms are rich in nutritional value. PMID:23997631

  15. Identification of potential protein markers of noble rot infected grapes.

    PubMed

    Lorenzini, Marilinda; Millioni, Renato; Franchin, Cinzia; Zapparoli, Giacomo; Arrigoni, Giorgio; Simonato, Barbara

    2015-07-15

    The evaluation of Botrytis cinerea as noble rot on withered grapes is of great importance to predict the wine sensory/organoleptic properties and to manage the winemaking process of Amarone, a passito dry red wine. This report describes the first proteomic analysis of grapes infected by noble rot under withering conditions to identify possible markers of fungal infection. 2-D gel electrophoresis revealed that protein profiles of infected and not infected grape samples are significantly different in terms of number of spots and relative abundance. Protein identification by MS analysis allowed to identify only in infected berries proteins of B. cinerea that represent potential markers of the presence of the fungus in the withered grapes.

  16. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    PubMed Central

    Koutrotsios, Georgios; Zervakis, Georgios I.

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  17. Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.

    PubMed

    Koutrotsios, Georgios; Zervakis, Georgios I

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment.

  18. Disease notes - Bacterial root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  19. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes

    PubMed Central

    da Luz, José Maria Rodrigues; Nunes, Mateus Dias; Paes, Sirlaine Albino; Torres, Denise Pereira; de Cássia Soares da Silva, Marliane; Kasuya, Maria Catarina Megumi

    2012-01-01

    The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse). The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase) and hydrolytic enzymes (cellulases, xylanases and tanases). Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6). These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes. PMID:24031982

  20. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot1[OPEN

    PubMed Central

    Collins, Thomas S.; Vicente, Ariel R.; Doyle, Carolyn L.; Ye, Zirou; Allen, Greg; Heymann, Hildegarde

    2015-01-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. PMID:26450706

  1. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.

    PubMed

    Blanco-Ulate, Barbara; Amrine, Katherine C H; Collins, Thomas S; Rivero, Rosa M; Vicente, Ariel R; Morales-Cruz, Abraham; Doyle, Carolyn L; Ye, Zirou; Allen, Greg; Heymann, Hildegarde; Ebeler, Susan E; Cantu, Dario

    2015-12-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines.

  2. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B.

    PubMed

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-06-01

    Nine new sesquiterpenoids, clitocybulol derivatives, clitocybulols G-O (1-9) and three known sesquiterpenoids, clitocybulols C-E (10-12), were isolated from the solid culture of the edible fungus Pleurotus cystidiosus. The structures of compounds 1-12 were determined by spectroscopic methods. The absolute configurations of compounds 1-9 were assigned via the circular dichroism (CD) data analysis. Compounds 1, 6 and 10 showed moderate inhibitory activity against protein tyrosine phosphatase-1B (PTP1B) with IC50 values of 49.5, 38.1 and 36.0μM, respectively.

  3. SNP discovery and QTL mapping of Sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing (GBS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Basal stalk rot (BSR) caused by the ascomycete fungus Sclerotinia sclerotiorum (Lib.) de Bary is a serious disease of sunflower (Helianthus annuus L.) in the cool and humid production areas of the world. Quantitative trait loci (QTL) for BSR resistance were identified in a sunflower recombinant inbr...

  4. Adaptive expression of host cell wall degrading enzymes in fungal disease: an example from Fusarium root rot of medicinal Coleus.

    PubMed

    Bhattacharya, A

    2013-12-15

    Quantity of extracellular proteins and activities two cell wall degrading enzymes pectinase and cellulase were determined in the culture filtrate of Fusarium solani, the causal organism of root rot of Coleus forskohlii. Substitution of carbon source in the medium with either pectin or carboxymethyl cellulose led to the increased production of extracellular proteins by the fungus. Pectinase and cellulase activity in the culture filtrate was detected only when the growth medium contained substituted carbon source in the form of pectin and CMC, respectively. Pectinase activity was highest after 5 days incubation and then decreased gradually with time but cellulase activity showed a steady time dependent increase. In vitro virulence study showed the requirement of both the enzymes for complete expression of rot symptoms on Coleus plants. Thus the present study established the adaptive, substrate dependent expression of the two enzymes by the fungus and also their involvement in the root rot disease of Coleus forskohlii.

  5. Hazardous waste treatment using fungus enters marketplace

    SciTech Connect

    Illman, D.L.

    1993-07-01

    When the announcement was made eight years ago that a common fungus had been found that could degrade a variety of environmental pollutants, the news stirred interest in the scientific community, the private sector, and the general public. Here was the promise of a new technology that might be effective and economical in treating hazardous waste, especially the most recalcitrant of toxic pollutants. Today, commercialization is beginning amid a mixture of optimism and skepticism. The organism in question is white rot fungus, or Phanerochaete chrysosporium, and it belongs to a family of woodrotting fungi common all over North America. The fungi secrete enzymes that break down lignin in wood to carbon dioxide and water--a process called mineralization. These lignin-degrading enzymes are not very discriminating, however. The white rot fungi have been shown to degrade such materials as DDT, the herbicide (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T), 2,4,6-trinitrotoluene (TNT), pentachlorophenol (PCP), creosote, coal tars, and heavy fuels, in many cases mineralizing these pollutants to a significant extent.

  6. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw.

    PubMed

    Taniguchi, Masayuki; Suzuki, Hiroyuki; Watanabe, Daisuke; Sakai, Kenji; Hoshino, Kazuhiro; Tanaka, Takaaki

    2005-12-01

    The effects of biological pretreatment of rice straw using four white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor, Ceriporiopsis subvermispora, and Pleurotus ostreatus) were evaluated on the basis of quantitative and structural changes in the components of the pretreated rice straw as well as susceptibility to enzymatic hydrolysis. Of these white-rot fungi, P. ostreatus selectively degraded the lignin fraction of rice straw rather than the holocellulose component. When rice straw (water content of 60%) was pretreated with P. ostreatus for 60 d, the total weight loss and the degree of Klason lignin degraded were 25% and 41%, respectively. After the pretreatment, the residual amounts of cellulose and hemicellulose were 83% and 52% of those in untreated rice straw, respectively. By enzymatic hydrolysis with a commercial cellulase preparation for 48 h, 52% holocellulose and 44% cellulose in the pretreated rice straw were solubilized. The net sugar yields based on the amounts of holocellulose and cellulose of untreated rice straw were 33% for total soluble sugar from holocellulose and 32% for glucose from cellulose. The SEM observations showed that the increase in susceptibility of rice straw to enzymatic hydrolysis by pretreatment with P. ostreatus is caused by partial degradation of the lignin seal. When the content of Klason lignin was less than 15% of the total weight of the pretreated straw, enhanced degrees of enzymatic solubilization of holocellulose and cellulose fractions were observed as the content of Klason lignin decreased.

  7. Molecular polymorphism and phenotypic diversity in the generalist, wood-decay fungus Eutypa lata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen adaptation to different ecological niches can lead to host specialization and, when coupled with reproductive isolation, ecological speciation. We tested the hypothesis of host specialization in northern California populations of the fungus Eutypa lata, which causes a soft-rot wood decay in...

  8. Biodegradation of fluoranthene by basidiomycetes fungal isolate Pleurotus ostreatus HP-1.

    PubMed

    Patel, Hardik; Gupte, Akshaya; Gupte, Shilpa

    2009-06-01

    The biodegradation of fluoranthene, a high molecular weight polycyclic aromatic hydrocarbon (PAH), was investigated in submerged culture using the wood decaying fungus isolated from forest locality in Gujarat, India. The basidiomycete fungal isolate was found to have an ability to grow on sabaroud dextrose agar containing 50 mgl(-1) of each naphthalene, anthracene, acenaphthene, benzo (a) anthracene, pyrene, flouranthene, carbazole, and biphenyl. The involvement of extracellular fungal peroxidases such as manganese peroxidase (MnP) and laccase (Phenol oxidase) in the degradation of fluoranthene was studied. On the eighth day of incubation 54.09% of 70 mg l(-1) fluoranthene was removed. There after no PAHs removal was observed till the 20th day of the incubation period. The isolate was identified as Pleurotus ostreatus by 18S rRNA, 5.8S rRNA, and partial 28S rRNA gene sequencing. To the best of our knowledge this is the first time Pleurotus ostreatus have been reported to degrade such a high concentration of fluoranthene within much lower time period of incubation. Depletion in the residual fluoranthene in the culture medium was determined by HPLC. Attempts were made to identify the degradation product in the culture medium with the help of FT-IR, NMR, and HPTLC analysis. In the present study positive correlation between fluoranthene degradation and the ligninolytic enzyme (MnP and laccase) production is observed, thus this isolate can play an effective role for bioremediation of PAHs contaminated sites.

  9. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation.

    PubMed Central

    Muñoz, C; Guillén, F; Martínez, A T; Martínez, M J

    1997-01-01

    Two laccase isoenzymes produced by Pleurotus eryngii were purified to electrophoretic homogeneity (42- and 43-fold) with an overall yield of 56.3%. Laccases I and II from this fungus are monomeric glycoproteins with 7 and 1% carbohydrate content, molecular masses (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 65 and 61 kDa, and pIs of 4.1 and 4.2, respectively. The highest rate of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) oxidation for laccase I was reached at 65 degrees C and pH 4, and that for laccase II was reached at 55 degrees C and pH 3.5. Both isoenzymes are stable at high pH, retaining 60 to 70% activity after 24 h from pH 8 to 12. Their amino acid compositions and N-terminal sequences were determined, the latter strongly differing from those of laccases of other basidiomycetes. Antibodies against laccase I reacted with laccase II, as well as with laccases from Pleurotus ostreatus, Pleurotus pulmonarius, and Pleurotus floridanus. Different hydroxy- and methoxy-substituted phenols and aromatic amines were oxidized by the two laccase isoenzymes from P. eryngii, and the influence of the nature, number, and disposition of aromatic-ring substituents on kinetic constants is discussed. Although both isoenzymes presented similar substrate affinities, the maximum rates of reactions catalyzed by laccase I were higher than those of laccase II. In reactions with hydroquinones, semiquinones produced by laccase isoenzymes were in part converted into quinones via autoxidation. The superoxide anion radical produced in the latter reaction dismutated, producing hydrogen peroxide. In the presence of manganous ion, the superoxide union was reduced to hydrogen peroxide with the concomitant production of manganic ion. These results confirmed that laccase in the presence of hydroquinones can participate in the production of both reduced oxygen species and manganic ions. PMID:9172335

  10. Identification of the nucleophile catalytic residue of GH51 α-l-arabinofuranosidase from Pleurotus ostreatus

    DOE PAGES

    Amore, Antonella; Iadonisi, Alfonso; Vincent, Florence; ...

    2015-12-21

    In this paper, the recombinant α-l-arabinofuranosidase from the fungus Pleurotus ostreatus (rPoAbf) was subjected to site-directed mutagenesis in order to identify the catalytic nucleophile residue. Based on bioinformatics and homology modelling analyses, E449 was revealed to be the potential nucleophilic residue. Thus, the mutant E449G of PoAbf was recombinantly expressed in Pichia pastoris and its recombinant expression level and reactivity were investigated in comparison to the wild-type. The design of a suitable set of hydrolysis experiments in the presence or absence of alcoholic arabinosyl acceptors and/or formate salts allowed to unambiguously identify the residue E449 as the nucleophile residue involvedmore » in the retaining mechanism of this GH51 arabinofuranosidase. 1H NMR analysis was applied for the identification of the products and the assignement of their anomeric configuration.« less

  11. Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus.

    PubMed

    De Stefano, L; Rea, I; De Tommasi, E; Rendina, I; Rotiroti, L; Giocondo, M; Longobardi, S; Armenante, A; Giardina, P

    2009-10-01

    A crystalline silicon surface can be made biocompatible and chemically stable by a self-assembled biofilm of proteins, the hydrophobins (HFBs) purified from the fungus Pleurotus ostreatus. The protein-modified silicon surface shows an improvement in wettability and is suitable for immobilization of other proteins. Two different proteins were successfully immobilized on the HFBs-coated chips: the bovine serum albumin and an enzyme, a laccase, which retains its catalytic activity even when bound on the chip. Variable-angle spectroscopic ellipsometry (VASE), water contact angle (WCA), and fluorescence measurements demonstrated that the proposed approach in silicon surface bioactivation is a feasible strategy for the fabrication of a new class of hybrid devices.

  12. Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus

    NASA Astrophysics Data System (ADS)

    de Stefano, L.; Rea, I.; de Tommasi, E.; Rendina, I.; Rotiroti, L.; Giocondo, M.; Longobardi, S.; Armenante, A.; Giardina, P.

    2009-10-01

    A crystalline silicon surface can be made biocompatible and chemically stable by a self-assembled biofilm of proteins, the hydrophobins (HFBs) purified from the fungus Pleurotus ostreatus. The protein-modified silicon surface shows an improvement in wettability and is suitable for immobilization of other proteins. Two different proteins were successfully immobilized on the HFBs-coated chips: the bovine serum albumin and an enzyme, a laccase, which retains its catalytic activity even when bound on the chip. Variable-angle spectroscopic ellipsometry (VASE), water contact angle (WCA), and fluorescence measurements demonstrated that the proposed approach in silicon surface bioactivation is a feasible strategy for the fabrication of a new class of hybrid devices.

  13. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  14. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  15. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  16. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  17. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  18. Production of ligninolytic enzymes by white rot fungi on lignocellulosic wastes using novel pretreatments.

    PubMed

    Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K; Agrawal, S; Singh, M P

    2014-12-24

    Production of extracellular ligninolytic enzymes (laccase and polyphenol oxidase) secreted by three species of white rot fungi (Pleurotus florida, P. flabellatus and P. sajor—caju) under in vivo condition was studied on two lignocellulosic substrates i.e., paddy straw and wheat straw. These lignocellulosic substrates were treated with neem (Azadirachta indica) oil and ashoka (Saraca indica) leaves extract. Between the two lignocellulosic substrates, paddy straw pretreated with neem oil supported maximum activity of laccase and polyphenol oxidase (PPO). The activities of both the enzymes were low on the 5th day of cultivation which increased on the 10th day and reached at peak on the 15th day. Thereafter, there was continuous decrease in the enzymatic activity. Among the three species, P. flabellatus (P3) showed maximum ligninolytic enzymatic activity followed by P. florida (P2)and P. sajor—caju (P1).

  19. Rhizoctonia root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot is a soilborne disease of lentil caused by the fungal pathogen Rhizoctonia solani, and is favored by cool (11-19 C or 52 - 66 F) and wet soil conditions. The disease starts as reddish or dark brown lesions on lentil plants near the soil line, and develops into sunken lesions an...

  20. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  1. The effects of olives harvest period and production year on olive mill wastewater properties - evaluation of Pleurotus strains as bioindicators of the effluent's toxicity.

    PubMed

    Ntougias, Spyridon; Gaitis, Fragiskos; Katsaris, Panagiotis; Skoulika, Stavroula; Iliopoulos, Nikiforos; Zervakis, Georgios I

    2013-07-01

    Olive mill wastewater (OMW) generated during the oil extraction from Olea europea L. var. koroneiki olives was sampled at the beginning, the middle and the end of the harvesting season for three successive crop production years, and from four olive mills. OMW samples were examined in respect to their physicochemical characteristics, fatty acid composition of the lipid fraction, and adverse effects on biomass production of nine white-rot fungi of the basidiomycetous genus Pleurotus. Total N, nitrogen species, potassium and phosphate concentrations as well as total phenolics content of OMW samples were influenced by the crop year but not from the harvest period (albeit higher values for nitrate, nitrite, phosphate and potassium as well as total phenolics contents were obtained during ripening of olives), whereas protein concentration, total organic carbon and total solids were not significantly affected by the crop year or the harvest period. In addition, fatty acids composition, i.e. nC14:0, nC16:1Δ9cis, nC17:1Δ10cis, nC18:0, nC18:1Δ9cis, nC22:0 and nC24:0 varied significantly during different crop years and harvest periods. Olive fruits maturity and biannual alternate-bearing appear to play key-roles in the fatty acid variation detected in OMW samples. OMW toxicity as evaluated by the mycelium growth of Pleurotus strains was influenced significantly by the phenolic content of OMW samples obtained during three successive crop years; in contrast, the olives harvest period did not affect Pleurotus biomass production. Hence, experimental data indicated that selected Pleurotus strains could serve as bioindicators of OMW toxicity. Development of viable OMW detoxification processes as well as the exploitation of the effluent's fertilizing value are discussed in the light of the above findings.

  2. Gibberella Ear Rot of Maize (Zea mays) in Nepal: Distribution of the Mycotoxins Nivalenol and Deoxynivalenol in Naturally and Experimentally Infected Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium graminearum (sexual stage Gibberella zeae) causes ear rot of maize (Zea mays) and contamination with the 8-ketotrichothecenes nivalenol (NIV) or 4-deoxynivalenol (DON), depending on diversity of the fungal population for the 4-oxygenase gene (TRI13). To determine the importance ...

  3. Relationship between Monokaryotic Growth Rate and Mating Type in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Pérez, Gúmer; Iribarren, Iñaki; Blanco, Juan A.; Alfonso, Mikel; Pisabarro, Antonio G.; Ramírez, Lucía

    2001-01-01

    The edible fungus Pleurotus ostreatus (oyster mushroom) is an industrially produced heterothallic homobasidiomycete whose mating is controlled by a bifactorial tetrapolar genetic system. Two mating loci (matA and matB) control different steps of hyphal fusion, nuclear migration, and nuclear sorting during the onset and progress of the dikaryotic growth. Previous studies have shown that the segregation of the alleles present at the matB locus differs from that expected for a single locus because (i) new nonparental B alleles appeared in the progeny and (ii) there was a distortion in the segregation of the genomic regions close to this mating locus. In this study, we pursued these observations by using a genetic approach based on the identification of molecular markers linked to the matB locus that allowed us to dissect it into two genetically linked subunits (matBα and matBβ) and to correlate the presence of specific matBα and matA alleles with differences in monokaryotic growth rate. The availability of these molecular markers and the mating type dependence of growth rate in monokaryons can be helpful for marker-assisted selection of fast-growing monokaryons to be used in the construction of dikaryons able to colonize the substrate faster than the competitors responsible for reductions in the industrial yield of this fungus. PMID:11472908

  4. Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2.

    PubMed

    Li, Xuanzhen; Wang, Youjing; Pan, Yanshuo; Yu, Hao; Zhang, Xiaolin; Shen, Yanping; Jiao, Shuai; Wu, Kun; La, Guixiao; Yuan, Yuan; Zhang, Shimin

    2017-05-15

    Fungi bioaccumulation is a novel and highly promising approach to remediate polluted soil. The present study revealed a high ability to tolerate Cd and Cr in the fungus Pleurotus ostreatus HAU-2. However, high concentrations of Cd and Cr can suppress fungal growth and result in a variation of hypha micromorphology. Batch experiments were performed to investigate Cd and Cr stress effects on the amount of active oxygen in fungi, activity of antioxidant enzyme, as well as the removal efficiency of Cd and Cr. The results revealed that Cd and Cr caused increasing active oxygen and malonaldehyde (MDA) concentrations. Antioxidant enzymes play a central role in removing active oxygen, while glutathione (GSH) aids the Cd detoxification within cells. In fluid culture, fungal removal rates of Cd and Cr ranged from 44.85% to 80.36% and 14.49% to 45.55%, respectively. Intracellular accumulation and extracellular adsorption were the major removal approaches. Bag cultivation testing indicated that the fungus absorbed Cd and Cr contained within soil. In particular, the accumulation ability of Cd (15.6mgkg(-1)) was higher compared to that of Cr (8.9mgkg(-1)). These results successfully establish P. ostreatus HAU-2 as promising candidate for the remediation of heavy-metal polluted soils.

  5. Evaluation of a diverse red clover collection for clover rot resistance (Sclerotinia trifoliorum).

    PubMed

    Vleugels, T; Baert, J; Van Bockstaele, E

    2013-01-01

    Sclerotinia trifoliorum Erikks. causes clover rot (clover cancer, Sclerotinia crown and root rot), an important disease in European red clover crops (Trifolium pratense L). The fungus infects plants in autumn through ascospores and entire fields can be destroyed by early spring. Although previous studies have evaluated various red clover populations for clover rot resistance, screening was often performed with one local isolate on just a few local varieties, often cultivars. Until today, no large collections of diverse red clover accessions have been screened. In this study, we studied the variation in clover rot susceptibility among 122 red clover accessions, including 85 accessions from the NPGS-USDA core collection. Cultivars (both diploid and tetraploid), landraces and wild accessions were included and different S. trifoliorum isolates were used. In a field experiment, plant yield, branching and susceptibility to mildew, rust and virus disease were scored for 122 red clover accessions. A similar collection of germplasm was screened for clover rot resistance by a bio-test on young plants using a mixture of five aggressive S. trifoliorum isolates. The effects of the variety type, ploidy level, growth habit, resistance to other diseases and levels of isoflavones (available for the NPGS-USDA collection) on clover rot susceptibility were determined. Possible sources of resistance were identified. Our red clover accessions differed significantly in susceptibility but no accession was completely resistant Three accessions (Maro, Tedi and No. 292) were significantly less susceptible than the other accessions. Intensive branching or a prostrate growth habit did not render plants more resistant. Accessions resistant to mildew or viruses were not more resistant to clover rot and accessions with high levels of isoflavones were not better protected against clover rot. On the other hand, tetraploid cultivars were on average 10% less susceptible than diploid cultivars

  6. Interaction of Pratylenchus penetrans and Rhizoctonia fragariae in Strawberry Black Root Rot

    PubMed Central

    LaMondia, J. A.

    2003-01-01

    A split-root technique was used to examine the interaction between Pratylenchus penetrans and the cortical root-rotting pathogen Rhizoctonia fragariae in strawberry black root rot. Plants inoculated with both pathogens on the same half of a split-root crown had greater levels of root rot than plants inoculated separately or with either pathogen alone. Isolation of R. fragariae from field-grown roots differed with root type and time of sampling. Fungal infection of structural roots was low until fruiting, whereas perennial root colonization was high. Isolation of R. fragariae from feeder roots was variable, but was greater from feeder roots on perennial than from structural roots. Isolation of the fungus was greater from structural roots with nematode lesions than from non-symptomatic roots. Rhizoctonia fragariae was a common resident on the sloughed cortex of healthy perennial roots. From this source, the fungus may infect additional roots. The direct effects of lesion nematode feeding and movement are cortical cell damage and death. Indirect effects include discoloration of the endodermis and early polyderm formation. Perhaps weakened or dying cells caused directly or indirectly by P. penetrans are more susceptible to R. fragariae, leading to increased disease. PMID:19265969

  7. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi.

    PubMed

    Itoh, Hiromichi; Wada, Masanori; Honda, Yoichi; Kuwahara, Masaaki; Watanabe, Takashi

    2003-08-15

    Ethanol was produced by simultaneous saccharification and fermentation (SSF) from beech wood chips after bioorganosolve pretreatments by ethanolysis and white rot fungi, Ceriporiopsis subvermispora, Dichomitus squalens, Pleurotus ostreatus, and Coriolus versicolor. Beech wood chips were pretreated with the white rot fungi for 2-8 weeks without addition of any nutrients. The wood chips were then subjected to ethanolysis to separate them into pulp and soluble fractions (SFs). From the pulp fraction (PF), ethanol was produced by SSF using Saccharomyces cerevisiae AM12 and a commercial cellulase preparation, Meicelase, from Trichoderma viride. Among the four strains, C. subvermispora gave the highest yield on SSF. The yield of ethanol obtained after pretreatment with C. subvermispora for 8 weeks was 0.294 g g(-1) of ethanolysis pulp (74% of theoretical) and 0.176 g g(-1) of beech wood chips (62% of theoretical). The yield was 1.6 times higher than that obtained without the fungal treatments. The biological pretreatments saved 15% of the electricity needed for the ethanolysis.

  8. Use of Swine Wastewater as Alternative Substrate for Mycelial Bioconversion of White Rot Fungi.

    PubMed

    Lee, Jangwoo; Shin, Seung Gu; Ahn, Jinmo; Han, Gyuseong; Hwang, Kwanghyun; Kim, Woong; Hwang, Seokhwan

    2017-02-01

    Seven white rot fungal species were tested for growth as mycelia using swine wastewater (SW), an agro-waste with tremendous environmental footprint, as the sole nutrient source. The SW contained high concentrations of carbon and nitrogen components, which could support nutritional requirements for mycelial growth. Out of the seven species, Pleurotus ostreatus and Hericium erinaceus were successfully cultivated on the SW medium using solid-state fermentation. Response surface methodology was employed to determine the combination of pH, temperature (T), and substrate concentration (C) that maximizes mycelial growth rate (Kr) for the two species. The optimum condition was estimated as pH = 5.8, T = 28.8 °C, and C = 11.2 g chemical oxygen demand (COD)/L for P. ostreatus to yield Kr of 11.0 mm/day, whereas the greatest Kr (3.1 mm/day) was anticipated at pH = 4.6, T = 25.5 °C, and C = 11.9 g COD/L for H. erinaceus. These Kr values were comparable to growth rates obtained using other substrates in the literature. These results demonstrate that SW can be used as an effective substrate for mycelial cultivation of the two white rot fungal species, suggesting an alternative method to manage SW with the production of potentially valuable biomass.

  9. Potential of Epicoccum purpurascens Strain 5615 AUMC as a Biocontrol Agent of Pythium irregulare Root Rot in Three Leguminous Plants

    PubMed Central

    Koutb, Mostafa

    2010-01-01

    Epicoccum purpurascens stain 5615 AUMC was investigated for its biocontrol activity against root rot disease caused by Pythium irregulare. E. purpurascens greenhouse pathogenicity tests using three leguminous plants indicated that the fungus was nonpathogenic under the test conditions. The germination rate of the three species of legume seeds treated with a E. purpurascens homogenate increased significantly compared with the seeds infested with P. irregulare. No root rot symptoms were observed on seeds treated with E. purpurascens, and seedlings appeared more vigorous when compared with the non-treated control. A significant increase in seedling growth parameters (seedling length and fresh and dry weights) was observed in seedlings treated with E. purpurascens compared to pathogen-treated seedlings. Pre-treating the seeds with the bioagent fungus was more efficient for protecting seeds against the root rot disease caused by P. irregulare than waiting for disease dispersal before intervention. To determine whether E. purpurascens produced known anti-fungal compounds, an acetone extract of the fungus was analyzed by gas chromatography mass spectrometry. The extract revealed a high percentage of the cinnamic acid derivative (trimethylsiloxy) cinnamic acid methyl ester. The E. purpurascens isolate grew more rapidly than the P. irregulare pathogen in a dual culture on potato dextrose agar nutrient medium, although the two fungi grew similarly when cultured separately. This result may indicate antagonism via antibiosis or competition. PMID:23956668

  10. Degradation of Lignin in Agricultural Residues by locally Isolated Fungus Neurospora discreta.

    PubMed

    Pamidipati, Sirisha; Ahmed, Asma

    2016-11-03

    Locally isolated fungus, Neurospora discreta, was evaluated for its ability to degrade lignin in two agricultural residues: cocopeat and sugarcane bagasse with varying lignin concentrations and structures. Using Klason's lignin estimation, high-performance liquid chromatography, and UV-visible spectroscopy, we found that N. discreta was able to degrade up to twice as much lignin in sugarcane bagasse as the well-known white rot fungus Phanerochaete chrysosporium and produced nearly 1.5 times the amount of lignin degradation products in submerged culture. Based on this data, N. discreta is a promising alternative to white rot fungi for faster microbial pre-treatment of agricultural residues. This paper presents the lignin degrading capability of N. discreta for the first time and also discusses the difference in biodegradability of cocopeat and sugarcane bagasse as seen from the analysis carried out using Fourier transform infrared spectroscopy.

  11. Fungus Infections: Tinea

    MedlinePlus

    ... Share: Yes No, Keep Private Fungus Infections Share | Tinea is the name given to a fungal skin ... Sometime the susceptibility will run in the family. Tinea Pedis (Athlete's foot) This is the most common ...

  12. Fungus Infections: Preventing Recurrence

    MedlinePlus

    ... place for these spores to collect is in shoes. Therefore, after effective treatment, a fungus may recur ... feet clean, cool and dry. Change socks. Wear shoes that "breathe" like leather, rather than plastic. Make ...

  13. Biological pretreatment of softwood Pinus densiflora by three white rot fungi.

    PubMed

    Lee, Jae-Won; Gwak, Ki-Seob; Park, Jun-Yeong; Park, Mi-Jin; Choi, Don-Ha; Kwon, Mi; Choi, In-Gyu

    2007-12-01

    The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81% compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01%) compared to non-pretreated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass.

  14. A perspective on the use of Pleurotus for the development of convenient fungi-made oral subunit vaccines.

    PubMed

    Pérez-Martínez, Ana S; Acevedo-Padilla, Sergio A; Bibbins-Martínez, Martha; Galván-Alonso, Jenifer; Rosales-Mendoza, Sergio

    2015-01-01

    This review provides an outlook of the medical applications of immunomodulatory compounds taken from Pleurotus and proposes this fungus as a convenient host for the development of innovative vaccines. Although some fungal species, such as Saccharomyces and Pichia, occupy a relevant position in the biopharmaceutical field, these systems are essentially limited to the production of conventional expensive vaccines. Formulations made with minimally processed biomass constitute the ideal approach for developing low cost vaccines, which are urgently needed by low-income populations. The use of edible fungi has not been explored for the production and delivery of low cost vaccines, despite these organisms' attractive features. These include the fact that edible biomass can be produced at low costs in a short period of time, its high biosynthetic capacity, its production of immunomodulatory compounds, and the availability of genetic transformation methods. Perspectives associated to this biotechnological application are identified and discussed.

  15. Identification of the nucleophile catalytic residue of GH51 α-l-arabinofuranosidase from Pleurotus ostreatus

    SciTech Connect

    Amore, Antonella; Iadonisi, Alfonso; Vincent, Florence; Faraco, Vincenza

    2015-12-21

    In this paper, the recombinant α-l-arabinofuranosidase from the fungus Pleurotus ostreatus (rPoAbf) was subjected to site-directed mutagenesis in order to identify the catalytic nucleophile residue. Based on bioinformatics and homology modelling analyses, E449 was revealed to be the potential nucleophilic residue. Thus, the mutant E449G of PoAbf was recombinantly expressed in Pichia pastoris and its recombinant expression level and reactivity were investigated in comparison to the wild-type. The design of a suitable set of hydrolysis experiments in the presence or absence of alcoholic arabinosyl acceptors and/or formate salts allowed to unambiguously identify the residue E449 as the nucleophile residue involved in the retaining mechanism of this GH51 arabinofuranosidase. 1H NMR analysis was applied for the identification of the products and the assignement of their anomeric configuration.

  16. Effect of Asafoetida Extract on Growth and Quality of Pleurotus ferulic

    PubMed Central

    Feng, Zuoshan; Bai, Yujia; Lu, Fanglin; Huang, Wenshu; Li, Xinmin; Hu, Xiaosong

    2009-01-01

    Different concentrations of asafoetida extract were added to the medium of Pleurotus ferulic and the effects of the extract on growth of P. ferulic mycelium and fruiting bodies was observed. As the amount of asafoetida extract additive was increased, the growth of Pleurotus mycelium was faster, the time formation of buds was shorter and that yield of fruiting bodies was stimulated. However, overdosing of asafoetida extract hampered the growth of Pleurotus ferulic. The amino acid composition and volatile components in three kinds of pleurotus’ were contrasted, including wild pleurotus (WP), cultivated pleurotus with asafoetida extract (CPAE) and cultivated pleurotus without asafoetida extract (CP). CPAE with 2.3 g/100 g asafoetida extract addition had the highest content of total amino acids, as well as essential amino acids. WP had a higher content of total amino acids and essential amino acids than CP. In addition, CPAE with 2.3 g/100 g had the highest score of protein content of pleurotus fruiting bodies, while WP had a higher score than CP. In the score of essential amino acid components of pleurotus fruiting bodies, CP had the highest score, while CPAE was higher than WP. Asafoetida extract influenced the volatile components of Pleurotus ferulic greatly, making the volatile components of cultivated pleurotus more similar to those of wild pleurotus (WP). PMID:20162000

  17. Decolorization of bleach plant effluent by mucoralean and white-rot fungi in a rotating biological contactor reactor.

    PubMed

    Driessel, B V; Christov, L

    2001-01-01

    Bleach plant effluents from the pulp and paper industry generated during bleaching with chlorine-containing chemicals are highly colored and also partly toxic due to the presence of chloro-organics, hence the need for pretreatment prior to discharge. In a rotating biological contactor (RBC) reactor effluent decolorization was studied using Coriolus versicolor, a white-rot fungus and Rhizomucor pusillus strain RM7, a mucoralean fungus. Decolorization by both fungi was directly proportional to initial color intensities. It was found that the extent of decolorization was not adversely affected by color intensity, except at the lowest level tested. It was shown that decolorization of 53 to 73% could be attained using a hydraulic retention time of 23 h. With R. pusillus, 55% of AOX were removed compared to 40% by C. versicolor. Fungal treatment with both R. pusillus and C. versicolor rendered the effluent essentially nontoxic. Addition of glucose to decolorization media stimulated color removal by C. versicolor, but not with R. pusillus. Ligninolytic enzymes (manganese peroxidase and laccase) were only detected in effluent treated by C. versicolor. It seems that there are definite differences in the decoloring mechanisms between the white-rot fungus (adsorption + biodegradation) and the mucoralean fungus (adsorption). This aspect needs to be investigated in greater detail to verify the mode responsible for the decolorization activity in both types of fungi.

  18. Root rot in sugar beet piles at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  19. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  20. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563....1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  1. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563....1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  2. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  3. Fungal treatment of humic-rich industrial wastewater: application of white rot fungi in remediation of food-processing wastewater.

    PubMed

    Zahmatkesh, Mostafa; Spanjers, Henri; van Lier, Jules B

    2017-01-12

    This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot fungi (WRF): Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus and Pleurotus pulmonarius were tested to remove humic acids (HA) from a real humic-rich industrial treated WW of a food-processing plant. The HA removal was assessed by color measurement and size-exclusion chromatography (SEC) analysis. T. versicolor showed the best decolorization efficiency of 90% and yielded more than 45% degradation of HA, which was the highest among the tested fungal strains. The nitrogen limitation was studied and results showed that it affected the fungal extracellular laccase and manganese peroxidase (MnP) activities. The results of the SEC analysis revealed that the mechanism of HA removal by WRF involves degradation of large HA molecules to smaller molecules, conversion of HA to fulvic acid-like molecules and also biosorption of HA by fungal mycelia. The effect of HS on the growth of WRF was investigated and results showed that the inhibition or stimulation of growth differs among the fungal strains.

  4. In vitro Antioxidant and Antilipidperoxidative potential of Pleurotus florida

    PubMed Central

    Selvi, S.; Chinnaswamy, P.

    2007-01-01

    The ethanolic extract of Pleurotus florida was studied for its free radical scavenging property on different in vitro models like 1,1 -diphenyl-picryl hydrazyl (DPPH)Assay, Ferric Reducing Antioxidant Power (FRAP) assay and in vitro antilipidperoxidative assay using goat liver homogenate and RBC Ghost model. The in vitro Lipid peroxidation (LPO) was inhibited to a good extent by the Pleurotus florida ethanolic extract and the extent of inhibition being higher in the RBC membrane model than the liver homogenate model. The mushroom extract showed good dose-dependent free radical scavenging property in both the models. PMID:22557244

  5. Cultivation of Pleurotus ostreatus on weed plants.

    PubMed

    Das, Nirmalendu; Mukherjee, Mina

    2007-10-01

    Oyster mushroom, Pleurotus ostreatus (Jacq.:Fr.) Kumm. ITCC 3308 (collected from Indian Type Culture Collection, IARI, New Delhi, India, 110012) was grown on dry weed plants, Leonotis sp, Sida acuta, Parthenium argentatum, Ageratum conyzoides, Cassia sophera, Tephrosia purpurea and Lantana camara. Leonotis sp. was the best substrate in fruit body production of P. ostreatus when it was mixed with rice straw (1:1, wet wt/wet wt) for mushroom cultivation. The fruiting time for P. ostreatus was also less on Leonotis sp. than on any other weed substrates tested in the present investigation. T. purpurea was the least suited weed for oyster mushroom cultivation. The main problem of oyster mushroom cultivation on weed substrates was found to be low yield in the second flush that could be overcome by blending weed plants with rice straw. The protein contents of the fruit bodies obtained from Cassia sophera, Parthenium argentatum and Leonotis sp. were not only better than rice straw but also from the rice straw supplemented weeds.

  6. Iron bioaccumulation in mycelium of Pleurotus ostreatus

    PubMed Central

    Almeida, Sandra M.; Umeo, Suzana H.; Marcante, Rafael C.; Yokota, Meire E.; Valle, Juliana S.; Dragunski, Douglas C.; Colauto, Nelson B.; Linde, Giani A.

    2015-01-01

    Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatus mycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L −1 and glucose at 28.45 g L −1 . The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L −1 or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg −1 produced with iron addition of 300 mg L −1 . The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L −1 of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron. PMID:26221108

  7. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method.

    PubMed

    Chen, Zhengsuo; Deng, Hongbo; Chen, Can; Yang, Ying; Xu, Heng

    2014-03-12

    Dyes released into the environment have been posing a serious threat to natural ecosystems and aquatic life due to presence of heat, light, chemical and other exposures stable. In this study, the Pleurotus ostreatus (a macro-fungus) was used as a new biosorbent to study the biosorption of hazardous malachite green (MG) from aqueous solutions. The effective disposal of P. ostreatus is a meaningful work for environmental protection and maximum utilization of agricultural residues.The operational parameters such as biosorbent dose, pH, and ionic strength were investigated in a series of batch studies at 25°C. Freundlich isotherm model was described well for the biosorption equilibrium data. The biosorption process followed the pseudo-second-order kinetic model. Taguchi method was used to simplify the experimental number for determining the significance of factors and the optimum levels of experimental factors for MG biosorption. Biosorbent dose and initial MG concentration had significant influences on the percent removal and biosorption capacity. The highest percent removal reached 89.58% and the largest biosorption capacity reached 32.33 mg/g. The Fourier transform infrared spectroscopy (FTIR) showed that the functional groups such as, carboxyl, hydroxyl, amino and phosphonate groups on the biosorbent surface could be the potential adsorption sites for MG biosorption. P. ostreatus can be considered as an alternative biosorbent for the removal of dyes from aqueous solutions.

  8. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method

    PubMed Central

    2014-01-01

    Dyes released into the environment have been posing a serious threat to natural ecosystems and aquatic life due to presence of heat, light, chemical and other exposures stable. In this study, the Pleurotus ostreatus (a macro-fungus) was used as a new biosorbent to study the biosorption of hazardous malachite green (MG) from aqueous solutions. The effective disposal of P. ostreatus is a meaningful work for environmental protection and maximum utilization of agricultural residues. The operational parameters such as biosorbent dose, pH, and ionic strength were investigated in a series of batch studies at 25°C. Freundlich isotherm model was described well for the biosorption equilibrium data. The biosorption process followed the pseudo-second-order kinetic model. Taguchi method was used to simplify the experimental number for determining the significance of factors and the optimum levels of experimental factors for MG biosorption. Biosorbent dose and initial MG concentration had significant influences on the percent removal and biosorption capacity. The highest percent removal reached 89.58% and the largest biosorption capacity reached 32.33 mg/g. The Fourier transform infrared spectroscopy (FTIR) showed that the functional groups such as, carboxyl, hydroxyl, amino and phosphonate groups on the biosorbent surface could be the potential adsorption sites for MG biosorption. P. ostreatus can be considered as an alternative biosorbent for the removal of dyes from aqueous solutions. PMID:24620852

  9. Biosorption of aquatic copper (II) by mushroom biomass Pleurotus eryngii: kinetic and isotherm studies.

    PubMed

    Kan, Shi-Hong; Sun, Bai-Ye; Xu, Fang; Song, Qi-Xue; Zhang, Sui-Fang

    2015-01-01

    Biosorption is an effective method for removing heavy metals from effluent. This work mainly aimed to evaluate the adsorption performance of the widely cultivated novel mushroom, Pleurotus eryngii, for the removal of Cu(II) from single aqueous solutions. Kinetics and equilibria were obtained using a batch technique. The sorption kinetics follows the pseudo-second-order model, whereas the adsorption equilibria are best described by the Langmuir model. The adsorption process is exothermic because both the Langmuir-estimated biosorption capacity and the heat of adsorption estimated from the Temkin model decreased with increasing tested temperature. Based on the adsorption intensity estimated by the Freundlich model and the mean adsorption free energy estimated by the Dubinin-Radushkevich model, the type of adsorption is defined as physical adsorption. The biomass of the macro-fungus P. eryngii has the potential to remove Cu(II) from a large-scale wastewater contaminated by heavy metals, because of its favorable adsorption, short biosorption equilibrium time of 20 min and remarkable biosorption capacity (15.19 mg g⁻¹ as calculated by the Langmuir model). The adsorbed metal-enriched mushroom is a high-quality bio-ore by the virtue of its high metal content of industrial mining grade and easy metal extractability.

  10. Pseudomonads associated with midrib rot and soft rot of butterhead lettuce and endive.

    PubMed

    Cottyn, B; Vanhouteghem, K; Heyrman, J; Bleyaert, P; Van Vaerenbergh, J; De Vos, P; Höfte, M; Maes, M

    2005-01-01

    During the past ten years, bacterial soft rot and midrib rot of glasshouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) and field-grown endive (Cichorium endivia L.) has become increasingly common in the region of Flanders, Belgium. Severe losses and reduced market quality caused by bacterial rot represent an important economical threat for the production sector. Symptoms of midrib rot are a brownish rot along the midrib of one or more inner leaves, often accompanied by soft rot of the leaf blade. Twenty-five symptomatic lettuce and endive samples were collected from commercial growers at different locations in Flanders. Isolations of dominant bacterial colony types on dilution plates from macerated diseased tissue extracts yielded 282 isolates. All isolates were characterized by colony morphology and fluorescence on pseudomonas agar F medium, oxidase reaction, and soft rot ability on detached chicory leaves. Whole-cell fatty acid methyl esters profile analyses identified the majority of isolates (85%) as belonging to the Gammaproteobacteria, which included members of the family Enterobacteriaceae (14%) and of the genera Pseudomonas (73%), Stenotrophomonas (9%), and Acinetobacter (3%). Predominant bacteria were a diverse group of fluorescent Pseudomonas species. They were further differentiated based on the non-host hypersensitive reaction on tobacco and the ability to rot potato slices into 4 phenotypic groups: HR-/P- (57 isolates), HR-/P+ (54 isolates), HR+/P (16 isolates) and HR+/P+ (35 isolates). Artificial inoculation of suspensions of HR-, pectolytic fluorescent pseudomonads in the leaf midrib of lettuce plants produced various symptoms of soft rot, but they did not readily cause symptoms upon spray inoculation. Fluorescent pseudomonads with phenotype HR+ were consistently isolated from typical dark midrib rot symptoms, and selected isolates reproduced the typical midrib rot symptoms when spray-inoculated onto healthy lettuce plants.

  11. Identification of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping.

    PubMed

    Singh, Ram K; Banerjee, Nandita; Khan, M S; Yadav, Sonia; Kumar, Sanjeev; Duttamajumder, S K; Lal, Ram Ji; Patel, Jinesh D; Guo, H; Zhang, Dong; Paterson, Andrew H

    2016-06-01

    Red rot is a serious disease of sugarcane caused by the fungus Colletotrichum falcatum that has a colossal damage potential. The fungus, prevalent mainly in the Indian sub-continent, keeps on producing new pathogenic strains leading to breakdown of resistance in newly released varieties and hence the deployment of linked markers for marker-assisted selection for resistance to this disease can fine tune the breeding programme. This study based on a panel of 119 sugarcane genotypes fingerprinted for 944 SSR alleles was undertaken with an aim to identify marker-trait associations (MTAs) for resistance to red rot. Mixed linear model containing population structure and kinship as co-factor detected four MTAs that were able to explain 10-16 % of the trait variation, individually. Among the four MTAs, EST sequences diagnostic of three could be BLAST searched to the sorghum genome with significant sequence homology. Several genes encoding important plant defence related proteins, viz., cytochrome P450, Glycerol-3-phosphate transporter-1, MAP Kinase-4, Serine/threonine-protein kinase, Ring finger domain protein and others were localized to the vicinity of these MTAs. These positional candidate genes are worth of further investigation and possibly these could contribute directly to red rot resistance, and may find a potential application in marker-assisted sugarcane breeding.

  12. Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white-rot fungi.

    PubMed

    Rubilar, O; Tortella, G; Cea, M; Acevedo, F; Bustamante, M; Gianfreda, L; Diez, M C

    2011-02-01

    This study provides a first attempt investigation of a serie of studies on the ability of Anthracophyllum discolor, a recently isolated white-rot fungus from forest of southern Chile, for the treatment of soil contaminated with pentachlorophenol (PCP) to future research on potential applications in bioremediation process. Bioremediation of soil contaminated with PCP (250 and 350 mg kg⁻¹ soil) was investigated with A. discolor and compared with the reference strain Phanerochaete chrysosporium. Both strains were incorporated as free and immobilized in wheat grains, a lignocellulosic material previously selected among wheat straw, wheat grains and wood chips through the growth and colonization of A. discolor. Wheat grains showed a higher growth and colonization of A. discolor, increasing the production of manganese peroxidase (MnP) activity. Moreover, the application of white-rot fungi immobilized in wheat grains to the contaminated soil favored the fungus spread. In turn, with both fungal strains and at the two PCP concentrations a high PCP removal (70-85%) occurred as respect to that measured with the fungus as free mycelium (30-45%). Additionally, the use of wheat grains in soil allowed the proliferation of microorganisms PCP decomposers, showing a synergistic effect with A. discolor and P. chrysosporium and increasing the PCP removal in the soil.

  13. Gliotoxin-producing endophytic Acremonium sp. from Zingiber officinale found antagonistic to soft rot pathogen Pythium myriotylum.

    PubMed

    Anisha, C; Radhakrishnan, E K

    2015-04-01

    Soft rot caused by Pythium sp. is a major cause of economic loss in ginger cultivation. Endophytic fungi isolated from Zingiber officinale were screened for its activity against the soft rot pathogen Pythium myriotylum. Among the isolates screened, an endophytic fungus which was identified as Acremonium sp. showed promising activity against the phytopathogen in dual culture. The selected fungus was cultured in large scale on solid rice media and was extracted with ethyl acetate. The crude extract was subjected to column chromatography and preparative HPLC to obtain the fraction with the antifungal activity. LC-QTOF-MS/MS analysis of this fraction done using water-acetonitrile gradient identified a mass of m/z 327 (M + H) corresponding to gliotoxin with specific fragments m/z 263, 245, 227, and 111. The result was reconfirmed in negative mode ionization. Gliotoxin is the major antagonistic peptide produced by the commercially used biocontrol agent, Trichoderma sp., which shows high antagonism against Pythium sp. The gliotoxin production by the isolated endophytic Acremonium sp. of Z. officinale shows the possible natural biocontrol potential of this endophytic fungus.

  14. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  15. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  16. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  17. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  18. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  19. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  20. Degradation of Three Aromatic Dyes by White Rot Fungi and the Production of Ligninolytic Enzymes

    PubMed Central

    Jayasinghe, Chandana; Imtiaj, Ahmed; Lee, Geon Woo; Im, Kyung Hoan; Hur, Hyun; Lee, Min Woong; Yang, Hee-Sun

    2008-01-01

    This study was conducted to evaluate the degradation of aromatic dyes and the production of ligninolytic enzymes by 10 white rot fungi. The results of this study revealed that Pycnoporus cinnabarinus, Pleurotus pulmonarius, Ganoderma lucidum, Trametes suaveolens, Stereum ostrea and Fomes fomentarius have the ability to efficiently degrade congo red on solid media. However, malachite green inhibited the mycelial growth of these organisms. Therefore, they did not effectively decolorize malachite green on solid media. However, P. cinnabarinus and P. pulmonarius were able to effectively decolorize malachite green on solid media. T. suaveolens and F. rosea decolorized methylene blue more effectively than any of the other fungi evaluated in this study. In liquid culture, G. lucidum, P. cinnabarinus, Naematoloma fasciculare and Pycnoporus coccineus were found to have a greater ability to decolorize congo red. In addition, P. cinnabarinus, G. lucidum and T. suaveolens decolorized methylene blue in liquid media more effectively than any of the other organisms evaluated in this study. Only F. fomentarius was able to decolorize malachite green in liquid media, and its ability to do so was limited. To investigate the production of ligninolytic enzymes in media containing aromatic compounds, fungi were cultured in naphthalene supplemented liquid media. P. coccineus, Coriolus versicolor and P. cinnabarinus were found to produce a large amount of laccase when grown in medium that contained napthalene. PMID:23990745

  1. Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes.

    PubMed

    Jayasinghe, Chandana; Imtiaj, Ahmed; Lee, Geon Woo; Im, Kyung Hoan; Hur, Hyun; Lee, Min Woong; Yang, Hee-Sun; Lee, Tae-Soo

    2008-06-01

    This study was conducted to evaluate the degradation of aromatic dyes and the production of ligninolytic enzymes by 10 white rot fungi. The results of this study revealed that Pycnoporus cinnabarinus, Pleurotus pulmonarius, Ganoderma lucidum, Trametes suaveolens, Stereum ostrea and Fomes fomentarius have the ability to efficiently degrade congo red on solid media. However, malachite green inhibited the mycelial growth of these organisms. Therefore, they did not effectively decolorize malachite green on solid media. However, P. cinnabarinus and P. pulmonarius were able to effectively decolorize malachite green on solid media. T. suaveolens and F. rosea decolorized methylene blue more effectively than any of the other fungi evaluated in this study. In liquid culture, G. lucidum, P. cinnabarinus, Naematoloma fasciculare and Pycnoporus coccineus were found to have a greater ability to decolorize congo red. In addition, P. cinnabarinus, G. lucidum and T. suaveolens decolorized methylene blue in liquid media more effectively than any of the other organisms evaluated in this study. Only F. fomentarius was able to decolorize malachite green in liquid media, and its ability to do so was limited. To investigate the production of ligninolytic enzymes in media containing aromatic compounds, fungi were cultured in naphthalene supplemented liquid media. P. coccineus, Coriolus versicolor and P. cinnabarinus were found to produce a large amount of laccase when grown in medium that contained napthalene.

  2. Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...

  3. Pyramiding Sclerotinia head rot and stalk rot resistances into elite sunflower breeding lines with the aid of DNA markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Work was conducted in 2008 to determine the stalk rot resistance of RILs from the RHA 280 x RHA 801 population, as well as to begin introgression of previously identified QTL for head rot resistance into elite sunflower germplasm lines. The stalk rot RILs and their testcrosses with cms HA 89 were t...

  4. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/brown rot paradigm for wood decay fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade ...

  5. [Comparative study on the productivity of strains of Pleurotus spp. in commercial cultivation].

    PubMed

    Vogel, F; Salmones, D

    2000-12-01

    This paper describes the commercial production of two strains of Pleurotus pulmonarius, selected in the laboratory for their rapid mycelial development and high production of basidiomata, and one commercial strain of Pleurotus ostreatus. Substrate preparation, impact of pathogens and environmental conditions necessary for the production and quality of the fruiting bodies required are discussed.

  6. Hybrid production of oyster mushroom Pleurotus ostreatus (Jacq: Fries) Kummer.

    PubMed

    Gharehaghaji, A Nikzad; Goltapeh, E Mohammadi; Masiha, S; Gordan, H R

    2007-07-15

    Optimization of industrial mushroom production depends on improving the culture process and breeding new strains with higher yields and productivities. So many works have been done on process improvement, Although few systematic studies of genetic breeding of Pleurotus ostreatus strains have been reported. The major aim of hybridization is to combine desirable characteristics from different strains and create variability in the existing germ plasm. In this study, we used a breeding approach to hybrid production from cultivated Oyster mushrooms Pleurotus ostreatus. Five strains of Pleurotus ostreatus (Jacq: Fries) Kummer were used in this research. Basidiospores were suspended in sterile distilled water and counted with a haemocytometer. After germination, colony of each isolate transferred into the PDA medium. Growth rate and colony type of each isolate was determined and then 17 monokaryons were selected. Consequently screening monokaryons were crossed to each other. Some characteristics such as morphological interaction in the contact zone of mycelium, increasing in growth rate of hybrid, change of colony morphology and the presence of clamp connections between dikaryotic cells used to distinction of monokaryons from dikaryons. We recognized 27 hybrids by these characteristics.

  7. Fungus Resistant XM205 Nonmetallic Cartridge Case,

    DTIC Science & Technology

    CARTRIDGE CASES, *FUNGICIDES, FUNGUS PROOFING, FUNGUS DETERIORATION, RESISTANCE, NITROCELLULOSE, POLYMERS, FIBERS, SYNTHETIC FIBERS, MATERIALS, ZINC COMPOUNDS, ORGANIC COMPOUNDS, ORGANIC SULFUR COMPOUNDS.

  8. Involvement of the Ligninolytic System of White-Rot and Litter-Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Pozdnyakova, Natalia N.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the capacity of PAH degradation. The enzymes involved in the degradation of PAHs are ligninolytic and include lignin peroxidase, versatile peroxidase, Mn-peroxidase, and laccase. This paper summarizes the data available on PAH degradation by fungi belonging to different ecophysiological groups (white-rot and litter-decomposing fungi) under submerged cultivation and during mycoremediation of PAH-contaminated soils. The role of the ligninolytic enzymes of these fungi in PAH degradation is discussed. PMID:22830035

  9. Hands-On Whole Science. What Rots?

    ERIC Educational Resources Information Center

    Markle, Sandra

    1991-01-01

    Presents activities on the science of garbage to help elementary students learn to save the earth. A rotting experiment teaches students what happens to apple slices sealed in plastic or buried in damp soil. Other activities include reading stories on the subject and conducting classroom composting or toxic materials projects. (SM)

  10. Postharvest Rhizopus rot on sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus species have been reported as a minor post-harvest rot on sugar beet, particularly under temperatures above 5 deg C. In 2010, Rhizopus was isolated from beets collected from Michigan storage piles in February at a low frequency. However, recent evidence from Michigan has found a high incide...

  11. Genome, transcriptome, and secretome analysis of wood decay fungus postia placenta supports unique mechanisms of lignocellulose conversion

    SciTech Connect

    Martinez, Diego; Challacombe, Jean F; Misra, Monica; Xie, Gary; Brettin, Thomas; Morgenstern, Ingo; Hibbett, David; Schmoll, Monika; Kubicek, Christian P; Ferreira, Patricia; Ruiz - Duenase, Francisco J; Martinez, Angel T; Kersten, Phil; Hammel, Kenneth E; Vanden Wymelenberg, Amber; Gaskell, Jill; Lindquist, Erika; Sabati, Grzegorz; Bondurant, Sandra S; Larrondo, Luis F; Canessa, Paulo; Vicunna, Rafael; Yadavk, Jagiit; Doddapaneni, Harshavardhan; Subramaniank, Venkataramanan; Pisabarro, Antonio G; Lavin, Jose L; Oguiza, Jose A; Master, Emma; Henrissat, Bernard; Coutinho, Pedro M; Harris, Paul; Magnuson, Jon K; Baker, Scott; Bruno, Kenneth; Kenealy, William; Hoegger, Patrik J; Kues, Ursula; Ramaiva, Preethi; Lucas, Susan; Salamov, Asaf; Shapiro, Harris; Tuh, Hank; Chee, Christine L; Teter, Sarah; Yaver, Debbie; James, Tim; Mokrejs, Martin; Pospisek, Martin; Grigoriev, Igor; Rokhsar, Dan; Berka, Randy; Cullen, Dan

    2008-01-01

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative {beta}-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC{center_dot}MSIMS). Also upregulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H202. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H202 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons to the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.

  12. Purification and characterization of cellobiose dehydrogenase from white-rot basidiomycete Trametes hirsuta.

    PubMed

    Nakagame, Seiji; Furujyo, Atsushi; Sugiura, Jun

    2006-07-01

    In order to save energy during the pulp making process, we tried to use white-rot basidiomycete, Trametes hirsuta, which degrades lignin efficiently. But a decrease in paper strength caused by cellulolytic activity ruled this out for practical application. Since the cellulolytic activity of the fungus must be decreased, we purified and characterized a cellobiose dehydrogenase (CDH) that was reported to damage pulp fiber. The CDH in the culture filtrate of C. hirsutus was purified by freeze-thawing and chromatographic methods. The pI of the enzyme was 4.2 and its molecular weight was 92 kDa. The optimal temperature and pH of the enzyme were 60-70 degrees C and 5.0 respectively. Since the purified CDH decreased the viscosity of pulp in the presence of Fe(III) and cellobiose, it was shown that the suppression of CDH should be an effective way to reduce cellulose damage.

  13. Synergistic Effect of Photosynthetic Bacteria and Isolated Bacteria in Their Antifungal Activities against Root Rot Fungi.

    PubMed

    Wei, Hongyi; Okunishi, Suguru; Yoshikawa, Takeshi; Kamei, Yuto; Dawwoda, Mahmoud A O; Santander-DE Leon, Sheila Mae S; Nuñal, Sharon Nonato; Maeda, Hiroto

    2016-01-01

    Antifungal bacteria (AB) in root rot fungus (RRF)-contaminated sweet potato farms were isolated, and seven strains were initially chosen as antagonistic candidates. An antagonistic test by using the mycelial disk placement method revealed that one AB strain by itself could inhibit the RRF growth. This AB strain was identified as Bacillus polyfermenticus based on phylogeny of 16S ribosomal RNA genes. Two AB strains (Bacillus aerophilus) displayed high levels of antifungal activity when paired with photosynthetic bacterial strain A (a purple nonsulfur photosynthetic bacterium Rhodopseudomonas faecalis). The results suggest the possible use of the isolates as agents for the biological control of the RRF infection of agricultural products in fields of cultivation.

  14. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum

    SciTech Connect

    D Merritt, C.S.; Reddy, C.A.

    1999-12-01

    Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen shaken cultures were much greater than those seen in low-nitrogen, malt extract, or wool-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HM cultures showed two laccase activity bands, where as isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, and 5.1. Low levels of MnP activity were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.

  15. Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Yang, Shufan; Kang, Jinguo; Leusch, Frederic D L; Roddick, Felicity; Price, William E; Nghiem, Long D

    2013-11-01

    The degradation of 30 trace organic contaminants (TrOC) by a white-rot fungus-augmented membrane bioreactor (MBR) was investigated. The results show that white-rot fungal enzyme (laccase), coupled with a redox mediator (1-hydroxy benzotriazole, HBT), could degrade TrOC that are resistant to bacterial degradation (e.g. diclofenac, triclosan, naproxen and atrazine) but achieved low removal of compounds (e.g. ibuprofen, gemfibrozil and amitriptyline) that are well removed by conventional activated sludge treatment. Overall, the fungus-augmented MBR showed better TrOC removal compared to a system containing conventional activated sludge. The major role of biodegradation in removal by the MBR was noted. Continuous mediator dosing to MBR may potentially enhance its performance, although not as effectively as for mediator-enhanced batch laccase systems. A ToxScreen3 assay revealed no significant increase in the toxicity of the effluent during MBR treatment of the synthetic wastewater comprising TrOC, confirming that no toxic by-products were produced.

  16. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions

    PubMed Central

    Voisard, Christophe; Keel, Christoph; Haas, Dieter; Dèfago, Geneviève

    1989-01-01

    Pseudomonas fluorescens CHA0 suppresses black root rot of tobacco, a disease caused by the fungus Thielaviopsis basicola. Strain CHA0 excretes several metabolites with antifungal properties. The importance of one such metabolite, hydrogen cyanide, was tested in a gnotobiotic system containing an artificial, iron-rich soil. A cyanidenegative (hcn) mutant, CHA5, constructed by a gene replacement technique, protected the tobacco plant less effectively than did the wild-type CHA0. Complementation of strain CHA5 by the cloned wild-type hcn+ genes restored the strain's ability to suppress disease. An artificial transposon carrying the hcn+ genes of strain CHA0 (Tnhcn) was constructed and inserted into the genome of another P.fluorescens strain, P3, which naturally does not produce cyanide and gives poor plant protection. The P3::Tnhcn derivative synthesized cyanide and exhibited an improved ability to suppress disease. All bacterial strains colonized the roots similarly and did not influence significantly the survival of T.basicola in soil. We conclude that bacterial cyanide is an important but not the only factor involved in suppression of black root rot. Images PMID:16453871

  17. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation.

    PubMed

    Thanh Mai Pham, Le; Kim, Yong Hwan

    2016-01-01

    Using bioinformatic homology search tools, this study utilized sequence phylogeny, gene organization and conserved motifs to identify members of the family of O-methyltransferases from lignin-degrading fungus Phanerochaete chrysosporium. The heterologous expression and characterization of O-methyltransferases from P. chrysosporium were studied. The expressed protein utilized S-(5'-adenosyl)-L-methionine p-toluenesulfonate salt (SAM) and methylated various free-hydroxyl phenolic compounds at both meta and para site. In the same motif, O-methyltransferases were also identified in other white-rot fungi including Bjerkandera adusta, Ceriporiopsis (Gelatoporia) subvermispora B, and Trametes versicolor. As free-hydroxyl phenolic compounds have been known as inhibitors for lignin peroxidase, the presence of O-methyltransferases in white-rot fungi suggested their biological functions in accelerating lignin degradation in white-rot basidiomycetes by converting those inhibitory groups into non-toxic methylated phenolic ones.

  18. Role of Bacillus spp. in antagonism between Pleurotus ostreatus and Trichoderma harzianum in heat-treated wheat-straw substrates.

    PubMed

    Velázquez-Cedeño, Marnyye; Farnet, Anne Marie; Mata, Gerardo; Savoie, Jean-Michel

    2008-10-01

    This study aimed to identify bacteria involved in Trichodermaharzianum inhibition while promoting Pleurotus ostreatus defences in order to favour cultivation-substrate selectivity for mushroom production. PCR-DGGE profiles of total DNA from wheat-straw substrate showed weak differences between bacterial communities from substrate inoculated with P. ostreatus with or without T. harzianum. The major cultivable bacteria were isolated from three batches of wheat-straw-based cultivation substrates showing an efficient selectivity. They were screened for their ability to inhibit T.harzianum. By using specific media for bacterial isolation and by sequencing certain 16S-rDNA, we observed that Bacillus spp. were the main inhibitors. Among them, a dominant species was identified as Paenibacillus polymyxa. This species was co-cultivated on agar media with P. ostreatus. The measurement of laccase activities from culture plugs indicated that P. polymyxa induced increases in enzyme activities. Bacillus spp. and specifically P. polymyxa from cultivation substrates are implicated in their selectivity by both inhibiting the growth of T.harzianum and stimulating defences of the mushroom P. ostreatus through the induction of laccases. The management of microbial communities during P.ostreatus cultivation-substrate preparation in order to favour P. polymyxa and other Bacillus spp. growth, can be a way to optimize the development of P. ostreatus for mushroom production or other environmental uses of this fungus.

  19. Mapping of genomic regions (quantitative trait loci) controlling production and quality in industrial cultures of the edible basidiomycete Pleurotus ostreatus.

    PubMed

    Larraya, Luis M; Alfonso, Mikel; Pisabarro, Antonio G; Ramírez, Lucía

    2003-06-01

    Industrial production of the edible basidiomycete Pleurotus ostreatus (oyster mushroom) is based on a solid fermentation process in which a limited number of selected strains are used. Optimization of industrial mushroom production depends on improving the culture process and breeding new strains with higher yields and productivities. Traditionally, fungal breeding has been carried out by an empirical trial and error process. In this study, we used a different approach by mapping quantitative trait loci (QTLs) controlling culture production and quality within the framework of the genetic linkage map of P. ostreatus. Ten production traits and four quality traits were studied and mapped. The production QTLs identified explain nearly one-half of the production variation. More interestingly, a single QTL mapping to the highly polymorphic chromosome VII appears to be involved in control of all the productivity traits studied. Quality QTLs appear to be scattered across the genome and to have less effect on the variation of the corresponding traits. Moreover, some of the new hybrid strains constructed in the course of our experiments had production or quality values higher than those of the parents or other commercial strains. This approach opens the possibility of marker-assisted selection and breeding of new industrial strains of this fungus.

  20. Mapping of Genomic Regions (Quantitative Trait Loci) Controlling Production and Quality in Industrial Cultures of the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Alfonso, Mikel; Pisabarro, Antonio G.; Ramírez, Lucía

    2003-01-01

    Industrial production of the edible basidiomycete Pleurotus ostreatus (oyster mushroom) is based on a solid fermentation process in which a limited number of selected strains are used. Optimization of industrial mushroom production depends on improving the culture process and breeding new strains with higher yields and productivities. Traditionally, fungal breeding has been carried out by an empirical trial and error process. In this study, we used a different approach by mapping quantitative trait loci (QTLs) controlling culture production and quality within the framework of the genetic linkage map of P. ostreatus. Ten production traits and four quality traits were studied and mapped. The production QTLs identified explain nearly one-half of the production variation. More interestingly, a single QTL mapping to the highly polymorphic chromosome VII appears to be involved in control of all the productivity traits studied. Quality QTLs appear to be scattered across the genome and to have less effect on the variation of the corresponding traits. Moreover, some of the new hybrid strains constructed in the course of our experiments had production or quality values higher than those of the parents or other commercial strains. This approach opens the possibility of marker-assisted selection and breeding of new industrial strains of this fungus. PMID:12788770

  1. Decolorization of pulp paper mill effluent by Pleurotus sajorcaju.

    PubMed

    Yadav, Meera; Yadav, K S

    2008-04-01

    Pleurotus sajorcaju MTCC-141 procured from Microbial Type Culture Collection Centre and Gene Bank, Institute of Microbial Technology, Chandigarh has been used for color removal from paper mill effluent. The paper mill effluent amended with basal medium supports the growth of Pleurrotus sajorcaju and removes the colour. The optimum concentrations of carbon source (glucose) and nitrogen source (NH4NO3) for the maximum decolourization of paper mill effluent were found to be 1% and 0.2% respectively. During the fungal growth process, the pH of the paper mill effluent decreased from 7.94 to 4.0.

  2. Liquid-phase separation of reactive dye by wood-rotting fungus: a biotechnological approach.

    PubMed

    Binupriya, Arthur R; Sathishkumar, Muthuswamy; Dhamodaran, Kavitha; Jayabalan, Rasu; Swaminathan, Krishnaswamy; Yun, Sei Eok

    2007-08-01

    The live and pretreated mycelial pellets/biomass of Trametes versicolor was used for the biosorption of a textile dye, reactive blue MR (RBMR) from aqueous solution. The parameters that affect the biosorption of RBMR, such as contact time, concentration of dye and pH, on the extent of RBMR adsorption were investigated. To develop an effective and accurate design model for removal of dye, adsorption kinetics and equilibrium data are essential basic requirements. Lagergren first-order, second-order and Bangham's model were used to fit the experimental data. Results of the kinetic studies showed that the second order kinetic model fitted well for the present experimental data. The Langmuir, Freundlich and Temkin adsorption models were used for the mathematical description of the biosorption equilibrium. The biosorption equilibrium data obeyed well for Langmuir isotherm and the maximum adsorption capacities were found to be 49.8, 51.6, 47.4 and 46.7 mg/g for live, autoclaved, acid- and alkali-pretreated biomass. The dye uptake capacity order of the fungal biomass was found as autoclaved > live > acid-treated > alkali-pretreated. The Freundlich and Temkin models were also able to describe the biosorption equilibrium on RBMR on live and pretreated fungal biomass. Acidic pH was favorable for the adsorption of dye. Studies on pH effect and desorption show that chemisorption seems to play a major role in the adsorption process. On comparison with fixed bed adsorption, batch mode adsorption was more efficient in adsorption of RBMR.

  3. Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus.

    PubMed

    Inoue, Yukiko; Hata, Takayuki; Kawai, Shingo; Okamura, Hideo; Nishida, Tomoaki

    2010-08-15

    The antimicrobial and preservative agent triclosan (TCS) is an emerging and persistent pollutant with a ubiquitous presence in the aquatic environment. Thus, TCS was treated with manganese peroxidase (MnP), laccase and the laccase-mediator system with 1-hydroxybenzotriazole. MnP was most effective in eliminating TCS among the three enzymatic treatments, with TCS concentration being reduced by about 94% after 30 min following treatment with 0.5 nkat mL(-1) MnP and being almost completely eliminated after 60 min. Furthermore, MnP (0.5 nkat mL(-1)) caused the complete loss of bacterial growth inhibition by TCS after 30 min and reduced the algal growth inhibition of TCS by 75% and 90% after 30 and 60 min, respectively. These results strongly suggest that MnP is effective in removing the ecotoxicity of TCS.

  4. Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2014-06-01

    A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.

  5. Biological pretreatment of corn stover with white-rot fungus for enzymatic hydrolysis and bioethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment, as the first step towards conversion of lignocellulosic feedstocks to biofuels and/or chemicals remains one of the main barriers to commercial success. Typically, harsh methods are used to pretreat lignocellulosic biomass prior to its breakdown to sugars by enzymes, which also result ...

  6. The relationship between 'wild' and 'building' isolates of the dry rot fungus Serpula lacrymans.

    PubMed

    Palfreyman, John W; Gartland, Jill S; Sturrock, Craig J; Lester, Doug; White, Nia A; Low, Gordon A; Bech-Andersen, Joergen; Cooke, David E L

    2003-11-21

    Molecular and morphological parameters of Serpula lacrymans isolates from various sites in the built environment in Europe and Australia were compared to similar parameters of 'wild' isolates from India, the Sumava Mountains (Czech Republic) and Mount Shasta (USA). The Indian, Czech Republic and all of the building isolates bar one showed identity in both molecular and morphological features. The Australian and the USA isolates (BF-050 and USA'94 respectively) showed specific morphological differences and could be separated on the basis of randomly amplified polymorphic deoxyribonucleic acid polymerase chain reaction (RAPD PCR) with the USA isolate being least closely related to the S. lacrymans type strain of FPRL12C. ITS sequence data revealed two base differences between FPRL12C and BF-050 in the 673 sequenced, nine differences between FPRL12C and USA'94 and 16 differences between USA'94 and the closely related organism Serpula himantioides. The possible evolutionary relationships between the various isolates are discussed along with suggestions for the origin of S. lacrymans as a scourge of the built environment in many temperate areas of the world.

  7. Decoloration of Amaranth by the white-rot fungus Trametes versicolor. Part II. Verification study.

    PubMed

    Gavril, Mihaela; Hodson, Peter V

    2007-02-01

    The involvement of lignin peroxidase (LiP) in the decoloration of the mono-azo substituted napthalenic dye Amaranth was investigated with pure enzymes and whole cultures of Trametes versicolor. The verification study confirmed that LiP has a direct influence on the initial decoloration rate and showed that another enzyme, which does not need hydrogen peroxide to function and is not a laccase, also plays a role during decoloration. These results confirm the results of a previous statistical analysis. Furthermore, the fungal mycelium affects the performance of the decoloration process.

  8. Growth of the Sirex-parasitic nematode Deladenus siricidicola on the white rot fungus Amylostereum.

    PubMed

    Caetano, Isis A L; Morris, E Erin; Hajek, Ann E

    2016-02-01

    The Kamona strain of the nematode Deladenus siricidicola has been extensively used as a biological control agent against invasive Sirex noctilio woodwasps in the Southern Hemisphere, where it sterilizes female hosts. In North America, a non-sterilizing (NS) strain of D. siricidicola, thought to have been introduced with S. noctilio, is commonly found parasitizing this invasive woodwasp. Species of Deladenus that parasitize Sirex have a parasitic form, as well as a mycophagous form. The mycophagous form feeds on Sirex fungal symbionts in the genus Amylostereum. The goal of this study was to compare reproduction of NS and Kamona D. siricidicola when feeding on four isolates of Amylostereum areolatum (three introduced and one native in North America) and one native strain of Amylostereum chailletii isolated from Sirex nigricornis. Mycophagous forms of the two D. siricidicola strains displayed relatively similar production of offspring when feeding on most of the A. areolatum found associated with S. noctilio in this continent, except for strain BD on which NS produced more offspring than the biological control strain Kamona. Growth of both nematodes was greater on the introduced versus the native A. areolatum isolates.

  9. De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici

    PubMed Central

    2014-01-01

    Background Pyrenochaeta lycopersici is a soil-dwelling ascomycete pathogen that causes corky root rot disease in tomato (Solanum lycopersicum) and other Solanaceous crops, reducing fruit yields by up to 75%. Fungal pathogens that infect roots receive less attention than those infecting the aerial parts of crops despite their significant impact on plant growth and fruit production. Results We assembled a 54.9Mb P. lycopersici draft genome sequence based on Illumina short reads, and annotated approximately 17,000 genes. The P. lycopersici genome is closely related to hemibiotrophs and necrotrophs, in agreement with the phenotypic characteristics of the fungus and its lifestyle. Several gene families related to host–pathogen interactions are strongly represented, including those responsible for nutrient absorption, the detoxification of fungicides and plant cell wall degradation, the latter confirming that much of the genome is devoted to the pathogenic activity of the fungus. We did not find a MAT gene, which is consistent with the classification of P. lycopersici as an imperfect fungus, but we observed a significant expansion of the gene families associated with heterokaryon incompatibility (HI). Conclusions The P. lycopersici draft genome sequence provided insight into the molecular and genetic basis of the fungal lifestyle, characterizing previously unknown pathogenic behaviors and defining strategies that allow this asexual fungus to increase genetic diversity and to acquire new pathogenic traits. PMID:24767544

  10. Rapid and sensitive diagnoses of dry root rot pathogen of chickpea (Rhizoctonia bataticola (Taub.) Butler) using loop-mediated isothermal amplification assay

    PubMed Central

    Ghosh, Raju; Tarafdar, Avijit; Sharma, Mamta

    2017-01-01

    Dry root rot (DRR) caused by the fungus Rhizoctonia bataticola (Taub.) Butler, is an emerging disease in chickpea. The disease is often mistaken with other root rots like Fusarium wilt, collar rot and black root rot in chickpea. Therefore, its timely and specific detection is important. Current detection protocols are either based on mycological methods or on protocols involving DNA amplification by polymerase chain reaction (PCR). Here we report the rapid and specific detection of R. bataticola using loop-mediated isothermal amplification (LAMP) assay targeting fungal specific 5.8S rDNA sequence for visual detection of R. bataticola. The reaction was optimized at 63 °C for 75 min using minimum 10 fg of DNA. After adding SYBR Green I in LAMP products, the amplification was found to be highly specific in all the 94 isolates of R. bataticola collected from diverse geographical regions as well as DRR infected plants and sick soil. No reaction was found in other pathogenic fungi infecting chickpea (Fusarium oxysporum f. sp. ciceris, Rhizoctonia solani, Sclerotium rolfsii and Fusarium solani) and pigeonpea (Fusarium udum and Phytophthora cajani). The standardised LAMP assay with its simplicity, rapidity and specificity is very useful for the visual detection of this emerging disease in chickpea. PMID:28218268

  11. Rapid and sensitive diagnoses of dry root rot pathogen of chickpea (Rhizoctonia bataticola (Taub.) Butler) using loop-mediated isothermal amplification assay.

    PubMed

    Ghosh, Raju; Tarafdar, Avijit; Sharma, Mamta

    2017-02-20

    Dry root rot (DRR) caused by the fungus Rhizoctonia bataticola (Taub.) Butler, is an emerging disease in chickpea. The disease is often mistaken with other root rots like Fusarium wilt, collar rot and black root rot in chickpea. Therefore, its timely and specific detection is important. Current detection protocols are either based on mycological methods or on protocols involving DNA amplification by polymerase chain reaction (PCR). Here we report the rapid and specific detection of R. bataticola using loop-mediated isothermal amplification (LAMP) assay targeting fungal specific 5.8S rDNA sequence for visual detection of R. bataticola. The reaction was optimized at 63 °C for 75 min using minimum 10 fg of DNA. After adding SYBR Green I in LAMP products, the amplification was found to be highly specific in all the 94 isolates of R. bataticola collected from diverse geographical regions as well as DRR infected plants and sick soil. No reaction was found in other pathogenic fungi infecting chickpea (Fusarium oxysporum f. sp. ciceris, Rhizoctonia solani, Sclerotium rolfsii and Fusarium solani) and pigeonpea (Fusarium udum and Phytophthora cajani). The standardised LAMP assay with its simplicity, rapidity and specificity is very useful for the visual detection of this emerging disease in chickpea.

  12. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

    SciTech Connect

    Riley, Robert; Salamov, Asaf; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitris; Held, Benjamin; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika; Sun, Hui; LaButti, Kurt; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio; Walton, Jonathan D.; Blanchette, Robert; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David; Grigoriev, Igor V.

    2014-03-14

    Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rot classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.

  13. Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper highlighted the antioxidant and antibacterial activities of Lentinus tigrinus and Pleurotus djamour. Extracts of mushroom fruiting bodies were obtained using hexane and acetonitrile solvents. Acetonitrile extracts of both mushrooms exhibited higher biological activities than hexane extrac...

  14. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus)

    PubMed Central

    Hoa, Ha Thi

    2015-01-01

    The influences of temperature and nutritional conditions on the mycelium growth of oyster mushroom Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC) were investigated in laboratory experiment during the summer season of 2014. The results of the experiment indicated that potato dextrose agar (PDA) and yam dextrose agar (YDA) were the most suitable media for the mycelium growth of oyster mushroom PO while four media (PDA, YDA, sweet potato dextrose agar, and malt extract agar medium) were not significantly different in supporting mycelium growth of oyster mushroom PC. The optimal temperature for mycelium growth of both oyster mushroom species was obtained at 28℃. Mycelium growth of oyster mushroom PO was improved by carbon sources such as glucose, molasses, and at 1~5% sucrose concentration, mycelium colony diameter of mushroom PO was achieved the highest value. Whereas glucose, dextrose, and sucrose as carbon sources gave the good mycelium growth of oyster mushroom PC, and at 1~3% sucrose concentration, mycelium colony diameter of PC was achieved the maximum value. Ammonium chloride concentrations at 0.03~0.09% and 0.03~0.05% also gave the greatest values in mycelium colony diameter of mushroom PO and PC. Brown rice was found to be the most favourable for mycelium growth of two oyster mushroom species. In addition, sugarcane residue, acasia sawdust and corn cob were selected as favourable lignocellulosic substrate sources for mycelium growth of both oyster mushrooms. PMID:25892910

  15. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus).

    PubMed

    Hoa, Ha Thi; Wang, Chun-Li

    2015-03-01

    The influences of temperature and nutritional conditions on the mycelium growth of oyster mushroom Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC) were investigated in laboratory experiment during the summer season of 2014. The results of the experiment indicated that potato dextrose agar (PDA) and yam dextrose agar (YDA) were the most suitable media for the mycelium growth of oyster mushroom PO while four media (PDA, YDA, sweet potato dextrose agar, and malt extract agar medium) were not significantly different in supporting mycelium growth of oyster mushroom PC. The optimal temperature for mycelium growth of both oyster mushroom species was obtained at 28℃. Mycelium growth of oyster mushroom PO was improved by carbon sources such as glucose, molasses, and at 1~5% sucrose concentration, mycelium colony diameter of mushroom PO was achieved the highest value. Whereas glucose, dextrose, and sucrose as carbon sources gave the good mycelium growth of oyster mushroom PC, and at 1~3% sucrose concentration, mycelium colony diameter of PC was achieved the maximum value. Ammonium chloride concentrations at 0.03~0.09% and 0.03~0.05% also gave the greatest values in mycelium colony diameter of mushroom PO and PC. Brown rice was found to be the most favourable for mycelium growth of two oyster mushroom species. In addition, sugarcane residue, acasia sawdust and corn cob were selected as favourable lignocellulosic substrate sources for mycelium growth of both oyster mushrooms.

  16. Effect of Usuhiratake (Pleurotus pulmonarius) on sneezing and nasal rubbing in BALB/c mice.

    PubMed

    Yatsuzuka, Rie; Nakano, Yoshiyuki; Jiang, Shuishi; Ueda, Yuhki; Kishi, Yuko; Suzuki, Yuh; Yokota, Emiko; Rahman, Ashequr; Ono, Rie; Kohno, Isato; Kamei, Chiaki

    2007-08-01

    The anti-rhinitis properties of Pleurotus pulmonarius were investigated in BALB/c mice. A single administration of Pleurotus Pulmonarius caused no significant effect on antigen-induced nasal rubbing and sneezing at a dose of 500 mg/kg, but a significant inhibition was observed after 2 weeks of repeated treatment at this dose, and at a dose of 200 mg/kg, it also caused a significant inhibition after repeated administration for 4 weeks. Pleurotus pulmonarius showed no significant inhibitory effect on the production of IgE. In addition, Pleurotus pulmonarius caused no inhibition of histamine-induced nasal rubbing and sneezing at a dose of 500 mg/kg, but in vitro study, it inhibited histamine release from rat mast cells induced by compound 48/80 at the soluble supernatant solution of 30 and 100 microg/ml of Pleurotus pulmonarius suspended in PBS. These results demonstrated that Pleurotus pulmonarius may be effective in the relief of symptoms of allergic rhinitis through inhibition of histamine release.

  17. Heat stress induces apoptotic-like cell death in two Pleurotus species.

    PubMed

    Song, Chi; Chen, Qiang; Wu, Xiangli; Zhang, Jinxia; Huang, Chenyang

    2014-11-01

    High temperature is an important environmental factor that affects the growth and development of most edible fungi, however, the mechanism(s) for resistance to high temperature remains elusive. Nitric oxide is known to be able to effectively alleviate oxidative damage and plays an important role in the regulation of trehalose accumulation during heat stress in mycelia of Pleurotus eryngii var. tuoliensis. In this paper, we investigated whether heat stress can activate apoptosis-like cell death in mycelia of Pleurotus. Two Pleurotus species were used to detect morphological features characteristic of apoptosis including nuclear condensation, reactive oxygen species accumulation, and DNA fragmentation when exposed to heat stress (42 °C). The results showed that these classical apoptosis markers were apparent in Pleurotus strains after heat treatment. The heat-induced apoptosis-like cell death in Pleurotus was further probed using oligomycin and N-acetylcysteine, both of which were shown to block processes leading to apoptosis. This is the first report that apoptosis-like cell death occurs in Pleurotus species as a result of abiotic stress, and that this process can be inhibited with chemicals that block mitochondrial-induced apoptotic pathways and/or with ROS-scavenging compounds.

  18. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    PubMed Central

    2012-01-01

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species. PMID:22937793

  19. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    SciTech Connect

    Suzuki, Hitoshi; MacDonald, Jacqueline; Syed, Khajamohiddin; Salamov, Asaf; Hori, Chiaki; Aerts, Andrea; Henrissat, Bernard; Wiebenga, Ad; vanKuyk, Patricia A.; Barry, Kerrie; Lindquist, Erika; LaButti, Kurt; Lapidus, Alla; Lucas, Susan; Coutinho, Pedro; Gong, Yunchen; Samejima, Masahiro; Mahadevan, Radhakrishnan; Abou-Zaid, Mamdouh; de Vries, Ronald P.; Igarashi, Kiyohiko; Yadav, Jagit S.; Grigoriev, Igor V.; Master, Emma R.

    2012-02-17

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.

  20. A diagnostic guide for Fusarium Root Rot of pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...

  1. Evaluation of soybean genotypes for resistance to charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot caused by Macrophomina phaseolina causes more yield loss in soybean than most other diseases in the southern U.S.A. There are no commercial genotypes marketed as resistant to charcoal rot of soybean. Reactions of 27 maturity group (MG) III, 29 Early MG IV, 34 Late MG IV, and 59 MG V gen...

  2. Resistance to charcoal rot identified in ancestral soybean germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot, caused by the fungal pathogen Macrophomina phaseolina, is an economically important disease on soybean and other crops including maize, sorghum, and sunflowers. Without effective cultural or chemical options to control charcoal rot in soybean, finding sources of genetic resistance is o...

  3. RotCFD Software Validation - Computational and Experimental Data Comparison

    NASA Technical Reports Server (NTRS)

    Fernandez, Ovidio Montalvo

    2014-01-01

    RotCFD is a software intended to ease the design of NextGen rotorcraft. Since RotCFD is a new software still in the development process, the results need to be validated to determine the software's accuracy. The purpose of the present document is to explain one of the approaches to accomplish that goal.

  4. AFLP analysis of genetic diversity in charcoal rot fungal populations impacted by crop rotations.

    PubMed

    Brooker, N; Lord, J R; Long, J; Jayawardhana, A

    2008-01-01

    The application of molecular markers enables scientists to clarify the genetic relationships among fungi who are difficult to classify or partition into sub-species using traditional morphological or physiological criteria. One such fungus is Macrophomina phaseolina, a plant pathogenic soil-borne fungus that is the causative agent of Charcoal Rot on soybeans and 500 other plant species world-wide. This plant pathogenic fungus is a very heterogeneous species and disease population dynamics and pathogen genetic diversity are poorly understood. Using a multi-variant Amplified Fragment Length Polymorphism (AFLP) approach for the analysis of genomic data, valuable insight into cultural and environmental pressures that shape the fungal genome was possible. Fungal isolates from 12-year rotated field plots ranging from 1-3 years of crop rotations of the same plant type(s), rotation duration and plant maturity groups provided a unique opportunity to survey M. phaseolina isolates taken from the different crop rotation conditions. Using different data interval partitioning of amplified restriction fragments it was possible to see trends associated with the specific cropping history of the fungal isolates. AFLP neutral primers of intermediate and large amplified products using 20-bp intervals were the most efficient and reliable for demonstrating intra-population dynamics. Results indicate that the highest amount of M. phaseolina genetic diversity was conclusively found in fungal isolates taken from three-year rotation plots. Lesser amounts of genetic diversity were found in two-year rotated and non-rotated fungal isolates. Insight gained from this study may now be incorporated into a larger understanding of how crop rotation and the availability of hosts shape and influence the genetic variability within Macrophomina isolates and populations. This information can then be used to make better-informed decisions regarding crop protection strategies against this diverse and

  5. Changes in chemical composition and digestibility of three maize stover components digested by white-rot fungi.

    PubMed

    Lynch, J P; O'Kiely, P; Murphy, R; Doyle, E M

    2014-08-01

    Maize stover (total stem and leaves) is not considered a ruminant feed of high nutritive value. Therefore, an improvement in its digestibility may increase the viability of total forage maize production systems in marginal growth regions. The objective of this study was to describe the changes in chemical composition during the storage of contrasting components of maize stover (leaf, upper stem and lower stem) treated with either of two lignin degrading white-rot fungi (WRF; Pleurotus ostreatus, Trametes versicolor). Three components of maize stover (leaf, upper stem and lower stem), harvested at a conventional maturity for silage production, were digested with either of two WRF for one of four digestion durations (1-4 months). Samples taken prior to fungal inoculation were used to benchmark the changes that occurred. The degradation of acid detergent lignin was observed in all sample types digested with P. ostreatus; however, the loss of digestible substrate in all samples inoculated with P. ostreatus was high, and therefore, P. ostreatus-digested samples had a lower dry matter digestibility than samples prior to inoculation. Similarly, T. veriscolor-digested leaf underwent a non-selective degradation of the rumen-digestible components of fibre. The changes in chemical composition of leaf, upper stem and lower stem digested with either P. ostreatus or T. veriscolor were not beneficial to the feed value of the forage, and incurred high DM losses.

  6. Extracellular polysaccharide production by a strain of Pleurotus djamor isolated in the south of Brazil and antitumor activity on Sarcoma 180

    PubMed Central

    Borges, Gisele Martini; De Barba, Fabiana Figueredo Molin; Schiebelbein, Ana Paula; Pereira, Bruna Parmezzani; Chaves, Mariane Bonatti; Silveira, Marcia Luciane Lange; Pinho, Mauro Souza Leite; Furlan, Sandra Aparecida; Wisbeck, Elisabeth

    2013-01-01

    Polysaccharides with medicinal properties can be obtained from fruiting bodies, mycelium and culture broth of several fungus species. This work was carried out in batch culture using a stirred tank reactor with two different initial glucose concentrations (40–50 g/L) and pH values (3.0–4.0) to enhance extracellular polysaccharides production by Pleurotus djamor UNIVILLE 001 and evaluate antitumor effect of intraperitonial administration of Pleurotus djamor extract on sarcoma 180 animal model. According to factorial design, the low pH value (pH 3.0) led to a gain of 1.6 g/L on the extracellular polysaccharide concentration, while glucose concentration in the tested range had no significant effect on the concentration of polysaccharide. With 40 g/L initial glucose concentration and pH 3.0, it was observed that yield factor of extracellular polysaccharide on substrate (YP/S = 0.072) and maximum extracellular polysaccharide productivity (QPmax = 11.26 mg/L.h) were about 188% and 321% respectively higher than those obtained in the experiment performed at pH 4.0. Under these conditions, the highest values of the yield factor of biomass on substrate (YX/S = 0.24) and maximal biomass productivity (QXmax = 32.2 mg/L.h) were also reached. In tumor response study, mean tumor volume on the 21th day was 35.3 cm3 in untreated group and 1.6 cm3 in treated group (p = 0.05) with a tumor inhibition rate of 94%. These impressive results suggests an inhibitory effect of P.djamor extract on cancer cells. PMID:24688493

  7. Genetic Differentiation and Spatial Structure of Phellinus noxius, the Causal Agent of Brown Root Rot of Woody Plants in Japan.

    PubMed

    Akiba, Mitsuteru; Ota, Yuko; Tsai, Isheng J; Hattori, Tsutomu; Sahashi, Norio; Kikuchi, Taisei

    2015-01-01

    Phellinus noxius is a pathogenic fungus that causes brown root rot disease in a variety of tree species. This fungus is distributed in tropical and sub-tropical regions of Southeast and East Asia, Oceania, Australia, Central America and Africa. In Japan, it was first discovered on Ishigaki Island in Okinawa Prefecture in 1988; since then, it has been found on several of the Ryukyu Islands. Recently, this fungus was identified from the Ogasawara (Bonin) Islands, where it has killed trees, including rare endemic tree species. For effective control or quarantine methods, it is important to clarify whether the Japanese populations of P. noxius are indigenous to the area or if they have been introduced from other areas. We developed 20 microsatellite markers from genome assembly of P. noxius and genotyped 128 isolates from 12 of the Ryukyu Islands and 3 of the Ogasawara Islands. All isolates had unique genotypes, indicating that basidiospore infection is a primary dissemination method for the formation of new disease foci. Genetic structure analyses strongly supported genetic differentiation between the Ryukyu populations and the Ogasawara populations of P. noxius. High polymorphism of microsatellite loci suggests that Japanese populations are indigenous or were introduced a very long time ago. We discuss differences in invasion patterns between the Ryukyu Islands and the Ogasawara Islands.

  8. Genetic Differentiation and Spatial Structure of Phellinus noxius, the Causal Agent of Brown Root Rot of Woody Plants in Japan

    PubMed Central

    Akiba, Mitsuteru; Ota, Yuko; Tsai, Isheng J.; Hattori, Tsutomu; Sahashi, Norio; Kikuchi, Taisei

    2015-01-01

    Phellinus noxius is a pathogenic fungus that causes brown root rot disease in a variety of tree species. This fungus is distributed in tropical and sub-tropical regions of Southeast and East Asia, Oceania, Australia, Central America and Africa. In Japan, it was first discovered on Ishigaki Island in Okinawa Prefecture in 1988; since then, it has been found on several of the Ryukyu Islands. Recently, this fungus was identified from the Ogasawara (Bonin) Islands, where it has killed trees, including rare endemic tree species. For effective control or quarantine methods, it is important to clarify whether the Japanese populations of P. noxius are indigenous to the area or if they have been introduced from other areas. We developed 20 microsatellite markers from genome assembly of P. noxius and genotyped 128 isolates from 12 of the Ryukyu Islands and 3 of the Ogasawara Islands. All isolates had unique genotypes, indicating that basidiospore infection is a primary dissemination method for the formation of new disease foci. Genetic structure analyses strongly supported genetic differentiation between the Ryukyu populations and the Ogasawara populations of P. noxius. High polymorphism of microsatellite loci suggests that Japanese populations are indigenous or were introduced a very long time ago. We discuss differences in invasion patterns between the Ryukyu Islands and the Ogasawara Islands. PMID:26513585

  9. Cultivation of Pleurotus ostreatus and other edible mushrooms.

    PubMed

    Sánchez, Carmen

    2010-02-01

    Pleurotus ostreatus is the second most cultivated edible mushroom worldwide after Agaricus bisporus. It has economic and ecological values and medicinal properties. Mushroom culture has moved toward diversification with the production of other mushrooms. Edible mushrooms are able to colonize and degrade a large variety of lignocellulosic substrates and other wastes which are produced primarily through the activities of the agricultural, forest, and food-processing industries. Particularly, P. ostreatus requires a shorter growth time in comparison to other edible mushrooms. The substrate used for their cultivation does not require sterilization, only pasteurization, which is less expensive. Growing oyster mushrooms convert a high percentage of the substrate to fruiting bodies, increasing profitability. P. ostreatus demands few environmental controls, and their fruiting bodies are not often attacked by diseases and pests, and they can be cultivated in a simple and cheap way. All this makes P. ostreatus cultivation an excellent alternative for production of mushrooms when compared to other mushrooms.

  10. A simple procedure for preparing substrate for Pleurotus ostreatus cultivation.

    PubMed

    Hernández, Daniel; Sánchez, José E; Yamasaki, Keiko

    2003-11-01

    The use of wooden crates for composting a mixture of 70% grass, (Digitaria decumbens), and 30% coffee pulp, combined with 2% Ca(OH)(2), was studied as a method for preparing substrate for the cultivation of Pleurotus ostreatus. Crate composting considerably modified the temperature pattern of the substrate in process, as compared to pile composting, where lower temperatures and less homogeneous distributions were observed. Biological efficiencies varied between 59.79% and 93% in the two harvests. Based on statistical analysis significant differences were observed between the treatments, composting times and in the interactions between these two factors. We concluded that it is possible to produce P. ostreatus on a lignocellulosic, non-composted, non-pasteurized substrate with an initial pH of 8.7, and that composting for two to three days improves the biological efficiency.

  11. Genetic Linkage Map of the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Pérez, Gúmer; Ritter, Enrique; Pisabarro, Antonio G.; Ramírez, Lucía

    2000-01-01

    We have constructed a genetic linkage map of the edible basidiomycete Pleurotus ostreatus (var. Florida). The map is based on the segregation of 178 random amplified polymorphic DNA and 23 restriction fragment length polymorphism markers; four hydrophobin, two laccase, and two manganese peroxidase genes; both mating type loci; one isozyme locus (est1); the rRNA gene sequence; and a repetitive DNA sequence in a population of 80 sibling monokaryons. The map identifies 11 linkage groups corresponding to the chromosomes of P. ostreatus, and it has a total length of 1,000.7 centimorgans (cM) with an average of 35.1 kbp/cM. The map shows a high correlation (0.76) between physical and genetic chromosome sizes. The number of crossovers observed per chromosome per individual cell is 0.89. This map covers nearly the whole genome of P. ostreatus. PMID:11097904

  12. Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius.

    PubMed

    Větrovský, Tomáš; Voříšková, Jana; Snajdr, Jaroslav; Gabriel, Jiří; Baldrian, Petr

    2011-07-01

    Saprotrophic wood-inhabiting basidiomycetes are the most important decomposers of lignin and cellulose in dead wood and as such they attracted considerable attention. The aims of this work were to quantify the activity and spatial distribution of extracellular enzymes in coarse wood colonised by the white-rot basidiomycete Fomes fomentarius and in adjacent fruitbodies of the fungus and to analyse the diversity of the fungal and bacterial community in a fungus-colonised wood and its potential effect on enzyme production by F. fomentarius. Fungus-colonised wood and fruitbodies were collected in low management intensity forests in the Czech Republic. There were significant differences in enzyme production by F. fomentarius between Betula pendula and Fagus sylvatica wood, the activity of cellulose and xylan-degrading enzymes was significantly higher in beech wood than in birch wood. Spatial analysis of a sample B. pendula log segment proved that F. fomentarius was the single fungal representative found in the log. There was a high level of spatial variability in the amount of fungal biomass detected, but no effects on enzyme activities were observed. Samples from the fruiting body showed high β-glucosidase and chitinase activities compared to wood samples. Significantly higher levels of xylanase and cellobiohydrolase were found in samples located near the fruitbody (proximal), and higher laccase and Mn-peroxidase activities were found in the distal ones. The microbial community in wood was dominated by the fungus (fungal to bacterial DNA ratio of 62-111). Bacterial abundance composition was lower in proximal than distal parts of wood by a factor of 24. These results show a significant level of spatial heterogeneity in coarse wood. One of the explanations may be the successive colonization of wood by the fungus: due to differential enzyme production, the rates of biodegradation of coarse wood are also spatially inhomogeneous.

  13. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion

    SciTech Connect

    Martinez, Diego; Challacombe, Jean; Morgenstern, Ingo; Hibbett, David; Schmoll, Monika; Kubicek, Christian P.; Ferreira, Patricia; Ruiz-Duenas, Francisco J.; Martinez, Angel T.; Kersten, Phil; Hammel, Kenneth E.; Vanden Wymelenberg, Amber; Gaskell, Jill; Lindquist, Erika; Sabat, Grzegorz; Splinter BonDurant, Sandra; Larrondo, Luis F.; Canessa, Paulo; Vicuna, Rafael; Yadav, Jagjit; Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Pisabarro, Antonio G.; Lavín, José L.; Oguiza, José A.; Master, Emma; Henrissat, Bernard; Coutinho, Pedro M.; Harris, Paul; Magnuson, Jon Karl; Baker, Scott E.; Bruno, Kenneth; Kenealy, William; Hoegger, Patrik J.; Kües, Ursula; Ramaiya, Preethi; Lucas, Susan; Salamov, Asaf; Shapiro, Harris; Tu, Hank; Chee, Christine L.; Misra, Monica; Xie, Gary; Teter, Sarah; Yaver, Debbie; James, Tim; Mokrejs, Martin; Pospisek, Martin; Grigoriev, Igor V.; Brettin, Thomas; Rokhsar, Dan; Berka, Randy; Cullen, Dan

    2009-02-04

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in media containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative β-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also upregulated under cellulolytic culture conditions were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. In particular, comparisons between P. placenta and the closely related white-rot fungus, Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which efficient depolymerization of lignin was lost.

  14. Cerebrosides, extracellular glycolipids secreted by the selective lignin-degrading fungus Ceriporiopsis subvermispora.

    PubMed

    Nishimura, Hiroshi; Yamaguchi, Daisuke; Watanabe, Takashi

    2017-03-01

    Ceriporiopsis subvermispora is a selective white-rot fungus that degrades lignin at a site far from the hyphae and extracellular enzymes, without intensive damage to the cellulose. In selective ligninolysis, low molecular mass metabolites play a principal role and amphipathic substances are involved to control the degradation and transport of hydrophobic aromatic molecules, including lignin and lipids; however, secretion of the amphipathic substances by this fungus has not been well understood, except for alk(en)yl itaconates called ceriporic acids, which have a weak amphiphilicity. Herein, we report for the first time that the fungus secretes cerebrosides that are classified as glycosphingolipids. By using liquid chromatography electron spray ionization mass spectrometry (LC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy coupled with stable isotope feeding experiments with (13)C-glucose and (15)N-ammonium sulfate, the cerebrosides were determined to be N-hydroxyoctadecanoyl-1-O-β-d-glucopyranosyl-4E,8E-sphingadienine, N-hydroxyoctadecanoyl-1-O-β-d-glucopyranosyl-4E,8Z-sphingadienine, and N-hydroxyoctadecanoyl-1-O-β-d-glucopyranosyl-9-methyl-4E,8E-sphingadienine. The cerebrosides are strong amphipathic substances and potential metabolites for regulating difference and symbiosis within the microbial community.

  15. The occurrence of root rot and crown rot of rice in Gilan and Zanjan provinces, Iran.

    PubMed

    Saremi, H; Okhovat, S M

    2004-01-01

    Root rot and crown rot of rice is one of the important fungal diseases of rice in Gilan and Zanjan provinces, Iran. During 1999--2002, samples of plant and soil around the roots of infected rice plants were collected and used to identify the causal agent. Root and crown parts were surface sterilized with sodium hypochlorite and then cultured on PDA (potato dextrose agar), PPA (pepton pentacholoritobenzene agar) and CLA (carnation leaf agar) media. Soil samples prepared in water agar were used to isolate the pathogen. The causal agent was identified as Fusarium moniliforme. Colonies were initially white but turned violet to grey late. Microconidia were arranged in chain and macroconidia were cylindrical and long with 3-5 septa. The disease was severe in Zanjan province particularly along Ghezel Ozan river where the infection ranged from 70-80%. Root and crown rot was more prevalent in areas where Champa and Gerdeh were being cultivated continuously. On the other hand, Sadri cultivars had relatively less infection. Persistent cultivation of rice and seed sowing method intensified disease development and caused significant economic losses.

  16. Dibenzyl Sulfide Metabolism by White Rot Fungi

    PubMed Central

    Van Hamme, Jonathan D.; Wong, Eddie T.; Dettman, Heather; Gray, Murray R.; Pickard, Michael A.

    2003-01-01

    Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated. PMID:12571066

  17. Haemagglutinins and fimbriae of soft rot Erwinias.

    PubMed

    Wallace, A; Pérombelon, M C

    1992-08-01

    Strains of phytopathogenic soft rot Erwinia spp. were examined for haemagglutinin (HA) production. Mannose-sensitive HA was found only in five of 15 strains of E. carotovora subsp. carotovora. Mannose-resistant HA (MRHA) was found in 12 of 15 strains of E.c. carotovora, ten of 13 strains of E.c. subsp. atroseptica and the single strain of E.c. subsp. betavasculorum, as well as all seven strains of E. chrysanthemi. MRHA, detectable only in a microtitre tray HA assay was of either broad- or narrow-spectrum activity when examined against blood of seven different animal species and could be inhibited by the beta-galactoside asialofetuin. Fimbriae of ca 10 nm diameter were found on MRHA(+) bacteria E.c. carotovora and E.c. atroseptica.

  18. Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages

    PubMed Central

    González-Palma, Ivette; Escalona-Buendía, Héctor B.; Ponce-Alquicira, Edith; Téllez-Téllez, Maura; Gupta, Vijai K.; Díaz-Godínez, Gerardo; Soriano-Santos, Jorge

    2016-01-01

    Total polyphenols and flavonoids contents, as well as ferric reducing antioxidant power (FRAP), metal ions chelating activity, reducing power assay and scavenging activity of DPPH and ABTS radicals in aqueous and methanolic extracts obtained from mycelium, primordium, and fruiting body of Pleurotus ostreatus in both fresh as dry, were evaluated. The total polyphenol content of dried samples was higher in aqueous extracts obtained both in room temperature and boiling. The total polyphenol content of the fresh samples obtained at room temperature and boiling was higher in aqueous extract of mycelium and in the methanolic extract of the fruiting body. In general, flavonoids represented a very small percentage of the total polyphenol content. The antioxidant activity measured by the FRAP method of extracts from fresh samples were higher with respect to the dried samples. The results of the metal ion chelating activity indicate that all extracts tested had acted. The reducing power of all samples was concentration dependent. In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts. It was observed that the DPPH and ABTS radical scavenging activities were positively correlated to the concentration of the extract. The results suggested that antioxidant activity could be due to polyphenols, but mainly by different molecules or substances present in the extracts. Overall, the fruiting body of P. ostreatus showed the best results and the possibility of continuing to investigate its functional properties of this fungus is opened. This is the first report where the antioxidant activity of P. ostreatus in different growth stage was reported. PMID:27462314

  19. Identification of Pythium carolinianum causing 'root rot' of cotton in Egypt and its possible biological control by Pseudomonas fluorescens.

    PubMed

    Abdelzaher, H M; Elnaghy, M A

    1998-01-01

    A severe root rot disease of cotton caused by Pythium carolinianum was diagnosed in a cotton field in Beni-Musa village, 20 km southwest of El-Minia city, Egypt, during the summer of 1996. This was the first reported isolation of this fungus in Egypt. In the light of the importance of the cotton industry in Egypt, research was initiated to develop a biocontrol agent against Pythium carolinianum. In vitro agar plate technique identified a Pseudomonas fluorescens strain that was highly antagonist to Pythium carolinianum. Subsequent plant growth experiments establish that substantial disease control could be obtained by applying Pseudomonas fluorescens to the soil. Optimal control was obtained by mixing the bacteria with the soil rather than by dipping the cotton roots in the bacterial suspension immediately before planting. Disease was more severe in autoclaved soil than in nonsterile soil.

  20. Preliminary investigations into the bioconversion of gamma irradiated agricultural waste by Pleurotus spp.

    NASA Astrophysics Data System (ADS)

    Gbedemah, C. M.; Obodai, M.; Sawyerr, L. C.

    1998-06-01

    The application of gamma irradiation for pretreatment of lignocellulosic materials for their hydrolysis and to increase their digestibility for rumen animal have been reported in the literature. Gamma irradiation of corn stover in combination with sodium hydroxide for bioconversion of polysaccharide into protein by Pleurotus spp has also been reported. In this study experiments were designed to find out whether gamma radiation could serve both as a decontaminating agent as well as hydrolytic agent of sawdust for the bioconversion of four varieties of Pleurotus spp. Preliminary results indicate that a dose of 20kGy of gamma irradiation increase the yield of Pleurotus eous var ET-8 whilst decreasing the yield of other varieties.

  1. [Biochemical basis of tolerance to osmotic stress in phytopathogenic fungus: The case of Macrophomina phaseolina (Tassi) Goid.

    PubMed

    Martínez-Villarreal, Rodolfo; Garza-Romero, Tamar S; Moreno-Medina, Víctor R; Hernández-Delgado, Sanjuana; Mayek-Pérez, Netzahualcoyotl

    Fungus Macrophomina phaseolina (Tassi) Goid. is the causative agent of charcoal rot disease which causes significant yield losses in major crops such as maize, sorghum, soybean and common beans in Mexico. This fungus is a facultative parasite which shows broad ability to adapt itself to stressed environments where water deficits and/or high temperature stresses commonly occur. These environmental conditions are common for most cultivable lands throughout Mexico. Here we describe some basic facts related to the etiology and epidemiology of the fungus as well as to the importance of responses to stressed environments, particularly to water deficits, based on morphology and growth traits, as well as on physiology, biochemistry and pathogenicity of fungus M. phaseolina. To conclude, we show some perspectives related to future research into the genus, which emphasize the increasing need to improve the knowledge based on the application of both traditional and biotechnological tools in order to elucidate the mechanisms of resistance to environmental stress which can be extrapolated to other useful organisms to man.

  2. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    SciTech Connect

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  3. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    PubMed

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

  4. Feeding and maturation by soybean looper (Lepidoptera: Noctuidae) larvae on soybean affected by weed, fungus, and nematode pests.

    PubMed

    Carter-Wientjes, Carol H; Russin, John S; Boethel, David J; Griffin, James L; McGawley, Eduward C

    2004-02-01

    Feeding and maturation by the soybean looper, Pseudoplusia includens (Walker) (Lepidoptera: Noctuidae), were investigated in a 2-yr study on 'Davis' soybean, Glycine max (L.) Merr., grown alone and combined with the weed hemp sesbania, Sesbania exaltata (Raf.) Rybd. ex. A. W. Hill, the root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood, and the charcoal rot fungus, Macrophomina phaseolina (Tassi) Goid. Of the three pests, hemp sesbania had the greatest effects on plant growth and insect feeding and maturation. When fed foliage from soybean stressed by hemp sesbania, soybean looper larvae remained longer in feeding stages, consumed more foliage, and showed altered weight gain compared with larvae fed control foliage. Results suggest that nutrient (s) critical for proper development of larvae may have been limited in weed-stressed soybean foliage. Less dramatic results were observed when larvae fed on foliage from soybean with roots colonized by the charcoal rot fungus. Such larvae consumed more foliage, weighed more, and showed a slight increase in larval feeding period, but only in 1 yr of the study. Colonization of soybean roots by the root-knot nematode had no consistent effects on either the soybean host or insect.

  5. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  6. Decolourisation of mushroom farm wastewater by Pleurotus ostreatus.

    PubMed

    Rodríguez Pérez, Suyén; García Oduardo, Nora; Bermúdez Savón, Rosa C; Fernández Boizán, Maikel; Augur, Christopher

    2008-07-01

    Mushroom production on coffee pulp as substrate generates an intense black residual liquid, which requires suitable treatment. In the present study, Pleurotus ostreatus growth in wastewater from mushroom farm was evaluated as a potential biological treatment process for decolourisation as well as to obtain biomass (liquid inoculum). Culture medium components affecting mycelial growth were determined, evaluating colour removal. Laccase activity was monitored during the process. P. ostreatus was able to grow in non diluted WCP. Highest biomass yield was obtained when glucose (10 g/l) was added. The addition of this carbon source was necessary for efficient decolourisation. Agitation of the culture improved biodegradation of WCP as well as fungal biomass production. Laccase and manganese-independent peroxidase activities were detected during fungal treatment of the WCP by P. ostreatus CCEBI 3024. The laccase enzyme showed good correlation with colour loss. Both wastewater colour and pollution load (as chemical oxygen demand) decreased more than 50% after 10 days of culture. Phenols were reduced by 92%.

  7. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus

    SciTech Connect

    Bressa, G.; Cima, L.; Costa, P.

    1988-10-01

    The possibility of utilizing industrial, urban, and other wastes for the growth of a product which is directly edible by humans is fascinating. However, it is possible that many wastes containing toxic substances, for example, heavy metals, could reach the food chain and produce adverse effects on human health. To this end, we studied the possibility of bioaccumulation of Hg by a mushroom, Pleurotus ostreatus, grown on an artificial compost containing this element. Concentrations of 0.05, 0.1, and 0.2 mg/kg of Hg as Hg(NO/sub 3/)/sub 2/.H/sub 2/O were added to three groups of the same compost, successively inoculated with the mycelia of the mushroom. Higher concentrations strongly reduced the growth of the mycelia and therefore were not utilized. The concentrations of Hg in the substrate and in the mushroom were evaluated by AAS. The range of the accumulation factor was found to be 65-140, i.e., very marked. This finding suggests that the cultivation of P. ostreatus on substrates containing Hg from industrial and urban wastes could involve possible risks to human health.

  8. Hypolipidemic Activities of Dietary Pleurotus ostreatus in Hypercholesterolemic Rats

    PubMed Central

    Alam, Nuhu; Yoon, Ki Nam; Lee, Tae Soo

    2011-01-01

    This work was conducted to investigate dietary supplementation of oyster mushroom fruiting bodies on biochemical and histological changes in hyper and normocholesterolemic rats. Six-week old female Sprague-Dawley albino rats were divided into three groups of 10 rats each. Feeding a diet containing a 5% powder of Pleurotus ostreatus fruiting bodies to hypercholesterolemic rats reduced plasma total cholesterol, triglyceride, low-density lipoprotein (LDL), total lipid, phospholipids, and LDL/high-density lipoprotein ratio by 30.18, 52.75, 59.62, 34.15, 23.89, and 50%, respectively. Feeding oyster mushrooms also significantly reduced body weight in hypercholesterolemic rats. However, it had no adverse effects on plasma albumin, total bilirubin, direct bilirubin, creatinin, blood urea nitrogen, uric acid, glucose, total protein, calcium, sodium, potassium, chloride, inorganic phosphate, magnesium, or enzyme profiles. Feeding mushroom increased total lipid and cholesterol excretion in feces. The plasma lipoprotein fraction, separated by agarose gel electrophoresis, indicated that P. ostreatus significantly reduced plasma β and pre-β-lipoprotein but increased α-lipoprotein. A histological study of hepatic cells by conventional hematoxylin-eosin and oil red O staining revealed normal findings for mushroom-fed hypercholesterolemic rats. These results suggest that a 5% P. ostreatus diet supplement provided health benefits by acting on the atherogenic lipid profile in hypercholesterolemic rats. PMID:22783072

  9. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  10. Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus.

    PubMed

    Salvachúa, Davinia; Prieto, Alicia; Vaquero, María Eugenia; Martínez, Ángel T; Martínez, María Jesús

    2013-03-01

    Irpex lacteus is a white-rot fungus capable of increasing sugar recovery from wheat straw; however, in order to incorporate biopretreatment in bioethanol production, some process specifications need to be optimized. With this objective, I. lacteus was grown on different liquid culture media for use as inoculums. Additionally, the effect of wheat straw particle size, moisture content, organic and inorganic supplementations, and mild alkali washing during solid-state fermentation (SSF) on sugar yield were investigated. Wheat thin stillage was the best medium for producing inoculums. Supplementation of wheat straw with 0.3mM Mn(II) during SSF resulted in glucose yields of 68% as compared to yields of 62% and 33% for cultures grown without supplementation or on untreated raw material, respectively after 21 days. Lignin loss, wheat straw digestibility, peroxidase activity, and fungal biomass were also correlated with sugar yields in the search for biopretreatment efficiency indicators.

  11. Repression of hla by rot is dependent on sae in Staphylococcus aureus.

    PubMed

    Li, Dongmei; Cheung, Ambrose

    2008-03-01

    The regulatory locus sae is a two-component system in Staphylococcus aureus that regulates many important virulence factors, including alpha-toxin (encoded by hla) at the transcriptional level. The SarA homologs Rot and SarT were previously shown to be repressors of hla in selected S. aureus backgrounds. To delineate the interaction of rot and sae and the contribution of sarT to hla expression, an assortment of rot and sae isogenic single mutants, a rot sae double mutant, and a rot sae sarT markerless triple mutant were constructed from wild-type strain COL. Using Northern blot analysis and transcriptional reporter gene green fluorescent protein, fusion, and phenotypic assays, we found that the repression of hla by rot is dependent on sae. A rot sae sarT triple mutant was not able to rescue the hla defect of the rot sae double mutant. Among the three sae promoters, the distal sae P3 promoter is the strongest in vitro. Interestingly, the sae P3 promoter activities correlate with hla expression in rot, rot sae, and rot sae sarT mutants of COL. Transcriptional study has also shown that rot repressed sae, especially at the sae P3 promoter. Collectively, our data implicated the importance of sae in the rot-mediated repression of hla in S. aureus.

  12. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH.

    PubMed

    Fernández-Fueyo, Elena; Castanera, Raul; Ruiz-Dueñas, Francisco J; López-Lucendo, María F; Ramírez, Lucía; Pisabarro, Antonio G; Martínez, Angel T

    2014-11-01

    Pleurotus ostreatus is an important edible mushroom and a model lignin degrading organism, whose genome contains nine genes of ligninolytic peroxidases, characteristic of white-rot fungi. These genes encode six manganese peroxidase (MnP) and three versatile peroxidase (VP) isoenzymes. Using liquid chromatography coupled to tandem mass spectrometry, secretion of four of these peroxidase isoenzymes (VP1, VP2, MnP2 and MnP6) was confirmed when P. ostreatus grows in a lignocellulose medium at 25°C (three more isoenzymes were identified by only one unique peptide). Then, the effect of environmental parameters on the expression of the above nine genes was studied by reverse transcription-quantitative PCR by changing the incubation temperature and medium pH of P. ostreatus cultures pre-grown under the above conditions (using specific primers and two reference genes for result normalization). The cultures maintained at 25°C (without pH adjustment) provided the highest levels of peroxidase transcripts and the highest total activity on Mn(2+) (a substrate of both MnP and VP) and Reactive Black 5 (a VP specific substrate). The global analysis of the expression patterns divides peroxidase genes into three main groups according to the level of expression at optimal conditions (vp1/mnp3>vp2/vp3/mnp1/mnp2/mnp6>mnp4/mnp5). Decreasing or increasing the incubation temperature (to 10°C or 37°C) and adjusting the culture pH to acidic or alkaline conditions (pH 3 and 8) generally led to downregulation of most of the peroxidase genes (and decrease of the enzymatic activity), as shown when the transcription levels were referred to those found in the cultures maintained at the initial conditions. Temperature modification produced less dramatic effects than pH modification, with most genes being downregulated during the whole 10°C treatment, while many of them were alternatively upregulated (often 6h after the thermal shock) and downregulated (12h) at 37°C. Interestingly, mnp4 and

  13. Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion

    PubMed Central

    Gaskell, Jill; Blanchette, Robert A.; Stewart, Philip E.; BonDurant, Sandra Splinter; Adams, Marie; Sabat, Grzegorz; Kersten, Phil

    2016-01-01

    ABSTRACT Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of this process, we have examined the transcriptome and secretome of Wolfiporia cocos when cultivated on media containing glucose, purified crystalline cellulose, aspen (Populus grandidentata), or lodgepole pine (Pinus contorta) as the sole carbon source. Compared to the results obtained with glucose, 30, 183, and 207 genes exhibited 4-fold increases in transcript levels in cellulose, aspen, and lodgepole pine, respectively. Mass spectrometry identified peptides corresponding to 64 glycoside hydrolase (GH) proteins, and of these, 17 corresponded to transcripts upregulated on one or both woody substrates. Most of these genes were broadly categorized as hemicellulases or chitinases. Consistent with an important role for hydroxyl radical in cellulose depolymerization, high transcript levels and upregulation were observed for genes involved in iron homeostasis, iron reduction, and extracellular peroxide generation. These patterns of regulation differ markedly from those of the closely related brown rot fungus Postia placenta and expand the number of enzymes potentially involved in the oxidative depolymerization of cellulose. IMPORTANCE The decomposition of wood is an essential component of nutrient cycling in forest ecosystems. Few microbes have the capacity to efficiently degrade woody substrates, and the mechanism(s) is poorly understood. Toward a better understanding of these processes, we show that when grown on wood as a sole carbon source the brown rot fungus W. cocos expresses a unique repertoire of genes involved in oxidative and hydrolytic conversions of cell walls. PMID:27107121

  14. Growth and production of laccases by the ligninolytic fungi, Pleurotus ostreatus and Botryosphaeria rhodina , cultured on basal medium containing the herbicide, Scepter (imazaquin).

    PubMed

    Rezende, Maria I; Barbosa, Aneli M; Vasconcelos, Ana-Flora D; Haddad, Renata; Dekker, Robert F H

    2005-01-01

    The herbicide, Scepter, whose active principle is imazaquin, is commonly used in soybean farming to combat wide-leaf weeds. The basidiomycete, Pleurotus ostreatus , and the ascomycete, Botryosphaeria rhodina , were evaluated for their growth and laccase production when cultured on basal media containing Scepter. Both fungi could grow on the herbicide when cultivated in solid and submerged liquid culture in the presence of Scepter at concentrations of 0-6% (v/v) for P. ostreatus , and up to 0-50% (v/v) for B. rhodina , and in each case produced laccases when assayed against ABTS [2,2(1)-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] and 2,6-dimethoxyphenol. P . ostreatus could tolerate up to 6% of Scepter before it became toxic to the fungus, while in the case of B. rhodina , 50% (v/v) Scepter was the highest amount that supported grow, and laccase activity was detectable up to 25% (v/v). An inverse relationship existed between the level of Scepter in the culture medium that supported fungal growth and laccase production. Analysis of the results showed that the fungi studied presented different behaviour towards Scepter in the culture environment.

  15. Novel scheme for biosynthesis of aryl metabolites from L-phenylalanine in the fungus Bjerkandera adusta.

    PubMed

    Lapadatescu, C; Giniès, C; Le Quéré, J L; Bonnarme, P

    2000-04-01

    Aryl metabolite biosynthesis was studied in the white rot fungus Bjerkandera adusta cultivated in a liquid medium supplemented with L-phenylalanine. Aromatic compounds were analyzed by gas chromatography-mass spectrometry following addition of labelled precursors ((14)C- and (13)C-labelled L-phenylalanine), which did not interfere with fungal metabolism. The major aromatic compounds identified were benzyl alcohol, benzaldehyde (bitter almond aroma), and benzoic acid. Hydroxy- and methoxybenzylic compounds (alcohols, aldehydes, and acids) were also found in fungal cultures. Intracellular enzymatic activities (phenylalanine ammonia lyase, aryl-alcohol oxidase, aryl-alcohol dehydrogenase, aryl-aldehyde dehydrogenase, lignin peroxidase) and extracellular enzymatic activities (aryl-alcohol oxidase, lignin peroxidase), as well as aromatic compounds, were detected in B. adusta cultures. Metabolite formation required de novo protein biosynthesis. Our results show that L-phenylalanine was deaminated to trans-cinnamic acid by a phenylalanine ammonia lyase and trans-cinnamic acid was in turn converted to aromatic acids (phenylpyruvic, phenylacetic, mandelic, and benzoylformic acids); benzaldehyde was a metabolic intermediate. These acids were transformed into benzaldehyde, benzyl alcohol, and benzoic acid. Our findings support the hypothesis that all of these compounds are intermediates in the biosynthetic pathway from L-phenylalanine to aryl metabolites. Additionally, trans-cinnamic acid can also be transformed via beta-oxidation to benzoic acid. This was confirmed by the presence of acetophenone as a beta-oxidation degradation intermediate. To our knowledge, this is the first time that a beta-oxidation sequence leading to benzoic acid synthesis has been found in a white rot fungus. A novel metabolic scheme for biosynthesis of aryl metabolites from L-phenylalanine is proposed.

  16. Biodegradation of chestnut shell and lignin-modifying enzymes production by the white-rot fungi Dichomitus squalens, Phlebia radiata.

    PubMed

    Dong, Ya-Chen; Dai, Yi-Ning; Xu, Teng-Yang; Cai, Jin; Chen, Qi-He

    2014-05-01

    As a discarded lignocellulosic biomass, chestnut shell is of great potential economic value, thus a sustainable strategy is needed and valuable for utilization of this resource. Herein, the feasibility of biological processes of chestnut shell with Dichomitus squalens, Phlebia radiata and their co-cultivation for lignin-modifying enzymes (LMEs) production and biodegradation of this lignocellulosic biomass was investigated under submerged cultivation. The treatment with D. squalens alone at 12 days gained the highest laccase activity (9.42 ± 0.73 U mg(-1)). Combined with the data of laccase and manganese peroxidase, oxalate and H2O2 were found to participate in chestnut shell degradation, accompanied by a rapid consumption of reducing sugar. Furthermore, specific surface area of chestnut shell was increased by 77.6-114.1 % with the selected fungi, and total pore volume was improved by 90.2 % with D. squalens. Meanwhile, the surface morphology was observably modified by this fungus. Overall, D. squalens was considered as a suitable fungus for degradation of chestnut shell and laccase production. The presence of LMEs, H2O2 and oxalate provided more understanding for decomposition of chestnut shell by the white-rot fungi.

  17. Detection of double stranded RNA in phytopathogenic Macrophomina phaseolina causing charcoal rot in Cyamopsis tetragonoloba.

    PubMed

    Arora, Pooja; Dilbaghi, Neeraj; Chaudhury, Ashok

    2012-03-01

    One hundred one isolates of Macrophomina phaseolina from various hosts and eco-geographical locations were employed for elucidating relationships among genetic diversity and virulence. Highly pathogenic, moderately pathogenic, and hypovirulent cluster bean specific isolates were identified. In order to correlate respective phenotypes of plant pathogenic fungus multiple and complex patterns of dsRNA elements were analyzed. Double-stranded ribonucleic acids (dsRNA) are ubiquitous in all major groups and most of them have vast potential as biological control agents for fungi. Rate of virulence and its further association could ascertain by host plant and their fungal genotypes. Variability of the fungal genotypes decides the link between the complexity of dsRNA with different variants and the change in virulence pattern. Double-stranded RNA was identified in approximately 21.7% of M. phaseolina isolates from charcoal rot infected cluster bean varieties. After recurrent laboratory transfer on culture media, the preponderance of the isolates harboring dsRNAs developed degenerate culture phenotypes and showed reduced virulence (hypovirulence) to cluster bean. Macrophomina has successfully showed diversified and reproducible banding profile in dsRNA containing/free isolates. This is the first report of hypovirulence and detection of dsRNA in Macrophomina phaseolina isolates of cluster bean origin.

  18. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi.

    PubMed Central

    Field, J A; de Jong, E; Feijoo Costa, G; de Bont, J A

    1992-01-01

    Eight rapid Poly R-478 dye-decolorizing isolates from The Netherlands were screened in this study for the biodegradation of polycyclic aromatic hydrocarbons (PAH) supplied at 10 mg liter(-1). Several well-known ligninolytic culture collection strains, Phanerochaete chrysosporium BKM-F-1767, Trametes versicolor Paprican 52, and Bjerkandera adusta CBS 595.78 were tested in parallel. All of the strains significantly removed anthracene, and nine of the strains significantly removed benzo(a)pyrene beyond the limited losses observed in sterile liquid and HgCl2-poisoned fungus controls. One of the new isolates, Bjerkandera sp. strain Bos 55, was the best degrader of both anthracene and benzo(a)pyrene, removing 99.2 and 83.1% of these compounds after 28 days, respectively. Half of the strains, exemplified by strains of the genera Bjerkandera and Phanerochaete, converted anthracene to anthraquinone, which was found to be a dead-end metabolite, in high yields. The extracellular fluids of selected strains were shown to be implicated in this conversion. In contrast, four Trametes strains removed anthracene without significant accumulation of the quinone. The ability of Trametes strains to degrade anthraquinone was confirmed in this study. None of the strains accumulated PAH quinones during benzo(a)pyrene degradation. Biodegradation of PAH by the various strains was highly correlated to the rate by which they decolorized Poly R-478 dye, demonstrating that ligninolytic indicators are useful in screening for promising PAH-degrading white rot fungal strains. PMID:1637159

  19. Jasmonic acid and salicylic acid inhibit growth of three sugarbeet storage rot pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage rots contribute to postharvest losses by consuming sucrose and increasing carbohydrate impurities that increase sugar loss to molasses during processing. They also increase root respiration rate, which causes additional sucrose loss and contributes to pile warming. Currently, storage rots ...

  20. Control of storage rot by induction of plant defense mechanisms using jasmonic acid and salicylic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage rots contribute to sugarbeet postharvest losses by consuming sucrose and producing carbohydrate impurities that increase sugar loss to molasses. Presently, storage rots are controlled by cooling storage piles. This method of control, however, requires favorable weather conditions for stora...

  1. [Studies on genus Pleurotus. VIII. Interaction between mycelial growth and yield].

    PubMed

    Salmones, D; Gaitán-Hernández, R; Pérez, R; Guzmán, G

    1997-12-01

    This project studies the relationship between mycelial growth rate and production of basidiomata of 19 Pleurotus strains. Firstly, monosporic cultures were isolated of five strains from the following species: Pleurotus djamor (3), Pleurotus ostreatus (1) and Pleurotus pulmonarius (1). These were self-crossed in order to obtain 25 infraspecific dikaryons from which their mycelial growth rate was estimated. The parent strains and the 14 fastest growing crosses were cultivated in the pilot plant on barley straw with the following data recorded: days of incubation, primordia initiation, number of harvests, biological efficiency (BE), production rates (PR) and size of the basidiomes. The BE's fluctuated between 16.8 to 75.6% and the PR's between 0.34 to 1.68%. Most of the basidiomata presented a pileus diameter of 5-15 cm. With the exception of one cross with P. djamor, no increase was observed in the productivity and size of the carphophores of the crosses with respect to the parent strains, suggesting that the rapid mycelial growth rate of the strains was not reflected in the development of the fruiting bodies.

  2. A development and an improvement of selectable markers in Pleurotus ostreatus transformation.

    PubMed

    Matsunaga, Yukari; Ando, Megumi; Izumitsu, Kosuke; Suzuki, Kazumi; Honda, Yoichi; Irie, Toshikazu

    2017-03-01

    Pleurotus ostreatus was transformed using the nourseothricin-resistant gene for the first time. The transformation efficiency was 1.3±0.6transformants/μg plasmid DNA. In addition, the transformation efficiency of the bialaphos-resistant gene was increased to 26.7±11.5transformants/μg plasmid DNA.

  3. Reaction of Cauliflower Genotypes to Black Rot of Crucifers.

    PubMed

    da Silva, Lincon Rafael; da Silva, Renan César Dias; Cardoso, Atalita Francis; de Mello Pelá, Gláucia; Carvalho, Daniel Diego Costa

    2015-06-01

    This study aimed to evaluate six cauliflower genotypes regarding their resistance to black rot and their production performance. To do so, it was conducted two field experiments in Ipameri, Goiás, Brazil, in 2012 and 2013. It was used a randomized block design, with four replications (total of 24 plots). Each plot consisted of three planting lines 2.5 m long (six plants/line), spaced 1.0 m apart, for a total area of 7.5 m(2). Evaluations of black rot severity were performed at 45 days after transplanting, this is, 75 days after sowing (DAS), and yield evaluations at 90 to 105 DAS. The Verona 184 genotype was the most resistant to black rot, showing 1.87 and 2.25% of leaf area covered by black rot symptom (LACBRS) in 2012 and 2013. However, it was not among the most productive materials. The yield of the genotypes varied between 15.14 and 25.83 t/ha in both years, Lisvera F1 (21.78 and 24.60 t/ha) and Cindy (19.95 and 23.56 t/ha) being the most productive. However, Lisvera F1 showed 6.37 and 9.37% of LACBRS and Cindy showed 14.25 and 14.87% of LACBRS in 2012 and 2013, being both considered as tolerant to black rot.

  4. Reaction of Cauliflower Genotypes to Black Rot of Crucifers

    PubMed Central

    da Silva, Lincon Rafael; da Silva, Renan César Dias; Cardoso, Atalita Francis; de Mello Pelá, Gláucia; Carvalho, Daniel Diego Costa

    2015-01-01

    This study aimed to evaluate six cauliflower genotypes regarding their resistance to black rot and their production performance. To do so, it was conducted two field experiments in Ipameri, Goiás, Brazil, in 2012 and 2013. It was used a randomized block design, with four replications (total of 24 plots). Each plot consisted of three planting lines 2.5 m long (six plants/line), spaced 1.0 m apart, for a total area of 7.5 m2. Evaluations of black rot severity were performed at 45 days after transplanting, this is, 75 days after sowing (DAS), and yield evaluations at 90 to 105 DAS. The Verona 184 genotype was the most resistant to black rot, showing 1.87 and 2.25% of leaf area covered by black rot symptom (LACBRS) in 2012 and 2013. However, it was not among the most productive materials. The yield of the genotypes varied between 15.14 and 25.83 t/ha in both years, Lisvera F1 (21.78 and 24.60 t/ha) and Cindy (19.95 and 23.56 t/ha) being the most productive. However, Lisvera F1 showed 6.37 and 9.37% of LACBRS and Cindy showed 14.25 and 14.87% of LACBRS in 2012 and 2013, being both considered as tolerant to black rot. PMID:26060437

  5. Persistence of Gliocephalotrichum spp. causing fruit rot of rambutan (Nephelium lappaceum L.) in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Worldwide, fruit rot of rambutan is an important problem that limits the storage, marketing and long-distance transportation of the fruit. A complex of pathogens has been reported to cause fruit rot of rambutan and significant post-harvest economic losses. During 2009 and 2011 rambutan fruit rot was...

  6. Biological Control of Phacidiopycnis Rot in ‘d’Anjou’ Pears

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phacidiopycnis rot, caused by Phacidiopycnis piri, is a recently reported postharvest fruit rot disease of pears (Pyrus) in the U.S. and a major disease of ‘d’Anjou’ pears grown in Washington State. Phacidiopycnis rot can originate from infection of wounds on the fruit. In this study, two biocontrol...

  7. New source of bacterial soft rot resistance in wild potato (Solanum chacoense) tubers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial soft rot caused by Pectobacterium and Dickeya species can cause major losses to the potato (Solanum tuberosum L.) industry, mostly due to tuber rot in storage. There are few germplasm resources for soft rot resistance breeding. Here, we introduce a resistant diploid wild potato relative, M...

  8. Co-cultivation of mutant Penicillium oxalicum SAU(E)-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation.

    PubMed

    Dwivedi, Pallavi; Vivekanand, V; Pareek, Nidhi; Sharma, Amit; Singh, Rajesh P

    2011-10-01

    Co-cultivation of mutant Penicillium oxalicum SAU(E)-3.510 and Pleurotus ostreatus MTCC 1804 was evaluated for the production of xylanase-laccase mixture under solid-state fermentation (SSF) condition. Growth compatibility between mutant P. oxalicum SAU(E)-3.510 and white rot fungi (P. ostreatus MTCC 1804, Trametes hirsuta MTCC 136 and Pycnoporus sp. MTCC 137) was analyzed by growing them on potato dextrose agar plate. Extracellular enzyme activities were determined spectrophotometrically. Under derived conditions, paired culturing of mutant P. oxalicum SAU(E)-3.510 and P. ostreatus MTCC 1804 resulted in 58% and 33% higher levels of xylanase and laccase production, respectively. A combination of sugarcane bagasse and black gram husk in a ratio of 3:1 was found to be the most ideal solid substrate and support for fungal colonization and enzyme production during co-cultivation. Maximum levels of xylanase (8205.31 ± 168.31 IU g(-1)) and laccase (375.53 ± 34.17 IU g(-1)) during SSF were obtained by using 4 g of solid support with 80% of moisture content. Furthermore, expressions of both xylanase and laccase were characterized during mixed culture by zymogram analysis. Improved levels of xylanase and laccase biosynthesis were achieved by co-culturing the mutant P. oxalicum SAU(E)-3.510 and P. ostreatus MTCC 1804. This may be because of efficient substrate utilization as compared to their respective monocultures in the presence of lignin degradation compounds because of synergistic action of xylanase and laccase. Understanding and developing the process of co-cultivation appears productive for the development of mixed enzyme preparation with tremendous potential for biobleaching.

  9. Olive mill wastewater biodegradation potential of white-rot fungi--Mode of action of fungal culture extracts and effects of ligninolytic enzymes.

    PubMed

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Merhautová, Věra; Zervakis, Georgios I

    2015-01-01

    Forty-nine white-rot strains belonging to 38 species of Basidiomycota were evaluated for olive-mill wastewater (OMW) degradation. Almost all fungi caused high total phenolics (>60%) and color (⩽ 70%) reduction, while COD and phytotoxicity decreased to a lesser extent. Culture extracts from selected Agrocybe cylindracea, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor strains showed non-altered physicochemical and enzymatic activity profiles when applied to raw OMW in the presence or absence of commercial catalase, indicating no interaction of the latter with fungal enzymes and no competition for H2O2. Hydrogen peroxide's addition resulted in drastic OMW's decolorization, with no effect on phenolic content, suggesting that oxidation affects colored components, but not necessarily phenolics. When fungal extracts were heat-treated, no phenolics decrease was observed demonstrating thus their enzymatic rather than physicochemical oxidation. Laccases added to OMW were reversibly inhibited by the effluent's high phenolic load, while peroxidases were stable and active during the entire process.

  10. Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.

    PubMed

    Scruggs, A C; Quesada-Ocampo, L M

    2016-08-01

    Sweetpotato production in the United States is limited by several postharvest diseases, and one of the most common is Fusarium root rot. Although Fusarium solani is believed to be the primary causal agent of disease, numerous other Fusarium spp. have been reported to infect sweetpotato. However, the diversity of Fusarium spp. infecting sweetpotato in North Carolina is unknown. In addition, the lack of labeled and effective fungicides for control of Fusarium root rot in sweetpotato creates the need for integrated strategies to control disease. Nonetheless, epidemiological factors that promote Fusarium root rot in sweetpotato remain unexplored. A survey of Fusarium spp. infecting sweetpotato in North Carolina identified six species contributing to disease, with F. solani as the primary causal agent. The effects of storage temperature (13, 18, 23, 29, and 35°C), relative humidity (80, 90, and 100%), and initial inoculum level (3-, 5-, and 7-mm-diameter mycelia plug) were examined for progression of Fusarium root rot caused by F. solani and F. proliferatum on 'Covington' sweetpotato. Fusarium root rot was significantly reduced (P < 0.05) at lower temperatures (13°C), low relative humidity levels (80%), and low initial inoculum levels for both pathogens. Sporulation of F. proliferatum was also reduced under the same conditions. Qualitative mycotoxin analysis of roots infected with one of five Fusarium spp. revealed the production of fumonisin B1 by F. proliferatum when infecting sweetpotato. This study is a step toward characterizing the etiology and epidemiology of Fusarium root rot in sweetpotato, which allows for improved disease management recommendations to limit postharvest losses to this disease.

  11. Identification of soil-borne pathogens in a common bean root rot nursery in Isabela, Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited research has been completed on the root rot complex of the common bean (Phaseolus vulgaris L.) in the Caribbean, while yield losses of over 50% due to root rot disease have been reported worldwide. In this study, the predominant root rot pathogens in a 40-year old common bean root rot nurser...

  12. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study.

    PubMed

    Byss, Marius; Elhottová, Dana; Tříska, Jan; Baldrian, Petr

    2008-11-01

    The aim of this study was to determine the efficacy of selected basidiomycetes in the removing of polycyclic aromatic hydrocarbons (PAH) from the creosote-contaminated soil. Fungi Pleurotus ostreatus and Irpex lacteus were supplemented with creosote-contaminated (50-200 mg kg(-1) PAH) soil originating from a wood-preserving plant and incubated at 15 °C for 120 d. Either fungus degraded PAH with 4-6 aromatic rings more efficiently than the microbial community present initially in the soil. PAH removal was higher in P. ostreatus treatments (55-67%) than in I. lacteus treatments (27-36%) in general. P. ostreatus (respectively, I. lacteus) removed 86-96% (47-59%) of 2-rings PAH, 63-72% (33-45%) of 3-rings PAH, 32-49% (9-14%) of 4-rings PAH and 31-38% (11-13%) of 5-6-rings PAH. MIS (Microbial Identification System) Sherlock analysis of the bacterial community determined the presence of dominant Gram-negative bacteria (G-) Pseudomonas in the inoculated soil before the application of fungi. Complex soil microbial community was characterized by phospholipid fatty acids analysis followed by GC-MS/MS. Either fungus induced the decrease of bacterial biomass (G- bacteria in particular), but the soil microbial community was influenced by P. ostreatus in a different way than by I. lacteus. The bacterial community was stressed more by the presence of I. lacteus than P. ostreatus (as proved by the ratio of the fungal/bacterial markers and by the ratio of trans/cis mono-unsaturated fatty acids). Moreover, P. ostreatus stimulated the growth of Gram-positive bacteria (G+), especially actinobacteria and these results indicate the potential of the positive synergistic interaction of this fungus and actinobacteria in creosote biodegradation.

  13. Heritability of fruit rot resistance in American cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot is the primary threat to cranberry production in the northeastern U.S., and increasingly in other growing regions. Efficacy of chemical control is variable since the disease is caused by a complex of pathogenic fungi. In addition, cranberries are often grown in environmentally sensitive ar...

  14. Root rots of common and tepary beans in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rots are a disease complex affecting common bean and can be severe in bean growing areas in the tropics and subtropics. The presence of several pathogens makes it difficult to breed for resistance because of the synergistic effect of the pathogens in the host and the interaction of soil factors...

  15. Botanicals to control soft rot bacteria of potato.

    PubMed

    Rahman, M M; Khan, A A; Ali, M E; Mian, I H; Akanda, A M; Abd Hamid, S B

    2012-01-01

    Extracts from eleven different plant species such as jute (Corchorus capsularis L.), cheerota (Swertia chiraita Ham.), chatim (Alstonia scholaris L.), mander (Erythrina variegata), bael (Aegle marmelos L.), marigold (Tagetes erecta), onion (Allium cepa), garlic (Allium sativum L.), neem (Azadiracta indica), lime (Citrus aurantifolia), and turmeric (Curcuma longa L.) were tested for antibacterial activity against potato soft rot bacteria, E. carotovora subsp. carotovora (Ecc) P-138, under in vitro and storage conditions. Previously, Ecc P-138 was identified as the most aggressive soft rot bacterium in Bangladeshi potatoes. Of the 11 different plant extracts, only extracts from dried jute leaves and cheerota significantly inhibited growth of Ecc P-138 in vitro. Finally, both plant extracts were tested to control the soft rot disease of potato tuber under storage conditions. In a 22-week storage condition, the treated potatoes were significantly more protected against the soft rot infection than those of untreated samples in terms of infection rate and weight loss. The jute leaf extracts showed more pronounced inhibitory effects on Ecc-138 growth both in in vitro and storage experiments.

  16. Botanicals to Control Soft Rot Bacteria of Potato

    PubMed Central

    Rahman, M. M.; Khan, A. A.; Ali, M. E.; Mian, I. H.; Akanda, A. M.; Abd Hamid, S. B.

    2012-01-01

    Extracts from eleven different plant species such as jute (Corchorus capsularis L.), cheerota (Swertia chiraita Ham.), chatim (Alstonia scholaris L.), mander (Erythrina variegata), bael (Aegle marmelos L.), marigold (Tagetes erecta), onion (Allium cepa), garlic (Allium sativum L.), neem (Azadiracta indica), lime (Citrus aurantifolia), and turmeric (Curcuma longa L.) were tested for antibacterial activity against potato soft rot bacteria, E. carotovora subsp. carotovora (Ecc) P-138, under in vitro and storage conditions. Previously, Ecc P-138 was identified as the most aggressive soft rot bacterium in Bangladeshi potatoes. Of the 11 different plant extracts, only extracts from dried jute leaves and cheerota significantly inhibited growth of Ecc P-138 in vitro. Finally, both plant extracts were tested to control the soft rot disease of potato tuber under storage conditions. In a 22-week storage condition, the treated potatoes were significantly more protected against the soft rot infection than those of untreated samples in terms of infection rate and weight loss. The jute leaf extracts showed more pronounced inhibitory effects on Ecc-138 growth both in in vitro and storage experiments. PMID:22701096

  17. Spatiotemporal characterization of Sclerotinia crown rot epidemics in pyrethrum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia crown rot, caused by Sclerotinia minor and S. sclerotiorum is a disease of pyrethrum in Australia that may cause substantial decline in plant density. The spatiotemporal characteristics of the disease were quantified in 14 fields spread across three growing seasons. Fitting the binary ...

  18. Factors contributing to bacterial bulb rots of onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence of bacterial rots of onion bulbs is increasing and has become a serious problem for growers. This increase is likely due to a combination of factors, such as high bacterial populations in soils and irrigation water, heavy rains flooding production fields, higher temperatures, etc. It m...

  19. Detecting cotton boll rot with an electronic nose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    South Carolina Boll Rot is an emerging disease of cotton, Gossypium hirsutum L., caused by the opportunistic bacteria, Pantoea agglomerans (Ewing and Fife). Unlike typical fungal diseases, bolls infected with P. agglomerans continue to appear normal externally, complicating early and rapid detectio...

  20. Susceptibility of highbush blueberry cultivars to Phytophthora root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora cinnamomi Rands is a ubiquitous soilborne pathogen associated with root rot in many woody perennial plant species, including highbush blueberry (Vaccinium sp.). To identify genotypes with resistance to the pathogen, cultivars and advanced selections of highbush blueberry were grown in a...

  1. Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex

    PubMed Central

    Bigirimana, Vincent de P.; Hua, Gia K. H.; Nyamangyoku, Obedi I.; Höfte, Monica

    2015-01-01

    Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed. PMID:26697031

  2. Advancing our understanding of charcoal rot in soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot (Macrophomina phaseolina (Tassi) Goid ) of soybean [Glycine max (L.) Merr.], is an important but commonly misidentified disease, and very few summary articles exist on this pathosystem. Research conducted over the last 10 years has improved our understanding of the environment conducive...

  3. Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex.

    PubMed

    Bigirimana, Vincent de P; Hua, Gia K H; Nyamangyoku, Obedi I; Höfte, Monica

    2015-01-01

    Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed.

  4. Phytophthora root rot resistance in soybean E00003

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root rot (PRR), caused by the oomycete Phytophthora sojae, is a devastating disease in soybean production. Using resistant cultivars has been suggested as the best solution for disease management. Michigan elite soybean E00003 is resistant to P. sojae and has been used as a PRR resist...

  5. Calibrating echelle spectrographs with Fabry-Pérot etalons

    NASA Astrophysics Data System (ADS)

    Bauer, F. F.; Zechmeister, M.; Reiners, A.

    2015-09-01

    Context. Over the past decades hollow-cathode lamps have been calibration standards for spectroscopic measurements. Advancing to cm/s radial velocity precisions with the next generation of instruments requires more suitable calibration sources with more lines and fewer dynamic range problems. Fabry-Pérot interferometers provide a regular and dense grid of lines and homogeneous amplitudes, which makes them good candidates for next-generation calibrators. Aims: We investigate the usefulness of Fabry-Pérot etalons in wavelength calibration, present an algorithm to incorporate the etalon spectrum in the wavelength solution, and examine potential problems. Methods: The quasi-periodic pattern of Fabry-Pérot lines was used along with a hollow-cathode lamp to anchor the numerous spectral features on an absolute scale. We tested our method with the HARPS spectrograph and compared our wavelength solution to the one derived from a laser frequency comb. Results: The combined hollow-cathode lamp/etalon calibration overcomes large distortion (50 m/s) in the wavelength solution of the HARPS data reduction software. The direct comparison to the laser frequency comb shows differences of only 10 m/s at most. Conclusions: Combining hollow-cathode lamps with Fabry-Pérot interferometers can lead to substantial improvements in the wavelength calibration of echelle spectrographs. Etalons can provide economical alternatives to the laser frequency comb, especially for smaller projects.

  6. Fusarium stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight of sugar beet can cause reductions or complete loss of seed production. The causal agent is Fusarium oxysporum. In addition, Fusarium solani has been demonstrated to cause a rot of sugar beet seed stalk, and other species have been reported associated with sugar beet fruit, but...

  7. Trichoderma rot on ‘Fallglo’ Tangerine Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In September 2009, Trichoderma rot symptoms were observed on ‘Fallglo’ fruit after 7 weeks of storage. Fourteen days prior to harvest, fruit were treated by dipping into one of four different fungicide solutions. Control fruit were dipped in tap water. After harvest, the fruit were degreening with 5...

  8. Trichoderma rot on ‘Fallglo’ Tangerine Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In September 2009, brown rot symptoms were observed on ‘Fallglo’ fruit after 7 weeks of storage. Fourteen days prior to harvest, fruit were treated by dipping into one of four different fungicide solutions. Control fruit were dipped in tap water. After harvest, the fruit were degreened with 5 ppm et...

  9. Huanglongbing increases Diplodia Stem End Rot in Citrus sinensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB), one of the most devastating diseases of citrus is caused by the a-Proteobacteria Candidatus Liberibacter. Diplodia natalensis Pole-Evans is a fungal pathogen which has been known to cause a postharvest stem-end rot of citrus, the pathogen infects citrus fruit under the calyx, an...

  10. Entomology: A Bee Farming a Fungus.

    PubMed

    Oldroyd, Benjamin P; Aanen, Duur K

    2015-11-16

    Farming is done not only by humans, but also by some ant, beetle and termite species. With the discovery of a stingless bee farming a fungus that provides benefits to its larvae, bees can be added to this list.

  11. Effectiveness of preharvest applications of fungicides on preharvest bunch rot and postharvest sour rot of ‘Redglobe’ grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postharvest sour rot of ‘Redglobe’ grapes, also called “non-Botrytis slip skin”, “breakdown disorder”, “soft tissue breakdown”, or “melting decay” has affected this cultivar worldwide. The disorder causes berries to discolor, split, lose internal structure, and decay from veraison to harvest (Camero...

  12. Production of cellulolytic enzymes by Pleurotus species on lignocellulosic wastes using novel pretreatments.

    PubMed

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K; Singh, V K

    2014-12-24

    In the present investigation three species of Pleurotus i.e. P. sajor—caju (P1), P. florida (P2) and P. flabellatus (P3) along with two lignocellulosic substrates namely paddy straw and wheat straw were selected for evaluation of production of extracellular cellulolytic enzymes. During the cultivation of three species of Pleurotus under in vivo condition, the two lignocellulosic substrates were treated with plants extracts (aqueous extracts of ashoka leaves (A) and neem oil (B)), hot water (H) and chemicals (C).Among all treatments, neem oil treated substrates supported better enzyme production followed by aqueous extract of ashoka leaves, hot water and chemical treatment. Between the two substrates paddy straw supported better enzyme production than wheat straw. P. flabellatus showed maximum activity of exoglucanase, endoglucanase and β—glucosidase followed by P. florida and P. sajor—caju.

  13. Structural elucidation of polysaccharide containing 3-O-methyl galactose from fruiting bodies of Pleurotus citrinopileatus.

    PubMed

    He, Pengfei; Zhang, Anqiang; Zhou, Saijing; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2016-11-03

    A water-soluble polysaccharide containing 3-O-methyl galactose (PCP60W) was isolated from fruiting bodies of Pleurotus citrinopileatus and purified by anion-exchange and gel column chromatography. This polysaccharide has an average molecular weight of 2.74 × 10(4) Da and its structure was elucidated using monosaccharide composition and methylation analysis combined with one- and two-dimensional (COSY, TOCSY, NOESY, HMQC and HMBC) NMR spectroscopy. PCP60W was shown to be a linear partially 3-O-methylated α-galactopyranan comprised of 6-linked galactose, 6-linked 3-O-methyl galactose and 4-linked glucose in a ratio of 3.0:1.0:0.6. This work provides additional evidence for the view that 3-O-methyl galactose is common to the genus Pleurotus.

  14. Lipid constituents of the edible mushroom, Pleurotus giganteus demonstrate anti-Candida activity.

    PubMed

    Phan, Chia-Wei; Lee, Guan-Serm; Macreadie, Ian G; Malek, Sri Nurestri Abd; Pamela, David; Sabaratnam, Vikineswary

    2013-12-01

    Different solvent extracts of Pleurotus giganteus fruiting bodies were tested for antifungal activities against Candida species responsible for human infections. The lipids extracted from the ethyl acetate fraction significantly inhibited the growth of all the Candida species tested. Analysis by GC/MS revealed lipid components such as fatty acids, fatty acid methyl esters, ergosterol, and ergosterol derivatives. The sample with high amounts of fatty acid methyl esters was the most effective antifungal agent. The samples were not cytotoxic to a mammalian cell line, mouse embryonic fibroblasts BALB/c 3T3 clone A31. To our knowledge, this is the first report of antifungal activity of the lipid components of Pleurotus giganteus against Candida species.

  15. Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs).

    PubMed

    Wibberg, Daniel; Jelonek, Lukas; Rupp, Oliver; Kröber, Magdalena; Goesmann, Alexander; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2014-01-01

    Rhizoctonia solani is a soil-borne plant pathogenic fungus of the phylum Basidiomycota. It affects a wide range of agriculturally important crops and hence is responsible for economically relevant crop losses. Transcriptome analysis of the bottom rot pathogen R. solani AG1-1B (isolate 7/3/14) by applying high-throughput sequencing and bioinformatics methods addressing Expressed Sequence Tag (EST) data interpretation provided new insights in expressed genes of this fungus. Two normalized cDNA libraries representing different cultivation conditions of the fungus were sequenced on the 454 FLX (Roche) system. Subsequent to cDNA sequence assembly and quality control, ESTs were analysed applying advanced bioinformatics methods. More than 14 000 transcript isoforms originating from approximately 10 000 predictable R. solani AG1-IB 7/3/14 genes are represented in each dataset. Comparative analyses revealed several differentially expressed genes depending on the growth conditions applied. Determinants with predicted functions in recognition processes between the fungus and the host plant were identified. Moreover, many R. solani AG1-IB ESTs were predicted to encode putative cellulose, pectin, and lignin degrading enzymes. Furthermore, genes playing a possible role in mitogen-activated protein (MAP) kinase cascades, 4-aminobutyric acid (GABA) metabolism, melanin synthesis, plant defence antagonism, phytotoxin, and mycotoxin synthesis were detected.

  16. White-rot fungal response to fresh and photolytically-weathered pyrogenic organic matter

    NASA Astrophysics Data System (ADS)

    Gibson, C. D.; Berry, T. D.; Wang, R.; Bird, J. A.; Filley, T. R.

    2013-12-01

    Pyrogenic organic matter (PyOM or biochar) is the product of the incomplete combustion of biomass. A better understanding of the microbial-mediated degradation of PyOM is critical to assess its role in soil C sequestration and to serve as an agricultural amendment. Recent studies have shown that PyOM additions can prime native soil C but results have been inconsistent, with studies reporting no effect, an increase, or decrease in C mineralization. This study investigated the ability of saprotrophic white-rot fungus, Trametes versicolor, to decompose an unaltered 'fresh' PyOM and a photo-oxidized PyOM. In addition, we measured PyOM-induced priming effects on the mineralization of malt extract agar media (MEA). Enriched (13C) Pinus banksiana-derived PyOM, produced at 450oC under N2, was added fresh and after 4 weeks exposure to 254 nm light to MEA. Vials containing the various types of media were then monitored for CO2 evolution and oxidative enzyme activity. We found that MEA C respired was stimulated (positive priming) by photolyzed PyOM and was inhibited with fresh PyOM addition (negative priming) relative to controls. Vetryl alcohol addition, a laccase production stimulant, resulted in less activity in the presence of PyOM compared with a control, indicating PyOM may disrupt enzyme induction processes. Loss of PyOM-13CO2 was 0.2% (× 0.001) for fresh PyOM and 1.2% (×0.001) for photolyzed PyOM C during 10 weeks averaged across media treatments. While MEA C mineralization decreased after fresh PyOM addition, both oxidative (laccase and manganese peroxidase) and hydrolytic (β glucosidase) enzyme production increased with fresh PyOM in the absence of veratryl alcohol. However, there was a decrease in its presence. These results suggest that the physiological response of this common wood decay fungus to PyOM is complex and responsive to enzymatic triggers but that PyOM itself can act to promote or suppress overall litter or soil decay by fungi.

  17. Draft Genome Sequences of the Onion Center Rot Pathogen Pantoea ananatis PA4 and Maize Brown Stalk Rot Pathogen P. ananatis BD442

    PubMed Central

    Weller-Stuart, Tania; Chan, Wai Yin; Venter, Stephanus N.; Smits, Theo H. M.; Duffy, Brion; Goszczynska, Teresa; Cowan, Don A.; de Maayer, Pieter

    2014-01-01

    Pantoea ananatis is an emerging phytopathogen that infects a broad spectrum of plant hosts. Here, we present the genomes of two South African isolates, P. ananatis PA4, which causes center rot of onion, and BD442, isolated from brown stalk rot of maize. PMID:25103759

  18. Polysaccharide-degrading complex produced in wood and in liquid media by the brown-rot fungus Poria placenta

    SciTech Connect

    Highley, T.L.; Wolter, K.E.; Evans, F.J.

    1981-10-01

    The polysaccharide-degrading enzymes produced by Poria placenta in decayed wood and liquid media were compared qualitatively and quantitatively. A single carbohydrate-degrading complex was isolated and purified from wood and liquid cultures that was active on both polysaccharides and glycosides. Quantitative differences in enzyme activities from decayed wood versus liquid media were observed. However, the purified extracellular carbohydrate-degrading complex isolated from decayed wood and from liquid cultures must be structurally similar because of similar isoelectric points, electrophoretic properties, and molecular sieving properties. (Refs. 22).

  19. Polysaccharide-degrading complex produced in wood and in liquid media by the brown-rot fungus Poria placenta

    SciTech Connect

    Highley, T.L.; Wolter, K.E.; Evans, F.J.

    1981-01-01

    P.placenda produced the same type of enzyme activities when grown in liquid culture with simple sugars, hemlock (Tsuga heterophylla), or Liquidambar styraciflua sawdust and inoculated in decayed L. styraciflua blocks. However, there were differences in amounts of enzyme activity produced per mg of protein from decayed wood and liquid media; beta-, alpha-galactosidase, and xylanase activities were higher in liquid culture than in extracts from decayed wood, while beta-xylosidase activities were slightly higher in extracts than in liquid culture. Despite these quantitative differences, the extracellular carbohydrolase complex from liquid culture must be structurally similar to that of decayed wood because of similar isoelectric points and electrophoretic and molecular sieving properties.

  20. The effect of heavy metal-induced oxidative stress on the enzymes in white rot fungus Phanerochaete chrysosporium.

    PubMed

    Zhang, Qihua; Zeng, Guangming; Chen, Guiqiu; Yan, Min; Chen, Anwei; Du, Jianjian; Huang, Jian; Yi, Bin; Zhou, Ying; He, Xiaoxiao; He, Yan

    2015-02-01

    Prevalence of heavy metals in the living environment causes chemical stress and reactive oxygen species (ROS) formation in Phanerochaete chrysosporium (P. chrysosporium). However, the mechanisms involved in ROS defense are still under investigation. In the present study, we evaluated the effect of lead- and cadmium-induced oxidative stress on the activities of catalase (CAT), peroxidase (POD), lignin peroxidase (LiP), and manganese peroxidase (MnP). A time-dependent change in all enzyme activities was observed following exposure to 50 μM cadmium and 25 μM lead. The lowest values were recorded at 4 h after exposure. Both cadmium and lead inhibited CAT and POD. The cytochrome P450 (CYP450) levels increased under 50-100 μM cadmium or lead exposure and decreased when heavy metal concentration was under 50 μM; this suggested that ROS is not the only factor that alters the CYP450 levels. The cadmium removal rate in the sample containing 900 μM taxifolin (inhibitor of CYP450) and 100 μM cadmium was reduced to 12.34 %, 9.73 % lower than that of 100 μM cadmium-induced sample, indicating CYP450 may play an indirect but key role in the process of clearance of heavy metals. The pH of the substrate solution decreased steadily during the incubation process.

  1. Decolorization of molasses spent wash by the white-rot fungus Flavodon flavus, isolated from a marine habitat.

    PubMed

    Raghukumar, C; Rivonkar, G

    2001-05-01

    Flavodon flavus (Klotzsch) Ryvarden, a basidiomycete (NIOCC strain 312) isolated from decomposing leaves of a sea grass, decolorized pigments in molasses spent wash (MSW) by 80% after 8 days of incubation, when used at concentrations of 10% and 50%. Decolorizing activity was also present in media prepared with half-strength seawater (equivalent to 15 ppt salinity). Decolorizing activity was seen in low-nitrogen medium, nutrient-rich medium and in sugarcane bagasse medium. The percentage decolorization of MSW was highest when glucose or sucrose was used as the carbon source in the low-nitrogen medium. The production of lignin-modifying enzymes, manganese-dependent peroxidase (MNP) and laccase decreased in a medium containing MSW. MNP production and MSW decolorization were inversely correlated, suggesting no role for MNP in MSW decolorization. The decolorization of MSW was not effective when F. flavus was immobilized in calcium alginate beads. Decolorization was achieved best in oxygenated cultures. Besides color, total phenolics and chemical oxygen demand were reduced by 50% in MSW treated with F. flavus, suggesting its potential in the bioremediation of effluents.

  2. Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungus Phanerochaete chrysosporium.

    PubMed

    Raices, M; Paifer, E; Cremata, J; Montesino, R; Ståhlberg, J; Divne, C; Szabó, I J; Henriksson, G; Johansson, G; Pettersson, G

    1995-08-07

    The cDNA of cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium has been cloned and sequenced. The 5' end was obtained by PCR amplification. The cDNA contains 2310 translated bases excluding the poly(A) tail. The deduced mature protein contains 770 amino acid residues and is preceded by a 18 residue long signal peptide. The regions of the amino acid sequence corresponding to the heme and FAD domains of CDH were identified as well as the nucleotide-binding motif, the disulfide pairing and a methionine residue chelating the heme iron. No homologous sequences were found for the heme domain, however, the FAD domain appears to be distantly related to the GMC oxidoreductase family.

  3. Use of simple sequence repeat markers for DNA fingerprinting and diversity analysis of sugarcane (Saccharum spp) cultivars resistant and susceptible to red rot.

    PubMed

    Hameed, U; Pan, Y-B; Muhammad, K; Afghan, S; Iqbal, J

    2012-05-08

    Red rod is an economically important disease of sugarcane caused by the fungus Colletotrichum falcatum. We used a simple sequence repeat (SSR)-based marker system to identify and analyze genetic relationships of red rot resistant and susceptible sugarcane cultivars grown in Pakistan. Twenty-one highly polymorphic SSR markers were used for DNA fingerprinting and genetic diversity analysis of 20 sugarcane cultivars. These SSR markers were found to be highly robust; we identified 144 alleles, with 3-11 alleles per marker and a mean of 6.8. Three SSR markers were able to identify all 20 cultivars. DNAMAN(®)-generated homology tree was used to analyze genetic diversity among these cultivars; all cultivars shared 58% or more similarity. We correlated polymorphism information content and resolving power values with marker effectiveness in the process of sugarcane cultivar identification. We concluded that a small number of SSR-derived DNA markers will allow breeders to identify red rot resistant and susceptible cultivars.

  4. Fungus-insect gall of Phlebopus portentosus.

    PubMed

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods.

  5. Application of scan line filling to leaf image segmentation of sugarcane red rot disease

    NASA Astrophysics Data System (ADS)

    Zhao, Jinhui; Liu, Muhua; Yao, Mingyin

    2009-07-01

    Red rot disease is a common disease at the seedling stage of sugarcane. In order to identify red rot disease effectively, a segmentation algorithm for leaf images of sugarcane red rot disease using scan line filling is proposed. The proposed algorithm has six stages. During the first stage, the class of green plants is separated from the class of non-green plants using the color feature of 2G-R-B. At the second stage, connected regions of the class of green plants are labeled. At the third stage, outer contours are extracted. At the fourth stage, the regions surrounded by outer contours are filled using scan line filling. At the fifth stage, the images are colorized. At the sixth stage, red rot diseased spots are extracted using the color feature. The experimental results show that this algorithm can extract red rot diseased spots effectively, and the accurate rate of image segmentation for red rot diseases is 96%.

  6. The post-harvest fruit rots of tomato (Lycopersicum esculentum) in Nigeria.

    PubMed

    Fajola, A O

    1979-01-01

    A survey of the post-harvest fruit rot diseases of tomato was conducted in five states of Nigeria. During severe infections, the diseases could cause 25% loss at harvest and 34% loss of the remaining product in transit, storage and market stalls; thus giving an overall loss of about 50% of the product. Two types of rots, soft and dry were recognised. The soft rot was found to account for about 85% and the dry rot about 15% of the overall loss. Erwinia carotovora, Rhizopus oryzae, R. stolonifer, Fusarium equiseti, F. nivale and F. oxysporum were established as the soft rot pathogens; while Aspergillus aculeatus, A. flavus, Cladosporium tenuissimum, Corynespora cassiicola, Curvularia lunata, Penicillium expansum P. multicolor and Rhizoctonia solani were established as the dry rot pathogens of tomato fruits in Nigeria.

  7. Increased delignification by white rot fungi after pressure refining Miscanthus.

    PubMed

    Baker, Paul W; Charlton, Adam; Hale, Mike D C

    2015-01-01

    Pressure refining, a pulp making process to separate fibres of lignocellulosic materials, deposits lignin granules on the surface of the fibres that could enable increased access to lignin degrading enzymes. Three different white rot fungi were grown on pressure refined (at 6 bar and 8 bar) and milled Miscanthus. Growth after 28 days showed highest biomass losses on milled Miscanthus compared to pressure refined Miscanthus. Ceriporiopsis subvermispora caused a significantly higher proportion of lignin removal when grown on 6 bar pressure refined Miscanthus compared to growth on 8 bar pressure refined Miscanthus and milled Miscanthus. RM22b followed a similar trend but Phlebiopsis gigantea SPLog6 did not. Conversely, C. subvermispora growing on pressure refined Miscanthus revealed that the proportion of cellulose increased. These results show that two of the three white rot fungi used in this study showed higher delignification on pressure refined Miscanthus than milled Miscanthus.

  8. Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

    PubMed Central

    Fragoeiro, Silvia; Bastos, Catarina

    2010-01-01

    This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered. PMID:23956663

  9. Orthogonal Fabry-Pérot sensors for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Ellwood, R.; Ogunlade, O.; Zhang, E. Z.; Beard, P. C.; Cox, B. T.

    2016-03-01

    Fabry-Pérot (FP) sensors have been used to produce in-vivo photoacoustic images of exquisite quality. However, for simplicity of construction FP sensors are produced in a planar form. Planar sensors suffer from a limited detection aperture, due to their planarity. We present a novel sensor geometry that allowed a greater field of view by placing a second sensor orthogonal to the first. This captured data from the deeper lying regions of interest and mitigated the limited view.

  10. The role of the ubiquitin-proteasome system in the response of the ligninolytic fungus Trametes versicolor to nitrogen deprivation.

    PubMed

    Staszczak, Magdalena

    2008-03-01

    The white rot fungus Trametes versicolor is an efficient lignin degrader with ecological significance and industrial applications. Lignin-modifying enzymes of white rot fungi are mainly produced during secondary metabolism triggered in these microorganisms by nutrient deprivation. Selective ubiquitin/proteasome-mediated proteolysis is known to play a crucial role in the response of cells to various stresses such as nutrient limitation, heat shock, and heavy metal exposure. Previous studies from our laboratory demonstrated that proteasomal degradation of intracellular proteins is involved in the regulation of laccase, a major ligninolytic enzyme of T. versicolor, in response to cadmium. In the present study, it was found that the 6-h nitrogen starvation leads to depletion of intracellular free ubiquitin pool in T. versicolor. The difference in the intracellular level of free monomeric ubiquitin observed between the mycelium extract from the nitrogen-deprived and that from the nitrogen-sufficient culture was accompanied by the different pattern of ubiquitin-dependent degradation. Furthermore, it was found that nitrogen deprivation affected 26S proteasome activities of T. versicolor. Proteasome inhibition by lactacystin beta-lactone, a highly specific agent, increased laccase activity in nitrogen-deprived cultures, but not in nitrogen-sufficient cultures. The present study implicates the ubiquitin/proteasome-mediated proteolytic pathway in the response of T. versicolor to nitrogen deprivation.

  11. Biological suppression of potato ring rot by fluorescent pseudomonads.

    PubMed

    de la Cruz, A R; Poplawsky, A R; Wiese, M V

    1992-06-01

    Three strains of fluorescent pseudomonads (IS-1, IS-2, and IS-3) isolated from potato underground stems with roots showed in vitro antibiosis against 30 strains of the ring rot bacterium Clavibacter michiganensis subsp. sepedonicus. On the basis of morphological and biochemical tests and fatty acid analysis, IS-1 and IS-2 were identified as Pseudomonas aureofaciens and IS-3 was identified as P. fluorescens biovar III. IS-1 was the most inhibitory to C. michiganensis subsp. sepedonicus strains in vitro, followed by IS-3 and IS-2. Suppression of ring rot by these antagonists was demonstrated in greenhouse trials with stem-cultured potato (cv. Russet Burbank) seedlings. Although each antagonist significantly reduced C. michiganensis subsp. sepedonicus populations, only IS-1 reduced infection by C. michiganensis subsp. sepedonicus. In a second experiment, treatment with IS-1 (10(9) CFU/ml) significantly reduced ring rot infection by 23.4 to 26.7% after 5 to 8 weeks. The average C. michiganensis subsp. sepedonicus population was also significantly reduced by 50 to 52%. Application of different combinations of antagonist strains was not more effective than single-strain treatment.

  12. Rapid Discrimination of Mitochondrial DNA Type and Use of Results to Study Mitochondrial Inheritance in Pleurotus spp.

    PubMed

    Sagawa, I; Moriyama, Y; Yanagi, S O; Ando, A; Nagata, Y

    1998-01-01

    We have reported a simple and rapid method to discriminate species in the genus Pleurotus by analysis of restriction-fragment-length polymorphism of whole-cell DNA, and found that several restriction enzymes gave DNA bands useful in such discrimination, but other enzymes tested did not. In the present study, we report the reason why there were useful and useless enzymes; the effective enzymes digested rDNA into small fragments that did not interfere with the detection of DNA bands useful for discrimination. The origin of these discriminative DNA bands was found to be mitochondrial DNA when the banding profiles of whole-cell DNA, mitochondrial DNA, and nuclear DNA were compared. Consequently, our method could be used for rapid and simple identification of mitochondrial DNA type in the genus Pleurotus. The results were used to study mitochondrial inheritance, and we found that only the nucleus but not the mitochondria migrated during the mating of Pleurotus cornucopiae with P. citrinopileatus.

  13. The First Report of Postharvest Stem Rot of Kohlrabi Caused by Sclerotinia sclerotiorum in Korea.

    PubMed

    Kim, Joon-Young; Aktaruzzaman, Md; Afroz, Tania; Hahm, Young-Il; Kim, Byung-Sup

    2014-12-01

    In March 2014, a kohlrabi stem rot sample was collected from the cold storage room of Daegwallyong Horticultural Cooperative, Korea. White and fuzzy mycelial growth was observed on the stem, symptomatic of stem rot disease. The pathogen was isolated from the infected stem and cultured on potato dextrose agar for further fungal morphological observation and to confirm its pathogenicity, according to Koch's postulates. Morphological data, pathogenicity test results, and rDNA sequences of internal transcribed spacer regions (ITS 1 and 4) showed that the postharvest stem rot of kohlrabi was caused by Sclerotinia sclerotiorum. This is the first report of postharvest stem rot of kohlrabi in Korea.

  14. Biodiversity of complexes of mycotoxigenic fungal species associated with Fusarium ear rot of maize and Aspergillus rot of grape.

    PubMed

    Logrieco, A; Moretti, A; Perrone, G; Mulè, G

    2007-10-20

    Fusarium ear rot of maize and Aspergillus rot of grape are two examples of important plant diseases caused by complexes of species of mycotoxigenic fungi. These complexes of species tend to be closely related, produce different classes of mycotoxins, and can induce disease under different environmental conditions. The infection of maize and grape with multiple fungal species and the resulting production of large classes of mycotoxins is an example of mutual aggressiveness of microorganisms toward host species as well as to humans and animals that eat feed or food derived from the infected and contaminated plants. Infection of crop plant with a complex of microbial species certainly represents a greater threat to a crop plant and to human and animal health than infection of the plant with a single fungal species.

  15. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis.

    PubMed

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R; Clardy, Jon

    2009-06-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. We have analyzed one such system at the molecular level and found that the bacterium associated with the ant Apterostigma dentigerum produces dentigerumycin, a cyclic depsipeptide with highly modified amino acids, to selectively inhibit the associated parasitic fungus (Escovopsis sp.).

  16. Production of Lytic Enzymes by Trichoderma Isolates during in vitro Antagonism with Aspergillus Niger, The Causal Agent of Collar ROT of Peanut

    PubMed Central

    Gajera, H. P.; Vakharia, D. N.

    2012-01-01

    Twelve isolates of Trichoderma (six of T. harzianum, five of T. viride, one of T. virens), which reduced variably the incidence of collar rot disease caused in peanut by Aspergillus niger Van Tieghem, were evaluated for their potential to produce lytic enzymes during in vitro antagonism. T. viride 60 inhibited highest (86.2%) growth of test fungus followed by T. harzianum 2J (80.4%) at 6 days after inoculation (DAI) on PDA media. The specific activities of chitinase, β-1,3-glucanase and protease were 11, 3.46 and 9 folds higher in T6 antagonist (T. viride 60 and A. niger interactions) followed by 8.72, 2.85 and 9 folds in T8antagonist (T. harzianum 2J and A. niger interactions), respectively, compared to the activity produced by control petri plate T13 (A. niger alone) at 6 DAI. Activity of these lytic enzymes induced in antagonists’ plates comprises the growth of Trichoderma isolates. However, cellulase and poly galacturonase were found least amount in these antagonists treatment. A significant positive correlation (p=0.01) between percentage growth inhibition of test fungus and lytic enzymes – (chitinase, β-1,3-glucanase and protease) in the culture medium of antagonist treatment established a relationship to inhibit growth of fungal pathogen by increasing the levels of these enzymes. Among the Trichoderma isolates, T. viride 60 was found best strain to be used in biological control of plant pathogen A. niger. PMID:24031802

  17. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.

    PubMed

    Wei, Lijuan; Jian, Hongju; Lu, Kun; Filardo, Fiona; Yin, Nengwen; Liu, Liezhao; Qu, Cunmin; Li, Wei; Du, Hai; Li, Jiana

    2016-06-01

    Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.

  18. The corky root rot pathogen Pyrenochaeta lycopersici secretes a proteinaceous inducer of cell death affecting host plants differentially.

    PubMed

    Clergeot, Pierre-Henri; Schuler, Herwig; Mørtz, Ejvind; Brus, Maja; Vintila, Simina; Ekengren, Sophia

    2012-09-01

    Pathogenic isolates of Pyrenochaeta lycopersici, the causal agent of corky root rot of tomato, secrete cell death in tomato 1 (CDiT1), a homodimeric protein of 35 kDa inducing cell death after infiltration into the leaf apoplast of tomato. CDiT1 was purified by fast protein liquid chromatography, characterized by mass spectrometry and cDNA cloning. Its activity was confirmed after infiltration of an affinity-purified recombinant fusion of the protein with a C-terminal polyhistidine tag. CDiT1 is highly expressed during tomato root infection compared with axenic culture, and has a putative ortholog in other pathogenic Pleosporales species producing proteinaceous toxins that contribute to virulence. Infiltration of CDiT1 into leaves of other plants susceptible to P. lycopersici revealed that the protein affects them differentially. All varieties of cultivated tomato (Solanum lycopersicum) tested were more sensitive to CDiT1 than those of currant tomato (S. pimpinellifolium). Root infection assays showed that varieties of currant tomato are also significantly less prone to intracellular colonization of their root cells by hyphae of P. lycopersici than varieties of cultivated tomato. Therefore, secretion of this novel type of inducer of cell death during penetration of the fungus inside root cells might favor infection of host species that are highly sensitive to this molecule.

  19. Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution.

    PubMed

    Nagy, László G; Riley, Robert; Bergmann, Philip J; Krizsán, Krisztina; Martin, Francis M; Grigoriev, Igor V; Cullen, Dan; Hibbett, David S

    2017-01-01

    Fungal decomposition of plant cell walls (PCW) is a complex process that has diverse industrial applications and huge impacts on the carbon cycle. White rot (WR) is a powerful mode of PCW decay in which lignin and carbohydrates are both degraded. Mechanistic studies of decay coupled with comparative genomic analyses have provided clues to the enzymatic components of WR systems and their evolutionary origins, but the complete suite of genes necessary for WR remains undetermined. Here, we use phylogenomic comparative methods, which we validate through simulations, to identify shifts in gene family diversification rates that are correlated with evolution of WR, using data from 62 fungal genomes. We detected 409 gene families that appear to be evolutionarily correlated with WR. The identified gene families encode well-characterized decay enzymes, e.g., fungal class II peroxidases and cellobiohydrolases, and enzymes involved in import and detoxification pathways, as well as 73 gene families that have no functional annotation. About 310 of the 409 identified gene families are present in the genome of the model WR fungus Phanerochaete chrysosporium and 192 of these (62%) have been shown to be upregulated under ligninolytic culture conditions, which corroborates the phylogeny-based functional inferences. These results illuminate the complexity of WR and suggest that its evolution has involved a general elaboration of the decay apparatus, including numerous gene families with as-yet unknown exact functions.

  20. Solanapyrone analogues from a Hawaiian fungicolous fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four new solanayrone analogues (solanapyrones J-M; 1-4) have been isolated from an unidentified fungicolous fungus collected in Hawaii. The structures and relative configurations of these compounds were determined by analysis of ID NMR, 2D NMR, and MS data. Solanapyrone J(1) showed antifungal acti...

  1. The Effects of Different Substrates on the Growth, Yield, and Nutritional Composition of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus)

    PubMed Central

    Hoa, Ha Thi; Wang, Chong-Ho

    2015-01-01

    The study was conducted to compare the effects of different agro-wastes on the growth, yield, and nutritional composition of oyster mushrooms Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC). Seven substrate formulas including sawdust (SD), corncob (CC), sugarcane bagasse (SB) alone and in combination of 80 : 20, 50 : 50 ratio between SD and CC, SD and SB were investigated. The results indicated that different substrate formulas gave a significant difference in total colonization period, characteristics of fruiting bodies, yield, biological efficiency (BE), nutritional composition and mineral contents of two oyster mushrooms PO and PC. The results showed that increasing CC and SB reduced C/N ratio, and enhanced some mineral contents (Ca, P, and Mg) of substrate formulas. The increased amount of CC and SB of substrate formulas enhanced protein, ash, mineral contents (Ca, K, Mg, Mn, and Zn) of fruiting bodies of both mushrooms. Substrates with 100% CC and 100% SB were the most suitable substrate formulas for cultivation of oyster mushrooms PO and PC in which they gave the highest values of cap diameter, stipe thickness, mushroom weight, yield, BE, protein, fiber, ash, mineral content (Ca, K, and Mg) and short stipe length. However, substrate formula 100% CC gave the slowest time for the first harvest of both mushrooms PO and PC (46.02 days and 64.24 days, respectively). It is also found that the C/N ratio of substrate formulas has close correlation with total colonization period, mushroom weight, yield, BE and protein content of mushroom PO and PC. PMID:26839502

  2. Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate.

    PubMed

    Fernandes, Ângela; Barros, Lillian; Martins, Anabela; Herbert, Paulo; Ferreira, Isabel C F R

    2015-02-15

    Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. is the third most produced edible mushroom worldwide, due to its ability to colonise and degrade a large variety of lignocellulosic substrates. Therefore, the objective of this work was to evaluate the chemical composition of fruiting bodies of P. ostreatus grown on blank and printed paper substrates, in comparison with samples grown on oat straw (control). The nutritional properties of the control sample were similar to values reported in the literature, while the chemical composition of the samples obtained using paper scraps, either blank or printed, was highly satisfactory. The results obtained validated the nutritional characteristics of the samples, highlighting a profitable means to recycle paper.

  3. Biological Activities of the Polysaccharides Produced in Submerged Culture of Two Edible Pleurotus ostreatus Mushrooms

    PubMed Central

    Vamanu, Emanuel

    2012-01-01

    Exopolysaccharides (EPS) and internal (intracellular) polysaccharides (IPS) obtained from the Pleurotus ostreatus M2191 and PBS281009 cultivated using the batch system revealed an average of between 0.1–2 (EPS) and 0.07–1.5 g/L/day (IPS). The carbohydrate analysis revealed that the polysaccharides comprised 87–89% EPS and 68–74% IPS. The investigation of antioxidant activity in vitro revealed a good antioxidant potential, particularly for the IPS and EPS isolated from PBS281009, as proved by the EC50 value for DPPH, ABTS scavenging activity, reducing power, and iron chelating activity. PMID:22778553

  4. [Use of coffee grounds for production of Pleurotus ostreatus (Jacq.:Fr.) Kummer].

    PubMed

    Job, Daniel

    2004-12-01

    Studies were carried out to screen the industrial strain HK35 of Pleurotus ostreatus for its ability to develop fruiting bodies in solid state cultivation using several substrates containing 17.8 to 55% coffee grounds. Our results showed that only 55% of coffee grounds was used in the substrate without detecting changes in fruiting body or on its biological efficiency of production. The chemical analysis of the caffeine in the substrate showed that this compound decreased about 59% of the mycelium activity, and no caffeine was found in fruiting bodies indicating its degradation by the fungal strain tested.

  5. [Evaluation of the effect of cryopreservation of Pleurotus spp. strains on carpophore production.].

    PubMed

    Lara-Herrera, I; Mata, G; Gaitán-Hernández, R

    1998-03-01

    The effect of the cryopreservation of six Pleurotus strains was evaluated. Primordia initiation, number of flushes, biological efficiency and fruiting body size obtained with respect to pileus diameter was recorded. These strains were previously evaluated before storage in liquid nitrogen. Variation in the number of flushes (3-4), the fruiting body size (< 5 cm at > 15 cm) and biological efficiency was observed. This varied according to the strain used, ranging from 55-105.6%. The fruiting bodies of the cryopreserved strains did not differ with respect to the untreated strains.

  6. Morphological and enzymatic response of the thermotolerant fungus Fomes sp. EUM1 in solid state fermentation under thermal stress.

    PubMed

    Ordaz-Hernández, Armando; Ortega-Sánchez, Eric; Montesinos-Matías, Roberto; Hernández-Martínez, Ricardo; Torres-Martínez, Daniel; Loera, Octavio

    2016-08-01

    Thermotolerance of the fungus Fomes sp. EUM1 was evaluated in solid state fermentation (SSF). This thermotolerant strain improved both hyphal invasiveness (38%) and length (17%) in adverse thermal conditions exceeding 30°C and to a maximum of 40°C. In contrast, hyphal branching decreased by 46% at 45°C. The production of cellulases over corn stover increased 1.6-fold in 30°C culture conditions, xylanases increased 2.8-fold at 40°C, while laccase production improved 2.7-fold at 35°C. Maximum production of lignocellulolytic enzymes was obtained at elevated temperatures in shorter fermentation times (8-6 days), although the proteases appeared as a thermal stress response associated with a drop in lignocellulolytic activities. Novel and multiple isoenzymes of xylanase (four bands) and cellulase (six bands) were secreted in the range of 20-150 kDa during growth in adverse temperature conditions. However, only a single laccase isoenzyme (46 kDa) was detected. This is the first report describing the advantages of a thermotolerant white-rot fungus in SSF. These results have important implications for large-scale SSF, where effects of metabolic heat are detrimental to growth and enzyme production, which are severely affected by the formation of high temperature gradients.

  7. New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles

    PubMed Central

    Bateman, Craig C.; Short, Dylan P. G.; Kasson, Matthew T.; Rabaglia, Robert J.; Hulcr, Jiri

    2015-01-01

    Ambrosia symbiosis is an obligate, farming-like mutualism between wood-boring beetles and fungi. It evolved at least 11 times and includes many notorious invasive pests. All ambrosia beetles studied to date cultivate ascomycotan fungi: early colonizers of recently killed trees with poor wood digestion. Beetles in the widespread genus Ambrosiodmus, however, colonize decayed wood. We characterized the mycosymbionts of three Ambrosiodmus species using quantitative culturing, high-throughput metabarcoding, and histology. We determined the fungi to be within the Polyporales, closely related to Flavodon flavus. Culture-independent sequencing of Ambrosiodmus minor mycangia revealed a single operational taxonomic unit identical to the sequences from the cultured Flavodon. Histological sectioning confirmed that Ambrosiodmus possessed preoral mycangia containing dimitic hyphae similar to cultured F. cf. flavus. The Ambrosiodmus-Flavodon symbiosis is unique in several aspects: it is the first reported association between an ambrosia beetle and a basidiomycotan fungus; the mycosymbiont grows as hyphae in the mycangia, not as budding pseudo-mycelium; and the mycosymbiont is a white-rot saprophyte rather than an early colonizer: a previously undocumented wood borer niche. Few fungi are capable of turning rotten wood into complete animal nutrition. Several thousand beetle-fungus symbioses remain unstudied and promise unknown and unexpected mycological diversity and enzymatic innovations. PMID:26367271

  8. Vine kill interval and temperature effects on Fusarium dry rot development in Russet Burbank

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot disease development in potato storage is universal to all market sectors and regions. The objective of this 2-year study was to evaluate three possible management decisions that may impact Fusarium dry rot development in storage: a) vine kill to harvest time, b) harvested tuber pulp...

  9. Postharvest salicylic acid treatment reduces storage rots in water-stressed but no unstressed sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA’s ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common...

  10. The persistence of Gliocephalotrichum bulbilium and G. simplex causing fruit rot of rambutan in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot of rambutan (Nephelium lappaceum L.) is a pre and post-harvest disease problem that affects fruit quality. Significant post-harvest losses have occurred worldwide and several pathogens have been identified in Malaysia, Costa Rica, Hawaii, Thailand, and Puerto Rico. In 2011, fruit rot was o...

  11. First report of Calonectria hongkongensis causing fruit rot of rambutan (Nephelium lappaceum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot is a major pre- and post-harvest disease problem in rambutan orchards. In 2011, fruit rot was observed at the USDA-TARS orchards in Mayaguez, Puerto Rico. Infected fruit were collected and tissue sections (1 mm2) were superficially sterilized with 70% ethanol and 0.5% sodium hypochlorite. ...

  12. Development of dry gram-negative bacteria biocontrol products and small pilot tests against dry rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 suppress four important storage potato maladies; dry rot, late blight, pink rot, and sprouting. Studies were designed to identify methods for producing a dried, efficacious biological control product. The strains were evaluated individ...

  13. Interaction of Rhizoctonia solani and Rhizopus stolonifer Causing Root Rot of Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, growers in Michigan and other sugar beet production areas of the United States have reported increasing incidence of root rot with little or no crown or foliar symptoms in sugar beet with Rhizoctonia crown and root rot. In addition, Rhizoctonia-resistant beets have been reported wit...

  14. Storage rot in sugar beet: variable response over time and with different host germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris) is commonly stored in outdoor piles prior to processing for food and animal feed. While in storage the crop is subject to multiple post-harvest rots. In the Michigan growing region, little loss due to storage rots is observed until beets have been in storage for several mo...

  15. First report of Fusarium hostae causing crown rot of wheat (Triticum spp.) in Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crown rot disease of wheat is caused by a complex of Fusarium species. To identify species associated with crown rot in Turkey, crowns and stems of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) were collected from the Central and Southeast Anatolia, Black Sea, Aegean, Mediterr...

  16. First report of Fusarium redolens causing crown rot of wheat (Triticum spp.) in Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium crown rot, caused by a complex of Fusarium spp., is a yield-limiting disease of wheat world-wide, especially in dry Mediterranean climates. In order to identify Fusarium species associated with crown rot of wheat, a survey was conducted in summer 2013 in the major wheat growing regions of T...

  17. Efficacy of management tools for control of Pythium root rot of Douglas fir seedlings, 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the efficacy of management tools for control of Pythium root rot of Douglas fir seedlings. This effort was conducted as part of the IR-4 Ornamental Horticulture program to evaluate fungicides and biopesticides for management of root, crown and stem rot of ornamental plants ca...

  18. First report of Colletotrichum fructicola and C. queenslandicum causing fruit rot of rambutan (Nephelium lappaceum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rambutan production, fruit rot is the main pre- and post-harvest disease of concern. In a 2008-2013 fruit disease survey, fruit rot was observed in eight orchards in Puerto Rico. Infected fruit were collected and 1 mm2 tissue sections were surface disinfested with 70% ethanol followed by 0.5% sod...

  19. Experimental Sugar Beet Cultivars Evaluated for Resistance Bacterial Root Rot in Idaho, 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...

  20. Mapping cotton root rot infestations over a 10-year interval with airborne multispectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the pathogen Phymatotrichopsis omnivora, is a very serious and destructive disease of cotton grown in the southwestern and south central U.S. Accurate information regarding temporal changes of cotton root rot infestations within fields is important for the management and c...

  1. Using airborne multispectral imagery to monitor cotton root rot expansion within a growing season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a serious and destructive disease that affects cotton production in the southwestern United States. Accurate delineation of cotton root rot infestations is important for cost-effective management of the disease. The objective of this study was to use airborne multispectral imagery...

  2. Potassium and Phosphorus Have No Effects on Severity of Charcoal Rot of Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  3. Potassium and Phosphorus effects on disease severity of charcoal rot of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  4. Response of sugar beet recombinant inbred lines to post-harvest rot fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet is commonly stored in outdoor piles prior to processing. During this storage period the crop is subject to multiple post-harvest rots. Resistance to three post harvest rots was identified in two sugar beet germplasm in the 1970s, but there has been little work done on host resistance to p...

  5. Response of sugar beet (Beta vulgaris) recombinant inbred lines to post-harvest rot fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris) is commonly stored in outdoor piles prior to processing for food and animal feed. During this storage period the crop is subject to multiple post-harvest rots. Resistance to three post harvest rots was identified in two sugar beet germplasm in the 1970s, but there has been...

  6. Evaluation of Actigard and Fungicides for Managing Phytophthora Fruit Rot of Watermelon, 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora fruit rot caused by Phytophthora capsici is an emerging disease in most watermelon producing regions of Southeast U.S., and has been considered as a top research priority by the National Watermelon Association (NWA). Managing Phytophthora fruit rot can be difficult because of the l...

  7. Effect of actigard and other new fungicides on phytophthora fruit rot of watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot, caused by Phytophthora capsici is an emerging disease in most watermelon producing regions of Southeast U.S. Between 2003 and 2008, we observed many watermelon farms in Georgia, South Carolina, and North Carolina, where growers did not harvest the crop due to severe fruit rot. The Natio...

  8. Evaluation of Pseudomonas syringae Strain ESC11 for Biocontrol of Crown Rot and Anthracnose of Banana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas syringae strain ESC11, and 250 'g/ml each of thiabendazole (TBZ) and imazalil reduced crown rot of banana caused by a Fusarium sp. by 0-88% and 73-88%, respectively, in laboratory experiments. ESC11 alone did not significantly reduce rot, mold, or anthracnose in most field trials. TBZ an...

  9. Infection of apple fruit by Sphaeropsis pyriputrescens in the orchard in relation to Sphaeropsis rot in storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sphaeropsis rot, caused by Sphaeropsis pyriputrescens, is a recently recognized postharvest fruit rot disease of apple in the United States. The objectives of this study were to determine the timing of apple fruit infection in the orchard in relation to development of Sphaeropsis rot in storage and ...

  10. Identification of tolerance to Fusarium root rot in wild pea germplasm with high levels of partial resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a serious root rot pathogen affecting peas in all pea growing areas of the USA and is damaging in both dryland and irrigated pea fields. Partial resistance to Fusarium root rot in 44 accessions from the Pisum Core Collection located in Pu...

  11. Are white-rot fungi a real biotechnological option for the improvement of environmental health?

    PubMed

    Tortella, G; Durán, N; Rubilar, O; Parada, M; Diez, M C

    2015-06-01

    The use of white-rot fungi as a biotechnological tool for cleaning the environment of recalcitrant pollutants has been under evaluation for several years. However, it is still not possible to find sufficiently detailed investigations of this subject to conclude that these fungi can decontaminate the environment. In the present review, we have summarized and discussed evidence about the potential of white-rot fungi to degrade such pollutants as polycyclic aromatic hydrocarbons, dyes or antibiotics as an example of the complex structures that these microorganisms can attack. This review also discusses field experiment results and limitations of white-rot fungi trials from contaminated sites. Moreover, the use of catabolic potential of white-rot fungi in biopurification systems (biobeds) is also discussed. The current status and future perspectives of white-rot fungi, as a viable biotechnological alternative for improvement of environmental health are noted.

  12. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    PubMed Central

    2011-01-01

    Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy) annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota. PMID:21241472

  13. The birth of Tor Vergata Fabry-Pérot interferometer

    NASA Astrophysics Data System (ADS)

    Giovannelli, L.; Berrilli, F.; Cocciolo, M.; Del Moro, D.; Egidi, A.; Piazzesi, R.; Stangalini, M.

    2012-10-01

    Fabry-Pérot tunable niters are of great interest in high spectral resolution imaging for both ground-based and space astronomical observations. Major advantages include imaging capabilities and the study of extended astronomical sources, such as the solar photosphere. The high transparency of the instrument allows the high time-resolution necessary for the observation of fast dynamic processes. The prototype here presented has been developed as part of the study for the narrow band channel of the ADAHELI mission. The ADvanced Astronomy for HELIophysics (ADAHELI) is a solar satellite designed to investigate the dynamics of solar atmosphere as part of the Italian Space Agency (ASI) program.

  14. Wood-rotting Fungal Flora of Kanghwa Island

    PubMed Central

    Lim, Young Woon; Lee, Jin Sung; Kim, Kyung Mo

    2005-01-01

    Through ten field surveys in Kanghwa Island from August of 1997 to March of 2002, total 107 specimens of wood-rotting fungi belonging to the Aphyllophorales were collected and identified to the species. They taxonomically amounted to 10 families, 31 genera, and 48 species. Among them, one family, Steccherinaceae, and four genera, Australohydnum, Castanoporus, Dacryobolus and Haplotrichum were confirmed as new to Korea. Five unrecorded species, Australohydnum dregeanum, Castanoporus castaneus, Dacryobolus karstenii, Haplotrichum conspersum and Hyphoderma odontiiforme were registered here with descriptions. PMID:24049495

  15. Bacteriophages of Soft Rot Enterobacteriaceae-a minireview.

    PubMed

    Czajkowski, Robert

    2016-01-01

    Soft rot Enterobacteriaceae (Pectobacterium spp. and Dickeya spp., formerly pectinolytic Erwinia spp.) are ubiquitous necrotrophic bacterial pathogens that infect a large number of different plant species worldwide, including economically important crops. Despite the fact that these bacteria have been studied for more than 50 years, little is known of their corresponding predators: bacteriophages, both lytic and lysogenic. The aim of this minireview is to critically summarize recent ecological, biological and molecular research on bacteriophages infecting Pectobacterium spp. and Dickeya spp. with the main focus on current and future perspectives in that field.

  16. Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by simultaneous saccharification and fermentation.

    PubMed

    Shrestha, Prachand; Khanal, Samir K; Pometto, Anthony L; van Leeuwen, J Hans

    2009-05-27

    This research aims at developing a biorefinery platform to convert lignocellulosic corn fiber into fermentable sugars at a moderate temperature (37 °C) with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum), and soft-rot (Trichoderma reesei) fungi were used for in situ enzyme production to hydrolyze cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Solid-substrate fermentation of corn fiber by either white- or brown-rot fungi followed by simultaneous saccharification and fermentation (SSF) with coculture of Saccharomyces cerevisiae has shown a possibility of enhancing wood rot saccharification of corn fiber for ethanol fermentation. The laboratory-scale fungal saccharification and fermentation process incorporated in situ cellulolytic enzyme induction, which enhanced overall enzymatic hydrolysis of hemi/cellulose components of corn fiber into simple sugars (mono-, di-, and trisaccharides). The yeast fermentation of the hydrolyzate yielded 7.8, 8.6, and 4.9 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest ethanol yield (8.6 g ethanol per 100 g initial corn fiber) is equivalent to 35% of the theoretical ethanol yield from starch and cellulose in corn fiber. This research has significant commercial potential to increase net ethanol production per bushel of corn through the utilization of corn fiber. There is also a great research opportunity to evaluate the remaining biomass residue (enriched with fungal protein) as animal feed.

  17. Ant-fungus species combinations engineer physiological activity of fungus gardens.

    PubMed

    Seal, J N; Schiøtt, M; Mueller, U G

    2014-07-15

    Fungus-gardening insects are among the most complex organisms because of their extensive co-evolutionary histories with obligate fungal symbionts and other microbes. Some fungus-gardening insect lineages share fungal symbionts with other members of their lineage and thus exhibit diffuse co-evolutionary relationships, while others exhibit little or no symbiont sharing, resulting in host-fungus fidelity. The mechanisms that maintain this symbiont fidelity are currently unknown. Prior work suggested that derived leaf-cutting ants in the genus Atta interact synergistically with leaf-cutter fungi (Attamyces) by exhibiting higher fungal growth rates and enzymatic activities than when growing a fungus from the sister-clade to Attamyces (so-called 'Trachymyces'), grown primarily by the non-leaf cutting Trachymyrmex ants that form, correspondingly, the sister-clade to leaf-cutting ants. To elucidate the enzymatic bases of host-fungus specialization in leaf-cutting ants, we conducted a reciprocal fungus-switch experiment between the ant Atta texana and the ant Trachymyrmex arizonensis and report measured enzymatic activities of switched and sham-switched fungus gardens to digest starch, pectin, xylan, cellulose and casein. Gardens exhibited higher amylase and pectinase activities when A. texana ants cultivated Attamyces compared with Trachymyces fungi, consistent with enzymatic specialization. In contrast, gardens showed comparable amylase and pectinase activities when T. arizonensis cultivated either fungal species. Although gardens of leaf-cutting ants are not known to be significant metabolizers of cellulose, T. arizonensis were able to maintain gardens with significant cellulase activity when growing either fungal species. In contrast to carbohydrate metabolism, protease activity was significantly higher in Attamyces than in Trachymyces, regardless of the ant host. Activity of some enzymes employed by this symbiosis therefore arises from complex interactions between the

  18. Induction of an oxalate decarboxylase in the filamentous fungus Trametes versicolor by addition of inorganic acids.

    PubMed

    Zhu, Cui Xia; Hong, Feng

    2010-01-01

    In order to improve yields and to reduce the cost of oxalate decarboxylase (OxDC, EC 4.1.1.2), the induction of OxDC in the white-rot fungus Trametes versicolor was studied in this work. OxDC was induced by addition of inorganic acids including hydrochloric acid, sulfuric acid, and phosphoric acid to culture media. The results showed that all the acids could enhance OxDC expression. The activity of the acid-induced OxDC rose continuously. All of the OxDC volumetric activities induced by the inorganic acids were higher than 20.0 U/L and were two times higher than that obtained with oxalic acid. OxDC productivity was around 4.0 U*L(-1)*day(-1). The highest specific activity against total protein was 3.2 U/mg protein at day 8 after induction of sulfuric acid, and the specific activity against mycelial dry weight was 10.6 U/g at day 9 after induction of hydrochloric acid. The growth of mycelia was inhibited slightly when the pH values in culture media was around 2.5-3.0, while the growth was inhibited heavily when the pH was lower than 2.5.

  19. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora.

    PubMed

    Fernández-Fueyo, Elena; Ruiz-Dueñas, Francisco J; Miki, Yuta; Martínez, María Jesús; Hammel, Kenneth E; Martínez, Angel T

    2012-05-11

    The white-rot fungus Ceriporiopsis subvermispora delignifies lignocellulose with high selectivity, but until now it has appeared to lack the specialized peroxidases, termed lignin peroxidases (LiPs) and versatile peroxidases (VPs), that are generally thought important for ligninolysis. We screened the recently sequenced C. subvermispora genome for genes that encode peroxidases with a potential ligninolytic role. A total of 26 peroxidase genes was apparent after a structural-functional classification based on homology modeling and a search for diagnostic catalytic amino acid residues. In addition to revealing the presence of nine heme-thiolate peroxidase superfamily members and the unexpected absence of the dye-decolorizing peroxidase superfamily, the search showed that the C. subvermispora genome encodes 16 class II enzymes in the plant-fungal-bacterial peroxidase superfamily, where LiPs and VPs are classified. The 16 encoded enzymes include 13 putative manganese peroxidases and one generic peroxidase but most notably two peroxidases containing the catalytic tryptophan characteristic of LiPs and VPs. We expressed these two enzymes in Escherichia coli and determined their substrate specificities on typical LiP/VP substrates, including nonphenolic lignin model monomers and dimers, as well as synthetic lignin. The results show that the two newly discovered C. subvermispora peroxidases are functionally competent LiPs and also suggest that they are phylogenetically and catalytically intermediate between classical LiPs and VPs. These results offer new insight into selective lignin degradation by C. subvermispora.

  20. Epoxy ceriporic acid produced by selective lignin-degrading fungus Ceriporiopsis subvermispora.

    PubMed

    Nishimura, Hiroshi; Setogawa, Yuichi; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2011-11-01

    Ceriporiopsis subvermispora is a selective white rot basidiomycete which degrades lignin in wood at a distance far from enzymes. Low molecular mass metabolites play a central role in the oxidative degradation of lignin. To understand the unique wood-decaying mechanism, we surveyed the oxidized derivatives of ceriporic acids (alk(en)ylitaconic acids) produced by C. subvermispora using high-resolution liquid chromatography multiple-stage mass spectrometry (HR-LC/MS(n)). The analysis of the precursor and product ions from the extract suggested that an epoxidized derivative of ceriporic acid is produced by the fungus. To identify the new metabolite, an authentic compound of ceriporic acid epoxide was synthesized in vitro by reacting (R)-3-[(Z)-hexadec-7-enyl]-itaconic acid (ceriporic acid C) with m-chloroperbenzoic acid. The precursor and product ions from the natural metabolite and authentic epoxide were identical and distinguishable from those of hydroxy and hydroperoxy derivatives after reduction with NaBD(4). Feeding experiments with [U-(13)C]-glucose, 99% and the subsequent analyses of the first and second generation product ions demonstrated that the oxidized ceriporic acid was (R)-3-(7,8-epoxy-hexadecyl)-itaconic acid. To our knowledge, this study is the first to report that natural alkylitaconic acid bears an epoxy group on its side chain.

  1. Evaluation of biomass of some invasive weed species as substrate for oyster mushroom (Pleurotus spp.) cultivation.

    PubMed

    Mintesnot, Birara; Ayalew, Amare; Kebede, Ameha

    2014-01-15

    This study assessed the bioconversion of Agriculture wastes like invasive weeds species (Lantana camara, Prosopis juliflora, Parthenium hysterophorus) as a substrate for oyster mushroom (Pleurotus species) cultivation together with wheat straw as a control. The experiment was laid out in factorial combination of substrates and three edible oyster mushroom species in a Completely Randomized Design (CRD) with three replications. Pleurotus ostreatus gave significantly (p < 0.01) total yield of 840 g kg(-1) on P. hysterophorus, Significantly (p < 0.01) biological efficiency (83.87%) and production rate of 3.13 was recorded for P. ostreatus grown on P. hysterophorus. The highest total ash content (13.90%) was recorded for P. florida grown on L. camara. while the lowest (6.92%) was for P. sajor-caju grown on the P. juliflora. Crude protein ranged from 40.51-41.48% for P. florida grown on P. hysterophorus and L. camara. Lowest crude protein content (30.11%) was recorded for P. ostreatus grown on wheat straw. The crude fiber content (12.73%) of P. sajor-caju grown on wheat straw was the highest. The lowest crude fiber (5.19%) was recorded for P. ostreatus on P. juliflora. Total yield had a positive and significant correlation with biological efficiency and production. Utilization of the plant biomass for mushroom cultivation could contribute to alleviating ecological impact of invasive weed species while offering practical option to mitigating hunger and malnutrition in areas where the invasive weeds became dominant.

  2. Pleurotus biomass production on vinasse and its potential use for aquaculture feed.

    PubMed

    Sartori, S B; Ferreira, L F R; Messias, T G; Souza, G; Pompeu, G B; Monteiro, R T R

    2015-01-02

    The vinasse is a by-product generated during the manufacture of alcohol from sugarcane fermentation. Rich in organic matter, it is known that the vinasse has the potential to be used as a source of nutrients for plants as well as microorganisms. In this study, the fungi Pleurotus sajor-caju, P. ostreatus, P. albidus and P. flabellatus were cultivated in vinasse and utilised as a complementary diet for Danio rerio fish. The fungi mycelia cultured in vinasse for 15 days were lyophilised and offered to the fishes at a rate of 2% (medium/body weight) for 28 days. P. albidus produced the highest biomass (16.27 g L(-1)). Bromatological analysis of mycelia showed similar values to commercial rations. Toxicity tests showed that fish survival was 100% and no significant biomass loss was observed, indicating that the tested fungi grown in vinasse showed no toxicity. Our results showed that vinasse is a promising by-product for fungal growth and the mycelia of Pleurotus sp. fungi can be included in the diets of fish as a nutritional supplement.

  3. Genetic diversity of Pleurotus pulmonarius revealed by RAPD, ISSR, and SRAP fingerprinting.

    PubMed

    Yin, Yonggang; Liu, Yu; Li, Huamin; Zhao, Shuang; Wang, Shouxian; Liu, Ying; Wu, Di; Xu, Feng

    2014-03-01

    Pleurotus pulmonarius is one of the most widely cultivated and popular edible fungi in the genus Pleurotus. Three molecular markers were used to analyze the genetic diversity of 15 Chinese P. pulmonarius cultivars. In total, 21 random amplified polymorphic DNA (RAPD), 20 inter-simple sequence repeat (ISSR), and 20 sequence-related amplified polymorphism (SRAP) primers or primer pairs were selected for generating data based on their clear banding profiles produced. With the use of these RAPD, ISSR, and SRAP primers or primer pairs, a total of 361 RAPD, 283 ISSR, and 131 SRAP fragments were detected, of which 287 (79.5 %) RAPD, 211 (74.6 %) ISSR, and 98 (74.8 %) SRAP fragments were polymorphic. Unweighted Pair-Group Method with Arithmetic Mean (UPGMA) trees of these three methods were structured similarly, grouping the 15 tested strains into four clades. Subsequently, visual DNA fingerprinting and cluster analysis were performed to evaluate the resolving power of the combined RAPD, ISSR, and SRAP markers in the differentiation among these strains. The results of this study demonstrated that each method above could efficiently differentiate P. pulmonarius cultivars and could thus be considered an efficient tool for surveying genetic diversity of P. pulmonarius.

  4. Pleurotus biomass production on vinasse and its potential use for aquaculture feed

    PubMed Central

    Sartori, S.B.; Ferreira, L.F.R.; Messias, T.G.; Souza, G.; Pompeu, G.B.; Monteiro, R.T.R.

    2015-01-01

    The vinasse is a by-product generated during the manufacture of alcohol from sugarcane fermentation. Rich in organic matter, it is known that the vinasse has the potential to be used as a source of nutrients for plants as well as microorganisms. In this study, the fungi Pleurotus sajor-caju, P. ostreatus, P. albidus and P. flabellatus were cultivated in vinasse and utilised as a complementary diet for Danio rerio fish. The fungi mycelia cultured in vinasse for 15 days were lyophilised and offered to the fishes at a rate of 2% (medium/body weight) for 28 days. P. albidus produced the highest biomass (16.27 g L−1). Bromatological analysis of mycelia showed similar values to commercial rations. Toxicity tests showed that fish survival was 100% and no significant biomass loss was observed, indicating that the tested fungi grown in vinasse showed no toxicity. Our results showed that vinasse is a promising by-product for fungal growth and the mycelia of Pleurotus sp. fungi can be included in the diets of fish as a nutritional supplement. PMID:26000196

  5. Therapeutic effect of Pleurotus eryngii cellulose on experimental fatty liver in rats.

    PubMed

    Huang, J F; Zhan, T; Yu, X L; He, Q A; Huang, W J; Lin, L Z; Du, Y T; Pan, Y T

    2016-02-26

    The aim of this study was to explore the therapeutic effect of Pleurotus eryngii cellulose on experimental fatty liver in rats. Rats were fed high-fat fodder to establish a rat fatty liver model, and were then fed different concentrations of Pleurotus eryngii cellulose for six weeks. Lipitor was used as a positive control. Measured levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and total triglyceride (TG); the activity of malondialdehyde (MDA), superoxide dismutase (SOD), hepatic lipase (HL), and lipoprotein lipase; and liver histopathological changes. Successfully established rat fatty liver model after feeding high-fat fodder for one week. A diet of P. eryngii cellulose for six weeks significantly reduced ALT, AST, TC, and TG levels in rat serum (P < 0.01); TC and AST levels in P. eryngii cellulose high-dose group and Lipitor group were not significantly different from those of the control (P > 0.05). SOD activity increased significantly, while MDA and HL activity decreased (P < 0.05); fatty degeneration and fat accumulation both decreased in hepatic tissue. Hepatic protection of P. eryngii cellulose showed dose-related effect. P. eryngii cellulose can affect lipid metabolism, having therapeutic effects on fatty liver in rats.

  6. Transforming Fabry-Pérot resonances into a Tamm mode

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Rusina, Anastasia

    2012-12-01

    We propose an optical structure composed of two metal nanolayers enclosing a distributed Bragg reflector (DBR) mirror. The structure is an open photonic system whose bound modes are coupled to external radiation. We apply the special theoretical treatment based on inversion symmetry of the structure to classify its resonances. We show that the structure supports resonances transitional between Fabry-Pérot modes and Tamm plasmons. When the dielectric contrast of the DBR is removed these modes are a pair of conventional Fabry-Pérot resonances. They spectrally merge into a Tamm mode at high contrast. The optical properties of the structure in the frequency range of the DBR stop band, including highly beneficial 50% transmittivity through thick structures with sub-skin-depth metal films, are determined by the hybrid quasinormal modes of the open nonconservative structure under consideration. The results can find a broad range of applications in photonics and optoelectronics, including the possibility of coherent control over optical fields in the class of structures similar to the one proposed here.

  7. Characterization of lignocellulolytic enzymes from white-rot fungi.

    PubMed

    Manavalan, Tamilvendan; Manavalan, Arulmani; Heese, Klaus

    2015-04-01

    The development of alternative energy sources by applying lignocellulose-based biofuel technology is critically important because of the depletion of fossil fuel resources, rising fossil fuel prices, security issues regarding the fossil fuel supply, and environmental issues. White-rot fungi have received much attention in recent years for their valuable enzyme systems that effectively degrade lignocellulosic biomasses. These fungi have powerful extracellular oxidative and hydrolytic enzymes that degrade lignin and cellulose biopolymers, respectively. Lignocellulosic biomasses from either agricultural or forestry wastes are abundant, low-cost feedstock alternatives in nature but require hydrolysis into simple sugars for biofuel production. This review provides a complete overview of the different lignocellulose biomasses and their chemical compositions. In addition, a complete list of the white-rot fungi-derived lignocellulolytic enzymes that have been identified and their molecular structures, mechanism of action in lignocellulose hydrolysis, and biochemical properties is summarized in detail. These enzymes include ligninolytic enzymes (laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase) and cellulolytic enzymes (endo-glucanase, cellobiohydrolase, and beta-glucosidase). The use of these fungi for low-cost lignocellulolytic enzyme production might be attractive for biofuel production.

  8. Antigenic competition in a multivalent foot rot vaccine.

    PubMed

    Hunt, J D; Jackson, D C; Brown, L E; Wood, P R; Stewart, D J

    1994-04-01

    The antigenic competition that occurs when pilus antigens of different serogroups are combined in multivalent vaccines for foot rot has been investigated using recombinant pilus antigens. Our prototype vaccine contains pili from nine serogroups of Dichelobacter nodosus which are expressed in Pseudomonas aeruginosa. Sheep inoculated with this multivalent vaccine were not as well protected against foot rot as those given the monovalent vaccine. Levels of agglutinating and total antibody specific for any particular pili serogroup were found to be significantly reduced in sheep vaccinated with six or more closely related pili. This effect was more pronounced for agglutinating antibody, which is thought to mediate protection, but was also observed with total antibody levels measured by ELISA. The antigenic competition was not associated with the total antigen load as a tenfold higher dose of monovalent pili induced high titres of antibody. Furthermore, distributing the vaccine to four sites, each draining to a different lymph node, failed to overcome the competition. Experiments with mixtures of monospecific sera indicate that the phenomenon is unlikely to be due to blocking of serogroup-specific protective antibodies by an excess of cross-reactive non-protective antibody elicited by heterologous pili.

  9. Rapid strain classification and taxa delimitation within the edible mushroom genus Pleurotus through the use of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy.

    PubMed

    Zervakis, Georgios I; Bekiaris, Georgios; Tarantilis, Petros Α; Pappas, Christos S

    2012-06-01

    Fourier transform infrared (FT-IR) spectroscopy has been successfully applied for the identification of bacteria and yeasts, but only to a limited extent for discriminating specific groups of filamentous fungi. In the frame of this study, 73 strains - from different associated hosts/substrates and geographic regions - representing 16 taxa of the edible mushroom genus Pleurotus (Basidiomycota, Agaricales) were examined through the use of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. A binary matrix, elaborated on the basis of presence/absence of specific absorbance peaks combined with cluster analysis, demonstrated that the spectral region 1800-600 cm(-1) permitted clear delimitation of individual strains into Pleurotus species. In addition, closely related species (e.g., Pleurotus ostreatus and Pleurotus pulmonarius) or taxa of the subgenus Coremiopleurotus demonstrated high similarity in their absorbance patterns, whereas genetically distinct entities such as Pleurotus dryinus, Pleurotus djamor, and Pleurotus eryngii provided spectra with noteworthy differences. When specific regions (1800-1700, 1360-1285, 1125-1068, and 950-650 cm(-1)) were evaluated in respect to the absorbance values demonstrated by individual strains, it was evidenced that this methodology could be eventually exploited for the identification of unknown Pleurotus specimens with a stepwise process and with the aid of a dichotomous key developed for this purpose. Moreover, it was shown that the nature of original fungal material examined (mycelium, basidiomata, and basidiospores) had an effect on the outcome of such analyses, and so did the use of different mycelium growth substrates. In conclusion, application of FT-IR spectroscopy provided a fast, reliable, and cost-efficient solution for the classification of pure cultures from closely related mushroom species.

  10. Effect of Environment and Sugar Beet Genotype on Root Rot Development and Pathogen Profile During Storage.

    PubMed

    Liebe, Sebastian; Varrelmann, Mark

    2016-01-01

    Storage rots represent an economically important factor impairing the storability of sugar beet by increasing sucrose losses and invert sugar content. Understanding the development of disease management strategies, knowledge about major storage pathogens, and factors influencing their occurrence is crucial. In comprehensive storage trials conducted under controlled conditions, the effects of environment and genotype on rot development and associated quality changes were investigated. Prevalent species involved in rot development were identified by a newly developed microarray. The strongest effect on rot development was assigned to environment factors followed by genotypic effects. Despite large variation in rot severity (sample range 0 to 84%), the spectrum of microorganisms colonizing sugar beet remained fairly constant across all treatments with dominant species belonging to the fungal genera Botrytis, Fusarium, and Penicillium. The intensity of microbial tissue necrotization was strongly correlated with sucrose losses (R² = 0.79 to 0.91) and invert sugar accumulation (R² = 0.91 to 0.95). A storage rot resistance bioassay was developed that could successfully reproduce the genotype ranking observed in storage trials. Quantification of fungal biomass indicates that genetic resistance is based on a quantitative mechanism. Further work is required to understand the large environmental influence on rot development in sugar beet.

  11. Engineering photonic Floquet Hamiltonians through Fabry-Pérot resonators

    NASA Astrophysics Data System (ADS)

    Sommer, Ariel; Simon, Jonathan

    2016-03-01

    In this paper we analyze an optical Fabry-Pérot resonator as a time-periodic driving of the (2D) optical field repeatedly traversing the resonator, uncovering that resonator twist produces a synthetic magnetic field applied to the light within the resonator, while mirror aberrations produce relativistic dynamics, anharmonic trapping and spacetime curvature. We develop a Floquet formalism to compute the effective Hamiltonian for the 2D field, generalizing the idea that the intra-cavity optical field corresponds to an ensemble of non-interacting, massive, harmonically trapped particles. This work illuminates the extraordinary potential of optical resonators for exploring the physics of quantum fluids in gauge fields and exotic space-times.

  12. Saturnispora bothae sp. nov., isolated from rotting wood.

    PubMed

    Morais, Camila G; Lara, Carla A; Borelli, Beatriz M; Cadete, Raquel M; Moreira, Juliana D; Lachance, Marc-André; Rosa, Carlos A

    2016-10-01

    Two strains representing a novel species of the genus Saturnispora were isolated from rotting wood samples collected in an Atlantic Rainforest site in Brazil. Analyses of the sequences of the D1/D2 domains of the rRNA gene showed that this novel species belongs to a subclade in the Saturnispora clade formed by Saturnispora sanitii, Saturnispora sekii, Saturnispora silvae and Saturnisporasuwanaritii. The novel species differed in D1/D2 sequences by 60 or more nucleotide substitutions from these species. The strains produced asci with one to four hemispherical ascospores. A novel species named Saturnispora bothae sp. nov. is proposed to accommodate these isolates. The type strain is UFMG-CM-Y292T (=CBS 13484T). The MycoBank number is MB 817127.

  13. Calonectria species associated with cutting rot of Eucalyptus.

    PubMed

    Lombard, L; Zhou, X D; Crous, P W; Wingfield, B D; Wingfield, M J

    2010-06-01

    Decline in the productivity of Eucalyptus hybrid cutting production in the Guangdong Province of China is linked to cutting rot associated with several Calonectria spp. The aim of this study was to identify these fungi using morphological and DNA sequence comparisons. Two previously undescribed Calonectria spp., Ca. pseudoreteaudii sp. nov. and Ca. cerciana sp. nov. were identified together with Ca. pauciramosa. Calonectria pseudoreteaudii resides in the Ca. reteaudii complex and Ca. cerciana is closely related to Ca. morganii. Connected to the discovery of Ca. pseudoreteaudii, species in the Ca. reteaudii complex were re-considered and the group is shown to accommodate two cryptic species. These originate from Australia and are described as Ca. queenslandica sp. nov. and Ca. terrae-reginae sp. nov.

  14. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    PubMed

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation.

  15. ROS-Dependent Mitochondria Molecular Mechanisms Underlying Antitumor Activity of Pleurotus abalonus Acidic Polysaccharides in Human Breast Cancer MCF-7 Cells

    PubMed Central

    Shi, Xiaolong; Zhao, Yan; Jiao, Yadong; Shi, Tengrui; Yang, Xingbin

    2013-01-01

    Background A greater reduction in cancer risk associated with mushroom diet rich in fungus polysaccharides is generally accepted. Meanwhile, edible Pleurotus abalonus as a member of Abalone mushroom family is a popular nutritional supplement that purportedly prevents cancer occurrence. However, these anecdotal claims are supported by limited studies describing tumor-inhibitory responses to the promising polysaccharides, and the molecular mechanisms underlying these properties have not yet been elucidated. Methodology/Principal Findings We here fractionated the crude polysaccharide preparation from the fruiting bodies of P. abalonus into three fractions, namely PAP-1, PAP-2 and PAP-3, and tested these fractions for antiproliferative activity in human breast cancer MCF-7 cells. The largest PAP-3, an acidic polysaccharide fraction with a molecular mass of 3.68×105 Da, was the most active in inhibiting MCF-7 cancer cells with an IC50 of 193 µg/mL. The changes in cell normal morphology were observed by DAPI staining and the PAP-3-induced apoptosis was confirmed by annexin V/propidium iodide staining. The apoptosis was involved in mitochondria-mediated pathway including the loss of mitochondrial membrane potential (Δψm), the increase of Bax/Bcl-2 ratio, caspase-9/3 activation, and poly(ADP-ribose) polymerase (PARP) degradation, as well as intracellular ROS production. PAP-3 also induced up-regulation of p53, and cell cycle arrest at the S phase. The incubation of MCF-7 cells with antioxidant superoxide dismutase (SOD) and N-acetylcysteine (NAC) significantly attenuated the ROS generation and apoptosis caused by PAP-3, indicating that intracellular ROS plays a pivotal role in cell death. Conclusions/Significance These findings suggest that the polysaccharides, especially acidic PAP-3, are very important nutritional ingredients responsible for, at least in part, the anticancer health benefits of P. abalonus via ROS-mediated mitochondrial apoptotic pathway. It is a

  16. Black liquor decolorization by selected white-rot fungi.

    PubMed

    Da Re, Verónica; Papinutti, Leandro

    2011-09-01

    Five different strains of white-rot fungi have been tested for their ability to decolorize black liquor on plates and on solid-state fermentation using vermiculite as the solid inert support. Since the high salt concentration inhibited the growth of all fungi, the black liquor was dialyzed against distilled water prior to use. A preliminary step on plates was carried out to qualitatively determine the capacity of the fungal strains for black liquor decolorization. Out of the five fungi studied, Phanerochaete sordida, Pycnoporus sanguineus, and Trametes elegans exhibited the more conspicuous decolorization halos in malt extract medium, while the decolorization by all the strains was not evident when a defined culture medium was used. Cultures on solid-state fermentation using vermiculite as solid support were also tested, the liquid phase was malt extract or glucose-based medium and supplemented with different black liquor concentrations. Decolorization of black liquor was largely affected by the fungal strain, the concentration of black liquor, and the carbon source. The percentage of color removal ranged from 6.14% to 91.86% depending on the fungal strain and culture conditions. Maximal decolorization was observed in malt extract cultures after 60 cultivation days. Interestingly, decolorization in malt extract medium increased with increasing black liquor concentration. The highest decolorization value was achieved by Steccherinum sp. which reduced up to 91.86% the color of the black liquor in malt extract medium; this percentage is equivalent to 5.2 g L(-1) of decolorized black liquor, the highest value reported to date. Traditional technologies used for the treatment of black liquor are not always effective and may not to be an environmentally friendly process. Vermiculite-white-rot fungi systems are presented in this work as a promising efficient alternative for the treatment of black liquor.

  17. Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process.

  18. Optimization of Arundo donax Saccharification by (Hemi)cellulolytic Enzymes from Pleurotus ostreatus

    PubMed Central

    Liguori, Rossana; Ionata, Elena; Marcolongo, Loredana; Vandenberghe, Luciana Porto de Souza; La Cara, Francesco; Faraco, Vincenza

    2015-01-01

    An enzymatic mixture of cellulases and xylanases was produced by Pleurotus ostreatus using microcrystalline cellulose as inducer, partially characterized and tested in the statistical analysis of Arundo donax bioconversion. The Plackett-Burman screening design was applied to identify the most significant parameters for the enzymatic hydrolysis of pretreated A. donax. As the most significant influence during the enzymatic hydrolysis of A. donax was exercised by the temperature (°C), pH, and time, the combined effect of these factors in the bioconversion by P. ostreatus cellulase and xylanase was analyzed by a 33 factorial experimental design. It is worth noting that the best result of 480.10 mg of sugars/gds, obtained at 45°C, pH 3.5, and 96 hours of incubation, was significant also when compared with the results previously reached by process optimization with commercial enzymes. PMID:26634214

  19. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations.

  20. Intracellular substrates of a heme-containing ascorbate oxidase in Pleurotus ostreatus.

    PubMed

    Lee, Seung-Rock; Joo, Woo-Jeong; Baek, Yong-Un; Lee, Youn-Kyong; Yu, Seong-Woon; Kim, Yeon-Ran; Chay, Kee-Oh; Cho, Seung-Hyun; Kang, Sa-Ouk; Rang, Sa-Ouk

    2009-04-01

    A novel heme-containing ascorbate oxidase isolated from oyster mushroom, Pleurotus ostreatus, catalyzes oxidation of ascorbic acid (Kim et al., 1996). In this report, we describe the identification of intracellular substrates of the enzyme in the mushroom. Six compounds, which can serve as substrate of the heme-containing ascorbate oxidase, were identified as L-ascorbic acid, D-erythroascorbic acid, 5-O-(alpha-D-glucopyranosyl)-D-erythroascorbic acid, 5-O-(alpha-D-xylopyranosyl)-D-erythroascorbic acid, 5-methyl-5-O-(alpha-D-gluco-pyranosyl)-D-erythroascorbic acid, and 5-methyl-5-O-(alpha-D-xylopyranosyl)-D-erythroascorbic acid. All of the compounds were oxidized at a significant rate by the heme-containing ascorbate oxidase. Oxidation of the compounds produced equimolar amounts of hydrogen peroxide per mole of substrate.

  1. Effects of overexpression of PKAc genes on expressions of lignin-modifying enzymes by Pleurotus ostreatus.

    PubMed

    Toyokawa, Chihana; Shobu, Misaki; Tsukamoto, Rie; Okamura, Saki; Honda, Yoichi; Kamitsuji, Hisatoshi; Izumitsu, Kousuke; Suzuki, Kazumi; Irie, Toshikazu

    2016-09-01

    We studied the role of genes encoding the cAMP-dependent protein kinase A catalytic subunit (PKAc) in the ligninolytic system in Pleurotus ostreatus. The wild-type P. ostreatus strain PC9 has two PKAc-encoding genes: PKAc1 and PKAc2 (protein ID 114122 and 85056). In the current study, PKAc1 and PKAc2 were fused with a β-tubulin promoter and introduced into strain PC9 to produce the overexpression strains PKAc1-97 and PKAc2-69. These strains showed significantly higher transcription levels of isozyme genes encoding lignin-modifying enzymes than strain PC9, but the specific gene expression patterns differed between the two recombinant strains. Both recombinants showed 2.05-2.10-fold faster degradation of beechwood lignin than strain PC9. These results indicate that PKAc plays an important role in inducing the wood degradation system in P. ostreatus.

  2. Regulating dyslipidemia effect of polysaccharides from Pleurotus ostreatus on fat-emulsion-induced hyperlipidemia rats.

    PubMed

    Zhang, Yan; Wang, Zhuowei; Jin, Gang; Yang, Xiudong; Zhou, Hongli

    2017-03-18

    This study was conducted to evaluate the regulating dyslipidemia effect of polysaccharides from Pleurotus ostreatus (POP) on fat-emulsion-induced hyperlipidemia rats. A plasma metabonomics method based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was applied to analyze the holistic mechanism of POP in a hyperlipidemia rat model. Multivariate statistical approaches such as principal component analysis and orthogonal projection to latent structure square-discriminant analysis revealed distinctions among the control, hyperlipidemia model, and POP groups.The results demonstrated that POP had an effect on regulating dyslipidemia. The mechanism of POP on regulating dyslipidemia was partially relevant with correcting the abnormal levels of fifteen potential biomarkers towards their normal levels. These biomarkers were belong to glycerophospholipids, fatty acids, prenol lipids, sphingolipids metabolism.

  3. Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor.

    PubMed

    Snajdr, J; Baldrian, P

    2007-01-01

    Enzyme activity was determined in cultures of Pleurotus ostreatus and Trametes versicolor with cellulose as a sole C source and high C/N ratio. The fungi were able to grow and produce laccase and Mn-peroxidase (MnP) at 5-35 degrees C, the highest production being recorded at 25-30 degrees C in P. ostreatus and at 35 degrees C in T. versicolor. Production of both enzymes at 10 degrees C accounted only for 4-20% of the maximum value. Temperature optima for enzyme activity were 50 and 55 degrees C for P. ostreatus and T. versicolor laccases, respectively, and 60 degrees C for MnP. Temperatures causing 50% loss of activity after 24 h were 32 and 47 degrees C for laccases and 36 and 30 degrees C for MnP from P. ostreatus and T. versicolor, respectively.

  4. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation.

    PubMed

    Salmones, Dulce; Mata, Gerardo; Waliszewski, Krzysztof N

    2005-03-01

    The results of the cultivation of six strains of Pleurotus (P. djamor (2), P. ostreatus (2) and P. pulmonarius (2)) on coffee pulp and wheat straw are presented. Metabolic activity associated with biomass of each strain was determined, as well as changes in lignin and polysaccharides (cellulose and hemicellulose), phenolic and caffeine contents in substrate samples colonized for a period of up to 36 days. Analysis were made of changes during the mycelium incubation period (16 days) and throughout different stages of fructification. Greater metabolic activity was observed in the wheat straw samples, with a significant increase between 4 and 12 days of incubation. The degradation of polysaccharide compounds was associated with the fruiting stage, while the reduction in phenolic contents was detected in both substrates samples during the first eight days of incubation. A decrease was observed in caffeine content of the coffee pulp samples during fruiting stage, which could mean that some caffeine accumulates in the fruiting bodies.

  5. Abiotic and Biotic Degradation of Oxo-Biodegradable Plastic Bags by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process. PMID:25419675

  6. Use of biogas fluid-soaked water hyacinth for cultivating Pleurotus geesteranus.

    PubMed

    Chen, Xiuxia; Jiang, Zhihe; Chen, Xi; Lei, Jingui; Weng, Boqi; Huang, Qin

    2010-04-01

    Experiments were carried out to test the viability of growing Pleurotus geesteranus on media containing varying amounts of crushed water hyacinth slices, which were soaked in pig farm biogas fluid and dried. The water hyacinth material was utilized to substitute sawdust in the media for mushroom cultivation. Mushroom fruiting bodies harvested were evaluated for yield, amino acid and heavy metal contents. Among the eight treatment groups, the greatest yield and highest amino acid content in the mushrooms were obtained when the proportions of water hyacinth and sawdust in the medium were equal. The concentrations of heavy metals, Hg, Pb and Cd, in most of the present mushroom samples did not exceed the maximum allowed levels according to the limits set forth by the food hygienic and safety regulations for edible mushrooms in China. The proposed waste utilization of water hyacinth could conceivably benefit the environment in various aspects including conservation of forest by reducing the demand on natural woods for mushroom production.

  7. Immobilization of a Pleurotus ostreatus Laccase Mixture on Perlite and Its Application to Dye Decolourisation

    PubMed Central

    Salatino, Piero; Sannia, Giovanni

    2014-01-01

    In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena. PMID:24895564

  8. Lignocellulolytic enzymes profile during growth and fruiting of Pleurotus ostreatus on wheat straw and tree leaves.

    PubMed

    Elisashvili, Vladimir; Kachlishvili, Eva; Penninckx, Michel J

    2008-06-01

    Cultivation of two commercial Pleurotus ostreatus (oyster mushroom) strains was performed in plastic bags. Tree leaves appeared to be an excellent growth substrate for the conversion into fruiting bodies with biological efficiency of 108-118%. The level of enzyme activity was strongly regulated during the life cycle of mushrooms. However, despite the quantitative variations, each strain had a similar pattern of enzyme accumulation in fermentation of both substrates. Laccase and MnP activities were high during substrate colonization and declined rapidly during fruiting body development. On the contrary, in substrate colonization P. ostreatus expressed comparatively low activity of hydrolases. When primordia appeared, the activity of these enzymes sharply increased. Both cellulase and xylanase activity peaked at the mature fruiting body stage. When mushrooms shifted to the vegetative growth, the activity of ligninolytic enzymes again gradually increased, whereas the activity of hydrolases decreased.

  9. Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation.

    PubMed

    Pezzella, Cinzia; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero; Sannia, Giovanni

    2014-01-01

    In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena.

  10. Isolation, Identification, and Bioactivity of Monoterpenoids and Sesquiterpenoids from the Mycelia of Edible Mushroom Pleurotus cornucopiae.

    PubMed

    Wang, Shaojuan; Bao, Li; Zhao, Feng; Wang, Quanxin; Li, Shaojie; Ren, Jinwei; Li, Li; Wen, Huaan; Guo, Liangdong; Liu, Hongwei

    2013-05-29

    Edible mushroom is a profilic source of bioactive metabolites for the development of drugs and nutraceuticals. In this work, four new monoterpenoids (1-4) and one new sesquiterpenoid (6) were isolated from the mycelia of edible mushroom Pleurotus cornucopiae fermented on rice. Their structures were established by nuclear magnetic resonance, mass spectrometry, and circular dichroism (CD) data analysis. Compound 1 possesses an unusual spiro[benzofuran-3,2'-oxiran] skeleton. The absolute configuration of the 6,7-diol moieties in compounds 1, 2, and 6 was assigned using the in situ dimolybdenum CD method. Compounds 1-5, 7, and 8 showed moderate inhibitory activity against nitric oxide production in lipopolysaccaride-activated macrophages, with IC50 values in the range of 60-90 μM. Compounds 6 and 7 also exhibited slight cytotoxicity against HeLa and HepG2 cells.

  11. Exploring the potential of novel biomixtures and Lentinula edodes fungus for the degradation of selected pesticides. Evaluation for use in biobed systems.

    PubMed

    Pinto, A P; Rodrigues, S C; Caldeira, A T; Teixeira, D M

    2016-01-15

    An approach to reduce the contamination of water sources with pesticides is the use of biopurificaction systems. The active core of these systems is the biomixture. The composition of biomixtures depends on the availability of local agro-industrial wastes and design should be adapted to every region. In Portugal, cork processing is generally regarded as environmentally friendly and would be interesting to find applications for its industry residues. In this work the potential use of different substrates in biomixtures, as cork (CBX); cork and straw, coat pine and LECA (Light Expanded Clay Aggregates), was tested on the degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin pesticides. Bioaugmentation strategies using the white-rot fungus Lentinula edodes inoculated into the CBX, was also assessed. The results obtained from this study clearly demonstrated the relevance of using natural biosorbents as cork residues to increase the capacity of pesticide dissipation in biomixtures for establishing biobeds. Furthermore, higher degradation of all the pesticides was achieved by use of bioaugmented biomixtures. Indeed, the biomixtures inoculated with L. edodes EL1 were able to mineralize the selected xenobiotics, revelling that these white-rot fungi might be a suitable fungus for being used as inoculum sources in on-farm sustainable biopurification system, in order to increase its degradation efficiency. After 120 days, maximum degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin, of bioaugmented CBX, was 89.9%, 75.0%, 65.0% and 99.4%, respectively.. The dominant metabolic route of terbuthylazine in biomixtures inoculated with L. edodes EL1 proceeded mainly via hydroxylation, towards production of terbuthylazine-hydroxy-2 metabolite. Finally, sorption process to cork by pesticides proved to be a reversible process, working cork as a mitigating factor reducing the toxicity to microorganisms in the biomixture, especially in the

  12. Endoplasmic reticulum alpha-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction.

    PubMed

    Mora-Montes, Héctor M; Bates, Steven; Netea, Mihai G; Díaz-Jiménez, Diana F; López-Romero, Everardo; Zinker, Samuel; Ponce-Noyola, Patricia; Kullberg, Bart Jan; Brown, Alistair J P; Odds, Frank C; Flores-Carreón, Arturo; Gow, Neil A R

    2007-12-01

    The cell surface of Candida albicans is enriched in highly glycosylated mannoproteins that are involved in the interaction with the host tissues. N glycosylation is a posttranslational modification that is initiated in the endoplasmic reticulum (ER), where the Glc(3)Man(9)GlcNAc(2) N-glycan is processed by alpha-glucosidases I and II and alpha1,2-mannosidase to generate Man(8)GlcNAc(2). This N-oligosaccharide is then elaborated in the Golgi to form N-glycans with highly branched outer chains rich in mannose. In Saccharomyces cerevisiae, CWH41, ROT2, and MNS1 encode for alpha-glucosidase I, alpha-glucosidase II catalytic subunit, and alpha1,2-mannosidase, respectively. We disrupted the C. albicans CWH41, ROT2, and MNS1 homologs to determine the importance of N-oligosaccharide processing on the N-glycan outer-chain elongation and the host-fungus interaction. Yeast cells of Cacwh41Delta, Carot2Delta, and Camns1Delta null mutants tended to aggregate, displayed reduced growth rates, had a lower content of cell wall phosphomannan and other changes in cell wall composition, underglycosylated beta-N-acetylhexosaminidase, and had a constitutively activated PKC-Mkc1 cell wall integrity pathway. They were also attenuated in virulence in a murine model of systemic infection and stimulated an altered pro- and anti-inflammatory cytokine profile from human monocytes. Therefore, N-oligosaccharide processing by ER glycosidases is required for cell wall integrity and for host-fungus interactions.

  13. Involutin Is an Fe3+ Reductant Secreted by the Ectomycorrhizal Fungus Paxillus involutus during Fenton-Based Decomposition of Organic Matter

    PubMed Central

    Schwenk, Daniel; Nicolás, César; Persson, Per; Hoffmeister, Dirk; Tunlid, Anders

    2015-01-01

    Ectomycorrhizal fungi play a key role in mobilizing nutrients embedded in recalcitrant organic matter complexes, thereby increasing nutrient accessibility to the host plant. Recent studies have shown that during the assimilation of nutrients, the ectomycorrhizal fungus Paxillus involutus decomposes organic matter using an oxidative mechanism involving Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + ˙OH + H2O), similar to that of brown rot wood-decaying fungi. In such fungi, secreted metabolites are one of the components that drive one-electron reductions of Fe3+ and O2, generating Fenton chemistry reagents. Here we investigated whether such a mechanism is also implemented by P. involutus during organic matter decomposition. Activity-guided purification was performed to isolate the Fe3+-reducing principle secreted by P. involutus during growth on a maize compost extract. The Fe3+-reducing activity correlated with the presence of one compound. Mass spectrometry and nuclear magnetic resonance (NMR) identified this compound as the diarylcyclopentenone involutin. A major part of the involutin produced by P. involutus during organic matter decomposition was secreted into the medium, and the metabolite was not detected when the fungus was grown on a mineral nutrient medium. We also demonstrated that in the presence of H2O2, involutin has the capacity to drive an in vitro Fenton reaction via Fe3+ reduction. Our results show that the mechanism for the reduction of Fe3+ and the generation of hydroxyl radicals via Fenton chemistry by ectomycorrhizal fungi during organic matter decomposition is similar to that employed by the evolutionarily related brown rot saprotrophs during wood decay. PMID:26431968

  14. Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus.

    PubMed

    Kirsch, Larissa de Souza; de Macedo, Ana Júlia Porto; Teixeira, Maria Francisca Simas

    2016-01-01

    Edible mushroom species are considered as an adequate source of food in a healthy diet due to high content of protein, fiber, vitamins, and a variety of minerals. The representatives of Pleurotus genus are characterized by distinct gastronomic, nutritional, and medicinal properties among the edible mushrooms commercialized worldwide. In the present study, the growth of mycelial biomass of Pleurotus albidus cultivated in submerged fermentation was evaluated. Saccharose, fructose, and maltose were the three main carbon sources for mycelial biomass formation with corresponding yields of 7.28gL(-1), 7.07gL(-1), and 6.99gL(-1). Inorganic nitrogen sources did not stimulate growth and the optimal yield was significantly higher with yeast extract (7.98gL(-1)). The factorial design used to evaluate the influence of saccharose and yeast extract concentration, agitation speed, and initial pH indicated that all variables significantly influenced the production of biomass, especially the concentration of saccharose. The greater amount of saccharose resulted in the production of significantly more biomass. The highest mycelial biomass production (9.81gL(-1)) was reached in the medium formulated with 30.0gL(-1) saccharose, 2.5gL(-1) yeast extract, pH 7.0, and a speed of agitation at 180rpm. Furthermore, P. albidus manifested different aspects of morphology and physiology under the growth conditions employed. Media composition affected mycelial biomass production indicating that the diversification of carbon sources promoted its improvement and can be used as food or supplement.

  15. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region

    PubMed Central

    Guadarrama-Mendoza, P.C.; del Toro, G. Valencia; Ramírez-Carrillo, R.; Robles-Martínez, F.; Yáñez-Fernández, J.; Garín-Aguilar, M.E.; Hernández, C.G.; Bravo-Villa, G.

    2014-01-01

    Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-nxB1-n, R1-nxB2-1, R2-nxB1-n and R2-nxB2-1). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-nxB1-n being faster than the latter. PMID:25477920

  16. Effectiveness of Neutral Electrolyzed Water on Incidence of Fungal Rot on Tomato Fruits ( Solanum lycopersicum L.).

    PubMed

    Vásquez-López, Alfonso; Villarreal-Barajas, Tania; Rodríguez-Ortiz, Gerardo

    2016-10-01

    We assessed the effect of neutral electrolyzed water (NEW) on the incidence of rot on tomato ( Solanum lycopersicum L.) fruits inoculated with Fusarium oxysporum , Galactomyces geotrichum , and Alternaria sp. at sites with lesions. The inoculated fruits were treated with NEW at 10, 30, and 60 mg liter(-1) active chlorine, with copper oxychloride fungicide, and with sterile distilled water (control) for 3, 5, and 10 min. In the experiment with F. oxysporum , 50 to 80% of the control fruits and 50 to 60% of the fruits treated with the fungicide exhibited symptoms of rot at the inoculated sites. The lowest incidence recorded was 30% for fruits treated with NEW at 60 mg liter(-1) active chlorine with an immersion time of 5 min. In the experiment with G. geotrichum , incidence of rot on control fruits was 70 to 90%, and for treatment with fungicide rot incidence was 50 to 90%. NEW at 60 mg liter(-1) active chlorine significantly reduced incidence of symptomatic fruit: only 30% of the inoculated fruits washed for 5 min had damage from rot. In the experiment with Alternaria sp., 60 to 90% of the fruits in the control group and 60 to 70% of the fruits in the fungicide group were symptomatic. The lowest incidence was recorded for the treatment in which the fruits were submerged in NEW with 60 mg liter(-1) active chlorine for 3 min. In this group, 40 to 50% of the fruits exhibited symptoms of rot. These results were obtained 8 days after inoculation. NEW, with 60 mg liter(-1) active chlorine, significantly reduced incidence of rot symptoms on fruits inoculated with one of the experimental fungi relative to the control (P ≤ 0.05). NEW at 60 mg liter(-1) is effective in the control of fungal rot in tomatoes.

  17. [Preliminary study on N, P, K fertilizer to control of root rot of Bupleurum chinense].

    PubMed

    Zhu, Zai-biao; Liang, Zong-suo; Wei, Xin-rong; Shu, Zhi-ming; Wang, Wei-ling

    2006-10-01

    The application of N and K fertillizer could improve the sensibility of Bupleurvum chinense DC. to Root Rot, while large application of P fertilizer could decrase the sensibility. The fertilizer measure which could obtain highest yield but could not increase its disease resistense. To protect Bupleurum chinense against root rot, more phosphorous fertilizer, certain nitrogen and potassium ferilizer should be applied in early elongation stage in the second growing year.

  18. Experimental and Numerical Characterization of a Hybrid Fabry-Pérot Cavity for Temperature Sensing

    PubMed Central

    Lopez-Aldaba, Aitor; Pinto, Ana Margarida Rodrigues; Lopez-Amo, Manuel; Frazão, Orlando; Santos, José Luís; Baptista, José Manuel; Baierl, Hardy; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe

    2015-01-01

    A hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sensitivity to polarization changes and high stability over time. PMID:25853404

  19. First Report of Myrothecium roridum Causing Leaf and Stem Rot Disease on Peperomia quadrangularis in Korea.

    PubMed

    Han, Kyung-Sook; Choi, Seung-Kook; Kim, Hyeong-Hwan; Lee, Sung-Chan; Park, Jong-Han; Cho, Myoung-Rae; Park, Mi-Jeong

    2014-06-01

    In 2010, symptoms of leaf and stem rot were observed on potted plants (Peperomia quadrangularis) in a greenhouse in Yongin, Korea. The causative pathogen was identified as Myrothecium roridum based on morphological data, internal transcribed spacer sequence analysis, and pathogenicity test. To our knowledge, this is the first report of M. roridum causing leaf and stem rot disease on P. quadrangularis in Korea and elsewhere worldwide.

  20. [Use of kenaf fibre in the elaboration of specific substrates for Pleurotus ostreatus (Jacq. ex Fr.) Kummer cultivation].

    PubMed

    Pardo Giménez, Arturo; Perona Zamora, Ma Aquilina; Pardo Núñez, José

    2008-03-01

    In this study, the viability of the kenaf fibre use, alone or combined with cereal straw, vine shoots and olive mill dried waste, in the elaboration of specific substrates for the cultivation of Pleurotus ostreatus (Jacq. ex Fr.) Kummer, second mushroom in importance cultivated in Spain, is described. Furthermore, three different methods of preparation of the substrate have been considered in order to obtain selectivity for the growth and later fruiting of Pleurotus sporophore. As for the production parameters, the best results have been provided by the substrates that combined kenaf with straw and with vine shoots, being unfavourable the substrates based in just kenaf or combined with olive mill dried waste. As for the treatment applied to the materials, the immersion in water alone and subsequent pasteurization and thermophilic conditioning, together with the semi-anaerobic fermentation, has been favoured in front of the immersion in water with fungicide and later pasteurization.

  1. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe

    PubMed Central

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K.; Beukema, Wouter; Bletz, Molly C.; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F.; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R.; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank

    2016-01-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010–2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity. PMID:27070102

  2. Metacridamides A and B from the biocontrol fungus metarhizium acridum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. As part of an effort to catalog the secondary metabolites of this fungus we discovered that its conidia produce two novel 17-membered macrocycl...

  3. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319.

    PubMed

    Song, Feng-Jing; Xiao, Ming-Gang; Duan, Can-Xing; Li, Hong-Jie; Zhu, Zhen-Dong; Liu, Bao-Tao; Sun, Su-Li; Wu, Xiao-Fei; Wang, Xiao-Ming

    2015-08-01

    Stalk rots are destructive diseases in maize around the world, and are most often caused by the pathogen Pythium, Fusarium and other fungi. The most efficient management for controlling stalk rots is to breed resistant cultivars. Pythium stalk rot can cause serious yield loss on maize, and to find the resistance genes from the existing germplasm is the basis to develop Pythium-resistance hybrid lines. In this study, we investigated the genetic resistance to Pythium stalk rot in inbred line Qi319 using F2 and F2:3 population, and found that the resistance to Pythium inflatum in Qi319 was conferred by two independently inherited dominant genes, RpiQI319-1 and RpiQI319-2. Linkage analysis uncovered that the RpiQI319-1 co-segregated with markers bnlg1203, and bnlg2057 on chromosome 1, and that the RpiQI319-2 locus co-segregated with markers umc2069 and bnlg1716 on chromosome 10. The RpiQI319-1 locus was further mapped into a ~500-kb interval flanked by markers SSRZ33 and SSRZ47. These results will facilitate marker-assisted selection of Pythium stalk rot-resistant cultivars in maize breeding. To our knowledge, this is the first report on the resistance to P. inflatum in the inbred line Qi319, and is also the first description of two independently inherited dominant genes conferring the resistance of Pythium stalk rot in maize.

  4. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles. Final report

    SciTech Connect

    Wang, C.J.K.; Worrall, J.J.

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  5. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles

    SciTech Connect

    Wang, C.J.K.; Worrall, J.J. . Coll. of Environmental Science and Forestry)

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  6. Fabry-Pérot interferometer utilized for displacement measurement in a large measuring range.

    PubMed

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-09-01

    The optical configuration of a Fabry-Pérot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Pérot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Pérot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Pérot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Pérot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experiments is less than 0.3 μm in the traveling range of 30 mm. The experimental results show that the Fabry-Pérot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.

  7. Bacterial farming by the fungus Morchella crassipes.

    PubMed

    Pion, Martin; Spangenberg, Jorge E; Simon, Anaele; Bindschedler, Saskia; Flury, Coralie; Chatelain, Auriel; Bshary, Redouan; Job, Daniel; Junier, Pilar

    2013-12-22

    The interactions between bacteria and fungi, the main actors of the soil microbiome, remain poorly studied. Here, we show that the saprotrophic and ectomycorrhizal soil fungus Morchella crassipes acts as a bacterial farmer of Pseudomonas putida, which serves as a model soil bacterium. Farming by M. crassipes consists of bacterial dispersal, bacterial rearing with fungal exudates, as well as harvesting and translocation of bacterial carbon. The different phases were confirmed experimentally using cell counting and (13)C probing. Common criteria met by other non-human farming systems are also valid for M. crassipes farming, including habitual planting, cultivation and harvesting. Specific traits include delocalization of food production and consumption and separation of roles in the colony (source versus sink areas), which are also found in human agriculture. Our study evidences a hitherto unknown mutualistic association in which bacteria gain through dispersal and rearing, while the fungus gains through the harvesting of an additional carbon source and increased stress resistance of the mycelium. This type of interaction between fungi and bacteria may play a key role in soils.

  8. Bacterial farming by the fungus Morchella crassipes

    PubMed Central

    Pion, Martin; Spangenberg, Jorge E.; Simon, Anaele; Bindschedler, Saskia; Flury, Coralie; Chatelain, Auriel; Bshary, Redouan; Job, Daniel; Junier, Pilar

    2013-01-01

    The interactions between bacteria and fungi, the main actors of the soil microbiome, remain poorly studied. Here, we show that the saprotrophic and ectomycorrhizal soil fungus Morchella crassipes acts as a bacterial farmer of Pseudomonas putida, which serves as a model soil bacterium. Farming by M. crassipes consists of bacterial dispersal, bacterial rearing with fungal exudates, as well as harvesting and translocation of bacterial carbon. The different phases were confirmed experimentally using cell counting and 13C probing. Common criteria met by other non-human farming systems are also valid for M. crassipes farming, including habitual planting, cultivation and harvesting. Specific traits include delocalization of food production and consumption and separation of roles in the colony (source versus sink areas), which are also found in human agriculture. Our study evidences a hitherto unknown mutualistic association in which bacteria gain through dispersal and rearing, while the fungus gains through the harvesting of an additional carbon source and increased stress resistance of the mycelium. This type of interaction between fungi and bacteria may play a key role in soils. PMID:24174111

  9. General metabolism of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Arraes, Fabrício B M; Benoliel, Bruno; Burtet, Rafael T; Costa, Patrícia L N; Galdino, Alexandro S; Lima, Luanne H A; Marinho-Silva, Camila; Oliveira-Pereira, Luciana; Pfrimer, Pollyanna; Procópio-Silva, Luciano; Reis, Viviane Castelo-Branco; Felipe, Maria Sueli S

    2005-06-30

    Annotation of the transcriptome of the dimorphic fungus Paracoccidioides brasiliensis has set the grounds for a global understanding of its metabolism in both mycelium and yeast forms. This fungus is able to use the main carbohydrate sources, including starch, and it can store reduced carbons in the form of glycogen and trehalose; these provide energy reserves that are relevant for metabolic adaptation, protection against stress and infectivity mechanisms. The glyoxylate cycle, which is also involved in pathogenicity, is present in this fungus. Classical pathways of lipid biosynthesis and degradation, including those of ketone body and sterol production, are well represented in the database of P. brasiliensis. It is able to synthesize de novo all nucleotides and amino acids, with the sole exception of asparagine, which was confirmed by the fungus growth in minimal medium. Sulfur metabolism, as well as the accessory synthetic pathways of vitamins and co-factors, are likely to exist in this fungus.

  10. Secretion of laccase and manganese peroxidase by Pleurotus strains cultivate in solid-state using Pinus spp. sawdust

    PubMed Central

    Camassola, Marli; da Rosa, Letícia O.; Calloni, Raquel; Gaio, Tamara A.; Dillon, Aldo J.P.

    2013-01-01

    Pleurotus species secrete phenol oxidase enzymes: laccase (Lcc) and manganese peroxidase (MnP). New genotypes of these species show potential to be used in processes aiming at the degradation of phenolic compounds, polycyclic aromatic hydrocarbons and dyes. Hence, a screening of some strains of Pleurotus towards Lcc and MnP production was performed in this work. Ten strains were grown through solid-state fermentation on a medium based on Pinus spp. sawdust, wheat bran and calcium carbonate. High Lcc and MnP activities were found with these strains. Highest Lcc activity, 741 ± 245 U gdm−1 of solid state-cultivation medium, was detected on strain IB11 after 32 days, while the highest MnP activity occurred with strains IB05, IB09, and IB11 (5,333 ± 357; 4,701 ± 652; 5,999 ± 1,078 U gdm−1, respectively). The results obtained here highlight the importance of further experiments with lignocellulolytic enzymes present in different strains of Pleurotus species. Such results also indicate the possibility of selecting more valuable strains for future biotechnological applications, in soil bioremediation and biological biomass pre-treatment in biofuels production, for instance, as well as obtaining value-added products from mushrooms, like phenol oxidase enzymes. PMID:24159307

  11. Structure-based functional characterization of repressor of toxin (Rot), a central regulator of staphylococcus aureus virulence

    DOE PAGES

    Killikelly, April; Jakoncic, Jean; Benson, Meredith A.; ...

    2014-10-20

    Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure ofmore » Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. As a result, this work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.« less

  12. FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi

    NASA Astrophysics Data System (ADS)

    Xu, Guoqi; Wang, Lihai; Liu, Junliang; Wu, Jinzhuo

    2013-09-01

    In order to investigate different types of decay mechanisms in bamboo (Phyllostachys edulis), the chemical structure and microstructure of bamboo samples decayed by P. chrysosporium (White-rot) and G. trabeum (Brown-rot) for 12 weeks were studied. The analysis methods include fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron spectroscopy (SEM). By using the SEM method, it was found that attacks to parenchyma cells and places near the inner skin of bamboo were the most frequent and the vessels were the primary paths for the spread of mycelium in the bamboo. FTIR and XPS results showed that the crystallinity (I1425/I896) of bamboo decreased after being decayed by these two fungi and the crystalline cellulose in bamboo was degraded. The white-rot P. chrysosporium had stronger degradability on lignin compared to hemicellulose and cellulose in bamboo. And the brown-rot G. trabeum had preferential degradability on hemicellulose fraction over cellulose and lignin. Oxidation and hydrolysis surface reactions occurred during the process of decay, but the reaction rates for cellulose and lignin were different.

  13. Chemical composition of metapleural gland secretions of fungus-growing and non-fungus-growing ants.

    PubMed

    Vieira, Alexsandro S; Morgan, E David; Drijfhout, Falko P; Camargo-Mathias, Maria I

    2012-10-01

    The metapleural gland is exclusive to ants, and unusual among exocrine glands in having no mechanism for closure and retention of secretion. As yet, no clear conclusion has been reached as to the function of metapleural gland secretion. Metapleural gland secretions were investigated for fungus-growing ants representing the derived attines Trachymyrmex fuscus, Atta laevigata, and Acromyrmex coronatus, the basal attines Apterostigma pilosum and Mycetarotes parallelus, and non-fungus-growing ants of the tribes Ectatommini (Ectatomma brunneum) and Myrmicini (Pogonomyrmex naegeli). Our results showed that the secretions of leaf-cutting ants (A. laevigata and A. coronatus) and the derived attine, T. fuscus, contain a greater variety and larger quantities of volatile compounds than those of myrmicine and ectatommine ants. The most abundant compounds found in the metapleural glands of A. laevigata and A. coronatus were hydroxyacids, and phenylacetic acid (only in A. laevigata). Indole was present in all groups examined, while skatole was found in large quantities only in attines. Ketones and aldehydes are present in the secretion of some attines. Esters are present in the metapleural gland secretion of all species examined, although mainly in A. laevigata, A. coronatus, and T. fuscus. Compared with basal attines and non-fungus-growing ants, the metapleural glands of leaf-cutting ants produce more acidic compounds that may have an antibiotic or antifungal function.

  14. Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park.

    PubMed

    Cullings, Ken; Ishkhanova, Galina; Henson, Joan

    2008-11-01

    Ectomycorrhizal (EM) basidiomycete fungi are obligate mutualists of pines and hardwoods that receive fixed C from the host tree. Though they often share most recent common ancestors with wood-rotting fungi, it is unclear to what extent EM fungi retain the ability to express enzymes that break down woody substrates. In this study, we tested the hypothesis that the dominant EM fungus in a pure pine system retains the ability to produce enzymes that break down woody substrates in a natural setting, and that this ability is inducible by reduction of host photosynthetic potential via partial defoliation. To achieve this, pines in replicate blocks were defoliated 50% by needle removal, and enzyme activities were measured in individual EM root tips that had been treated with antibiotics to prevent possible bacterial activity. Results indicate that the dominant EM fungal species (Suillus granulatus) expressed all enzymes tested (endocellulase D: -glucosidase, laccase, manganese peroxidase, lignin peroxidase, phosphatase and protease), and that activities of these enzymes increased significantly (P < 0.001) in response to defoliation. Thus, this EM fungus (one of the more specialized mutualists of pine) has the potential to play a significant role in C, N and P cycling in this forested ecosystem. Therefore, many above-ground factors that reduce photosynthetic potential or divert fixed C from roots may have wide-reaching ecosystem effects.

  15. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence.

    PubMed

    Mehari, Zeraye H; Pilati, Stefania; Sonego, Paolo; Malacarne, Giulia; Vrhovsek, Urska; Engelen, Kristof; Tudzynski, Paul; Zottini, Michela; Baraldi, Elena; Moser, Claudio

    2017-02-27

    Grapes quality and yield can be impaired by bunch rot, caused by the necrotrophic fungus Botrytis cinerea. Infection often occurs at flowering and the pathogen stays quiescent until fruit maturity. Here, we report a molecular analysis of the early interaction between B. cinerea and Vitis vinifera flowers, using a controlled infection system, confocal microscopy and integrated transcriptomic and metabolic analysis of the host and the pathogen. Flowers from fruiting cuttings of the cv. Pinot Noir were infected with GFP-labeled B. cinerea and studied at 24 and 96 hours post inoculation (hpi). We observed that penetration of the epidermis by B. cinerea coincided with increased expression of genes encoding cell wall-degrading enzymes, phytotoxins, and proteases. Grapevine responded with a rapid defense reaction involving 1193 genes associated with the accumulation of antimicrobial proteins, polyphenols, reactive oxygen species and cell wall reinforcement. At 96 hpi the reaction appears largely diminished both in the host and in the pathogen. Our data indicate that the defense responses of the grapevine flower collectively are able to restrict invasive fungal growth into the underlying tissues, thereby forcing the fungus to enter quiescence until the conditions become more favorable to resume pathogenic development.

  16. Biochemical characterization of a novel laccase from the basidiomycete fungus Cerrena sp. WR1.

    PubMed

    Chen, Sheng-Chung; Wu, Po-Hung; Su, Yu-Chang; Wen, Tuan-Nan; Wei, Yun-Syuan; Wang, Nai-Chen; Hsu, Chih-An; Wang, Andrew H-J; Shyur, Lie-Fen

    2012-11-01

    This study reports a new white-rot fungus Cerrena sp. WR1, identified based on an 18S rDNA sequence, which can secrete extracellular forms of laccase with a maximal activity reaching 202 000 U l⁻¹ in a 5-l fermenter. A laccase protein, designated Lcc3, was purified and shown to be N-linked glycosylated by PNGase F and liquid chromatography tandem mass spectrometry analyses. The respective full-length cDNA gene (lcc3) of the Lcc3 protein was obtained using polymerase chain reaction-based methods. Kinetic studies showed that the K(m) and k(cat) of the native Lcc3 were 3.27 μM and 934.6 s⁻¹ for 2,2'-Azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid), 849.1 μM and 147.9 s⁻¹ for guaiacol, 392.7 μM and 109.2 s⁻¹ for 2,6-dimethoxyphenol, and 881 μM and 115.5 s⁻¹ for catechol, respectively. The T(m) of Lcc3 was determined at 73.9°C and it showed a long t(½) (120 min) at 50°C. The laccase was highly ethanol resistant, with 80% of its original activity was detected when incubated in 25% ethanol for 14 days. Furthermore, crude enzyme broth or Lcc3 could degrade lignin in kraft paper (26.5%), and showed high decoloration efficiency (90%) on synthetic dye Remazol Brilliant Blue R. Together, these data demonstrate that Cerrena sp. WR1 Lcc3 possesses novel biochemical and kinetic properties that may aid its application in industry.

  17. Quantum Hall Fabry-Pérot interferometer: Logic gate responses

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Onorato, P.

    2010-08-01

    We discuss the electron transport through a quantum Hall Fabry-Pérot interferometer (QHFPI) obtained with two quantum point contacts (QPCs) in series along a ballistic quantum wire by focusing on the effects due to quantum interference and to quantum Hall effect. We calculate the conductance-energy and conductance-magnetic field characteristics as functions of the geometrical parameters and gate voltages. QHFPI may be utilized in designing electronic logic gates: XOR and OR (NOR and XNOR) gates responses are investigated. The width of each QPC is modulated by metallic electrodes where two gate voltages, namely, Va and Vb, are applied. Those external voltages are treated as the two inputs of the gates. After fixing appropriately the working Fermi energy, the magnetic field strength, and the distance between the barriers, a low output Hall current (0) (in the logical sense) appears just if both inputs are low (0), while a high output Hall current (1) results otherwise. It clearly demonstrates the OR gate behavior. By changing the parameters, a XOR gate can be produced, where a high output current (1) appears, when just one of the two inputs is low (0), while a low output current (0) results if both inputs are low (0) or high (1).

  18. Association mapping in sunflower for sclerotinia head rot resistance

    PubMed Central

    2012-01-01

    Background Sclerotinia Head Rot (SHR) is one of the most damaging diseases of sunflower in Europe, Argentina, and USA, causing average yield reductions of 10 to 20 %, but leading to total production loss under favorable environmental conditions for the pathogen. Association Mapping (AM) is a promising choice for Quantitative Trait Locus (QTL) mapping, as it detects relationships between phenotypic variation and gene polymorphisms in existing germplasm without development of mapping populations. This article reports the identification of QTL for resistance to SHR based on candidate gene AM. Results A collection of 94 sunflower inbred lines were tested for SHR under field conditions using assisted inoculation with the fungal pathogen Sclerotinia sclerotiorum. Given that no biological mechanisms or biochemical pathways have been clearly identified for SHR, 43 candidate genes were selected based on previous transcript profiling studies in sunflower and Brassica napus infected with S. sclerotiorum. Associations among SHR incidence and haplotype polymorphisms in 16 candidate genes were tested using Mixed Linear Models (MLM) that account for population structure and kinship relationships. This approach allowed detection of a significant association between the candidate gene HaRIC_B and SHR incidence (P < 0.01), accounting for a SHR incidence reduction of about 20 %. Conclusions These results suggest that AM will be useful in dissecting other complex traits in sunflower, thus providing a valuable tool to assist in crop breeding. PMID:22708963

  19. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast

    PubMed Central

    Jia, Lei-Jie; Yuan, Ting-Lu; Zhang, Dong; Guo, Yan; Wang, Yufeng; Tang, Wei-Hua

    2016-01-01

    The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen’s growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36–48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1) gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum’s ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk. PMID:26974960

  20. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast.

    PubMed

    Zhang, Yan; He, Juan; Jia, Lei-Jie; Yuan, Ting-Lu; Zhang, Dong; Guo, Yan; Wang, Yufeng; Tang, Wei-Hua

    2016-03-01

    The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen's growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36-48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1) gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum's ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk.

  1. The Urochloa Foliar Blight and Collar Rot Pathogen Rhizoctonia solani AG-1 IA Emerged in South America Via a Host Shift from Rice.

    PubMed

    Chavarro Mesa, Edisson; Ceresini, Paulo C; Ramos Molina, Lina M; Pereira, Danilo A S; Schurt, Daniel A; Vieira, José R; Poloni, Nadia M; McDonald, Bruce A

    2015-11-01

    The fungus Rhizoctonia solani anastomosis group (AG)-1 IA emerged in the early 1990s as an important pathogen causing foliar blight and collar rot on pastures of the genus Urochloa (signalgrass) in South America. We tested the hypothesis that this pathogen emerged following a host shift or jump as a result of geographical overlapping of host species. The genetic structure of host and regional populations of R. solani AG-1 IA infecting signalgrass, rice, and soybean in Colombia and Brazil was analyzed using nine microsatellite loci in 350 isolates to measure population differentiation and infer the pathogen reproductive system. Phylogeographical analyses based on the microsatellite loci and on three DNA sequence loci were used to infer historical migration patterns and test hypotheses about the origin of the current pathogen populations. Cross pathogenicity assays were conducted to measure the degree of host specialization in populations sampled from different hosts. The combined analyses indicate that the pathogen populations currently infecting Urochloa in Colombia and Brazil most likely originated from a population that originally infected rice. R. solani AG-1 IA populations infecting Urochloa exhibit a mixed reproductive system including both sexual reproduction and long-distance dispersal of adapted clones, most likely on infected seed. The pathogen population on Urochloa has a genetic structure consistent with a high evolutionary potential and showed evidence for host specialization.

  2. Identification of anastomosis group of Rhizoctonia solani, the causal agent of seed rot and damping-off of bean in Iran.

    PubMed

    Bohlooli, A; Okhowat, S M; Javan-Nikkhah, M

    2005-01-01

    Bean is one of the major crops in Iran. Seed rot and damping-off caused by Rhizoctonia solani is the most important disease of bean. In this research, infected roots and seedlings of beans were collected from different fields of Tehran Province. The samples were sterilized with 10% sodium hypochloride (5% stock) and incubated on PDA surface in petri-dishes. The purified fungi kept on filter paper and identified, pathogenicity test of R. solani was carried out on 2 cultivars of bean (red bean cv. Naz and white bean cv. Dehghan) and it determined. For identification of the anastomosis groups, the discs of cultured media with 5 mm. diameter of standard AG placed on one side of microscopic slides covered with water agar (2%) of 1 mm. thick and the isolates of the fungus on another side of slide about 2 cm away from each other. Experiment carried out in 4 replications. The cultures were incubated in 25 +/- 1 degrees C incubator for 24 hours, then the mycelial contact stained with lactophenol, cotton blue and hyphal anastomosis looked for under the light microscope with 10 x 40 and 10 x 100 magnifications. As a result, anastomosis groups: AG4, AG4HGII, AG2-2-2B and AG6 determined, frequency of these groups were 64, 18, 2, 16%, respectively. The group AG6 and subgroups AG4HGII and AG2-2-2B are introduced as new anastomosis groups on bean in Iran.

  3. Draft Genome Sequences of Dickeya sp. Isolates B16 (NIB Z 2098) and S1 (NIB Z 2099) Causing Soft Rot of Phalaenopsis Orchids

    PubMed Central

    Alič, Špela; Naglič, Tina; Llop, Pablo; Toplak, Nataša; Koren, Simon; Ravnikar, Maja

    2015-01-01

    The genus Dickeya contains bacteria causing soft rot of economically important crops and ornamental plants. Here, we report the draft genome sequences of two Dickeya sp. isolates from rotted leaves of Phalaenopsis orchids. PMID:26358590

  4. Draft Genome Sequences of Dickeya sp. Isolates B16 (NIB Z 2098) and S1 (NIB Z 2099) Causing Soft Rot of Phalaenopsis Orchids.

    PubMed

    Alič, Špela; Naglič, Tina; Llop, Pablo; Toplak, Nataša; Koren, Simon; Ravnikar, Maja; Dreo, Tanja

    2015-09-10

    The genus Dickeya contains bacteria causing soft rot of economically important crops and ornamental plants. Here, we report the draft genome sequences of two Dickeya sp. isolates from rotted leaves of Phalaenopsis orchids.

  5. Invasive Drosophila suzukii facilitates Drosophila melanogaster infestation and sour rot outbreaks in the vineyards

    PubMed Central

    Guilhot, R.; Xuéreb, A.; Benoit, L.; Chapuis, M. P. ; Gibert, P.

    2017-01-01

    How do invasive pests affect interactions between members of pre-existing agrosystems? The invasive pest Drosophila suzukii is suspected to be involved in the aetiology of sour rot, a grapevine disease that otherwise develops following Drosophila melanogaster infestation of wounded berries. We combined field observations with laboratory assays to disentangle the relative roles of both Drosophila in disease development. We observed the emergence of numerous D. suzukii, but no D. melanogaster flies, from bunches that started showing mild sour rot symptoms days after field collection. However, bunches that already showed severe rot symptoms in the field mostly contained D. melanogaster. In the laboratory, oviposition by D. suzukii triggered sour rot development. An independent assay showed the disease increased grape attractiveness to ovipositing D. melanogaster females. Our results suggest that in invaded vineyards, D. suzukii facilitates D. melanogaster infestation and, consequently, favours sour rot outbreaks. Rather than competing with close species, the invader subsequently permits their reproduction in otherwise non-accessible resources and may cause more frequent, or more extensive, disease outbreaks.

  6. Eco-friendly Rot and Crease Resistance Finishing of Jute Fabric using Citric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Samanta, A. K.; Bagchi, A.

    2013-03-01

    Citric acid (CA) along with chitosan was used on bleached jute fabrics to impart anti crease and rot resistance properties in one step. The treatment was carried out by pad-dry-cure method in presence of sodium hypophosphite monohydrate catalyst. Curing at 150° Centigrade for 5 min delivered good crease resistant property (dry crease recovery angle is 244°) and high rot resistance simultaneously by a single treatment, which are durable for five washings with distilled water. Strength retention of jute fabric after 21 days soil burial was found to be 81 % and the loss (%) in strength due to this treatment was 15-18 %. The results showed that chitosan and CA treated-fabric exhibited higher rot resistance (as indicated by soil burial test) when compared to either CA or chitosan by individual treatment. The effect of CA and chitosan combination on the resistance to rotting of jute fabric was found to be synergistic which is higher than the sum of the effects of individual chemicals. CA possibly reacts with hydroxyl groups in cellulose or chitosan to form ester. The CA and chitosan finished fabric has adverse effect on stiffness. Thermal studies showed that final residue left at 500° C was much higher for CA and chitosan treated fabric than untreated jute fabric. FTIR spectroscopy suggested the formation of ester cross-linkage between the jute fibre, CA and chitosan and hence it is understood that this rot resistant finish on jute fabric become durable by this mechanism.

  7. HERITABILITY OF CLOVER ROT RESISTANCE (SCLEROTINIA SPP.) IN RED CLOVER (TRIFOLIUM PRATENSE) POPULATIONS.

    PubMed

    Vleugels, T; Van Bockstaele, E

    2014-01-01

    European red clover (Trifolium pratense) crops are susceptible to clover rot, a destructive disease caused by Sclerotinia trifoliorum or S. sclerotiorum. The lack of knowledge on the heritability of clover rot resistance is, among other reasons, responsible for the slow progress of resistance breeding. In this paper, we acquired insight in the heritability of clover rot resistance through divergent selection by our high-throughput bio-test on an experimental diploid population. The disease susceptibility indices of the first generation after selection for susceptibility and the first and the second generation after selection for resistance were compared with the susceptibility of the original population. The susceptible population (79.2%), the original population (70.5%) and the first generation resistant population (62.3%) differed significantly in susceptibility (p < 0.001). The first (62.3%) and second generation resistant population (60.0%) did not differ significantly in susceptibility. The heritability (h2) of clover rot resistance was low: 0.34 and 0.07 in the first and second cycle of selection respectively. This indicates that mass selection is not suitable to improve clover rot resistance. Family selection may allow a sustained increase in resistance for multiple generations.

  8. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt.

    PubMed

    Hassan, Naglaa; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-03-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt.

  9. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt

    PubMed Central

    Hassan, Naglaa; Shimizu, Masafumi

    2014-01-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737

  10. Sour rot-damaged grapes are sources of wine spoilage yeasts.

    PubMed

    Barata, André; González, Sara; Malfeito-Ferreira, Manuel; Querol, Amparo; Loureiro, Virgílio

    2008-11-01

    Yeast species of sound and sour rot-damaged grapes were analysed during fermentation and grape ripening in the vineyard, using general and selective culture media. During 2003 and 2004 vintages, microvinifications were carried out with sound grapes to which different amounts of grapes with sour rot were added. The wine spoilage species Zygosaccharomyces bailii was only recovered during fermentations with sour rot, reaching 5.00 log CFU mL(-1) (2003) and 2.48 log CFU mL(-1) (2004) at the end of fermentation. The study of yeast populations during the sour rot ripening process (2005 vintage) showed that the veraison-damaged grapes always exhibited higher total yeast counts and a much greater diversity of species. From a total of 22 ascomycetous species, 17 were present only in damaged grapes. The most frequent species were Issatchenkia occidentalis and Zygoascus hellenicus. The spoilage species Z. bailii and Zygosaccharomyces bisporus were consistently isolated exclusively from damaged grapes. This work demonstrates that one of the most dangerous wine spoilage species, Z. bailii, is strongly associated with sour rot grapes and survives during fermentation with Saccharomyces cerevisiae. The use of selective media provides a more accurate characterization of grape contamination species.

  11. Degradation of wheat straw cell wall by white rot fungi Phanerochaete chrysosporium

    NASA Astrophysics Data System (ADS)

    Zeng, Jijiao

    The main aim of this dissertation research was to understand the natural microbial degradation process of lignocellulosic materials in order to develop a new, green and more effective pretreatment technology for bio-fuel production. The biodegradation of wheat straw by white rot fungi Phanerochaete chrysosporium was investigated. The addition of nutrients significantly improved the performance of P.chrysosporium on wheat straw degradation. The proteomic analysis indicated that this fungus produced various pepetides related to cellulose and lignin degradation while grown on the biomass. The structural analysis of lignin further showed that P.chrysosporium preferentially degraded hydroxycinnamtes in order to access cellulose. In details, the effects of carbon resource and metabolic pathway regulating compounds on manganeses peroxidase (MnP) were studied. The results indicated that MnP activity of 4.7 +/- 0.31 U mL-1 was obtained using mannose as a carbon source. The enzyme productivity further reached 7.36 +/- 0.05 U mL-1 and 8.77 +/- 0.23 U mL -1 when the mannose medium was supplemented with cyclic adenosine monophosphate (cAMP) and S-adenosylmethionine (SAM) respectively, revealing highest MnP productivity obtained by optimizing the carbon sources and supplementation with small molecules. In addition, the effects of nutrient additives for improving biological pretreatment of lignocellulosic biomass were studied. The pretreatment of wheat straw supplemented with inorganic salts (salts group) and tween 80 was examined. The extra nutrient significantly improved the ligninase expression leading to improve digestibility of lignocellulosic biomass. Among the solid state fermentation groups, salts group resulted in a substantial degradation of wheat straw within one week, along with the highest lignin loss (25 %) and ˜ 250% higher efficiency for the total sugar release through enzymatic hydrolysis. The results were correlated with pyrolysis GC-MS (Py

  12. FLUORESCENT-SERIOLOGICAL INVESTIGATIONS OF A PATHOGENIC FUNGUS (SPOROTRICHUM SCHENCKII),

    DTIC Science & Technology

    coloration of numerous other species of fungus no cross reactions with Sporotrichum schenkii were found. The use of this fluorescent coloring method for the diagnosis of Sporotrichosis is suggested. (Author)

  13. The role of mites in insect-fungus associations.

    PubMed

    Hofstetter, R W; Moser, J C

    2014-01-01

    The interactions among insects, mites, and fungi are diverse and complex but poorly understood in most cases. Associations among insects, mites, and fungi span an almost incomprehensible array of ecological interactions and evolutionary histories. Insects and mites often share habitats and resources and thus interact within communities. Many mites and insects rely on fungi for nutrients, and fungi benefit from them with regard to spore dispersal, habitat provision, or nutrient resources. Mites have important impacts on community dynamics, ecosystem processes, and biodiversity within many insect-fungus systems. Given that mites are understudied but highly abundant, they likely have bigger, more important, and more widespread impacts on communities than previously recognized. We describe mutualistic and antagonistic effects of mites on insect-fungus associations, explore the processes that underpin ecological and evolutionary patterns of these multipartite communities, review well-researched examples of the effects of mites on insect-fungus associations, and discuss approaches for studying mites within insect-fungus communities.

  14. An insect parasitoid carrying an ochratoxin producing fungus

    NASA Astrophysics Data System (ADS)

    Vega, Fernando E.; Posada, Francisco; Gianfagna, Thomas J.; Chaves, Fabio C.; Peterson, Stephen W.

    2006-06-01

    The insect parasitoid Prorops nasuta has been introduced from Africa to many coffee-producing countries in an attempt to control the coffee berry borer. In this paper, we report on the sequencing of the ITS LSU-rDNA and beta-tubulin loci used to identify a fungus isolated from the cuticle of a P. nasuta that emerged from coffee berries infected with the coffee berry borer. The sequences were compared with deposits in GenBank and the fungus was identified as Aspergillus westerdijkiae. The fungus tested positive for ochratoxin A production, with varying levels depending on the media in which it was grown. These results raise the possibility that an insect parasitoid might be disseminating an ochratoxin-producing fungus in coffee plantations.

  15. An insect parasitoid carrying an ochratoxin producing fungus.

    PubMed

    Vega, Fernando E; Posada, Francisco; Gianfagna, Thomas J; Chaves, Fabio C; Peterson, Stephen W

    2006-06-01

    The insect parasitoid Prorops nasuta has been introduced from Africa to many coffee-producing countries in an attempt to control the coffee berry borer. In this paper, we report on the sequencing of the ITS LSU-rDNA and beta-tubulin loci used to identify a fungus isolated from the cuticle of a P. nasuta that emerged from coffee berries infected with the coffee berry borer. The sequences were compared with deposits in GenBank and the fungus was identified as Aspergillus westerdijkiae. The fungus tested positive for ochratoxin A production, with varying levels depending on the media in which it was grown. These results raise the possibility that an insect parasitoid might be disseminating an ochratoxin-producing fungus in coffee plantations.

  16. Genome Analysis of a Zygomycete Fungus Choanephora cucurbitarum Elucidates Necrotrophic Features Including Bacterial Genes Related to Plant Colonization

    PubMed Central

    Min, Byoungnam; Park, Ji-Hyun; Park, Hongjae; Shin, Hyeon-Dong; Choi, In-Geol

    2017-01-01

    A zygomycete fungus, Choanephora cucurbitarum is a plant pathogen that causes blossom rot in cucurbits and other plants. Here we report the genome sequence of Choanephora cucurbitarum KUS-F28377 isolated from squash. The assembled genome has a size of 29.1 Mbp and 11,977 protein-coding genes. The genome analysis indicated that C. cucurbitarum may employ a plant pathogenic mechanism similar to that of bacterial plant pathogens. The genome contained 11 genes with a Streptomyces subtilisin inhibitor-like domain, which plays an important role in the defense against plant immunity. This domain has been found only in bacterial genomes. Carbohydrate active enzyme analysis detected 312 CAZymes in this genome where carbohydrate esterase family 6, rarely found in dikaryotic fungal genomes, was comparatively enriched. The comparative genome analysis showed that the genes related to sexual communication such as the biosynthesis of β-carotene and trisporic acid were conserved and diverged during the evolution of zygomycete genomes. Overall, these findings will help us to understand how zygomycetes are associated with plants. PMID:28091548

  17. Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fun...

  18. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of chitosan and oligochitosan to enhance the resistance of ginger (Zingiber officinale) to rhizome rot, caused by Fusarium oxysporum, in storage was investigated. Both chitosan and oligochitosan at 1 and 5 g/L significantly inhibited rhizome rot, relative to the untreated control, with...

  19. Effect of cultural practices and fungicide treatments on the severity of Phytophthora root rot of blueberries grown in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effect of cultural practices and fungicide treatments on the severity of Phytophthora root rot of blueberries grown in Mississippi Melinda Miller-Butler and Barbara J. Smith ABSTRACT. Phytophthora root rot is an important disease of blueberries especially when grown in areas with poor drainage. Re...

  20. Mucor rot - An emerging postharvest disease of mandarin fruit caused by Mucor piriformis and other Mucor spp. in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, an emerging, undescribed postharvest fruit rot disease was observed on mandarin fruit after extended storage in California. We collected decayed mandarin fruit from three citrus packinghouses in the Central Valley of California in 2015 and identified this disease as Mucor rot caused...