Science.gov

Sample records for rotary engines

  1. Rotary engine

    SciTech Connect

    Brownfield, L.A.

    1980-12-02

    The major components of this rotary engine are two equal sized rotary units, the housing containing them along with associated ignition and cooling systems. Each of the rotary units consists of a shaft, gear, two outer compressor wheels, and one center power wheel which has twice the axial thickness as the compressor wheel. All the wheels are cylindrical in shape with a lobe section comprising a 180/sup 0/ arc on the periphery of each wheel which forms an expanding and contracting volumetric chamber by means of leading and trailing lips. The lobes of the first rotary unit are situated 180/sup 0/ opposite the lobes of the second adjacent mating rotary unit, thus lobes can intermesh with its corresponding wheel.

  2. Rotary engine

    SciTech Connect

    Meyman, U.

    1987-02-03

    A rotary engine is described comprising: two covers spaced from one another; rotors located between the covers and rotating and planetating in different phases; the rotors interengaging to form working chambers therebetween; means to supply fluid to the working chambers and means to exhaust fluid from the working chambers during the operating cycle of the engine; gearing for synchronizing rotation and planetation of the rotors and each including first and second gears arranged so that one of the gears is connected with the rotors while the other of the gears is connected with an immovable part of the engine and the gears engage with one another; carriers interconnecting the rotors and planetating in the same phase with the planetation of the rotors for synchronizing the rotation and planetation of the rotors; shafts arranged to support the carriers during their planetations; and elements for connecting the covers with one another.

  3. Rotary engine

    SciTech Connect

    Russell, R.L.

    1987-03-31

    An internal combustion four cycle rotary engine is described comprising: a generally cylindrical having one or more accurately spaced cylinders, each carrying a piston therein extending radially of a central rotational axis of the rotor; stationary bearings support shaft means disposed coaxially of the rotor, unitary combustion chamber means carrying main bearing means for rotatably supporting the same on the shaft means and providing one or more individual combustion chambers, each independently communicating with one of the cylinders; the chamber means being mounted concentrically of the rotor and rotatably moveable therewith about the shaft means; cam means comprising a pair of registeringly aligned, axially spaced, continuously curvilinear cam track means which are formed radially assymmetrical about a central axis coincident with the rotational axis of the rotor; the pair of cam track means being located axially outwardly of the cylinders in parallel planes lying formal to the rotational axis and adjacent opposite axial ends of the rotor; cam rider assembly means, each having follower means engaged with the track means for following the contour thereof; and means coupling a rider assembly means to the piston in each cylinder whereby to effect reciprocal strokes of each piston coaxially of its associated cylinder and radially of the rotor in response to the movements of the follower means along the track means; the track means being constructed and arranged to produce distinctly dissimilar movements of the pistons, to produce strokes of unequal duration and length during the respective intake, compression, combustion and exhaust strokes thereof.

  4. Rotary engine

    SciTech Connect

    Wilson, Z.

    1990-08-28

    This paper discusses an engine. It comprises a cylinder block; cylinders contained in the cylinder block; matching pistons, each piston reciprocatingly received in one of the cylinders; matching piston rods, each rod connected to one of the pistons and extending outwardly from the block; sheave gears, each sheave gear having a sheave gear axis and a circumference disposed about the sheave gear axis bearing a set of gear teeth thereon; means connecting a respective one of the sheave gears to a respective one of the pistons rods such that reciprocation of the pistons in the cylinders causes rotation of the sheave gears about the sheave gears axes; a combination flywheel/ring gear having a ring gear axis and an outer circumference disposed about the axis bearing a set of ring gear teeth thereon; and means positioning the flywheel/ring gear such that the gear teeth on the flywheel/ring gear engaged the gear teeth on the sheave gears. The flywheel/ring gear is rotated about by its axis by rotation of the sheave gears upon reciprocation of the pistons in the cylinders.

  5. Advanced rotary engine studies

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  6. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  7. Regenerative rotary displacer Stirling engine

    SciTech Connect

    Isshiki, Naotsugu; Watanabe, Hiroichi; Raggi, L.; Isshiki, Seita; Hirata, Koichi

    1996-12-31

    A few rotary displacer Stirling engines in which the displacer has one gas pocket space at one side and rotates in a main enclosed cylinder, which is heated from one side and cooled from opposite side without any regenerator, have been studied for some time by the authors. The authors tried to improve this engine by equipping it with a regenerator, because without a regenerator, pressure oscillation and efficiency are too small. Here, several types of regenerative rotary displacer piston Stirling engines are proposed. One is the contra-rotating tandem two disc type displacer engine using axial heat conduction through side walls or by heat pipes and another is a single disc type with circulating fluid regenerator or heat pipes. Stirling engines of this new rotary displacer type are thought to attain high speed. Here, experimental results of the original rotary displacer Stirling engine without a regenerator, and one contra-rotating tandem displacer engine with side wall regenerator by axial heat conduction are reported accompanied with a discussion of the results.

  8. Rotary piston engine

    SciTech Connect

    Sakita, M.

    1992-07-28

    This patent describes an internal combustion engine including a housing forming a cylindrical working chamber having inlet and exhaust ports. This patent describes at least two more pairs of interconnected eccentric elliptical gears in the gear train between the first and second pairs of elliptical gears in substantially the same phased relationship with the first and second pairs of elliptical gears. This patent also describes a gear set for coupling first and second shafts having parallel extending axes. It comprises: first and second compound eccentric elliptical gears adapted for rotation about the first and second shaft axes, generally radially extending intermeshing teeth on the gears, generally axially extending teeth in an eccentric elliptical pattern at at least one face of the first and second gears, and an idler gear rotatable about an axis which intersects the first and second shaft axes and meshing with axially extending teeth of the first and second gears.

  9. Axial flow rotary engine

    SciTech Connect

    Loran, W.; Robinson, M.A.

    1989-07-18

    This paper describes an internal combustion engine. It comprises: a housing having an intake port at one end thereof and an exhaust port at the other end thereof; a compression chamber in the housing near the one end; compressor means in the compression chamber; a compressor transfer port opening through the downstream outlet wall; an expansion chamber in the housing near the other end thereof to receive combusted gases; work means in the expansion chamber driven by expanding, combusted gases; means rotating the compressor outlet wall at the same rotational drive speed as the expander inlet wall; an expansion chamber inlet port opening extending through the upstream inlet wall; a cylindrical combustion chamber block rotatable in the housing intermediate the compression chamber and the expansion chamber; at least two combustion chambers in the block; means rotating the block at a reduced speed relative to the speed of rotation of the compressor outlet wall and the expander inlet wall; means for igniting the charge of compressed gas during the intermediate portion of each revolution of the combustion chamber block. The combustion chambers being substantially hemispherical; the speed of rotation of the compressor outlet wall is in the same ratio to the speed of rotation of the combustion chamber block as the number of combustion chambers in the block is to the number of combustion chambers less one.

  10. Stratified charge rotary engine for general aviation

    NASA Technical Reports Server (NTRS)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  11. Stratified charge rotary engine for general aviation

    NASA Technical Reports Server (NTRS)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  12. Stratified charge rotary engine combustion studies

    NASA Technical Reports Server (NTRS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-01-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  13. Deformation analysis of rotary combustion engine housings

    NASA Technical Reports Server (NTRS)

    Vilmann, Carl

    1991-01-01

    This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.

  14. An overview of the NASA rotary engine research program

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Hady, W. F.

    1984-01-01

    A brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center are presented. The test results obtained from turbocharged rotary engines and preliminary results from a high performance single rotor engine were discussed. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies were examined. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies was reviewed. Details are presented on single rotor stratified charge rotary engine research efforts, both in-house and on contract.

  15. Development of natural gas rotary engines

    NASA Astrophysics Data System (ADS)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  16. The Rotary Combustion Engine: a Candidate for General Aviation. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The state of development of the rotary combustion engine is discussed. The nonturbine engine research programs for general aviation and future requirements for general aviation powerplants are emphasized.

  17. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  18. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  19. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  20. An overview of the NASA Rotary Engine Research Program

    SciTech Connect

    Meng, P.R.; Hady, W.F.

    1984-01-01

    This paper presents a brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center. The review covers the test results obtained from turbocharged rotary engines and preliminary results from a high performance single-rotor engine. Combustion modeling studies of the rotary engine and the use of a laser doppler velocimeter to confirm the studies are discussed. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies is also covered. Details are presented on single-rotor stratified-charge rotary engine research efforts, both in-house and on contract.

  1. Engineering study of the rotary-vee engine concept

    NASA Technical Reports Server (NTRS)

    Willis, Edward A.; Bartrand, Timothy A.; Beard, John E.

    1989-01-01

    The applicable thermodynamic cycle and performance considerations when the rotary-vee mechanism is used as an internal combustion (I.C.) heat engine are reviewed. Included is a simplified kinematic analysis and studies of the effects of design parameters on the critical pressures, torques and parasitic losses. A discussion of the principal findings is presented.

  2. Engineering study on the rotary-vee engine concept

    NASA Technical Reports Server (NTRS)

    Willis, Edward A.; Bartland, Timothy A.; Beard, John E.

    1989-01-01

    This paper provides a review of the applicable thermodynamic cycle and performance considerations when the rotary-vee mechanism is used as an internal combustion (IC) heat engine. Included is a simplified kinematic analysis and studies of the effects of design parameters on the critical pressures, torques and parasitic losses. A discussion of the principal findings is presented.

  3. Development of a natural gas stratified charge rotary engine

    SciTech Connect

    Sierens, R.; Verdonck, W.

    1985-01-01

    A water model has been used to determine the positions of separate inlet ports for a natural gas, stratified charge rotary engine. The flow inside the combustion chamber (mainly during the induction period) has been registered by a film camera. From these tests the best locations of the inlet ports have been obtained, a prototype of this engine has been built by Audi NSU and tested in the laboratories of the university of Gent. The results of these tests, for different stratification configurations, are given. These results are comparable with the best results obtained by Audi NSU for a homogeneous natural gas rotary engine.

  4. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, an advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25,000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed. Previously announced in STAR as N83-18910

  5. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  6. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  7. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  8. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  9. A review of Curtiss-Wright rotary engine developments with respect to general aviation potential

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1979-01-01

    Aviation related rotary (Wankel-type) engine tests, possible growth directions and relevant developments at Curtiss-Wright have been reviewed. Automotive rotary engines including stratified charge are described and flight test results of rotary aircraft engines are presented. The current 300 HP engine prototype shows basic durability and competitive performance potential. Recent parallel developments have separately confirmed the geometric advantages of the rotary engine for direct injected unthrottled stratified charge. Specific fuel consumption equal to or better than pre- or swirl-chamber diesels, low emission and multi-fuel capability have been shown by rig tests of similar rotary engine.

  10. A review of Curtiss-Wright rotary engine developments with respect to general aviation potential

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1979-01-01

    Aviation related rotary (Wankel-type) engine tests, possible growth directions and relevant developments at Curtiss-Wright have been reviewed. Automotive rotary engines including stratified charge are described and flight test results of rotary aircraft engines are presented. The current 300 HP engine prototype shows basic durability and competitive performance potential. Recent parallel developments have separately confirmed the geometric advantages of the rotary engine for direct injected unthrottled stratified charge. Specific fuel consumption equal to or better than pre- or swirl-chamber diesels, low emission and multi-fuel capability have been shown by rig tests of similar rotary engine.

  11. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  12. Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1993-01-01

    This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.

  13. Experimental analysis of IMEP in a rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Schock, H. J.; Rice, W. J.; Meng, P. R.

    1981-01-01

    A real time indicated mean effective pressure measurement system is described which is used to judge proposed improvements in cycle efficiency of a rotary combustion engine. This is the first self-contained instrument that is capable of making real time measurements of IMEP in a rotary engine. Previous methods used require data recording and later processing using a digital computer. The unique features of this instrumentation include its ability to measure IMEP on a cycle by cycle, real time basis and the elimination of the need to differentiate volume function in real time. Measurements at two engine speeds (2000 and 3000 rpm) and a full range of loads are presented, although the instrument was designed to operate to speeds of 9000 rpm.

  14. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  15. Rotary wave-ejector enhanced pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Nalim, M. R.; Izzy, Z. A.; Akbari, P.

    2012-01-01

    The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.

  16. Preliminary Assessment of a Rotary Detonation Engine Concept.

    DTIC Science & Technology

    1983-09-01

    S3RSUYIN STATEMENT W 4 s~u do""d to afo 8% of mftsew= kenamoe) IL. 31uiP901111TAINY WOME Detonation Combustion Rotary Engine Intermittent Detonation Engine...There are several features to be noted. Mixture com- ponents entered separately from the right via valves 1, 2, and 3, entering the horizontally mounted...Mixing chamber pressure was indicated on the right . Both gages indicated in terms of absolute pressures with a range of zero to thirty psia. The mixed

  17. Rotary Engine Friction Test Rig Development Report

    DTIC Science & Technology

    2011-12-01

    unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval...used to determine friction characteristics from experimental measurements. A computer-aided design model of an engine friction test rig was designed ...focused research from other technical areas, including ceramic components, advanced bearing designs , etc., since an electric motor is used to spin the

  18. Update of development on the new Audi NSU rotary engine generation. [for application to aircraft engines

    NASA Technical Reports Server (NTRS)

    Vanbasshuysen, R.

    1978-01-01

    Rotary engines with a chamber volume of 750 cc as a two rotor automotive powerplant, called KKM 871 are described. This engine is compared to a 3 liter or 183 cubic inch, six-cylinder reciprocating engine. Emphasis is placed on exhaust emission control and fuel economy.

  19. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    NASA Astrophysics Data System (ADS)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  20. Theoretical and experimental study on regenerative rotary displacer Stirling engine

    SciTech Connect

    Raggi, L.; Katsuta, Masafumi; Isshiki, Naotsugu; Isshiki, Seita

    1997-12-31

    Recently a quite new type of hot air engine called rotary displacer engine, in which the displacer is a rotating disk enclosed in a cylinder, has been conceived and developed. The working gas, contained in a notch excavated in the disk, is heated and cooled alternately, on account of the heat transferred through the enclosing cylinder that is heated at one side and cooled at the opposite one. The gas temperature oscillations cause the pressure fluctuations that get out mechanical power acting on a power piston. In order to attempt to increase the performances for this kind of engine, the authors propose three different regeneration methods. The first one comprises two coaxial disks that, revolving in opposite ways, cause a temperature gradient on the cylinder wall and a regenerative axial heat conduction through fins shaped on the cylinder inner wall. The other two methods are based on the heat transferred by a proper closed circuit that in one case has a circulating liquid inside and in the other one is formed by several heat pipes working each one for different temperatures. An engine based on the first principle, the Regenerative Tandem Contra-Rotary Displacer Stirling Engine, has been realized and experimented. In this paper experimental results with and without regeneration are reported comparatively with a detailed description of the unity. A basic explanation of the working principle of this engine and a theoretical analysis investigating the main influential parameters for the regenerative effect are done. This new rotating displacer Stirling engines, for their simplicity, are expected to attain high rotational speed especially for applications as demonstration and hobby unities.

  1. A dynamic analysis of rotary combustion engine seals

    NASA Technical Reports Server (NTRS)

    Knoll, J.; Vilmann, C. R.; Schock, H. J.; Stumpf, R. P.

    1984-01-01

    Real time work cell pressures are incorporated into a dynamic analysis of the gas sealing grid in Rotary Combustion Engines. The analysis which utilizes only first principal concepts accounts for apex seal separation from the crochoidal bore, apex seal shifting between the sides of its restraining channel, and apex seal rotation within the restraining channel. The results predict that apex seals do separate from the trochoidal bore and shift between the sides of their channels. The results also show that these two motions are regularly initiated by a seal rotation. The predicted motion of the apex seals compares favorably with experimental results. Frictional losses associated with the sealing grid are also calculated and compare well with measurements obtained in a similar engine. A comparison of frictional losses when using steel and carbon apex seals has also been made as well as friction losses for single and dual side sealing.

  2. Design of a new type of rotary Stirling engine

    SciTech Connect

    Abenavoli, R.I.; Dong, W.; Fedele, L.; Sciaboni, A.

    1996-12-31

    The Stirling machine has had wide diffusion only in cold or cryogenic applications (Philips) while the engine, despite big efforts of large Companies (Philips, Westinghouse, General Motors, etc.), never definitively reached the market; today new interest is raised correlated with environmental and energy related considerations. Thus, researchers efforts are addressed towards the design of innovative and more competitive Stirling engine configurations, like the one here proposed. This paper describes the configuration of a new, rotary Stirling engine. In the cold part of the engine, the working fluid is compressed by a rotating element, then it passes through the regenerator from the cold to the hot end, where it absorbs the heat and expands in the high pressure and temperature area. The high pressure working fluid pushes on the rotating element (the so called rotator) and the engine outputs power. In the design, compression and expansion volumes change with the rotation. Two rotators are connected with a set of gears: therefore, the engine transmission system is simplified and dimensions are reduced.

  3. Stratified Charge Rotary Engine Critical Technology Enablement, Volume 1

    NASA Technical Reports Server (NTRS)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This report summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation, and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems.

  4. Stratified charge rotary engine critical technology enablement. Volume 2: Appendixes

    NASA Technical Reports Server (NTRS)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This second volume of appendixes is a companion to Volume 1 of this report which summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation; and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems. A family of four-stage third-order explicit Runge-Kutta schemes is derived that required only two locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  5. Rotary engine developments at Curtiss-Wright over the past 20 years and review of general aviation engine potential. [with direct chamber injection

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1978-01-01

    The development of the rotary engine as a viable power plant capable of wide application is reviewed. Research results on the stratified charge engine with direct chamber injection are included. Emission control, reduced fuel consumption, and low noise level are among the factors discussed in terms of using the rotary engine in general aviation aircraft.

  6. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOEpatents

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  7. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  8. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  9. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  10. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  11. Design of a high-performance rotary stratified-charge research aircraft engine

    NASA Technical Reports Server (NTRS)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  12. Design of a high-performance rotary stratified-charge research aircraft engine

    NASA Technical Reports Server (NTRS)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  13. Computational experience with a three-dimensional rotary engine combustion model

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1990-01-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  14. Rotary engine performance limits predicted by a zero-dimensional model

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  15. Performance of a supercharged direct-injection stratified-charge rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1990-01-01

    A zero-dimensional thermodynamic performance computer model for direct-injection stratified-charge rotary combustion engines was modified and run for a single rotor supercharged engine. Operating conditions for the computer runs were a single boost pressure and a matrix of speeds, loads and engine materials. A representative engine map is presented showing the predicted range of efficient operation. After discussion of the engine map, a number of engine features are analyzed individually. These features are: heat transfer and the influence insulating materials have on engine performance and exhaust energy; intake manifold pressure oscillations and interactions with the combustion chamber; and performance losses and seal friction. Finally, code running times and convergence data are presented.

  16. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  17. A Review of Heavy-Fueled Rotary Engine Combustion Technologies

    DTIC Science & Technology

    2011-05-01

    and 6000 rpm. Engine power output was 100 bhp (75 kW), which is 50% cruise power at 6000 rpm. However, the results were similar to the thermal...The achieved BSFC was 257 g/kWh (0.422 lb/hp-h) at 98 bhp (73.1 kW) at 5500 rpm. The first 29 version of the dual-orifice engine experienced poor...bar BMEP at 5500 rpm (95 bhp or 71 kW). The BSFC of 249.4 g/kWh (0.41 lb/hp-h) was observed for the load range of 10 and 12.4 bar BMEP at 6000 rpm

  18. Electromechanical rotary actuator

    NASA Astrophysics Data System (ADS)

    Smith, S. P.; McMahon, W. J.

    1995-05-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  19. Preliminary results on performance testing of a turbocharged rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Rice, W. J.; Schock, H. J.; Pringle, D. P.

    1982-01-01

    The performance of a turbocharged rotary engine at power levels above 75 kW (100 hp) was studied. A twin rotor turbocharged Mazda engine was tested at speeds of 3000 to 6000 rpm and boost pressures to 7 psi. The NASA developed combustion diagnostic instrumentation was used to quantify indicated and pumping mean effect pressures, peak pressure, and face to face variability on a cycle by cycle basis. Results of this testing showed that a 5900 rpm a 36 percent increase in power was obtained by operating the engine in the turbocharged configuration. When operating with lean carburetor jets at 105 hp (78.3 kW) and 4000 rpm, a brake specific fuel consumption of 0.45 lbm/lb-hr was measured.

  20. Installation, maintenance and operating manual for the Lucas-type fuel injection system of the 3 B rotary engine

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The installation procedure, maintenance, adjustment and operation of a Lucas type fuel injection system for 13B rotary racing engine is outlined. Components of the fuel injection system and installation procedure and notes are described. Maintenance, adjustment, and operation are discussed.

  1. Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1989-01-01

    A new computer code was developed for predicting the turbulent, and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, 3-D Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.

  2. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.

    2017-02-01

    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  3. Preparation of severely curved simulated root canals using engine-driven rotary and conventional hand instruments.

    PubMed

    Szep, S; Gerhardt, T; Leitzbach, C; Lüder, W; Heidemann, D

    2001-03-01

    This in vitro study evaluated the efficacy and safety of six different nickel-titanium engine-driven instruments used with a torque-controlled engine device and nickel-titanium hand and stainless steel hand instruments in preparation of curved canals. A total of 80 curved (36 degrees) simulated root canals were prepared. Images before and after were superimposed, and instrumentation areas were observed. Time of instrumentation, instrument failure, change in working length and weight loss were also recorded. Results show that stainless steel hand instruments cause significantly less transportation towards the inner wall of the canal than do nickel-titanium hand instruments. No instrument fracture occurred with hand instruments, but 30-60% breakage of instruments was recorded during instrumentation with the engine-driven devices. The working length was maintained by all types of instruments. Newly developed nickel-titanium rotary files were not able to prevent straightening of the severely curved canals when a torque-controlled engine-driven device was used.

  4. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  5. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  6. Rotary ATPases

    PubMed Central

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  7. Evaluation of Thermal Barrier and PS-200 Self-Lubricating Coatings in an Air-Cooled Rotary Engine

    NASA Technical Reports Server (NTRS)

    Moller, Paul S.

    1995-01-01

    This project provides an evaluation of the feasibility and desirability of applying a thermal barrier coating overlaid with a wear coating on the internal surfaces of the combustion area of rotary engines. Many experiments were conducted with different combinations of coatings applied to engine components of aluminum, iron and titanium, and the engines were run on a well-instrumented test stand. Significant improvements in specific fuel consumption were achieved and the wear coating, PS-200, which was invented at NASA's Lewis Research Center, held up well under severe test conditions.

  8. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  9. RICOR's new development of a highly reliable integral rotary cooler: engineering and reliability aspects

    NASA Astrophysics Data System (ADS)

    Filis, Avishai; Pundak, Nachman; Barak, Moshe; Porat, Ze'ev; Jaeger, Mordechai

    2011-06-01

    The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and decreased integrated system Life Cycle (ILS) cost. In order to meet this need RICOR has developed a new rotary Stirling cryocooler, model K508N, intended to double the K508's operating MTTF achieving 20,000 operating MTTF hours. The K508N employs RICOR's latest mechanical design technologies such as optimized bearings and greases, bearings preloading, advanced seals, laser welded cold finger and robust design structure with increased natural frequency compared to the K508 model. The cooler enhanced MTTF was demonstrated by a Validation and Verification (V&V) plan comprising analytical means and a comparative accelerated life test between the standard K508 and the K508N models. Particularly, point estimate and confidence interval for the MTTF improvement factor where calculated periodically during and after the test. The (V&V) effort revealed that the K508N meets its MTTF design goal. The paper will focus on the technical and engineering aspects of the new design. In addition it will discuss the market needs and expectations, investigate the reliability data of the present reference K508 model; and report the accelerate life test data and the statistical analysis methodology as well as its underlying assumptions and results.

  10. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.

    PubMed

    Badrossamay, Mohammad R; Balachandran, Kartik; Capulli, Andrew K; Golecki, Holly M; Agarwal, Ashutosh; Goss, Josue A; Kim, Hansu; Shin, Kwanwoo; Parker, Kevin Kit

    2014-03-01

    Cellular microenvironments are important in coaxing cells to behave collectively as functional, structured tissues. Important cues in this microenvironment are the chemical, mechanical and spatial arrangement of the supporting matrix in the extracellular space. In engineered tissues, synthetic scaffolding provides many of these microenvironmental cues. Key requirements are that synthetic scaffolds should recapitulate the native three-dimensional (3D) hierarchical fibrillar structure, possess biomimetic surface properties and demonstrate mechanical integrity, and in some tissues, anisotropy. Electrospinning is a popular technique used to fabricate anisotropic nanofiber scaffolds. However, it suffers from relatively low production rates and poor control of fiber alignment without substantial modifications to the fiber collector mechanism. Additionally, many biomaterials are not amenable for fabrication via high-voltage electrospinning methods. Hence, we reasoned that we could utilize rotary jet spinning (RJS) to fabricate highly aligned hybrid protein-polymer with tunable chemical and physical properties. In this study, we engineered highly aligned nanofiber constructs with robust fiber alignment from blends of the proteins collagen and gelatin, and the polymer poly-ε-caprolactone via RJS and electrospinning. RJS-spun fibers retain greater protein content on the surface and are also fabricated at a higher production rate compared to those fabricated via electrospinning. We measured increased fiber diameter and viscosity, and decreasing fiber alignment as protein content increased in RJS hybrid fibers. RJS nanofiber constructs also demonstrate highly anisotropic mechanical properties mimicking several biological tissue types. We demonstrate the bio-functionality of RJS scaffold fibers by testing their ability to support cell growth and maturation with a variety of cell types. Our highly anisotropic RJS fibers are therefore able to support cellular alignment

  11. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  12. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods.

    PubMed

    Gambarini, Gianluca; Grande, Nicola Maria; Plotino, Gianluca; Somma, Francesco; Garala, Manish; De Luca, Massimo; Testarelli, Luca

    2008-08-01

    The aim of the present study was to investigate whether cyclic fatigue resistance is increased for nickel-titanium instruments manufactured by using new processes. This was evaluated by comparing instruments produced by using the twisted method (TF; SybronEndo, Orange, CA) and those using the M-wire alloy (GTX; Dentsply Tulsa-Dental Specialties, Tulsa, OK) with instruments produced by a traditional NiTi grinding process (K3, SybronEndo). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments inside curved artificial canals. Results indicated that size 06-25 TF instruments showed a significant increase (p < 0.05) in the mean number of cycles to failure when compared with size 06-25 K3 files. Size 06-20 K3 instruments showed no significant increase (p > 0.05) in the mean number of cycles to failure when compared with size 06-20 GT series X instruments. The new manufacturing process produced nickel-titanium rotary files (TF) significantly more resistant to fatigue than instruments produced with the traditional NiTi grinding process. Instruments produced with M-wire (GTX) were not found to be more resistant to fatigue than instruments produced with the traditional NiTi grinding process.

  13. Build Up and Operation of an Axial Turbine Driven by a Rotary Detonation Engine

    DTIC Science & Technology

    2012-03-01

    RDEs) offer advantages over pulsed detonation engines ( PDEs ) due to a steadier exhaust and fewer total system losses. All previous research on...turbine integration with detonation combustors has focused on utilizing PDEs to drive axial and centrifugal turbines. The objective of this thesis was... detonation engine ............................................. 5 Figure 4. Schematic of the rotating detonation wave structure for an unwrapped view of an

  14. Rotary balance data for a single-engine trainer design for an angle-of-attack range of 8 deg to 90 deg. [conducted in langely spin tunnel

    NASA Technical Reports Server (NTRS)

    Pantason, P.; Dickens, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine trainer airplane model. The configurations tested included the basic airplane, various wing leading edge devices, elevator, aileron and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations.

  15. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Schock, Harold J.; Craig, James E.; Umstatter, Holly L.; Lee, David Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  16. A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I. P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  17. Investigation of a rotary valving system with variable valve timing for internal combustion engines: Final technical report

    SciTech Connect

    Cross, P.C.; Hansen, C.N.

    1994-11-18

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multi-fuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this Final Report.

  18. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  19. Ignition Study on a Rotary-valved Air-breathing Pulse Detonation Engine

    NASA Astrophysics Data System (ADS)

    Wu, Yuwen; Han, Qixiang; Shen, Yujia; Zhao, Wei

    2017-05-01

    In the present study, the ignition effect on detonation initiation was investigated in the air-breathing pulse detonation engine. Two kinds of fuel injection and ignition methods were applied. For one method, fuel and air was pre-mixed outside the PDE and then injected into the detonation tube. The droplet sizes of mixtures were measured. An annular cavity was used as the ignition section. For the other method, fuel-air mixtures were mixed inside the PDE, and a pre-combustor was utilized as the ignition source. At firing frequency of 20 Hz, transition to detonation was obtained. Experimental results indicated that the ignition position and initial flame acceleration had important effects on the deflagration-to-detonation transition.

  20. Rotary Transformer

    NASA Technical Reports Server (NTRS)

    McLyman, Colonel Wm. T.

    1996-01-01

    None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.

  1. Rotary balance data for a typical single-engine low-wing general aviation design for an angle-of-attack range of 30 deg to 90 deg

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Hultberg, R. S.; Mulcay, W.

    1978-01-01

    Aerodynamic characteristics obtained in a spinning flow environment utilizing a rotary balance located spin tunnel are presented in plotted form for a 1/5 scale single-engine low-wing general aviation airplane model. The configurations tested include the basic airplane, various airfoil shapes, tail designs, fuselage strakes and modifications as well as airplane components. Data are presented for pitch and roll angle ranges of 30 to 90 degrees and 10 to -10 degrees, respectively, and clockwise and counter-clockwise rotations covering an Omega b/2V range from 0 to .9. The data are presented without analysis.

  2. Rotary balance data for a single-engine agricultural airplane configuration for an angle-of-attack range of 8 deg to 90 deg

    NASA Technical Reports Server (NTRS)

    Mulcay, W. J.; Chu, J.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/10 scale single engine agricultural airplane model. The configurations tested include the basic airplane, various wing leading edge and wing tip devices, elevator, aileron, and rudder control settings, and other modifications. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg, and clockwise and counter-clockwise rotations covering a spin coefficient range from 0 to .9.

  3. Shakedown and Preliminary Calibration Tests for the Fuel Engine Evaluation System Using the KM914A Sachs Rotary Combustion Engine.

    DTIC Science & Technology

    1981-12-01

    Fuel Rates vs Engine Speed 18 DI Dynamometer Torque Measurement 39 D2 Temperature Entropy Diagram For Test RC30 42 D3 Adiabatic Saturation Process 43...air ratio (F) is calculated from ff F = -- (9) m a where rhf = mass fuel flow rate ma PaQa where Qa = volumetric flow rate of dry air Pa = density of...air flow before the comba.ition process . This process usually leads to so called part throttle performance flat spots that are evident at 2500 and

  4. ROTARY SWITCH

    DOEpatents

    Watterberg, J.P.E.

    1960-03-15

    BS>A compact rotary-type switoh was designed wherein an insulating shell carries circumferentially spaced contacts exposed to its interior and also carries, on a re-entrant portion, resilient contact arms having contact portions aligned wth and biased toward the spaced contacts. A dielectric rotor with a movable wall between the contacts and contact arms has an aperture that may be turned into or out of registry with the contacts so as to establish or interrupt circuits.

  5. Rotary kilns - transport phenomena and transport processes

    SciTech Connect

    Boateng, A.

    2008-01-15

    Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

  6. Rotary latch

    NASA Technical Reports Server (NTRS)

    Kramer, Joel M. (Inventor)

    1995-01-01

    A rotary latch is disclosed, including a hollow, cylindrical outer member and a concentrically arranged inner rotor. The rotor is rotatable within the outer cylindrical member. The outer cylindrical member includes a pair of aligned openings as a cylinder first end facing a latch pin. The rotor includes a pair of aligned slots at a rotor first end facing the latch pin. Slot extensions are provided in the rotor, the slot extensions extending generally perpendicularly to the slots and generally parallel to the rotor first end. In a first position, the outer cylindrical member openings and the rotor slots are aligned to allow receipt of the latch pin. In a second position, the openings and the slot extensions are aligned thereby engaging the latch pin within a closed area defined by the rotor slot extensions and the outer cylinder openings.

  7. Rotary internal combustion engine with uniformly rotating pistons cooperating with reaction elements having a varying speed of rotation and oscillating motion

    SciTech Connect

    Seybold, F.W.

    1987-08-18

    An improved rotary internal combustion engine is described comprising in combination: a water-cooled housing having a cylindrical bore, exhaust and intake ports, water-cooling cavities and ignition means; a hollow cylindrical rotor rotatably disposed in the cylindrical bore, the rotor having two diametrically-opposed wedge-shaped pistons integral with the rotor, and axial, helical slots adjacent to the pistons, the rotor having axially spaced side walls with first and second hubs thereon for mounting snap-ring bearings, one of the hubs being constructed to receive adjustable locking means; a first side housing having water-cooling cavities and bolted to the water-cooled housing and supporting one of the snap-ring bearings; a second side housing water-cooling cavities and bolted to the water-cooled housing and supporting another of the snap-ring bearings; a primary shaft journaled in the first and second hubs, the shaft constructed to receive a spur gear fastened to one end; a reaction element comprising two radially-directed diametrically-opposed wedge-shaped members mounted on the primary shaft, constructed for movement in periodical coalescing relation to the pistons; a flywheel housing bolted to the second side housing; a flywheel disposed in the flywheel housing and journaled on one end of a drive shaft supported on roller bearings in the flywheel housing.

  8. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  9. Rotary drive mechanism

    DOEpatents

    Kenderdine, Eugene W.

    1991-01-01

    A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  10. Rotary drill bit with rotary cutters

    SciTech Connect

    Brandenstein, M.; Ernst, H.M.; Kunkel, H.; Olschewski, A.; Walter, L.

    1981-03-31

    A rotary drill bit is described that has a drill bit body and at least one trunnion projecting from the drill bit body and a rotary cutter supported on at least one pair of radial rolling bearings on the trunnion. The rolling elements of at least one bearing are guided on at last one axial end facing the drill bit body in an outer bearing race groove incorporated in the bore of the rotary cutter. The inner bearing groove is formed on the trunnion for the rolling elements of the radial roller bearing. A filling opening is provided for assembly of the rolling elements comprising a channel which extends through the drill bit body and trunnion and is essentially axially oriented having one terminal end adjacent the inner bearing race groove and at least one filler piece for sealing the opening. The filling opening is arranged to provide a common filling means for each radial bearing.

  11. Rotary drill bit with rotary cutters

    SciTech Connect

    Lachonius, L.

    1981-04-28

    A rotary drill bit is described having a drill bit body and at least one trunnion projecting from the drill bit body and a rotary cutter supported on at least one radial roller bearing on the trunnion. The rolling elements of the bearing are guided on at least one axial end facing the drill bit body in an outer bearing race groove incorporated in the bore of the rotary cutter. The inner bearing race groove is formed on the trunnion for the rolling elements of the radial roller bearing. At least one filling opening is provided which extends through the drill bit body and trunnion and is essentially axially oriented having one terminal end adjacent the inner bearing race groove and at least one pair of filler piece for sealing the opening. One of the filler pieces is made of an elastically compressible material.

  12. Rotary drill bit with rotary cutter

    SciTech Connect

    Brandenstein, M.; Kunkel, H.; Olschewski, A.; Walter, L.

    1981-03-17

    A rotary drill bit having a drill bit body and at least one trunnion projecting from the drill bit body and a rotary cutter supported on at least one radial roller bearing on the trunnion. The rolling elements of the bearing are guided on at least one axial end facing the drill bit body in an outer bearing race groove incorporated in the bore of the rotary cutter. The inner bearing race groove is formed on the trunnion for the rolling elements of the radial roller bearing. At least one filling opening is provided which extends through the drill bit body and trunnion and is essentially axially oriented having one terminal end adjacent the inner bearing race groove and at least one filler piece for sealing the opening.

  13. Rotary filtration system

    DOEpatents

    Herman, David T [Aiken, SC; Maxwell, David N [Aiken, SC

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  14. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: Low-wing model B

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, low wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle-of-attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an (omega)(b)/2V range from 0 to 0.85.

  15. Equations For Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  16. Rotary antenna attenuator

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  17. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  18. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  19. Smart hybrid rotary damper

    NASA Astrophysics Data System (ADS)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  20. Solar heated rotary kiln

    DOEpatents

    Shell, Pamela K.

    1984-01-01

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  1. Solar heated rotary kiln

    SciTech Connect

    Shell, P.K.

    1984-04-17

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  2. Rotary mechanical latch

    DOEpatents

    Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

    2012-11-13

    A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

  3. Contactless Rotary Electrical Couplings

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki

    2003-01-01

    Rotary electrical couplings based on induction (transformer action) rather than conduction between rotating and stationary circuitry have been invented. These couplings provide an alternative to slip rings and contact brushes. Mechanical imperfections of slip-ring and brush contact surfaces and/or dust particles trapped between these surfaces tend to cause momentary interruptions in electrical contact and thereby give rise to electrical noise. This source of noise can be eliminated in the inductive rotary couplings because no direct contact is necessary for transformer action.

  4. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  5. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  6. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  7. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

    2013-08-13

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  8. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  9. Rotary pneumatic valve

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  10. Rotary Burner Demonstration

    SciTech Connect

    Paul Flanagan

    2003-04-30

    The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

  11. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  12. Maintenance cost study of rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The feasibility was studied of predicting rotary wing operation maintenance costs by using several aircraft design factors for the aircraft dynamic systems. The dynamic systems considered were engines, drives and transmissions, rotors, and flight controls. Multiple regression analysis was used to correlate aircraft design and operational factors with manhours per flight hour, and equations for each dynamic system were developed. Results of labor predictions using the equations compare favorably with actual values.

  13. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  14. Piezoelectric Rotary Tube Motor

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  15. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  16. Optical rotary connector.

    PubMed

    Machida, H; Kobayashi, H; Akedo, J; Sawada, K; Yasukawa, T; Lino, R

    1988-08-01

    As optical fiber usage widens, a new kind of optical fiber connector becomes necessary. This connector would be connecting two optical fiber bundles with different speeds around an axis without interruption. It is difficult to make such a connector, especially one with a hollow axis used for mechanical power transmissions. Using an optical fiber bundle for an image inversion and a differential gear system, we have developed an optical rotary connector with a hollow axis that can be used for a multichannel connection.

  17. Sequenced drive for rotary valves

    DOEpatents

    Mittell, Larry C.

    1981-01-01

    A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.

  18. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Low-wing model A. [fluid flow and vortices data for general aviation aircraft to determine aerodynamic characteristics for various designs

    NASA Technical Reports Server (NTRS)

    Hultberg, R. S.; Mulcay, W.

    1980-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance are presented in plotted form for a 1/5 scale, single engine, low-wing, general aviation airplane model. The configuration tested included the basic airplane, various control deflections, tail designs, fuselage shapes, and wing leading edges. Data are presented without analysis for an angle of attack range of 8 to 90 deg and clockwise and counterclockwise rotations covering a range from 0 to 0.85.

  19. Rotary and Magnus balances

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.

    1981-01-01

    Two wind tunnel techniques for determining part of the aerodynamic information required to describe the dynamic bahavior of various types of vehicles in flight are described. Force and moment measurements are determined with a rotary-balance apparatus in a coning motion and with a Magnus balance in a high-speed spinning motion. Coning motion is pertinent to both aircraft and missiles, and spinning is important for spin stabilized missiles. Basic principles of both techniques are described, and specific examples of each type of apparatus are presented. Typical experimental results are also discussed.

  20. Rotary and Magnus balances

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.

    1981-01-01

    Two wind tunnel techniques for determining part of the aerodynamic information required to describe the dynamic bahavior of various types of vehicles in flight are described. Force and moment measurements are determined with a rotary-balance apparatus in a coning motion and with a Magnus balance in a high-speed spinning motion. Coning motion is pertinent to both aircraft and missiles, and spinning is important for spin stabilized missiles. Basic principles of both techniques are described, and specific examples of each type of apparatus are presented. Typical experimental results are also discussed.

  1. Modelling and optimization of rotary parking system

    NASA Astrophysics Data System (ADS)

    Skrzyniowski, A.

    2016-09-01

    The increasing number of vehicles in cities is a cause of traffic congestion which interrupts the smooth traffic flow. The established EU policy underlines the importance of restoring spaces for pedestrian traffic and public communication. The overall vehicle parking process in some parts of a city takes so much time that it has a negative impact on the environment. This article presents different kinds of solution with special focus on the rotary parking system (PO). This article is based on a project realized at the Faculty of Mechanical Engineering of Cracow University of Technology.

  2. Rotary shaft seal

    DOEpatents

    Langebrake, C.O.

    1984-01-01

    The invention is a novel rotary shaft seal assembly which provides positive-contact sealing when the shaft is not rotated and which operates with its sealing surfaces separated by a film of compressed ambient gas whose width is independent of the speed of shaft rotation. In a preferred embodiment, the assembly includes a disc affixed to the shaft for rotation therewith. Axially movable, non-rotatable plates respectively supported by sealing bellows are positioned on either side of the disc to be in sealing engagement therewith. Each plate carries piezoelectric transucer elements which are electrically energized at startup to produce films of compressed ambient gas between the confronting surfaces of the plates and the disc. Following shutdown of the shaft, the transducer elements are de-energized. A control circuit responds to incipient rubbing between the plate and either disc by altering the electrical input to the transducer elements to eliminate rubbing.

  3. Rotary shaft seal

    DOEpatents

    Langebrake, Clair O.

    1984-01-01

    The invention is a novel rotary shaft seal assembly which provides positive-contact sealing when the shaft is not rotated and which operates with its sealing surfaces separated by a film of compressed ambient gas whose width is independent of the speed of shaft rotation. In a preferred embodiment, the assembly includes a disc affixed to the shaft for rotation therewith. Axially movable, non-rotatable plates respectively supported by sealing bellows are positioned on either side of the disc to be in sealing engagement therewith. Each plate carries piezoelectric transducer elements which are electrically energized at startup to produce films of compressed ambient gas between the confronting surfaces of the plates and the disc. Following shutdown of the shaft, the transducer elements are de-energized. A control circuit responds to incipient rubbing between the plate and either disc by altering the electrical input to the transducer elements to eliminate rubbing.

  4. Rotary multiposition valve

    DOEpatents

    Barclay, John A.; Dyson, Jack E.

    1985-01-01

    The disclosure is directed to a rotary multiposition valve for selectively directing the flow of a fluid through a plurality of paths. The valve comprises an inner member and a hollow housing with a row of ducts on its outer surface. The ducts are in fluid communication with the housing. An engaging section of the inner member is received in the housing. A seal divides the engaging section into a hollow inlet segment and a hollow outlet segment. A plurality of inlet apertures are disposed in the inlet segment and a plurality of outlet apertures are disposed in the outlet segment. The inlet apertures are disposed in a longitudinally and radially spaced-apart pattern that can be a helix. The outlet apertures are disposed in a corresponding pattern. As the inner member is rotated, whenever an inlet aperture overlaps one of the ducts, the corresponding outlet aperture overlaps a different duct, thus forming a fluid pathway.

  5. Rotary multiposition valve

    DOEpatents

    Barclay, J.A.; Dyson, J.E.

    1984-04-06

    The disclosure is directed to a rotary multiposition valve for selectively directing the flow of a fluid through a plurality of paths. The valve comprises an inner member and a hollow housing with a row of ducts on its outer surface. The ducts are in fluid communication with the housing. An engaging section of the inner member is received in the housing. A seal divides the engaging section into a hollow inlet segment and a hollow outlet segment. A plurality of inlet apertures are disposed in the inlet sgegment and a plurality of outlet apertures are disposed in the outlet segment. The inlet apertures are disposed in a longitudinally and radially spaced-apart pattern that can be a helix. The outlet apertures are disposed in a corresponding pattern. As the inner member is rotated, whenever an inlet aperture overlaps one of the ducts, the corresponding outlet aperture overlaps a different duct, thus forming a fluid pathway.

  6. Rotary spring energy storage

    SciTech Connect

    Cooley, S.

    1981-07-01

    The goal was to design a lightweight system, for bicycles, that can level the input energy requirement (human exertion) in accordance with variations in road load (friction, wind, and grade) and/or to provide a system for regenerative braking, that is, to store energy normally lost in brake pad friction for brief periods until it required for re-acceleration or hill-climbing. The rotary spring, also called the coil, motor, spiral, or power spring is governed by the equations reviewed. Materials used in spring manufacture are briefly discussed, and justification for steel as the design choice of material is given. Torque and power requirements for a bicycle and rider are provided as well as estimated human power output levels. These criteria are examined to define spring size and possible orientations on a bicycle. Patents and designs for coupling the spring to the drive train are discussed.

  7. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  8. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  9. Seals cap rotary kiln emissions

    SciTech Connect

    Gunkle, D.W. )

    1993-09-01

    The possibility of producing fugitive emissions is one of the most critical aspects of an incineration system. Whether such a system processes hazardous, medical, mixed or municipal waste, fugitive emissions are of special concern to system operators and the public alike. Effectively designed rotary-kiln seals can reduce fugitive emissions to acceptable, minimal levels. Modern air monitoring systems track incineration site emissions. Possible emissions sources include excavation and transfer sites, storage areas, material-feed systems, rotary kiln seals, and exhaust stacks. Several options are available for rotary-kiln seals. Six are discussed here: labyrinth; overlapping spring plate; graphite block; pneumatic; shrouded; and overpressure. Kiln seals are used to prevent process gases from escaping or ambient air from entering a rotary kiln uncontrolled. They are not designed to function as material seals, or prevent spills of solids or liquids. Seal design involves considering differential pressure produced by a kiln's internal-to-external temperature, pressure excursions (explosions) and material spills.

  10. A compact rotary vane attenuator

    NASA Technical Reports Server (NTRS)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  11. Rotary thermodynamic apparatus and method

    SciTech Connect

    Kantor, F. W.

    1985-06-25

    A rotary inertial thermodynamic absorptive system which can be used as a gas-driven heat pump, a heat-flow-driven gas pump, or, in combination, a heat splitter for moving low-grade heat energy from a lower temperature source to a higher temperature heat sink. In one embodiment, an absorptive type rotary inertial thermodynamic device employs overspill/underspill barriers in its absorption and desorption chambers to achieve counterflow heat exchange therebetween and to ensure effective control of thermodynamic impedance.

  12. Development of a rotary instrumentation system, phase 2

    NASA Technical Reports Server (NTRS)

    Adler, A.; Skidmore, W.

    1982-01-01

    A rotary instrumentation system which consists of ruggedized miniature telemetry transmitters installed on the rotating shaft of a gas turbine engine to telemeter the outputs of sensors (strain gages, thermocouples, etc.) on rotating engine components was designed. A small prototype system, which demonstrates the capabilities of performing in the intended environment and demonstrates that the system is expandable to handle about 100 data channels was developed.

  13. Development of a rotary instrumentation system, phase 2

    NASA Astrophysics Data System (ADS)

    Adler, A.; Skidmore, W.

    1982-12-01

    A rotary instrumentation system which consists of ruggedized miniature telemetry transmitters installed on the rotating shaft of a gas turbine engine to telemeter the outputs of sensors (strain gages, thermocouples, etc.) on rotating engine components was designed. A small prototype system, which demonstrates the capabilities of performing in the intended environment and demonstrates that the system is expandable to handle about 100 data channels was developed.

  14. Rotary kiln seal

    DOEpatents

    Drexler, Robert L.

    1992-01-01

    A rotary seal used to prevent the escape of contaminates from a rotating kiln incinerator. The rotating seal combines a rotating disc plate which is attached to the rotating kiln shell and four sets of non-rotating carbon seal bars housed in a primary and secondary housing and which rub on the sides of the disc. A seal air system is used to create a positive pressure in a chamber between the primary and secondary seals to create a positive air flow into the contaminated gas chamber. The seal air system also employs an air inlet located between the secondary and tertiary seals to further insure that no contaminates pass the seal and enter the external environment and to provide makeup air for the air which flows into the contaminated gas chamber. The pressure exerted by the seal bars on the rotating disc is controlled by means of a preload spring. The seal is capable of operating in a thermally changing environment where the both radial expansion and axial movement of the rotating kiln do not result in the failure of the seal.

  15. Sealed rotary compressor

    SciTech Connect

    Rando, J.F.; Koop, D.E.

    1987-06-23

    This patent describes a sealed rotary compressor for circulating and recirculating gas through a laser, comprising: an enclosed pump chamber including inlet and outlet means and defined by first and second end plates and a surrounding sheet metal wall member; inner and outer sheet metal pocket wall members; each of the end plates having a groove formed in a pump chamber interior surface adapted to receive and retain the sheet metal pocket wall members defining inlet and outlet means; rotor members rotatably supported in the pump chamber and disposed between the pocket wall members; an enclosed gear housing defined by the second end plate and enclosing wall members; members adapted to provide a substantially zero-pressure differential between the pump chamber and the gear chamber; gear members rotatably supported in the gear housing and operatively associated with the rotor members, the gear members providing synchronized movement of the rotor members; and means for rigidly spacing and supporting the end plates and preventing rotational movement of the sheet metal pocket wall members.

  16. Review of the Rhein-Flugzeugbau Wankel powered aircraft program. [ducted fan engines

    NASA Technical Reports Server (NTRS)

    Riethmueller, M.

    1978-01-01

    The development of light aircraft with special emphasis on modern propulsion systems and production is discussed in terms of the application of rotary engines to aircraft. Emphasis is placed on the integrated ducted-fan propulsion system using rotary engines.

  17. Review of the Rhein-Flugzeugbau Wankel powered aircraft program. [ducted fan engines

    NASA Technical Reports Server (NTRS)

    Riethmueller, M.

    1978-01-01

    The development of light aircraft with special emphasis on modern propulsion systems and production is discussed in terms of the application of rotary engines to aircraft. Emphasis is placed on the integrated ducted-fan propulsion system using rotary engines.

  18. Repulsive force actuated rotary micromirror

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Ben Mrad, Ridha

    2004-09-01

    In this paper, a novel repulsive force based rotary micromirror is proposed. A repulsive force is produced in the rotary micromirror and the mirror plate is pushed up and away from the substrate. Therefore the rotation angle of the micromirror is not limited to the space underneath the mirror plate and thus the "pull-in" effect is completely circumvented. The novel rotary micromirror can achieve a large rotation angle with a large mirror plate. In addition the novel micromirror has a very simple structure and can be fabricated by standard surface micromachining technology. Numerical simulation is used to verify the working principle of the novel micromirror. A prototype of the novel rotary micromirror is fabricated by a commercially available surface microfabrication process called MUMPs. The prototype has a mirror size of 300μm x 300μm. The experimental measurements show that the prototype can achieve a mechanical rotation of 2.25 degrees (an optical angle of 4.5 degrees) at a driving voltage of 170 volts. A conventional surface micromachined attractive force based rotary micromirror of the same size can only achieve an angle of 0.1~0.2 degree.

  19. Rotary Power Transformer and Inverter Circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.; Bridgeforth, A. O.

    1985-01-01

    Noise lower than with sliprings. Rotary transformer transfers electric power across rotary joint. No wearing contacts, no contact noise, and no contamination from lubricants or wear debris. Because additional inductor not required, size and complexity of circuit reduced considerably.

  20. Rotary Power Transformer and Inverter Circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.; Bridgeforth, A. O.

    1985-01-01

    Noise lower than with sliprings. Rotary transformer transfers electric power across rotary joint. No wearing contacts, no contact noise, and no contamination from lubricants or wear debris. Because additional inductor not required, size and complexity of circuit reduced considerably.

  1. Rotary head type reproducing apparatus

    DOEpatents

    Takayama, Nobutoshi; Edakubo, Hiroo; Kozuki, Susumu; Takei, Masahiro; Nagasawa, Kenichi

    1986-01-01

    In an apparatus of the kind arranged to reproduce, with a plurality of rotary heads, an information signal from a record bearing medium having many recording tracks which are parallel to each other with the information signal recorded therein and with a plurality of different pilot signals of different frequencies also recorded one by one, one in each of the recording tracks, a plurality of different reference signals of different frequencies are simultaneously generated. A tracking error is detected by using the different reference signals together with the pilot signals which are included in signals reproduced from the plurality of rotary heads.

  2. Rotary Joint for Heat Transfer

    NASA Technical Reports Server (NTRS)

    Shauback, R.

    1986-01-01

    Rotary joint exchanges heat between two heat pipes - one rotating and one stationary. Joint accommodates varying heat loads with little temperature drop across interface. According to concept, heat pipe enters center of disklike stationary section of joint. There, wicks in central artery of heat pipe separate into multiple strands that lead to concentric channels on rotaryinterface side of stationary disk. Thin layer of liquid sodium/potassium alloy carries heat from one member of rotary joint to other. Liquid conducts heat efficiently while permitting relative motion between members. Polypropylene rings contain liquid without interfering with rotation.

  3. Solar-heated rotary kiln

    DOEpatents

    Shell, P.K.

    1982-04-14

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate is disclosed. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  4. Rotary and Rotary-Percussive Drilling of Lunar Simulant

    NASA Astrophysics Data System (ADS)

    Paulsen, G.; Zacny, K.; Maksymuk, M.; Wilson, J.; Santoro, C.; Chu, P.; Davis, K.; Roberts, D.; Kumar, N.; Kusack, A.

    2008-12-01

    Honeybee Robotics has been developing a rotary and a rotary-preliminary drill system for planetary exploration. This is a test drill with a power rating of 1000 Watt, whose purpose it to test various drill bits and augers in rotary and rotary percussive operation. It is not optimized for power or mass but rather to acquire qualitative drilling data such as penetration rate, power, and torque, temperature, Weight on Bit, vibration energy and others. In addition, the design of the drill allows it to acquire drill bit temperatures and use pneumatic system (instead of augers) for removing of rock cuttings. The drill is designed to have a 1 meter stroke. In addition to the drill system, we have been developing a matching split vacuum chamber, which is 3ft wide, 3ft deep and 11 feet tall. The chamber consists of two smaller chambers (84 inches tall and 48 inches tall) assembled on top of each other. This allows for additional flexibility if only a smaller chamber is required for some testing. The chamber will be able to maintain pressure of below 1 torr. Maintaining sample temperature will be achieved by closed loop cooling system down to -40C or by using liquid nitrogen that allows a temperature of 77K. The test samples can be varied raging from solid rocks, to loose soils to icy soils and pure ice. The sample holder could also be integrated with temperatures for acquiring of thermal data during drilling process.

  5. Rotary ATPases: models, machine elements and technical specifications.

    PubMed

    Stewart, Alastair G; Sobti, Meghna; Harvey, Richard P; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual "machine elements" to the requirement of the right "fuel" and "oil" for different types of motors.

  6. Development and application of rotary shock absorber

    SciTech Connect

    Yamamoto, Kozo; Yamada, Toshihiro; Fukuyama, Katsura

    1995-12-31

    In recent years, rear suspension systems with a single shock absorber unit placed behind the engine, have been used primarily in the middle and large classes of motorcycles. Some features such as the longer rear wheel travel, progressive response characteristics and mass concentration at the center part of motorcycle are effective in improving maneuverability of the motorcycle. In the 1980s, the systems were introduced first in the off-road motorcycles and then in the on-road motorcycles. Performance of the systems are excellent, but there are demands for further improvement of suspension characteristics and space utility at the center part of motorcycle. For this purpose, the authors have developed a prototype of a rotary shock absorber and studied the applicability to modern motorcycles.

  7. High torque miniature rotary actuator

    NASA Astrophysics Data System (ADS)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  8. Large hole rotary drill performance

    SciTech Connect

    Workman, J.L.; Calder, P.N.

    1996-12-31

    Large hole rotary drilling is one of the most common methods of producing blastholes in open pit mining. Large hole drilling generally refers to diameters from 9 to 17 inch (229 to 432 mm), however a considerable amount of rotary drilling is done in diameters from 6{1/2} to 9 inch (165 to 229 mm). These smaller diameters are especially prevalent in gold mining and quarrying. Rotary drills are major mining machines having substantial capital cost. Drill bit costs can also be high, depending on the bit type and formation being drilled. To keep unit costs low the drills must perform at a high productivity level. The most important factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor is given for calculating the penetration rate based on rock strength, pulldown weight and the RPM. The importance of using modern drill performance monitoring systems to calibrate the penetration equation for specific rock formations is discussed. Adequate air delivered to the bottom of the hole is very important to achieving maximum penetration rates. If there is insufficient bailing velocity cuttings will not be transported from the bottom of the hole rapidly enough and the penetration rate is very likely to decrease. An expression for the balancing air velocity is given. The amount by which the air velocity must exceed the balancing velocity for effective operation is discussed. The effect of altitude on compressor size is also provided.

  9. Evaluation of different rotary devices on bone repair in rabbits.

    PubMed

    Ribeiro Junior, Paulo Domingos; Barleto, Christiane Vespasiano; Ribeiro, Daniel Araki; Matsumoto, Mariza Akemi

    2007-01-01

    In oral surgery, the quality of bone repair may be influenced by several factors that can increase the morbidity of the procedure. The type of equipment used for ostectomy can directly affect bone healing. The aim of this study was to evaluate bone repair of mandible bone defects prepared in rabbits using three different rotary devices. Fifteen New Zealand rabbits were randomly assigned to 3 groups (n=5) according to type of rotary device used to create bone defects: I--pneumatic low-speed rotation engine, II--pneumatic high-speed rotation engine, and III--electric low-speed rotation engine. The anatomic pieces were surgically obtained after 2, 7 and 30 days and submitted to histological and morphometric analysis. The morphometric results were expressed as the total area of bone remodeling matrix using an image analysis system. Increases in the bone remodeling matrix were noticed with time along the course of the experiment. No statistically significant differences (p>0.05) were observed among the groups at the three sacrificing time points considering the total area of bone mineralized matrix, although the histological analysis showed a slightly advanced bone repair in group III compared to the other two groups. The findings of the present study suggest that the type of rotary device used in oral and maxillofacial surgery does not interfere with the bone repair process.

  10. Determination of three-dimensional movement for rotary blades using digital image correlation

    NASA Astrophysics Data System (ADS)

    Wu, Rong; Chen, Yue; Pan, Yanting; Wang, Qiang; Zhang, Dongsheng

    2015-02-01

    Non-contact and accurate motion measurement of the rotary objects is crucial in engineering applications. A modified Newton-Raphson algorithm, which is capable of positioning marks with large rotation, has been proposed. A stereo imaging system with a pair of synchronized digital high-speed cameras was developed and achieved full-field displacement measurement based on 3D image correlation photogrammetry for rotary objects. This system has been applied to measuring the 3D motion of a wind turbine blade model. The displacement components of the rotary blade were presented, and the corresponding frequency spectra were investigated. The experimental results demonstrated that the proposed system could measure the 3D motion of rotary blades precisely, and it also provided an alternative potential non-contact diagnosis means for large wind turbine blades.

  11. Rotary Transformer Seals Power In

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Paulkovich, J.

    1982-01-01

    Rotary transformer originally developed for spacecraft transfers electrical power from stationary primary winding to rotating secondary without sliding contacts and very little leakage of electromagnetic radiation. Transformer has two stationary primary windings connected in parallel. Secondary, mounted on a shaft that extends out of housing, rotates between two windings of primary. Shaft of secondary is composed of electrically conducting inner and outer parts separated by an insulator. Electrical contact is made from secondary winding, through shaft, to external leads.

  12. High torque CMG rotary actuator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A high torque rotary actuator was designed, fabricated and tested. Exacting requirements were placed on performance and physical characteristics of the actuator, particularly in the area of stiffness, backlash, torque ripple, power and size and weight. A brushless dc motor was designed utilizing rare earth magnets to meet power and weight requirements. A 26-to-1 planetary roller gear transmission was selected to best meet overall requirements. The transmission utilizes parallel gear and roller paths to minimize backlash and breakaway torque.

  13. Improved Superconducting Magnetic Rotary Bearings

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Royston, James

    1992-01-01

    Improved magnetic rotary bearings designed by exploiting properties of type-II superconducting materials. Depending on design and application, bearing provides fixed or adjustable compensation for lateral vector component of weight or other lateral load on rotor. Allows applied magnetic field to penetrate partially in clusters of field lines, with concomitant establishment of undamped circulating electrical currents within material. Type-II superconductors have critical magnetic fields and critical temperatures greater than type-I superconductors.

  14. FLIR systems submicro rotary stirling cycle IDCA for imaging systems

    NASA Astrophysics Data System (ADS)

    Bin-Nun, Uri

    2011-05-01

    The advantages of the common Rotary Stirling cycle coolers over the Split Stirling Linear are the overall size, light weight, low cooler input power and high efficiency. The main disadvantage has always been self induced vibration. Self induced vibration is a major consideration in the design of stabilized IR imaging systems/(GIMBALS) due to the effect it has on image quality i.e. Jitter. The "irregular shape" of the Rotary cooling engine attached to the payload and optics is also a problem in terms of the limits it has on optical system size. To address these issues, FLIR Systems Inc in Boston MA, developed a new rotary Stirling cycle cooling engine known as the FLIR Submicro Cooler. The Submicro is now in production and has been applied in a few products especially in FLIR"S smallest GIMBAL which measures 7.0 inch in spherical diameter. In this paper we discuss the improvements made in terms of IDCA implementation in stabilized imaging systems.

  15. FLIR systems submicro rotary stirling cycle IDCA for imaging systems

    NASA Astrophysics Data System (ADS)

    Uri, Bin-Nun

    2011-06-01

    The advantages of the common Rotary Stirling cycle coolers over the Split Stirling Linear are the overall size, light weight, low cooler input power and high efficiency. The main disadvantage has always been self induced vibration. Self induced vibration is a major consideration in the design of stabilized IR imaging systems/(GIMBALS) due to the effect it has on image quality i.e. Jitter. The "irregular shape" of the Rotary cooling engine attached to the payload and optics is also a problem in terms of the limits it has on optical system size. To address these issues, FLIR Systems Inc in Boston MA, developed a new rotary Stirling cycle cooling engine known as the FLIR Submicro Cooler. The Submicro is now in production and has been applied in a few products especially in FLIR"S smallest GIMBAL which measures 7.0 inch in spherical diameter. In this paper we discuss the improvements made in terms of IDCA implementation in stabilized imaging systems.

  16. Rotary mode system initial instrument calibration

    SciTech Connect

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  17. Rotary balances: A selected, annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, Marie H.; Kilgore, Robert A.; Sych, Karen L.

    1989-01-01

    This bibliography on rotary balances contains 102 entries. It is part of NASA's support of the AGARD Fluid Dynamics Panel Working Group 11 on Rotary Balances. This bibliography includes works that might be useful to anyone interested in building or using rotor balances. Emphasis is on the rotary balance rigs and testing techniques rather than the aerodynamic data. Also included are some publications of historical interest which relate to key events in the development and use of rotary balances. The arrangement is chronological by date of publication in the case of reports and by presentation in the case of papers.

  18. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Influence of airplane components for model D. [Langley spin tunnel tests

    NASA Technical Reports Server (NTRS)

    Ralston, J.

    1983-01-01

    The influence of airplane components, as well as wing location and tail length, on the rotational flow aerodynamics is discussed for a 1/6 scale general aviation airplane model. The airplane was tested in a built-up fashion (i.e., body, body-wing, body-wing-vertical, etc.) in the presence of two wing locations and two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 deg to 90 deg, and for clockwise and counter-clockwise rotations covering an omega b/2V range of 0 to 0.9.

  19. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: Influence of horizontal tail location for Model D

    NASA Technical Reports Server (NTRS)

    Barnhart, B.

    1982-01-01

    The influence of horizontal tail location on the rotational flow aerodynamics is discussed for a 1/6-scale general aviation airplane model. The model was tested using various horizontal tail positions, with both a high and a low-wing location and for each of two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 to 90 deg, and for clockwise and counter-clockwise rotations covering an Omega b/2V range of 0 to 0.9.

  20. Rotary high power transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)

    1987-01-01

    An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.

  1. Split Coil Forms for Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  2. Torque-balanced vibrationless rotary coupling

    DOEpatents

    Miller, Donald M.

    1980-01-01

    This disclosure describes a torque-balanced vibrationless rotary coupling for transmitting rotary motion without unwanted vibration into the spindle of a machine tool. A drive member drives a driven member using flexible connecting loops which are connected tangentially and at diametrically opposite connecting points through a free floating ring.

  3. Aircraft Accident Survivability: Rotary Wing Aircraft

    DTIC Science & Technology

    2005-10-01

    struts, stroking seats, and occupant restraint systems can affect the likelihood of survival following an aircraft accident . Energy attenuating...AIRCRAFT ACCIDENT SURVIVABILITY: ROTARY WING AIRCRAFT Elizabeth B. Motley Naval Air Warfare Center Patuxent River, MD ABSTRACT The...intent of this paper is to explore the premise of aircraft accident survivability focusing primarily on military rotary wing aircraft. Human tolerance

  4. DEMES rotary joint: theories and applications

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Hao, Zhaogang; Li, Mingyu; Huang, Bo; Sun, Lining; Zhao, Jianwen

    2017-04-01

    As a kind of dielectric elastomer actuators, dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by small voltage-induced strains, which make them an attractive candidate for use as biomimetic robotics. Considering the rotary joint is a basic and common component of many biomimetic robots, we have been fabricated rotary joint by DEMES and developed its performances in the past two years. In this paper, we have discussed the static analysis, dynamics analysis and some characteristics of the DEMES rotary joint. Based on theoretical analysis, some different applications of the DEMES rotary joint were presented, such as a flapping wing, a biomimetic fish and a two-legged walker. All of the robots are fabricated by DEMES rotary joint and can realize some basic biomimetic motions. Comparing with traditional rigid robot, the robot based on DEMES is soft and light, so it has advantage on the collision-resistant.

  5. A multifunctional rotary photoelectric encoder management system

    NASA Astrophysics Data System (ADS)

    Ye, Zunzhong; Ying, Yibin

    2005-11-01

    The rotary photoelectric encoder can be used in many fields, such as robot research, fruit assembly lines, and so on. If there have many photoelectric encoders in one system, it's difficult to manage them and acquire the right pulse number. So it's important to design a multifunctional management system. It includes a powerful microchip with high processing speed, assuring the acquisition precision of rotary pulse. It uses a special method to judge the rotary direction and will be competent for many occasions which rotary direction changes quickly. Considering encoder data transmission, the management system provides a serial port using RS-485 protocol to transmit current pulse data and rotary direction. It allows linking a maximum of 100 management systems using only two communication lines to up-systems and also configing the encoder counting pattern locally (using the keyboard) or remotely (through the computer).

  6. The impact of circulation control on rotary aircraft controls systems

    NASA Technical Reports Server (NTRS)

    Kingloff, R. F.; Cooper, D. E.

    1987-01-01

    Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.

  7. Linear and rotary molecular motors.

    PubMed

    Kinosita, K

    1998-01-01

    A single molecule of F1-ATPase has been shown to be the smallest rotary motor ever found, with a central rotor of radius approximately 1 nm turning in a stator barrel of radius approximately 5 nm. Continuous rotation of the central gamma subunit was revealed under an optical microscope by attaching to gamma a huge marker, an actin filament. In a separate study, rotation of a sliding actin filament around its axis has been revealed by attaching a small probe, a single fluorescent dye molecule, to the actin filament and detecting the orientation of the fluorophore, and thus of the actin filament, through polarization imaging. The axial rotation was slow compared to the linear sliding, indicating that myosin does not 'walk' along the helical array of actin protomers but 'runs,' skipping many protomers. The two motors above, one rotary and the other linear, represent two extreme cases of the mode of motor operation: in the F1-ATPase the two partners, the rotor and stator, never detach from each other whereas myosin touches actin only occasionally. In considering the mechanisms of these and other molecular motors, distinction between bending and binding is important. The use of huge and small probes as described above should be useful in studies of protein machines in general, as a means of detecting conformational changes in a single protein molecule during function.

  8. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  9. Rotary press utilizing a flexible die wall.

    PubMed

    Amidon, G E; Smith, D P; Hiestand, E N

    1981-06-01

    A die with a flexible wall was constructed and evaluated on a specially modified instrumented rotary tablet press. The design permits an inward deflection of the die wall by a side punch, which rolls past a side compression roll during compression-decompression. The side compression roll is instrumented to monitor the applied side compression roll forces. On decompression, return of the die wall to its original position permits release of residual die wall pressure. The decreased residual die wall pressure can decrease fracture and capping of tablets for problem formulations. The performance was tested on three experimental formulations. For these formulations, tablets made in a conventional die exhibited severe capping problems. However, most tablets compressed in the special die were superior. With proper adjustment of punch and die wall compression forces, excellent tablets could be manufactured. The merits of the special die and modified tablet machine are substantiated, although this initial design did not provide adequate die wall pressure for all formulations. Further engineering efforts could result in practical production equipment.

  10. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  11. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, Hubert A.

    1983-01-01

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

  12. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  13. A reciprocating rotating-block engine

    SciTech Connect

    O`Connor, L.

    1995-06-01

    This article describes the Newbold power plant, a lightweight, clean burning, and efficient engine that is designed to be used in a variety of small-engine applications, from ultralight planes to wheelchairs. A new turbo rotary-power engine brings together different design concepts from engine technology, including the rotary motion of a block, which is applied in a rotary engine, and the reciprocating motion of pistons. The new power plant also uses an air delivery system that operates similar to a turbojet engine. The turbo rotary-power engine, developed by Vernon Newbold, founder of Newbold and Associates, in Lyons, CO, produces power from the heat generated by combustion of most liquid or gaseous fuels. Production engines, expected to be built in August, will be optimized to operate using diesel fuel.

  14. Cyclical bi-directional rotary actuator

    NASA Technical Reports Server (NTRS)

    Stange, W. C. (Inventor)

    1977-01-01

    A thermally powered rotary actuator is disclosed which is used for positioning a shaft in first and second positions which are disposed 180 deg apart. A pair of heat extensible springs are attached to the shaft and to the frame of the rotary actuator for selectively rotating the shaft from one of its two positions to the other position upon the application of heat to one of the heat extensible springs. The heat extensible springs are preferably constructed from the alloy 55-Nitinol. In the preferred embodiment, a detent mechanism is provided for locking the rotatable shaft in its two rotary positions.

  15. Rotary Valve FY 2016 Highlights

    SciTech Connect

    Fitsos, P.

    2016-12-07

    The fiscal year started with the Rotary Valve (RV) being reassembled after having crashed in June of 2015. The crash occurred when the RV inner surface contacted the housing. The cause of the crash was never confirmed. No particles were found in the 2.5 thousandths of an inch gap and the filters the helium gas passed through were all clean. There were marks on the bearings that looked like electrostatic discharge as shown below in Figure 1. These marks hadn’t been seen before and there were similar discharge marks on some of the ball bearings. Examples of this were found in a literature search of bearing failures. This leads to a possible cause due to this arcing affecting the rotational accuracy of the bearings driving the RV into the housing.

  16. Rotary recuperative magnetic heat pump

    NASA Astrophysics Data System (ADS)

    Kirol, Lance D.; Dacus, Michael W.

    A bench scale rotary magnetic heat pump now being built is described. The unique design feature of this heat pump is the method for achieving recuperator fluid flow, which relies simply on parallel flow paths; the primary flow leg allows heat transfer between external load and sink and magnetic working material, while parallel flow accomplishes recuperation. The bench scale test is intended to demonstrate feasibility of the concept and to verify that all significant loss mechanisms are identified and treated properly in performance models, but is not a scaled down version of a practical heat pump. Working material is gadolinium foil 76 microns thick with 127-micron spaces for fluid flow. Magnetic fields are created by neodymium-iron-boron-permanent magnets with an air gap field of about 0.9 Tesla. Due to the low field (practical heat pumps will use superconducting magnets with field strength around 9 T); temperature lift is limited to 11 K.

  17. Enclosed rotary disc air pulser

    DOEpatents

    Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.

    1989-01-01

    An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

  18. Aerodynamic seals for rotary machine

    DOEpatents

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  19. Ultrasonic rotary-hammer drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  20. TESTING OF THE DUAL ROTARY FILTER SYSTEM

    SciTech Connect

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-08-29

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be

  1. Electronic controller for reciprocating rotary crystallizer

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.; Reiss, Donald A.; Hester, Howard B.

    1988-01-01

    An electronic controller for a reciprocating rotary crystallizer is described. The heart of this system is the electronic timer circuit. A schematic along with a detailed description of its operation is given.

  2. Unidirectional rotary motion in achiral molecular motors

    NASA Astrophysics Data System (ADS)

    Kistemaker, Jos C. M.; Štacko, Peter; Visser, Johan; Feringa, Ben L.

    2015-11-01

    Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings—like wheels on an axle—demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

  3. Unidirectional rotary motion in achiral molecular motors.

    PubMed

    Kistemaker, Jos C M; Štacko, Peter; Visser, Johan; Feringa, Ben L

    2015-11-01

    Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings--like wheels on an axle--demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

  4. Rotary stripper for shielded and unshielded FCC

    NASA Technical Reports Server (NTRS)

    Angele, W.; Chambers, C. M.

    1971-01-01

    Rotary stripper removes narrow strips of insulation and shielding to any desired depth. Unshielded cables are stripped on both sides with one stroke, shielded cables are stripped in steps of different depths.

  5. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  6. An Overview of NASA Research on Positive Displacement Type General Aviation Engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E.; Willis, E. A.

    1979-01-01

    The general aviation positive displacement engine program encompassing conventional, lightweight diesel, and rotary combustion engines is described. Lean operation of current production type spark ignition engines and advanced alternative engine concepts are emphasized.

  7. Design, development and evaluation of a precision air bearing rotary table with large diameter through-hole

    SciTech Connect

    Accatino, M.R.

    1991-11-01

    A large diameter precision air bearing rotary table with a 16.0 inch diameter through-hole was designed, fabricated and tested in the course of this research. The rotary table will be used in conjunction with a specialized, computer controlled precision inspection machine being designed for the Department of Energy`s (DOE) Nuclear Weapons Complex (NWC). The design process included a complete engineering analysis to predict the final performance of the rotary table, and to ensure that the rotary table meets the required accuracy of 4.0 microinches of total radial (3.5 microinches average radial) and 4.0 microinches total axial (3.5 microinches average axial) errors. The engineering analysis included structural deformation, thermal sensitivity and dynamic analyses using finite element methods in some cases, as well as other analytic solutions. Comparisons are made between predicted and tested values, which are listed in the rotary table error budget. The rotary table performed as predicted with measured axial and radial stiffnesses of 1.1E06 lbf/inch and 2.9E06 lbf/inch, respectively, as well as average radial, axial and tilt errors of 2.5 microinches, 1.5 microinches, and less than 0.05 arcseconds, respectively.

  8. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    SciTech Connect

    Montesanti, Richard Clement

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  9. Man-Made Rotary Nanomotors: A Review of Recent Development

    PubMed Central

    Kim, Kwanoh; Guo, Jianhe; Liang, Z. X.; Zhu, F. Q.; Fan, D. L.

    2016-01-01

    The development rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of the state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery. PMID:27152885

  10. Man-made rotary nanomotors: a review of recent developments

    NASA Astrophysics Data System (ADS)

    Kim, Kwanoh; Guo, Jianhe; Liang, Z. X.; Zhu, F. Q.; Fan, D. L.

    2016-05-01

    The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

  11. Man-made rotary nanomotors: a review of recent developments.

    PubMed

    Kim, Kwanoh; Guo, Jianhe; Liang, Z X; Zhu, F Q; Fan, D L

    2016-05-19

    The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

  12. Airborne rotary air separator study

    NASA Technical Reports Server (NTRS)

    Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.

    1990-01-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.

  13. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  14. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  15. 25. INTERIOR OF ROTARY CAR DUMPER BUILDING WITH VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. INTERIOR OF ROTARY CAR DUMPER BUILDING WITH VIEW OF ROTARY CAR DUMPER LOOKING NORTHEAST. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. Coal gasification: New challenge for the Beaumont rotary feeder

    NASA Technical Reports Server (NTRS)

    Stelian, J.

    1977-01-01

    The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

  17. A bistable electromagnetically actuated rotary gate microvalve

    NASA Astrophysics Data System (ADS)

    Luharuka, Rajesh; Hesketh, Peter J.

    2008-03-01

    Two types of rotary gate microvalves are developed for flow modulation in microfluidic systems. These microvalves have been tested for an open flow rate of up to 100 sccm and operate under a differential pressure of 6 psig with flow modulation of up to 100. The microvalve consists of a suspended gate that rotates in the plane of the chip to regulate flow through the orifice. The gate is suspended by a novel fully compliant in-plane rotary bistable micromechanism (IPRBM) that advantageously constrains the gate in all degrees of freedom except for in-plane rotational motion. Multiple inlet/outlet orifices provide flexibility of operating the microvalve in three different flow configurations. The rotary gate microvalve is switched with an external electromagnetic actuator. The suspended gate is made of a soft magnetic material and its electromagnetic actuation is based on the operating principle of a variable-reluctance stepper motor.

  18. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld and...

  19. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld and...

  20. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld and...

  1. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld and...

  2. Methods and apparatus for controlling rotary machines

    DOEpatents

    Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Barnes, Gary R [Delanson, NY; Fric, Thomas Frank [Greer, SC; Lyons, James Patrick Francis [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Holley, William Edwin [Greer, SC; Barbu, Corneliu [Guilderland, NY

    2009-09-01

    A control system for a rotary machine is provided. The rotary machine has at least one rotating member and at least one substantially stationary member positioned such that a clearance gap is defined between a portion of the rotating member and a portion of the substantially stationary member. The control system includes at least one clearance gap dimension measurement apparatus and at least one clearance gap adjustment assembly. The adjustment assembly is coupled in electronic data communication with the measurement apparatus. The control system is configured to process a clearance gap dimension signal and modulate the clearance gap dimension.

  3. Rotary Coupling Extends Life Of Hose

    NASA Technical Reports Server (NTRS)

    Benner, Steve; Costello, Frederick; Swanson, Theodore

    1991-01-01

    Oscillating rotary coupling enables hose to withstand bending oscillations without leakage. Intended for use where hose connects to stationary structure at one end and to oscillating structure on other end. Coupling, (a sun-and-planetary pulley system), eliminates fatigue stress at fixed end. Pulley coupling requires less hose than conventional helical-wrap couplings, and its weight, pressure drop, heat loss or gain, and fluid contents also less. Conceived for use on Space Station to transfer vapors across rotary joints to directional radiators for condensation or to transfer liquids to gimballed payloads for evaporation. On Earth, used to carry working fluids to and from evaporative solar collectors following path of Sun.

  4. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... abrasive device intended to be attached to a powered handpiece to remove calculus deposits from teeth...

  5. Automated Welding of Rotary Forge Hammers

    DTIC Science & Technology

    1994-05-01

    NUMBER OF PAGES Plasma Transferred Arc (PTA) Welding. Metal Inert Gas (MIG) Welding, 34 Metal Powder, Rotary Forge Hammers. Hardfacing 16. PRICE CODE 17...filled with required hardfacing materials ............................................... 26 8. Top and side schematic views, respectively, of forging...superalloy hardfacing deposit. In addition to the hardfacing layer, an underlying layer of buffer material must first be deposited to minimize cracking

  6. Rotary machine having back to back turbines

    NASA Technical Reports Server (NTRS)

    Burgy, N. Frank (Inventor); Palgon, Alfred M. (Inventor); Branstrom, Bruce R. (Inventor)

    1992-01-01

    A rotary machine having a pair of back to back turbines in serial flow relationship is disclosed. Various construction details are developed which permit for a compact design. In one detailed embodiment the turbine has a housing having an inlet manifold and an exit manifold which are disposed between the outlet manifold for an associated turbopump.

  7. Benefits of the rotary diaphragm pump.

    PubMed

    Borstell, D

    2005-03-01

    The huge variety of applications in the medical field represents a challenge for the design of miniature pumps. There are well-known designs such as piston pumps, eccenter diaphragm pumps and peristaltic pumps. There are lesser-known types such as the rotary diaphragm pump, the subject of this article. Its design features, variants, and advantages and disadvantages are examined.

  8. Encapsulated Ball Bearings for Rotary Micro Machines

    DTIC Science & Technology

    2007-01-01

    properties between 440C stainless steel balls and silicon are quite low when compared to pure sliding motion due to the rolling nature. The frictional...fabrication of the rotary ball bearing is based on commercially available 440C stainless steel balls with a diameter, dball, of 285 µm and a lot diameter

  9. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... abrasive device intended to be attached to a powered handpiece to remove calculus deposits from...

  10. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... abrasive device intended to be attached to a powered handpiece to remove calculus deposits from...

  11. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... abrasive device intended to be attached to a powered handpiece to remove calculus deposits from...

  12. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... abrasive device intended to be attached to a powered handpiece to remove calculus deposits from...

  13. BACKPRESSURE TESTING OF ROTARY MICROFILTER DISKS

    SciTech Connect

    Fowley, M.; Herman, D.

    2011-04-14

    The Savannah River National Laboratory (SRNL), under the Department of Energy (DOE) Office of Environmental Management (EM), is modifying and testing the SpinTek{trademark} rotary microfilter (RMF) for radioactive filtration service in the Department of Energy (DOE) complex. The RMF has been shown to improve filtration throughput when compared to other conventional methods such as cross-flow filtration. A concern with the RMF was that backpressure, or reverse flow through the disk, would damage the filter membranes. Reverse flow might happen as a result of an inadvertent valve alignment during flushing. Testing was completed in the Engineering Development Laboratory (EDL) located in SRNL to study the physical effects of backpressure as well as to determine the maximum allowable back-pressure for RMF disks. The RMF disks tested at the EDL were manufactured by SpinTek{trademark} Filtration and used a Pall Corporation PMM050 filter membrane (0.5 micron nominal pore size) made from 316L stainless steel. Early versions of the RMF disks were made from synthetic materials that were incompatible with caustic solutions and radioactive service as well as being susceptible to delaminating when subjected to backpressure. Figure 1-1 shows the essential components of the RMF; 3 rotating disks and 3 stationary turbulence promoters (or shear elements) are shown. Figure 1-2 show the assembly view of a 25 disk RMF proposed for use at the Savannah River Site (SRS) and at the Hanford Facility. The purpose of the testing discussed in this report was to determine the allowable backpressure for RMF disks as well as study the physical effects of backpressure on RMF disks made with the Pall PMM050 membrane. This was accomplished by pressurizing the disks in the reverse flow direction (backpressure) until the test limit was reached or until membrane failure occurred. Backpressure was applied to the disks with air while submerged in deionized (DI) water. This method provided a visual

  14. Design and implementation of a novel rotary micropositioning system driven by linear voice coil motor.

    PubMed

    Xu, Qingsong

    2013-05-01

    Limited-angle rotary micropositioning stages are required in precision engineering applications where an ultrahigh-precision rotational motion within a restricted range is needed. This paper presents the design, fabrication, and control of a compliant rotary micropositioning stage dedicated to the said applications. To tackle the challenge of achieving both a large rotational range and a compact size, a new idea of multi-stage compound radial flexure is proposed. A compact rotary stage is devised to deliver an over 10° rotational range while possessing a negligible magnitude of center shift. The stage is driven by a linear voice coil motor and its output motion is measured by laser displacement sensors. Analytical models are derived to facilitate the parametric design, which is validated by conducting finite element analysis. The actuation and sensing issues are addressed to guarantee the stage performance. A prototype is fabricated and a proportional-integral-derivative control is implemented to achieve a precise positioning. Experimental results demonstrate a resolution of 2 μrad over 10° rotational range as well as a low level of center shift of the rotary micropositioning system.

  15. Rotary air preheaters on power-station boilers

    SciTech Connect

    Chew, P.E.

    1985-01-01

    Rotary air heaters on fossil-fuel power stations perform the important tasks of recovering low-grade heat from the combustion gases and preheating the air supplied for combustion. The paper describes main aspects of the operation and performance of Ljungstrom type heaters on coal-fired plant, covering the areas of thermal performance, pressure losses of the air and gas streams and leakage of air into the gas stream. The degradation of thermal performance due to fluid by-passing the heat exchange elements and flow maldistribution is discussed, and means of improving thermal performance are referred to. A major incidence of severe fouling is described, together with measures adopted to overcome the problem. Reference is made to a new method for off-load cleaning of air heaters. Engineering developments and theoretical approaches aimed at reducing air cross leakage are outlined.

  16. Rotary Steerable Horizontal Directional Drilling: Red River Formation

    NASA Astrophysics Data System (ADS)

    Cherukupally, A.; Bergevin, M.; Jones, J.

    2011-12-01

    Sperry-Sun Drilling, a Halliburton company provides engineering solutions and sets new records for Horizontal and Vertical Displacement Drilling (HVDD). Halliburton Sperry Drilling, Casper, WY, allowed one student to participate in 12-week experiential learning program this summer as HVDD engineer. HVDD is the science of drilling non-vertical wells and can be differentiated into three main groups; Oilfield Directional Drilling (ODD), Utility Installation Directional Drilling (UIDD) and in-seam directional Drilling. Sperry-Sun prior experience with rotary drilling established a number of principles for the configuration of Bottom Hole Assembly (BHA) that would be prone to drilling crooked hole [1]. Combining Measurement While Drilling survey tools (MWD tools) and BHA designs made HVDD possible. Geologists use the MWD survey data to determine the well placement in the stratigraphic sequence. Through the analysis of this data, an apparent dip of the formation can be calculated, and the bit is directed to stay in the target zone of production. Geological modeling assists in directing the well by creating a map of the target zone surface, an Isopach map. The Isopach map provides contour intervals and changes in formation dip. When the inclination of the formation changes the geologist informs the directional drillers to adjust the drill bits. HVDD provides Halliburton the opportunity to reach more production intervals in a given formation sequence [1]. The Down hole motors powered by fluid flow through the drill string create horsepower and rotation of the bit which enables the use of a bend element in the BHA to create the tilt necessary to deviate the wellbore from vertical displacement drilling path. The rotation of Down hole motors is influenced by temperature and aromatics found in water, oil and diesel based mud. The development of HVDD Rotary Steerable tools hold promise to have almost a complete automated process for drilling highly deviated production well

  17. NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure.

    PubMed

    Lei, Xiao-hua; Ning, Li-na; Cao, Yu-jing; Liu, Shuang; Zhang, Shou-bing; Qiu, Zhi-fang; Hu, Hui-min; Zhang, Hui-shan; Liu, Shu; Duan, En-kui

    2011-01-01

    The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D) substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG) culture system as a "stimulatory" environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs). hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.

  18. Large-amplitude rotary induced-strain (LARIS) actuator proof-of-concept demonstrator

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Rogers, Craig A.; McNeil, Shane

    1997-06-01

    Induced-strain materials can produce very large forces and, hence, large energy density, but small actual displacements. A new concept for obtaining large-amplitude rotary displacements from small linear displacements generated by induced-strain material stacks is proposed. The concept utilizes the theory of twist-warping coupling in thin-wall open tubes. The theory of the proposed solid-state axial-to- rotary converter-amplifier, together with the appropriate bibliographical references, is given. A simple formula is generated for estimating the axial-to-rotary conversion- amplification coefficient from the geometrical length, L, and enclosed area, A, of the open tube. A large-displacement induced-strain rotary (LARIS) actuator proof-of-concept demonstrator was built and tested to verify and validate the theoretical developments. The LARIS actuator consisted of a 28 mm diameter, 1.2 m length open tube and a 120 micrometer, -1000 V PZT translator. The experimental set-up and the excitation and measuring equipment are fully described in the paper. A maximum rotary displacement of 8 degrees was measured, and the linear relationship between the rotation coefficient, the tube length, L, and the inverse of the enclosed area, A, was verified. An improved theoretical model, that accounts for the experimentally observed zero off-set, is also given. The theoretical developments and experimental tests presented in this paper show that the proposed LARIS actuator, based on a novel solid-state axial-to-rotary converter-amplifier utilizing the warping-torsion coupling of an open tube, is a viable design option, of great constructive simplicity and very low parts count. This concept can be successfully used in a series of aerospace and mechanical engineering applications, as for example in the actuation of adaptive control surfaces for aircraft wings and helicopter blades. The 8 degree rotary displacement capabilities measured on the proof-of-concept demonstrator can be easily

  19. Compact fast analyzer of rotary cuvette type

    DOEpatents

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  20. Rotary Mode Core Sample System availability improvement

    SciTech Connect

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D.; Cross, B.T.; Burkes, J.M.; Rogers, A.C.

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  1. Transient phenomena in rotary-kiln incineration

    SciTech Connect

    Linak, W.P.; Kilgroe, J.D.; McSorley, J.A.; Wendt, J.O.L.; Dunn, J.E.

    1989-01-01

    This paper describes results of an ongoing experimental investigation at the U.S. EPA into the waste properties and kiln parameters that determine both the instantaneous intensity and the total magnitude of transient puffs leaving the kiln. (NOTE: The batch introduction of waste-filled drums or containers into practical rotary-kiln incinerators can lead to transient overcharging conditions which, for brevity, are here denoted as 'puffs.') The experimental apparatus utilized was a 73-kW laboratory rotary-kiln simulator. Surrogate solid wastes (plastic rods) and surrogate liquid wastes (on corncob sorbent in cardboard containers) were investigated. A statistically designed parametric study was used to determine the extent to which waste and kiln variables (e.g., charge mass, charge surface area, charge composition, kiln temperature, and kiln rotation speed) affected the intensity (hydrocarbon peak height) and magnitude (hydrocarbon peak area) of puffs.

  2. Equivalent dynamic model of DEMES rotary joint

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.

  3. Design considerations for bearingless rotary pumps.

    PubMed

    Kung, R T; Hart, R M

    1997-07-01

    The designs of rotary blood pumps have shown substantial technical progress over recent years, especially contact bearing designs. However, the concern for potential thromboembolism remains and can only be eliminated by the use of bearingless pumps. Bearingless designs can be achieved through the application of magnetic, hydrodynamic, and hydrostatic forces or a proper combination of these forces. Although a purely magnetically suspended, actively controlled system can be designed, judicious use of hydraulic forces can allow simplification of device configuration and control. In this study, bearingless designs were evaluated for both axial and centrifugal pump configurations. Trade-offs between shear rates and bearing leak rates were considered based upon constraints imposed by hemolysis and residence time. These principles were used for determining the design feasibility of a rotary pump using combined magnetic and hydraulic stabilizing forces.

  4. Rotary-scanning optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Qi, Weizhi; Xi, Lei

    2016-10-01

    Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.

  5. Mechanically Induced g-Jitter from Space Station Rotary Joints

    NASA Technical Reports Server (NTRS)

    Boucher, Robert L.

    2000-01-01

    The mission of the International Space Station is to provide a working laboratory in orbit for research in engineering, life sciences, and microgravity. Among the microgravity disciplines that are preparing to utilize this international resource are materials processing, combustion, fluid dynamics, biotechnology, and fundamental physics. The Station promises to enable significant advances in each of these areas by making available a research facility in which gravitational and other accelerations, and their corresponding buoyancy and diffusion effects on various physical processes, are orders of magnitude lower than they are on Earth. In order to fulfill this promise, it is not enough for the Space Station to simply replicate a typical terrestrial scientific laboratory in orbit. Although an orbiting laboratory is free of most of the effects of gravitational acceleration by virtue of its free fall condition, it also produces structural vibration or jitter that can interfere with the processes under study. To ensure the quality of the acceleration environment and enable a successful mission, the Space Station Program has limited potential disturbances in two ways: first, by isolating the most sensitive payloads from the vehicle structure, and second, by quieting major disturbances at their sources. The first area, payload isolation, is implemented inside the pressurized modules at the rack level. Sub-rack level isolators have also been developed. This paper addresses the second area, disturbance source limits, for one of the major sources of mechanical noise on the Space Station: the Solar Alpha Rotary Joints. Due to the potential for large disturbances to the microgravity environment, an initial analytical prediction of rotary joint vibration output was made. Key components were identified and tested to validate the analytical predictions. Based on the component test results, the final vibration output of the joints was verified by a test on each fully assembled

  6. Helical rotary screw expander power system

    NASA Technical Reports Server (NTRS)

    Mckay, R. A.; Sprankle, R. S.

    1974-01-01

    An energy converter for the development of wet steam geothermal fields is described. A project to evaluate and characterize a helical rotary screw expander for geothermal applications is discussed. The helical screw expander is a positive displacement machine which can accept untreated corrosive mineralized water of any quality from a geothermal well. The subjects of corrosion, mineral deposition, the expansion process, and experience with prototype devices are reported.

  7. Nanoscale rotary motors driven by electron tunneling.

    PubMed

    Wang, Boyang; Vuković, Lela; Král, Petr

    2008-10-31

    We examine by semiclassical molecular dynamics simulations the possibility of driving nanoscale rotary motors by electron tunneling. The model systems studied have a carbon nanotube shaft with covalently attached "isolating" molecular stalks ending with "conducting" blades. Periodic charging and discharging of the blades at two metallic electrodes maintains an electric dipole on the blades that is rotated by an external electric field. Our simulations demonstrate that these molecular motors can be efficient under load and in the presence of noise and defects.

  8. High pressure rotary piston coal feeder

    NASA Technical Reports Server (NTRS)

    Gardner, J. F.; Gencsoy, H. T.; Strimbeck, D. C.

    1977-01-01

    This feeder concept uniquely combines the functions of solids feeding, metering, and pressurization into one compact system. Success with the rotary-piston concept would provide a lower-cost alternative to lock-hopper systems. The design of the feeder is presented, with special emphasis on the difficult problem of seal design. Initial tests will be to check seal performance. Subsequent tests will evaluate solids-feeding ability.

  9. Dry coating in a rotary fluid bed.

    PubMed

    Kablitz, Caroline Désirée; Harder, Kim; Urbanetz, Nora Anne

    2006-02-01

    A highly efficient dry coating process was developed to obtain an enteric film avoiding completely the use of organic solvents and water. Using hydroxypropyl methylcellulose acetate succinate (HPMCAS) an enteric coat should be obtained without adding talc as anti-tacking agent because of problems arising from microbiological contamination. Further on, a method was developed preparing isolated films in order to determine the glass transition temperature (T(g)) and the required process temperature. The process was conducted in the rotary fluid bed with a gravimetric powder feeder achieving an exact dosage in contrast to volumetric powder feeder. A three way nozzle was aligned tangential to the pellet bed movement feeding simultaneously powder and plasticizer into the rotary fluid bed. The determined coating efficiency of the talc-free formulation was high with 94% and storage stability regarding tacking could be achieved using colloidal silicium dioxide as top powder. The T(g) of the enteric coat could be determined analyzing the T(g) of isolated films obtained by coating celluloid spheres instead of pellets using the dry coating process in rotary fluid bed. The dry coating process has been demonstrated to be a serious alternative to conventional solvent or water based coating processes.

  10. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1991-04-22

    The focus of our work during the first quarter of 1991 was on combustion tests at the PEDCO rotary kiln reactor at North American Rayon (NARCO) plant in Elizabethton, TN. The tests had essentially tow related objectives: (a) to obtain basic data on the combustion of anthracite culm in a rotary kiln reactor, and (b) upon the test results, determine how best to proceed with our own planned program at the Humphrey Charcoal kiln in Brookville, PA. The rationale for the tests at PEDCO arose from process analysis which posted red flags on the feasibility of burning low-grade, hard-to-burn fuels like anthracite culms, in the rotary kiln. The PEDCO unit afforded a unique opportunity to obtain some quick answers at low cost. Two different anthracite culm fuels were tested: a so-called Jeddo culm with an average heating value of 7000 Btu/lb, and a relatively poorer culm, and Emerald'' culm, with an average heating value of 5000 Btu/lb. An attempt was also made to burn a blend of the Emerald culm with bituminous coal in 75/25 percent proportions. This report describes the tests, their chronology, and preliminary results. As it turned out, the PEDCO unit is not configured properly for the combustion of anthracite culm. As a result, it proved difficult to achieve a sustained period of steady-state combustion operation, and combustion efficiencies were low even when supplemental fuel was used to aid combustion of the culm. 1 fig., 2 tabs.

  11. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1990-08-15

    BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

  12. High Pressure Rotary Shaft Sealing Mechanism

    DOEpatents

    Dietle, Lannie; Gobeli, Jeffrey D.

    2001-05-08

    A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.

  13. Study on the Oil Supply System for Rotary Compressors

    NASA Astrophysics Data System (ADS)

    Ito, Takahide; Kobayashi, Hiroyuki; Fujitani, Makoto; Murata, Nobuo

    Research has been undertaken to clarify the shaft oil pump mechanisms and oil supply network systems for rotary compressors. Numerical expressions were developed for each part of the rotary compressor,(such as drive shaft,oil pump and journal bearing grooves)in order to confirm that the calculated values agree with the experimental results. Finally,a computer program has been developed to evaluate the oil supply system performance under steady conditions for rotary compressors.

  14. Noise Reduction Analysis on Inverter Driven Two-Cylinder Rotary Compressor

    NASA Astrophysics Data System (ADS)

    Nonaka, Ryutaro; Suda, Akihiro; Matumoto, Kenzou

    Two-cylinder rotary compressor is dynamically balanced well because two rollers in each cylinder chamber are located in opposite sides. Thus, it helps to reduce the circumferential vibration based on the tracking torque ripple for gas compression. This concept has been recently applied to room airconditioners (RACs) for the purpose of reducing vibration and noise of the unit. However, it consequently requires the compressor, which is one of the main noise factors, extremely low noise to reduce RAC noise. This paper describes generating mechanisms of the compressor noise established by analysis using signal processing and computer aided engineering. In addition, concrete countermeasures are presented for the noise reduction of the two-cylinder rotary compressor. In conclusion, Countermeasures for resonance in cavities were achieved by reducing 630Hz∼1KHz levels and the effect of muffler in the chamber contributed to the reduction of 3KHz∼6KHz levels.

  15. Forebody flow physics due to rotary motion

    NASA Astrophysics Data System (ADS)

    Iwanski, Kenneth Paul

    An experimental investigation of the aerodynamic behavior of an isolated forebody undergoing rotary motion was conducted in a small-scale wind tunnel. Force balance, surface pressure, and flow visualization data was acquired over a range of AOA, for a round and chined configuration of a generic tangent ogive shape. The nature of the fixed location of separation of the chined forebody develops a strong, symmetrical leeward side flowfield. In comparison, the round forebody develops a lateral asymmetry, as a function of AOA, from the naturally occurring separated flow. Quantifying the side force behavior due to the rotary motion of the two distinctively different forebody configurations will lead to a better understanding of the flowfield which plays a primary role in the overall stability and control of an air vehicle. For the round forebody, the side force behavior due to the rotary motion ( CYW ) is dependent upon flow speed (ReD), AOA, as well as the direction and magnitude of rotation ( W=wLV ). In the low AOA range, the rotary-induced flowfield is insufficient in promoting a side force development. In the high AOA range a damping in side force behavior is a result of the "moving wall" effect where the flow along the windward region of the forebody is the predominant influence. In the AOA range where an asymmetrical flowfield is established in a static environment, the rotary motion does not disrupt the natural asymmetric state of the vortices. Additionally, neither the presence of a static side force nor its direction is apparently sufficient in determining the CYW behavior from the axially-varying flowfield. The CYW behavior of the chined forebody is related to the leeward side vortices' vertical trajectory, which is a function of AOA. A slight propelling side force behavior develops in an AOA range where an increased suction develops from the upwind vortex. In the high AOA range there is a diminishing influence from the leeward side vortex suction resulting

  16. Positive displacement type general-aviation engines: Summary and concluding remarks

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1980-01-01

    The activities of programs investigating various aspects of aircraft internal combustion engines are briefly described including developments in fuel injection technology, cooling systems and drag reduction, turbocharger technology, and stratified-charge rotary engines.

  17. Rotary phased radial thrust variable drive transmission

    SciTech Connect

    Shook, W.B.

    1991-09-17

    This patent describes a rotary phased radial thrust variable drive transmission located between a rotable input driving member and an output driven member which are mounted for relative rotation on a common axis. It includes radial thrust linkages carried by one of the members, and a cam unit surrounding the axis and having a selected profile, the thrust linkages carrying cam-followers for engaging the cam profile during relative rotation of the members and thrust means for engaging a mating surface on the other of the members to supply torque thereto so as to result in rotation thereof, and adjustable means for varying the profile of the cam unit.

  18. Rotary Wing Deceleration Use on Titan

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Steiner, Ted J.

    2011-01-01

    Rotary wing decelerator (RWD) systems were compared against other methods of atmospheric deceleration and were determined to show significant potential for application to a system requiring controlled descent, low-velocity landing, and atmospheric research capability on Titan. Design space exploration and down-selection results in a system with a single rotor utilizing cyclic pitch control. Models were developed for selection of a RWD descent system for use on Titan and to determine the relationships between the key design parameters of such a system and the time of descent. The possibility of extracting power from the system during descent was also investigated.

  19. 38. DETAIL OF VIVIANNA WORKS ROTARY KILN FIREBOX ABOVE CHANNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF VIVIANNA WORKS ROTARY KILN FIREBOX ABOVE CHANNEL FOR THE REMOVAL OF TAILINGS FROM THE ROTARY KILN LOOKING NORTHWEST. CONDENSER TO THE RIGHT, TWO STORY OFFICE AND STOREROOM STRUCTURE BEHIND. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  20. Preliminary design development of 100 KW rotary power transfer device

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1981-01-01

    Contactless power transfer devices for transferring electrical power across a rotating spacecraft interface were studied. A power level of 100 KW was of primary interest and the study was limited to alternating current devices. Rotary transformers and rotary capacitors together with the required dc to ac power conditioning electronics were examined. Microwave devices were addressed. The rotary transformer with resonant circuit power conditioning was selected as the most feasible approach. The rotary capacitor would be larger while microwave devices would be less efficient. A design analysis was made of a 100 KW, 20 kHz power transfer device consisting of a rotary transformer, power conditioning electronics, drive mechanism and heat rejection system. The size, weight and efficiency of the device were determined. The characteristics of a baseline slip ring were presented. Aspects of testing the 100 KW power transfer device were examined. The power transfer device is a feasible concept which can be implemented using presently available technologies.

  1. Modeling of pulverized coal combustion in cement rotary kiln

    SciTech Connect

    Shijie Wang; Jidong Lu; Weijie Li; Jie Li; Zhijuan Hu

    2006-12-15

    In this paper, based on analysis of the chemical and physical processes of clinker formation, a heat flux function was introduced to take account of the thermal effect of clinker formation. Combining the models of gas-solid flow, heat and mass transfer, and pulverized coal combustion, a set of mathematical models for a full-scale cement rotary kiln were established. In terms of commercial CFD code (FLUENT), the distributions of gas velocity, gas temperature, and gas components in a cement rotary kiln were obtained by numerical simulation of a 3000 t/d rotary kiln with a four-channel burner. The predicted results indicated that the improved model accounts for the thermal enthalpy of the clinker formation process and can give more insight (such as fluid flow, temperature, etc,) from within the cement rotary kiln, which is a benefit to better understanding of combustion behavior and an improvement of burner and rotary kiln technology. 25 refs., 12 figs., 5 tabs.

  2. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  3. Futuristic concepts in engines and components

    SciTech Connect

    1995-12-31

    This publication includes papers on two-stroke engines and components, Brayton Stirling and Otto Cycles, alternative cycles, advanced combustion, and other related topics. Contents include: Paving the way to controlled combustion engines (CCE); A new class of stratified-charge internal combustion engine; Internal combustion (IC) engine with minimum number of moving parts; New type of heat engine -- externally heated air engine; A porous media burner for reforming methanol for fuel cell powered electric vehicles; Using a Stirling engine simulation program as a regenerator design aid; In-cylinder regenerated engines; High speed electronic fuel injection for direct injected rotary engine; and The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine.

  4. Rotary sequencing valve with flexible port plate

    DOEpatents

    Wagner, Glenn Paul

    2005-05-10

    Rotary sequencing valve comprising a rotor having a rotor face rotatable about an axis perpendicular to the rotor face, wherein the rotor face has a plurality of openings, one or more of which are disposed at a selected radial distance from the axis, and wherein the rotor includes at least one passage connecting at least one pair of the plurality of openings. The valve includes a flexible port plate having a first side and a second side, wherein the first side faces the rotor and engages the rotor such that the flexible port plate can be rotated coaxially by the rotor and can move axially with respect to the rotor, wherein the flexible port plate has a plurality of ports between the first and second sides, which ports are aligned with the openings in the rotor face. The valve also includes a stator having a stator face disposed coaxially with the rotor and the flexible port plate, wherein the second side of the flexible port plate is in sealable, slidable rotary contact with the stator face, wherein the stator face has a plurality of openings, some of which are disposed at the selected radial distance from the axis, and wherein the plurality of openings extend as passages through the stator. The valve may be used in pressure or temperature swing adsorption systems.

  5. Fluid Dynamics in Rotary Piston Blood Pumps.

    PubMed

    Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas

    2017-03-01

    Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

  6. A metering rotary nanopump for microfluidic systems

    PubMed Central

    Darby, Scott G.; Moore, Matthew R.; Friedlander, Troy A.; Schaffer, David K.; Reiserer, Ron S.; Wikswo, John P.

    2014-01-01

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central cam shaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanoliters of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL/min to above 1.0 µL/min. At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices. PMID:20959938

  7. [Pulsatile rotary pumps with low hemolysis].

    PubMed

    Qian, K; Zeng, P; Ru, W; Yuan, H; Feng, Z; Li, L

    2001-09-01

    As is well known, a pulsatile flow is important in assisted-circulation but it is difficult to produce a pulsatile flow with rotary pump, because excessive hemolysis will be generated. The authors have found that the turbulent shear is the main factor for red cell damage and therefore the key point of pulsatile rotary pumps is to reduce the turbulence by producing a pulsatile flow. In the authors' pulsatile axial pump, the pulsatile flow is obtained by axial reciprocation of constant rotating impeller; the rotation and reciprocation of the impeller are driven separately by a DC motor and a pneumatic device. Though a physiological pulsatile flow could be achieved and turbulence would not increase remarkably because the impeller rotates constantly, a second driver except a DC motor is nevertheless necessary, thus the system will become complicated. In the authors' pulsatile radial pump, a pulsatile flow is achieved by changing the rotating speed of the impeller periodically. Turbulence is minimized by a special design of twisted vanes which enable the blood flow to change its direction rather than its dimension during periodic change of rotating speed. Hemolysis tests demonstrated that the index of hemolysis(IH) of the author's pulsatile radial pump is 0.020, with is slightly more than that of the author's nonpulsatile radial pump(IH = 0.015). Animal experiments indicated that the pulsatile radial pump can assist the circulation of calves for several months without harm to blood elements and organ functions of the recipients.

  8. Rotary spectra analysis applied to static stabilometry.

    PubMed

    Chiaramello, E; Knaflitz, M; Agostini, V

    2011-01-01

    Static stabilometry is a technique aimed at quantifying postural sway during quiet standing in the upright position. Many different models and many different techniques to analyze the trajectories of the Centre of Pressure (CoP) have been proposed. Most of the parameters calculated according to these different approaches are affected by a relevant intra- and inter-subject variability or do not have a clear physiological interpretation. In this study we hypothesize that CoP trajectories have rotational characteristics, therefore we decompose them in clockwise and counter-clockwise components, using the rotary spectra analysis. Rotary spectra obtained studying a population of healthy subjects are described through the group average of spectral parameters, i.e., 95% spectral bandwidth, mean frequency, median frequency, and skewness. Results are reported for the clockwise and the counter-clockwise components and refer to the upright position maintained with eyes open or closed. This study demonstrates that the approach is feasible and that some of the spectral parameters are statistically different between the open and closed eyes conditions. More research is needed to demonstrate the clinical applicability of this approach, but results so far obtained are promising.

  9. A metering rotary nanopump for microfluidic systems.

    PubMed

    Darby, Scott G; Moore, Matthew R; Friedlander, Troy A; Schaffer, David K; Reiserer, Ron S; Wikswo, John P; Seale, Kevin T

    2010-12-07

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central camshaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanolitres of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL min(-1) to above 1.0 µL min(-1). At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices.

  10. Modeling of a rotary blood pump.

    PubMed

    Nestler, Frank; Bradley, Andrew P; Wilson, Stephen J; Timms, Daniel L

    2014-03-01

    The accurate representation of rotary blood pumps in a numerical environment is important for meaningful investigation of pump-cardiovascular system interactions. Although numerous models for ventricular assist devices (VADs) have been developed, modeling methods for rotary total artificial hearts (rTAHs) are still required. Therefore, an rTAH prototype was characterized in a steady flow, hydraulic test bench over a wide operational range for pump and hydraulic parameters. In order to develop a generic modeling method, a data-driven modeling approach was chosen. k-Nearest-neighbors, artificial neural networks, and support vector machines (SVMs) were the machine learning approaches evaluated. The best performing parameters for each algorithm were determined via optimization. The resulting multiple-input-multiple-output models were subsequently assessed under identical conditions, and a SVM with a radial basis function kernel was identified as the best performing. The achieved root mean squared errors were 0.03 L/min, 0.06 L/min, and 0.18 W for left and right flow and motor power consumption, respectively. In comparison with existing models for VADs, the flow errors are more than 70% lower. Further advantages of the SVM model are the robustness to measurement noise and the capability to operate outside of the trained parameter range. This proposed modeling method will accelerate further device refinements by providing a more appropriate numerical environment in which to evaluate the pump-cardiovascular system interaction.

  11. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1991-08-29

    Several issues that could have an impact on the capability to burn anthracite culm in a rotary bed boiler were identified; specifically, questions were raised concerning the specifications of the anthracite culm itself and some relating to the equipment. The anthracite culm delivered was wet, (with more than 10 percent moisture), and coarser than feed material for fluidized boilers. It was felt that using finer fuel, ensuring that it is largely dry, would aid the combustion of anthracite culm. It also appeared that if provisions were made for more efficient internal and external recycle of ash, this would also enhance the combustion of this fuel. Accordingly, the decision was made to conduct an additional campaign of tests that would incorporate these changes. The tests, conducted on July 15 and 16, 1991, involved an anthracite culm that was, in fact, obtained from a fluidized bed a heating value of 3,000 Btu/lb and came with a top size of 1/4-inch. Despite these changes, sustained combustion could not be achieved without the use of large quantities of supplemental fuel. Based on these tests, we tend to conclude that the rotary kiln is ill suited for the combustion of hard-to-burn, low-grade solid fuels like anthracite culm.

  12. Development of a Piezoelectric Rotary Hammer Drill

    NASA Technical Reports Server (NTRS)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  13. Development of a Piezoelectric Rotary Hammer Drill

    NASA Technical Reports Server (NTRS)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  14. Resolving Two Dimensional Angular Velocity within a Rotary Tumbler

    NASA Astrophysics Data System (ADS)

    Helminiak, Nathaniel; Helminiak, David; Cariapa, Vikram; Borg, John

    2015-11-01

    In this study, a horizontally oriented cylindrical tumbler, filled at variable depth with cylindrical media, was rotated at various constant speeds. A monoplane layer of media was photographed with a high-speed camera and images were post processed with Particle Tracking Velocimetry (PTV) algorithms in order to resolve both the translational and rotational flow fields. Although the translational velocity fields have been well characterized, contemporary resources enabled the ability to expand upon and refine data regarding rotational characteristics of particles within a rotary tumbler. The results indicate that particles rotate according to intermittent no-slip interactions between the particles and solid body rotation. Particles within the bed, not confined to solid body rotation, exhibited behavior indicative of gearing between particles; each reacting to the tangential component of contact forming rotation chains. Furthermore, it was observed that solid body interactions corresponded to areas of confined motion, as areas of high interaction dissuaded no-slip rotation, while areas of developing flow tended towards no-slip rotation. Special thanks to: NASA Wisconsin Space Grant Consortium Program as well as Marquette University OPUS College of Engineering.

  15. Vertical section construction of wells at Kuyumbinsky oil field via percussive-rotary drilling with DTH hammer.

    NASA Astrophysics Data System (ADS)

    Buzanov, K. V.; Nechaeva, L. N.; Ulyanova, O. S.

    2016-09-01

    The article presents the analysis of sequential use of mobile percussive-rotary drilling sets with DTH hammer and bottom-hole cleaning by foam mud in construction of vertical sections along with at Kuyumbinsky oil field. On the basis of the analysis, an engineering solution is proposed to prevent disastrous mud loss that is the key factor of efficiency in implementation of resource-saving technologies.

  16. Highly precise and compact ultrahigh vacuum rotary feedthrough

    NASA Astrophysics Data System (ADS)

    Aiura, Y.; Kitano, K.

    2012-03-01

    The precision and rigidity of compact ultrahigh vacuum (UHV) rotary feedthroughs were substantially improved by preparing and installing an optimal crossed roller bearing with mounting holes. Since there are mounting holes on both the outer and inner races, the bearing can be mounted directly to rotary and stationary stages without any fixing plates and housing. As a result, it is possible to increase the thickness of the bearing or the size of the rolling elements in the bearing without increasing the distance between the rotating and fixing International Conflat flanges of the UHV rotary feedthrough. Larger rolling elements enhance the rigidity of the UHV rotary feedthrough. Moreover, owing to the structure having integrated inner and outer races and mounting holes, the performance is almost entirely unaffected by the installation of the bearing, allowing for a precise optical encoder to be installed in the compact UHV rotary feedthrough. Using position feedback via a worm gear system driven by a stepper motor and a precise rotary encoder, the actual angle of the compact UHV rotary feedthrough can be controlled with extremely high precision.

  17. Comparison of apical transportation between two rotary file systems and two hybrid rotary instrumentation sequences.

    PubMed

    Setzer, Frank C; Kwon, Tae-Kyung; Karabucak, Bekir

    2010-07-01

    The aim of this study was to evaluate apical transportation of 2 rotary file systems and 2 hybrid rotary instrumentation sequences. One hundred twenty-four mesiobuccal canals of extracted molars were instrumented by 4 nickel-titanium rotary sequences. Group PF (n = 32) was instrumented with ProFile Series 29 to size #6 (#36/.06) at working length (WL). Group ES (n = 28) used EndoSequence to #35/.06. Group PFLS (n = 32) used ProFile Series 29 followed by LightSpeed in a hybrid technique to a final size #50. Group PTLS (n = 32) was instrumented with ProTaper and additional enlargement with LightSpeed to #50 in a hybrid technique. A double-digital radiographic technique was used to measure canal transportation at 0.5-5.0 mm from WL. Statistical analysis was carried out with one-way analysis of variance. There was no statistically significant difference for apical transportation between the groups at any level from the WL (0.5 mm, P = .74; 1.0 mm, P = .09; 2.0 mm, P = .29; 3.0 mm, P = .65; 4.0 mm, P = .21; 5.0 mm, P = .12). indicated that combining different file systems does not lead to increased levels of apical transportation. Hybrid instrumentation might be a valid alternative to achieve larger apical diameters without higher risk of procedural errors. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Advanced General Aviation Turbine Engine (GATE) study

    NASA Technical Reports Server (NTRS)

    Smith, R.; Benstein, E. H.

    1979-01-01

    The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.

  19. Formation of technical requirements for flexible rotary machine nodes

    NASA Astrophysics Data System (ADS)

    Bulenkov, Y.; Mikhaylov, A.

    2016-11-01

    The method of parameters determining for the flexible rotary machines and lines and its individual components is described in this article. The method is based on the analysis of the fail safe performance probability. It allows determining the fail safe performance probability for tools, transportation and tool changing device nodes, elements of flexible rotary machine and is based on the analysis of flexible rotor line structure. The relationships between rational flexible rotary line structure and parameters of the individual nodes are shown on the flexible rotor line for the screws processing.

  20. Measurement and evaluation of static characteristics of rotary hydraulic motor

    NASA Astrophysics Data System (ADS)

    Hružík, Lumír; Vašina, Martin; Bureček, Adam

    2014-03-01

    The paper describes experimental equipment for measurement of static characteristics of rotary hydraulic motor. It is possible to measure flow, pressure, temperature, speed and torque by means of this equipment. It deals with measurement of static characteristics of a gear rotary hydraulic motor. Mineral oil is used as hydraulic liquid in this case. Flow, torque and speed characteristics are evaluated from measured parameters. Measured mechanical-hydraulic, flow and total efficiencies of the rotary hydraulic motor are adduced in the paper. It is possible to diagnose technical conditions of the hydraulic motor (eventually to recommend its exchange) from the experimental measurements.

  1. Rotary plant growth accelerating apparatus. [weightlessness

    NASA Technical Reports Server (NTRS)

    Dedolph, R. D. (Inventor)

    1975-01-01

    Rotary plant growth accelerating apparatus for increasing plant yields by effectively removing the growing plants from the constraints of gravity and increasing the plant yield per unit of space is described. The apparatus is comprised of cylindrical plant beds supported radially removed from a primary axis of rotation, with each plant bed being driven about its own secondary axis of rotation and simultaneously moved in a planetary path about the primary axis of rotation. Each plant bed is formed by an apertured outer cylinder, a perforated inner cylinder positioned coaxially, and rooting media disposed in the space between. A rotatable manifold distributes liquid nutrients and water to the rooting media through the perforations in the inner cylinders as the plant beds are continuously rotated by suitable drive means.

  2. Torque for an Inertial Piezoelectric Rotary Motor

    PubMed Central

    Xing, Jichun

    2013-01-01

    For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor. PMID:24470794

  3. Rotary seal with improved film distribution

    DOEpatents

    Dietle, Lannie Laroy; Schroeder, John Erick

    2013-10-08

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  4. Rotary seal with improved film distribution

    SciTech Connect

    Dietle, Lannie Laroy; Schroeder, John Erick

    2015-09-01

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  5. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  6. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  7. Film riding seals for rotary machines

    DOEpatents

    Bidkar, Rahul Anil; Sarawate, Neelesh Nandkumar; Wolfe, Christopher Edward; Ruggiero, Eric John; Raj Mohan, Vivek Raja

    2017-03-07

    A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further, the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.

  8. Miniature linear-to-rotary motion actuator

    NASA Technical Reports Server (NTRS)

    Sorokach, Michael R., Jr.

    1993-01-01

    A miniature hydraulic actuation system capable of converting linear actuator motion to control surface rotary motion has been designed for application to active controls on dynamic wind tunnel models. Due to space constraints and the torque requirements of an oscillating control surface at frequencies up to 50 Hertz, a new actuation system was developed to meet research objectives. This new actuation system was designed and developed to overcome the output torque limitations and fluid loss/sealing difficulties associated with an existing vane type actuator. Static control surface deflections and dynamic control surface oscillations through a given angle are provided by the actuation system. The actuator design has been incorporated into a transonic flutter model with an active trailing edge flap and two active spoilers. The model is scheduled for testing in the LaRC 16 Foot Transonic Dynamics Tunnel during Summer 1993. This paper will discuss the actuation system, its design, development difficulties, test results, and application to aerospace vehicles.

  9. A rotary motor drives Flavobacterium gliding.

    PubMed

    Shrivastava, Abhishek; Lele, Pushkar P; Berg, Howard C

    2015-02-02

    Cells of Flavobacterium johnsoniae, a rod-shaped bacterium devoid of pili or flagella, glide over glass at speeds of 2-4 μm/s [1]. Gliding is powered by a protonmotive force [2], but the machinery required for this motion is not known. Usually, cells move along straight paths, but sometimes they exhibit a reciprocal motion, attach near one pole and flip end over end, or rotate. This behavior is similar to that of a Cytophaga species described earlier [3]. Development of genetic tools for F. johnsoniae led to discovery of proteins involved in gliding [4]. These include the surface adhesin SprB that forms filaments about 160 nm long by 6 nm in diameter, which, when labeled with a fluorescent antibody [2] or a latex bead [5], are seen to move longitudinally down the length of a cell, occasionally shifting positions to the right or the left. Evidently, interaction of these filaments with a surface produces gliding. To learn more about the gliding motor, we sheared cells to reduce the number and size of SprB filaments and tethered cells to glass by adding anti-SprB antibody. Cells spun about fixed points, mostly counterclockwise, rotating at speeds of 1 Hz or more. The torques required to sustain such speeds were large, comparable to those generated by the flagellar rotary motor. However, we found that a gliding motor runs at constant speed rather than at constant torque. Now, there are three rotary motors powered by protonmotive force: the bacterial flagellar motor, the Fo ATP synthase, and the gliding motor.

  10. A rotary motor drives Flavobacterium gliding

    PubMed Central

    Shrivastava, Abhishek; Lele, Pushkar P.; Berg, Howard C.

    2015-01-01

    Summary Cells of Flavobacterium johnsoniae, a rod-shaped bacterium devoid of pili or flagella, glide over glass at speeds of 2–4 μm/s [1]. Gliding is powered by a protonmotive force [2], but the machinery required for this motion is not known. Usually, cells move along straight paths, but sometimes they exhibit a reciprocal motion, attach near one pole and flip end-over-end, or rotate. This behavior is similar to that of a Cytophaga species described earlier [3]. Development of genetic tools for F. johnsoniae led to discovery of proteins involved in gliding [4]. These include the surface adhesin SprB that forms filaments about 160 nm long by 6 nm in diameter, which, when labeled with a fluorescent antibody [2] or a latex bead [5], are seen to move longitudinally down the length of a cell, occasionally shifting positions to the right or the left. Evidently, interaction of these filaments with a surface produces gliding. To learn more about the gliding motor, we sheared cells to reduce the number and size of SprB filaments and tethered cells to glass by adding anti-SprB antibody. Cells spun about fixed points, mostly counterclockwise, rotating at speeds of 1 Hz or more. The torques required to sustain such speeds were large, comparable to those generated by the flagellar rotary motor. However, we found that a gliding motor runs at constant speed rather than constant torque. Now there are three rotary motors powered by protonmotive force: the bacterial flagellar motor, the Fo ATP synthase, and the gliding motor. PMID:25619763

  11. Aircraft icing instrumentation: Unfilled needs. [rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Kitchens, P. F.

    1980-01-01

    A list of icing instrumentation requirements are presented. Because of the Army's helicopter orientation, many of the suggestions are specific to rotary wing aircraft; however, some of the instrumentation are also suitable for general aviation aircraft.

  12. Rotary roller of no. 2 seamless line in bays 19 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rotary roller of no. 2 seamless line in bays 19 and 20 of the main pipe mill building looking north. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  13. 2. INTERIOR OF THE TIPPLE LOOKING SOUTH THROUGHT THE ROTARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INTERIOR OF THE TIPPLE LOOKING SOUTH THROUGHT THE ROTARY TIPPLE MECHANISM USED TO UNLOAD MINE COAL CARS. - Smith Mine, Tipple, Bear Creek 1.5 miles West of Town of Bear Creek, Red Lodge, Carbon County, MT

  14. Rotary endodontics in primary teeth – A review

    PubMed Central

    George, Sageena; Anandaraj, S.; Issac, Jyoti S.; John, Sheen A.; Harris, Anoop

    2015-01-01

    Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the “gold-standard” over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel–titanium (Ni–Ti) rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel–titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed. PMID:26792964

  15. Capillary array electrophoresis with confocal fluorescence rotary scanner.

    PubMed

    Wang, Jun; Sun, Guangming; Bai, Jiling; Wang, Li

    2003-12-01

    A capillary array electrophoresis system with a rotary confocal fluorescence scanner is reported. A high speed direct current rotary motor, combined with a rotary encoder and a reflection mirror, has been designed to direct the excitation laser beam precisely to a round array of capillaries which are symmetrically distributed around the motor. The rotary encoder is introduced to accurately orientate the position of each capillary and its output signal triggers the data acquisition system to record the fluorescence signal corresponding to each capillary. Separation of enantiomers of glutamic acid, methionine and tryptophan with different additives are demonstrated by this system. The experimental results indicate that this setup can be used to optimize separation methods for capillary electrophoresis as quickly as possible.

  16. Rotary-linear piezoelectric actuator using a single stator.

    PubMed

    Mashimo, Tomoaki; Toyama, Shigeki

    2009-01-01

    We report a piezoelectric actuator having a single stator with rotary and linear motions (RLPA). The stator is fabricated as a single metallic cube with a through-hole. The surface of the inner circle of the hole generates elliptical motions at each natural frequency, transferring the energy to an output shaft, when AC voltages at the appropriate resonant frequency are applied to the piezoelectric elements. This study clarifies the principle of rotary and linear motions and uses finite element methods (FEM) to show how the elliptical motions are generated. Modal analysis illustrated the shapes of the vibration modes and the natural frequencies, and the shape of the stator was designed accordingly. A dynamic analysis of the stator showed the generation of elliptical motion in the directions of the rotary and linear motions. The prototype RLPA was successfully actuated at the resonant frequencies, consistent with the dynamic analysis. The speed of the rotary and linear motions was obtained.

  17. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld and... also exempt from the current good manufacturing practice requirements of the quality system regulation...

  18. Tank 241-TY-103 rotary core sampling and analysis

    SciTech Connect

    Jo, J.

    1995-10-30

    This Sampling and Analysis Plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for two rotary-mode core samples from tank 241-TY-103

  19. Tank 241-BY-105 rotary core sampling and analysis plan

    SciTech Connect

    Sasaki, L.M.

    1995-10-26

    This Sampling and Analysis Plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for two rotary-mode core samples from tank 241-BY-105 (BY-105).

  20. Probability of ignition of reactive wastes by rotary sampling drills

    SciTech Connect

    Heasler, P.G.

    1996-06-01

    Sampling with a rotary drill could potentially cause a fire in some Hanford tanks. If the rotary drill experiences a failure while in fuel-rich, dry waste, the waste could be ignited by the hot drill bit. For the saltcake tanks subject to this hazard, this report presents a methodology for calculating the probabilities of fire due to core drill failure. The methodology utilizes sampling data from tank characterization studies to determine the amount of reactive waste in the tanks.

  1. New Ultra-High Sensitivity, Absolute, Linear, and Rotary Encoders

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1998-01-01

    Several new types of absolute optical encoders of both rotary and linear function are discussed. The means for encoding are complete departures from conventional optical encoders and offer advantages of compact form, immunity to damage-induced dropouts of position information, and about an order of magnitude higher sensitivity over what is commercially available. Rotary versions have sensitivity from 0.02 arcseconds down to 0.003 arcsecond while linear models have sensitivity of 10 nm.

  2. Rotary-To-Axial Motion Converter For Valve

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic

    1991-01-01

    Nearly frictionless mechanism converts rotary motion into axial motion. Designed for use in electronically variable pressure-regulator valve. Changes rotary motion imparted by motor into translation that opens and closes valve poppet. Cables spaced equidistantly around edge of fixed disk support movable disk. As movable disk rotated, cables twist, lifting it. When rotated in opposite direction, cables untwist, lowering it. Spider disk helps to prevent cables from tangling. Requires no lubrication and insensitive to contamination in fluid flowing through valve.

  3. Heat exchange apparatus and process for rotary kilns

    SciTech Connect

    De Beus, A.J.

    1987-06-30

    This patent describes a heat exchange apparatus for use in a rotary kiln, the heat exchange apparatus comprising: refractory means for transferring heat from an upper heated portion of a rotary kiln above a bed disposed in a lower portion to within the bed as the rotary kiln is rotated. The refractory means comprises: tubular refractory members; means for attaching the refractory means in a spaced apart relationship with an interior wall of the rotary kiln in order to cause the refractory means to pass through the bed with a portion of the bed passing under the refractory means. A portion of the bed passes over the refractory means in order to enhance heat transfer as the rotary kiln is rotated. The means for attaching the refractory means comprises rods supported by stanchions and tubular refractory member disposed on the rods; the means for attaching the refractory means and the refractory means is configured and operative for stirring the bed as the refractory means pass through the bed without significant lifting of the bed to the heated upper portions of the rotary kiln as the rotary kiln is rotated; and compressible refractory spacer means disposed between each tubular refractory member for accommodating heat expansion and compressible refractory sleeve means dispersed between the rods and the tubular refractory members for accommodating heat expansion of the rods. Compressible refractory sleeve means and tubular refractory member sized so that the tubular refractory members are tightly held against the tubular refractory spacer means when the rotary kiln is at operating temperatures in order to inhibit fracture of the tubular refractory member as they pass through the bed.

  4. Rotary-To-Axial Motion Converter For Valve

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic

    1991-01-01

    Nearly frictionless mechanism converts rotary motion into axial motion. Designed for use in electronically variable pressure-regulator valve. Changes rotary motion imparted by motor into translation that opens and closes valve poppet. Cables spaced equidistantly around edge of fixed disk support movable disk. As movable disk rotated, cables twist, lifting it. When rotated in opposite direction, cables untwist, lowering it. Spider disk helps to prevent cables from tangling. Requires no lubrication and insensitive to contamination in fluid flowing through valve.

  5. Design study of a high power rotary transformer

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1982-01-01

    A design study was made on a rotary transformer for transferring electrical power across a rotating spacecraft interface. The analysis was performed for a 100 KW, 20 KHz unit having a ""pancake'' geometry. The rotary transformer had a radial (vertical) gap and consisted of 4-25 KW modules. It was assumed that the power conditioning comprised of a Schwarz resonant circuit with a 20 KHz switching frequency. The rotary transformer, mechanical and structural design, heat rejection system and drive mechanism which provide a complete power transfer device were examined. The rotary transformer losses, efficiency, weight and size were compared with an axial (axial symmetric) gap transformer having the same performance requirements and input characteristics which was designed as part of a previous program. The ""pancake'' geometry results in a heavier rotary transformer primarily because of inefficient use of the core material. It is shown that the radial gap rotary transformer is a feasible approach for the transfer of electrical power across a rotating interface and can be implemented using presently available technology.

  6. Advanced engine technology

    SciTech Connect

    Heisler, H.

    1995-12-31

    This book provides a comprehensive reference for anyone wanting to study the way in which modern vehicle engines work, and why they are designed as they are. The book covers virtually all configurations of commercially-produced engines, and features the latest engine technology including up-to-date coverage of electronic engine management and exhaust emission control. Chapters cover valves and camshafts; camshaft chain belt and gear train drives; engine balance and vibration; combustion chamber design and engine performance; induction and exhaust systems; supercharging systems; carburetted fuel systems; fuel injection systems; ignition systems; engine testing equipment; diesel in-line fuel injection pump systems; diesel rotary and unit injector fuel injection pump systems; emission control; cooling and lubrication systems; and alternative power units.

  7. The torque of rotary F-ATPase can unfold subunit gamma if rotor and stator are cross-linked.

    PubMed

    Hilbers, Florian; Junge, Wolfgang; Sielaff, Hendrik

    2013-01-01

    During ATP hydrolysis by F(1)-ATPase subunit γ rotates in a hydrophobic bearing, formed by the N-terminal ends of the stator subunits (αβ)(3). If the penultimate residue at the α-helical C-terminal end of subunit γ is artificially cross-linked (via an engineered disulfide bridge) with the bearing, the rotary function of F(1) persists. This observation has been tentatively interpreted by the unfolding of the α-helix and swiveling rotation in some dihedral angles between lower residues. Here, we screened the domain between rotor and bearing where an artificial disulfide bridge did not impair the rotary ATPase activity. We newly engineered three mutants with double cysteines farther away from the C-terminus of subunit γ, while the results of three further mutants were published before. We found ATPase and rotary activity for mutants with cross-links in the single α-helical, C-terminal portion of subunit γ (from γ285 to γ276 in E. coli), and virtually no activity when the cross-link was placed farther down, where the C-terminal α-helix meets its N-terminal counterpart to form a supposedly stable coiled coil. In conclusion, only the C-terminal singular α-helix is prone to unwinding and can form a swivel joint, whereas the coiled coil portion seems to resist the enzyme's torque.

  8. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    NASA Technical Reports Server (NTRS)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  9. Evaluation of the Effects of Rotary Degassing Process Variables on the Quality of A357 Aluminum Alloy Castings

    NASA Astrophysics Data System (ADS)

    Mostafaei, M.; Ghobadi, M.; Eisaabadi B., Ghasem; Uludağ, Muhammet; Tiryakioğlu, Murat

    2016-12-01

    The effects of rotary degassing process variables on the melt and casting quality have been investigated using reduced pressure test results and quality index calculations from tensile data. The results showed that the effectiveness of the rotary degassing process of Al alloys is highly dependent on the combination of rotational speed and the gas flow rate, and that the wrong combination of these factors may result in no improvement or even degradation in quality of castings. For the first time, it has been found that the effectiveness of the pouring and filling system to produce high-quality castings can be characterized numerically. This new method of quantifying the casting system is introduced as a new quality improvement tool for materials and process engineers.

  10. Dynamics of complex fluids in rotary atomization

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; McKinley, Gareth; MIT, Mechanical Engineering Department Team

    2016-11-01

    We study the dynamics of fragmentation for different Newtonian and viscoelastic liquids in rotary atomization. In this process, at the rim of a spinning cup, the centripetal acceleration destabilizes the formed liquid torus due to the Rayleigh-Taylor instability. The resulting ligaments leave the liquid torus with a remarkably repeatable spacing that scales linearly with the inverse of the rotation rate. Filaments then follow a well-defined geometrical path-line that is described by the involute of the circle. Knowing the geometry of this phenomenon we derive the detailed kinematics of this process and compare it with the experimental observations. We show that the ligaments elongate tangentially to the involute of the circle and thin radially as they separate from the cup. A theoretical form is derived for the spatial variation of the filament deformation rate. Once the ligaments are far from the cup they breakup into droplets since they are not stretched fast enough (compared to the critical rate of capillary thinning). We couple these derivations with the known properties of Newtonian and viscoelastic liquids to provide a physical analysis for this fragmentation process that is compared in detail with our experiments.

  11. Orienting members in a preselected rotary alignment

    DOEpatents

    Williams, Ray E.

    1987-01-01

    An apparatus for orienting members and for maintaining their rotary alignment during orienting members. The apparatus comprises first and second cylindrical elements, a rotation prevention element, a collar and a retainer. Each element has an outside wall, and first and second ends, each end having an outside edge. The first element has portions defining a first plurality of notches located at the outside edge of its first end. An external threaded portion is on the outside wall of the first element and next to the first plurality of notches. The second element has portions defining a second plurality of notches located at the outside edge of its first end. The first plurality has a different number than the second plurality. The first ends of the first and second tubes have substantially the same outside diameter and are abutted during connection so that a cavity is formed whenever first and second tube notches substantially overlap. A rotation prevention element is placed in the cavity to prevent rotation of the first and second elements. A collar with an internal threaded portion is slidably disposed about the second element. The internal threaded portion engages the external threaded portion of the first element to connect the elements. A lip connected to the collar prevents separation of the collar from the second element.

  12. Rotacor: a new rotary blood pump.

    PubMed

    Margreiter, R; Schwab, W; Klima, G; Koller, J; Baum, M; Dietrich, H; Hager, J; Königsrainer, A

    1990-01-01

    A new rotary blood pump was tested in calves for 6 hr. The pump consists of a rigid housing with a trochoidal internal surface, an inlet and outlet, and two lateral walls. A two-corner piston rotates on an eccentric shaft in a trochoidal path, thus creating a gap seal. The pump is driven by a water-cooled DC motor. For right ventricular assist, a cannula was inserted into the right ventricle through the right atrium, and into the left ventricle for left ventricular assist. From a total of 10 experiments, two left ventricular assists, two right ventricular assists, and three biventricular assists were evaluated. The pump produced a pulsatile flow of 3 L at 70 rpm. Energy requirements were 2.19 watts for left, 2.06 for right, and 7.26 for biventricular assists. Plasma hemoglobin remained as low as 10 mg/dl during monoventricular, and increased during biventricular assists to 20 mg/dl after 3 hr, when it started to chop again; after 6 hr it was 16 mg/dl. From these preliminary results it is concluded that this new type of blood pump may be suitable as a circulatory assist device.

  13. Transient phenomena in rotary kiln incineration

    SciTech Connect

    Linak, W.P.; Kilgroe, J.D.; Wendt, J.O.; Mc Sorley, J.A.; Dunn, J.E.

    1986-01-01

    This paper describes results of an ongoing experimental investigation at the U.S. Environmental Protection Agency into the waste properties and kiln parameters that determine both the instantaneous intensity and the total magnitude of transient puffs leaving the kiln. The experimental apparatus utilized was a 73 kW (250,000 Btu/hr) laboratory rotary kiln simulator. Surrogate solid wastes in the form of plastic rods and surrogate liquid wastes on corncob sorbent in cardboard containers were investigated. A statistically designed parametric study was used to determine the extent to which waste and kiln variables (such as charge mass, charge surface area, charge composition, kiln temperature, and kiln rotation speed) affected the intensity (hydrocarbon peak height) and magnitude (hydrocarbon peak area) of puffs. Results demonstrate the relative ease with which failure conditions are achieved, even at high excess air values and high kiln temperatures. Transient puffs arising from even innocuous surrogate wastes can contain a number of hazardous compounds. Increasing kiln temperature and kiln rotation speed can cause an adverse effect on puff intensity, probably due to increased devolatilization rates.

  14. A MRI rotary phased array head coil.

    PubMed

    Li, Bing Keong; Weber, Ewald; Crozier, Stuart

    2013-08-01

    A new rotary phased array (RPA) head coil that can provide homogenous brain images comparable to volumetric radiofrequency coils is proposed for magnetic resonance brain imaging applications. The design of the RPA head coil is a departure from conventional circumferential array design method, as coil elements of the RPA head coil have a "paddle-like" structure consisting of a pair of main conductors located on opposite sides, inserted equi-angularly around and over the head. A prototype 2T receive-only 4-element RPA head coil was constructed and experimentally tested against a conventional receive-only 4-element phased array head coil and a commercial receive-only quadrature birdcage head coil. Homogenous phantom images acquired by the RPA head coil show that signal intensity deep at the center of the phantom was improved as compared to the conventional phased array head coil and this improvement allow the RPA head coil to acquire homogenous brain images similar to brain images acquired with the birdcage head coil. In addition, partial parallel imaging was used in conjunction with the RPA head coil to enable rapid imaging.

  15. Fast Rotary Nonlinear Spatial Acquisition (FRONSAC) Imaging

    PubMed Central

    Wang, Haifeng; Tam, Leo K.; Constable, R. Todd; Galiana, Gigi

    2015-01-01

    Purpose Nonlinear spatial encoding magnetic fields (SEMs) have been studied to reconstruct images from a minimum number of echoes. Previous work has also explored single shot trajectories in nonlinear SEMs. However, the search continues for optimal schemes that apply nonlinear SEMs to improve spatial encoding efficiency and image quality. Theory and Methods We enhance the encoding efficiency of standard linear gradient trajectories by adding a rapidly rotating nonlinear SEM of moderate amplitude, the so called FRONSAC (Fast ROtary Nonlinear Spatial ACquisition) imaging. This additional gradient greatly improves the image quality of highly undersampled single-shot trajectories, including EPI, Spiral, and Rosette trajectories. Results Our simulations, including noise and dephasing effects, test the effect of adding FRONSAC gradients, demonstrating the applicability of this approach. Performance is explained by demonstrating the additional k-space sampling the nonlinear gradient provides. Studies of the optimal amplitude and frequency of the additional FRONSAC field are presented, and the role of enhanced sampling during the readout demonstrated. Dynamic field mapping in a second-order gradient system shows the proposed gradient waveforms are feasible. Conclusions Images resulting from highly undersampled existing k-space trajectories, such as EPI, Spiral and Rosette, are greatly enhanced simply by adding a rotating nonlinear SEM field. PMID:25950279

  16. Fast rotary nonlinear spatial acquisition (FRONSAC) imaging.

    PubMed

    Wang, Haifeng; Tam, Leo K; Constable, R Todd; Galiana, Gigi

    2016-03-01

    Nonlinear spatial encoding magnetic fields (SEMs) have been studied to reconstruct images from a minimum number of echoes. Previous work has also explored single shot trajectories in nonlinear SEMs. However, the search continues for optimal schemes that apply nonlinear SEMs to improve spatial encoding efficiency and image quality. We enhance the encoding efficiency of standard linear gradient trajectories by adding a rapidly rotating nonlinear SEM of moderate amplitude, the so called FRONSAC (Fast ROtary Nonlinear Spatial ACquisition) imaging. This additional gradient greatly improves the image quality of highly undersampled single-shot trajectories, including EPI, Spiral, and Rosette trajectories. Our simulations, including noise and dephasing effects, test the effect of adding FRONSAC gradients, demonstrating the applicability of this approach. Performance is explained by demonstrating the additional k-space sampling the nonlinear gradient provides. Studies of the optimal amplitude and frequency of the additional FRONSAC field are presented, and the role of enhanced sampling during the readout demonstrated. Dynamic field mapping in a second-order gradient system shows the proposed gradient waveforms are feasible. Images resulting from highly undersampled existing k-space trajectories, such as EPI, Spiral, and Rosette, are greatly enhanced simply by adding a rotating nonlinear SEM field. © 2015 Wiley Periodicals, Inc.

  17. Analysis of Rotary Bayonets and Piping

    SciTech Connect

    Chess, K.; Wendlandt, J.; /Fermilab

    1988-08-19

    This report quantifies certain characteristics of the rotary bayonets and associated platform piping on the DO detector. The Vacuum Jacketed 4-inch x 6-inch and 1.5-inch x 3-inch and the 4-inch and 6-inch vacuum pipe articulating jumpers are considered here. The values of greatest importance are the forces required at the bayonet moment arms given in Table II and the stresses summarized in Table III. The forces required should be noted and checked that they are acceptable to the problem. The maximum bending stresses of the vacuum pipes do not exceed 1000 psi and are essentially negligible. The 4-inch x 6-inch vacuum jacketed line experiences the maximum bending stress of 10,300 psi. According to code B31.1, the maximum allowable bending stress is 25,500 psi. The major sources of error in these calculations should be summarized. First, all weights used were approximations and all lengths used were scaled from drawings. Second, while the FRAME MAC{trademark} models resemble the vacuum pipe articulating jumpers, they are definitely simplified. For instance, they do not account for the different stiffnesses of the unions. Finally, the bayonets in the ANSYS models consist of an outer jacket and an inner pipe fixed together at the end of the male sleeve. The actual bayonets are more complex and are composed of various sizes of tubes and pipes which affect the stiffness of the section.

  18. PREPP (Process Experimental Pilot Plant) rotary kiln seals: Problem and resolution

    SciTech Connect

    Drexler, R.L. )

    1990-01-01

    The Process Experimental Pilot Plant (PREPP) is a facility designed to demonstrate processing of low level chemical and transuranic hazardous waste. The plant includes equipment for handling the incoming waste containers, shredding, incineration and cooling the waste, grouting the residue and scrubbing and filtration of the off gas. The process incinerator is a rotary kiln approximately 8-{1/2} ft diameter and 25 ft long with a rotary seal assembly at each end. Each seal assembly consists of a primary, secondary and tertiary seal, with a positive air pressure between primary and secondary seals to prevent out-leakage from the kiln. The kiln operates at 0.5 inch water negative pressure. From the very outset the kiln seals exhibited excessive drag which taxed the kiln drive capacity and excessive in-leakage which limited kiln temperature. An engineering evaluation concluded that the original seals supplied by the kiln vendor could not accommodate expansion and centerline shift of the kiln resulting from heatup of the kiln and its support system. A totally new concept kiln seal design has been generated to replace the (modified) original seals. This new seal system has been designed to provide a very tight long lasting seal which will accommodate the 1.5 inch axial shift and up to 1 inch radial movement of the kiln shell. Design lifetime of the seal is 10,000 operating hours between major maintenance services while maintaining an acceptable leak rate hot or cold, rotating or stopped. The design appears adaptable to any size kiln and is suitable for retrofit to existing kilns. A one-third scale prototype seal assembly is being built to verify the concept prior to construction of the 10 ft diameter seals for the PREPP rotary kiln. 4 figs.

  19. Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

    NASA Technical Reports Server (NTRS)

    Holder, Don; Fort, James; Barone, Michael; Murdoch, Karen

    2005-01-01

    A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gasfliquid separation and pump the liquid from 10 psia at the gasfliquid interface to 18 psia at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump @SP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor. The innovation of the DSP is the drum shaped rotating assembly that acts as the accumulator and also pumps the liquid at much less power than its predecessors. In the CRA application, the separator will rotate at slow speed while accumulating water. Once full, the separator will increase speed to generate sufficient head to pump the water to the wastewater bus. A proof-of- concept (POC) separator has been designed, fabricated and tested to assess the separation efficiency and pumping head of the design. This proof-of-concept item was flown aboard the KC135 to evaluate the effectiveness of the separator in a microgravity environment. This separator design has exceeded all of the performance requirements. The next step in the separator development is to integrate it into the Sabatier Carbon Dioxide Reduction System. This will be done with the Sabatier Engineering Development Unit at the Johnson Space Center.

  20. Hazardous-waste incineration in a rotary kiln

    SciTech Connect

    Owens, W.D. Jr.

    1991-01-01

    A rotary-kiln simulator was used to develop a better understanding of how hazardous materials are removed from sorbent clays. Experimental results and associated numerical modeling on the combustion and desorption of toluene from a montmorillonite clay sorbent are presented. The purpose of these tests was to understand the mass and heat transfer characteristics of the material in a rotary kiln environment. The experiments were done in a batch mode, simulating a control volume of solids moving down the length of a full-scale rotary kiln, exchanging time for distance as the independent variable. Studies investigating the effect of oxygen concentration, charge size, rotational velocity, and kiln cavity temperature on the desorption rate were completed. Also, effects of water in the montmorillonite were examined. Two comprehensive models were developed to predict the thermal and mass desorption characteristics of the bed, respectively. Another series of studies in the rotary kiln simulator was focused on NO, formation from nitrogenous waste constituents. These tests were performed to simulate materials (plastics, nylons, dyes, and process waste) usually destroyed in hazardous-waste incinerators. Four surrogate wastes, Aniline, Pyridine, Malononitrile, and Ethylenediamine, were absorbed onto the montmorillonite clay sorbent. A detailed discussion regarding the design, construction and operation of the rotary-kiln simulator for research on the destruction of hazardous waste materials is presented in the Appendices. All facility calibration techniques and calculations in addition to data acquisition and reduction algorithms are also discussed there.

  1. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  2. Annular stator structure for a rotary machine

    SciTech Connect

    Chaplin, G.F.; Lucas, A.W. Jr.

    1988-02-02

    In an axial flow turbofan gas turbine engine of the type having an axis Ar and being dividable into four quadrants about the axis Ar, an engine casing extending circumferentially about the axis Ar, a fan casing spaced radially outwardly from the engine casing leaving an annular flow path for working medium gases extending circumferentially therebetween, and struts extending from the engine casing to the fan casing across the working medium flow path, each strut being attached to the fan casing at one end and to the engine casing at the other end, the improvement is described which comprises: an array of guide vanes extending radially across the working medium flow path and disposed about the axis Ar such that each quadrant has at least one of the guide vanes disposed in the quadrant, each of the guide vanes being attached to the engine casing and being attached to the fan casing, each of the guide vanes having a free length and having an installed length at installation and under non-operative conditions which is greater than the free length such that under normal operative conditions the guide vanes are placed in tension, the engine casing is placed in tension, and the fan casing is placed in compression.

  3. Operator in-the-loop control of rotary cranes

    SciTech Connect

    Parker, G.G.; Robinett, R.D.; Driessen, B.J.; Dohrmann, C.R.

    1996-03-01

    An open-loop control method is presented for reducing the oscillatory motion of rotary crane payloads during operator commanded maneuvers. A typical rotary crane consists of a multiple degree-of-freedom platform for positioning a spherical pendulum with an attached payload. The crane operator positions the Payload by issuing a combination of translational and rotational commands to the platform as well as load-line length changes. Frequently, these pendulum modes are time-varying and exhibit low natural frequencies. Maneuvers are therefore performed at rates sufficiently slow so as not to excite oscillation. The strategy presented here generates crane commands which suppress vibration of the payload without a priori knowledge of the desired maneuver. Results are presented for operator in-the-loop positioning using a real-time dynamics simulation of a three-axis rotary crane where the residual sway magnitude is reduced in excess of 4OdB.

  4. Behavioral changes in preschoolers treated with/without rotary instruments.

    PubMed

    Maru, Viral Pravin; Kumar, Amit; Badiyani, Bhumika Kamal; Sharma, Anant Raghav; Sharma, Jitendra; Dobariya, Chintan Vinodbhai

    2014-05-01

    Behavioral dentistry is an interdisciplinary science which needs to be learned, practiced, and reinforced in order to provide quality dental care in children. To assess the anxiety experienced during dental treatment in preschool children with/without rotary instruments using behavioral scale. Sixty pediatric patients of preschool age with bilateral occlusal carious lesions extending into dentin were selected for the study. Carious lesions were removed using conventional rotary instruments on one side and Papacarie - chemomechanical caries removal of approach on contra lateral side. Both cavities were restored with glass ionomer cement (Fuji IX). Anxiety scores were determined using 'Modified Child Dental Anxiety Scale' (Wong et al, 1998) during the various clinical stages of the treatment course. Children experienced relaxed behavior when subjected to Papacarie method of caries removal compared to conventional method using rotary instruments. This study helped us to provide behavioral measures and introduce children to dentistry in a nonthreatening setting.

  5. Rotary components, random ellipses and polarization: a statistical perspective.

    PubMed

    Walden, A T

    2013-02-13

    Rotary analysis decomposes vector motions on the plane into counter-rotating components, which have proved particularly useful in the study of geophysical flows influenced by the rotation of the Earth. For stationary random signals, the motion at any frequency takes the form of a random ellipse. Although there are numerous applications of rotary analysis, relatively little attention has been paid to the statistical properties of the random ellipses or to the estimated rotary coefficient, which measures the tendency to rotate counterclockwise or clockwise. The precise statistical structure of the ellipses is reviewed, including the random behaviour of the ellipse orientation, aspect ratio and intensity. Special attention is then paid to spectral matrix estimation from physical data and to hypothesis testing and confidence intervals computed using the estimated matrices.

  6. Design and performance of a piezoelectric actuated precise rotary positioner

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Chang, S. H.

    2006-10-01

    Industries including semiconductor, biotechnology, and nanotechnology are seeking compact and reliable nanometer resolution positioning techniques. To address this demand, this article presents a friction-drive rotary stage driven by a piezoelectric transducer (PZT) actuator. This stage includes a multilayer PZT actuator, the Scott-Russell mechanism, an actuation stage, a preload spring, and an output shaft. Its rotary positioning is accomplished by the stick-slip effect between the wire electrodischarge-machining rotary stage and the output shaft. Finite element analysis and Taguchi optimization method were extensively conducted to analyze the displacement, stress, and vibration behavior for optimum design. As shown by the experimental results, the stage achieved a resolution of 0.13μrad and a speed of 0.15°/h by tuning of the preload spring.

  7. Performance of rotary kiln reactor for the elephant grass pyrolysis.

    PubMed

    De Conto, D; Silvestre, W P; Baldasso, C; Godinho, M

    2016-10-01

    The influence of process conditions (rotary speed/temperature) on the performance of a rotary kiln reactor for non-catalytic pyrolysis of a perennial grass (elephant grass) was investigated. The product yields, the production of non-condensable gases as well as the biochar properties were evaluated. The maximum H2 yield was close to that observed for catalytic pyrolysis processes, while the bio-oil yield was higher than reported for pyrolysis of other biomass in rotary kiln reactors. A H2/CO ratio suitable for Fischer-Tropsch synthesis (FTS) was obtained. The biochars presented an alkaline pH (above 10) and interesting contents of nutrients, as well as low electrical conductivity, indicating a high potential as soil amendment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A case study of air enrichment in rotary kiln incineration

    SciTech Connect

    Melo, G.F.; Lacava, P.T.; Carvalho, J.A. Jr.

    1998-07-01

    This paper presents a case study of air enrichment in an industrial rotary kiln type incineration unit. The study is based on mass and energy balances, considering the combustion reaction of a mixture composed by the residue and the auxiliary fuel with air enriched with oxygen. The steps are shown for the primary chamber (rotary kiln) and secondary chamber (afterburner). The residence times in the primary and secondary chamber are 2.0 and 3.2 sec, respectively. The pressure is atmospheric in both chambers. Based on constant chamber gas residence time and gas temperature, it is shown that the residue input rates can be increased by one order of magnitude as air is substituted by pure oxygen. As the residue consumption rate in the rotary kiln is also dependent on residue physical characteristics (mainly size), the study was also carried out for different percentages of oxygen in the oxidizer gas.

  9. Application of a magnetic fluid seal to rotary blood pumps.

    PubMed

    Mitamura, Y; Arioka, S; Sakota, D; Sekine, K; Azegami, M

    2008-05-21

    A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.

  10. Advanced general aviation engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Zmroczek, L. A.

    1982-01-01

    A comparison of the in-airframe performance and efficiency of the advanced engine concepts is presented. The results indicate that the proposed advanced engines can significantly improve the performance and economy of general aviation airplanes. The engine found to be most promising is the highly advanced version of a rotary combustion (Wankel) engine. The low weight and fuel consumption of this engine, as well as its small size, make it suited for aircraft use.

  11. Alternative general-aircraft engines

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.

    1976-01-01

    The most promising alternative engine (or engines) for application to general aircraft in the post-1985 time period was defined, and the level of technology was cited to the point where confident development of a new engine can begin early in the 1980's. Low emissions, multifuel capability, and fuel economy were emphasized. Six alternative propulsion concepts were considered to be viable candidates for future general-aircraft application: the advanced spark-ignition piston, rotary combustion, two- and four-stroke diesel, Stirling, and gas turbine engines.

  12. Development of a ferromagnetic rotary vacuum sealed spacecraft spin fixture

    NASA Technical Reports Server (NTRS)

    Levine, M. B.

    1977-01-01

    A number of successful spacecraft tests were conducted on an environmental spin fixture which utilizes a ferrofluidic rotary vacuum seal. The 27 cm (10.5 inch) diameter fixture drive shaft supports and spins communications satellites during flight acceptance testing in a thermal vacuum chamber. The drive shaft rotary seal serves to maintain the canned drive system electro-mechanical components at ambient pressure within the space simulator. The ferromagnetic fluid seal was chosen over conventional mechanical sealing devices for its zero-leakage, zero-wear, and minimum friction drag characteristics, as well as its high reliability potential.

  13. Dross treatment in a rotary arc furnace with graphite electrodes

    NASA Astrophysics Data System (ADS)

    Drouet, Michel G.; Handfield, My; Meunier, Jean; Laflamme, Claude B.

    1994-05-01

    Aluminum baths are always covered with a layer of dross resulting from the aluminum surface oxidation. This dross represents 1-10% of the melt and may contain up to 75wt.% aluminum. Since aluminum production is highly energy intensive, dross recycling is very attractive from both energy and economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally unacceptable because of the production of salt slags. Hydro-Quebec has developed a new technology using a rotary arc furnace with graphite electrodes. This process provides aluminum recovery rates of 80-90%, using a highly energy efficient, environmentally sound production method.

  14. How to select and apply positive-displacement rotary pumps

    SciTech Connect

    Neerken, R.F.

    1980-04-07

    The advantages of rotary pumps for process applications are promoted by these practical guidelines concerning the types available, facts about their operation and performance, and the fluid systems in which they can be used. Basic types of rotary pumps discussed include internal gear, sliding vane, single-screw (progressing cavity), cam and piston, flexible tube, flexible liner, external gear, circumferential piston, twin screw, triple screw, single lobe, and 3 lobe. Factors which are examined to make pump selection include suction requirements, viscosity of fluids, temperature at which process fluid is handled, working and allowable pressures, pump capacity, pump horsepower, materials of construction, and intended applications.

  15. Microwave lamp with multi-purpose rotary motor

    DOEpatents

    Ury, M.G.; Turner, B.; Wooten, R.D.

    1999-02-02

    In a microwave powered electrodeless lamp, a single rotary motor is used to (a) rotate the bulb and (b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooler for providing cooling gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement. 8 figs.

  16. Microwave lamp with multi-purpose rotary motor

    DOEpatents

    Ury, Michael G.; Turner, Brian; Wooten, Robert D.

    1999-01-01

    In a microwave powered electrodeless lamp, a single rotary motor is used to a) rotate the bulb and b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooling for providing cooler gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement.

  17. Analysis on design and performance of a solar rotary house

    NASA Astrophysics Data System (ADS)

    Fan, Xuhong; Zhang, Zhaochang; Yang, Fan; Cao, Lilin; Xu, Jing; Yuan, Mingyang

    2017-04-01

    A solar rotary house is designed, composed of rotating main structure, fixed cylinder, rotating drive system, solar photovoltaic system and so on, to achieve 360° rotation. Thus it can change the dark and humid situation of the traditional fixed house shade. Its bearing capacity, driving force and safety are analyzed. Rotary driving force and living energy are provided by solar photovoltaic system on roofs and walls. The Phonenics, Ecotect simulation analysis conclude that the rotating house indoor has better natural ventilation effect, more uniform lighting, better the sunshine time compared with traditional houses, becoming a green, energy-saving, comfortable building model.

  18. Fiber optic sensors for measuring angular position and rotational speed. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1980-01-01

    Two optical sensors, a 360 deg rotary encoder and a tachometer, were built for operation with the light source and detectors located remotely from the sensors. The source and detectors were coupled to the passive sensing heads through 3.65 meter fiber optic cables. The rotary encoder and tachometer were subjected to limited environmental testing. They were installed on an air breathing engine during recent altitude tests. Over 100 hours of engine operation were accumulated without any failure of either device.

  19. Influence of axial movement on fatigue of PROFILE* NI-TI rotary instruments: an in vitro evaluation

    PubMed Central

    Avoaka, Marie-Chantal; Haïkel, Youssef

    2010-01-01

    The aim of this study was to evaluate the influence of the axial movement and the angle of curve (in degrees) on fatigue of nickel-titanium (Ni-Ti) ProFile’ rotary endodontic instruments. Ni-Ti ProFile’ rotary instruments (Maillefer SA, Ballaigues, Switzerland), 25 mm long in the range of ISO size 15 to 40 with two tapers (0.4 and 0.6) were evaluated. They are divided in two groups: the instruments with axial movement and those without axial movement. The system used to test the fatigue is maintained in mechanical conditions as close as possible to the clinical situation. The axial movement is in the order of 2mm in corono-apical direction with a frequency of 1Hz. The concave radii incorporating a notched V-form for guiding the instruments were: 5; 7,5 and 10 mm. The rotary system is mounted on an electric handpiece and rotated at 350 rpm speed as recommended by the manufacturers. The instruments are rotated until their separation, and the time, in seconds, is recorded. Statístícal evaluation is undertaken using a two-way t-test to identify significant differences between variables in the study (p <0,05). We found significant statistical difference (p<0,05) between Ni-Ti engine drive ProFile’ instruments incorporating an axial movement and the instruments without axial movement with the same radius of curvature, size and taper. The incorporation of the axial movement increases significantly the life-span of the ProFile’ rotary instruments. This should reduce the risk of the instrument separation during the endodontic treatment. PMID:20507289

  20. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    PubMed

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  1. Solar Alpha Rotary Joint Anomaly: The Materials and Processes Perspective

    NASA Technical Reports Server (NTRS)

    Basta, Erin A.; Dasgupta, Rijib; Figert, John; Jerman, Greg; Wright, Clara; Petrakis, Dennis; Golden, Johnny L.

    2009-01-01

    This slide presentation reviews the anomaly discovered on the Solar Alpha Rotary Joint (SARJ). This anomaly was discovered when the SARJ mechanism produced anomalous telemetry and noticeable vibrations. Metallic debris was discovered throughout the vicinity of the mechanism. Samples were taken from the SARJ, and the findings of the analysis are discussed.

  2. TRANSIENT SUPPRESSION PACKAGING FOR REDUCED EMISSIONS FROM ROTARY KILN INCINERATORS

    EPA Science Inventory

    Experiments were performed on a 73 kW rotary kiln incinerator simulator to determine whether innovative waste packaging designs might reduce transient emissions of products of incomplete combustion due to batch charging of containerized liquid surrogate waste compounds bound on g...

  3. Northwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Skelp Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  4. Rotary roller mandrel of no. 2 seamless line in bays ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rotary roller mandrel of no. 2 seamless line in bays 19 and 20 of the main pipe mill building looking south. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  5. Northwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  6. Southwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  7. Southwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Skelp Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  8. Design and control of a Nitinol wire actuated rotary servo

    NASA Astrophysics Data System (ADS)

    Song, G.

    2007-10-01

    This paper presents the design and control of a rotary servo actuated by a shape memory alloy (SMA) wire. A new rotary servo device using Nitinol type of SMA wire is designed and fabricated in this study. This new rotary actuator utilizes a Nitinol wire wound on a threaded non-conductive rotor. One end of the Nitinol wire is fixed to the rotor and the other end is fixed to the supporting base plate. The rotor is connected to a pre-tensioned torsional spring such that two-way rotation can be achieved. Upon heating of the Nitinol wire using electric current, the wire contracts, causing the rotor to rotate, since the other end of the SMA wire is rigidly connected to the base plate. This rotor design is compact and offers a space-saving solution for the use of SMA wire actuators. To actively control the servo, a sliding-mode based robust control approach is used. The sliding-mode based robust control consists of three components: a standard proportional plus derivative (PD) control term, a feedforward term used as a bias current, and a robust term to increase system stability and concurrently control accuracy. Experimental results confirm the functionality of the Nitinol wire actuated rotary servo and show this device can be precisely controlled using the sliding-mode based robust control approach.

  9. Multigrid convergence of inviscid fixed- and rotary-wing flows

    NASA Astrophysics Data System (ADS)

    Allen, C. B.

    2002-05-01

    The affect of multigrid acceleration implemented within an upwind-biased Euler method is presented, and applied to fixed-wing and rotary-wing flows. The convergence of fixed- and rotary-wing computations is shown to be vastly different, and multigrid is shown to be less effective for rotary-wing flows. The flow about a hovering rotor suffers from very slow convergence of the inner blade region, where the flow is effectively incompressible. Furthermore, the vortical wake must develop over several turns before convergence is achieved, whereas for fixed-wing computations the far-field grid and solution have little significance. Results are presented for single mesh and two, three, four, and five level multigrid, and using five levels a reduction in required CPU time of over 80 per cent is demonstrated for rotary-wing computations, but 94 per cent for fixed-wing computations. It is found that a simple V-cycle is the most effective, smoothing in the decreasing mesh density direction only, with a relaxed trilinear prolongation operator. Copyright

  10. TRANSIENT SUPPRESSION PACKAGING FOR REDUCED EMISSIONS FROM ROTARY KILN INCINERATORS

    EPA Science Inventory

    Experiments were performed on a 73 kW rotary kiln incinerator simulator to determine whether innovative waste packaging designs might reduce transient emissions of products of incomplete combustion due to batch charging of containerized liquid surrogate waste compounds bound on g...

  11. Micro rotary machine and methods for using same

    DOEpatents

    Stalford, Harold

    2015-01-13

    A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.

  12. Improved Rotary Transformer For Shaft-Position Indicator

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1991-01-01

    Improved rotary transformer for Inductosyn (or equivalent) shaft-position-indicating circuit has pair of ferrite cores instead of the solid-iron cores. Designed with view toward decreasing excitation power (to maximum allowable 2 W) supplied to shaft-position-indicating circuit to increase its output signal and make tracking system less vulnerable to electromagnetic interference.

  13. Rotary Piezoelectric Motors Actuated by Traveling Waves (abstract)

    NASA Technical Reports Server (NTRS)

    Lih, S. S.; Bar-Cohen, Y.

    1997-01-01

    Piezoelectric rotary motors are being developed as a drive mechanism for miniature spacecraft instruments and subsystems. The technology that has recently emerged in commercial products requires more rigorous analytical tools for effective design. The theoretical predictions and the experimental corraboration showed a remarkable agreement and they will be presented and discussed in this paper.

  14. A unidirectional rotary solenoid as applied to stronglinks

    NASA Technical Reports Server (NTRS)

    Kenderdine, Eugene W.

    1989-01-01

    The design goals and results of an advanced development stronglink are discussed. Special emphasis is placed on a new rotary solenoid concept to provide improved security during the handling, storage, transporting, and deployment of weapons to prevent accidental detonation of the weapons in the event of abnormal environments, such as impact, fire, crush, etc.

  15. INTERIOR OF SHT (ROTARY DRYER FOR SODA) BUILDING OR DRYSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SHT (ROTARY DRYER FOR SODA) BUILDING OR DRYSIDE DRYERS WHICH REMOVED TRACES OF LIQUID FROM STD FILTRATE. HEAT CONVERTED SODIUM BICARBONATE TO SODIUM CARBONATE OR SODA ASH, THE PRINCIPAL PRODUCT OF THE WORKS. - Solvay Process Company, SHT Building, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  16. RICOR development of the next generation highly reliable rotary cryocooler

    NASA Astrophysics Data System (ADS)

    Regev, Itai; Nachman, Ilan; Livni, Dorit; Riabzev, Sergey; Filis, Avishai; Segal, Victor

    2016-05-01

    Early rotary cryocoolers were designed for the lifetime of a few thousands operating hours. Ricor K506 model's life expectancy was only 5,000 hours, then the next generation K508 model was designed to achieve 10,000 operating hours in basic conditions, while the modern K508N was designed for 20,000 operating hours. Nowadays, the new challenges in the field of rotary cryocoolers require development of a new generation cooler that could compete with the linear cryocooler reliability, achieving the lifetime goal of 30,000 operating hours, and even more. Such new advanced cryocooler can be used for upgrade existing systems, or to serve the new generation of high-temperature detectors that are currently under development, enabling the cryocooler to work more efficiently in the field. The improvement of the rotary cryocooler reliability is based on a deep analysis and understating of the root failure causes, finding solutions to reduce bearings wear, using modern materials and lubricants. All of those were taken into consideration during the development of the new generation rotary coolers. As a part of reliability challenges, new digital controller was also developed, which allows new options, such as discrete control of the operating frequency, and can extend the cooler operating hours due to new controlling technique. In addition, the digital controller will be able to collect data during cryocooler operation, aiming end of life prediction.

  17. Rotary Drill Operator. Open Pit Mining Job Training Series.

    ERIC Educational Resources Information Center

    Savilow, Bill

    This training outline for rotary drill operators, one in a series of eight outlines, is designed primarily for company training foremen or supervisors and for trainers to use as an industry-wide guideline for heavy equipment operator training in open pit mining in British Columbia. Intended as a guide for preparation of lesson plans both for…

  18. MINIMIZATION OF TRANSIENT EMISSIONS FROM ROTARY KILN INCINERATORS

    EPA Science Inventory

    Transient emissions of organics can occur from rotary kiln incinerators when drums containing liquid wastes bound on sorbents are introduced in a batch-wise fashion. Physical processes controlling the release of waste from the sorbent material are greatly affected by the rotation...

  19. MINIMIZATION OF TRANSIENT EMISSIONS FROM ROTARY KILN INCINERATORS

    EPA Science Inventory

    Transient emissions of organics can occur from rotary kiln incinerators when drums containing liquid wastes bound on sorbents are introduced in a batch-wise fashion. Physical processes controlling the release of waste from the sorbent material are greatly affected by the rotation...

  20. Micro rotary machine and methods for using same

    DOEpatents

    Stalford, Harold L [Norman, OK

    2012-04-17

    A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.

  1. 37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA DISCHARGE IN THE COTTRELL ELECTROSTATIC GENERATORS. THE SYSTEM WAS CAPABLE OF PROVIDING 88,000 VOLTS TO THE ELECTRODES WITHIN THE PRECIPITATOR CHAMBER THE UNIT WAS LOCATED TO THE REAR OF BOILER 904 IN AN ENCLOSED ROOM. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  2. Ultrasonic/Sonic Rotary-Hammer Drills

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  3. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1990-01-01

    Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  4. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER

    SciTech Connect

    Poirier, M.; Herman, D.; Bhave, R.

    2011-09-13

    SRS is currently developing and testing several processes to treat high level radioactive liquid waste. These processes include the Integrated Salt Disposition Process (ISDP), the Salt Waste Processing Facility (SWPF), and the Small Column Ion Exchange Process (SCIX). Each of these processes has a solid-liquid separation process that limits its throughput. SRNL researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The testing showed significant improvement in filter flux with the rotary microfilter over the baseline crossflow filter (i.e., 2.5-6.5X during scoping tests, as much as 10X in actual waste tests, and approximately 3X in pilot-scale tests). SRNL received funding from DOE EM-21, and subsequently DOE EM-31 to develop the rotary microfilter for high level radioactive service. The work has included upgrading the rotary microfilter for radioactive service, testing with simulated SRS waste streams, and testing it with simulated Hanford waste streams. While the filtration rate is better than that obtained during testing of crossflow filters, the authors believe the rotary microfilter throughput can be improved by using a better filter membrane. The rotary microfilter membrane is made of stainless steel (Pall PMM050). Previous testing, funded by DOE EM-21, showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. In that testing, the Pall Accusep and Graver filters produced 13-21% larger filter flux than the baseline 0.1 {micro}m Mott filter. While the improvement in flux is not as dramatic as the improvement of the rotary filter over a crossflow filter, a 13-21% increase could reduce the lifetime of a 30 year process by 4-6 years, with significant cost savings. Subsequent rotary filter testing showed the Pall PMM050 stainless steel filter membrane produced

  5. The Nutating Engine-Prototype Engine Progress Report and Test Results

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.; Boruta, Mike

    2006-01-01

    A prototype of a new, internal combustion (IC) engine concept has been completed. The Nutating Engine features an internal disk nutating (wobbling) on a Z-shaped power shaft. The engine is exceedingly compact, and several times more power dense than any conventional (reciprocating or rotary) IC engine. This paper discusses lessons learned during the prototype engine's development and provides details of its construction. In addition, results of the initial performance tests of the various components, as well as the complete engine, are summarized.

  6. A Powerful New Engine

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through Small Business Innovation Research (SBIR) funding from NASA's Glenn Research Center, Moller International created a new coating for rotary engines, which significantly improves the fuel consumption of a vehicle while reducing emissions. The new coatings are offered in the new Rotapower(R) engine, which is produced and distributed by Moller subsidiary, Freedom Motors, Inc. The coating allows the Rotapower engine to function smoother than other models, reducing wear and protecting the engine. The Rotapower engine has the ability to operate on a variety of fuels, including gasoline, natural gas, diesel, alcohol, and kerosene. A small and lightweight engine, it is projected to replace many of today's bulkier versions. The 10 horsepower model fits in the palm of one's hand, while the 160 horsepower model fits into a 5-gallon bucket. The clean running Rotapower engine is environmentally appealing, because it eliminates over 98 percent of the total emissions given off by traditional piston engines. Fewer pollutants are spewed into the air, making it especially attractive in areas where air pollution is a major problem. Due to the clean-burning nature of the engine, it meets the stringent standards set by the California Air Resources Board. The engine also has numerous commercial benefits in several types of recreational, industrial, and transportation applications, including personal watercraft, snowmobiles, portable generators. and pumps.

  7. Magnetic hardening of Fe50Co50 by rotary swaging

    NASA Astrophysics Data System (ADS)

    Gröb, T.; Wießner, L.; Bruder, E.; Faske, T.; Donner, W.; Groche, P.; Müller, C.

    2017-04-01

    Fe50Co50 was subjected to incremental forming by rotary swaging with the aim of tailoring the coercivity by changing the microstructure. The challenging part of a deformation of Fe50Co50 is an ordering phase present at room temperature, leading to low formability. To increase the formability of the alloy the presence of the ordering phase was supressed by two different concepts. The first concept consists of a heat treatment above the phase transition followed by rapid cooling and deformation at room temperature. The second concept was rotary swaging at temperatures above the phase transition temperature. A comparison in terms of resulting microstructure and magnetic properties shows that both concepts have a potential for tailoring the coercivity of Fe50Co50.

  8. Electrical rotary joint apparatus for large space structures

    NASA Technical Reports Server (NTRS)

    Belew, R. R.; Boehme, R. J. (Inventor)

    1981-01-01

    A structural array and electrical rotary joint for transmitting an electrical power between large space structures having relative rotational movement is disclosed which includes large support framework structures which rotate relative to one another about a common axis of rotation. A rotary interface joint is defined between the structures. A cylindrical hub member is carried by one structure and a cylindrical hub member is carried by a support structure with a third hub member being concentrically within a fourth hub member for relative rotation. Tension connecting cables connect hub members with their associated outer structures whereby relative rotational movement between the structures is transmitted to the cylindrical hub members for unitary motion therewith. Electrical conductor brush members are carried by one hub and electrical contact rings are carried by another hub member in sliding electrical contact with the brushes for transmission of electrical power during relative rotational movement between the two support structures.

  9. High Bandwidth Short Stroke Rotary Fast Tool Servo

    SciTech Connect

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  10. Conversion of Conventional Rotary Kiln Into Effective Sandy Alumina Calciner

    NASA Astrophysics Data System (ADS)

    Ishihara, M.; Hirano, T.; Yajima, H.

    Using conventional rotary kiln for calcining sandy alumina in potlines, remakable heat-saving and capacity-improving can be achieved. 83 liters of oil per tonne of alumina (3200MJ/tonne) were required for calcining 800 m.t.p.d. of sandy alumina in the rotary kiln at Shimizu Works. The kiln is installed with two stages of flash dryers and planetary coolers, and was originally designed for calcining floury alumina at 550 m.t.p.d. This improvement in capacity and unit oil consumption was achieved mainly through shortening the flame by using a special burner and effective heat recovery. The quality of sandy alumina calcined by the kiln is good enough for potlines.

  11. Bearing And Power Transfer Assembly (BAPTA) with rotary transformer

    NASA Astrophysics Data System (ADS)

    Auer, W.

    1980-06-01

    The utilization of rotary transformers as an alternative to slip rings for the power transfer from solar panels to a satellite's main body could be advantageous, especially if an ac bus system is taken into consideration. Different approaches for bearing and power transfer assembly (BAPTA's) with rotary transformers were investigated with main emphasis on the electromagnetic design. Test results show that a 1.5 kW transformer can be operated with a 98% efficiency. A furhter increase to the specified 99% efficiency seems to be possible. In the present configuration, two 1.5 kW transformers are mounted with in one housing. A preloaded ball bearing arrangement assures proper air gaps and a relatively constant torque over temperature. The BAPTA is driven by a TELDIX stepper motor.

  12. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  13. Multiple quantum magic-angle spinning using rotary resonance excitation

    NASA Astrophysics Data System (ADS)

    Vosegaard, Thomas; Florian, Pierre; Massiot, Dominique; Grandinetti, Philip J.

    2001-03-01

    We have discovered rotary resonances between rf field strength, ω1, and magic-angle spinning (MAS) frequency, ωR, which dramatically enhance the sensitivity of triple quantum preparation and mixing in the multiple-quantum MAS experiment, particularly for quadrupolar nuclei having low gyromagnetic ratios or experiencing strong quadrupole couplings. Triple quantum excitation efficiency minima occur when 2ω1=nωR, where n is an integer, with significant maxima occurring between these minima. For triple quantum mixing we observe maxima when ω1=nωR. In both preparation and mixing the pulse lengths required to reach maxima exceed one rotor period. We have combined these rotary resonance conditions into a new experiment called FASTER MQ-MAS, and have experimentally demonstrated a factor of 3 enhancement in sensitivity in comparison to conventional MQ-MAS.

  14. A rotary nano ion pump: a molecular dynamics study.

    PubMed

    Lohrasebi, A; Feshanjerdi, M

    2012-09-01

    The dynamics of a rotary nano ion pump, inspired by the F (0) part of the F(0)F(1)-ATP synthase biomolecular motor, were investigated. This nanopump is composed of a rotor, which is constructed of two carbon nanotubes with benzene rings, and a stator, which is made of six graphene sheets. The molecular dynamics (MD) method was used to simulate the dynamics of the ion nanopump. When the rotor of the nanopump rotates mechanically, an ion gradient will be generated between the two sides of the nanopump. It is shown that the ion gradient generated by the nanopump is dependant on parameters such as the rotary frequency of the rotor, temperature and the amounts and locations of the positive and negative charges of the stator part of the nanopump. Also, an electrical potential difference is generated between the two sides of the pump as a result of its operation.

  15. Rotary molecular motion at the nanoscale: motors, propellers, wheels

    NASA Astrophysics Data System (ADS)

    Vukovic, Lela; Wang, Boyang; Kral, Petr

    2009-03-01

    We describe by molecular dynamics simulations nanoscale systems that could realize rotary motion. First, we study molecular propellers formed by carbon nanotube rotors with attached aromatic blades [1]. We show that these propellers could pump different types of liquids, and their pumping efficiency strongly depends on the chemistry of the (hydrophobic or hydrophilic) liquid-blade interface. We also investigate nanoscopic wheels with hydrophobic surfaces that show rolling activity on water when driven. Finally, we model efficient molecular motors driven by electron tunneling, which could drive rotary molecular systems [2]. [3pt] [1] B. Wang and P. Kr'al, . Rev. Lett. 98, 266102 (2007).[0pt] [2] B. Wang, L. Vukovic and P. Kr'al, Phys. Rev. Lett. 101, 186808 (2008).

  16. Incidence of instrument separation using LightSpeed rotary instruments.

    PubMed

    Knowles, Kenneth I; Hammond, Nathan B; Biggs, Stephen G; Ibarrola, Jose L

    2006-01-01

    The use of nickel-titanium rotary instrument systems has gained popularity over the past 10 years. One of these instrument systems is the LightSpeed (LightSpeed Technology, Inc, San Antonio, TX). One drawback for all nickel-titanium rotary instruments is the incidence of instrument separation. The purpose of this study was to evaluate the incidence of nonretrievable instrument separation using the LightSpeed system in a clinical setting. A total of 3543 canals were treated over a 24 month period and during that time, 46 LightSpeed instruments were separated and found to be nonretrievable, resulting in a separation rate of 1.30%. This rate was lower than previous reported studies.

  17. Error correction of photoelectric rotary and angle encoder

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; She, Wen-ji; Huang, Jing

    2014-02-01

    The photoelectric rotary and angle encoder is a digital angle measuring device, which is integrated with optics, mechanics and electrics. Because of its simple structure, high resolution, and high accuracy, it has been widely used in precision measurement of angle, digital control and digital display system. With the needs of fast tracking and accurate orientation on the horizon and air targets, putting forward higher requirements on accuracy of angle measurement and resolution of photoelectric rotary and angle encoder. Influences of manufacturing, electronics segmentation, optical and mechanical structure and eccentric shaft to photoelectric encoder precision and reducing methods are introduced. Focusing on the eccentricity error, building up an error correction model to improve the resolution of angle encoder and the model was verified by test.

  18. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  19. New Rotary Table Providing Improved Mass Property Measurements

    NASA Astrophysics Data System (ADS)

    Messing, R.; Appolloni, M.; Sablerolle, S.; Tavares, A.; Hervieu, M.

    2014-06-01

    ESA Test Centre at ESTEC, Noordwijk is a unique place in Europe, which is geared to perform environmental tests on large spacecraft at system level. The Test Centre includes the whole environmental facilities family: shakers, acoustic chamber, mass properties measurement facilities, electro-magnetic compatibility facilities and thermal vacuum chambers.Center of gravity (CoG) measurements require at least two force measurements in combination with a mass measurement to determine the CoG in the horizontal x-y plane. To achieve more quickly two or more orientations of the specimen with respect to the force cell the Test Centre implemented a rotary table on top of its W50/M6 mass property machine. This paper focuses on the acceptance and implementation of the rotary table and how by its use the CoG measurements could be improved in terms of measurement time, measurement uncertainty and measurement reliability.

  20. Torque controlled rotary-shear experiments reveal pseudotachilites formation-dynamics and precursor events

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Cordonnier, Benoit; De Siena, Luca; Lavier, Luc; Di Toro, Giulio

    2017-04-01

    Except few cases, rotary shear tests, which are designed to study dynamic friction and strengthening/weakening mechanisms in seismogenic faults, are performed by imposing, to the specimens, a slipping velocity that is pre-defined. This approach has been adopted from engineering that typically, tests man-made objects that, when functioning, spin or slide at a pre-defined velocity under a pre-defined load. On the other hand, natural earthquakes are the effect of a rupture that nucleates, propagates and arrests in the subsurface. These three phases, and the consequent emerging fault slipping velocity, are controlled by the accumulated and released energy around the seismogenic fault before, during and after the earthquake. Thus, imposing the slipping velocity in laboratory experiments might not represent the best option to uncover many aspects of earthquake nucleation and fault slipping dynamics. Here we present some experiments performed with an innovative rotary shear apparatus that uses a clock-spring that when winded provides to the rotating sample a linearly increasing torque. Thus, the nucleation of simulated events occur spontaneously when the shear stress on the slipping surface overcomes the static friction times the normal load that is controlled by a deadweight. In addition, this method allows studying precursory seismic events resembling natural slow-slip earthquakes. We report some preliminary results for a transparent polymer that has melting point 340 K and allows observing the slipping surface (i.e., the contact between the two samples). By coupling: i) the rotary shear apparatus, ii) a video camera recording at 60 fps and a iii) laser pointer we observed the formation and evolution of a melt film that forms in the slipping surface after a phase of "dry" stick-slip. After each seismic event the melt layer solidify forming a pseudotachilite that partially welds the slipping surfaces. We also present the mechanical data that show rupture strengthening in

  1. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  2. 5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, SHOWING INTERIOR ELECTRODES. THE RAW MATERIALS FOR CALCIUM CARBIDE PRODUCTION--LIMESTONE AND COKE--WERE FED BY HOPPERS PLACED BETWEEN THESE ELECTRODES INTO THE ELECTRIC ARC. THE REMOVABLE PLATES ON THE EXTERNAL CIRCUMSTANCE OF THE HORRY FURNACE ARE SHOWN ON THE FIRST THREE FURNACES. (M) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  3. A brief survey of rotary wing induced-velocity theory

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1978-01-01

    An attempt is made to summarize the state of rotary wing flow fields. The theory is traced from its origin as a momentum theory estimate of average interference, through simple vortex theory, to its present status where it is indispensible in calculating blade loads. A comparison of the theory with flow measurements are presented. The modern efforts toward using more detailed digital methods to obtain blade load distribution are described.

  4. STANDBY TOP AND BOTTOM ROTARY MILLING CUTTERS FOR TORIN LINE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STANDBY TOP AND BOTTOM ROTARY MILLING CUTTERS FOR TORIN LINE. SOME PRODUCT FROM THE #43 HOT ROLL IS PROCESSED ON THE TORIN LINE TO REMOVE OXIDIZED SURFACE MATERIAL. IN PRACTICE 15-20/1000 IS CUT FROM THE UPPER AND LOWER SURFACES OF THE STRIP AND RECYCLED TO THE CASTING SHOP. TORIN LINE ADDED AS PART OF 1981 EXPANSION PROGRAM. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  5. Zink rotary kiln seal: Cam followers. Revision 1

    SciTech Connect

    Fisher, D.L.

    1994-12-09

    The CIF will treat hazardous and mixed low-level radioactive waste in a rotary kiln and secondary combustion chamber. A high efficiency air pollution control system follows the secondary chamber. The rotary kiln is designed with a gas seal at each end of its rotating barrel which provides a barrier between the interior of the kiln and outside air. The internal pressure of the rotary kiln will be maintained below atmospheric pressure, so exterior air passing the seals is forced into the kiln`s interior. Positive pressure may be applied in the seal labyrinth, adding a barrier to flow. Both CIF seals will be covered entirely with exhaust hoods, drawing air over the outside of the seal and into a HEPA filtered exhaust system. Cam follower misalignment on a John Zink rotary kiln seal caused damage to the seal`s rotor. The misalignment was quantified, corrected, and checked to verify straightness. The primary purpose of the correction was to allow seal testing 1 to continue, but the information is applicable to the Consolidated Incineration Facility (CIF) since two large seals of similar design will be installed there. Cam follower straightness was off as much as 3.5{degrees}, causing followers to run untrue on the rotor. High contact forces resulted, removing flakes of metal from the rotor surface. The misalignment caused weight bearing followers on one side of the seal to back out of their threaded mounts. The root cause was poor machining of the follower mounting holes. Correction was accomplished by relieving the holes and installing machined spacers and retaining nuts. Cam followers on the CIF`s Zink seals should be inspected for straightness before the seals are installed.

  6. A Short Study of Large Rotary Forged Cylinders

    DTIC Science & Technology

    1979-06-01

    Bottom) 7 Microstructure at mid-wall of reheat treated rotary 25 forged cylinders - Martensite- Bainite 8 Martensitic microstructure of (a) normalized...also was unsatisfactory (Table 2). The microstructure at the mid-wall of both the top and bottom showed evidence of ferrite and bainite (Figs. 1 and...austenitized, and of bainite , showing that the material transformed to austenite had been in- adequately quenched, since martensite is the desired product

  7. Skew and twist resistant hydrodynamic rotary shaft seal

    DOEpatents

    Dietle, L.; Kalsi, M.S.

    1999-02-23

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.

  8. Skew and twist resistant hydrodynamic rotary shaft seal

    DOEpatents

    Dietle, Lannie; Kalsi, Manmohan Singh

    1999-01-01

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.

  9. Robustness of the rotary catalysis mechanism of F1-ATPase.

    PubMed

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V; Noji, Hiroyuki

    2014-07-11

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Rotary torque and rpm indicator for oil well drilling rigs

    SciTech Connect

    Chien, L.C.

    1981-08-25

    Monitoring the torque applied by the rotary table to the drill string and the rpm of the drill string is provided. An intermediate adapter is positioned between the drill kelly and the rotary table. A strain gauge is attached to the intermediate adapter to measure torsional deformation and provide an indication of rotary torque. Transmission of torque data is accomplished by radio frequency transmission utilizing a transmitter on the intermediate adapter. A receiver is mounted to the side of the drill rig floor to receive and demodulate the torque signal. The intermediate adapter is rotating at the same rate as the drill string. Detection of the revolutions utilizing the changing R.F. Field strength is accomplished at the edge of the drill rig platform or elsewhere with a stationary sensor which doubles as the torque receiver. A highly directional torque transmitter antenna mounted on the adapter is used with the major lobe lying parallel to the rig floor and perpendicular to the pipe. By detecting the envelope of the radio frequency field strength, each rotation is marked by a peak. This enables continuous torque and rpm monitoring.

  11. Robustness of the Rotary Catalysis Mechanism of F1-ATPase*

    PubMed Central

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V.; Noji, Hiroyuki

    2014-01-01

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought. PMID:24876384

  12. Fragmentation of Newtonian and viscoelastic liquids during rotary atomization

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; Moore, John; Houze, Eric; Koerner, Michael; McKinley, Gareth; MIT Collaboration; Axalta Coating Systems Collaboration

    2015-11-01

    Animals drying their wet fur by rapidly shaking their body and rotary atomization in paint coating are just a few examples in which centripetal acceleration is used to disintegrate liquid films into smaller fragments. Narrower size distributions and well-defined geometrical fluid pathlines (similar to the involute of a circle) are the main advantages of this type of atomization as compared to air-assisted atomization. Despite these inherent advantages there is a paucity of fundamental knowledge about the roles of fluid rheology in this process. We study the effects of viscosity by performing rotary atomization tests on silicone oils with a wide range of viscosities (1-1000 mPa.s). Viscoelastic effects are also probed by spraying solutions of polyethylene oxide (PEO) dissolved in water at different concentrations. Our results show that understanding the effects of liquid properties on the instabilities that control rotary atomization (primarily Rayleigh-Taylor instability during the ligament formation followed by Rayleigh-Plateau instability during droplet pinch-off) can help us understand the resulting fragment size distributions.

  13. Thermal treatment of medical waste in a rotary kiln.

    PubMed

    Bujak, J

    2015-10-01

    This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years.

  14. Rotation of artificial rotor axles in rotary molecular motors

    PubMed Central

    Baba, Mihori; Iwamoto, Kousuke; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-01-01

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1. These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1. The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1. This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1. PMID:27647891

  15. Behavioral changes in preschoolers treated with/without rotary instruments

    PubMed Central

    Maru, Viral Pravin; Kumar, Amit; Badiyani, Bhumika Kamal; Sharma, Anant Raghav; Sharma, Jitendra; Dobariya, Chintan Vinodbhai

    2014-01-01

    Background: Behavioral dentistry is an interdisciplinary science which needs to be learned, practiced, and reinforced in order to provide quality dental care in children. Aim: To assess the anxiety experienced during dental treatment in preschool children with/without rotary instruments using behavioral scale. Study and Design: Sixty pediatric patients of preschool age with bilateral occlusal carious lesions extending into dentin were selected for the study. Carious lesions were removed using conventional rotary instruments on one side and Papacarie – chemomechanical caries removal of approach on contra lateral side. Both cavities were restored with glass ionomer cement (Fuji IX). Anxiety scores were determined using ‘Modified Child Dental Anxiety Scale’ (Wong et al, 1998) during the various clinical stages of the treatment course. Results: Children experienced relaxed behavior when subjected to Papacarie method of caries removal compared to conventional method using rotary instruments. Conclusion: This study helped us to provide behavioral measures and introduce children to dentistry in a nonthreatening setting. PMID:25254189

  16. Fluorescence of primary dentine after chemomechanical and conventional rotary excavation.

    PubMed

    Corrêa, F N P; Rocha, R O; Soares, F Z M; Rodrigues-Filho, L E; Rodrigues, C R M

    2008-09-01

    This was to compare fluorescence values of dentine remaining after caries removal using chemomechanical systems and conventional rotary methods. In vitro study. 30 extracted primary teeth with proximal carious cavities were divided into three groups according to caries removal method: Carisolv, Papacarie and conventional low speed rotary burs. Carious (initial) and remaining (final) dentine evaluations were assessed by visual-tactile examination and DIAGNOdent. Transversal microhardness (TMH) of remaining dentine was evaluated. Fluorescence and TMH values were submitted to two-way ANOVA and the post hoc Tukey test (alpha = 0.05) and Pearson's linear correlation. Two-way ANOVA revealed that fluorescence values were similar between conventional rotary excavation, Carisolv and Papacarie groups (p = 0.0542). No statistically significant differences (p = 0.1147) were found to TMH values. No correlation was found between fluorescence and TMH values (r = -0.0273). All caries excavation methods resulted in similar remaining dentine fluorescence values. No correlation was found between fluorescence values and TMH of remaining dentine.

  17. Testing and Development of a Percussive Augmenter for Rotary Drills

    NASA Technical Reports Server (NTRS)

    Donnelly, Christopher; Bar-Cohen, Yoseph; Chang, Zensheu; Badescu, Mircea; Sherrit, Stewart

    2011-01-01

    Hammering drills are effective in fracturing the drilled medium while rotary drills remove cuttings. The combination provides a highly effective penetration mechanism. Piezoelectric actuators were integrated into an adapter to produce ultrasonic percussion; augmenting rotary drilling. The drill is capable of operating at low power, low applied force and, with proper tuning, low noise. These characteristics are of great interest for future NASA missions and the construction/remodeling industry. The developed augmenter connects a commercially available drill and bit and was tested to demonstrate its capability. Input power to the drill was read using a multimeter and the augmenter received a separate input voltage. The drive frequency of the piezoelectric actuator was controlled by a hill climb algorithm that optimizes and records average power usage to operate the drill at resonating frequency. Testing the rotary drill and augmenter across a range of combinations with total power constant at 160 Watts has shown results in concrete and limestone samples that are as good as or better than the commercial drill. The drill rate was increased 1.5 to over 10 times when compared to rotation alone.

  18. Rotary union for use with ultrasonic thickness measuring probe

    DOEpatents

    Nachbar, H.D.

    1992-09-15

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs.

  19. Rotary union for use with ultrasonic thickness measuring probe

    DOEpatents

    Nachbar, Henry D.

    1992-01-01

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body.

  20. Evaluation of Alternative Filter Media for the Rotary Microfilter

    SciTech Connect

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-11-09

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

  1. Rotary device for removing particulates from a gas stream

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1992-01-01

    A rotary particulate separator for removing particulates from a pressurized gas stream such as that emanating from a reactor vessel is disclosed which precharges the particles in the gas stream, and then utilizes the charge on the particles to induce them from the main flow path through an airblock and into the rotary particulate separator. The rotor of the rotary particulate separator has polarized plates which use a first charge opposite that on the charged particles to attract the particles as they enter the rotation chamber, and then use a second charge of the same polarity as the charge on the charged particles to release the particles into a control gas flow vortex which draws the particles radially inwardly into an exit aperture contained in the center of one of the rotor segments and out from the device. Pressure letdown devices are used to drop the pressure of both the control gas flow exiting the separator with the particles and the cleaned gas stream.

  2. Rotation of artificial rotor axles in rotary molecular motors.

    PubMed

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-Ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-10-04

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.

  3. Testing and Development of a Percussive Augmenter for Rotary Drills

    NASA Technical Reports Server (NTRS)

    Donnelly, Christopher; Bar-Cohen, Yoseph; Chang, Zensheu; Badescu, Mircea; Sherrit, Stewart

    2011-01-01

    Hammering drills are effective in fracturing the drilled medium while rotary drills remove cuttings. The combination provides a highly effective penetration mechanism. Piezoelectric actuators were integrated into an adapter to produce ultrasonic percussion; augmenting rotary drilling. The drill is capable of operating at low power, low applied force and, with proper tuning, low noise. These characteristics are of great interest for future NASA missions and the construction/remodeling industry. The developed augmenter connects a commercially available drill and bit and was tested to demonstrate its capability. Input power to the drill was read using a multimeter and the augmenter received a separate input voltage. The drive frequency of the piezoelectric actuator was controlled by a hill climb algorithm that optimizes and records average power usage to operate the drill at resonating frequency. Testing the rotary drill and augmenter across a range of combinations with total power constant at 160 Watts has shown results in concrete and limestone samples that are as good as or better than the commercial drill. The drill rate was increased 1.5 to over 10 times when compared to rotation alone.

  4. Dual traveling wave rotary ultrasonic motor with single active vibrator

    NASA Astrophysics Data System (ADS)

    An, Dawei; Yang, Ming; Zhuang, Xiaoqi; Yang, Tianyue; Meng, Fan; Dong, Zhaopeng

    2017-04-01

    Traveling wave rotary ultrasonic motor with double vibrators can improve the output performance effectively. However, the rotor has to be energized through a slip ring, which increases the complexity and reduces the reliability. Inheriting the concept of two traveling waves propagating in the stator and rotor, a dual traveling wave rotary ultrasonic motor energized only in the stator is proposed. By analyzing the oscillatory differential equation and the contact particles motion, a traveling wave is found in the rotor and the drive mechanism of dual traveling wave is studied. With the resonant rotor adopted, the consistent eigenfrequencies are calculated by finite element method and verified by an impedance analyzer. The performance experiment presents that the dual traveling wave rotary ultrasonic motor is superior to the motor with single traveling wave. The no-load speed is 60 rpm and the stalling torque is 0.85 Nm. Additionally, compared with a reported motor with double vibrators, the proposed motor presents the better output performance and the simpler design.

  5. Evaluation of heat engine for hybrid vehicle application

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1984-01-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  6. Evaluation of heat engine for hybrid vehicle application

    SciTech Connect

    Schneider, H.W.

    1984-08-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  7. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1987-01-01

    Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  8. Use of Oriented Spray Nozzles to Set the Vapor-Air Flow in Rotary Motion in the Superspray Space of the Evaporative Chimney-Type Tower

    NASA Astrophysics Data System (ADS)

    Dobrego, K. V.; Davydenko, V. F.; Koznacheev, I. A.

    2016-01-01

    The present paper considers the problem of upgrading the thermal efficiency of chimney-type evaporative cooling towers due to the rotary motion of the vapor-air flow in the superspray space. To set the vapor-air flow in rotary motion, we propose to use the momentum of the sprayed water. It has been shown that the existing parameters of spray nozzles permit setting up to 30% of the water flow momentum in translatory motion, which is enough for changing considerably the aerodynamics of the vapor-air flow in the superspray space and improving the operation of the cooling tower. The optimal angle of axial inclination of the spray cone has been estimated. Recommendations are given and problems have been posed for engineering realization of the proposed technologies in a chimney-type cooling tower.

  9. "Dentinal microcracks after root canal preparation" a comparative evaluation with hand, rotary and reciprocating instrumentation.

    PubMed

    Priya, N Tulasi; Chandrasekhar, Veeramachaneni; Anita, S; Tummala, Muralidhar; Raj, T B Phanindhar; Badami, Vijetha; Kumar, Pradeep; Soujanya, E

    2014-12-01

    The purpose of this study was to compare the incidence of dentinal micro cracks after instrumentation with various types of NiTi files in rotary and reciprocating motion. One hundred human extracted mandibular central incisors were taken and divided into 10 groups (n=10 teeth per group). Group 1- No preparation, Group 2 - Hand instrumentation, Groups 3,4 - ProTaper files in rotary and reciprocating motion, Groups 5,6 - ProTaper Next files in rotary and reciprocating motion, Groups 7,8 - Oneshape files in rotary and reciprocating motion, Groups 9,10 - Reciproc files in rotary and reciprocating motion. Specimens were sectioned horizontally at 3,6 and 9 mm from the apex and dentinal micro cracks were observed under a stereomicroscope. There was a statistically significant difference between the groups (p<0.05). There were no significant differences in crack formation between the groups (Protaper Next - Rot, Protaper Next - Rec, Reciproc - Rec); (ProTaper - Rot, ProTaper - Rec, Oneshape - Rot), (Oneshape - Rot, Reciproc - Rot), (One shape Reciproc, Reciproc - Rec); (p >.05). Least cracks were seen in canals instrumented with Pro Taper Next files both in rotary and reciprocating motion. Full sequence rotary systems showed less cracks than single file systems and full sequence rotary systems showed less cracks in reciprocating motion than in rotary motion.

  10. Glassy slag from rotary hearth vitrification

    SciTech Connect

    Eschenbach, R.C.; Simpson, M.D.; Paulson, W.S.; Whitworth, C.G.

    1995-12-31

    Use of a Plasma Arc Centrifugal Treatment (PACT) system for treating mixed wastes containing significant quantities of soil results in formation of a glassy slag which melts at significantly higher temperatures than the borosilicate glasses. The slag typically contains mostly crystalline material, frequently in an amorphous matrix, thus the appellation {open_quotes}glassy slag.{close_quotes} Details of the PACT process are given. The process will be used for treating buried wastes from Pit 9 at the Idaho National Engineering Laboratory and low-level mixed wastes from nuclear power plants in Switzerland. Properties of the slag after cooling to room temperature are reported, in particular the Product Consistency Test, for a number of different feedstocks. In almost all cases, the results compare favorably with conventional borosilicate glasses. In the PACT system, a transferred arc carries current from the plasma torch to a rotating molten bed of slag, which is the material being heated. Thus this transferred arc adds energy where it is needed - at and near the surface of the molten bath. Material is fed into the furnace through a sealed feeder, and falls into a rotating tub which is heated by the arc. Any organic material is quickly vaporized into the space above the slag bed and burned by the oxygen in the furnace. Metal oxides in the charge are melted into the slag. Metal in the feed tends to melt and collect as a separate phase underneath the slag, but can be oxidized if desired. When oxidized, it unites with other constituents forming a homogeneous slag.

  11. Modification and performance evaluation of a mono-valve engine

    NASA Astrophysics Data System (ADS)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  12. A rotary-airlock valve resists abrasive mixtures

    SciTech Connect

    Not Available

    1993-03-01

    Hill and Griffith (H and G, Cincinnati, Ohio) is a leading supplier of custom-blended additives to founderies. Thousands of tons of clay and carbon blends such as bentonite, gilsonite and pulverized coal, pass through the company's rotary-airlock feeding system each month. H and G's original rotary valves had cylinders lined with chrome, and closed-end rotors with tips made from nickel-chromium alloys. These valves remained in service for a maximum of only three months each. During that time, the abrasive mixtures passing through the valves virtually eroded them, increasing tolerances and causing significant air leakage. The leaks caused the pneumatic line to plug up, reducing the velocity of the line below the minimum level needed to carry any material. To overcome the leakage, a second blower was added to the system. This unit supplied an additional 40 brake hp to the pneumatic-conveying line. With constant maintenance of the valve and the continuous operation of both blowers, H and G was able to extend the valve's life by nine months. After 20 years of trying valves with various configuration, H and G installed a Smoot Type 6 rotary-airlock valve in September of 1985. The new valve's internals were made from abrasion-resistant grades of NiHard and Stellite. This combination of alloys prolonged the active life of the valve by improving its abrasion resistance. During its first year, the Smoot valve did not break down, leak air or require use of the secondary blower. After its first year of service no wear was found on the valve's internal surfaces. Another mechanical analysis was performed in 1991, after five additional years of valve operation. The valve, which had now handled more than 250,000 tons of product, showed minimal wear. H and G's capital costs had been reduced from 25[cents]/ton to 3[cents]/ton by the new valve.

  13. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  14. 6. Photocopied August 1978. LINEUP OF HORRY ROTARY FURNACES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopied August 1978. LINE-UP OF HORRY ROTARY FURNACES ON THE SECOND FLOOR OF THE MICHIGAN LAKE SUPERIOR POWER COMPANY POWER HOUSE. THE HOPPERS WHICH FED THE RAW MATERIALS INTO THE FURNACES ARE SHOWN ABOVE THE FURNACES. AS THE 'SPOOL' OF THE FURNACE ROTATED PAST THE ELECTRODES PLATES WERE ADDED TO HOLD THE FINISHED PRODUCT AND THE DESCENDING RAW MATERIALS IN PLACE. THE DIRECTION OF ROTATION OF THE FURNACES SHOWN IN THIS PHOTO IS CLOCKWISE, (M). - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  15. Rotary-wing aeroelasticity with application to VTOL vehicles

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1993-01-01

    A concise assessment is presented of the state of the art in the field of rotary-wing aeroelasticity (RWE). The basic ingredients of RWE are reviewed, including structural modeling, unsteady aerodynamic modeling, formulation of the equations of motion, and solution methods. Results illustrating these methods are presented for isolated blades and coupled rotor-fuselage problems. The application of active controls to suppress aeromechanical and aeroelastic instabilities and to reduce vibration in rotorcraft is discussed. Structural optimization with aeroelastic constraints, gust response analysis of helicopters, and aeroelastic problems in special VTOL vehicles are briefly examined.

  16. Testing thread compounds for rotary-shouldered connections

    SciTech Connect

    Bailey, E.I. ); Smith, J.E. )

    1993-09-01

    Trouble-free rotary-shouldered-connection performance depends on proper joint makeup. Joints must be tight enough to prevent shoulder separation under bending and tensile loads but not so tight that their tensile capacity decreases or the pin or box is damaged. The preload in a connection from tightening depends on the makeup torque and frictional properties of the thread compound. In 1957, Farr developed and published a simplified torque formula to calculate makeup torque: T[sub mu] = ([sigma]A/12)[(p/2[pi])+(r[sub t]K[sub f]/cos [Theta])+r[sub s]K[sub f

  17. Rotary Percussive Auto-Gopher for Deep Drilling and Sampling

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2009-01-01

    The term "rotary percussive auto-gopher" denotes a proposed addition to a family of apparatuses, based on ultrasonic/ sonic drill corers (USDCs), that have been described in numerous previous NASA Tech Briefs articles. These apparatuses have been designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. In the case of the rotary percussive autogopher, the emphasis would be on developing an apparatus capable of penetrating to, and acquiring samples at, depths that could otherwise be reached only by use of much longer, heavier, conventional drilling-and-sampling apparatuses. To recapitulate from the prior articles about USDCs: A USDC can be characterized as a lightweight, low-power jackhammer in which a piezoelectrically driven actuator generates ultrasonic vibrations and is coupled to a tool bit through a free mass. The bouncing of the free mass between the actuator horn and the drill bit converts the actuator ultrasonic vibrations into sonic hammering of the drill bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary rotary drilling, ordinary hammering, or ordinary steady pushing. The predecessor of the rotary percussive auto-gopher is an apparatus, now denoted an ultrasonic/sonic gopher and previously denoted an ultrasonic gopher, described in "Ultrasonic/ Sonic Mechanism for Drilling and Coring" (NPO-30291), NASA Tech Briefs Vol. 27, No. 9 (September 2003), page 65. The ultrasonic/sonic gopher is intended for use mainly in acquiring cores. The name of the apparatus reflects the fact that, like a

  18. Multilayer growth in the APS rotary deposition system.

    SciTech Connect

    Conley, R.; Liu, C.; Kewish, C.M.; Macrander, A.T.; Morawe, C.; X-Ray Science Division; European Synchrotron Radiation Facility

    2007-01-01

    We report our progress in the growth of periodic and depth-graded multilayers in the APS rotary deposition system, a machine designed for fabrication of films tens of microns thick with thousands of layers. A computational method was employed to design depth-graded multilayers for use as wide-angular bandpass reflective optics. We present experimental results for a 154-layer WSi{sub 2}/Si multilayer system with bilayer thickness ranging from 2.2 nm to 5.5 nm that closely match theoretical flat-top reflectivity predictions of 9.8% from 15.6 mrad to 23.3 mrad at 8 keV.

  19. The IRAC Shutter Mechanism: Residual Magnetism and the Rotary Solenoid

    NASA Technical Reports Server (NTRS)

    Schwinger, Scott; Hakun, Claef; Brown, Gary; Blumenstock, Ken

    2002-01-01

    The Infrared Array Camera (IRAC) Shutter mechanism was originally presented in the paper, 'A Low Power Cryogenic Shutter Mechanism for Use on Infrared Imagers' at the 34th Aerospace Mechanisms Symposium, May 2000. At that time, the shutter was believed to be performing flawlessly and there was every indication it would continue to do so. In early spring of 2001, the calibration shutter, a rotary solenoid designed to be fail-safe open, remained in a closed state with no power to the electromagnetic coils. The ensuing investigation, subsequent testing, proposed remedy, and lessons learned are the focus of this paper.

  20. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Kuruc, Marcel; Peterka, Jozef

    2014-12-01

    Poly-crystalline cubic boron nitride (PCBN) is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM) is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics). This contribution investigates this advanced machining method during machining of PCBN.

  1. A comparison of rotary- and stationary-head tape recorders

    NASA Technical Reports Server (NTRS)

    Watkinson, John R.

    1994-01-01

    Digital recording may take advantage of many types of media, but usually a preferred type of drive or transport emerges for each. In magnetic tape recording, two approaches have emerged in which essentially the same medium is tracked in two radically different ways. This paper compares the characteristics of Rotary- and Stationary-Head transports in an attempt to establish which approach might be considered for a given application. The conclusion is that in many cases there is no obvious choice based on recording physics and that often the choice will be made on the experimental knowledge of the designer.

  2. Vibration analysis of cubic rotary-linear piezoelectric actuator.

    PubMed

    Mashimo, Tomoaki; Toyama, Shigeki

    2011-04-01

    Cubic design of a stator in a rotary-linear piezoelectric actuator is sophisticated and interesting, but the vibration theory of the cubic stator remains unclear when using the finite element method (FEM). In this paper, we analyze the vibration behavior of the cubic stator by applying the energy method, which distinguishes the component of mechanical energy. By changing the design of the stator (especially the length in the direction of the through-hole axis), we clarify how the vibration modes are in accordance at one equal frequency in cubic shape. The behavior of the vibration modes is discussed using conventional vibration theory of a beam and a plate. © 2011 IEEE

  3. Simulation study of multi-chamber rotary compressor

    NASA Astrophysics Data System (ADS)

    Lim, Y. D.; Lin, M.; Ooi, K. T.

    2017-08-01

    A new multi-chamber rotary compressor (MCRC) has been designed and the simulation result is presented in this paper. MCRC utilizes the space within the cylinder and it has the advantage of being more compact. Mathematical models which include geometrical, thermodynamics, mass flow and discharge valve have been formulated to evaluate the performance of MCRC. Parametric studies have also been carried out to determine the effects of design parameters such as suction and discharge ports size, valve length, valve thickness and valve width on compressor performance. In this paper, mathematical models will be presented and the predictions of the model will be shown and discussed.

  4. Piezoelectric Versus Conventional Rotary Techniques for Impacted Third Molar Extraction

    PubMed Central

    Jiang, Qian; Qiu, Yating; Yang, Chi; Yang, Jingyun; Chen, Minjie; Zhang, Zhiyuan

    2015-01-01

    Abstract Impacted third molars are frequently encountered in clinical work. Surgical removal of impacted third molars is often required to prevent clinical symptoms. Traditional rotary cutting instruments are potentially injurious, and piezosurgery, as a new osteotomy technique, has been introduced in oral and maxillofacial surgery. No consistent conclusion has been reached regarding whether this new technique is associated with fewer or less severe postoperative sequelae after third molar extraction. The aim of this study was to compare piezosurgery with rotary osteotomy techniques, with regard to surgery time and the severity of postoperative sequelae, including pain, swelling, and trismus. We conducted a systematic literature search in the Cochrane Library, PubMed, Embase, and Google Scholar. The eligibility criteria of this study included the following: the patients were clearly diagnosed as having impacted mandibular third molars; the patients underwent piezosurgery osteotomy, and in the control group rotary osteotomy techniques, for removing impacted third molars; the outcomes of interest include surgery time, trismus, swelling or pain; the studies are randomized controlled trials. We used random-effects models to calculate the difference in the outcomes, and the corresponding 95% confidence interval. We calculated the weighted mean difference if the trials used the same measurement, and a standardized mean difference if otherwise. A total of seven studies met the eligibility criteria and were included in our analysis. Compared with rotary osteotomy, patients undergoing piezosurgery experienced longer surgery time (mean difference 4.13 minutes, 95% confidence interval 2.75–5.52, P < 0.0001). Patients receiving the piezoelectric technique had less swelling at postoperative days 1, 3, 5, and 7 (all Ps ≤0.023). Additionally, there was a trend of less postoperative pain and trismus in the piezosurgery groups. The number of included randomized controlled

  5. Cold Rotary Forging of Small Caliber Gun Barrels

    DTIC Science & Technology

    1975-12-01

    COMPONENTS SUPPORTED. (1) 7.62mm M219 machine gun barrel (2) 7.62mm M134 mini gun ( Gau barrel) (3) .30 caliber machine gun barrel (4) 5.56=m MI6Al rifle ...barrel (5) 50 cal. M8C spotting rifle barrel (6) 7.62mm Ml4 National Match rifle bw’rel (7) other small arms weapon barrels K -. 1. FACILITIES SUPPORTED... rifle barrels was made in conjunction with the rotary forging process. From this, a purchase description was written and submitted for bid for a

  6. Shear stress transmission model for the flagellar rotary motor.

    PubMed

    Mitsui, Toshio; Ohshima, Hiroyuki

    2008-09-01

    Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a shear force generator and induce the flagellar rotation. The model gives clear calculation results in agreement with experimental observations, e g., for the characteristic torque-velocity relationship of the flagellar rotation.

  7. High-Resolution Rotary-To-Linear Motion Converter

    NASA Technical Reports Server (NTRS)

    Millam, M. Bruce; Studer, Philip

    1992-01-01

    Compact rotary-to-linear motion converter combines high load-carrying ability with finely resolvable movement. Simple and inexpensive to manufacture. Helical coil of metal ribbon wrapped around spool. Bearing supports spool on fixed base. Restraining bar prevents collar from rotating, but allows it to rise and fall. 1,000-turn coil of ribbon 0.010 in. thick provides for translation of collar over distance of 10 inches. Coil made from flattened roll-formed wire. Material inexpensive, strong, and resistant to fatigue.

  8. Estimation of drying parameters in rotary dryers using differential evolution

    NASA Astrophysics Data System (ADS)

    Lobato, F. S.; Steffen, V., Jr.; Arruda, E. B.; Barrozo, M. A. S.

    2008-11-01

    Inverse problems arise from the necessity of obtaining parameters of theoretical models to simulate the behavior of the system for different operating conditions. Several heuristics that mimic different phenomena found in nature have been proposed for the solution of this kind of problem. In this work, the Differential Evolution Technique is used for the estimation of drying parameters in realistic rotary dryers, which is formulated as an optimization problem by using experimental data. Test case results demonstrate both the feasibility and the effectiveness of the proposed methodology.

  9. Pendulation control system and method for rotary boom cranes

    DOEpatents

    Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.

    2002-01-01

    A command shaping control system and method for rotary boom cranes provides a way to reduce payload pendulation caused by real-time input signals, from either operator command or automated crane maneuvers. The method can take input commands and can apply a command shaping filter to reduce contributors to payload pendulation due to rotation, elevation, and hoisting movements in order to control crane response and reduce tangential and radial payload pendulation. A filter can be applied to a pendulation excitation frequency to reduce residual radial pendulation and tangential pendulation amplitudes.

  10. Skew And Twist Resistant Hydrodynamic Rotary Shaft Seal

    DOEpatents

    Dietle, Lannie; Kalsi, Manmohan Singh

    2000-03-14

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. Compared to prior art, this invention provides a dramatic reduction of seal and shaft wear in abrasive environments and provides a significant increase in seal life.

  11. DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS

    SciTech Connect

    Poirier, M; David Herman, D; Samuel Fink, S

    2008-02-25

    The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years

  12. System and method for cooling a superconducting rotary machine

    DOEpatents

    Ackermann, Robert Adolf; Laskaris, Evangelos Trifon; Huang, Xianrui; Bray, James William

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  13. Blast-free mining of coal seams by excavators equipped with rotary dynamic buckets

    SciTech Connect

    Labutin, V.N.; Mattis, A.R.; Zaitseva, A.A.

    2005-04-01

    The necessity to equip cable excavators with rotary buckets is substantiated. The results of graphic-analytical analysis of the rotary bucket operation are presented, and its main advantages are determined in comparison with conventional buckets in mining coal seams of complex structure.

  14. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... adjacent supporting structure or assembly, with the warning label shown in Fig. 7. The label shall be at... size relation to each other and to the label as shown in Fig. 7. EC03OC91.016 (b) Rotary mowers. Walk-behind rotary mowers shall have one label as shown in Fig. 7, on the blade housing. The label shall be...

  15. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  16. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SAFETY ACT REGULATIONS SAFETY STANDARD FOR WALK-BEHIND POWER LAWN MOWERS The Standard § 1205.6 Warning label for reel-type and rotary power mowers. (a) General. Walk-behind power lawn mowers shall be labeled... size relation to each other and to the label as shown in Fig. 7. EC03OC91.016 (b) Rotary mowers....

  17. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... distinct actions to restart the blade. (b) Blade stopping test—(1) General. Any test method that will... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions:...

  18. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... distinct actions to restart the blade. (b) Blade stopping test—(1) General. Any test method that will... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions:...

  19. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... distinct actions to restart the blade. (b) Blade stopping test—(1) General. Any test method that will... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions:...

  20. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... distinct actions to restart the blade. (b) Blade stopping test—(1) General. Any test method that will... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions:...

  1. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... label for reel-type and rotary power mowers. (a) General. Walk-behind power lawn mowers shall be labeled on the blade housing or, in the absence of a blade housing, on other blade shielding or on an...-behind rotary mowers shall have one label as shown in Fig. 7, on the blade housing. The label shall...

  2. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... label for reel-type and rotary power mowers. (a) General. Walk-behind power lawn mowers shall be labeled on the blade housing or, in the absence of a blade housing, on other blade shielding or on an...-behind rotary mowers shall have one label as shown in Fig. 7, on the blade housing. The label shall...

  3. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... distinct actions to restart the blade. (b) Blade stopping test—(1) General. Any test method that will... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions:...

  4. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... label for reel-type and rotary power mowers. (a) General. Walk-behind power lawn mowers shall be labeled on the blade housing or, in the absence of a blade housing, on other blade shielding or on an...-behind rotary mowers shall have one label as shown in Fig. 7, on the blade housing. The label shall...

  5. Carbon reactivation by externally-fired rotary kiln furnace. Final report Oct 75-Jan 78

    SciTech Connect

    Chen, C.; Directo, L.S.

    1980-08-01

    An externally-fired rotary kiln furnace system has been evaluated for cost-effectiveness in carbon reactivation at the Pomona Advanced Wastewater Treatment Research Facility. The pilot scale rotary kiln furnace was operated within the range of 682 kg/day (1,500 lb/day) to 909 kg/day (2,000 lb/day). The rotary kiln furnace was found to be as effective as the multiple hearth furnace in reactivating the exhausted granular activated carbon. The operating and maintenance of the rotary kiln system required less operator skill than the multiple hearth furnace system. However, the corrosion rate was higher in the rotary tube than in the multiple hearth furnace. Cost estimates based on a typical regeneration capacity of 182 kg/hr (400 lb/hr) have been made for both rotary kiln and multiple hearth furnace systems. These indicate that the capital cost for the multiple hearth furnace is about two times that of the rotary kiln furnace. The operation and maintenance costs for both furnace systems are similar. The overall process costs for the multiple hearth and rotary kiln furnace systems are estimated to be 33.2 cents/kg (15.1 cents/lb) of carbon regenerated and 29.2 cents/kg (13.3 cents/lb) of carbon regenerated, respectively.

  6. Drilling on Mars---Mathematical Model for Rotary-Ultrasonic Core Drilling of Brittle Materials

    NASA Astrophysics Data System (ADS)

    Horne, Mera Fayez

    The results from the Phoenix mission led scientists to believe it is possible that primitive life exists below the Martian surface. Therefore, drilling in Martian soil in search for organisms is the next logical step. Drilling on Mars is a major engineering challenge due to the drilling depth requirement. Mars lacks a thick atmosphere and a continuous magnetic field that shield the planet's surface from solar radiation and solar flares. As a result, the Martian surface is sterile and if life ever existed, it must be found below the surface. In 2001, NASA's Mars Exploration Payload Advisory Group proposed that drilling should be considered as a priority investigation on Mars in an effort of finding evidence of extinct or extant life. On August 6, 2012, the team of engineers landed the spacecraft Curiosity on the surface of Mars by using a revolutionary hovering platform. The results from the Curiosity mission suggested the next logical step, which is drilling six meters deep in the red planet in search of life. Excavation tools deployed to Mars so far have been able to drill to a maximum depth of 6.5 cm. Thus, the drilling capabilities need to be increased by a factor or approximately 100 to achieve the goal of drilling six meters deep. This requirement puts a demand on developing a new and more effective technologies to reach this goal. Previous research shows evidence of a promising drilling mechanism in rotary-ultrasonic for what it offers in terms of high surface quality, faster rate of penetration and higher material removal rate. This research addresses the need to understand the mechanics of the drill bit tip and rock interface in rotary-ultrasonic drilling of brittle materials. A mathematical model identifying all contributing independent parameters, such as drill bit design parameters, drilling process parameters, ultrasonic wave amplitude and rocks' material properties, that have effect on rate of penetration is developed. Analytical and experimental

  7. Control of fine particulate emissions from coal-fired utility boilers: Spin filter collection device (rotary cyclone)

    SciTech Connect

    He, Bo X.

    1990-01-01

    A bench-scale test program has been performed to evaluate the concept of placing a porous cylindrical surface (such as a metal screen) at the core of a container and spinning the surface with an external motor for fine particulate/gas separation. The rotating surface enhances the centrifugal effects in the annular region and provides a smooth transition between the flow in the annular and core regions and acts like an enhanced cyclone. It is therefore called a rotary cyclone.'' The porous surface is self-cleaning and offers good steady-state pressure drop characteristics. Objectives of this project are: (1) to carry out theoretical and experimental investigations using the rotary cyclone concept to capture particulates in the 0.5 to 10 micron size range; and (2) to evaluate its economic feasibility based on an engineering scale-up and comparison with conventional fabric filter and electrostatic precipitator systems. It was demonstrated that the efficiency in separating fine particulates is governed by two major characteristics, i.e., the magnitude of the centrifugal force and the approach velocity or the gas-to-surface area ratio. Results from the bench-scale tests have shown a collection efficiency of well over 99% for a typical fly ash. A preliminary conceptual design for a 40 MW installation was developed based on the experimental work. 4 refs., 4 figs., 8 tabs.

  8. Rotary-Percussive Drill for Planetary Exploration and a 3.5 m Vacuum Chamber Enabling Full Scale Testing

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; Szczesiak, M.; Glass, B.; McKay, C.; Santoro, C.; Wilson, J.; Craft, J.

    2010-03-01

    We present a 1-meter-class rotary-percussive drill and test results comparing rotary and rotary-percussive drilling in various formations. A 3.5-m large vacuum chamber build for testing drill systems to a depth of >1 m is also presented.

  9. Development of a rotary power transformer and inverter drive for spacecraft

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.; Bridgeforth, A. O.

    1983-01-01

    Many future satellites and spacecraft with spun and despun configurations will require the transfer of power across rotating interfaces in lieu of slip-rings and/or flexures. This is particularly true of spacecraft that have to demonstrate a long life expectancy. The rotary transformer has the desirable characteristics of high reliability and low noise, which qualify it as a potential replacement for slip rings. Development of a rotary power transformer follows the successful completion of a task to develop rotary signal-level transformers for the Galileo Spacecraft Project. The physical configuration of a rotary power transformer has a significant effect on its magnetic and electrical characteristics and therefore impacts the design of the dc/ac inverter driver. Important characteristics addressed during this development effort include: operating frequency, efficiency, transformer gap size, leakage inductance, and leakage flux. A breadboard inverter and rotary transformer were designed, fabricated and tested.

  10. Effects of angular acceleration on man - Choice reaction time using visual and rotary motion information

    NASA Technical Reports Server (NTRS)

    Clark, B.; Stewart, J. D.

    1974-01-01

    This experiment was concerned with the effects of rotary acceleration on choice reaction time (RTc) to the motion of a luminous line on a cathode-ray tube. Specifically, it compared the (RTc) to rotary acceleration alone, visual acceleration alone, and simultaneous, double stimulation by both rotary and visual acceleration. Thirteen airline pilots were rotated about an earth-vertical axis in a precision rotation device while they observed a vertical line. The stimuli were 7 rotary and visual accelerations which were matched for rise time. The pilot responded as quickly as possible by displacing a vertical controller to the right or left. The results showed a decreasing (RTc) with increasing acceleration for all conditions, while the (RTc) to rotary motion alone was substantially longer than for all other conditions. The (RTc) to the double stimulation was significantly longer than that for visual acceleration alone.

  11. Choice reaction time to visual motion during prolonged rotary motion in airline pilots

    NASA Technical Reports Server (NTRS)

    Stewart, J. D.; Clark, B.

    1975-01-01

    Thirteen airline pilots were studied to determine the effect of preceding rotary accelerations on the choice reaction time to the horizontal acceleration of a vertical line on a cathode-ray tube. On each trial, one of three levels of rotary and visual acceleration was presented with the rotary stimulus preceding the visual by one of seven periods. The two accelerations were always equal and were presented in the same or opposite directions. The reaction time was found to increase with increases in the time the rotary acceleration preceded the visual acceleration, and to decrease with increased levels of visual and rotary acceleration. The reaction time was found to be shorter when the accelerations were in the same direction than when they were in opposite directions. These results suggest that these findings are a special case of a general effect that the authors have termed 'gyrovisual modulation'.

  12. Influence of oscillating and rotary cutting instruments with electric and turbine handpieces on tooth preparation surfaces.

    PubMed

    Geminiani, Alessandro; Abdel-Azim, Tamer; Ercoli, Carlo; Feng, Changyong; Meirelles, Luiz; Massironi, Domenico

    2014-07-01

    Rotary and nonrotary cutting instruments are used to produce specific characteristics on the axial and marginal surfaces of teeth being prepared for fixed restorations. Oscillating instruments have been suggested for tooth preparation, but no comparative surface roughness data are available. To compare the surface roughness of simulated tooth preparations produced by oscillating instruments versus rotary cutting instruments with turbine and electric handpieces. Different grit rotary cutting instruments were used to prepare Macor specimens (n=36) with 2 handpieces. The surface roughness obtained with rotary cutting instruments was compared with that produced by oscillating cutting instruments. The instruments used were as follows: coarse, then fine-grit rotary cutting instruments with a turbine (group CFT) or an electric handpiece (group CFE); coarse, then medium-grit rotary cutting instruments with a turbine (group CMT) or an electric handpiece (group CME); coarse-grit rotary cutting instruments with a turbine handpiece and oscillating instruments at a low-power (group CSL) or high-power setting (group CSH). A custom testing apparatus was used to test all instruments. The average roughness was measured for each specimen with a 3-dimensional optical surface profiler and compared with 1-way ANOVA and the Tukey honestly significant difference post hoc test for multiple comparisons (α=.05). Oscillating cutting instruments produced surface roughness values similar to those produced by similar grit rotary cutting instruments with a turbine handpiece. The electric handpiece produced smoother surfaces than the turbine regardless of rotary cutting instrument grit. Rotary cutting instruments with electric handpieces produced the smoothest surface, whereas the same instruments used with a turbine and oscillating instruments achieved similar surface roughness. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights

  13. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system.

    PubMed

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Wu, Honglu; Sun, Wei

    2016-01-13

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.

  14. NASA-approved rotary bioreactor enhances proliferation and osteogenesis of human periodontal ligament stem cells.

    PubMed

    Li, Shi; Ma, Zhaofeng; Niu, Zhongying; Qian, Hong; Xuan, Dongying; Hou, Rui; Ni, Longxing

    2009-11-01

    Previous studies have suggested that periodontal ligament stem cells (PDLSCs) play crucial role in regeneration of periodontal defects, and recently tissue engineering based on PDLSCs to enhance periodontal regeneration has been the focus of periodontal research. A theoretical way to achieve this goal would be to provide a "stimulatory'' environment to rapidly expand PDLSCs in vitro to expedite tissue engineering of periodontium. We hypothesize that three-dimensional (3D) dynamic simulated microgravity (SMG) culture system have effect on periodontal stem cells, and would benefit periodontal stem cells proliferation and differentiation, but up to now, there are no related reports on this aspect. In this study, we investigated the biological effect of three-dimensional dynamic SMG induced by rotary cell culture system (RCCS) on human periodontal ligament stem cells (hPDLSCs) in vitro. hPDLSCs were isolated from surgically extracted human teeth and enriched by collecting multiple colonies. hPDLSCs were inoculated on Cytodex 3 microcarriers and cultured in RCCS. The results showed that SMG affected the biology of hPDLSCs as indicated by promotion of proliferation and viability, alterations of morphology, and disorganization of microfilament system. Besides, SMG-treated hPDLSCs presented increased matrix mineralization and up-regulated expression of mineralization associated genes after incubation in osteogenic medium. For it is the first time to investigate effects of SMG on PDLSCs, the research may lend insight into variations of cell response in 3D environment, and contribute to achievement of desirable periodontal regeneration utilizing PDLSCs-based tissue engineering approaches.

  15. Rotary combustor barrel with water-cooled baffles

    SciTech Connect

    Jurusz, M.T.

    1988-04-05

    A combustion barrel in a rotary combustor used for burning solid material is described. The rotary combustor is connected to heat exchanging equipment. The combustion barrel comprises: a generally cylindrical side wall rotatable about a central axis of rotation and having an input end and an exit end, baffle pipes, attached to the interior of the generally cylindrical side wall, extending longitudinally with adjacent baffle pipes separated by a second spacing distance more than twice as large as the first spacing distance, and having first and second pipe ends at the exit and input ends, respectively of the side wall, for agitating the solid material as the combustion barrel is rotated; a ring header, having a generally annular shape, coupled to the heat exchanging equipment, for supplying coolant to, and discharging coolant from, the cooling pipes and the baffle pipes; coupling means for coupling and sealing the first pipe ends of the cooling and baffle pipes to the ring header, supplying coolant to a first set of pipes selected from among the cooling pipes and the baffle pipes and discharging coolant from a second set of pipes corresponding to the remaining ones of the the cooling pipes and the baffle pipes; and return means for returning the coolant from the second ends of the cooling and baffle pipes in the first set of pipes to the ring header via the second set of pipes.

  16. UV imprint fabrication of polymeric scales for optical rotary encoders

    NASA Astrophysics Data System (ADS)

    Jucius, D.; Grybas, I.; Grigaliūnas, V.; Mikolajūnas, M.; Lazauskas, A.

    2014-03-01

    Optical encoders are one of the most common displacement sensors. Scale gratings for such sensors are usually made of glass. However, polymers can offer several advantages such as lightweight, low cost fabrication and versatility in structures and grades. In this paper application of UV imprint technique to fabricate polymeric scale gratings for rotary encoders is reported. Experiments are performed by imprinting 3 μm layer of UV sensitive photopolymer coated on the substrate made of 200 μm PET film. Process of UV imprinting caused no problems concerned with mould contamination or sticking to the polymer. Optical microscopy and AFM measurements of replicated polymeric scales have demonstrated the absence of macro-defects and good reproducibility of Si mould features with lateral dimensions down to the order of hundreds of nanometers. Measurements of intensity distribution in transmitted diffraction pattern have showed an effective diffraction with most of the diffracted light intensity concentrated in the zero and first diffraction order as it is required for the application in optical rotary encoders employing interferential scanning principle. Commercialization of UV imprint technology would allow replacement of conventional glass scales at least in those applications where lightweight and low price of encoders are of great importance.

  17. Comparison of residence time models for cascading rotary dryers

    SciTech Connect

    Cao, W.F.; Langrish, T.A.G.

    1999-04-01

    The predictions of the models of Matchett and Baker (1988), Saeman and Mitchell (1954) and Friedman and Marshall (1949) for the solids residence time in rotary dryers have been compared with both pilot-scale and industrial-scale data. A countercurrent pilot-scale dryer of 0.2m diameter and 2m long has been used with air velocities up to 1.5 m to measure the residence times of sorghum grain. The average discrepancy for the solids residence time between the predictions and the experiments that were carried out in the pilot-scale rotary dryer is {minus}10.4%. Compared with the models of Friedman and Marshall (1949) and Saeman and Mitchell (1954) for the pilot-scale data obtained here, the Matchett and Baker model is more satisfactory for predicting the solids residence time in this pilot-scale dryer. It has also been found that the model of Matchett and Baker describes the industrial data of Saeman and Mitchell (1954) than the correlation of Friedman and Marshall (1949).

  18. Modeling and analysis of a rotary direct drive servovalve

    NASA Astrophysics Data System (ADS)

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2014-09-01

    Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces. Current studies mainly focus on enhancing the driving force, which in turn is limited to the development of the magnetic material. Aiming at reducing the flow forces, a novel rotary direct drive servovalve(RDDV) is introduced in this paper. This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber. The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve. In order to study the RDDV servovalve performance, flow rate model and mechanical model are established, wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained. The model analysis shows that the driving torque can be alleviated due to the proposed valve structure. Computational fluid dynamics(CFD) analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis. In addition, experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out. Both simulation and experimental results conform to the results of the theoretical model analysis, which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics. This research proposes a novel rotary direct drive servovalve, which can reduce the flow forces effectively.

  19. A rotary arc furnace for aluminum dross processing

    SciTech Connect

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C.

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally non-acceptable because of the production of salt slags. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tonnes of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  20. A rotary arc furnace for aluminum dross processing

    SciTech Connect

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C.

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally unacceptable because of the salt slags produced. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates for over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tons of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  1. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  2. Rotary Motors Actuated by Traveling Ultrasonic Flexural Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-01-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 C to -90 C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  3. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Donnelly, Chris; Aldrich, Jack

    2012-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. Further, a large PARoD breadboard with 50.8 mm diameter bit was developed and its tests are currently underway. This paper presents the design, analysis and preliminary test results of the percussive augmenter.

  4. Percussive augmenter of rotary drills (PARoD)

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Donnelly, Chris; Aldrich, Jack

    2012-04-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. Further, a large PARoD breadboard with 50.8 mm diameter bit was developed and its tests are currently underway. This paper presents the design, analysis and preliminary test results of the percussive augmenter.

  5. Pitfalls in the development of a rotary blood pump controller.

    PubMed

    Konishi, H; Misawa, Y; Fuse, K; Sohara, Y

    2001-01-01

    The controller presents a major obstacle in the development of the rotary blood pump as a left ventricular assist device (LVAD). Clinically, LVAD flow is a good indicator in the regulation of circulatory conditions and pump flow changes, depending on pump preload and afterload. Many investigators have tried estimating pump flow by referencing the motor current. There have been pitfalls in in vitro experimental settings, however. Using a test loop with a pneumatically driven LV chamber and a centrifugal pump as an LVAD, we monitored pump flow and pressure head to evaluate the pump performance curve (H-Q curve). Under pulsatile LV conditions, the H-Q curve was a loop that changed, depending on LV contractility. The pneumatically driven LV chamber cannot mimic the Starling phenomenon, so the developed LV pressure does not change according to the LV preload. Rotary pump flow estimation is the most effective control method. In pulsatile conditions, however, the H-Q curve is a loop that changes under various LV contractility conditions, complicating determination of linear equation for calculating flow. In addition, the LV chamber in the test loop cannot mimic native heart contractility as described by Starling's law. This finding can lead to a misanalysis of the H-Q curve under pulsatile conditions.

  6. Cleaning of rotary nickel-titanium endodontic instruments.

    PubMed

    Linsuwanont, P; Parashos, P; Messer, H H

    2004-01-01

    To develop and evaluate an effective cleaning procedure for rotary nickel-titanium (NiTi) endodontic instruments. New rotary instruments (ProFile size 25/.04) were contaminated by preparing canals of extracted teeth. Three factors were evaluated to develop an effective cleaning sequence: dry or moist storage before cleaning; mechanical removal (brushing); and chemical dissolution in 1% NaOCl with ultrasonication. Debris on flutes was scored after staining in situ with Van Gieson's solution at x45 magnification. Debris was classified as stained or unstained particulate debris and organic film, and rated as none, slight, moderate or heavy. The effectiveness of a recommended cleaning sequence was tested on different instrument types and in private endodontic practices. All new instruments showed metallic spurs and fine particulate debris on the surfaces. After contamination, brushing alone removed most particulate debris, but did not remove organic film. NaOCl effectively removed organic film. Under laboratory conditions, the sequential cleaning procedures (moist storage, brushing followed by immersion in 1% NaOCl and ultrasonic cleaning) totally removed organic debris. Dry storage before cleaning or autoclaving with debris present reduced cleaning effectiveness (P<0.001, one-way ANOVA). In three private practices, the cleaning protocol substantially reduced biological contamination, but complete cleaning was not always achieved (87% clean). Complete removal of organic debris from instruments is feasible using a combination of mechanical removal and chemical dissolution, but requires meticulous attention to details.

  7. Rotary ultrasonic motors actuated by traveling flexural waves

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-06-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 degree(s)C to -90 degree(s)C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 degree(s)C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  8. Rotary ultrasonic motors actuated by traveling flexural waves

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1998-07-01

    Efficient miniature actuators that are compact and consume low power are needed to drive telerobotic devices and space mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. The technology that has emerged in commercial products requires rigorous analytical tools for effective design of such motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a rotary piezoelectrically actuated motor. The model uses annular finite elements that are applied to predict the excitation frequency and modal response of an annular stator. This model is being developed to enable the design of efficient ultrasonic motors (USMs) and it incorporates the details of the stator which include the teeth, piezoelectric crystals, stator geometry, etc. The theoretical predictions were corroborated experimentally for the stator. Parallel to this effect, USMs are made and incorporated into a robotic arm and their capability to operate at the environment of Mars is being studied. Motors with two different actuators layout were tested at cryovac conditions and were shown to operate down to -150 degree(s)C and 16-mTorr when the activation starts at ambient conditions.

  9. Minimization of transient emissions from rotary-kiln incinerators, 1990

    SciTech Connect

    Lemieux, P.M.; Linak, W.P.; McSorley, J.A.; Wendt, J.O.L.; Dunn, J.E.

    1990-01-01

    The paper discusses combining experimental results from a pilot-scale rotary kiln incinerator simulator with a theoretical model in order to explore the potential of minimizing transient emissions through changes in kiln rotation speed and temperature, steady state oxygen enrichment, and oxygen enrichment in a dynamic mode. Results indicate that transient organic emissions can indeed be minimized by changes in these kiln operating parameters but, because of the complex interactions of physical and chemical processes controlling emissions, the appropriate abatement procedures must be implemented carefully. Transient emissions of organics occur from rotary kiln incinerators when drums containing liquid wastes bound on sorbents are introduced in batches. Physical processes controlling the release of waste from the sorbent material are greatly affected by the rotation speed and temperature of the kiln. Local partial pressure of oxygen influences the rate of oxidation of the puff formed inside the kiln. These physical and chemical phenomena can be used to control transient emissions by oxygen enrichment, where it is done in either a steady or a dynamic mode.

  10. In vitro investigation of thrombogenesis in rotary blood pumps.

    PubMed

    Schima, H; Siegl, H; Mohammad, S F; Huber, L; Müller, M R; Losert, U; Thoma, H; Wolner, E

    1993-07-01

    Thrombus formation at sealing and stagnation areas remains a major problem in the development of rotary blood pumps. Until now, the complex phenomena could only be studied in vivo. In this study, an in vitro mock circulation previously used for hemolysis studies was adapted for thrombosis evaluation. Blood was collected in the slaughterhouse with strict avoidance of air contact and was heparinized (1.5 U heparin/ml blood; activated coagulation time [ACT]: initially, 140-180 s; after collection, 400-600 s). During the test, the ACT decreased gradually. The tests were stopped after 90 to 180 min at an ACT of 1.5 times the initial value. Thrombus formation was observed at the same locations as observed in left-heart assist devices (sealing area, connecting bolts, and stagnant water areas at connectors). The thrombi were similar in shape, color, and histology to those found after 2 to 4 days in vivo. This test provides a valuable tool for evaluating thrombus formation in prototypes and screening tests of different rotary pump designs.

  11. Cora valveless pulsatile rotary pump: new design and control.

    PubMed

    Monties, J R; Trinkl, J; Mesana, T; Havlik, P J; Demunck, J L

    1996-01-01

    For decades, research for developing a totally implantable artificial ventricle has been carried on. For 4 to 5 years, two devices have been investigated clinically. For many years, we have studied a rotary (but not centrifugal) pump that furnishes pulsatile flow without a valve and does not need external venting or a compliance chamber. It is a hypocycloidal pump based on the principle of the Maillard-Wankel rotary compressor. Currently made of titanium, it is activated by an electrical brushless direct-current motor. The motor-pump unit is totally sealed and implantable, without noise or vibration. This pump was implanted as a left ventricular assist device in calves. The midterm experiments showed good hemodynamic function. The hemolysis was low, but serious problems were encountered: blood components collecting on the gear mechanism inside the rotor jammed the pump. We therefore redesigned the pump to seal the gear mechanism. We used a double system to seal the open end of the rotor cavity with components polished to superfine optical quality. In addition, we developed a control system based on the study of the predicted shape of the motor current. The new design is now underway. We hope to start chronic experiments again in a few months. If the problem of sealing the bearing could be solved, the Cora ventricle could be used as permanent totally implantable left ventricular assist device.

  12. Constraints on models for the flagellar rotary motor.

    PubMed Central

    Berg, H C

    2000-01-01

    Most bacteria that swim are propelled by flagellar filaments, each driven at its base by a rotary motor embedded in the cell wall and cytoplasmic membrane. A motor is about 45 nm in diameter and made up of about 20 different kinds of parts. It is assembled from the inside out. It is powered by a proton (or in some species, a sodium-ion) flux. It steps at least 400 times per revolution. At low speeds and high torques, about 1000 protons are required per revolution, speed is proportional to protonmotive force, and torque varies little with temperature or hydrogen isotope. At high speeds and low torques, torque increases with temperature and is sensitive to hydrogen isotope. At room temperature, torque varies remarkably little with speed from about -100 Hz (the present limit of measurement) to about 200 Hz, and then it declines rapidly reaching zero at about 300 Hz. These are facts that motor models should explain. None of the existing models for the flagellar rotary motor completely do so. PMID:10836502

  13. Wear compensating seal means for rotary piston coal feeder

    DOEpatents

    Gencsoy, Hasan T.; Gardner, John F.

    1979-01-01

    The present invention is directed to a wear compensating seal arrangement for use in a rotary piston feeder utilized for feeding pulverized coal into a gasifier operating at relatively high pressures and elevated temperatures. The rotary piston feeder has a circular casing with a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable disoidal rotor having a cylinder in which a reciprocatable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam whereby pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder and then discharged therefrom into the high pressure gasifier while maintaining minimal losses of producer gas and the expenditure of minimal energy which would detract from the efficiency of the gasification. The seal arrangement of the present invention is disposed between the rotor and the casing about the coal discharge and prevents the high pressure gases from within the gasifier from escaping between these relatively movable parts during operation of the coal feeder. The seal utilizes a primary seal in contact with the rotor and a secondary seal supporting the primary seal. The primary seal is continuously urged towards the rotor by springs and the high pressure producer gas.

  14. Large-scale rotary shear shredder performance testing

    SciTech Connect

    Spencer, D.B.; Bond, B.E.; Forsythe, D.M.; Temple, J.W.

    1985-06-01

    Slow-speed rotary shear shredders have recently received considerable attention for processing of municipal solid waste. Potential benefits from shear shredding could include reduced explosion potential, lower power consumption, lower operating and maintenance costs and less overgrinding of glass. Although there has been much interest in rotary shear shredders, little actual operating data exists showing the capacity and performance of these units on municipal solid waste at full scale. A large-scale, 50 tph (45.3 tonnes/hr) Iowa Manufacturing Company (Cedarapids) Model 5096 (127 cm X 244 cm) shear shredder was installed and has been evaluated over a 6-mo period at the Charleston County Solid Waste Reduction Center. Two Heil 42F vertical shaft hammermills also are operated at the reduction center. Long-term landfill tests were conducted on waste processed by both shredders to measure the performance of the shear shredder and compare the effect of shredder type on landfilling characteristics. These results show capacity in excess of 60 tph (54.4 tonnes/hr) using 4-in. (10-cm) cutters and comparable landfilling characteristics for both types of shredders.

  15. Electro thermal analysis of rotary type micro thermal actuator

    NASA Astrophysics Data System (ADS)

    Anwar, M. Arefin; Packirisamy, Muthukumaran; Ahmed, A. K. Waiz

    2005-09-01

    In micro domain, thermal actuators are favored because it provides higher force and deflection than others. This paper presents a new type of micro thermal actuator that provides rotary motion of the circular disc shaped cold arm, which can be used in various optical applications, such as, switching, attenuation, diffraction, etc. The device has been fabricated in MUMPS technology. In this new design, the hot arms are arranged with the cold disc in such a way that thermal expansion of the hot arms due to Joule heating, will make the cold disc to rotate and the rotation is unidirectional on loading. The dominant heat transfer modes in the operating temperature zone are through the anchor and the air between the structure and the substrate because of the very low gap provided by MUMPS. A mathematical model was used for predicting steady state temperature profile along the actuator length and rotational behavior of the cold disc under different applied voltages. A 3-D coupled field finite element analysis (FEM) for the device is also presented. A FEM analysis was done by defining an air volume around the structure and substrate below the structure. Results obtained from the mathematical model, was compared with that of the finite element analysis. The presented results confirm the applicability of this novel rotary type thermal actuator for many optical MEMS applications.

  16. Miniature electrically tunable rotary dual-focus lenses

    NASA Astrophysics Data System (ADS)

    Zou, Yongchao; Zhang, Wei; Lin, Tong; Chau, Fook Siong; Zhou, Guangya

    2016-03-01

    The emerging dual-focus lenses are drawing increasing attention recently due to their wide applications in both academia and industries, including laser cutting systems, microscopy systems, and interferometer-based surface profilers. In this paper, a miniature electrically tunable rotary dual-focus lens is developed. Such a lens consists of two optical elements, each having an optical flat surface and one freeform surface. The two freeform surfaces are initialized with the governing equation Ar2θ (A is the constant to be determined, r and θ denote the radii and angles in the polar coordinate system) and then optimized by ray tracing technique with additional Zernike polynomial terms for aberration correction. The freeform surfaces are achieved by a single-point diamond turning technique and then a PDMS-based replication process is utilized to materialize the final lens elements. To drive the two coaxial elements to rotate independently, two MEMS thermal rotary actuators are developed and fabricated by a standard MUMPs process. The experimental results show that the MEMS thermal actuator provides a maximum rotation angle of about 8.2 degrees with an input DC voltage of 6.5 V, leading to a wide tuning range for both the two focal lengths of the lens. Specifically, one focal length can be tuned from about 30 mm to 20 mm while the other one can be adjusted from about 30 mm to 60 mm.

  17. A discussion of the several types of two-stroke-cycle engines

    NASA Technical Reports Server (NTRS)

    Venediger, Herbert J

    1935-01-01

    This report discusses different types of two-stroke engines as well as the three most important design factors: volume of scavenge and charge delivery, scavenging process (scavenging result), and result of charge. Some of the types of engines discussed include: single cylinder with crank-chamber scavenge pump and auxiliary suction piston linked to working connecting rod; and two cylinder engines with a rotary scavenge pump arrangement. Three and four cylinder engines are also discussed in various designs.

  18. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications

    NASA Astrophysics Data System (ADS)

    Lee, Jay; Wu, Fangji; Zhao, Wenyu; Ghaffari, Masoud; Liao, Linxia; Siegel, David

    2014-01-01

    Much research has been conducted in prognostics and health management (PHM), an emerging field in mechanical engineering that is gaining interest from both academia and industry. Most of these efforts have been in the area of machinery PHM, resulting in the development of many algorithms for this particular application. The majority of these algorithms concentrate on applications involving common rotary machinery components, such as bearings and gears. Knowledge of this prior work is a necessity for any future research efforts to be conducted; however, there has not been a comprehensive overview that details previous and on-going efforts in PHM. In addition, a systematic method for developing and deploying a PHM system has yet to be established. Such a method would enable rapid customization and integration of PHM systems for diverse applications. To address these gaps, this paper provides a comprehensive review of the PHM field, followed by an introduction of a systematic PHM design methodology, 5S methodology, for converting data to prognostics information. This methodology includes procedures for identifying critical components, as well as tools for selecting the most appropriate algorithms for specific applications. Visualization tools are presented for displaying prognostics information in an appropriate fashion for quick and accurate decision making. Industrial case studies are included in this paper to show how this methodology can help in the design of an effective PHM system.

  19. Design type air engine Di Pietro

    NASA Astrophysics Data System (ADS)

    Zwierzchowski, Jaroslaw

    The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors' distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.

  20. Rotary piston blood pumps: past developments and future potential of a unique pump type.

    PubMed

    Wappenschmidt, Johannes; Autschbach, Rüdiger; Steinseifer, Ulrich; Schmitz-Rode, Thomas; Margreiter, Raimund; Klima, Günter; Goetzenich, Andreas

    2016-08-01

    The design of implantable blood pumps is either based on displacement pumps with membranes or rotary pumps. Both pump types have limitations to meet the clinical requirements. Rotary piston blood pumps have the potential to overcome these limitations and to merge the benefits. Compared to membrane pumps, they are smaller and with no need for wear-affected membranes and valves. Compared to rotary pumps, the blood flow is pulsatile instead of a non-physiological continuous flow. Furthermore, the risk of flow-induced blood damage and platelet activation may be reduced due to low shear stress to the blood. The past developments of rotary piston blood pumps are summarized and the main problem for long-term application is identified: insufficient seals. A new approach with seal-less drives is proposed and current research on a simplified rotary piston design is presented. Expert commentary: The development of blood pumps focuses mainly on the improvement of rotary pumps. However, medical complications indicate that inherent limitations of this pump type remain and restrict the next substantial step forward in the therapy of heart failure patients. Thus, research on different pump types is reasonable. If the development of reliable drives and bearings succeeds, rotary piston blood pumps become a promising alternative.

  1. Osteotomy in direct sinus lift. A comparative study of the rotary technique and ultrasound.

    PubMed

    Peñarrocha-Diago, María; Peñarrocha-Diago, Miguel; Sanchez-Recio, Cristina; Peñarrocha-Oltra, David; Romero-Millán, Javier

    2012-05-01

    The present study investigates sinus membrane rupture in direct maxillary sinus lift with the rotary technique and with ultrasound, examining the survival of implants placed after sinus augmentation, and analyzing the bone gain obtained after the operation and 12 months after placement of the prosthetic restoration. A retrospective study was made of 45 patients requiring maxillary sinus lift or augmentation for implant-prosthetic rehabilitation. Use was made of the handpiece and ostectomy drills for the rotary technique, and of specific tips for ultrasound. The implant success criteria were based on those developed by Buser. The bone gain obtained as a result of sinus lift was calculated from the postoperative panoramic X-rays. A total of 57 direct elevations of the maxillary sinus were carried out: 32 with the rotary technique and 25 with ultrasound. Perforations of Schneider's membrane with the rotary technique and ultrasound occurred in 7% and 1.7% of the cases, respectively, with membrane integrity being preserved in 91.2%. Of the 100 implants placed, 5 failed after one year of follow-up in the rotary technique group, while one implant failed in the ultrasound group. The rotary technique in turn afforded a bone gain of 5.9 mm, versus 6.7 mm with ultrasound. Perforations of the membrane sinusal in direct lift were more frequent with the rotary technique (7%) than with ultrasound (1.7%). Implant survival and bone gain were both greater when ultrasound was used.

  2. Differences between eccentric and rotary tablet machines in the evaluation of powder densification behaviour.

    PubMed

    Palmieri, Giovanni F; Joiris, Etienne; Bonacucina, Giulia; Cespi, Marco; Mercuri, Annalisa

    2005-07-14

    Differences in the dynamics of powder densification between eccentric and rotary machine were pointed out by compressing at different compression pressures microcrystalline cellulose, lactose monohydrate and dicalcium phosphate dihydrate and recovering the corresponding stress/strain data in both machines equipped to monitor punches displacement and compression forces. Heckel plots were then obtained from these stress/strain data. Curves obtained in the rotary machine possess a narrower zone of linearity for the calculation of P(Y) and D(A). The effect of the different compression mechanism of the rotary machine on the shape of the Heckel plot is more noticeable in a non-deforming material such as dicalcium phosphate. The effect of the longer dwell time of the rotary machine on the porosity reduction occurring after the maximum pressure has been reached, is more noticeable in a ductile material such as microcrystalline cellulose. Heckel parameters obtained in the rotary press are in some cases different from those recovered in the eccentric machine because of the longer dwell time, machine deflection and punch tilting occurring in the rotary machine, although theoretically they could better describe the material densification in a high speed production rotary machine.

  3. Development of a Low-Cost Rotary Steerable Drilling System

    SciTech Connect

    Roney Nazarian

    2012-01-31

    The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully

  4. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.

    PubMed

    Schüle, Chan Yong; Thamsen, Bente; Blümel, Bastian; Lommel, Michael; Karakaya, Tamer; Paschereit, Christian Oliver; Affeld, Klaus; Kertzscher, Ulrich

    2016-11-01

    Left ventricular assist devices (LVADs) have become a standard therapy for patients with severe heart failure. As low blood trauma in LVADs is important for a good clinical outcome, the assessment of the fluid loads inside the pump is critical. More specifically, the flow features on the surfaces where the interaction between blood and artificial material happens is of great importance. Therefore, experimental data for the near-wall flows in an axial rotary blood pump were collected and directly compared to computational fluid dynamic results. For this, the flow fields based on unsteady Reynolds-averaged Navier-Stokes simulations-computational fluid dynamics (URANS-CFD) of an axial rotary blood pump were calculated and compared with experimental flow data at one typical state of operation in an enlarged model of the pump. The focus was set on the assessment of wall shear stresses (WSS) at the housing wall and rotor gap region by means of the wall-particle image velocimetry technique, and the visualization of near-wall flow structures on the inner pump surfaces by a paint erosion method. Additionally, maximum WSS and tip leakage volume flows were measured for 13 different states of operation. Good agreement between CFD and experimental data was found, which includes the location, magnitude, and direction of the maximum and minimum WSS and the presence of recirculation zones on the pump stators. The maximum WSS increased linearly with pressure head. They occurred at the upstream third of the impeller blades and exceeded the critical values with respect to hemolysis. Regions of very high shear stresses and recirculation zones could be identified and were in good agreement with simulations. URANS-CFD, which is often used for pump performance and blood damage prediction, seems to be, therefore, a valid tool for the assessment of flow fields in axial rotary blood pumps. The magnitude of maximum WSS could be confirmed and were in the order of several hundred Pascal

  5. Report on Testing to Expand the Rotary Mode Core Sampling Operating Envelope

    SciTech Connect

    BOGER, R.M.

    1999-12-13

    The Tank Waste Remediation System (TWRS) Characterization Equipment Group requested that the Numatec Hanford Corporation--Engineering Testing Laboratory (ETL) perform Rotary Mode Core Sampling (RMCS) Operating Envelope (OE) testing. This testing was based upon Witwer 1998a and was performed at different time periods between May and September 1998. The purpose of this testing was to raise the maximum down force limit for rotary mode core sampling as outlined in the current OE. If testing could show that a higher down force could be used while drilling into a concrete/pumice block simulant while still remaining below the 60 C limitation, then the current OE could be revised to include the new, higher, down force limit. Although the Test Plan discussed varying the purge flow rate and rotation rate to find ''optimal'' drilling conditions, the number of drill bits that could be destructively tested was limited. Testing was subsequently limited in scope such that only the down force would be varied while the purge flow rate and rotation rate were kept constant at 30 scfm and 55 rpm respectively. A second objective, which was not part of the original test plan, was added prior to testing. The Bit Improvement testing, mentioned previously, revealed that the drill bits tested in the OE testing were made of a slightly different metal matrix than the ones currently used. The older bits, a Longyear part number 100IVD/5 (/5 bit), had tungsten carbide mixed into the metal matrix that forms the cutting teeth. The currently used bits, Longyear part number 100IVD/8 (/8 bit), instead have tungsten metal in the matrix and no tungsten carbide. Rockwell C hardness testing showed that the /5 bit was significantly harder than the /8 bit, with values of /8 vs. 8, respectively. The change from the /5 bit to the /8 bit was made immediately after the previous OE testing in 1996 because of sparking concerns with the tungsten carbide in the /5 bit. This difference in hardness between the two

  6. A Combination of Silicon Micro-gyroscope that Application Rotary Missile Attitude Control System

    NASA Astrophysics Data System (ADS)

    Qin, Sheng-jie; Zhang, Fu-xue

    For the technical requirements of rotary missile attitude control, there developed a new type of combination of silicon micro-gyroscope, it mainly consists of two perpendicular installation of micro-mechanical pendulum and the circuit. This paper reports this kind of combination of silicon micro-gyroscope, which attitude control system in polar coordinate transformation, the combination can demodulate the horizontal angular velocity, yaw angular velocity, pitch angular velocity and the spin angular velocity of the rotary missile. This combination of silicon microgyroscope have been tested in rotary missile, the results show that it works very well in rotating missile attitude control system.

  7. Compressibility of tungsten and molybdenum bars during rotary swaging and rolling

    NASA Astrophysics Data System (ADS)

    Barkov, L. A.; Mymrin, S. A.; Samodurova, M. N.; Dzhigun, N. S.; Latfulina, Yu. S.

    2015-05-01

    The compressibility of bars and hydraulically forged workpieces made of tungsten and molybdenum is studied during rotary swaging and rolling in mills with two-, three-, and four-roll passes. The compressibility of molybdenum MCh bars and hydraulically forged molybdenum M-MP workpieces is investigated during rotary swaging and rolling in three- and four-roll passes. The compressibility of tungsten VA and VL bars and hydraulically forged tungsten V-MP workpieces is investigated during rotary swaging and rolling in three- and four-roll passes. The compressibility of the hydraulically forged tungsten V-MP workpieces is analyzed under two- and four-roll pass rolling conditions.

  8. Rotary acceleration of a subject inhibits choice reaction time to motion in peripheral vision

    NASA Technical Reports Server (NTRS)

    Borkenhagen, J. M.

    1974-01-01

    Twelve pilots were tested in a rotation device with visual simulation, alone and in combination with rotary stimulation, in experiments with variable levels of acceleration and variable viewing angles, in a study of the effect of S's rotary acceleration on the choice reaction time for an accelerating target in peripheral vision. The pilots responded to the direction of the visual motion by moving a hand controller to the right or left. Visual-plus-rotary stimulation required a longer choice reaction time, which was inversely related to the level of acceleration and directly proportional to the viewing angle.

  9. History, a projection of the future: A rotary wing perspective

    NASA Technical Reports Server (NTRS)

    Huston, Robert J.

    1996-01-01

    The success and failure of past vehicle concepts is reviewed in an attempt to highlight some of the advanced vehicle concepts attempted in the past failed because of a lack of appreciation, by both the sponsors and the developer, for the technical and societal requirements critical to their success. This paper will review the history of some attempts to provide both good hover and forward flight efficiency and will point out some of the technical and societal obstacles encountered. Two examples, that of the tiltrotor and tiltwing vehicles. will be highlighted show the different paths followed by a successful and an unsuccessful concept. The outlook for future VTOL/rotary wing concepts will be evaluated.

  10. Connecting apparatus for limited rotary or rectilinear motion

    DOEpatents

    Hardin, Jr., Roy T.

    1981-11-10

    Apparatus for providing connection between two members movable in a horizontal plane with respect to each other in a rotary or linear fashion. The apparatus includes a set of horizontal shelves affixed to each of the two members, vertically aligned across a selected gap. A number of cables or hoses, for electrical, hydraulic or pneumatic connection are arranged on the aligned shelves in a U-shaped loop, connected through their extremities to the two members, so that through a sliding motion portions of the cable are transferred from one shelf to the other, across the gap, upon relative motion of the members. The apparatus is particularly adaptable to the rotating plugs of the reactor vessel head of a nuclear reactor.

  11. Wellhead power production with a rotary separator turbine (RP 1196)

    NASA Astrophysics Data System (ADS)

    Cerini, D. J.; Record, J.

    1982-12-01

    A rotary-separator turbine was built with full flow capacity for a 500 F downhole temperature with a 850,000 lbm/hr production rate. The test system and results obtained in field tests are described. The preliminary design of a 10-megawatt wellhead power plant for the Roosevelt type resource is described. This system shows a specific power of .0013 kW hr per lbm, which is 20 percent greater than an optimized wellhead single stage flash plant. This is 26 percent greater than a central plant of 20 to 50 MW capacity when consideration is given to steam-gathering system pressure drop between the wells and central plant.

  12. Low torque hydrodynamic lip geometry for rotary seals

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  13. Rim for rotary inertial energy storage device and method

    DOEpatents

    Knight, Jr., Charles E.; Pollard, Roy E.

    1980-01-01

    The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

  14. Rotary forcespun styrofoam fibers as a soilless growing medium

    NASA Astrophysics Data System (ADS)

    Fauzi, Ahmad; Edikresnha, Dhewa; Munir, Muhammad Miftahul; Khairurrijal

    2016-04-01

    To make styrofoam fibers from used styrofoam, rotary forcespinning technique was used because it offers high production rate and affordable production cost. The used styrofoam was dissolved in acetone to obtain styrofoam solution as a precursor of syrofoam fibers. Since the technique utilizes centrifugal force, the precursor was thrown out and its phase changed to be solid following acetone solvent evaporation. Long, clean and light styrofoam fibers were then produced. To determine if the styrofoam fibers is a good soilless growing medium, physico-chemical properties including pH and electrical conductivity, bulk density, water retention and wettability were measured. Rockwool, which is the most popular soilless growing medium and easily obtained from local farm suppliers, was selected as a benchmark to evaluate the styrofoam fibers.

  15. Maintenance cost study of rotary wing aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Navy's maintenance and materials management data base was used in a study to determine the feasibility of predicting unscheduled maintenance costs for the dynamic systems of military rotary wing aircraft. The major operational and design variables were identified and the direct maintenance man hours per flight hour were obtained by step-wise multiple regression analysis. Five nonmilitary helicopter users were contacted to supply data on which variables were important factors in civil applications. These uses included offshore oil exploration and support, police and fire department rescue and enforcement, logging and heavy equipment movement, and U.S. Army military operations. The equations developed were highly effective in predicting unscheduled direct maintenance man hours per flying hours for military aircraft, but less effective for commercial or public service helicopters, probably because of the longer mission durations and the much higher utilization of civil users.

  16. Design and experiment performances of an inchworm type rotary actuator.

    PubMed

    Li, Jianping; Zhao, Hongwei; Shao, Mingkun; Zhou, Xiaoqin; Huang, Hu; Fan, Zunqiang

    2014-08-01

    A piezo-driven rotary actuator by means of inchworm principle is proposed in this paper. Six piezo-stacks and flexure hinges are used to realize large rotation ranges with high accuracy both in the forward and backward motions. Four right-angle flexure hinges and two right-circular flexure hinges are applied in the stator. The motion principle and theoretical analysis of the designed actuator are discussed. In order to investigate the working characteristics, a prototype actuator was manufactured and a series of experiment tests were carried out. The test results indicate that the maximum rotation velocity is 71,300 μrad/s; the maximum output torque is 19.6 N mm. The experiment results confirm that the designed actuator can obtain large rotation motion ranges with relatively high output torques and different rotation speeds on the condition of different driving voltages and frequencies.

  17. Estimation of Rotary Stability Derivatives at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Lessing, Henry C.

    1961-01-01

    The first part of this paper pertains to the estimation of subsonic rotary stability derivatives of wings. The unsteady potential flow problem is solved by a superposition of steady flow solutions. Numerical results for the damping coefficients of triangular wings are presented as functions of aspect ratio and Mach number, and are compared with experimental results over the Mach number range 0 to 1. In the second part, experimental results are used. to point out a close correlation between the nonlinear variations with angle of attack of the static pitching-moment curve slope and the damping-in-pitch coefficient. The underlying basis for the correlation is found as a result of an analysis in which the indicial function concept and. the principle of super-position are adapted to apply to the nonlinear problem. The form of the result suggests a method of estimating nonlinear damping coefficients from results of static wind-tunnel measurements.

  18. Tritium test of a ferro-fluidic rotary seal

    SciTech Connect

    Antipenkov, A.; Day, C.; Adami, H. D.

    2008-07-15

    The ferro-fluidic seal is being investigated as an internal rotary seal for tritium compatible mechanical roots type vacuum pumps. After its successful testing with helium and integration into a small (250 m{sup 3}/h) test roots pump, the seal, made as a cartridge, has been integrated into a special test unit and is currently being tested with tritium in order to define the leak rates and the possible degradation of the ferro-fluid under long term exposure to tritium radiation. The tritium pressure from one side of the seal is 0.125 MPa, the nitrogen pressure from the other side is 0.075 MPa, the rotation speed is maintained at 1500 rpm. The tritium leak through the cartridge contributes to the tritium concentration in the nitrogen, which is continuously measured by an ionisation chamber; the pressure in both chambers is continuously registered by precise pressure gauges. The experimental program is discussed. (authors)

  19. Solid state lighting devices and methods with rotary cooling structures

    DOEpatents

    Koplow, Jeffrey P.

    2017-03-21

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipation methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.

  20. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  1. Real-Time Prognostics of a Rotary Valve Actuator

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  2. Design of a rotary passive viscoelastic joint for wearable robots.

    PubMed

    Carpino, Giorgio; Accoto, Dino; Di Palo, Michelangelo; Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Guglielmelli, Eugenio

    2011-01-01

    In the design of wearable robots that strictly interact with the human body and, in general, in any robotics application that involves the human component, the possibility of having modular joints able to produce a viscoelastic behaviour is very useful to achieve an efficient and safe human-robot interaction and to give rise to emergent dynamical behaviors. In this paper we propose the design of a compact, passive, rotary viscoelastic joint for assistive wearable robotics applications. The system integrates two functionally distinct sub-modules: one to render a desired torsional stiffness profile and the other to provide a desired torsional damping. Concepts and design choices regarding the overall architecture and the single components are presented and discussed. A viscoelastic model of the system has been developed and the design of the joint is presented. © 2011 IEEE

  3. Classification of Implantable Rotary Blood Pump States With Class Noise.

    PubMed

    Ooi, Hui-Lee; Seera, Manjeevan; Ng, Siew-Cheok; Lim, Chee Peng; Loo, Chu Kiong; Lovell, Nigel H; Redmond, Stephen J; Lim, Einly

    2016-05-01

    A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.

  4. AERODYNAMIC CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  5. Aerodynamic Characteristics of Two Rotary Wing UAV Designs

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  6. A ferrofluidic seal specially designed for rotary blood pumps.

    PubMed

    Mitamura, Y; Fujiyoshi, M; Yoshida, T; Yozu, R; Okamoto, E; Tanaka, T; Kawada, S

    1996-06-01

    One of the key technologies required for rotary blood pumps is sealing of the motor shaft. A ferrofluidic seal was developed for an axial flow pump. The seal body was composed of a plastic magnet and two pole pieces. This seal was formed by injecting ferrofluid into the gap between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was provided on the pole piece. Sealing pressure of the seal was measured. The sealing pressure was maintained at more than 23.3 kPa (175 mm Hg) for a motor speed up to 11,000 rpm. The specially designed ferrofluidic seal for sealing out liquids is useful for axial flow blood pumps.

  7. Adaptive structures for fixed and rotary wing aircraft

    NASA Astrophysics Data System (ADS)

    Martin, Willi; Jänker, Peter; Siemetzki, Markus; Lorkowski, Thomas; Grohmann, Boris; Maier, Rudolf; Maucher, Christoph; Klöppel, Valentin; Enenkl, Bernhard; Roth, Dieter; Hansen, Heinz

    2007-07-01

    Since more than 10 years EADS Innovation Works, which is the corporate research centre of EADS (European Aeronautic Defence and Space Company), is investigating smart materials and adaptive structures for aircraft in cooperation with EADS business units. Focus of research efforts are adaptive systems for shape control, noise reduction and vibration control of both fixed and rotary wing aircraft as well as for lift optimisation of fixed wing aircraft. Two outstanding adaptive systems which have been pushed ahead in cooperation with Airbus Germany and Eurocopter Germany are adaptive servo flaps for helicopter rotor blades and innovative high lift devices for fixed wing aircraft which both were tested in flight for the first time representing world premieres. In this paper various examples of adaptive systems are presented which were developed and realized by EADS in recent years.

  8. Pallet Optimization of the Heavy Rotary Table Load Carrying System

    NASA Astrophysics Data System (ADS)

    Atapin, V. G.; Bataev, A. A.

    2016-04-01

    The pallet optimization of the heavy rotary table load-carrying system, which is a part of the multi-purpose machine, is considered in terms of the deterministic and probabilistic models. As a result of optimum design in case of the deterministic model the mass of the pallet is reduced by 35.5 % in comparison with a serial model. The evaluation of the influence of optimization problem limitations on design variables confirms the importance of rigidity criterion in relation to other criteria. Calculation for probabilistic model allows reducing the mass of the construction by 27 % in comparison with the deterministic model. Considering a work piece rigidity on the basis of a conventional work piece of the minimum rigidity (without stiffening ribs etc.) leads to reducing of the pallet mass by 22.3 % in comparison with the deterministic model.

  9. TESTING OF THE SECOND GENERATION SPINTEK ROTARY FILTER -11357

    SciTech Connect

    Herman, D.; Poirier, M.; Fowley, M.; Keefer, M.; Huff, T.

    2011-02-02

    The SpinTek rotary microfilter has been developed under the Department of Energy (DOE) Office of Environmental Management (EM) for the purpose of deployment in radioactive service in the DOE complex. The unit that was fabricated and tested is the second generation of the filter that incorporates recommended improvements from previous testing. The completion of this test satisfied a key milestone for the EM technology development program and technology readiness for deployment by Savannah River Remediation in the Small Column Ion Exchange and Sludge Washing processes at the Savannah River Site (SRS). The Savannah River National Laboratory (SRNL) contracted SpinTek Filtration to fabricate a full scale 25 disk rotary filter and perform a 1000 hour endurance test with a simulated SRS sludge. Over 1500 hours of operation have been completed with the filter. SpinTek Filtration fabricated a prototypic 25 disk rotary filter including updates to manufacturing tolerances, an updated design to the rotary joint, improved cooling to the bottom journal, decreases in disk and filter shaft hydraulic resistances. The filter disks were fabricated with 0.5 {micro} pore size, sintered-metal filter media manufactured by Pall Corporation (M050). After fabrication was complete, the filter passed acceptance tests demonstrating rejection of solids and clean water flux with a 50% improvement over the previous filters. Once the acceptance test was complete, a 1000 hour endurance test was initiated simulating a sludge washing process. The test used a simulated SRS Sludge Batch 6 recipe. The insoluble solids started at 5 wt% and were raised to 10 and 15 wt% insoluble solids to simulate the concentration of a large volume tank. The filter system was automated and set up for 24 hour unattended operation. To facilitate this, process control logic was written to operate the filter. During the development it was demonstrated that the method of starting and stopping the filter can affect the build

  10. Synthetic aggregates from combustion ashes using an innovative rotary kiln.

    PubMed

    Wainwright, P J; Cresswell, D J

    2001-01-01

    This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.

  11. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  12. Rotary Percussive Sample Acquisition Tool (SAT): Hardware Development and Testing

    NASA Technical Reports Server (NTRS)

    Klein, Kerry; Badescu, Mircea; Haddad, Nicolas; Shiraishi, Lori; Walkemeyer, Phillip

    2012-01-01

    In support of a potential Mars Sample Return (MSR) mission an Integrated Mars Sample Acquisition and Handling (IMSAH) architecture has been proposed to provide a means for Rover-based end-to-end sample capture and caching. A key enabling feature of the architecture is the use of a low mass sample Acquisition Tool (SAT) that is capable of drilling and capturing rock cores directly within a sample tube in order to maintain sample integrity and prevent contamination across the sample chain. As such, this paper will describe the development and testing of a low mass rotary percussive SAT that has been shown to provide a means for core generation, fracture, and capture.

  13. Experimental Study on Doubly-fed Rotary Frequency Converter

    NASA Astrophysics Data System (ADS)

    Takemoto, Yasutoshi; Fujita, Goro; Yokoyama, Ryuichi; Koyanagi, Kaoru; Funabashi, Toshihisa

    Wind power generation using an unlimited, natural energy is getting an attention regarding environment issues in recent years, and the installed capacity of wind power generation system is increasing at a rapid pace, resulting in deterioration of power quality especially in frequency and voltage. This fact will be a big problem to restrict large capacity of wind farm. This paper proposes a new frequency converter: rotary frequency converter (RFC) to moderate the electric output from wind generation, which is to be installed between a set of wind generators and a grid, providing a smoothed electric output, promoting the wind power generation introduction. This mainly consists of a synchronous machine and the adjustable-speed machine. Independent controls of input/output voltage, active power, and reactive power offer electrical separation between the two networks. Experimental study of prototype model and its characteristics, especially dynamic control is discussed in this paper.

  14. Friction and wear in threaded surfaces of rotary drill collars

    SciTech Connect

    Thornton, H.R. ); Bailey, E.I. ); Williamson, J.S. )

    1993-03-01

    Two surfaces, under high normal stress, in sliding contact provide the basis for friction and wear studies within rotary drill collars. Flat and ring specimens, considering three different contact areas, were rotated to determine the effect of surface finish, coatings, lubricants and normal stress on friction and wear. The 4145 steel specimens were heat-treated to a yield strength of 124,000 lb/in[sup 2] (855 MPa) and a R[sub c] hardness of 28. The torque required to rotate the ring specimen was measured as a function of the rotation angle. The friction coefficient was calculated. Seizure and galling were common for metal-to-metal contact. Rust and phosphate coatings break down under the high normal stress. Metal-filled lubricants produce static coefficients of friction between 0.03 and 0.25 and dynamic coefficients between 0.04 and 0.26. Seizure and galling were not observed.

  15. Evaluation of single-use rotary nickel-titanium instruments.

    PubMed

    Arens, F Charles; Hoen, Michael M; Steiman, H Robert; Dietz, Gerald C

    2003-10-01

    The purpose of this study was to analyze the number and types of defects observed in single-use, rotary nickel-titanium instruments. Every ProFile Series 29.04 taper nickel-titanium instrument used during a 4-week period in an endodontic specialty practice was collected. All instruments were new and were used by experienced clinicians during a single patient visit. The instruments were routinely used in a crown-down manner with RC Prep lubrication and copious irrigation. The instruments were used in a MicroMega 324 air motor in a 6:1 gear reduction contra-angle at 333 rpm. The instruments were collected, ultrasonically cleaned, sterilized, and inspected at x16 magnification. Torsional, flexural, and fracture defects were recorded and statistical analysis was performed using the Kruskal-Wallis one-way analysis of variance. A total of 786 ProFile Series 29 nickel-titanium rotary instruments were evaluated; 115 (14.63%) showed some type of defect after one clinical use. Size 3 instruments had the highest defect rate (22.66%) followed by size 5 (17.30%), size 2 (17.24%), and size 4 instruments (16.10%). However, there was no statistically significant difference. The size 6 and size 7 instruments showed minimal defects (2.38% and 4.76%, respectfully). Seven of 786 files had fractured (0.891%). There was no statistically significant difference in the type of failure seen within each file size. This study does show that defects can occur even with new files in the hands of experienced endodontists, and for absolute safety a single-use approach should be followed.

  16. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack

    2013-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10 N) which is important for operation at low gravity. This device can be made as light as 400 g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.

  17. Percussive augmenter of rotary drills (PARoD)

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack

    2013-04-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.

  18. Development of rotary blood pump technology: past, present, and future.

    PubMed

    Nosé, Y; Yoshikawa, M; Murabayashi, S; Takano, T

    2000-06-01

    Even though clinical acceptance of a nonpulsatile blood flow was demonstrated almost 45 years ago, the development of a nonpulsatile blood pump was completely ignored until 20 years ago. In 1979, the first author's group demonstrated that completely pulseless animals did not exhibit any abnormal physiology if 20% higher blood flows were provided to them. However, during the next 10 years (1979-1988), minimum efforts were provided for the development of a nonpulsatile, permanently implantable cardiac prosthesis. In 1989, the first author and his team at Baylor College of Medicine initiated a developmental strategy of various types of nonpulsatile rotary blood pumps, including a 2-day rotary blood pump for cardiopulmonary bypass application, a 2 week pump for ECMO and short-term circulatory assistance, a 2 year pump as a bridge to transplantation, and a permanently implantable cardiac prosthesis. Following the design and developmental strategy established in 1989, successful development of a 2-day pump (the Nikkiso-Fairway cardiopulmonary bypass pump) in 4 years (1989-1993), a 2 week pump (Kyocera gyro G1E3 pump) in 6 years (1992-1998), and a bridge to transplant pump (DeBakey LVAD-an axial flow blood pump) in 10 years (1988-1998) was made. Currently, a permanently implantable centrifugal blood pump development program is successfully completing its initial Phase 1 program of 5 years (1995-2000). Implantation exceeded 9 months without any negative findings. An additional 5 year Phase II program (2000-2005) is expected to complete such a device that will be clinically available.

  19. Effect of EDTA preparations on rotary root canal instrumentation.

    PubMed

    Whitbeck, Evan R; Swenson, Kelli; Tordik, Patricia A; Kondor, Shayne A; Webb, Terry D; Sun, Jirun

    2015-01-01

    The aim of this study was to evaluate whether rotary instrumentation using saline, EDTA 17% solution, or RC-Prep (Premier Dental, Philadelphia, PA) resulted in differences in root canal transportation. The secondary objective was to assess if instrumentation using these agents caused changes in the working length and canal volume. Moderately curved mesiobuccal roots of 24 maxillary molars were standardized in length and randomized into 1 control and 2 experimental groups. The canals were instrumented with 0.04 taper rotary files to size #30. All groups were irrigated with saline. Group 1 was also irrigated using EDTA 17% solution (Pulpdent Corp, Watertown, MA), and in group 2, RC-Prep was used. X-ray micro-computed tomographic scans and working length measurements were made before and after instrumentation. Three-dimensional models were created from the pre- and postinstrumentation scan data and compared for volume changes. Centroid points were calculated in cross-sectional slices of the canals, and transportation was determined by measuring the distance between the pre- and postinstrumentation points. The data were analyzed with 1-way analysis of variance (α = 0.05) and the Tukey post hoc test. Less transportation was observed in group 2 than in group 1 (P = .001) and the control group (P = .014). Transportation in group 1 and the control group was not significantly different. Canal volume in group 1 was increased relative to group 2 (P = .004) and the control group (P = .022). No significant differences in the working length were observed. The use of chelating agents during root canal instrumentation did not significantly increase apical transportation. Published by Elsevier Inc.

  20. Solar Alpha Rotary Joint (SARJ) Lubrication Interval Test and Evaluation (LITE). Post-Test Grease Analysis

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Martinez, James E.; Devivar, Rodrigo V.

    2015-01-01

    The Solar Alpha Rotary Joint (SARJ) is a mechanism of the International Space Station (ISS) that orients the solar power generating arrays toward the sun as the ISS orbits our planet. The orientation with the sun must be maintained to fully charge the ISS batteries and maintain all the other ISS electrical systems operating properly. In 2007, just a few months after full deployment, the starboard SARJ developed anomalies that warranted a full investigation including ISS Extravehicular Activity (EVA). The EVA uncovered unexpected debris that was due to degradation of a nitride layer on the SARJ bearing race. ISS personnel identified the failure root-cause and applied an aerospace grease to lubricate the area associated with the anomaly. The corrective action allowed the starboard SARJ to continue operating within the specified engineering parameters. The SARJ LITE (Lubrication Interval Test and Evaluation) program was initiated by NASA, Lockheed Martin, and Boeing to simulate the operation of the ISS SARJ for an extended time. The hardware was designed to test and evaluate the exact material components used aboard the ISS SARJ, but in a controlled area where engineers could continuously monitor the performance. After running the SARJ LITE test for an equivalent of 36+ years of continuous use, the test was opened to evaluate the metallography and lubrication. We have sampled the SARJ LITE rollers and plate to fully assess the grease used for lubrication. Chemical and thermal analysis of these samples has generated information that has allowed us to assess the location, migration, and current condition of the grease. The collective information will be key toward understanding and circumventing any performance deviations involving the ISS SARJ in the years to come.