Sample records for rotated overlapping parallel

  1. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations.

    PubMed

    Huellner, Martin W; Appenzeller, Philippe; Kuhn, Félix P; Husmann, Lars; Pietsch, Carsten M; Burger, Irene A; Porto, Miguel; Delso, Gaspar; von Schulthess, Gustav K; Veit-Haibach, Patrick

    2014-12-01

    To assess the diagnostic performance of whole-body non-contrast material-enhanced positron emission tomography (PET)/magnetic resonance (MR) imaging and PET/computed tomography (CT) for staging and restaging of cancers and provide guidance for modality and sequence selection. This study was approved by the institutional review board and national government authorities. One hundred six consecutive patients (median age, 68 years; 46 female and 60 male patients) referred for staging or restaging of oncologic malignancies underwent whole-body imaging with a sequential trimodality PET/CT/MR system. The MR protocol included short inversion time inversion-recovery ( STIR short inversion time inversion-recovery ), Dixon-type liver accelerated volume acquisition ( LAVA liver accelerated volume acquisition ; GE Healthcare, Waukesha, Wis), and respiratory-gated periodically rotated overlapping parallel lines with enhanced reconstruction ( PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction ; GE Healthcare) sequences. Primary tumors (n = 43), local lymph node metastases (n = 74), and distant metastases (n = 66) were evaluated for conspicuity (scored 0-4), artifacts (scored 0-2), and reader confidence on PET/CT and PET/MR images. Subanalysis for lung lesions (n = 46) was also performed. Relevant incidental findings with both modalities were compared. Interreader agreement was analyzed with intraclass correlation coefficients and κ statistics. Lesion conspicuity, image artifacts, and incidental findings were analyzed with nonparametric tests. Primary tumors were less conspicuous on STIR short inversion time inversion-recovery (3.08, P = .016) and LAVA liver accelerated volume acquisition (2.64, P = .002) images than on CT images (3.49), while findings with the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.70, P = .436) were comparable to those at CT. In distant metastases, the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.84) yielded better results than CT (2.88, P < .001). Subanalysis for lung lesions yielded similar results (primary lung tumors: CT, 3.71; STIR short inversion time inversion-recovery , 3.32 [P = .014]; LAVA liver accelerated volume acquisition , 2.52 [P = .002]; PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction , 3.64 [P = .546]). Readers classified lesions more confidently with PET/MR than PET/CT. However, PET/CT showed more incidental findings than PET/MR (P = .039), especially in the lung (P < .001). MR images had more artifacts than CT images. PET/MR performs comparably to PET/CT in whole-body oncology and neoplastic lung disease, with the use of appropriate sequences. Further studies are needed to define regionalized PET/MR protocols with sequences tailored to specific tumor entities. © RSNA, 2014 Online supplemental material is available for this article.

  2. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    NASA Astrophysics Data System (ADS)

    Green, Robert G.; White, Robert S.; Greenfield, Tim

    2014-01-01

    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  3. Motion correction in periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and turboprop MRI.

    PubMed

    Tamhane, Ashish A; Arfanakis, Konstantinos

    2009-07-01

    Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.

  4. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  5. MRI diffusion tensor reconstruction with PROPELLER data acquisition.

    PubMed

    Cheryauka, Arvidas B; Lee, James N; Samsonov, Alexei A; Defrise, Michel; Gullberg, Grant T

    2004-02-01

    MRI diffusion imaging is effective in measuring the diffusion tensor in brain, cardiac, liver, and spinal tissue. Diffusion tensor tomography MRI (DTT MRI) method is based on reconstructing the diffusion tensor field from measurements of projections of the tensor field. Projections are obtained by appropriate application of rotated diffusion gradients. In the present paper, the potential of a novel data acquisition scheme, PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), is examined in combination with DTT MRI for its capability and sufficiency for diffusion imaging. An iterative reconstruction algorithm is used to reconstruct the diffusion tensor field from rotated diffusion weighted blades by appropriate rotated diffusion gradients. DTT MRI with PROPELLER data acquisition shows significant potential to reduce the number of weighted measurements, avoid ambiguity in reconstructing diffusion tensor parameters, increase signal-to-noise ratio, and decrease the influence of signal distortion.

  6. Parallel and distributed computation for fault-tolerant object recognition

    NASA Technical Reports Server (NTRS)

    Wechsler, Harry

    1988-01-01

    The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.

  7. An iterative reduced field-of-view reconstruction for periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI.

    PubMed

    Lin, Jyh-Miin; Patterson, Andrew J; Chang, Hing-Chiu; Gillard, Jonathan H; Graves, Martin J

    2015-10-01

    To propose a new reduced field-of-view (rFOV) strategy for iterative reconstructions in a clinical environment. Iterative reconstructions can incorporate regularization terms to improve the image quality of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. However, the large amount of calculations required for full FOV iterative reconstructions has posed a huge computational challenge for clinical usage. By subdividing the entire problem into smaller rFOVs, the iterative reconstruction can be accelerated on a desktop with a single graphic processing unit (GPU). This rFOV strategy divides the iterative reconstruction into blocks, based on the block-diagonal dominant structure. A near real-time reconstruction system was developed for the clinical MR unit, and parallel computing was implemented using the object-oriented model. In addition, the Toeplitz method was implemented on the GPU to reduce the time required for full interpolation. Using the data acquired from the PROPELLER MRI, the reconstructed images were then saved in the digital imaging and communications in medicine format. The proposed rFOV reconstruction reduced the gridding time by 97%, as the total iteration time was 3 s even with multiple processes running. A phantom study showed that the structure similarity index for rFOV reconstruction was statistically superior to conventional density compensation (p < 0.001). In vivo study validated the increased signal-to-noise ratio, which is over four times higher than with density compensation. Image sharpness index was improved using the regularized reconstruction implemented. The rFOV strategy permits near real-time iterative reconstruction to improve the image quality of PROPELLER images. Substantial improvements in image quality metrics were validated in the experiments. The concept of rFOV reconstruction may potentially be applied to other kinds of iterative reconstructions for shortened reconstruction duration.

  8. Strain transfer between disconnected, propagating rifts in Afar

    NASA Astrophysics Data System (ADS)

    Manighetti, I.; Tapponnier, P.; Courtillot, V.; Gallet, Y.; Jacques, E.; Gillot, P.-Y.

    2001-01-01

    We showed before that both the Aden and Red Sea plate boundaries are currently rifting and propagating along two distinct paths into Afar through the opening of a series of disconnected, propagating rifts. Here we use new geochronological, tectonic, and paleomagnetic data that we acquired mostly in the southeastern part of Afar to examine the geometry, kinematics, and time-space evolution of faulting related to strain transfer processes. It appears that transfer of strain is accommodated by a bookshelf faulting mechanism wherever rifts or plate boundaries happen to overlap without being connected. This mechanism implies the rotation about a vertical axis of small rigid blocks along rift-parallel faults that are shown to slip with a left-lateral component, which is as important as their normal component of slip (rates of ˜2-3 mm/yr). By contrast, where rifts do not overlap, either a classic transform fault (Maskali) or an oblique transfer zone (Mak'arrasou) kinematically connects them. The length of the Aden-Red Sea overlap has increased in the last ˜0.9 Myr, as the Aden plate boundary propagated northward into Afar. As a consequence, the first-order blocks that we identify within the overlap did not all rotate during the same time-span nor by the same amounts. Similarly, the major faults that bound them did not necessarily initiate and grow as their neighboring faults did. Despite these variations in strain distribution and kinematics, the overlap kept accommodating a constant amount of strain (7 to 15% of the extension amount imposed by plate driving forces), which remained distributed on a limited number (seven or eight) of major faults, each one having slipped at constant rates (˜3 and 2 mm/yr for vertical and lateral rates, respectively). The fault propagation rates and the block rotation rates that we either measure or deduce are so fast (30-130 mm/yr and 15-38°/Myr, respectively) that they imply that strain transfer processes are transient, as has been shown to be the case for the processes of tearing, rift propagation, and strain jumps in Afar.

  9. Locating hardware faults in a parallel computer

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  10. Noise Power Spectrum in PROPELLER MR Imaging.

    PubMed

    Ichinoseki, Yuki; Nagasaka, Tatsuo; Miyamoto, Kota; Tamura, Hajime; Mori, Issei; Machida, Yoshio

    2015-01-01

    The noise power spectrum (NPS), an index for noise evaluation, represents the frequency characteristics of image noise. We measured the NPS in PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) magnetic resonance (MR) imaging, a nonuniform data sampling technique, as an initial study for practical MR image evaluation using the NPS. The 2-dimensional (2D) NPS reflected the k-space sampling density and showed agreement with the shape of the k-space trajectory as expected theoretically. Additionally, the 2D NPS allowed visualization of a part of the image reconstruction process, such as filtering and motion correction.

  11. Turboprop: improved PROPELLER imaging.

    PubMed

    Pipe, James G; Zwart, Nicholas

    2006-02-01

    A variant of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI, called turboprop, is introduced. This method employs an oscillating readout gradient during each spin echo of the echo train to collect more lines of data per echo train, which reduces the minimum scan time, motion-related artifact, and specific absorption rate (SAR) while increasing sampling efficiency. It can be applied to conventional fast spin-echo (FSE) imaging; however, this article emphasizes its application in diffusion-weighted imaging (DWI). The method is described and compared with conventional PROPELLER imaging, and clinical images collected with this PROPELLER variant are shown. Copyright 2006 Wiley-Liss, Inc.

  12. Hepatic lesions: improved image quality and detection with the periodically rotated overlapping parallel lines with enhanced reconstruction technique--evaluation of SPIO-enhanced T2-weighted MR images.

    PubMed

    Hirokawa, Yuusuke; Isoda, Hiroyoshi; Maetani, Yoji S; Arizono, Shigeki; Shimada, Kotaro; Okada, Tomohisa; Shibata, Toshiya; Togashi, Kaori

    2009-05-01

    To evaluate the effectiveness of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for superparamagnetic iron oxide (SPIO)-enhanced T2-weighted magnetic resonance (MR) imaging with respiratory compensation with the prospective acquisition correction (PACE) technique in the detection of hepatic lesions. The institutional human research committee approved this prospective study, and all patients provided written informed consent. Eighty-one patients (mean age, 58 years) underwent hepatic 1.5-T MR imaging. Fat-saturated T2-weighted turbo spin-echo images were acquired with the PACE technique and with and without the PROPELLER method after administration of SPIO. Images were qualitatively evaluated for image artifacts, depiction of liver edge and intrahepatic vessels, overall image quality, and presence of lesions. Three radiologists independently assessed these characteristics with a five-point confidence scale. Diagnostic performance was assessed with receiver operating characteristic (ROC) curve analysis. Quantitative analysis was conducted by measuring the liver signal-to-noise ratio (SNR) and the lesion-to-liver contrast-to-noise ratio (CNR). The Wilcoxon signed rank test and two-tailed Student t test were used, and P < .05 indicated a significant difference. MR imaging with the PROPELLER and PACE techniques resulted in significantly improved image quality, higher sensitivity, and greater area under the ROC curve for hepatic lesion detection than did MR imaging with the PACE technique alone (P < .001). The mean liver SNR and the lesion-to-liver CNR were higher with the PROPELLER technique than without it (P < .001). T2-weighted MR imaging with the PROPELLER and PACE technique and SPIO enhancement is a promising method with which to improve the detection of hepatic lesions. (c) RSNA, 2009.

  13. Configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks

    DOEpatents

    Archer, Charles J.; Inglett, Todd A.; Ratterman, Joseph D.; Smith, Brian E.

    2010-03-02

    Methods, apparatus, and products are disclosed for configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks, the compute nodes in the operational group connected together for data communications through a global combining network, that include: partitioning the compute nodes in the operational group into a plurality of non-overlapping subgroups; designating one compute node from each of the non-overlapping subgroups as a master node; and assigning, to the compute nodes in each of the non-overlapping subgroups, class routing instructions that organize the compute nodes in that non-overlapping subgroup as a collective network such that the master node is a physical root.

  14. Turboprop+: enhanced Turboprop diffusion-weighted imaging with a new phase correction.

    PubMed

    Lee, Chu-Yu; Li, Zhiqiang; Pipe, James G; Debbins, Josef P

    2013-08-01

    Faster periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor (number of gradient echoes between each pair of radiofrequency refocusing pulses) and, thus, scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance-related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate and short scan time can be achieved in Turboprop+ using a high turbo factor, whereas off-resonance related artifacts are minimized. © 2012 Wiley Periodicals, Inc.

  15. Three-dimensional anisotropy contrast periodically rotated overlapping parallel lines with enhanced reconstruction (3DAC PROPELLER) on a 3.0T system: a new modality for routine clinical neuroimaging.

    PubMed

    Nakada, Tsutomu; Matsuzawa, Hitoshi; Fujii, Yukihiko; Takahashi, Hitoshi; Nishizawa, Masatoyo; Kwee, Ingrid L

    2006-07-01

    Clinical magnetic resonance imaging (MRI) has recently entered the "high-field" era, and systems equipped with 3.0-4.0T superconductive magnets are becoming the gold standard for diagnostic imaging. While higher signal-to-noise ratio (S/N) is a definite advantage of higher field systems, higher susceptibility effect remains to be a significant trade-off. To take advantage of a higher field system in performing routine clinical images of higher anatomical resolution, we implemented a vector contrast image technique to 3.0T imaging, three-dimensional anisotropy contrast (3DAC), with a PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) sequence, a method capable of effectively eliminating undesired artifacts on rapid diffusion imaging sequences. One hundred subjects (20 normal volunteers and 80 volunteers with various central nervous system diseases) participated in the study. Anisotropic diffusion-weighted PROPELLER images were obtained on a General Electric (Waukesha, WI, USA) Signa 3.0T for each axis, with b-value of 1100 sec/mm(2). Subsequently, 3DAC images were constructed using in-house software written on MATLAB (MathWorks, Natick, MA, USA). The vector contrast allows for providing exquisite anatomical detail illustrated by clear identification of all major tracts through the entire brain. 3DAC images provide better anatomical resolution for brainstem glioma than higher-resolution T2 reversed images. Degenerative processes of disease-specific tracts were clearly identified as illustrated in cases of multiple system atrophy and Joseph-Machado disease. Anatomical images of significantly higher resolution than the best current standard, T2 reversed images, were successfully obtained. As a technique readily applicable under routine clinical setting, 3DAC PROPELLER on a 3.0T system will be a powerful addition to diagnostic imaging.

  16. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.

    1996-01-01

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.

  17. [Basic examination of an imagecharacteristic in Multivane].

    PubMed

    Ohshita, Tsuyoshi

    2011-01-01

    Deterioration in the image because of a patient's movement always becomes a problem in the MRI inspection. To solve this problem, the imaging procedure named Multivane was developed. The principle is similar to the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) method. As for Multivane, the effect of the body motion correction is high. However, the filling method of k space is different than a past Cartesian method. A basic examination of the image characteristic of Multivane and Cartesian was utilized along with geostationary phantom. The examination items are SNR, CNR, and a spatial resolution. As a result, Multivane of SNR was high. Cartesian of the contrast and the spatial resolution was also high. It is important to recognize these features and to use Multivane.

  18. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, J.

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  19. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, Jian

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  20. The rotational order-disorder structure of the reversibly photoswitchable red fluorescent protein rsTagRFP.

    PubMed

    Pletnev, Sergei; Subach, Fedor V; Verkhusha, Vladislav V; Dauter, Zbigniew

    2014-01-01

    The rotational order-disorder (OD) structure of the reversibly photoswitchable fluorescent protein rsTagRFP is discussed in detail. The structure is composed of tetramers of 222 symmetry incorporated into the lattice in two different orientations rotated 90° with respect to each other around the crystal c axis and with tetramer axes coinciding with the crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates the rotational OD structure with statistically averaged I422 symmetry. Despite order-disorder pathology, the structure of rsTagRFP has electron-density maps of good quality for both non-overlapping and overlapping parts of the model. The crystal contacts, crystal internal architecture and a possible mechanism of rotational OD crystal formation are discussed.

  1. Improved motion correction in PROPELLER by using grouped blades as reference.

    PubMed

    Liu, Zhe; Zhang, Zhe; Ying, Kui; Yuan, Chun; Guo, Hua

    2014-03-01

    To develop a robust reference generation method for improving PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) reconstruction. A new reference generation method, grouped-blade reference (GBR), is proposed for calculating rotation angle and translation shift in PROPELLER. Instead of using a single-blade reference (SBR) or combined-blade reference (CBR), our method classifies blades by their relative correlations and groups similar blades together as the reference to prevent inconsistent data from interfering the correction process. Numerical simulations and in vivo experiments were used to evaluate the performance of GBR for PROPELLER, which was further compared with SBR and CBR in terms of error level and computation cost. Both simulation and in vivo experiments demonstrate that GBR-based PROPELLER provides better correction for random motion or bipolar motion comparing with SBR or CBR. It not only produces images with lower error level but also needs less iteration steps to converge. A grouped-blade for reference selection was investigated for PROPELLER MRI. It helps to improve the accuracy and robustness of motion correction for various motion patterns. Copyright © 2013 Wiley Periodicals, Inc.

  2. Kinetic theory of passing energetic ion transport in presence of the resonant interactions with a rotating magnetic island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Jinjia; Gong, Xueyu; Xiang, Dong

    The enhanced transport of passing energetic ions (PEIs) in presence of the resonant interactions with a rotating magnetic island is investigated within the drift kinetic framework. When the island rotation plays a role in the resonant interaction, we find that the velocities of PEIs satisfy a constraint relation of resonant flux surface in phase space. The resonant flux surfaces overlap with the magnetic flux surfaces in real space. A new transport channel responsible for the PEIs moving across the magnetic flux surfaces, i.e., continuously overlapping, is found. Two kinds of radial motions can be induced by the surface overlapping: onemore » arises from the coupling between the resonance and the collision with the background plasma and the other from not completely overlapping of the two surfaces. The two radial motions and the symmetry-breaking induced radial motion constitute the total radial motion. When the pitch-angle scattering rate is very weak, the surface-shear induced transport is dominant. Only a small increase in the collision rate can significantly influence the total transport.« less

  3. Water-fat separation with parallel imaging based on BLADE.

    PubMed

    Weng, Dehe; Pan, Yanli; Zhong, Xiaodong; Zhuo, Yan

    2013-06-01

    Uniform suppression of fat signal is desired in clinical applications. Based on phase differences introduced by different chemical shift frequencies, Dixon method and its variations are used as alternatives of fat saturation methods, which are sensitive to B0 inhomogeneities. Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) separates water and fat images with flexible echo shifting. Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER, alternatively termed as BLADE), in conjunction with IDEAL, yields Turboprop IDEAL (TP-IDEAL) and allows for decomposition of water and fat signal with motion correction. However, the flexibility of its parameter setting is limited, and the related phase correction is complicated. To address these problems, a novel method, BLADE-Dixon, is proposed in this study. This method used the same polarity readout gradients (fly-back gradients) to acquire in-phase and opposed-phases images, which led to less complicated phase correction and more flexible parameter setting compared to TP-IDEAL. Parallel imaging and undersampling were integrated to reduce scan time. Phantom, orbit, neck and knee images were acquired with BLADE-Dixon. Water-fat separation results were compared to those measured with conventional turbo spin echo (TSE) Dixon and TSE with fat saturation, respectively, to demonstrate the performance of BLADE-Dixon. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Head rotation during internal jugular vein cannulation and the risk of carotid artery puncture.

    PubMed

    Sulek, C A; Gravenstein, N; Blackshear, R H; Weiss, L

    1996-01-01

    We undertook a prospective laboratory study to examine the effect of head position on the relative positions of the carotid artery and the internal jugular vein (IJV). Volunteers (n = 12) from departmental staff, 18-60 yr of age, who had never undergone cannulation of the IJV underwent imaging of their IJV and carotid artery. With the subject in a 15 degrees Trendelenburg position, two-dimensional ultrasound images of the IJV and the carotid artery were obtained on the left and right sides of the neck at 2 and 4 cm from the clavicle along the lateral border of the sternal head of the sternocleidomastoid muscle at 0 degrees, 40 degrees, and 80 degrees of head rotation from the midline. The percent overlap of the carotid artery and IJV increased significantly at 40 degrees and 80 degrees head rotation to both the right and left (P < 0.05). Data from 2 and 4 cm above the clavicle did not differ and were pooled. The percent overlap was larger on the left than the right only with 80 degrees of head rotation (P < 0.05). The increased overlap of carotid artery and IJV with head rotation > 40 degrees increases the risk of inadvertent puncture of the carotid artery associated with the common occurrence of transfixion of the IJV before it is identified during needle withdrawal. The IJV frequently collapses with needle insertion. This may result in puncture of the posterior wall of the vessel, and thus of the carotid artery when the two vessels overlap. To decrease this risk, the head should be kept in as neutral a position as possible, that is < 40 degrees rotation, during IJV cannulation.

  5. Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    NASA Technical Reports Server (NTRS)

    Hsieh, Shang-Hsien

    1993-01-01

    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.

  6. Evidence of Multiple Reconnection Lines at the Magnetopause from Cusp Observations

    NASA Technical Reports Server (NTRS)

    Trattner, K. J.; Petrinec, S. M.; Fuselier, S. A.; Omidi, N.; Sibeck, David Gary

    2012-01-01

    Recent global hybrid simulations investigated the formation of flux transfer events (FTEs) and their convection and interaction with the cusp. Based on these simulations, we have analyzed several Polar cusp crossings in the Northern Hemisphere to search for the signature of such FTEs in the energy distribution of downward precipitating ions: precipitating ion beams at different energies parallel to the ambient magnetic field and overlapping in time. Overlapping ion distributions in the cusp are usually attributed to a combination of variable ion acceleration during the magnetopause crossing together with the time-of-flight effect from the entry point to the observing satellite. Most "step up" ion cusp structures (steps in the ion energy dispersions) only overlap for the populations with large pitch angles and not for the parallel streaming populations. Such cusp structures are the signatures predicted by the pulsed reconnection model, where the reconnection rate at the magnetopause decreased to zero, physically separating convecting flux tubes and their parallel streaming ions. However, several Polar cusp events discussed in this study also show an energy overlap for parallel-streaming precipitating ions. This condition might be caused by reopening an already reconnected field line, forming a magnetic island (flux rope) at the magnetopause similar to that reported in global MHD and Hybrid simulations

  7. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  8. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  9. Two mechanisms of resonance overlapping in excitation of azimuthal surface waves by rotating relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-filled metallic waveguides with a stationary axial magnetic field. These waves with extraordinary polarization can effectively interact with relativistic electron beams rotating along large Larmor orbits in the gap, which separates the plasma column from the waveguide wall. Both widening the layer and increasing the beam particle density are demonstrated to cause resonance overlapping seen from the perspective of the growth rate dependence on the effective wave number.

  10. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    PubMed

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  11. Self-gravitational instability of dense degenerate viscous anisotropic plasma with rotation

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana; Patidar, Archana

    2017-12-01

    The influence of finite Larmor radius correction, tensor viscosity and uniform rotation on self-gravitational and firehose instabilities is discussed in the framework of the quantum magnetohydrodynamic and Chew-Goldberger-Low (CGL) fluid models. The general dispersion relation is obtained for transverse and longitudinal modes of propagation. In both the modes of propagation the dispersion relation is further analysed with respect to the direction of the rotational axis. In the analytical discussion the axis of rotation is considered in parallel and in the perpendicular direction to the magnetic field. (i) In the transverse mode of propagation, when rotation is parallel to the direction of the magnetic field, the Jeans instability criterion is affected by the rotation, finite Larmor radius (FLR) and quantum parameter but remains unaffected due to the presence of tensor viscosity. The calculated critical Jeans masses for rotating and non-rotating dense degenerate plasma systems are \\odot $ and \\odot $ respectively. It is clear that the presence of rotation enhances the threshold mass of the considered system. (ii) In the case of longitudinal mode of propagation when rotation is parallel to the direction of the magnetic field, Alfvén and viscous self-gravitating modes are obtained. The Alfvén mode is modified by FLR corrections and rotation. The analytical as well as graphical results show that the presence of FLR and rotation play significant roles in stabilizing the growth rate of the firehose instability by suppressing the parallel anisotropic pressure. The viscous self-gravitating mode is significantly affected by tensor viscosity, anisotropic pressure and the quantum parameter while it remains free from rotation and FLR corrections. When the direction of rotation is perpendicular to the magnetic field, the rotation of the considered system coupled the Alfvén and viscous self-gravitating modes to each other. The finding of the present work is applicable to strongly magnetized dense degenerate plasma.

  12. Parallel-aware, dedicated job co-scheduling within/across symmetric multiprocessing nodes

    DOEpatents

    Jones, Terry R.; Watson, Pythagoras C.; Tuel, William; Brenner, Larry; ,Caffrey, Patrick; Fier, Jeffrey

    2010-10-05

    In a parallel computing environment comprising a network of SMP nodes each having at least one processor, a parallel-aware co-scheduling method and system for improving the performance and scalability of a dedicated parallel job having synchronizing collective operations. The method and system uses a global co-scheduler and an operating system kernel dispatcher adapted to coordinate interfering system and daemon activities on a node and across nodes to promote intra-node and inter-node overlap of said interfering system and daemon activities as well as intra-node and inter-node overlap of said synchronizing collective operations. In this manner, the impact of random short-lived interruptions, such as timer-decrement processing and periodic daemon activity, on synchronizing collective operations is minimized on large processor-count SPMD bulk-synchronous programming styles.

  13. TIMEDELN: A programme for the detection and parametrization of overlapping resonances using the time-delay method

    NASA Astrophysics Data System (ADS)

    Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.

    2017-06-01

    TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.

  14. Mineral lineation produced by 3-D rotation of rigid inclusions in confined viscous simple shear

    NASA Astrophysics Data System (ADS)

    Marques, Fernando O.

    2016-08-01

    The solid-state flow of rocks commonly produces a parallel arrangement of elongate minerals with their longest axes coincident with the direction of flow-a mineral lineation. However, this does not conform to Jeffery's theory of the rotation of rigid ellipsoidal inclusions (REIs) in viscous simple shear, because rigid inclusions rotate continuously with applied shear. In 2-dimensional (2-D) flow, the REI's greatest axis (e1) is already in the shear direction; therefore, the problem is to find mechanisms that can prevent the rotation of the REI about one axis, the vorticity axis. In 3-D flow, the problem is to find a mechanism that can make e1 rotate towards the shear direction, and so generate a mineral lineation by rigid rotation about two axes. 3-D analogue and numerical modelling was used to test the effects of confinement on REI rotation and, for narrow channels (shear zone thickness over inclusion's least axis, Wr < 2), the results show that: (1) the rotational behaviour deviates greatly from Jeffery's model; (2) inclusions with aspect ratio Ar (greatest over least principle axis, e1/e3) > 1 can rotate backwards from an initial orientation w e1 parallel to the shear plane, in great contrast to Jeffery's model; (3) back rotation is limited because inclusions reach a stable equilibrium orientation; (4) most importantly and, in contrast to Jeffery's model and to the 2-D simulations, in 3-D, the confined REI gradually rotated about an axis orthogonal to the shear plane towards an orientation with e1 parallel to the shear direction, thus producing a lineation parallel to the shear direction. The modelling results lead to the conclusion that confined simple shear can be responsible for the mineral alignment (lineation) observed in ductile shear zones.

  15. Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

    PubMed Central

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative rotational digital subtraction angiography. PMID:25803318

  16. Improved visualization of intracranial vessels with intraoperative coregistration of rotational digital subtraction angiography and intraoperative 3D ultrasound.

    PubMed

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative rotational digital subtraction angiography.

  17. Anisotropic field-of-view shapes for improved PROPELLER imaging☆

    PubMed Central

    Larson, Peder E.Z.; Lustig, Michael S.; Nishimura, Dwight G.

    2010-01-01

    The Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) method for magnetic resonance imaging data acquisition and reconstruction has the highly desirable property of being able to correct for motion during the scan, making it especially useful for imaging pediatric or uncooperative patients and diffusion imaging. This method nominally supports a circular field of view (FOV), but tailoring the FOV for noncircular shapes results in more efficient, shorter scans. This article presents new algorithms for tailoring PROPELLER acquisitions to the desired FOV shape and size that are flexible and precise. The FOV design also allows for rotational motion which provides better motion correction and reduced aliasing artifacts. Some possible FOV shapes demonstrated are ellipses, ovals and rectangles, and any convex, pi-symmetric shape can be designed. Standard PROPELLER reconstruction is used with minor modifications, and results with simulated motion presented confirm the effectiveness of the motion correction with these modified FOV shapes. These new acquisition design algorithms are simple and fast enough to be computed for each individual scan. Also presented are algorithms for further scan time reductions in PROPELLER echo-planar imaging (EPI) acquisitions by varying the sample spacing in two directions within each blade. PMID:18818039

  18. Increasing processor utilization during parallel computation rundown

    NASA Technical Reports Server (NTRS)

    Jones, W. H.

    1986-01-01

    Some parallel processing environments provide for asynchronous execution and completion of general purpose parallel computations from a single computational phase. When all the computations from such a phase are complete, a new parallel computational phase is begun. Depending upon the granularity of the parallel computations to be performed, there may be a shortage of available work as a particular computational phase draws to a close (computational rundown). This can result in the waste of computing resources and the delay of the overall problem. In many practical instances, strict sequential ordering of phases of parallel computation is not totally required. In such cases, the beginning of one phase can be correctly computed before the end of a previous phase is completed. This allows additional work to be generated somewhat earlier to keep computing resources busy during each computational rundown. The conditions under which this can occur are identified and the frequency of occurrence of such overlapping in an actual parallel Navier-Stokes code is reported. A language construct is suggested and possible control strategies for the management of such computational phase overlapping are discussed.

  19. DVS-SOFTWARE: An Effective Tool for Applying Highly Parallelized Hardware To Computational Geophysics

    NASA Astrophysics Data System (ADS)

    Herrera, I.; Herrera, G. S.

    2015-12-01

    Most geophysical systems are macroscopic physical systems. The behavior prediction of such systems is carried out by means of computational models whose basic models are partial differential equations (PDEs) [1]. Due to the enormous size of the discretized version of such PDEs it is necessary to apply highly parallelized super-computers. For them, at present, the most efficient software is based on non-overlapping domain decomposition methods (DDM). However, a limiting feature of the present state-of-the-art techniques is due to the kind of discretizations used in them. Recently, I. Herrera and co-workers using 'non-overlapping discretizations' have produced the DVS-Software which overcomes this limitation [2]. The DVS-software can be applied to a great variety of geophysical problems and achieves very high parallel efficiencies (90%, or so [3]). It is therefore very suitable for effectively applying the most advanced parallel supercomputers available at present. In a parallel talk, in this AGU Fall Meeting, Graciela Herrera Z. will present how this software is being applied to advance MOD-FLOW. Key Words: Parallel Software for Geophysics, High Performance Computing, HPC, Parallel Computing, Domain Decomposition Methods (DDM)REFERENCES [1]. Herrera Ismael and George F. Pinder, Mathematical Modelling in Science and Engineering: An axiomatic approach", John Wiley, 243p., 2012. [2]. Herrera, I., de la Cruz L.M. and Rosas-Medina A. "Non Overlapping Discretization Methods for Partial, Differential Equations". NUMER METH PART D E, 30: 1427-1454, 2014, DOI 10.1002/num 21852. (Open source) [3]. Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  20. Developmental time windows for axon growth influence neuronal network topology.

    PubMed

    Lim, Sol; Kaiser, Marcus

    2015-04-01

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.

  1. Lumbar lordosis angle and trunk and lower-limb electromyographic activity comparison in hip neutral position and external rotation during back squats.

    PubMed

    Oshikawa, Tomoki; Morimoto, Yasuhiro; Kaneoka, Koji

    2018-03-01

    [Purpose] To compare the lumbar lordosis angle and electromyographic activities of the trunk and lower-limb muscles in the hip neutral position and external rotation during back squats. [Subjects and Methods] Ten healthy males without severe low back pain or lower-limb injury participated in this study. The lumbar lordosis angle and electromyographic activities were measured using three-dimensional motion-capture systems and surface electrodes during four back squats: parallel back squats in the hip neutral position and external rotation and full back squats in the hip neutral position and external rotation. A paired t-test was used to compare parallel and full back squats measurements in the hip neutral position and external rotation, respectively. [Results] During parallel back squats, the average lumbar lordosis angle was significantly larger in hip external rotation than in the hip neutral position. During full back squats, lumbar erector spinae and multifidus activities were significantly lower in hip external rotation than in the hip neutral position, whereas gluteus maximus activity was significantly higher in hip external rotation than in the hip neutral position. [Conclusion] The back squat in hip external rotation induced improvement of lumbar kyphosis, an increasing of the gluteus maximus activity and a decrease of both lumbar erector spinae and multifidus activities.

  2. Multishot PROPELLER for high-field preclinical MRI.

    PubMed

    Pandit, Prachi; Qi, Yi; Story, Jennifer; King, Kevin F; Johnson, G Allan

    2010-07-01

    With the development of numerous mouse models of cancer, there is a tremendous need for an appropriate imaging technique to study the disease evolution. High-field T(2)-weighted imaging using PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI meets this need. The two-shot PROPELLER technique presented here provides (a) high spatial resolution, (b) high contrast resolution, and (c) rapid and noninvasive imaging, which enables high-throughput, longitudinal studies in free-breathing mice. Unique data collection and reconstruction makes this method robust against motion artifacts. The two-shot modification introduced here retains more high-frequency information and provides higher signal-to-noise ratio than conventional single-shot PROPELLER, making this sequence feasible at high fields, where signal loss is rapid. Results are shown in a liver metastases model to demonstrate the utility of this technique in one of the more challenging regions of the mouse, which is the abdomen. (c) 2010 Wiley-Liss, Inc.

  3. Inertial energy storage device

    DOEpatents

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  4. Son of IXION: A Steady State Centrifugally Confined Plasma for Fusion*

    NASA Astrophysics Data System (ADS)

    Hassam, Adil

    1996-11-01

    A magnetic confinement scheme in which the inertial, u.grad(u), forces effect parallel confinement is proposed. The basic geometry is mirror-like as far as the poloidal field goes or, more simply, multipole (FM-1) type. The rotation is toroidal in this geometry. A supersonic rotation can effect complete parallel confinement, with the usual magnetic mirror force rendered irrelevant. The rotation shear, in addition, aids in the suppression of the flute mode. This suppression is not complete which indicates the addition of a toroidal field, at maximum of the order of the poloidal field. We show that at rotation in excess of Mach 3, the parallel particle and heat losses can be minimized to below the Lawson breakeven point. The crossfield transport can be expected to be better than tokamaks on account of the large velocity shear. Other advantages of the scheme are that it is steady state and disruption free. An exploratory experiment that tests equilibrium, parallel detachment, and MHD stability is proposed. The concept resembles earlier (Geneva, 1958) experiments on "homopolar generators" and a mirror configuration called IXION. Ixion, Greek mythological king, was forever strapped to a rotating, flaming wheel. *Work supported by DOE

  5. Present-day kinematics of the Danakil block (southern Red Sea-Afar) constrained by GPS

    NASA Astrophysics Data System (ADS)

    Ladron de Guevara, R.; Jonsson, S.; Ruch, J.; Doubre, C.; Reilinger, R. E.; Ogubazghi, G.; Floyd, M.; Vasyura-Bathke, H.

    2017-12-01

    The rifting of the Arabian plate from the Nubian and Somalian plates is primarily accommodated by seismic and magmatic activity along two rift arms of the Afar triple junction (the Red Sea and Gulf of Aden rifts). The spatial distribution of active deformation in the Afar region have been constrained with geodetic observations. However, the plate boundary configuration in which this deformation occurs is still not fully understood. South of 17°N, the Red Sea rift is composed of two parallel and overlapping rift branches separated by the Danakil block. The distribution of the extension across these two overlapping rifts, their potential connection through a transform fault zone and the counterclockwise rotation of the Danakil block have not yet been fully resolved. Here we analyze new GPS observations from the Danakil block, the Gulf of Zula area (Eritrea) and Afar (Ethiopia) together with previous geodetic survey data to better constrain the plate kinematics and active deformation of the region. The new data has been collected in 2016 and add up to 5 years to the existing geodetic observations (going back to 2000). Our improved GPS velocity field shows differences with previously modeled GPS velocities, suggesting that the rate and rotation of the Danakil block need to be updated. The new velocity field also shows that the plate-boundary strain is accommodated by broad deformation zones rather than across sharp boundaries between tectonic blocks. To better determine the spatial distribution of the strain, we first implement a rigid block model to constrain the overall regional plate kinematics and to isolate the plate-boundary deformation at the western boundary of the Danakil block. We then study whether the recent southern Red Sea rifting events have caused detectable changes in observed GPS velocities and if the observations can be used to constrain the scale of this offshore rift activity. Finally, we investigate different geometries of transform faults that might connect the two overlapping branches of the southern Red Sea rift in the Gulf of Zula region.

  6. On the utility of threads for data parallel programming

    NASA Technical Reports Server (NTRS)

    Fahringer, Thomas; Haines, Matthew; Mehrotra, Piyush

    1995-01-01

    Threads provide a useful programming model for asynchronous behavior because of their ability to encapsulate units of work that can then be scheduled for execution at runtime, based on the dynamic state of a system. Recently, the threaded model has been applied to the domain of data parallel scientific codes, and initial reports indicate that the threaded model can produce performance gains over non-threaded approaches, primarily through the use of overlapping useful computation with communication latency. However, overlapping computation with communication is possible without the benefit of threads if the communication system supports asynchronous primitives, and this comparison has not been made in previous papers. This paper provides a critical look at the utility of lightweight threads as applied to data parallel scientific programming.

  7. Effects of Crossed Brassiere Straps on Pain, Range of Motion, and Electromyographic Activity of Scapular Upward Rotators in Women With Scapular Downward Rotation Syndrome.

    PubMed

    Kang, Min-Hyeok; Choi, Ji-Young; Oh, Jae-seop

    2015-12-01

    Scapular downward rotation syndrome manifests as an abnormally downward-rotated scapula at rest or with arm motion and typically results in neck and shoulder pain. The brassiere strap has been suggested as a possible contributing factor to scapula downward rotation and pain in the upper trapezius because of increased downward rotational force on the lateral aspect of the scapula. No study, however, has examined the influences of a modified brassiere strap on pain in and the function of the scapular muscles. To examine the effects of crossed brassiere straps on the pressure pain threshold (PPT) of the upper trapezius, neck rotation range of motion (ROM), and electromyographic activity of the scapular upward rotators in females with scapular downward rotation syndrome. Cross-over design. Laboratory. In total, 15 female subjects with scapular downward rotation syndrome were recruited at hospitals and a local university. All participants performed neck rotation and humeral elevation under 2 different conditions: parallel and crossed brassiere straps. The PPT of the upper trapezius was measured using an analog algometer, whereas neck rotation ROM was quantified with a 3-dimensional ultrasonic motion analysis system. The electromyographic activities of the upper trapezius, serratus anterior, and lower trapezius during humeral elevation were assessed with a surface electromyography system. Outcome measures were assessed under parallel and crossed brassiere strap conditions, and differences in outcomes between the conditions were analyzed using a paired t-test. The PPT and neck rotation ROM were increased when the subject was wearing the brassiere with crossed versus parallel straps (P < .001). Greater electromyographic activities of the serratus anterior, lower trapezius, and lesser upper trapezius muscles during humeral elevation were found under the crossed strap condition than the parallel strap condition (P < .05). These findings provide useful information for clinicians when designing management programs to decrease pain and improve biomechanical function for females with scapular downward rotation syndrome. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Concurrent Software Engineering Project

    ERIC Educational Resources Information Center

    Stankovic, Nenad; Tillo, Tammam

    2009-01-01

    Concurrent engineering or overlapping activities is a business strategy for schedule compression on large development projects. Design parameters and tasks from every aspect of a product's development process and their interdependencies are overlapped and worked on in parallel. Concurrent engineering suffers from negative effects such as excessive…

  9. Convergence issues in domain decomposition parallel computation of hovering rotor

    NASA Astrophysics Data System (ADS)

    Xiao, Zhongyun; Liu, Gang; Mou, Bin; Jiang, Xiong

    2018-05-01

    Implicit LU-SGS time integration algorithm has been widely used in parallel computation in spite of its lack of information from adjacent domains. When applied to parallel computation of hovering rotor flows in a rotating frame, it brings about convergence issues. To remedy the problem, three LU factorization-based implicit schemes (consisting of LU-SGS, DP-LUR and HLU-SGS) are investigated comparatively. A test case of pure grid rotation is designed to verify these algorithms, which show that LU-SGS algorithm introduces errors on boundary cells. When partition boundaries are circumferential, errors arise in proportion to grid speed, accumulating along with the rotation, and leading to computational failure in the end. Meanwhile, DP-LUR and HLU-SGS methods show good convergence owing to boundary treatment which are desirable in domain decomposition parallel computations.

  10. Rhomboid prism pair for rotating the plane of parallel light beams

    NASA Technical Reports Server (NTRS)

    Orloff, K. L. (Inventor); Yanagita, H.

    1982-01-01

    An optical system is described for rotating the plane defined by a pair of parallel light beams. In one embodiment a single pair of rhomboid prisms have their respective input faces disposed to receive the respective input beams. Each prism is rotated about an axis of revolution coaxial with each of the respective input beams by means of a suitable motor and gear arrangement to cause the plane of the parallel output beams to be rotated relative to the plane of the input beams. In a second embodiment, two pairs of rhomboid prisms are provided. In a first angular orientation of the output beams, the prisms merely decrease the lateral displacement of the output beams in order to keep in the same plane as the input beams. In a second angular orientation of the prisms, the input faces of the second pair of prisms are brought into coincidence with the input beams for rotating the plane of the output beams by a substantial angle such as 90 deg.

  11. Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lu, WANG; Shuitao, PENG; P, H. DIAMOND

    2018-07-01

    Understanding the generation of intrinsic rotation in tokamak plasmas is crucial for future fusion reactors such as ITER. We proposed a new mechanism named turbulent acceleration for the origin of the intrinsic parallel rotation based on gyrokinetic theory. The turbulent acceleration acts as a local source or sink of parallel rotation, i.e., volume force, which is different from the divergence of residual stress, i.e., surface force. However, the order of magnitude of turbulent acceleration can be comparable to that of the divergence of residual stress for electrostatic ion temperature gradient (ITG) turbulence. A possible theoretical explanation for the experimental observation of electron cyclotron heating induced decrease of co-current rotation was also proposed via comparison between the turbulent acceleration driven by ITG turbulence and that driven by collisionless trapped electron mode turbulence. We also extended this theory to electromagnetic ITG turbulence and investigated the electromagnetic effects on intrinsic parallel rotation drive. Finally, we demonstrated that the presence of turbulent acceleration does not conflict with momentum conservation.

  12. Recovering Wood and McCarthy's ERP-prototypes by means of ERP-specific procrustes-rotation.

    PubMed

    Beauducel, André

    2018-02-01

    The misallocation of treatment-variance on the wrong component has been discussed in the context of temporal principal component analysis of event-related potentials. There is, until now, no rotation-method that can perfectly recover Wood and McCarthy's prototypes without making use of additional information on treatment-effects. In order to close this gap, two new methods: for component rotation were proposed. After Varimax-prerotation, the first method identifies very small slopes of successive loadings. The corresponding loadings are set to zero in a target-matrix for event-related orthogonal partial Procrustes- (EPP-) rotation. The second method generates Gaussian normal distributions around the peaks of the Varimax-loadings and performs orthogonal Procrustes-rotation towards these Gaussian distributions. Oblique versions of this Gaussian event-related Procrustes- (GEP) rotation and of EPP-rotation are based on Promax-rotation. A simulation study revealed that the new orthogonal rotations recover Wood and McCarthy's prototypes and eliminate misallocation of treatment-variance. In an additional simulation study with a more pronounced overlap of the prototypes GEP Promax-rotation reduced the variance misallocation slightly more than EPP Promax-rotation. Comparison with Existing Method(s): Varimax- and conventional Promax-rotations resulted in substantial misallocations of variance in simulation studies when components had temporal overlap. A substantially reduced misallocation of variance occurred with the EPP-, EPP Promax-, GEP-, and GEP Promax-rotations. Misallocation of variance can be minimized by means of the new rotation methods: Making use of information on the temporal order of the loadings may allow for improvements of the rotation of temporal PCA components. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao

    2015-07-01

    Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.

  14. Lumbar lordosis angle and trunk and lower-limb electromyographic activity comparison in hip neutral position and external rotation during back squats

    PubMed Central

    Oshikawa, Tomoki; Morimoto, Yasuhiro; Kaneoka, Koji

    2018-01-01

    [Purpose] To compare the lumbar lordosis angle and electromyographic activities of the trunk and lower-limb muscles in the hip neutral position and external rotation during back squats. [Subjects and Methods] Ten healthy males without severe low back pain or lower-limb injury participated in this study. The lumbar lordosis angle and electromyographic activities were measured using three-dimensional motion-capture systems and surface electrodes during four back squats: parallel back squats in the hip neutral position and external rotation and full back squats in the hip neutral position and external rotation. A paired t-test was used to compare parallel and full back squats measurements in the hip neutral position and external rotation, respectively. [Results] During parallel back squats, the average lumbar lordosis angle was significantly larger in hip external rotation than in the hip neutral position. During full back squats, lumbar erector spinae and multifidus activities were significantly lower in hip external rotation than in the hip neutral position, whereas gluteus maximus activity was significantly higher in hip external rotation than in the hip neutral position. [Conclusion] The back squat in hip external rotation induced improvement of lumbar kyphosis, an increasing of the gluteus maximus activity and a decrease of both lumbar erector spinae and multifidus activities. PMID:29581666

  15. The effects of SENSE on PROPELLER imaging.

    PubMed

    Chang, Yuchou; Pipe, James G; Karis, John P; Gibbs, Wende N; Zwart, Nicholas R; Schär, Michael

    2015-12-01

    To study how sensitivity encoding (SENSE) impacts periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) image quality, including signal-to-noise ratio (SNR), robustness to motion, precision of motion estimation, and image quality. Five volunteers were imaged by three sets of scans. A rapid method for generating the g-factor map was proposed and validated via Monte Carlo simulations. Sensitivity maps were extrapolated to increase the area over which SENSE can be performed and therefore enhance the robustness to head motion. The precision of motion estimation of PROPELLER blades that are unfolded with these sensitivity maps was investigated. An interleaved R-factor PROPELLER sequence was used to acquire data with similar amounts of motion with and without SENSE acceleration. Two neuroradiologists independently and blindly compared 214 image pairs. The proposed method of g-factor calculation was similar to that provided by the Monte Carlo methods. Extrapolation and rotation of the sensitivity maps allowed for continued robustness of SENSE unfolding in the presence of motion. SENSE-widened blades improved the precision of rotation and translation estimation. PROPELLER images with a SENSE factor of 3 outperformed the traditional PROPELLER images when reconstructing the same number of blades. SENSE not only accelerates PROPELLER but can also improve robustness and precision of head motion correction, which improves overall image quality even when SNR is lost due to acceleration. The reduction of SNR, as a penalty of acceleration, is characterized by the proposed g-factor method. © 2014 Wiley Periodicals, Inc.

  16. Dump assembly

    DOEpatents

    Goldmann, Louis H.

    1986-01-01

    A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.

  17. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William

    A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less

  18. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  19. Anatomical landmarks of the distal femoral condyles are not always parallel to the tibial bone cut surface in flexion during total knee arthroplasty.

    PubMed

    Itokazu, Maki; Minoda, Yukihide; Ikebuchi, Mitsuhiko; Mizokawa, Shigekazu; Ohta, Yoichi; Nakamura, Hiroaki

    2016-08-01

    Soft tissue balancing is crucial to the success of total knee arthroplasty (TKA). To create a rectangular flexion joint gap, the rotation of the femoral component is important. The purpose of this study is to determine whether or not anatomical landmarks of the distal femoral condyles are parallel to the tibial bone cut surface in flexion. Forty-eight patients (three male and 45 female) with a mean age of 74years were examined. During the operation, we estimated the flexion joint gap with the following three techniques. 1) a three degree external cut to the posterior condylar line (MR1), 2) a parallel cut to the surgical transepicondylar axis (MR2), and 3) a parallel cut to the anatomical transepicondylar axis (MR3). The flexion joint gap was 1.1±3.0° (mean±standard deviation (SD)) in internal rotation in the case of MR1, 0.9±3.4° in internal rotation in the case of MR2, and 2.1±3.4° in external rotation in the case of MR3. An outlier (flexion joint gap >3.0°) was observed in 12 cases (25%) in MR1, 13 cases (27%) in MR2, and 15 cases (31%) in MR3. The anatomical landmarks of the distal femoral condyles are not always parallel to the tibial bone cut surface in flexion. To create a rectangular flexion joint gap, the rotation of the femoral component rotation is based not only on the anatomical landmarks but also on the ligament balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Algorithms and programming tools for image processing on the MPP

    NASA Technical Reports Server (NTRS)

    Reeves, A. P.

    1985-01-01

    Topics addressed include: data mapping and rotational algorithms for the Massively Parallel Processor (MPP); Parallel Pascal language; documentation for the Parallel Pascal Development system; and a description of the Parallel Pascal language used on the MPP.

  1. Dump assembly

    DOEpatents

    Goldmann, L.H.

    1984-12-06

    This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.

  2. Differential Rotation via Tracking of Coronal Bright Points.

    NASA Astrophysics Data System (ADS)

    McAteer, James; Boucheron, Laura E.; Osorno, Marcy

    2016-05-01

    The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.

  3. Spin-stabilized magnetic levitation without vertical axis of rotation

    DOEpatents

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  4. The effect of the inductive electric field on ion poloidal rotation in all collisionality regimes for the primary ions in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Chengkang; Wang Shaojie; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031

    2007-11-15

    The expression for the poloidal rotation velocity of the primary ions that is caused by the parallel inductive electric field in tokamaks and valid in all collisionality regimes is derived via the Hirshman-Sigmar moment approach. Also the expression of the collisional impurity ions poloidal rotation velocity that is caused by the parallel inductive electric field in tokamaks is derived. The poloidal rotation velocities of the primary ions and the impurity ions are sensitive to the primary ion collisionality parameter and the impurity strength parameter. The poloidal rotation velocities of the primary ions and the impurity ions decrease with the primarymore » ion collisionality parameter and decrease with the impurity strength parameter.« less

  5. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  6. Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

    PubMed Central

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158

  7. Study on Parallel 2-DOF Rotation Machanism in Radar

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Hu, Xuelong; Liu, Lei; Yu, Yunfei

    The spherical parallel machine has become the world's academic and industrial focus of the field in recent years due to its simple and economical manufacture as well as its structural compactness especially suitable for areas where space gesture changes. This paper dwells upon its present research and development home and abroad. The newer machine (RGRR-II) can rotate around the axis z within 360° and the axis y1 from -90° to +90°. It has the advantages such as less moving parts (only 3 parts), larger ratio of work space to machine size, zero mechanic coupling, no singularity. Constructing rotation machine with spherical parallel 2-DOF rotation join (RGRR-II) may realize semispherical movement with zero dead point and extent the range. Control card (PA8000NT Series CNC) is installed in the computer. The card can run the corresponding software which realizes radar movement control. The machine meets the need of radars in plane and satellite which require larger detection range, lighter weight and compacter structure.

  8. Molecular crowding at microtubule plus-ends acts as a physical barrier to microtubule sliding for the organization of stable anti-parallel overlaps by PRC1 and Kif4A

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sitara; Subramanian, Radhika

    The relative sliding of microtubules by motor proteins is important for the organization of specialized cellular microtubule networks. In cells, sliding filaments are likely to encounter crowded regions of microtubules, such as the plus-ends, which are densely occupied by motor and non-motor proteins. How molecular crowding impacts microtubule sliding is not well understood. Here, we reconstitute the collective activities of the non-motor protein PRC1 and the motor protein Kif4A on anti-parallel microtubules to address this question. We find that the accumulation of PRC1 and Kif4A at microtubule-plus ends (`end-tags') can act as a physical barrier to Kif4A-mediated microtubule sliding. This enables the formation of stable microtubule overlaps that persist even after the deactivation of the motor protein. Our data suggest that while end-tags stabilize anti-parallel overlaps by inhibiting relative sliding, they permit the remodeling of the microtubule bundles by external forces, as may be required for the reorganization of microtubule networks during dynamic cellular processes.

  9. The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix.

    PubMed Central

    Olson, W K

    1975-01-01

    Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed. PMID:1052529

  10. Myopic keratomileusis by excimer laser on a lathe.

    PubMed

    Ganem, S; Aron-Rosa, D; Gross, M; Rosolen, S

    1994-01-01

    We designed an excimer laser keratomileusis delivery system to increase the regularity of the refractive cut surface and allow greater precision in the level and shape of the ablated zone. A parallel faced corneal disc was produced by microkeratectomy from six human eyes and surgical keratectomy in 12 beagle corneas. A 193-nanometer excimer laser that was used to project an oval beam onto the corneal disc was rotated on a flat surface to ensure overlapping of the ovally ablated areas between pulses. Electron microscopy of eye bank lenticules demonstrated a circular smooth regularly concave ablation zone. Histological examination of nine clear corneas confirmed thinning of the stroma without fibroblastic reaction and no epithelial hypertrophy. Mean preoperative corneal power of 43.15 +/- 2.18 decreased postoperatively to 33.61 +/- 2.34. The new technique of excimer laser keratomileusis has the advantage of a cut surface smoother and the clear zone is devoid of the stepwise concavity and irregularity seen in diaphragm based photoablation delivery systems.

  11. Self-sustained flow oscillations and heat transfer in radial flow through co-rotating parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Inoue, T.

    1990-03-01

    An experimental study was conducted to determine the fluid flow and heat transfer characteristics in a passage formed by two parallel rotating disks. The local heat transfer coefficients along the disk radius were measured in detail and the flow patterns between the two rotating disks were visualized by using paraffin mist and a laser-light sheet. It was disclosed that: (1) the self-sustained laminar flow separation which is characteristic of the stationary disks still exists even when the disks are set in motion, giving significant influence to the heat transfer; (2) for small source flow Reynolds number, Re, and large rotational Reynolds number, Re(omega), rotating stall dominates the heat transfer; and (3) heat transfer for steady laminar flow occurs only when Re is less than 1200 and Re(omega) is less than 20.

  12. Analogies between oscillation and rotation of bodies induced or influenced by vortex shedding

    NASA Astrophysics Data System (ADS)

    Lugt, H. J.

    Vortex-induced or vortex-influenced rotation and oscillation of bodies in a parallel flow are discussed. A steady flow occurs if the body axis is parallel to the flow or if the axis of rotation is perpendicular to the flow. Flows around an oscillating body are quasi-steady only if the Strougal number is much smaller than unity. The connection between rotation and oscillation is demonstrated in terms of the autorotation of a Lanchester propeller, and conditions for stable autorotation are defined. The Riabouchinsky curve is shown to be typical of forces and torques on bodies with vortical wakes, including situations with fixed body axes perpendicular to the flow. A differential equation is formulated for rotational and oscillating bodies that shed vortices by extending the pendulum equation to include vortical effects expressed as a fifth-order polynomial.

  13. Remapping HELENA to incompressible plasma rotation parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Poulipoulis, G.; Throumoulopoulos, G. N.; Konz, C.

    2016-07-01

    Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.

  14. Some Properties and Uses of Torsional Overlap Integrals

    NASA Astrophysics Data System (ADS)

    Mekhtiev, Mirza A.; Hougen, Jon T.

    1998-01-01

    The first diagonalization step in a rho-axis-method treatment of methyl-top internal rotation problems involves finding eigenvalues and eigenvectors of a torsional Hamiltonian, which depends on the rotational projection quantum numberKas a parameter. Traditionally the torsional quantum numbervt= 0, 1, 2···is assigned to eigenfunctions of givenKin order of increasing energy. In this paper we propose an alternative labeling scheme, using the torsional quantum numbervT, which is based on properties of theK-dependent torsional overlap integrals . In particular, the quantum numbervTis assigned in such a way that torsional wavefunctions |vT,K> vary as slowly as possible whenKchanges by unity. Roughly speaking,vT=vtfor torsional levels below the barrier, whereasvTis more closely related to the free-rotor quantum number for levels above the barrier. Because of the latter fact, we believevTwill in general be a physically more meaningful torsional quantum number for levels above the barrier. The usefulness of overlap integrals for qualitative prediction of torsion-rotation band intensities and for rationalizing the magnitudes of perturbations involving some excitation of the small-amplitude vibrations in an internal rotor problem is also discussed.

  15. Bimodal Bilinguals Co-Activate Both Languages during Spoken Comprehension

    ERIC Educational Resources Information Center

    Shook, Anthony; Marian, Viorica

    2012-01-01

    Bilinguals have been shown to activate their two languages in parallel, and this process can often be attributed to overlap in input between the two languages. The present study examines whether two languages that do not overlap in input structure, and that have distinct phonological systems, such as American Sign Language (ASL) and English, are…

  16. Symmetry Breaking by Parallel Flow Shear

    NASA Astrophysics Data System (ADS)

    Li, Jiacong; Diamond, Patrick

    2015-11-01

    Plasma rotation is important in reducing turbulent transport, suppressing MHD instabilities, and is beneficial to confinement. Intrinsic rotation without an external momentum input is of interest for its plausible application on ITER. k∥ spectrum asymmetry is required for residual Reynolds stress that drives the intrinsic rotation. Parallel flows are reported in linear devices without magnetic shear. In CSDX, parallel flows are mostly peaked in the core [Thakur et al., 2014]; more robust flows and reversed profiles are seen in PANTA [Oldenburger, et al. 2012]. A novel mechanism for symmetry breaking in momentum transport is proposed. Magnetic shear or mean flow profile are not required. A seed parallel flow shear (PFS) sets the sign of residual stress by selecting certain modes to grow faster. The resulted spectrum imbalance leads to a nonzero residual stress, which further drives a parallel flow with ∇n as the free energy source, adding to the shear until saturated by diffusion. Balanced flow gradient is set by Π∥Res /χϕ . Residual stress is calculated for ITG turbulence and collisional drift wave turbulence where electron-ion and electron-neutral collisions are discussed and compared. Numerical simulation is proposed for testing the effect of PFS.

  17. A Fast, Automatic Segmentation Algorithm for Locating and Delineating Touching Cell Boundaries in Imaged Histopathology

    PubMed Central

    Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin

    2013-01-01

    Summary Background Automated analysis of imaged histopathology specimens could potentially provide support for improved reliability in detection and classification in a range of investigative and clinical cancer applications. Automated segmentation of cells in the digitized tissue microarray (TMA) is often the prerequisite for quantitative analysis. However overlapping cells usually bring significant challenges for traditional segmentation algorithms. Objectives In this paper, we propose a novel, automatic algorithm to separate overlapping cells in stained histology specimens acquired using bright-field RGB imaging. Methods It starts by systematically identifying salient regions of interest throughout the image based upon their underlying visual content. The segmentation algorithm subsequently performs a quick, voting based seed detection. Finally, the contour of each cell is obtained using a repulsive level set deformable model using the seeds generated in the previous step. We compared the experimental results with the most current literature, and the pixel wise accuracy between human experts' annotation and those generated using the automatic segmentation algorithm. Results The method is tested with 100 image patches which contain more than 1000 overlapping cells. The overall precision and recall of the developed algorithm is 90% and 78%, respectively. We also implement the algorithm on GPU. The parallel implementation is 22 times faster than its C/C++ sequential implementation. Conclusion The proposed overlapping cell segmentation algorithm can accurately detect the center of each overlapping cell and effectively separate each of the overlapping cells. GPU is proven to be an efficient parallel platform for overlapping cell segmentation. PMID:22526139

  18. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    PubMed Central

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  19. Deep crustal deformation by sheath folding in the Adirondack Mountains, USA

    NASA Technical Reports Server (NTRS)

    Mclelland, J. M.

    1988-01-01

    As described by McLelland and Isachsen, the southern half of the Adirondacks are underlain by major isoclinal (F sub 1) and open-upright (F sub 2) folds whose axes are parallel, trend approximately E-W, and plunge gently about the horizontal. These large structures are themselves folded by open upright folds trending NNE (F sub 3). It is pointed out that elongation lineations in these rocks are parallel to X of the finite strain ellipsoid developed during progressive rotational strain. The parallelism between F sub 1 and F sub 2 fold axes and elongation lineations led to the hypothesis that progressive rotational strain, with a west-directed tectonic transport, rotated earlier F sub 1-folds into parallelism with the evolving elongation lineation. Rotation is accomplished by ductile, passive flow of F sub 1-axes into extremely arcuate, E-W hinges. In order to test these hypotheses a number of large folds were mapped in the eastern Adirondacks. Other evidence supporting the existence of sheath folds in the Adirondacks is the presence, on a map scale, of synforms whose limbs pass through the vertical and into antiforms. This type of outcrop pattern is best explained by intersecting a horizontal plane with the double curvature of sheath folds. It is proposed that sheath folding is a common response of hot, ductile rocks to rotational strain at deep crustal levels. The recognition of sheath folds in the Adirondacks reconciles the E-W orientation of fold axes with an E-W elongation lineation.

  20. Structured Overlapping Grid Simulations of Contra-rotating Open Rotor Noise

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Kiris, Cetin C.

    2015-01-01

    Computational simulations using structured overlapping grids with the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for predicting tonal noise generated by a contra-rotating open rotor (CROR) propulsion system. A coupled Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) numerical approach is applied. Three-dimensional time-accurate hybrid Reynolds Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) CFD simulations are performed in the inertial frame, including dynamic moving grids, using a higher-order accurate finite difference discretization on structured overlapping grids. A higher-order accurate free-stream preserving metric discretization with discrete enforcement of the Geometric Conservation Law (GCL) on moving curvilinear grids is used to create an accurate, efficient, and stable numerical scheme. The aeroacoustic analysis is based on a permeable surface Ffowcs Williams-Hawkings (FW-H) approach, evaluated in the frequency domain. A time-step sensitivity study was performed using only the forward row of blades to determine an adequate time-step. The numerical approach is validated against existing wind tunnel measurements.

  1. PUP: An Architecture to Exploit Parallel Unification in Prolog

    DTIC Science & Technology

    1988-03-01

    environment stacking mo del similar to the Warren Abstract Machine [23] since it has been shown to be super ior to other known models (see [21]). The storage...execute in groups of independent operations. Unifications belonging to different group s may not overlap. Also unification operations belonging to the...since all parallel operations on the unification units must complete before any of the units can star t executing the next group of parallel

  2. Rotatable prism for pan and tilt

    NASA Technical Reports Server (NTRS)

    Ball, W. B.

    1980-01-01

    Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

  3. Dixon water-fat separation in PROPELLER MRI acquired with two interleaved echoes.

    PubMed

    Schär, Michael; Eggers, Holger; Zwart, Nicholas R; Chang, Yuchou; Bakhru, Akshay; Pipe, James G

    2016-02-01

    To propose a novel combination of robust Dixon fat suppression and motion insensitive PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) MRI. Two different echoes were acquired interleaved in each shot enabling water-fat separation on individual blades. Fat, which was blurred in standard PROPELLER because the water-fat shift (WFS) rotated with the blades, was shifted back in each blade. Additionally, field maps obtained from the water-fat separation were used to unwarp off-resonance-induced shifts in each blade. PROPELLER was then applied to the water, corrected fat, or recombined water-fat blades. This approach was compared quantitatively in volunteers with regard to motion estimation and signal-to-noise ratio (SNR) to a standard PROPELLER acquisition with minimal WFS and fat suppression. Shifting the fat back in each blade reduced errors in the translation correction. SNR in the proposed Dixon PROPELLER was 21% higher compared with standard PROPELLER with identical scan time. High image quality was achieved even when the volunteers were moving during data acquisition. Furthermore, sharp water-fat borders and image details were seen in areas where standard PROPELLER suffered from blurring when acquired with a low readout bandwidth. The proposed method enables motion-insensitive PROPELLER MRI with robust fat suppression and reduced blurring. Additionally, fat images are available if desired. © 2015 Wiley Periodicals, Inc.

  4. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach.

    PubMed

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Lin, Yi-Ru; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-04-01

    This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts.

  5. Separating stages of arithmetic verification: An ERP study with a novel paradigm.

    PubMed

    Avancini, Chiara; Soltész, Fruzsina; Szűcs, Dénes

    2015-08-01

    In studies of arithmetic verification, participants typically encounter two operands and they carry out an operation on these (e.g. adding them). Operands are followed by a proposed answer and participants decide whether this answer is correct or incorrect. However, interpretation of results is difficult because multiple parallel, temporally overlapping numerical and non-numerical processes of the human brain may contribute to task execution. In order to overcome this problem here we used a novel paradigm specifically designed to tease apart the overlapping cognitive processes active during arithmetic verification. Specifically, we aimed to separate effects related to detection of arithmetic correctness, detection of the violation of strategic expectations, detection of physical stimulus properties mismatch and numerical magnitude comparison (numerical distance effects). Arithmetic correctness, physical stimulus properties and magnitude information were not task-relevant properties of the stimuli. We distinguished between a series of temporally highly overlapping cognitive processes which in turn elicited overlapping ERP effects with distinct scalp topographies. We suggest that arithmetic verification relies on two major temporal phases which include parallel running processes. Our paradigm offers a new method for investigating specific arithmetic verification processes in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  7. The role of bed-parallel slip in the development of complex normal fault zones

    NASA Astrophysics Data System (ADS)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  8. Lateral displacement and rotational displacement sensor

    DOEpatents

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  9. Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions

    NASA Astrophysics Data System (ADS)

    McCarthy, Morgan; Quillen, Alice

    2018-01-01

    We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.

  10. A brain phantom for motion-corrected PROPELLER showing image contrast and construction similar to those of in vivo MRI.

    PubMed

    Saotome, Kousaku; Matsushita, Akira; Matsumoto, Koji; Kato, Yoshiaki; Nakai, Kei; Murata, Koichi; Yamamoto, Tetsuya; Sankai, Yoshiyuki; Matsumura, Akira

    2017-02-01

    A fast spin-echo sequence based on the Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) technique is a magnetic resonance (MR) imaging data acquisition and reconstruction method for correcting motion during scans. Previous studies attempted to verify the in vivo capabilities of motion-corrected PROPELLER in real clinical situations. However, such experiments are limited by repeated, stray head motion by research participants during the prescribed and precise head motion protocol of a PROPELLER acquisition. Therefore, our purpose was to develop a brain phantom set for motion-corrected PROPELLER. The profile curves of the signal intensities on the in vivo T 2 -weighted image (T 2 WI) and 3-D rapid prototyping technology were used to produce the phantom. In addition, we used a homemade driver system to achieve in-plane motion at the intended timing. We calculated the Pearson's correlation coefficient (R 2 ) between the signal intensities of the in vivo T 2 WI and the phantom T 2 WI and clarified the rotation precision of the driver system. In addition, we used the phantom set to perform initial experiments to show the rotational angle and frequency dependences of PROPELLER. The in vivo and phantom T 2 WIs were visually congruent, with a significant correlation (R 2 ) of 0.955 (p<.001). The rotational precision of the driver system was within 1 degree of tolerance. The experiment on the rotational angle dependency showed image discrepancies between the rotational angles. The experiment on the rotational frequency dependency showed that the reconstructed images became increasingly blurred by the corruption of the blades as the number of motions increased. In this study, we developed a phantom that showed image contrasts and construction similar to the in vivo T 2 WI. In addition, our homemade driver system achieved precise in-plane motion at the intended timing. Our proposed phantom set could perform systematic experiments with a real clinical MR image, which to date has not been possible in in vivo studies. Further investigation should focus on the improvement of the motion-correction algorithm in PROPELLER using our phantom set for what would traditionally be considered problematic patients (children, emergency patients, elderly, those with dementia, and so on). Copyright © 2016 Elsevier Inc. All rights reserved.

  11. a Non-Overlapping Discretization Method for Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Rosas-Medina, A.; Herrera, I.

    2013-05-01

    Mathematical models of many systems of interest, including very important continuous systems of Engineering and Science, lead to a great variety of partial differential equations whose solution methods are based on the computational processing of large-scale algebraic systems. Furthermore, the incredible expansion experienced by the existing computational hardware and software has made amenable to effective treatment problems of an ever increasing diversity and complexity, posed by engineering and scientific applications. The emergence of parallel computing prompted on the part of the computational-modeling community a continued and systematic effort with the purpose of harnessing it for the endeavor of solving boundary-value problems (BVPs) of partial differential equations. Very early after such an effort began, it was recognized that domain decomposition methods (DDM) were the most effective technique for applying parallel computing to the solution of partial differential equations, since such an approach drastically simplifies the coordination of the many processors that carry out the different tasks and also reduces very much the requirements of information-transmission between them. Ideally, DDMs intend producing algorithms that fulfill the DDM-paradigm; i.e., such that "the global solution is obtained by solving local problems defined separately in each subdomain of the coarse-mesh -or domain-decomposition-". Stated in a simplistic manner, the basic idea is that, when the DDM-paradigm is satisfied, full parallelization can be achieved by assigning each subdomain to a different processor. When intensive DDM research began much attention was given to overlapping DDMs, but soon after attention shifted to non-overlapping DDMs. This evolution seems natural when the DDM-paradigm is taken into account: it is easier to uncouple the local problems when the subdomains are separated. However, an important limitation of non-overlapping domain decompositions, as that concept is usually understood today, is that interface nodes are shared by two or more subdomains of the coarse-mesh and, therefore, even non-overlapping DDMs are actually overlapping when seen from the perspective of the nodes used in the discretization. In this talk we present and discuss a discretization method in which the nodes used are non-overlapping, in the sense that each one of them belongs to one and only one subdomain of the coarse-mesh.

  12. Re-Visiting the Electronic Energy Map of the Copper Dimer by Double-Resonant Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Visser, Bradley; Bornhauser, Peter; Beck, Martin; Knopp, Gregor; Marquardt, Roberto; Gourlaouen, Christophe; van Bokhoven, Jeroen A.; Radi, Peter

    2017-06-01

    The copper dimer is one of the most studied transition metal (TM) diatomics due to its alkali-metal like electronic shell structure, strongly bound ground state and chemical reactivity. The high electronic promotion energy in the copper atom yields numerous low-lying electronic states compared to TM dimers with d)-hole electronic configurations. Thus, through extensive study the excited electronic structure of Cu_2 is relatively well known, however in practice few excited states have been investigated with rotational resolution or even assigned term symbols or dissociation limits. The spectroscopic methods that have been used to investigate the copper dimer until now have not possessed sufficient spectral selectivity, which has complicated the analysis of the often overlapping transitions. Resonant four-wave mixing is a non-linear absorption based spectroscopic method. In favorable cases, the two-color version (TC-RFWM) enables purely optical mass selective spectral measurements in a mixed molecular beam. Additionally, by labelling individual rotational levels in the common intermediate state the spectra are dramatically simplified. In this work, we report on the rotationally resolved characterization of low-lying electronic states of dicopper. Several term symbols have been assigned unambiguously. De-perturbation studies performed shed light on the complex electronic structure of the molecule. Furthermore, a new low-lying electronic state of Cu_2 is discovered and has important implications for the high-level theoretical structure calculations performed in parallel. In fact, the ab initio methods applied yield relative energies among the electronic levels that are almost quantitative and allow assignment of the newly observed state that is governed by spin-orbit interacting levels.

  13. SU-F-T-504: Non-Divergent Planning Method for Craniospinal Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, N; Bogue, J; Parsai, E

    2016-06-15

    Purpose: Traditional Craniospinal Irradiation (CSI) planning techniques require careful field placement to allow optimal divergence and field overlap at depth, and measurement of skin gap. The result of this is a necessary field overlap resulting in dose heterogeneity in the spinal canal. A novel, nondivergent field matching method has been developed to allow simple treatment planning and delivery without the need to measure skin gap. Methods: The CSI patient was simulated in the prone, and a plan was developed. Bilateral cranial fields were designed with couch and collimator rotation to eliminate divergence with the upper spine field and minimize anteriormore » divergence into the lenses. Spinal posterior-to-anterior fields were designed with the couch rotated to 90 degrees to allow gantry rotation to eliminate divergence at the match line, and the collimator rotated to 90 degrees to allow appropriate field blocking with the MLCs. A match line for the two spinal fields was placed and the gantry rotated to equal angles in opposite directions about the match line. Jaw positions were then defined to allow 1mm overlap at the match line to avoid cold spots. A traditional CSI plan was generated using diverging spinal fields, and a comparison between the two techniques was generated. Results: The non-divergent treatment plan was able to deliver a highly uniform dose to the spinal cord with a cold spot of only 95% and maximum point dose of 115.8%, as compared to traditional plan cold spots of 87% and hot spots of 132% of the prescription dose. Conclusion: A non-divergent method for planning CSI patients has been developed and clinically implemented. Planning requires some geometric manipulation in order to achieve an adequate dose distribution, however, it can help to manage cold spots and simplify the shifts needed between spinal fields.« less

  14. Airfoil seal system for gas turbine engine

    DOEpatents

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  15. Parallel algorithm for computation of second-order sequential best rotations

    NASA Astrophysics Data System (ADS)

    Redif, Soydan; Kasap, Server

    2013-12-01

    Algorithms for computing an approximate polynomial matrix eigenvalue decomposition of para-Hermitian systems have emerged as a powerful, generic signal processing tool. A technique that has shown much success in this regard is the sequential best rotation (SBR2) algorithm. Proposed is a scheme for parallelising SBR2 with a view to exploiting the modern architectural features and inherent parallelism of field-programmable gate array (FPGA) technology. Experiments show that the proposed scheme can achieve low execution times while requiring minimal FPGA resources.

  16. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates

    NASA Astrophysics Data System (ADS)

    Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad

    2018-06-01

    The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.

  17. Dynamic load balancing of applications

    DOEpatents

    Wheat, Stephen R.

    1997-01-01

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.

  18. Evaluation of the accuracy of the Rotating Parallel Ray Omnidirectional Integration for instantaneous pressure reconstruction from the measured pressure gradient

    NASA Astrophysics Data System (ADS)

    Moreto, Jose; Liu, Xiaofeng

    2017-11-01

    The accuracy of the Rotating Parallel Ray omnidirectional integration for pressure reconstruction from the measured pressure gradient (Liu et al., AIAA paper 2016-1049) is evaluated against both the Circular Virtual Boundary omnidirectional integration (Liu and Katz, 2006 and 2013) and the conventional Poisson equation approach. Dirichlet condition at one boundary point and Neumann condition at all other boundary points are applied to the Poisson solver. A direct numerical simulation database of isotropic turbulence flow (JHTDB), with a homogeneously distributed random noise added to the entire field of DNS pressure gradient, is used to assess the performance of the methods. The random noise, generated by the Matlab function Rand, has a magnitude varying randomly within the range of +/-40% of the maximum DNS pressure gradient. To account for the effect of the noise distribution pattern on the reconstructed pressure accuracy, a total of 1000 different noise distributions achieved by using different random number seeds are involved in the evaluation. Final results after averaging the 1000 realizations show that the error of the reconstructed pressure normalized by the DNS pressure variation range is 0.15 +/-0.07 for the Poisson equation approach, 0.028 +/-0.003 for the Circular Virtual Boundary method and 0.027 +/-0.003 for the Rotating Parallel Ray method, indicating the robustness of the Rotating Parallel Ray method in pressure reconstruction. Sponsor: The San Diego State University UGP program.

  19. Rotating-disk sorptive extraction: effect of the rotation mode of the extraction device on mass transfer efficiency.

    PubMed

    Jachero, Lourdes; Ahumada, Inés; Richter, Pablo

    2014-05-01

    The extraction device used in rotating-disk sorptive extraction consists of a Teflon disk in which a sorptive phase is fixed on one of its surfaces. Depending on the configuration, the rotation axis of the disk device can be either perpendicular or parallel to its radius, giving rise to two different mass transfer patterns when rotating-disk sorptive extraction is applied in liquid samples. In the perpendicular case (configuration 1), which is the typical configuration, the disk contains an embedded miniature stir bar that allows the disk rotation to be driven using a common laboratory magnetic stirrer. In the parallel case (configuration 2), the disk is driven by a rotary rod connected to an electric stirrer. In this study, triclosan and its degradation product methyl triclosan were used as analyte models to demonstrate the significant effect of the rotation configuration of the disk on the efficiency of analyte mass transfer from water to a sorptive phase of polydimethylsiloxane. Under the same experimental conditions and at a rotation velocity of 1,250 rpm, extraction equilibrium was reached at 80 min when the disk was rotated in configuration 1 and at 30 min when the disk was rotated in configuration 2. The extraction equilibration time decreased to 14 min when the rotation velocity was increased to 2,000 rpm in configuration 2. Because the rotation pattern affects the mass transfer efficiency, each rotation configuration was characterized through the Reynolds number; Re values of 6,875 and 16,361 were achieved with configurations 1 and 2, respectively, at 1,250 rpm.

  20. Robust and efficient overset grid assembly for partitioned unstructured meshes

    NASA Astrophysics Data System (ADS)

    Roget, Beatrice; Sitaraman, Jayanarayanan

    2014-03-01

    This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning.

  1. (2+1)-dimensional spacetimes containing closed timelike curves

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew P.; Gott, J. Richard, III

    1994-12-01

    We investigate the global geometries of (2+1)-dimensional spacetimes as characterized by the transformations undergone by tangent spaces upon parallel transport around closed curves. We critically discuss the use of the term ``total energy-momentum'' as a label for such parallel-transport transformations, pointing out several problems with it. We then investigate parallel-transport transformations in the known (2+1)-dimensional spacetimes containing closed timelike curves (CTC's), and introduce a few new such spacetimes. Using the more specific concept of the holonomy of a closed curve, applicable in simply connected spacetimes, we emphasize that Gott's two-particle CTC-containing spacetime does not have a tachyonic geometry. Finally, we prove the following modified version of Kabat's conjecture: if a CTC is deformable to spacelike or null infinity while remaining a CTC, then its parallel-transport transformation cannot be a rotation; therefore its holonomy, if defined, cannot be a rotation other than through a multiple of 2π.

  2. PROPELLER EPI: An MRI Technique Suitable for Diffusion Tensor Imaging at High Field Strength With Reduced Geometric Distortions

    PubMed Central

    Wang, Fu-Nien; Huang, Teng-Yi; Lin, Fa-Hsuan; Chuang, Tzu-Chao; Chen, Nan-Kuei; Chung, Hsiao-Wen; Chen, Cheng-Yu; Kwong, Kenneth K.

    2013-01-01

    A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice. PMID:16206142

  3. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions.

    PubMed

    Wang, Fu-Nien; Huang, Teng-Yi; Lin, Fa-Hsuan; Chuang, Tzu-Chao; Chen, Nan-Kuei; Chung, Hsiao-Wen; Chen, Cheng-Yu; Kwong, Kenneth K

    2005-11-01

    A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice. (c) 2005 Wiley-Liss, Inc.

  4. Communication Studies of DMP and SMP Machines

    NASA Technical Reports Server (NTRS)

    Sohn, Andrew; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Understanding the interplay between machines and problems is key to obtaining high performance on parallel machines. This paper investigates the interplay between programming paradigms and communication capabilities of parallel machines. In particular, we explicate the communication capabilities of the IBM SP-2 distributed-memory multiprocessor and the SGI PowerCHALLENGEarray symmetric multiprocessor. Two benchmark problems of bitonic sorting and Fast Fourier Transform are selected for experiments. Communication-efficient algorithms are developed to exploit the overlapping capabilities of the machines. Programs are written in Message-Passing Interface for portability and identical codes are used for both machines. Various data sizes and message sizes are used to test the machines' communication capabilities. Experimental results indicate that the communication performance of the multiprocessors are consistent with the size of messages. The SP-2 is sensitive to message size but yields a much higher communication overlapping because of the communication co-processor. The PowerCHALLENGEarray is not highly sensitive to message size and yields a low communication overlapping. Bitonic sorting yields lower performance compared to FFT due to a smaller computation-to-communication ratio.

  5. Bimodal Bilinguals Co-activate Both Languages during Spoken Comprehension

    PubMed Central

    Shook, Anthony; Marian, Viorica

    2012-01-01

    Bilinguals have been shown to activate their two languages in parallel, and this process can often be attributed to overlap in input between the two languages. The present study examines whether two languages that do not overlap in input structure, and that have distinct phonological systems, such as American Sign Language (ASL) and English, are also activated in parallel. Hearing ASL-English bimodal bilinguals’ and English monolinguals’ eye-movements were recorded during a visual world paradigm, in which participants were instructed, in English, to select objects from a display. In critical trials, the target item appeared with a competing item that overlapped with the target in ASL phonology. Bimodal bilinguals looked more at competing items than at phonologically unrelated items, and looked more at competing items relative to monolinguals, indicating activation of the sign-language during spoken English comprehension. The findings suggest that language co-activation is not modality specific, and provide insight into the mechanisms that may underlie cross-modal language co-activation in bimodal bilinguals, including the role that top-down and lateral connections between levels of processing may play in language comprehension. PMID:22770677

  6. Avoiding and tolerating latency in large-scale next-generation shared-memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Probst, David K.

    1993-01-01

    A scalable solution to the memory-latency problem is necessary to prevent the large latencies of synchronization and memory operations inherent in large-scale shared-memory multiprocessors from reducing high performance. We distinguish latency avoidance and latency tolerance. Latency is avoided when data is brought to nearby locales for future reference. Latency is tolerated when references are overlapped with other computation. Latency-avoiding locales include: processor registers, data caches used temporally, and nearby memory modules. Tolerating communication latency requires parallelism, allowing the overlap of communication and computation. Latency-tolerating techniques include: vector pipelining, data caches used spatially, prefetching in various forms, and multithreading in various forms. Relaxing the consistency model permits increased use of avoidance and tolerance techniques. Each model is a mapping from the program text to sets of partial orders on program operations; it is a convention about which temporal precedences among program operations are necessary. Information about temporal locality and parallelism constrains the use of avoidance and tolerance techniques. Suitable architectural primitives and compiler technology are required to exploit the increased freedom to reorder and overlap operations in relaxed models.

  7. Advancing MODFLOW Applying the Derived Vector Space Method

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.

    2015-12-01

    The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  8. Dynamic load balancing of applications

    DOEpatents

    Wheat, S.R.

    1997-05-13

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

  9. The development of a scalable parallel 3-D CFD algorithm for turbomachinery. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Luke, Edward Allen

    1993-01-01

    Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.

  10. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach

    PubMed Central

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-01-01

    Objective This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Materials and methods Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Results Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. Conclusions The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts. PMID:23630654

  11. Parasitic momentum flux in the tokamak core

    DOE PAGES

    Stoltzfus-Dueck, T.

    2017-03-06

    A geometrical correction to the E × B drift causes an outward flux of co-current momentum whenever electrostatic potential energy is transferred to ion parallel flows. The robust, fully nonlinear symmetry breaking follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The resulting rotation peaking is counter-current and scales as temperature over plasma current. Lastly, this peaking mechanism can only act when fluctuations are low-frequency enough to excite ion parallel flows, which may explain some recent experimental observations related to rotation reversals.

  12. Optimized functional femoral rotation in navigated total knee arthroplasty considering ligament tension.

    PubMed

    Walde, T A; Bussert, J; Sehmisch, S; Balcarek, P; Stürmer, K M; Walde, H J; Frosch, K H

    2010-12-01

    Femoral malrotation in total knee arthroplasty is correlated to an increased number of revisions. Anatomic landmarks such as Whiteside line, posterior condyle axis and transepicondylar axis are used for determining femoral component rotation. The femoral rotation achieved with the anatomical landmarks is compared to the femoral rotation achieved by a navigated ligament tension-based tibia-first technique. Ninety-three consecutive patients with gonarthritis were prospectively enrolled. Intraoperatively the anatomical landmarks for femoral rotation and the achieved femoral rotation using a navigated tension-based tibia-first technique were determined and stored for further comparison. A pre- and postoperative functional diagram displaying the extension and flexion and varus or valgus positions was also part of the evaluation. Using anatomical landmarks the rotational errors ranged from 12.2° of internal rotation to 15.5° of external rotation from parallel to the tibial resection surface at 90° flexion. A statistical significant improved femoral rotation was achieved using the ligament tension-based method with a rotational error ranged from 3.0° of internal rotation to 2.4° of external rotation. The functional analyses demonstrated statistical significant lower varus/valgus deviations within the flexion range and an improved maximum varus deviation at 90° flexion using the ligament tension-based method. Compared to the anatomical landmarks a balanced, almost parallel flexion gap was achieved using a navigation technique taking the ligament tension of the knee joint into account. As a result the improved femoral rotation was demonstrated by the functional evaluation. Unilateral overloading of the polyethylene inlay and unilateral instability can thus be avoided. Copyright © 2009 Elsevier B.V. All rights reserved.

  13. Communications oriented programming of parallel iterative solutions of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Patrick, M. L.; Pratt, T. W.

    1986-01-01

    Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.

  14. MEASUREMENTS OF THE SUN'S HIGH-LATITUDE MERIDIONAL CIRCULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rightmire-Upton, Lisa; Hathaway, David H.; Kosak, Katie, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov, E-mail: mkosak2011@my.fit.edu

    2012-12-10

    The meridional circulation at high latitudes is crucial to the buildup and reversal of the Sun's polar magnetic fields. Here, we characterize the axisymmetric flows by applying a magnetic feature cross-correlation procedure to high-resolution magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. We focus on Carrington rotations 2096-2107 (2010 April to 2011 March)-the overlap interval between HMI and the Michelson Doppler Imager (MDI). HMI magnetograms averaged over 720 s are first mapped into heliographic coordinates. Strips from these maps are then cross-correlated to determine the distances in latitude and longitude that the magneticmore » element pattern has moved, thus providing meridional flow and differential rotation velocities for each rotation of the Sun. Flow velocities were averaged for the overlap interval and compared to results obtained from MDI data. This comparison indicates that these HMI images are rotated counterclockwise by 0.{sup 0}075 with respect to the Sun's rotation axis. The profiles indicate that HMI data can be used to reliably measure these axisymmetric flow velocities to at least within 5 Degree-Sign of the poles. Unlike the noisier MDI measurements, no evidence of a meridional flow counter-cell is seen in either hemisphere with the HMI measurements: poleward flow continues all the way to the poles. Slight north-south asymmetries are observed in the meridional flow. These asymmetries should contribute to the observed asymmetries in the polar fields and the timing of their reversals.« less

  15. Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification.

    PubMed

    Wang, Qiangchang; Zheng, Yuanjie; Yang, Gongping; Jin, Weidong; Chen, Xinjian; Yin, Yilong

    2018-01-01

    We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.

  16. Multiphase three-dimensional direct numerical simulation of a rotating impeller with code Blue

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    The flow driven by a rotating impeller inside an open fixed cylindrical cavity is simulated using code Blue, a solver for massively-parallel simulations of fully three-dimensional multiphase flows. The impeller is composed of four blades at a 45° inclination all attached to a central hub and tube stem. In Blue, solid forms are constructed through the definition of immersed objects via a distance function that accounts for the object's interaction with the flow for both single and two-phase flows. We use a moving frame technique for imposing translation and/or rotation. The variation of the Reynolds number, the clearance, and the tank aspect ratio are considered, and we highlight the importance of the confinement ratio (blade radius versus the tank radius) in the mixing process. Blue uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of a hybrid front-tracking/level-set method designed complex interfacial topological changes. Parallel GMRES and multigrid iterative solvers are applied to the linear systems arising from the implicit solution for the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across fluid phases. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  17. A Unitary ESPRIT Scheme of Joint Angle Estimation for MOTS MIMO Radar

    PubMed Central

    Wen, Chao; Shi, Guangming

    2014-01-01

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme. PMID:25106023

  18. A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.

    PubMed

    Wen, Chao; Shi, Guangming

    2014-08-07

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.

  19. A Scalable O(N) Algorithm for Large-Scale Parallel First-Principles Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-01

    Traditional algorithms for first-principles molecular dynamics (FPMD) simulations only gain a modest capability increase from current petascale computers, due to their O(N 3) complexity and their heavy use of global communications. To address this issue, we are developing a truly scalable O(N) complexity FPMD algorithm, based on density functional theory (DFT), which avoids global communications. The computational model uses a general nonorthogonal orbital formulation for the DFT energy functional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We present a scalable algorithm for approximately computing selected entries of the inverse of the overlap matrix,more » based on an approximate inverse technique, by inverting local blocks corresponding to principal submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix can be omitted when computing selected entries of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute per molecular dynamics time step.« less

  20. Robust Segmentation of Overlapping Cells in Histopathology Specimens Using Parallel Seed Detection and Repulsive Level Set

    PubMed Central

    Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin

    2013-01-01

    Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMA) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm which can reliably separate touching cells in hematoxylin stained breast TMA specimens which have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach which utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and tissue microarrays containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) which resulted in significant speed-up over the C/C++ implementation. PMID:22167559

  1. Real three-dimensional objects: effects on mental rotation.

    PubMed

    Felix, Michael C; Parker, Joshua D; Lee, Charles; Gabriel, Kara I

    2011-08-01

    The current experiment investigated real three-dimensional (3D) objects with regard to performance on a mental rotation task and whether the appearance of sex differences may be mediated by experiences with spatially related activities. 40 men and 40 women were presented with alternating timed trials consisting of real-3D objects or two-dimensional illustrations of 3D objects. Sex differences in spatially related activities did not significantly influence the finding that men outperformed women on mental rotation of either stimulus type. However, on measures related to spatial activities, self-reported proficiency using maps correlated positively with performance only on trials with illustrations whereas self-reported proficiency using GPS correlated negatively with performance regardless of stimulus dimensionality. Findings may be interpreted as suggesting that rotating real-3D objects utilizes distinct but overlapping spatial skills compared to rotating two-dimensional representations of 3D objects, and real-3D objects can enhance mental rotation performance.

  2. The gap technique does not rotate the femur parallel to the epicondylar axis.

    PubMed

    Matziolis, Georg; Boenicke, Hinrich; Pfiel, Sascha; Wassilew, Georgi; Perka, Carsten

    2011-02-01

    In the analysis of painful total knee replacements, the surgical epicondylar axis (SEA) has become established as a standard in the diagnosis of femoral component rotation. It remains unclear whether the gap technique widely used to determine femoral rotation, when applied correctly, results in a rotation parallel to the SEA. In this prospective study, 69 patients (69 joints) were included who received a navigated bicondylar surface replacement due to primary arthritis of the knee joint. In 67 cases in which a perfect soft-tissue balancing of the extension gap (<1° asymmetry) was achieved, the flexion gap and the rotation of the femoral component necessary for its symmetry was determined and documented. The femoral component was implanted additionally taking into account the posterior condylar axis and the Whiteside's line. Postoperatively, the rotation of the femoral component to the SEA was determined and this was used to calculate the angle between a femur implanted according to the gap technique and the SEA. If the gap technique had been used consistently, it would have resulted in a deviation of the femoral components by -0.6° ± 2.9° (-7.4°-5.9°) from the SEA. The absolute deviation would have been 2.4° ± 1.8°, with a range between 0.2° and 7.4°. Even if the extension gap is perfectly balanced, the gap technique does not lead to a parallel alignment of the femoral component to the SEA. Since the clinical results of this technique are equivalent to those of the femur first technique in the literature, an evaluation of this deviation as a malalignment must be considered critically.

  3. Modified Denavit-Hartenberg parameters for better location of joint axis systems in robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.

    1986-01-01

    The Denavit-Hartenberg parameters define the relative location of successive joint axis systems in a robot arm. A recent justifiable criticism is that one of these parameters becomes extremely large when two successive joints have near-parallel rotational axes. Geometrically, this parameter then locates a joint axis system at an excessive distance from the robot arm and, computationally, leads to an ill-conditioned transformation matrix. In this paper, a simple modification (which results from constraining a transverse vector between successive joint rotational axes to be normal to one of the rotational axes, instead of both) overcomes this criticism and favorably locates the joint axis system. An example is given for near-parallel rotational axes of the elbow and shoulder joints in a robot arm. The regular and modified parameters are extracted by an algebraic method with simulated measurement data. Unlike the modified parameters, extracted values of the regular parameters are very sensitive to measurement accuracy.

  4. INDEXING MECHANISM

    DOEpatents

    Kock, L.J.

    1959-09-22

    A device is presented for loading and unloading fuel elements containing material fissionable by neutrons of thermal energy. The device comprises a combination of mechanical features Including a base, a lever pivotally attached to the base, an Indexing plate on the base parallel to the plane of lever rotation and having a plurality of apertures, the apertures being disposed In rows, each aperture having a keyway, an Index pin movably disposed to the plane of lever rotation and having a plurality of apertures, the apertures being disposed in rows, each aperture having a keyway, an index pin movably disposed on the lever normal to the plane rotation, a key on the pin, a sleeve on the lever spaced from and parallel to the index pin, a pair of pulleys and a cable disposed between them, an open collar rotatably attached to the sleeve and linked to one of the pulleys, a pin extending from the collar, and a bearing movably mounted in the sleeve and having at least two longitudinal grooves in the outside surface.

  5. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  6. Decision-directed detector for overlapping PCM/NRZ signals.

    NASA Technical Reports Server (NTRS)

    Wang, C. D.; Noack, T. L.

    1973-01-01

    A decision-directed (DD) technique for the detection of overlapping PCM/NRZ signals in the presence of white Gaussian noise is investigated. The performance of the DD detector is represented by probability of error Pe versus input signal-to-noise ratio (SNR). To examine how much improvement in performance can be achieved with this technique, Pe's with and without DD feedback are evaluated in parallel. Further, analytical results are compared with those found by Monte Carlo simulations. The results are in good agreement.

  7. The role of rotational hand movements and general motor ability in children’s mental rotation performance

    PubMed Central

    Jansen, Petra; Kellner, Jan

    2015-01-01

    Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0–8.3 and 9.0–10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability. PMID:26236262

  8. The role of rotational hand movements and general motor ability in children's mental rotation performance.

    PubMed

    Jansen, Petra; Kellner, Jan

    2015-01-01

    Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0-8.3 and 9.0-10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.

  9. Finite-element analysis and modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    1982-10-01

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, was developed to compute the mode shapes and frequencies of rotating structures. Special applications of this capability was made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine is established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  10. Finite element analysis and modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, has been developed to compute the mode shapes and frequencies of rotating structures. Special application of this capability has been made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine has been established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  11. The shear-Hall instability in newborn neutron stars

    NASA Astrophysics Data System (ADS)

    Kondić, T.; Rüdiger, G.; Hollerbach, R.

    2011-11-01

    Aims: In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a "shear-Hall instability" and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods: We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results: For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions: Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.

  12. Predicting 3D pose in partially overlapped X-ray images of knee prostheses using model-based Roentgen stereophotogrammetric analysis (RSA).

    PubMed

    Hsu, Chi-Pin; Lin, Shang-Chih; Shih, Kao-Shang; Huang, Chang-Hung; Lee, Chian-Her

    2014-12-01

    After total knee replacement, the model-based Roentgen stereophotogrammetric analysis (RSA) technique has been used to monitor the status of prosthetic wear, misalignment, and even failure. However, the overlap of the prosthetic outlines inevitably increases errors in the estimation of prosthetic poses due to the limited amount of available outlines. In the literature, quite a few studies have investigated the problems induced by the overlapped outlines, and manual adjustment is still the mainstream. This study proposes two methods to automate the image processing of overlapped outlines prior to the pose registration of prosthetic models. The outline-separated method defines the intersected points and segments the overlapped outlines. The feature-recognized method uses the point and line features of the remaining outlines to initiate registration. Overlap percentage is defined as the ratio of overlapped to non-overlapped outlines. The simulated images with five overlapping percentages are used to evaluate the robustness and accuracy of the proposed methods. Compared with non-overlapped images, overlapped images reduce the number of outlines available for model-based RSA calculation. The maximum and root mean square errors for a prosthetic outline are 0.35 and 0.04 mm, respectively. The mean translation and rotation errors are 0.11 mm and 0.18°, respectively. The errors of the model-based RSA results are increased when the overlap percentage is beyond about 9%. In conclusion, both outline-separated and feature-recognized methods can be seamlessly integrated to automate the calculation of rough registration. This can significantly increase the clinical practicability of the model-based RSA technique.

  13. Wolf use of summer territory in northeastern Minnesota

    USGS Publications Warehouse

    Demma, D.J.; Mech, L.D.

    2009-01-01

    Movements of wolves (Canis lupus) during summer 2003 and 2004 in the Superior National Forest were based around homesites but included extensive use of territories. Away from homesites, wolves used different areas daily, exhibiting rotational use. Mean daily range overlap was 22 (SE 0.02) and that of breeding wolves was significantly greater than for nonbreeders (x 25 and 16, respectively). Rotational use may improve hunting success. Managers seeking to remove entire packs must maintain control long enough to ensure that all pack members are targeted.

  14. Optoelectronic associative recall using motionless-head parallel readout optical disk

    NASA Astrophysics Data System (ADS)

    Marchand, P. J.; Krishnamoorthy, A. V.; Ambs, P.; Esener, S. C.

    1990-12-01

    High data rates, low retrieval times, and simple implementation are presently shown to be obtainable by means of a motionless-head 2D parallel-readout system for optical disks. Since the optical disk obviates mechanical head motions for access, focusing, and tracking, addressing is performed exclusively through the disk's rotation. Attention is given to a high-performance associative memory system configuration which employs a parallel readout disk.

  15. Fundamentally Distributed Information Processing Integrates the Motor Network into the Mental Workspace during Mental Rotation.

    PubMed

    Schlegel, Alexander; Konuthula, Dedeepya; Alexander, Prescott; Blackwood, Ethan; Tse, Peter U

    2016-08-01

    The manipulation of mental representations in the human brain appears to share similarities with the physical manipulation of real-world objects. In particular, some neuroimaging studies have found increased activity in motor regions during mental rotation, suggesting that mental and physical operations may involve overlapping neural populations. Does the motor network contribute information processing to mental rotation? If so, does it play a similar computational role in both mental and manual rotation, and how does it communicate with the wider network of areas involved in the mental workspace? Here we used multivariate methods and fMRI to study 24 participants as they mentally rotated 3-D objects or manually rotated their hands in one of four directions. We find that information processing related to mental rotations is distributed widely among many cortical and subcortical regions, that the motor network becomes tightly integrated into a wider mental workspace network during mental rotation, and that motor network activity during mental rotation only partially resembles that involved in manual rotation. Additionally, these findings provide evidence that the mental workspace is organized as a distributed core network that dynamically recruits specialized subnetworks for specific tasks as needed.

  16. Overlapping clusters for distributed computation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirrokni, Vahab; Andersen, Reid; Gleich, David F.

    2010-11-01

    Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initialmore » partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.« less

  17. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, Eric H.; Floro, Jerrold A.; Seager, Carleton H.; Sinclair, Michael B.

    1999-01-01

    Apparatus for measuring curvature of a surface wherein a beam of collimated light is passed through means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90.degree. about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90.degree. relative to the line onto which the single set of parallel beams from the first etalon would have fallen.

  18. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, E.H.; Floro, J.A.; Seager, C.H.; Sinclair, M.B.

    1999-06-15

    Apparatus is disclosed for measuring curvature of a surface wherein a beam of collimated light is passed through a means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90[degree] about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90[degree] relative to the line onto which the single set of parallel beams from the first etalon would have fallen. 5 figs.

  19. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  20. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE PAGES

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo; ...

    2017-05-18

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  1. Dynamic Imbalance Would Counter Offcenter Thrust

    NASA Technical Reports Server (NTRS)

    Mccanna, Jason

    1994-01-01

    Dynamic imbalance generated by offcenter thrust on rotating body eliminated by shifting some of mass of body to generate opposing dynamic imbalance. Technique proposed originally for spacecraft including massive crew module connected via long, lightweight intermediate structure to massive engine module, such that artificial gravitation in crew module generated by rotating spacecraft around axis parallel to thrust generated by engine. Also applicable to dynamic balancing of rotating terrestrial equipment to which offcenter forces applied.

  2. Parallel alignment of bacteria using near-field optical force array for cell sorting

    NASA Astrophysics Data System (ADS)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents a near-field approach to align multiple rod-shaped bacteria based on the interference pattern in silicon nano-waveguide arrays. The bacteria in the optical field will be first trapped by the gradient force and then rotated by the scattering force to the equilibrium position. In the experiment, the Shigella bacteria is rotated 90 deg and aligned to horizontal direction in 9.4 s. Meanwhile, 150 Shigella is trapped on the surface in 5 min and 86% is aligned with angle < 5 deg. This method is a promising toolbox for the research of parallel single-cell biophysical characterization, cell-cell interaction, etc.

  3. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    PubMed Central

    Qiu, Gongzhe

    2017-01-01

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790

  4. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    PubMed

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  5. Idling speed control system of an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, M.; Ishii, M.; Kako, H.

    1986-09-16

    This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less

  6. Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.

    PubMed

    Tamhane, Ashish A; Anastasio, Mark A; Gui, Minzhi; Arfanakis, Konstantinos

    2010-07-01

    To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI. Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding. (c) 2010 Wiley-Liss, Inc.

  7. Diffusion-Weighted Magnetic Resonance Imaging of Cholesteatoma Using PROPELLER at 1.5T: A Single-Centre Retrospective Study.

    PubMed

    Clarke, Sharon E; Mistry, Dipan; AlThubaiti, Talal; Khan, M Naeem; Morris, David; Bance, Manohar

    2017-05-01

    The purpose of this study was to evaluate the sensitivity, specificity, and positive and negative predictive values of the diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique in the detection of cholesteatoma at our institution with surgical confirmation in all cases. A retrospective review of 21 consecutive patients who underwent diffusion-weighted PROPELLER magnetic resonance imaging (MRI) on a 1.5T MRI scanner prior to primary or revision/second-look surgery for suspected cholesteatoma from 2009-2012 was performed. Diffusion-weighted PROPELLER had a sensitivity of 75%, specificity of 60%, positive predictive value of 86%, and negative predictive value of 43%. In the 15 patients for whom the presence or absence of cholesteatoma was correctly predicted, there were 2 cases where the reported locations of diffusion restriction did not correspond to the location of the cholesteatoma observed at surgery. On the basis of our retrospective study, we conclude that diffusion-weighted PROPELLER MRI is not sufficiently accurate to replace second look surgery at our institution. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  8. Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform

    PubMed Central

    Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos

    2013-01-01

    Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028

  9. Turboprop IDEAL: a motion-resistant fat-water separation technique.

    PubMed

    Huo, Donglai; Li, Zhiqiang; Aboussouan, Eric; Karis, John P; Pipe, James G

    2009-01-01

    Suppression of the fat signal in MRI is very important for many clinical applications. Multi-point water-fat separation methods, such as IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation), can robustly separate water and fat signal, but inevitably increase scan time, making separated images more easily affected by patient motions. PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and Turboprop techniques offer an effective approach to correct for motion artifacts. By combining these techniques together, we demonstrate that the new TP-IDEAL method can provide reliable water-fat separation with robust motion correction. The Turboprop sequence was modified to acquire source images, and motion correction algorithms were adjusted to assure the registration between different echo images. Theoretical calculations were performed to predict the optimal shift and spacing of the gradient echoes. Phantom images were acquired, and results were compared with regular FSE-IDEAL. Both T1- and T2-weighted images of the human brain were used to demonstrate the effectiveness of motion correction. TP-IDEAL images were also acquired for pelvis, knee, and foot, showing great potential of this technique for general clinical applications.

  10. X-PROP: a fast and robust diffusion-weighted propeller technique.

    PubMed

    Li, Zhiqiang; Pipe, James G; Lee, Chu-Yu; Debbins, Josef P; Karis, John P; Huo, Donglai

    2011-08-01

    Diffusion-weighted imaging (DWI) has shown great benefits in clinical MR exams. However, current DWI techniques have shortcomings of sensitivity to distortion or long scan times or combinations of the two. Diffusion-weighted echo-planar imaging (EPI) is fast but suffers from severe geometric distortion. Periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted imaging (PROPELLER DWI) is free of geometric distortion, but the scan time is usually long and imposes high Specific Absorption Rate (SAR) especially at high fields. TurboPROP was proposed to accelerate the scan by combining signal from gradient echoes, but the off-resonance artifacts from gradient echoes can still degrade the image quality. In this study, a new method called X-PROP is presented. Similar to TurboPROP, it uses gradient echoes to reduce the scan time. By separating the gradient and spin echoes into individual blades and removing the off-resonance phase, the off-resonance artifacts in X-PROP are minimized. Special reconstruction processes are applied on these blades to correct for the motion artifacts. In vivo results show its advantages over EPI, PROPELLER DWI, and TurboPROP techniques. Copyright © 2011 Wiley-Liss, Inc.

  11. Multishot Targeted PROPELLER Magnetic Resonance Imaging: Description of the Technique and Initial Applications

    PubMed Central

    Deng, Jie; Larson, Andrew C.

    2010-01-01

    Objectives To test the feasibility of combining inner-volume imaging (IVI) techniques with conventional multishot periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) techniques for targeted-PROPELLER magnetic resonance imaging. Materials and Methods Perpendicular section-selective gradients for spatially selective excitation and refocusing RF pulses were applied to limit the refocused field-of-view (FOV) along the phase-encoding direction for each rectangular blade image. We performed comparison studies in phantoms and normal volunteers by using targeted-PROPELLER methods for a wide range of imaging applications that commonly use turbo-spin-echo (TSE) approaches (brain, abdominal, vessel wall, cardiac). Results In these initial studies, we demonstrated the feasibility of using targeted-PROPELLER approaches to limit the imaging FOV thereby reducing the number of blades or permitting increased spatial resolution without commensurate increases in scan time. Both phantom and in vivo motion studies demonstrated the potential for more robust regional self-navigated motion correction compared with conventional full FOV PROPELLER methods. Conclusion We demonstrated that the reduced FOV targeted-PROPELLER technique offers the potential for reducing imaging time, increasing spatial resolution, and targeting specific areas for robust regional motion correction. PMID:19465860

  12. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding

    DOE PAGES

    Zhang, Hong; Zapol, Peter; Dixon, David A.; ...

    2015-11-17

    The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less

  13. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Zapol, Peter; Dixon, David A.

    The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less

  14. Plasma Generator Using Spiral Conductors

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  15. A high performance linear equation solver on the VPP500 parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi

    1994-12-31

    This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.

  16. Low distortion laser welding of cylindrical components

    NASA Astrophysics Data System (ADS)

    Kittel, Sonja

    2011-02-01

    Automotive components are for the most part cylindrical and thus the weld seams are of radial shape. Radial weld seams are usually produced by starting at a point on the component's surface rotating the component resulting in an overlap zone at the start/end of the weld. In this research, it is shown that the component's distortion strongly depends on the overlap of weld start and end. A correlation between overlap zone and distortion is verified by an experimental study. In order to reduce distortion generated by the overlap zone a special optics is used which allows shaping the laser beam into a ring shape which is then focused on the cylindrical surface and produces a radial ring weld seam simultaneously by one laser pulse. In doing this, the overlap zone is eliminated and distortion can be reduced. Radial weld seams are applied on precision samples and distortion is measured after welding. The distortion of the precision samples is measured by a tactile measuring method and a comparison of the results of welding with the ring optics to reference welds is done.

  17. Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2014-01-01

    According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  18. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    NASA Astrophysics Data System (ADS)

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-05-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters.

  19. The Star Wars Scroll Illusion.

    PubMed

    Shapiro, Arthur G

    2015-10-01

    The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points), the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion.

  20. Rotating columns: Relating structure-from-motion, accretion/deletion, and figure/ground

    PubMed Central

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2013-01-01

    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)—despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception. PMID:23946432

  1. Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground.

    PubMed

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2013-08-14

    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)-despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception.

  2. The role of upper torso and pelvis rotation in driving performance during the golf swing.

    PubMed

    Myers, Joseph; Lephart, Scott; Tsai, Yung-Shen; Sell, Timothy; Smoliga, James; Jolly, John

    2008-01-15

    While the role of the upper torso and pelvis in driving performance is anecdotally appreciated by golf instructors, their actual biomechanical role is unclear. The aims of this study were to describe upper torso and pelvis rotation and velocity during the golf swing and determine their role in ball velocity. One hundred recreational golfers underwent a biomechanical golf swing analysis using their own driver. Upper torso and pelvic rotation and velocity, and torso-pelvic separation and velocity, were measured for each swing. Ball velocity was assessed with a golf launch monitor. Group differences (groups based on ball velocity) and moderate relationships (r > or = 0.50; P < 0.001) were observed between an increase in ball velocity and the following variables: increased torso-pelvic separation at the top of the swing, maximum torso-pelvic separation, maximum upper torso rotation velocity, upper torso rotational velocity at lead arm parallel and last 40 ms before impact, maximum torso-pelvic separation velocity and torso-pelvic separation velocity at both lead arm parallel and at the last 40 ms before impact. Torso-pelvic separation contributes to greater upper torso rotation velocity and torso-pelvic separation velocity during the downswing, ultimately contributing to greater ball velocity. Golf instructors can consider increasing ball velocity by maximizing separation between the upper torso and pelvis at the top of and initiation of the downswing.

  3. Experimental entangled photon pair generation using crystals with parallel optical axes.

    PubMed

    Villar, Aitor; Lohrmann, Alexander; Ling, Alexander

    2018-05-14

    We present an optical design where polarization-entangled photon pairs are generated within two β-Barium Borate crystals whose optical axes are parallel. This design increases the spatial mode overlap of the emitted photon pairs enhancing single mode collection without the need for additional spatial walk-off compensators. The observed photon pair rate is at least 65 000 pairs/s/mW with a quantum state fidelity of 99.53 ± 0.22% when pumped with an elliptical spatial profile.

  4. Experimental entangled photon pair generation using crystals with parallel optical axes

    NASA Astrophysics Data System (ADS)

    Villar, Aitor; Lohrmann, Alexander; Ling, Alexander

    2018-05-01

    We present an optical design where polarization-entangled photon pairs are generated within two $\\beta$-Barium Borate crystals whose optical axes are parallel. This design increases the spatial mode overlap of the emitted photon pairs enhancing single mode collection without the need for additional spatial walk-off compensators. The observed photon pair rate is at least 65000 pairs/s/mW with a quantum state fidelity of 99.53$\\pm$0.22% when pumped with an elliptical spatial profile.

  5. The Role of Coseismic Coulomb Stress Changes in Shaping the Hard Link Between Normal Fault Segments

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.

    2018-01-01

    The mechanism and evolution of fault linkage is important in the growth and development of large faults. Here we investigate the role of coseismic stress changes in shaping the hard links between parallel normal fault segments (or faults), by comparing numerical models of the Coulomb stress change from simulated earthquakes on two en echelon fault segments to natural observations of hard-linked fault geometry. We consider three simplified linking fault geometries: (1) fault bend, (2) breached relay ramp, and (3) strike-slip transform fault. We consider scenarios where either one or both segments rupture and vary the distance between segment tips. Fault bends and breached relay ramps are favored where segments underlap or when the strike-perpendicular distance between overlapping segments is less than 20% of their total length, matching all 14 documented examples. Transform fault linkage geometries are preferred when overlapping segments are laterally offset at larger distances. Few transform faults exist in continental extensional settings, and our model suggests that propagating faults or fault segments may first link through fault bends or breached ramps before reaching sufficient overlap for a transform fault to develop. Our results suggest that Coulomb stresses arising from multisegment ruptures or repeated earthquakes are consistent with natural observations of the geometry of hard links between parallel normal fault segments.

  6. The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction.

    PubMed

    Burkett, James P; Young, Larry J

    2012-11-01

    Love has long been referred to as an addiction in literature and poetry. Scientists have often made comparisons between social attachment processes and drug addiction, and it has been suggested that the two may share a common neurobiological mechanism. Brain systems that evolved to govern attachments between parents and children and between monogamous partners may be the targets of drugs of abuse and serve as the basis for addiction processes. Here, we review research on drug addiction in parallel with research on social attachments, including parent-offspring attachments and social bonds between mating partners. This review focuses on the brain regions and neurochemicals with the greatest overlap between addiction and attachment and, in particular, the mesolimbic dopamine (DA) pathway. Significant overlap exists between these two behavioral processes. In addition to conceptual overlap in symptomatology, there is a strong commonality between the two domains regarding the roles and sites of action of DA, opioids, and corticotropin-releasing factor. The neuropeptides oxytocin and vasopressin are hypothesized to integrate social information into attachment processes that is not present in drug addiction. Social attachment may be understood as a behavioral addiction, whereby the subject becomes addicted to another individual and the cues that predict social reward. Understandings from both fields may enlighten future research on addiction and attachment processes.

  7. Rotation sensor switch

    DOEpatents

    Sevec, John B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops comprises a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal.

  8. Direct numerical simulation of turbulent flow in a rotating square duct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yi-Jun; Huang, Wei-Xi, E-mail: hwx@tsinghua.edu.cn; Xu, Chun-Xiao

    A fully developed turbulent flow in a rotating straight square duct is simulated by direct numerical simulations at Re{sub τ} = 300 and 0 ≤ Ro{sub τ} ≤ 40. The rotating axis is parallel to two opposite walls of the duct and normal to the main flow. Variations of the turbulence statistics with the rotation rate are presented, and a comparison with the rotating turbulent channel flow is discussed. Rich secondary flow patterns in the cross section are observed by varying the rotation rate. The appearance of a pair of additional vortices above the pressure wall is carefully examined, andmore » the underlying mechanism is explained according to the budget analysis of the mean momentum equations.« less

  9. Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xiaoyin

    The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less

  10. Early Versus Delayed Motion After Rotator Cuff Repair: A Systematic Review of Overlapping Meta-analyses.

    PubMed

    Houck, Darby A; Kraeutler, Matthew J; Schuette, Hayden B; McCarty, Eric C; Bravman, Jonathan T

    2017-10-01

    Previous meta-analyses have been conducted to compare outcomes of early versus delayed motion after rotator cuff repair. To conduct a systematic review of overlapping meta-analyses comparing early versus delayed motion rehabilitation protocols after rotator cuff repair to determine which meta-analyses provide the best available evidence. Systematic review. A systematic review was performed by searching PubMed and Cochrane Library databases. Search terms included "rotator cuff repair," "early passive motion," "immobilization," "rehabilitation protocol," and "meta-analysis." Results were reviewed to determine study eligibility. Patient outcomes and structural healing were extracted from these meta-analyses. Meta-analysis quality was assessed using the Oxman-Guyatt and Quality of Reporting of Meta-analyses (QUOROM) systems. The Jadad decision algorithm was then used to determine which meta-analyses provided the best level of evidence. Seven meta-analyses containing a total of 5896 patients met the eligibility criteria (1 Level I evidence, 4 Level II evidence, 2 Level III evidence). None of these meta-analyses found immobilization to be superior to early motion; however, most studies suggested that early motion would increase range of motion (ROM), thereby reducing time of recovery. Three of these studies suggested that tear size contributed to the choice of rehabilitation to ensure proper healing of the shoulder. A study by Chan et al in 2014 received the highest QUOROM and Oxman-Guyatt scores, and therefore this meta-analysis appeared to have the highest level of evidence. Additionally, a study by Riboh and Garrigues in 2014 was selected as the highest quality study in this systematic review according to the Jadad decision algorithm. The current, best available evidence suggests that early motion improves ROM after rotator cuff repair but increases the risk of rotator cuff retear. Lower quality meta-analyses indicate that tear size may provide a better strategy in determining the correct rehabilitation protocol.

  11. Decoupling of a tight-fit transceiver phased array for human brain imaging at 9.4T: Loop overlapping rediscovered.

    PubMed

    Avdievich, Nikolai I; Giapitzakis, Ioannis-Angelos; Pfrommer, Andreas; Henning, Anke

    2018-02-01

    To improve the decoupling of a transceiver human head phased array at ultra-high fields (UHF, ≥ 7T) and to optimize its transmit (Tx) and receive (Rx) performance, a single-row eight-element (1 × 8) tight-fit transceiver overlapped loop array was developed and constructed. Overlapping the loops increases the RF field penetration depth but can compromise decoupling by generating substantial mutual resistance. Based on analytical modeling, we optimized the loop geometry and relative positioning to simultaneously minimize the resistive and inductive coupling and constructed a 9.4T eight-loop transceiver head phased array decoupled entirely by overlapping loops. We demonstrated that both the magnetic and electric coupling between adjacent loops is compensated at the same time by overlapping and nearly perfect decoupling (below -30 dB) can be obtained without additional decoupling strategies. Tx-efficiency and SNR of the overlapped array outperformed that of a common UHF gapped array of similar dimensions. Parallel Rx-performance was also not compromised due to overlapping the loops. As a proof of concept we developed and constructed a 9.4T (400 MHz) overlapped transceiver head array based on results of the analytical modeling. We demonstrated that at UHF overlapping loops not only provides excellent decoupling but also improves both Tx- and Rx-performance. Magn Reson Med 79:1200-1211, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltzfus-Dueck, T.; Scott, B.

    An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less

  13. Reflections on Government Service Rotations by an Academic Health Education Professional

    ERIC Educational Resources Information Center

    Green, Lawrence W.

    2016-01-01

    This reflection is on a health education professional's rotation from professor in a school of public health to a government position and back parallels that of Professor Howard Koh's journey to Assistant Secretary of Health, one level higher in the same federal bureaucracy. We both acknowledge the steep learning curve and some bureaucratic…

  14. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  15. A 2D MTF approach to evaluate and guide dynamic imaging developments.

    PubMed

    Chao, Tzu-Cheng; Chung, Hsiao-Wen; Hoge, W Scott; Madore, Bruno

    2010-02-01

    As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two-dimensional modulation transfer function, an easy-to-interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension-sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition-enhanced sensitivity maps for sensitivity encoding reconstructions.

  16. A Smart Cage With Uniform Wireless Power Distribution in 3D for Enabling Long-Term Experiments With Freely Moving Animals.

    PubMed

    Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Gosselin, Benoit

    2016-04-01

    This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).

  17. Experiences with serial and parallel algorithms for channel routing using simulated annealing

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1988-01-01

    Two algorithms for channel routing using simulated annealing are presented. Simulated annealing is an optimization methodology which allows the solution process to back up out of local minima that may be encountered by inappropriate selections. By properly controlling the annealing process, it is very likely that the optimal solution to an NP-complete problem such as channel routing may be found. The algorithm presented proposes very relaxed restrictions on the types of allowable transformations, including overlapping nets. By freeing that restriction and controlling overlap situations with an appropriate cost function, the algorithm becomes very flexible and can be applied to many extensions of channel routing. The selection of the transformation utilizes a number of heuristics, still retaining the pseudorandom nature of simulated annealing. The algorithm was implemented as a serial program for a workstation, and a parallel program designed for a hypercube computer. The details of the serial implementation are presented, including many of the heuristics used and some of the resulting solutions.

  18. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems <100>{010} and < 1 bar 10>{110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system <100>{001} and rotation axis [010]. The slip system < 1 bar 10>{110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of deformation, if the isotopic systems of deformed zircon were reset.

  19. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.

    PubMed

    Kundeti, Vamsi K; Rajasekaran, Sanguthevar; Dinh, Hieu; Vaughn, Matthew; Thapar, Vishal

    2010-11-15

    Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories - based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p) time parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(nΣ) messages (Σ being the size of the alphabet). In this paper we present a Θ(n/p) time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of Θ(nlog(n/B)Blog(M/B)) (M being the main memory size and B being the size of the disk block). We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster--both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem. The bi-directed de Bruijn graph is a fundamental data structure for any sequence assembly program based on Eulerian approach. Our algorithms for constructing Bi-directed de Bruijn graphs are efficient in parallel and out of core settings. These algorithms can be used in building large scale bi-directed de Bruijn graphs. Furthermore, our algorithms do not employ any all-to-all communications in a parallel setting and perform better than the prior algorithms. Finally our out-of-core algorithm is extremely memory efficient and can replace the existing graph construction algorithm in VELVET.

  20. Magnetic resonance anatomy of the superior part of the rotator cuff in normal shoulders, assessment and practical implication.

    PubMed

    Michelin, Paul; Trintignac, Adrien; Dacher, Jean Nicolas; Carvalhana, Gilbert; Lefebvre, Valentin; Duparc, Fabrice

    2014-12-01

    The superior part of the rotator cuff consists of the anterior (SSa) and posterior (SSp) parts of the supraspinatus tendon, the infraspinatus (IS) tendon plus the articular capsule. An overlap of the distal SSp tendon by the anterior part of the IS one has been anatomically demonstrated; the insertion area of the IS is more anterior than currently believed. The aim of our study was to assess this complex architecture through standard MRI scans. Twenty-five healthy volunteers underwent a shoulder MRI. Three planes T2 fat saturation sequences were read in consensus by two radiologists. The SSa, the SSp, the IS tendons and the articular capsule were assessed for visibility. The patterns of demarcation of each structure from adjacent ones were assessed. The width and the thickness of each tendinous band were measured on sagittal images. The SSa, the SSp and the IS tendons were distinguishable in all patients. The anterior part of the IS tendon overlapped the SSp tendon to reach a quite anterior insertion into the greater tuberosity of the humerus. The SSa, the SSp and the IS tendons were 6.5-3.4, 15.1-2.8 and 26.8-2.2 mm wide and thick, respectively. MR images of the normal superior rotator cuff are consistent with latest anatomical descriptions. The distal superposition of the IS over the SSp tendon should be considered regarding the linear increased signal areas and the commonly named "partial thickness ruptures" of the superior rotator cuff as well as the fatty infiltration of the IS muscle.

  1. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    USGS Publications Warehouse

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  2. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    PubMed Central

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-01-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters. PMID:27181496

  3. The role of axis embedding on rigid rotor decomposition analysis of variational rovibrational wave functions.

    PubMed

    Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2012-05-07

    Approximate rotational characterization of variational rovibrational wave functions via the rigid rotor decomposition (RRD) protocol is developed for Hamiltonians based on arbitrary sets of internal coordinates and axis embeddings. An efficient and general procedure is given that allows employing the Eckart embedding with arbitrary polyatomic Hamiltonians through a fully numerical approach. RRD tables formed by projecting rotational-vibrational wave functions into products of rigid-rotor basis functions and previously determined vibrational eigenstates yield rigid-rotor labels for rovibrational eigenstates by selecting the largest overlap. Embedding-dependent RRD analyses are performed, up to high energies and rotational excitations, for the H(2) (16)O isotopologue of the water molecule. Irrespective of the embedding chosen, the RRD procedure proves effective in providing unambiguous rotational assignments at low energies and J values. Rotational labeling of rovibrational states of H(2) (16)O proves to be increasingly difficult beyond about 10,000 cm(-1), close to the barrier to linearity of the water molecule. For medium energies and excitations the Eckart embedding yields the largest RRD coefficients, thus providing the largest number of unambiguous rotational labels.

  4. Characteristics of manipulator for industrial robot with three rotational pairs having parallel axes

    NASA Astrophysics Data System (ADS)

    Poteyev, M. I.

    1986-01-01

    The dynamics of a manipulator with three rotatinal kinematic pairs having parallel axes are analyzed, for application in an industrial robot. The system of Lagrange equations of the second kind, describing the motion of such a mechanism in terms of kinetic energy in generalized coordinates, is reduced to equations of motion in terms of Newton's laws. These are useful not only for either determining the moments of force couples which will produce a prescribed motion or, conversely determining the motion which given force couples will produce but also for solving optimization problems under constraints in both cases and for estimating dynamic errors. As a specific example, a manipulator with all three axes of vertical rotation is considered. The performance of this manipulator, namely the parameters of its motion as functions of time, is compared with that of a manipulator having one rotational and two translational kinematic pairs. Computer aided simulation of their motion on the basis of ideal models, with all three links represented by identical homogeneous bars, has yielded velocity time diagrams which indicate that the manipulator with three rotational pairs is 4.5 times faster.

  5. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  6. DIRECTIONAL ANTENNA

    DOEpatents

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  7. Plasma Centrifuge Heat Engine - a Route to Non-thermal p- 11 B Fusion

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.

    2007-06-01

    An invention [US Patent and Trademark Office App. Nos. 60/596567 (2005) and 60/766791 (2006)] combines centrifugal and dipole confinement, with recent oscillating plasma theory. The plasma undergoes compression/expansion (C/E), parallel to B by centrifugal force and perpendicular to B by B variation, providing a thermal cycle which recovers most (>95%) of heating as mechanical energy. This gives a "Q-amplifier" for beam-target systems. Centrifugally confined Boron plasma undergoes C/E by slow, cross-B interchange activity. Parallel and perpendicular C/E are matched by the rotation profile which arises naturally. Hot plasma is heated and cold plasma is cooled. Beam-target fusion reactions occur in the hot plasma region and expansion returns most of the heat energy as rotation energy. Rotation energy, in turn, produces waves which drive protons to an energy near the fusion peak cross section. A possible machine, including the arrangement of magnets and HV, is described.

  8. Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2015-12-01

    Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.

  9. Statistical studies in stellar rotation 2: A method of analyzing rotational coupling in double stars and an introduction to its applications

    NASA Technical Reports Server (NTRS)

    Bernacca, P. L.

    1971-01-01

    The correlation between the equatorial velocities of the components of double stars is studied from a statistical standpoint. A theory of rotational correlation is developed and discussed with regard to its applicability to existing observations. The theory is then applied to a sample of visual binaries which are the least studied for rotational coupling. Consideration of eclipsing systems and spectroscopic binaries is limited to show how the degrees of freedom in the spin parallelism problem can be reduced. The analysis lends support to the existence of synchronism in closely spaced binaries.

  10. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  11. The Star Wars Scroll Illusion

    PubMed Central

    2015-01-01

    The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points), the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion. PMID:27648216

  12. Momentum flux parasitic to free-energy transfer

    DOE PAGES

    Stoltzfus-Dueck, T.; Scott, B.

    2017-05-11

    An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less

  13. Progress in Unsteady Turbopump Flow Simulations Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Chan, William; Kwak, Dochan

    2002-01-01

    This viewgraph presentation provides information on unsteady flow simulations for the Second Generation RLV (Reusable Launch Vehicle) baseline turbopump. Three impeller rotations were simulated by using a 34.3 million grid points model. MPI/OpenMP hybrid parallelism and MLP shared memory parallelism has been implemented and benchmarked in INS3D, an incompressible Navier-Stokes solver. For RLV turbopump simulations a speed up of more than 30 times has been obtained. Moving boundary capability is obtained by using the DCF module. Scripting capability from CAD geometry to solution is developed. Unsteady flow simulations for advanced consortium impeller/diffuser by using a 39 million grid points model are currently underway. 1.2 impeller rotations are completed. The fluid/structure coupling is initiated.

  14. The influence of clinostat rotation on the fertilized amphibian egg.

    NASA Technical Reports Server (NTRS)

    Tremor, J. W.; Souza, K. A.

    1972-01-01

    Study in which unrestrained, fertilized eggs of Rana pipiens and Xenopus laevis were rotated in a plane parallel to the normal gravity vector. In R. pipiens rotation at 1/4 rpm for five days at 18 C produced a significantly increased number of commonly occurring abnormalities. Rotation at 1/15, 1/8, 1, 2, 5 and 10 rpm did not significantly affect normal development. X. laevis eggs reacted similarly. R. pipiens eggs were most sensitive to rotation at 1/4 rpm when exposure was initiated before first cleavage. Mixing of intracellular constituents apparently occurred only at 1/4 rpm in R. pipiens (of the clinostat speeds studied), and may have been the cause of the increased abnormality observed at this rate.

  15. The utility of micro-CT and MRI in the assessment of longitudinal growth of liver metastases in a preclinical model of colon carcinoma.

    PubMed

    Pandit, Prachi; Johnston, Samuel M; Qi, Yi; Story, Jennifer; Nelson, Rendon; Johnson, G Allan

    2013-04-01

    Liver is a common site for distal metastases in colon and rectal cancer. Numerous clinical studies have analyzed the relative merits of different imaging modalities for detection of liver metastases. Several exciting new therapies are being investigated in preclinical models. But, technical challenges in preclinical imaging make it difficult to translate conclusions from clinical studies to the preclinical environment. This study addresses the technical challenges of preclinical magnetic resonance imaging (MRI) and micro-computed tomography (CT) to enable comparison of state-of-the-art methods for following metastatic liver disease. We optimized two promising preclinical protocols to enable a parallel longitudinal study tracking metastatic human colon carcinoma growth in a mouse model: T2-weighted MRI using two-shot PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and contrast-enhanced micro-CT using a liposomal contrast agent. Both methods were tailored for high throughput with attention to animal support and anesthesia to limit biological stress. Each modality has its strengths. Micro-CT permitted more rapid acquisition (<10 minutes) with the highest spatial resolution (88-micron isotropic resolution). But detection of metastatic lesions requires the use of a blood pool contrast agent, which could introduce a confound in the evaluation of new therapies. MRI was slower (30 minutes) and had lower anisotropic spatial resolution. But MRI eliminates the need for a contrast agent and the contrast-to-noise between tumor and normal parenchyma was higher, making earlier detection of small lesions possible. Both methods supported a relatively high-throughput, longitudinal study of the development of metastatic lesions. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  16. Ion Loss as an Intrinsic Momentum Source in Tokamaks

    NASA Astrophysics Data System (ADS)

    Boedo, J. A.

    2014-10-01

    A series of coupled experiments in DIII-D and simulations provide strong support for the kinetic loss of thermal ions from the edge as the mechanism for toroidal momentum generation in tokamaks. Measurements of the near-separatrix parallel velocity of D+ with Mach probes show a 1-2 cm wide D+ parallel velocity peak at the separatrix reaching 40-60 km/s, up to half the thermal velocity, always in the direction of the plasma current. The magnitude and width of the velocity layer are in excellent agreement with a first-principle, collissionless, kinetic computation of selective particle loss due to the loss cone including for the first time the measured radial electric field, Er in steady state. C6+ rotation in the core, measured with charge exchange recombination (CER) spectroscopy is correlated with the edge D+ velocity. XGC0 computations, which include collisions and kinetic ions and electrons, show results that agree with the measurements, and indicate that two mechanisms are relevant: 1) ion orbit loss and 2) a growing influence of the Pfirsch-Schluter mechanism in H-mode gradients. The inclusion of the measured Er in the loss-cone model drastically affects the width and magnitude of the velocity profile and improves agreement with the Mach probe measurements. A fine structure in Er is found, still of unknown origin, featuring large (10-20 kV/m) positive peaks in the SOL and at, or slightly inside, the separatrix of low power L- or H-mode conditions. This high resolution probe measurement of Er agrees with CER measurements where the techniques overlap. The flow is attenuated in higher collisionality conditions, consistent with a depleted loss-cone mechanism. Supported by the US DOE under DE-FG02-07ER54917, DE-FC02-08ER54977, & DE-FC02-04ER54698.

  17. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  18. The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction

    PubMed Central

    Burkett, James P.; Young, Larry J.

    2012-01-01

    Rationale Love has long been referred to as an addiction in literature and poetry. Scientists have often made comparisons between social attachment processes and drug addiction, and it has been suggested that the two may share a common neurobiological mechanism. Brain systems that evolved to govern attachments between parents and children, and between monogamous partners, may be the targets of drugs of abuse and serve as the basis for addiction processes. Objectives Here, we review research on drug addiction in parallel with research on social attachments, including parent-offspring attachments and social bonds between mating partners. This review focuses on the brain regions and neurochemicals with the greatest overlap between addiction and attachment, and in particular the mesolimbic dopamine pathway. Results Significant overlap exists between these two behavioral processes. In addition to conceptual overlap in symptomatology, there is a strong commonality between the two domains regarding the roles and sites of action of dopamine, opioids, and corticotrophin-releasing factor (CRF). The neuropeptides oxytocin and vasopressin are hypothesized to integrate social information into attachment processes that is not present in drug addiction. Conclusions Social attachment may be understood as a behavioral addiction, whereby the subject becomes addicted to another individual and the cues that predict social reward. Understandings from both fields may enlighten future research on addiction and attachment processes. PMID:22885871

  19. The electromagnetic analogy of a ball on a rotating conical turntable

    NASA Astrophysics Data System (ADS)

    Zengel, Keith

    2017-12-01

    A ball on a flat rotating turntable executes circular orbits analogous to those of a charged particle in a uniform magnetic field. Stable circular orbits are also possible on rotating conical turntables and are analogous to those of a charged particle in an axial magnetic field superimposed on a radial electric field. The existence and stability of these orbits is derived and discussed. Further, parallels are drawn between the mechanical and electromagnetic cases, with particular attention to the magnetic vector potential. Finally, an experimental confirmation is reported and discussed.

  20. A Simple Method to Control Positive Baseline Trend within Data Nonoverlap

    ERIC Educational Resources Information Center

    Parker, Richard I.; Vannest, Kimberly J.; Davis, John L.

    2014-01-01

    Nonoverlap is widely used as a statistical summary of data; however, these analyses rarely correct unwanted positive baseline trend. This article presents and validates the graph rotation for overlap and trend (GROT) technique, a hand calculation method for controlling positive baseline trend within an analysis of data nonoverlap. GROT is…

  1. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  2. Multifrequency observations of the radio continuum emission from NGC 253. 1: Magnetic fields and rotation measures in the bar and halo

    NASA Astrophysics Data System (ADS)

    Beck, R.; Carilli, C. L.; Holdaway, M. A.; Klein, U.

    1994-12-01

    Radio continuum observations of the spiral galaxy NGC 253 with the Effelsberg and Very Large Array (VLA) telescopes reveal polarized emission from the bar and halo regions. Within the bar Faraday depolarization is strong at 1.5 and 5 GHz, due to ionized gas with ne approximately equal 0.1 - 3/cu cm which is mixed with turbulent magnetic fields of approximately equal 17 microG estimated strength. Even at 10 GHz the degree of polarization in the bar is low (only approximately equal 5% east and approximately equal 2% west of the nucleus) due to beam depolarization by unresolved tangled fields. In contrast, the magnetic fields in the halo are highly uniform, as indicated by fractional polarizations up to 40% at 10 GHz. Faraday depolarization in the halo at 1.5 GHz calls for a warm, clumpy gas component with ne approximately equal 0.02/cu cm and approximately equal 6 microG turbulent fields. We detected Faraday rotation in the bar, with rotation measures absolute value of RM approximately equal 100 rad/sq m (between 10 and 5 GHz) having different signs east and west of the nucleus. Below 5 GHz Faraday rotation is strongly reduced by the limited transparency for polarized emission in the bar. Faraday rotation in the halo in two regions at approximately 5 kpc above and below the plane with RM approximately equal -7 rad/sq m between 10 and 1.5 GHz can be ascribed to hot gas with mean value of ne approximately equal 0.002/cu cm and uniform fields along the line of sight of mean value of Bu parallel approximately equal -2 microG. The magnetic field structure in the bar and halo of NGC 253 is best described by the quadrupole-type dynamo mode SO, with a ring-like field in the bar and a field mainly parallel to the plane in a co-rotating halo. A major perturbation occurs in the east where the field is perpendicular to the plane and follows a 'spur'. The galactic wind is suppressed by the dominating plane-parallel field, except along the spur.

  3. Analysis of pelvic rotation on the standard hip ventrodorsal extended radiographic view.

    PubMed

    Martins, João; Colaço, Bruno J; Ferreira, António J; Ginja, Mário M

    2016-01-01

    To study the symmetry of the iliac horizontal diameter (IHD) maximum obturator foramen width (OFW), ischiatic femoral overlap (IFO), pelvic horizontal radius (PHR), femoral head diameter (FHD), and obturator foramen area (OFA) parameters in the normal hip extended radiographic view and to evaluate the correlation of pelvic rotation with the magnitude of asymmetry of these parameters. Nine canine cadavers from adult, large and giant breeds were radiographed in standard hip extended views and with 2°, 4° and 6° degrees of rotation. The variables IHD, OFW, IFO, PHR, FHD, and OFA were analysed in radiographs. The IHD measurements exhibited repeatability, bilateral symmetry and 95% of confidence interval of asymmetry in different pelvic rotations without superposition (p <0.05); OFW and IFO exhibited repeatability, bilateral symmetry and a small superposition in 95% of confidence interval of asymmetry according different pelvic rotations; PHR, FHD and OFA exhibited repeatability, bilateral symmetry and unacceptable superposition in 95% of confidence interval of asymmetry depending on pelvic rotation. The IHD is the recommended variable and OFW is an acceptable variable in order to evaluate slight pelvic rotation. The data may be used in qualitative analyses of hip extended radiographic views. In the future, complementary studies should be performed to evaluate the impact of degree of pelvic rotation on the hip dysplasia score.

  4. Photovoltaic performance and the energy landscape of CH3NH3PbI3.

    PubMed

    Zhou, Yecheng; Huang, Fuzhi; Cheng, Yi-Bing; Gray-Weale, Angus

    2015-09-21

    Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions. Our results suggest the methylammonium ions in CH3NH3PbI3 prefer to rotate collectively, and to be parallel to their neighbours. Changes in polarization on rotation of methylammonium ions are two to three times larger than those on relaxation of the lead ion from the centre of its coordination shell. The preferences for parallel configuration and concerted rotation, with the polarisation changes, are consistent with ferroelectricity in the material, and indicate that this polarisation is governed by methylammonium orientational correlations. We show that the field due to this polarisation is strong enough to screen the field hindering charge transport, and find this screening field in agreement with experiment. We examine two possible mechanisms for the effect of methylammonium ion rotation on photovoltaic performance. One is that rearrangement of methylammoniums promotes the creation and transport of charge carriers. Some effective masses change greatly, but changes in band structure with methylammonium rotation are not large enough to explain current-voltage hysteresis behaviour. The second possible mechanism is that polarization screens the hindering electric field, which arises from charge accumulation in the transport layers. Polarization changes on methylammonium rotation favour this second mechanism, suggesting that collective reorientation of methylammonium ions in the bulk crystal are in significant part responsible for the hysteresis and power conversion characteristics of CH3NH3PbI3 photovoltaic cells.

  5. New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil

    2010-05-01

    New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an angle alpha=25°. Constructed finite strain ellipsoid based on the X-axes of the elliptical shaped deformed markers of the diapir cover sequences show trend X-axis of the strain ellipsoid making an angle phai=2° with the boundary zones. The steep plunging stretching lineation primarily controlled by the plastic/viscous flow. This also show that during inclined upwelling boundary-parallel diapers, X-, Y-axes of the strain ellipsoid rotated clockwise and Z-axis experienced counter clockwise rotation with triclinic symmetries relative to the Zagros curvilinear transpression boundary zones with an orientation of N42°plus/minus 24°W.

  6. Mental object rotation and the planning of hand movements.

    PubMed

    Wohlschläger, A

    2001-05-01

    Recently, we showed that the simultaneous execution of rotational hand movements interferes with mental object rotation, provided that the axes of rotation coincide in space. We hypothesized that mental object rotation and the programming of rotational hand movements share a common process presumably involved in action planning. Two experiments are reported here that show that the mere planning of a rotational hand movement is sufficient to cause interference with mental object rotation. Subjects had to plan different spatially directed hand movements that they were asked to execute only after they had solved a mental object rotation task. Experiment 1 showed that mental object rotation was slower if hand movements were planned in a direction opposite to the presumed mental rotation direction, but only if the axes of hand rotation and mental object rotation were parallel in space. Experiment 2 showed that this interference occurred independent of the preparatory hand movements observed in Experiment 1. Thus, it is the planning of hand movements and not their preparation or execution that interferes with mental object rotation. This finding underlines the idea that mental object rotation is an imagined (covert) action, rather than a pure visual-spatial imagery task, and that the interference between mental object rotation and rotational hand movements is an interference between goals of actions.

  7. 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging.

    PubMed

    Tan, Huan; Hoge, W Scott; Hamilton, Craig A; Günther, Matthias; Kraft, Robert A

    2011-07-01

    Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single-shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal-to-noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T(2) decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm(3) nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Copyright © 2011 Wiley-Liss, Inc.

  8. Detectability of neural tracts and nuclei in the brainstem utilizing 3DAC-PROPELLER.

    PubMed

    Nishikawa, Taro; Okamoto, Kouichirou; Matsuzawa, Hitoshi; Terumitsu, Makoto; Nakada, Tsutomu; Fujii, Yukihiko

    2014-01-01

    Despite clinical importance of identifying exact anatomical location of neural tracts and nuclei in the brainstem, no neuroimaging studies have validated the detectability of these structures. The aim of this study was to assess the detectability of the structures using three-dimensional anisotropy contrast-periodically rotated overlapping parallel lines with enhanced reconstruction (3DAC-PROPELLER) imaging. Forty healthy volunteers (21 males, 19 females; 19-53 years, average 23.4 years) participated in this study. 3DAC-PROPELLER axial images were obtained with a 3T-MR system at four levels of the brainstem: the lower midbrain, upper and lower pons, and medulla oblongata. Three experts independently judged whether five tracts (corticospinal tract, medial lemniscus, medial longitudinal fasciculus, central tegmental and spinothalamic tracts) and 10 nuclei (oculomotor and trochlear nuclei, spinal trigeminal, abducens, facial, vestibular, hypoglossal, prepositus, and solitary nuclei, locus ceruleus, superior and inferior olives) on each side could be identified. In total, 240 assessments were made. The five tracts and eight nuclei were identified in all the corresponding assessments, whereas the locus ceruleus and superior olive could not be identified in 3 (1.3%) and 16 (6.7%) assessments, respectively. 3DAC-PROPELLER seems extremely valuable imaging method for mapping out surgical strategies for brainstem lesions. Copyright © 2013 by the American Society of Neuroimaging.

  9. Efficacy of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) for shoulder magnetic resonance (MR) imaging.

    PubMed

    Nagatomo, Kazuya; Yabuuchi, Hidetake; Yamasaki, Yuzo; Narita, Hiroshi; Kumazawa, Seiji; Kojima, Tsukasa; Sakai, Noriyuki; Masaki, Masahumi; Kimura, Hiroshi

    2016-10-01

    To elucidate the utility of PROPELLER for motion artefact reduction on shoulder MRI and to examine the influence of streak artefacts on diagnosis of clinical images. 15 healthy volunteers and 48 patients underwent shoulder MRI with/without PROPELLER (coronal oblique proton density-fast spin echo [PD-FSE], sagittal oblique T2-FSE). In a volunteer study, all sequences were performed in both static and exercise-loaded conditions. Two radiologists graded artefacts and delineation of various anatomical structures in the volunteer study and motion and streak artefacts in the clinical study. Mean scores were compared between sequences with/without PROPELLER. In the clinical study, mean scores of motion artefacts were compared with mean scores of streak artefacts. Wilcoxon signed-rank test was used for all comparisons. In both studies, PROPELLER significantly reduced motion artefacts (P<0.05). In the volunteer study, it significantly improved delineations in sagittal oblique images in the exercise-loaded condition (P<0.05). In the clinical study, streak artefacts appeared dominantly on images with PROPELLER (P<0.05), but influenced diagnosis to a lesser extent than motion artefacts. PROPELLER can reduce motion artefacts in shoulder MRI. While it does cause streak artefacts, it affects diagnosis to a lesser extent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging

    DOE PAGES

    Bohlin, Gustav Alexis; Jainski, Christopher; Patterson, Brian D.; ...

    2016-08-10

    Ultrabroadband coherent anti-Stokes Ra man spectroscopy (CARS) has been developed for one -dimensional imaging of temperature and major species distributions simultaneously in the near-wall region of a methane/air flame supported on a side-wall-quenching (SWQ) burner. Automatic temporal and spatial overlap of the ~7 femtosecond pump and Stokes pulses is achieved utilizing a two-beam CARS phase-matching scheme, and the crossed ~75 picosecond probe beam provide s excellent spatial sectioning of the probed location. Concurrent detection of N 2, O 2, H 2, CO, CO 2, and CH 4 is demonstrated while high-fidelity flame thermometry is assessed from the N 2 puremore » rotational S-branch in a one-dimensional -CARS imaging configuration. A methane/air premixed flame at lean, stoichiometric, and rich conditions ( Φ = 0.83, 1.0 , and 1.2) and Reynolds number = 5,000 is probed as it quenches against a cooled steel side- wall parallel to the flow providing a persistent flame-wall interaction. Here, an imaging resolution of better than 40 μm is achieved across the field -of-view, thus allowing thermochemical states (temperature and major species) of the thermal boundary layer to be resolved to within ~30 μm of the interface.« less

  11. Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlin, Gustav Alexis; Jainski, Christopher; Patterson, Brian D.

    Ultrabroadband coherent anti-Stokes Ra man spectroscopy (CARS) has been developed for one -dimensional imaging of temperature and major species distributions simultaneously in the near-wall region of a methane/air flame supported on a side-wall-quenching (SWQ) burner. Automatic temporal and spatial overlap of the ~7 femtosecond pump and Stokes pulses is achieved utilizing a two-beam CARS phase-matching scheme, and the crossed ~75 picosecond probe beam provide s excellent spatial sectioning of the probed location. Concurrent detection of N 2, O 2, H 2, CO, CO 2, and CH 4 is demonstrated while high-fidelity flame thermometry is assessed from the N 2 puremore » rotational S-branch in a one-dimensional -CARS imaging configuration. A methane/air premixed flame at lean, stoichiometric, and rich conditions ( Φ = 0.83, 1.0 , and 1.2) and Reynolds number = 5,000 is probed as it quenches against a cooled steel side- wall parallel to the flow providing a persistent flame-wall interaction. Here, an imaging resolution of better than 40 μm is achieved across the field -of-view, thus allowing thermochemical states (temperature and major species) of the thermal boundary layer to be resolved to within ~30 μm of the interface.« less

  12. Improve Image Quality of Transversal Relaxation Time PROPELLER and FLAIR on Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.

    2018-03-01

    The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).

  13. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  14. Design fluency and neuroanatomical correlates in 54 neurosurgical patients with lesions to the right hemisphere.

    PubMed

    Marin, Dario; Madotto, Eleonora; Fabbro, Franco; Skrap, Miran; Tomasino, Barbara

    2017-10-01

    We addressed the neuroanatomical correlates of 54 right-brain-damaged neurosurgical patients on visuo-spatial design fluency, which is a measure of the ability to generate/plan a series of new abstract combinations in a flexible way. 22.2% of the patients were impaired. They failed the task because they did not use strategic behavior, in particular they used rotational strategy to a significantly lower extent and produced a significantly higher rate of perseverative errors. Overall performance did not correlate with neuropsychological tests, suggesting that proficient performance was independent of other cognitive domains. Performance significantly correlated with use of rotational strategy. Tasks related to executive functions such as psychomotor speed and capacity to shift were positively correlated to the number of strategies used to solve the task. Lesion analysis showed that the maximum density of the patients' lesions-obtained by subtracting the overlap of lesions of spared patients from the overlap of lesions of impaired patients-overlaps with the precentral gyrus, rolandic operculum/insula, superior/middle temporal gyrus/hippocampus and, at subcortical level, with part of the superior longitudinal fasciculus, external capsule, retrolenticular part of the internal capsule and sagittal stratum (inferior longitudinal fasciculus and inferior fronto-occipital fasciculus). These areas are part of the fronto-parietal-temporal network known to be involved in top-down control of visuo-spatial attention, suggesting that the mechanisms and the strategies needed for proficient performance are essentially visuo-spatial in nature.

  15. Arsenate arrests flagellar rotation in cytoplasm-free envelopes of bacteria.

    PubMed Central

    Margolin, Y; Barak, R; Eisenbach, M

    1994-01-01

    The effect of arsenate on flagellar rotation in cytoplasm-free flagellated envelopes of Escherichia coli and Salmonella typhimurium was investigated. Flagellar rotation ceased as soon as the envelopes were exposed to arsenate. Inclusion of phosphate intracellularly (but not extracellular) prevented the inhibition by arsenate. In a parallel experiment, the rotation was not affected by inclusion of an ATP trap (hexokinase and glucose) within the envelopes. It is concluded that arsenate affects the motor in a way other than reversible deenergization. This may be an irreversible damage to the cell or direct inhibition of the motor by arsenate. The latter possibility suggests that a process of phosphorylation or phosphate binding is involved in the motor function. PMID:8071237

  16. Heliostat for astronomical usage

    NASA Technical Reports Server (NTRS)

    Heyde, G.

    1979-01-01

    The design of a heliostat is presented. The invention consists of a mechanical polar axis which can rotate and which is parallel to the world axis. A mirror is supported in such a way that it can be rotated arbitrarily around a declination axis which is perpendicular to it. After execution of this rotation, the mirror can be clamped in the plane of the world axis, which can be corrected and verified by special collimation directions. The clockwork or drive unit can be driven for a 24 or 48 hour complete rotation of the axis using any known device such as switchable gears, without changing its regular variation related to stellar time or mean solar time.

  17. Excessive glenohumeral horizontal abduction as occurs during the late cocking phase of the throwing motion can be critical for internal impingement.

    PubMed

    Mihata, Teruhisa; McGarry, Michelle H; Kinoshita, Mitsuo; Lee, Thay Q

    2010-02-01

    The objective of this study was to determine the effects of increased horizontal abduction with maximum external rotation, as occurs during the late cocking phase of throwing motion, on shoulder internal impingement. An increase in glenohumeral horizontal abduction will cause overlap of the rotator cuff insertion with respect to the glenoid and increase pressure between the supraspinatus and infraspinatus tendon insertions on the greater tuberosity and the glenoid. Controlled laboratory study. Eight cadaveric shoulders were tested with a custom shoulder testing system with the specimens in 60 degrees of glenohumeral abduction and maximum external rotation. The amount of internal impingement was evaluated by assessing the location of the supraspinatus and infraspinatus articular insertions on the greater tuberosity relative to the glenoid using a MicroScribe 3DLX. Pressure in the posterior-superior quadrant of the glenoid was measured using Fuji prescale film. Data were obtained with the humerus in the scapular plane and 15 degrees , 30 degrees , and 45 degrees of horizontal abduction from the scapular plane. At 30 degrees and 45 degrees of horizontal abduction, the articular margin of the supraspinatus and infraspinatus tendons was anterior to the posterior edge of the glenoid and less than 2 mm from the glenoid rim in the lateral direction; the contact pressure was also greater than that found in the scapular plane and 15 degrees of horizontal abduction. Conclusion Horizontal abduction beyond the coronal plane increased the amount of overlap and contact pressure between the supraspinatus and infraspinatus tendons and glenoid. Excessive glenohumeral horizontal abduction beyond the coronal plane may cause internal impingement, which may lead to rotator cuff tears and superior labral anterior to posterior (SLAP) lesions.

  18. Seismic anisotropy in the vicinity of the Alpine fault, New Zealand, estimated by seismic interferometry

    NASA Astrophysics Data System (ADS)

    Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.

    2016-12-01

    We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.

  19. Effect of rotation on Jeans instability of magnetized radiative quantum plasma

    NASA Astrophysics Data System (ADS)

    Joshi, H.; Pensia, R. K.

    2017-03-01

    The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.

  20. Effect of rotation on gravitational instability of optically thick magnetized quantum plasma in the presence of radiation

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Pensia, R. K.

    2018-05-01

    This paper deals with the effect of rotation on the gravitational instability of optically thick magnetized quantum plasma in the presence of radiation. By using linearized perturbation equations of the problem, general dispersion relation is obtained which is reduced for longitudinal and transverse modes of propagation. For each mode, the problem is analyzed for two cases, when the direction of axis of rotation is parallel or perpendicular to the direction of magnetic field. Rotation parameter is found to modify the Jeans criterion of instability and expression for Jeans wavelength for transverse mode, when the axis of rotation is along the direction of magnetic field and it has stabilizing effect on the system. Magnetic field, radiation pressure and quantum correction also found to have stabilizing effect.

  1. Ontogeny of the sheathing leaf base in maize (Zea mays).

    PubMed

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Dynactin-dependent cortical dynein and spherical spindle shape correlate temporally with meiotic spindle rotation in Caenorhabditis elegans

    PubMed Central

    Crowder, Marina E.; Flynn, Jonathan R.; McNally, Karen P.; Cortes, Daniel B.; Price, Kari L.; Kuehnert, Paul A.; Panzica, Michelle T.; Andaya, Armann; Leary, Julie A.; McNally, Francis J.

    2015-01-01

    Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin. PMID:26133383

  3. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  4. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  5. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    NASA Astrophysics Data System (ADS)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  6. CPD and KT: Models Used and Opportunities for Synergy

    ERIC Educational Resources Information Center

    Sargeant, Joan; Borduas, Francine; Sales, Anne; Klein, Doug; Lynn, Brenna; Stenerson, Heather

    2011-01-01

    The two fields of continuing professional development (CPD) and knowledge translation (KT) within the health care sector, and their related research have developed as somewhat parallel paths with limited points of overlap or intersection. This is slowly beginning to change. The purpose of this paper is to describe and compare the dominant…

  7. Professional versus Occupational Models of Work Competence

    ERIC Educational Resources Information Center

    Lester, Stan

    2014-01-01

    In addition to the familiar occupational standards that underpin National Vocational Qualifications, the UK has a parallel if less complete system of competence or practice standards that are developed and controlled by professional bodies. While there is a certain amount of overlap between the two types of standard, recent research points to a…

  8. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  9. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  10. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  11. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  12. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  13. Parallel changes in genital morphology delineate cryptic diversification of planktonic nudibranchs

    PubMed Central

    Churchill, Celia K. C.; Alejandrino, Alvin; Valdés, Ángel; Ó Foighil, Diarmaid

    2013-01-01

    The relative roles of geographical and non-geographical barriers in the genesis of genetic isolation are highly debated in evolutionary biology, yet knowing how speciation occurs is essential to our understanding of biodiversity. In the open ocean, differentiating between the two is particularly difficult, because of the high levels of gene flow found in pelagic communities. Here, we use molecular phylogenetics to test the hypothesis that geography is the primary isolating mechanism in a clade of pelagic nudibranchs, Glaucinae. Our results contradict allopatric expectations: the cosmopolitan Glaucus atlanticus is panmictic, whereas the Indo-Pacific Glaucus marginatus contains two pairs of cryptic species with overlapping distributions. Within the G. marginatus species complex, a parallel reproductive change has occurred in each cryptic species pair: the loss of a bursa copulatrix. Available G. marginatus data are most consistent with non-geographical speciation events, but we cannot rule out the possibility of allopatric speciation, followed by iterative range extension and secondary overlap. Irrespective of ancestral range distributions, our results implicate a central role for reproductive character differentiation in glaucinin speciation—a novel result in a planktonic system. PMID:23825213

  14. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks

    PubMed Central

    Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. PMID:22586375

  15. Material Implementation of Hyperincursive Field on Slime Mold Computer

    NASA Astrophysics Data System (ADS)

    Aono, Masashi; Gunji, Yukio-Pegio

    2004-08-01

    "Elementary Conflictable Cellular Automaton (ECCA)" was introduced by Aono and Gunji as a problematic computational syntax embracing the non-deterministic/non-algorithmic property due to its hyperincursivity and nonlocality. Although ECCA's hyperincursive evolution equation indicates the occurrence of the deadlock/infinite-loop, we do not consider that this problem declares the fundamental impossibility of implementing ECCA materially. Dubois proposed to call a computing system where uncertainty/contradiction occurs "the hyperincursive field". In this paper we introduce a material implementation of the hyperincursive field by using plasmodia of the true slime mold Physarum polycephalum. The amoeboid organism is adopted as a computing media of ECCA slime mold computer (ECCA-SMC) mainly because; it is a parallel non-distributed system whose locally branched tips (components) can act in parallel with asynchronism and nonlocal correlation. A notable characteristic of ECCA-SMC is that a cell representing a spatio-temporal segment of computation is occupied (overlapped) redundantly by multiple spatially adjacent computing operations and by temporally successive computing events. The overlapped time representation may contribute to the progression of discussions on unconventional notions of the time.

  16. Transparency in stereopsis: parallel encoding of overlapping depth planes.

    PubMed

    Reeves, Adam; Lynch, David

    2017-08-01

    We report that after extensive training, expert adults can accurately report the number, up to six, of transparent overlapping depth planes portrayed by brief (400 ms or 200 ms) random-element stereoscopic displays, and can well discriminate six from seven planes. Naïve subjects did poorly above three planes. Displays contained seven rows of 12 randomly located ×'s or +'s; jittering the disparities and number in each row to remove spurious cues had little effect on accuracy. Removing the central 3° of the 10° display to eliminate foveal vision hardly reduced the number of reportable planes. Experts could report how many of six planes contained +'s when the remainder contained ×'s, and most learned to report up to six planes in reverse contrast (left eye white +'s; right eye black +'s). Long-term training allowed some experts to reach eight depth planes. Results suggest that adult stereoscopic vision can learn to distinguish the outputs of six or more statistically independent, contrast-insensitive, narrowly tuned, asymmetric disparity channels in parallel.

  17. Method for simultaneous overlapped communications between neighboring processors in a multiple

    DOEpatents

    Benner, Robert E.; Gustafson, John L.; Montry, Gary R.

    1991-01-01

    A parallel computing system and method having improved performance where a program is concurrently run on a plurality of nodes for reducing total processing time, each node having a processor, a memory, and a predetermined number of communication channels connected to the node and independently connected directly to other nodes. The present invention improves performance of performance of the parallel computing system by providing a system which can provide efficient communication between the processors and between the system and input and output devices. A method is also disclosed which can locate defective nodes with the computing system.

  18. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  19. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C [Cambridge, MA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-08-18

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. One or more position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  20. Quantum switching of π-electron rotations in a nonplanar chiral molecule by using linearly polarized UV laser pulses.

    PubMed

    Mineo, Hirobumi; Yamaki, Masahiro; Teranishi, Yoshiaki; Hayashi, Michitoshi; Lin, Sheng Hsien; Fujimura, Yuichi

    2012-09-05

    Nonplanar chiral aromatic molecules are candidates for use as building blocks of multidimensional switching devices because the π electrons can generate ring currents with a variety of directions. We employed (P)-2,2'-biphenol because four patterns of π-electron rotations along the two phenol rings are possible and theoretically determine how quantum switching of the π-electron rotations can be realized. We found that each rotational pattern can be driven by a coherent excitation of two electronic states under two conditions: one is the symmetry of the electronic states and the other is their relative phase. On the basis of the results of quantum dynamics simulations, we propose a quantum control method for sequential switching among the four rotational patterns that can be performed by using ultrashort overlapped pump and dump pulses with properly selected relative phases and photon polarization directions. The results serve as a theoretical basis for the design of confined ultrafast switching of ring currents of nonplanar molecules and further current-induced magnetic fluxes of more sophisticated systems.

  1. Compliant Robot Wrist

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    Compliant element for robot wrist accepts small displacements in one direction only (to first approximation). Three such elements combined to obtain translational compliance along three orthogonal directions, without rotational compliance along any of them. Element is double-blade flexure joint in which two sheets of spring steel attached between opposing blocks, forming rectangle. Blocks moved parallel to each other in one direction only. Sheets act as double cantilever beams deforming in S-shape, keeping blocks parallel.

  2. Electro-mechanical sine/cosine generator

    NASA Technical Reports Server (NTRS)

    Flagge, B. (Inventor)

    1972-01-01

    An electromechanical device for generating both sine and cosine functions is described. A motor rotates a cylinder about an axis parallel to and a slight distance from the central axis of the cylinder. Two noncontacting displacement sensing devices are placed ninety degrees apart, equal distances from the axis of rotation of the cylinder and short distances above the surface of cylinder. Each of these sensing devices produces an electrical signal proportional to the distance that it is away from the cylinder. Consequently, as the cylinder is rotated the outputs from the two sensing devices are the sine and cosine functions.

  3. Redundant motor drive system

    NASA Technical Reports Server (NTRS)

    Calvert, J. A. (Inventor)

    1980-01-01

    A drive system characterized by a base supporting a pair of pillars arranged in spaced parallelism, a shaft extended between and supported by the pillars for rotation about the longitudinal axis thereof, a worm gear affixed to the shaft and supported in coaxial relation therewith is described. A bearing housing of a sleeve like configuration is concentrically related to the shaft and is supported thereby for free rotation. A first and a second quiescent drive train, alternatively activatable, is provided for imparting rotation into said bearing housing. Each of the drive trains is characterized by a selectively energizable motor connected to a spur gear.

  4. Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion.

    PubMed

    Li, Guanglai; Tang, Jay X

    2009-08-14

    In this Letter we propose a kinematic model to explain how collisions with a surface and rotational Brownian motion give rise to accumulation of microswimmers near a surface. In this model, an elongated microswimmer invariably travels parallel to the surface after hitting it from an oblique angle. It then swims away from the surface, facilitated by rotational Brownian motion. Simulations based on this model reproduce the density distributions measured for the small bacteria E. coli and Caulobacter crescentus, as well as for the much larger bull spermatozoa swimming between two walls.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.

    The rotational motion of inertia-free spheroids has been studied in a numerically simulated turbulent channel flow. Although inertia-free spheroids were translated as tracers with the flow, neither the disk-like nor the rod-like particles adapted to the fluid rotation. The flattest disks preferentially aligned their symmetry axes normal to the wall, whereas the longest rods were parallel with the wall. The shape-dependence of the particle orientations carried over to the particle rotation such that the mean spin was reduced with increasing departure from sphericity. The streamwise spin fluctuations were enhanced due to asphericity, but substantially more for prolate than for oblatemore » spheroids.« less

  6. SYSTEM FOR UNLOADING REACTORS

    DOEpatents

    Rand, A.C. Jr.

    1961-05-01

    An unloading device for individual vertical fuel channels in a nuclear reactor is shown. The channels are arranged in parallel rows and underneath each is a separate supporting block on which the fuel in the channel rests. The blocks are raounted in contiguous rows on an array of parallel pairs of tracks over the bottom of the reactor. Oblong hollows in the blocks form a continuous passageway through the middle of the row of blocks on each pair of tracks. At the end of each passageway is a horizontal grappling rod with a T- or L extension at the end next to the reactor of a length to permit it to pass through the oblong passageway in one position, but when rotated ninety degrees the head will strike one of the longer sides of the oblong hollow of one of the blocks. The grappling rod is actuated by a controllable reciprocating and rotating device which extends it beyond any individual block desired, rotates it and retracts it far enough to permit the fuel in the vertical channel above the block to fall into a handling tank below the reactor.

  7. Collision energy dependent cross section and rotational alignment of NO (A 2Σ+) in the energy-transfer reaction of N2 (A 3Σu+) + NO (X 2Π) → N2 (X 1Σg+) + NO (A 2Σ+).

    PubMed

    Ohoyama, H

    2014-10-16

    We have studied the collision energy dependent cross section and alignment of NO (A (2)Σ(+)) rotation in the energy-transfer reaction of N2 (A (3)Σ(u)(+)) + NO (X (2)Π) → N2 (X (1)Σ(g)(+)) + NO (A (2)Σ(+)) at the collision energy (E) region of 0.03-0.2 eV. NO (A (2)Σ(+)) emission in two linear polarization directions in the collision frame (parallel (∥) and perpendicular (⊥) with respect to the relative velocity vector (vR)) has been measured as a function of collision energy. NO (A (2)Σ(+)) rotation (J-vector) turns out to be aligned perpendicular to vR. In addition, collision energy is found to enhance the degree of alignment of NO (A (2)Σ(+)) rotation. The collision energy dependent cross sections σ(∥,(⊥))(E) (excitation functions) show a rapid fall-off following an initial rise with a threshold less than 0.02 eV. The excitation function at the parallel alignment of NO (A (2)Σ(+)) rotation, σ(J∥v(R), (E), is slightly shifted to the low collision energy region as compared with σ(J ⊥ vR, E). We propose that the rapid fall-off feature in the excitation function is attributed to the multidimensional nonadiabatic transitions.

  8. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  9. Method of and apparatus for collecting solar radiation utilizing variable curvature cylindrical reflectors

    DOEpatents

    Treytl, William J.; Slemmons, Arthur J.; Andeen, Gerry B.

    1979-01-01

    A heliostat apparatus includes a frame which is rotatable about an axis which is parallel to the aperture plane of an elongate receiver. A plurality of flat flexible mirror elements are mounted to the frame between several parallel, uniformly spaced resilient beams which are pivotally connected at their ends to the frame. Channels are mounted to the sides of the beams for supporting the edges of the mirror elements. Each of the beams has a longitudinally varying configuration designed to bow into predetermined, generally circular curvatures of varying radii when the center of the beam is deflected relative to the pivotally connected ends of the beams. All of the parallel resilient beams are simultaneously deflected by a cam shaft assembly extending through openings in the centers of the beams, whereby the mirror elements together form an upwardly concave, cylindrical reflecting surface. The heliostat is rotated about its axis to track the apparent diurnal movement of the sun, while the reflecting surface is substantially simultaneously bowed into a cylindrical trough having a radius adapted to focus incident light at the plane of the receiver aperture.

  10. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  11. Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.

    2017-04-01

    We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.

  12. VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2016-06-01

    Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).

  13. The structure of rotational discontinuities. [in solar wind

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1989-01-01

    This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle theta between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When theta is large, angular 'overshoots' are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (when theta is small), many different types of structure are seen, ranging from straight lines, to S-shaped curves, to complex, disorganized shapes.

  14. Klein-Gordon oscillator with position-dependent mass in the rotating cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Wang, Bing-Qian; Long, Zheng-Wen; Long, Chao-Yun; Wu, Shu-Rui

    2018-02-01

    A spinless particle coupled covariantly to a uniform magnetic field parallel to the string in the background of the rotating cosmic string is studied. The energy levels of the electrically charged particle subject to the Klein-Gordon oscillator are analyzed. Afterwards, we consider the case of the position-dependent mass and show how these energy levels depend on the parameters in the problem. Remarkably, it shows that for the special case, the Klein-Gordon oscillator coupled covariantly to a homogeneous magnetic field with the position-dependent mass in the rotating cosmic string background has the similar behaviors to the Klein-Gordon equation with a Coulomb-type configuration in a rotating cosmic string background in the presence of an external magnetic field.

  15. ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains

    PubMed Central

    Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz

    2016-01-01

    With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734

  16. Multi-GPU Acceleration of Branchless Distance Driven Projection and Backprojection for Clinical Helical CT.

    PubMed

    Mitra, Ayan; Politte, David G; Whiting, Bruce R; Williamson, Jeffrey F; O'Sullivan, Joseph A

    2017-01-01

    Model-based image reconstruction (MBIR) techniques have the potential to generate high quality images from noisy measurements and a small number of projections which can reduce the x-ray dose in patients. These MBIR techniques rely on projection and backprojection to refine an image estimate. One of the widely used projectors for these modern MBIR based technique is called branchless distance driven (DD) projection and backprojection. While this method produces superior quality images, the computational cost of iterative updates keeps it from being ubiquitous in clinical applications. In this paper, we provide several new parallelization ideas for concurrent execution of the DD projectors in multi-GPU systems using CUDA programming tools. We have introduced some novel schemes for dividing the projection data and image voxels over multiple GPUs to avoid runtime overhead and inter-device synchronization issues. We have also reduced the complexity of overlap calculation of the algorithm by eliminating the common projection plane and directly projecting the detector boundaries onto image voxel boundaries. To reduce the time required for calculating the overlap between the detector edges and image voxel boundaries, we have proposed a pre-accumulation technique to accumulate image intensities in perpendicular 2D image slabs (from a 3D image) before projection and after backprojection to ensure our DD kernels run faster in parallel GPU threads. For the implementation of our iterative MBIR technique we use a parallel multi-GPU version of the alternating minimization (AM) algorithm with penalized likelihood update. The time performance using our proposed reconstruction method with Siemens Sensation 16 patient scan data shows an average of 24 times speedup using a single TITAN X GPU and 74 times speedup using 3 TITAN X GPUs in parallel for combined projection and backprojection.

  17. Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berthier, Ludovic; Charbonneau, Patrick; Department of Physics, Duke University, Durham, North Carolina 27708

    Cavity point-to-set correlations are real-space tools to detect the roughening of the free-energy landscape that accompanies the dynamical slowdown of glass-forming liquids. Measuring these correlations in model glass formers remains, however, a major computational challenge. Here, we develop a general parallel-tempering method that provides orders-of-magnitude improvement for sampling and equilibrating configurations within cavities. We apply this improved scheme to the canonical Kob-Andersen binary Lennard-Jones model for temperatures down to the mode-coupling theory crossover. Most significant improvements are noted for small cavities, which have thus far been the most difficult to study. This methodological advance also enables us to study amore » broader range of physical observables associated with thermodynamic fluctuations. We measure the probability distribution of overlap fluctuations in cavities, which displays a non-trivial temperature evolution. The corresponding overlap susceptibility is found to provide a robust quantitative estimate of the point-to-set length scale requiring no fitting. By resolving spatial fluctuations of the overlap in the cavity, we also obtain quantitative information about the geometry of overlap fluctuations. We can thus examine in detail how the penetration length as well as its fluctuations evolve with temperature and cavity size.« less

  18. The serial nature of the masked onset priming effect revisited.

    PubMed

    Mousikou, Petroula; Coltheart, Max

    2014-01-01

    Reading aloud is faster when target words/nonwords are preceded by masked prime words/nonwords that share their first sound with the target (e.g., save-SINK) compared to when primes and targets are unrelated to each other (e.g., farm-SINK). This empirical phenomenon is the masked onset priming effect (MOPE) and is known to be due to serial left-to-right processing of the prime by a sublexical reading mechanism. However, the literature in this domain lacks a critical experiment. It is possible that when primes are real words their orthographic/phonological representations are activated in parallel and holistically during prime presentation, so any phoneme overlap between primes and targets (and not just initial-phoneme overlap) could facilitate target reading aloud. This is the prediction made by the only computational models of reading aloud that are able to simulate the MOPE, namely the DRC1.2.1, CDP+, and CDP++ models. We tested this prediction in the present study and found that initial-phoneme overlap (blip-BEST), but not end-phoneme overlap (flat-BEST), facilitated target reading aloud compared to no phoneme overlap (junk-BEST). These results provide support for a reading mechanism that operates serially and from left to right, yet are inconsistent with all existing computational models of single-word reading aloud.

  19. Performance-related test for asphalt emulsions.

    DOT National Transportation Integrated Search

    2004-10-01

    Yield stress was investigated as a potential quality control parameter for asphalt emulsions. Viscometric data were determined using the concentric cylinder, parallel plate, and cone and plate geometries with rotational rheometers. We also investigat...

  20. Laser weld jig. [Patent application

    DOEpatents

    Van Blarigan, P.; Haupt, D.L.

    1980-12-05

    A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reusable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  1. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-04-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  2. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  3. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  4. Creating Realistic 3D Graphics with Excel at High School--Vector Algebra in Practice

    ERIC Educational Resources Information Center

    Benacka, Jan

    2015-01-01

    The article presents the results of an experiment in which Excel applications that depict rotatable and sizable orthographic projection of simple 3D figures with face overlapping were developed with thirty gymnasium (high school) students of age 17-19 as an introduction to 3D computer graphics. A questionnaire survey was conducted to find out…

  5. Deer and Cattle Diets on Heavily Grazed Pine-Bluestem Range

    Treesearch

    Ronald E. Thill; Alton Martin

    1989-01-01

    We studied dietary overlap between captive white-tailed deer (n = 3) (Odocoileus virginianus) and cattle (n = 4) for 3 years on 2 rotationally burned, 54-ha longleaf pine (Pinus palustris)-bluestem (Andropogon spp.) pastures in central Louisiana. A third of each pasture was burned each year in late February. One pasture was grazed heavily (61-77% herbage use) yearlong...

  6. Common Mechanisms of DNA translocation motors in Bacteria and Viruses Using One-way Revolution Mechanism without Rotation

    PubMed Central

    Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Weitao, Tao

    2014-01-01

    Biomotors were once classified into two categories: linear motor and rotation motor. For decades, the viral DNA-packaging motor has been popularly believed to be a five-fold rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24 hours, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, T7 as well as bacterial DNA translocase FtsK and SpoIIIE as examples to elucidate the puzzles. These motors use a ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-parallel arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism avoids DNA coiling in translocating the lengthy genomic dsDNA helix could be advantage for cell replication such as bacterial binary fission and cell mitosis without the need for topoisomerase or helicase to consume additional energy. PMID:24913057

  7. Paleomagnetic and structural evidence for oblique slip in a fault-related fold, Grayback monocline, Colorado

    USGS Publications Warehouse

    Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.

    2008-01-01

    Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.

  8. Paleomagnetism and magnetic fabric of the Eastern Cordillera of Colombia: Evidence for oblique convergence and non-rotational reactivation of a Mesozoic intra-continental rift

    NASA Astrophysics Data System (ADS)

    Jiménez Díaz, G.; Speranza, F.; Faccenna, C.; Bayona, G.; Mora, A.

    2012-12-01

    The Eastern Cordillera of Colombia (EC) is a double-verging mountain system inverting a Mesozoic rift, and bounded by major reverse faults that locally involve crystalline and metamorphic Precambrian-Lower Paleozoic basement rocks, as well as Upper Paleozoic-Cenozoic sedimentary and volcanic sequences. In map view the EC is a curved mountain belt with a regional structural strike that ranges from NNE in the southern part to NNW in the northern part. The origin of its curvature has not been studied or discussed so far. We report on an extensive paleomagnetic and anisotropy of magnetic susceptibility (AMS) investigation of the EC, in order to address to test its non-rotational vs. oroclinal nature. Fifty-eight sites were gathered from Cretaceous to Miocene marine and continental strata, both from the southern and northern parts of the EC; additionally, we examined the southern Maracaibo plate, at the junction between the Santander Massif and the Merida Andes of Colombia (Cucuta zone). Twenty-three sites reveal no rotation of the EC range with respect to stable South America. In contrast, a 35°±9° clockwise rotation is documented in four post-Miocene magnetically overprinted sites from the Cucuta zone. Magnetic lineations from AMS analysis do not trend parallel to the chain, but are oblique to the main strike of the orogenic belt. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central-western Colombia accommodated by the EC, we suggest that the late Miocene-recent deformation occurred by a ENE oblique convergence reactivating a NNE rift zone. Our data show that the EC is a non-rotational chain, and that the locations of the Mesozoic rift and the mountain chain roughly correspond. One possible solution is that the oblique shortening is partitioned in pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well-known along both chain fronts), and by range-parallel right-lateral strike-slip fault(s), which have not been identified yet and likely occur in the axial part of the EC. The clockwise rotation in the Cucuta zone reflects late Cenozoic and ongoing right-lateral strike-slip displacement occurring along buried faults parallel to the Boconó fault system, possibly connected with the right-lateral faults inferred along the axial part of the EC.

  9. Vector correlation between the alignment of reactant N2 (A 3Σu+) and the alignment of product NO (A 2Σ+) rotation in the energy transfer reaction of aligned N2 (A 3Σu+) + NO (X 2Π) → NO (A 2Σ+) + N2 (X 1Σg+).

    PubMed

    Ohoyama, H

    2013-12-21

    The vector correlation between the alignment of reactant N2 (A (3)Σu(+)) and the alignment of product NO (A (2)Σ(+)) rotation has been studied in the energy transfer reaction of aligned N2 (A (3)Σu(+)) + NO (X (2)Π) → NO (A (2)Σ(+)) + N2 (X (1)Σg(+)) under the crossed beam condition at a collision energy of ~0.07 eV. NO (A (2)Σ(+)) emission in the two linear polarization directions (i.e., parallel and perpendicular with respect to the relative velocity vector v(R)) has been measured as a function of the alignment of N2 (A (3)Σu(+)) along its molecular axis in the collision frame. The degree of polarization of NO (A (2)Σ(+)) emission is found to depend on the alignment angle (θ(v(R))) of N2 (A (3)Σu(+)) in the collision frame. The shape of the steric opacity function at the two polarization conditions turns out to be extremely different from each other: The steric opacity function at the parallel polarization condition is more favorable for the oblique configuration of N2 (A (3)Σu(+)) at an alignment angle of θ(v(R)) ~ 45° as compared with that at the perpendicular polarization condition. The alignment of N2 (A (3)Σu(+)) is found to give a significant effect on the alignment of NO (A (2)Σ(+)) rotation in the collision frame: The N2 (A (3)Σu(+)) configuration at an oblique alignment angle θ(v(R)) ~ 45° leads to a parallel alignment of NO (A (2)Σ(+)) rotation (J-vector) with respect to v(R), while the axial and sideways configurations of N2 (A (3)Σu(+)) lead to a perpendicular alignment of NO (A (2)Σ(+)) rotation with respect to vR. These stereocorrelated alignments of the product rotation have a good correlation with the stereocorrelated reactivity observed in the multi-dimensional steric opacity function [H. Ohoyama and S. Maruyama, J. Chem. Phys. 137, 064311 (2012)].

  10. PT -symmetric gain and loss in a rotating Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Haag, Daniel; Dast, Dennis; Cartarius, Holger; Wunner, Günter

    2018-03-01

    PT -symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to support ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT -symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the nonuniform particle density and leave or enter the condensate through its borders creating the required net current.

  11. Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2012-01-01

    A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.

  12. NPSAT1 MEMS 3-AXIS Rate Sensor Suite Performance, Characterization, and Flight Unit Acceptance Testing

    DTIC Science & Technology

    2011-09-01

    magnetometer as the sensor, and the ACS controller. The magnetic control approach of NPSAT1 relies on favorable moments of inertia by optimum equipment...parallel with the HAAS rotational axis. To cancel the earth’s rotational effects, the turntable was tilted at -36.4° (accounts for the geocentric ...this initialization. 108 a. Gyro Bias Calibration from Three-Axis Magnetometer Measurements Reference [35] presents a real-time approach for gyro

  13. Rotary Transformer Seals Power In

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Paulkovich, J.

    1982-01-01

    Rotary transformer originally developed for spacecraft transfers electrical power from stationary primary winding to rotating secondary without sliding contacts and very little leakage of electromagnetic radiation. Transformer has two stationary primary windings connected in parallel. Secondary, mounted on a shaft that extends out of housing, rotates between two windings of primary. Shaft of secondary is composed of electrically conducting inner and outer parts separated by an insulator. Electrical contact is made from secondary winding, through shaft, to external leads.

  14. Selecting for Function: Solution Synthesis of Magnetic Nanopropellers

    PubMed Central

    2013-01-01

    We show that we can select magnetically steerable nanopropellers from a set of carbon coated aggregates of magnetic nanoparticles using weak homogeneous rotating magnetic fields. The carbon coating can be functionalized, enabling a wide range of applications. Despite their arbitrary shape, all nanostructures propel parallel to the vector of rotation of the magnetic field. We use a simple theoretical model to find experimental conditions to select nanopropellers which are predominantly smaller than previously published ones. PMID:24127909

  15. Autocollimation system for measuring angular deformations with reflector designed by quaternionic method

    NASA Astrophysics Data System (ADS)

    Hoang, Phong V.; Konyakhin, Igor A.

    2017-06-01

    Autocollimators are widely used for angular measurements in instrument-making and the manufacture of elements of optical systems (wedges, prisms, plane-parallel plates) to check their shape parameters (rectilinearity, parallelism and planarity) and retrieve their optical parameters (curvature radii, measure and test their flange focusing). Autocollimator efficiency is due to the high sensitivity of the autocollimation method to minor rotations of the reflecting control element or the controlled surface itself. We consider using quaternions to optimize reflector parameters during autocollimation measurements as compared to the matrix technique. Mathematical model studies have demonstrated that the orthogonal positioning of the two basic unchanged directions of the tetrahedral reflector of the autocollimator is optimal by the criterion of reducing measurement errors where the axis of actual rotation is in a bisecting position towards them. Computer results are presented of running quaternion models that yielded conditions for diminishing measurement errors provided apriori information is available on the position of rotation axis. A practical technique is considered for synthesizing the parameters of the tetrahedral reflector that employs the newly-retrieved relationships. Following the relationships found between the angles of the tetrahedral reflector and the angles of the parameters of its initial orientation, an applied technique was developed to synthesize the control element for autocollimation measurements in case apriori information is available on the axis of actual rotation during monitoring measurements of shaft or pipeline deformation.

  16. Overlap and diversity in antimicrobial peptide databases: compiling a non-redundant set of sequences.

    PubMed

    Aguilera-Mendoza, Longendri; Marrero-Ponce, Yovani; Tellez-Ibarra, Roberto; Llorente-Quesada, Monica T; Salgado, Jesús; Barigye, Stephen J; Liu, Jun

    2015-08-01

    The large variety of antimicrobial peptide (AMP) databases developed to date are characterized by a substantial overlap of data and similarity of sequences. Our goals are to analyze the levels of redundancy for all available AMP databases and use this information to build a new non-redundant sequence database. For this purpose, a new software tool is introduced. A comparative study of 25 AMP databases reveals the overlap and diversity among them and the internal diversity within each database. The overlap analysis shows that only one database (Peptaibol) contains exclusive data, not present in any other, whereas all sequences in the LAMP_Patent database are included in CAMP_Patent. However, the majority of databases have their own set of unique sequences, as well as some overlap with other databases. The complete set of non-duplicate sequences comprises 16 990 cases, which is almost half of the total number of reported peptides. On the other hand, the diversity analysis identifies the most and least diverse databases and proves that all databases exhibit some level of redundancy. Finally, we present a new parallel-free software, named Dover Analyzer, developed to compute the overlap and diversity between any number of databases and compile a set of non-redundant sequences. These results are useful for selecting or building a suitable representative set of AMPs, according to specific needs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Solving radiative transfer with line overlaps using Gauss-Seidel algorithms

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Cernicharo, J.

    2008-09-01

    Context: The improvement in observational facilities requires refining the modelling of the geometrical structures of astrophysical objects. Nevertheless, for complex problems such as line overlap in molecules showing hyperfine structure, a detailed analysis still requires a large amount of computing time and thus, misinterpretation cannot be dismissed due to an undersampling of the whole space of parameters. Aims: We extend the discussion of the implementation of the Gauss-Seidel algorithm in spherical geometry and include the case of hyperfine line overlap. Methods: We first review the basics of the short characteristics method that is used to solve the radiative transfer equations. Details are given on the determination of the Lambda operator in spherical geometry. The Gauss-Seidel algorithm is then described and, by analogy to the plan-parallel case, we see how to introduce it in spherical geometry. Doing so requires some approximations in order to keep the algorithm competitive. Finally, line overlap effects are included. Results: The convergence speed of the algorithm is compared to the usual Jacobi iterative schemes. The gain in the number of iterations is typically factors of 2 and 4 for the two implementations made of the Gauss-Seidel algorithm. This is obtained despite the introduction of approximations in the algorithm. A comparison of results obtained with and without line overlaps for N2H^+, HCN, and HNC shows that the J=3-2 line intensities are significantly underestimated in models where line overlap is neglected.

  18. Black hole Brownian motion in a rotating environment

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi

    2018-01-01

    A Langevin equation is set up to model the dynamics of a supermassive black hole (massive particle) in a rotating environment (of light particles), typically the inner region of the galaxy, under the influence of dynamical friction, gravity and stochastic forces. The formal solution is derived, and the displacement and velocity two-point correlation functions are computed. The correlators perpendicular to the axis of rotation are equal to one another and different from those parallel to the axis. By computing this difference, it is suggested that one can, perhaps, observationally determine the magnitude of the rotation. In the case with sufficiently fast rotation, it is suggested that this model can lead to an ejection. If either one of dynamical friction and Eddington accretion is included, it is shown that a near-identical Langevin equation follows, allowing us to treat the two cases in a unified manner. The limitations of the model are also presented and compared against previous results.

  19. Characterisation of parallel misalignment in rotating machines by means of the modulated signal of incremental encoders

    NASA Astrophysics Data System (ADS)

    Meroño Pérez, P. A.; Gómez de León, F. C.; Zaghar, L.

    2014-10-01

    There are many defects in rotating machines which, when analysed by means of the Fourier spectrum of transversal vibration, show several harmonics of the rotational speed, more specifically the first and the second, although higher harmonics may also be present. Misalignments, looseness, the breakage of fastening screws, broken mechanical seals, are just some of the problems. Nevertheless, the effects of some of these defects differ when the angular vibration is measured using an incremental rotating encoder, which offers an additional aid for diagnosing the problem. In this paper, we analyse the characteristics measurements made of the angular vibrations by means of an incremental rotating encoder, in cases of a parallel misalignment between coupled shafts. The spectral frequency lines obtained from the pulse signal generated by the encoder show a series of equidistant lateral bands around the main frequency, which reveals the existence of a specific angular vibration and, therefore, the frequency modulation produced. The phenomenon is explained using the Bessel functions, which establishes a relationship between the frequency spectrum of the angular vibration and the modulated signal from the encoder. The spectral analysis of the pulsating signal of the encoder displays a set of main lines, which are multiples of the main frequency of the pulses, and a set of sidebands around each one of these spectral lines. The method proposed is verified by means of measurements made on laboratory test benches and on industrial equipment, comparing and analysing the angular vibrations, which are measured using a laser interferometer and incremental encoders.

  20. IOS and ECS line coupling calculation for the CO-He system - Influence on the vibration-rotation band shapes

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-01-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  1. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    PubMed Central

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-01-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303

  2. Recent advances at NASA in calculating the electronic spectra of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.; Paterson, John A.

    1988-01-01

    Advanced entry vehicles, such as the proposed Aero-assisted Orbital Transfer Vehicle, provide new and challenging problems for spectroscopy. Large portions of the flow field about such vehicles will be characterized by chemical and thermal nonequilibrium. Only by considering the actual overlap of the atomic and rotational lines emitted by the species present can the impact of radiative transport within the flow field be assessed correctly. To help make such an assessment, a new computer program is described that can generate high-resolution, line-by-line spectra for any spin-allowed transitions in diatomic molecules. The program includes the matrix elements for the rotational energy and distortion to the fourth order; the spin-orbit, spin-spin, and spin-rotation interactions to first order; and the lambda splitting by a perturbation calculation. An overview of the Computational Chemistry Branch at Ames Research Center is also presented.

  3. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  4. A general parallel sparse-blocked matrix multiply for linear scaling SCF theory

    NASA Astrophysics Data System (ADS)

    Challacombe, Matt

    2000-06-01

    A general approach to the parallel sparse-blocked matrix-matrix multiply is developed in the context of linear scaling self-consistent-field (SCF) theory. The data-parallel message passing method uses non-blocking communication to overlap computation and communication. The space filling curve heuristic is used to achieve data locality for sparse matrix elements that decay with “separation”. Load balance is achieved by solving the bin packing problem for blocks with variable size.With this new method as the kernel, parallel performance of the simplified density matrix minimization (SDMM) for solution of the SCF equations is investigated for RHF/6-31G ∗∗ water clusters and RHF/3-21G estane globules. Sustained rates above 5.7 GFLOPS for the SDMM have been achieved for (H 2 O) 200 with 95 Origin 2000 processors. Scalability is found to be limited by load imbalance, which increases with decreasing granularity, due primarily to the inhomogeneous distribution of variable block sizes.

  5. Theory of single-molecule controlled rotation experiments, predictions, tests, and comparison with stalling experiments in F1-ATPase.

    PubMed

    Volkán-Kacsó, Sándor; Marcus, Rudolph A

    2016-10-25

    A recently proposed chemomechanical group transfer theory of rotary biomolecular motors is applied to treat single-molecule controlled rotation experiments. In these experiments, single-molecule fluorescence is used to measure the binding and release rate constants of nucleotides by monitoring the occupancy of binding sites. It is shown how missed events of nucleotide binding and release in these experiments can be corrected using theory, with F 1 -ATP synthase as an example. The missed events are significant when the reverse rate is very fast. Using the theory the actual rate constants in the controlled rotation experiments and the corrections are predicted from independent data, including other single-molecule rotation and ensemble biochemical experiments. The effective torsional elastic constant is found to depend on the binding/releasing nucleotide, and it is smaller for ADP than for ATP. There is a good agreement, with no adjustable parameters, between the theoretical and experimental results of controlled rotation experiments and stalling experiments, for the range of angles where the data overlap. This agreement is perhaps all the more surprising because it occurs even though the binding and release of fluorescent nucleotides is monitored at single-site occupancy concentrations, whereas the stalling and free rotation experiments have multiple-site occupancy.

  6. Influence of toroidal rotation on tearing modes

    NASA Astrophysics Data System (ADS)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  7. Electromagnetic variable degrees of freedom actuator systems and methods

    DOEpatents

    Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  8. Output Error Analysis of Planar 2-DOF Five-bar Mechanism

    NASA Astrophysics Data System (ADS)

    Niu, Kejia; Wang, Jun; Ting, Kwun-Lon; Tao, Fen; Cheng, Qunchao; Wang, Quan; Zhang, Kaiyang

    2018-03-01

    Aiming at the mechanism error caused by clearance of planar 2-DOF Five-bar motion pair, the method of equivalent joint clearance of kinematic pair to virtual link is applied. The structural error model of revolute joint clearance is established based on the N-bar rotation laws and the concept of joint rotation space, The influence of the clearance of the moving pair is studied on the output error of the mechanis. and the calculation method and basis of the maximum error are given. The error rotation space of the mechanism under the influence of joint clearance is obtained. The results show that this method can accurately calculate the joint space error rotation space, which provides a new way to analyze the planar parallel mechanism error caused by joint space.

  9. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces.

    PubMed

    Christofi, Aristi; Kawaguchi, Yuma; Alù, Andrea; Khanikaev, Alexander B

    2018-04-15

    In this Letter we introduce a new class of Fano-resonant all-dielectric metasurfaces for enhanced, high figure of merit magneto-optical response. The metasurfaces are formed by an array of magneto-optical bismuth-substituted yttrium iron garnet nano-disks embedded into a low-index matrix. The strong field enhancement in the magneto-optical disks, which results in over an order of magnitude enhancement of Faraday rotation, is achieved by engineering two (electric and magnetic) resonances. It is shown that while enhancement of rotation also takes place for spectrally detuned resonances, the resonant excitation inevitably results in stronger reflection and low figure of merit of the device. We demonstrate that this can be circumvented by overlapping electric and magnetic resonances of the nanodisks, yielding a sharp electromagnetically induced transparency peak in the transmission spectrum, which is accompanied by gigantic Faraday rotation. Our results show that one can simultaneously obtain a large Faraday rotation enhancement along with almost 100% transmittance in an all-dielectric metasurface as thin as 300 nm. A simple analytical model based on coupled-mode theory is introduced to explain the effects observed in first-principle finite element method simulations.

  10. Dispersoid separation method and apparatus

    DOEpatents

    Winsche, Warren E.

    1980-01-01

    Improved separation of heavier material from a dispersoid of gas and heavier material entrained therein is taught by the method of this invention which advantageously uses apparatus embodied in an inertial separator having rotary partition means comprising wall members dividing a housing into a plurality of axially-extending through passages arranged in parallel. Simultaneously with the helical transit of a moving stream of the dispersoid through the parallel arrangement of axially-extending through passages at a constant angular velocity, the heavier material is driven radially to the collecting surfaces of the rotational wall members where it is collected while the wall members are rotating at the same angular velocity as the moving stream. The plurality of wall members not only provides an increased area of collecting surfaces but the positioning of each of the wall members according to the teaching of this invention also results in a shortened time-of-flight to the collecting surfaces.

  11. Laser weld jig

    DOEpatents

    Van Blarigan, Peter; Haupt, David L.

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  12. Containers for use in a self supporting assembly

    DOEpatents

    Gillespie, Peter J.

    1982-07-13

    This invention is directed to a container having side walls and end walls forming a body having a generally rectangular cross-section. Means for restraining lateral and rotational movement of the container relative to an adjacent container while allowing relatively unhindered movement perpendicular to the side walls is also included. The lateral and rotational movement is restrained in a plane parallel to the side walls. The means include a projection connected to at least one of the side walls and extending outwardly therefrom to engage the adjacent container. Also part of this invention is an assembly of containers which includes a plurality of the above described containers arranged side by side with the end walls generally coplanar and the side walls generally parallel. Means for restraining movement perpendicular to the side walls of the plurality of containers is also included. Each of the containers may house a plurality of battery electrodes.

  13. Reversible vector ratchets for skyrmion systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Reichhardt, C. J. Olson; Reichhardt, C.

    2017-03-01

    We show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360∘ rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is always parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.

  14. Rotation of an immersed cylinder sliding near a thin elastic coating

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L.; Stone, Howard A.

    2017-07-01

    It is known that an object translating parallel to a soft wall in a viscous fluid produces hydrodynamic stresses that deform the wall, which in turn results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016), 10.1073/pnas.1525462113]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely, that a softer elastic layer results in a greater angular speed of the cylinder.

  15. High resolution absorption spectrum of CO2between 1750 and 2000 Å. 2. Rotational analysis of two parallel-type bands assigned to the lowest electronic transition 13B2←

    NASA Astrophysics Data System (ADS)

    Cossart-Magos, Claudina; Launay, Françoise; Parkin, James E.

    The absorption spectrum of CO2 gas between 175 and 200 nm was photographed at high resolution some years ago. This very weak spectral region proved to be extremely rich in bands showing rotational fine structure. In Part 1 [C. Cossart-Magos, F. Launay, J. E. Parkin, Mol. Phys., 75, 835 (1992), nine perpendicular-type bands were assigned to the lowest singlet-singlet transition, 11A2 ← ν'3 (b2) vibration. Here, the parallel-type bands observed at 185.7 and 175.6 nm are assigned to the lowest triplet-singlet transition, 13B2 ← TMPH0629math005 ν'2 (a1) vibration. The assignment and the rotational and spin constant values obtained are discussed in relation to previous experimental data and ab initio calculation results on the lowest excited states of CO2. The actual role of the 13B2 state in CO2 photodissociation, O(3P)+CO(X1Σ+) recombination, and O(1D) emission quenching by CO(X) molecules is reviewed.

  16. Autism Spectrum Disorder and Specific Language Impairment: Overlaps in Syntactic Profiles

    ERIC Educational Resources Information Center

    Durrleman, Stephanie; Delage, Hélène

    2016-01-01

    This study investigates syntax in Autism Spectrum Disorders (ASD), its parallelism with Specific Language Impairment (SLI) and its relation to other aspects of cognition. We focus on (1) 3rd person accusative clitic (ACC3) production, a clinical marker of SLI hypothesized to relate to WM, and (2) 1st person accusative clitic (ACC1) production,…

  17. The Hexaparagon

    ERIC Educational Resources Information Center

    Hanson, J. R.

    2006-01-01

    A hexagon with each pair of opposite sides parallel to a side of a triangle will be called a hexaparagon for that triangle. One way to construct a hexaparagon for a given triangle ABC is to use as vertices the centroids P, Q, R, S, T, and U of the six non-overlapping sub-triangles formed by the three medians of triangle ABC. The perimeter of this…

  18. Vertical electronic transport in van de waals heterostructures

    NASA Astrophysics Data System (ADS)

    Qiao, Zhenhua; Zhenhua Qiao's Group Team

    In this work, we will introduce the theoretical investigation of the vertical electronic transport in various heterostructrues by using both tight-binding method and first-principles calculations. Counterintuitively, we find that the maximum electronic transport is achieved at very limited scattering regions but not at large overlapped catering regions. Based on this finding, we design a special setup to measure the tunneling effect in rotated bilayer systems.

  19. Controlled clockwise and anticlockwise rotational switching of a molecular motor.

    PubMed

    Perera, U G E; Ample, F; Kersell, H; Zhang, Y; Vives, G; Echeverria, J; Grisolia, M; Rapenne, G; Joachim, C; Hla, S-W

    2013-01-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

  20. Range and egomotion estimation from compound photodetector arrays with parallel optical axis using optical flow techniques.

    PubMed

    Chahl, J S

    2014-01-20

    This paper describes an application for arrays of narrow-field-of-view sensors with parallel optical axes. These devices exhibit some complementary characteristics with respect to conventional perspective projection or angular projection imaging devices. Conventional imaging devices measure rotational egomotion directly by measuring the angular velocity of the projected image. Translational egomotion cannot be measured directly by these devices because the induced image motion depends on the unknown range of the viewed object. On the other hand, a known translational motion generates image velocities which can be used to recover the ranges of objects and hence the three-dimensional (3D) structure of the environment. A new method is presented for computing egomotion and range using the properties of linear arrays of independent narrow-field-of-view optical sensors. An approximate parallel projection can be used to measure translational egomotion in terms of the velocity of the image. On the other hand, a known rotational motion of the paraxial sensor array generates image velocities, which can be used to recover the 3D structure of the environment. Results of tests of an experimental array confirm these properties.

  1. A permanent MRI magnet for magic angle imaging having its field parallel to the poles.

    PubMed

    McGinley, John V M; Ristic, Mihailo; Young, Ian R

    2016-10-01

    A novel design of open permanent magnet is presented, in which the magnetic field is oriented parallel to the planes of its poles. The paper describes the methods whereby such a magnet can be designed with a field homogeneity suitable for Magnetic Resonance Imaging (MRI). Its primary purpose is to take advantage of the Magic Angle effect in MRI of human extremities, particularly the knee joint, by being capable of rotating the direction of the main magnetic field B0 about two orthogonal axes around a stationary subject and achieve all possible angulations. The magnet comprises a parallel pair of identical profiled arrays of permanent magnets backed by a flat steel yoke such that access in lateral directions is practical. The paper describes the detailed optimization procedure from a target 150mm DSV to the achievement of a measured uniform field over a 130mm DSV. Actual performance data of the manufactured magnet, including shimming and a sample image, is presented. The overall magnet system mounting mechanism is presented, including two orthogonal axes of rotation of the magnet about its isocentre. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Optimization of the coherence function estimation for multi-core central processing unit

    NASA Astrophysics Data System (ADS)

    Cheremnov, A. G.; Faerman, V. A.; Avramchuk, V. S.

    2017-02-01

    The paper considers use of parallel processing on multi-core central processing unit for optimization of the coherence function evaluation arising in digital signal processing. Coherence function along with other methods of spectral analysis is commonly used for vibration diagnosis of rotating machinery and its particular nodes. An algorithm is given for the function evaluation for signals represented with digital samples. The algorithm is analyzed for its software implementation and computational problems. Optimization measures are described, including algorithmic, architecture and compiler optimization, their results are assessed for multi-core processors from different manufacturers. Thus, speeding-up of the parallel execution with respect to sequential execution was studied and results are presented for Intel Core i7-4720HQ и AMD FX-9590 processors. The results show comparatively high efficiency of the optimization measures taken. In particular, acceleration indicators and average CPU utilization have been significantly improved, showing high degree of parallelism of the constructed calculating functions. The developed software underwent state registration and will be used as a part of a software and hardware solution for rotating machinery fault diagnosis and pipeline leak location with acoustic correlation method.

  3. Singularity and workspace analysis of three isoconstrained parallel manipulators with schoenflies motion

    NASA Astrophysics Data System (ADS)

    Lee, Po-Chih; Lee, Jyh-Jone

    2012-06-01

    This paper presents the analysis of three parallel manipulators with Schoenflies-motion. Each parallel manipulator possesses two limbs in structure and the end-effector has three DOFs (degree of freedom) in the translational motion and one DOF in rotational motion about a given direction axis with respect to the world coordinate system. The three isoconstrained parallel manipulators have the structures denoted as C{u/u}UwHw-//-C{v/v}UwHw, CuR{u/u}Uhw-//-CvR{v/v}Uhw and CuPuUhw-//-CvPvUhw. The kinematic equations are first introduced for each manipulator. Then, Jacobian matrix, singularity, workspace, and performance index for each mechanism are subsequently derived and analysed for the first time. The results can be helpful for the engineers to evaluate such kind of parallel robots for possible application in industry where pick-and-place motion is required.

  4. Detailed Validation Assessment of Turbine Stage Disc Cavity Rotating Flows

    NASA Astrophysics Data System (ADS)

    Kanjiyani, Shezan

    The subject of this thesis is concerned with the amount of cooling air assigned to seal high pressure turbine rim cavities which is critical for performance as well as component life. Insufficient air leads to excessive hot annulus gas ingestion and its penetration deep into the cavity compromising disc life. Excessive purge air, adversely affects performance. Experiments on a rotating turbine stage rig which included a rotor-stator forward disc cavity were performed at Arizona State University. The turbine rig has 22 vanes and 28 blades, while the rim cavity is composed of a single-tooth rim lab seal and a rim platform overlap seal. Time-averaged static pressures were measured in the gas path and the cavity, while mainstream gas ingestion into the cavity was determined by measuring the concentration distribution of tracer gas (carbon dioxide). Additionally, particle image velocimetry (PIV) was used to measure fluid velocity inside the rim cavity between the lab seal and the overlap. The data from the experiments were compared to an 360-degree unsteady RANS (URANS) CFD simulations. Although not able to match the time-averaged test data satisfactorily, the CFD simulations brought to light the unsteadiness present in the flow during the experiment which the slower response data did not fully capture. To interrogate the validity of URANS simulations in capturing complex rotating flow physics, the scope of this work also included to validating the CFD tool by comparing its predictions against experimental LDV data in a closed rotor-stator cavity. The enclosed cavity has a stationary shroud, a rotating hub, and mass flow does not enter or exit the system. A full 360 degree numerical simulation was performed comparing Fluent LES, with URANS turbulence models. Results from these investigations point to URANS state of art under-predicting closed cavity tangential velocity by 32% to 43%, and open rim cavity effectiveness by 50% compared to test data. The goal of this thesis is to assess the validity of URANS turbulence models in more complex rotating flows, compare accuracy with LES simulations, suggest CFD settings to better simulate turbine stage mainstream/disc cavity interaction with ingestion, and recommend experimentation techniques.

  5. Practical multipeptide synthesis: dedicated software for the definition of multiple, overlapping peptides covering polypeptide sequences.

    PubMed

    Heegaard, P M; Holm, A; Hagerup, M

    1993-01-01

    A personal computer program for the conversion of linear amino acid sequences to multiple, small, overlapping peptide sequences has been developed. Peptide lengths and "jumps" (the distance between two consecutive overlapping peptides) are defined by the user. To facilitate the use of the program for parallel solid-phase chemical peptide syntheses for the synchronous production of multiple peptides, amino acids at each acylation step are laid out by the program in a convenient standard multi-well setup. Also, the total number of equivalents, as well as the derived amount in milligrams (depend-ending on user-defined equivalent weights and molar surplus), of each amino acid are given. The program facilitates the implementation of multipeptide synthesis, e.g., for the elucidation of polypeptide structure-function relationships, and greatly reduces the risk of introducing mistakes at the planning step. It is written in Pascal and runs on any DOS-based personal computer. No special graphic display is needed.

  6. Clarifying Relations Between Dispositional Aggression and Brain Potential Response: Overlapping and Distinct Contributions of Impulsivity and Stress Reactivity

    PubMed Central

    Venables, Noah C.; Patrick, Christopher J.; Hall, Jason R.; Bernat, Edward M.

    2011-01-01

    Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. PMID:21262318

  7. Enhanced light trapping by focused ion beam (FIB) induced self-organized nanoripples on germanium (100) surface

    NASA Astrophysics Data System (ADS)

    Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing

    2018-03-01

    In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.

  8. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  9. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  10. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  11. MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique.

    PubMed

    Hirokawa, Yuusuke; Isoda, Hiroyoshi; Maetani, Yoji S; Arizono, Shigeki; Shimada, Kotaro; Togashi, Kaori

    2008-10-01

    The purpose of this study was to evaluate the effectiveness of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER [BLADE in the MR systems from Siemens Medical Solutions]) with a respiratory compensation technique for motion correction, image noise reduction, improved sharpness of liver edge, and image quality of the upper abdomen. Twenty healthy adult volunteers with a mean age of 28 years (age range, 23-42 years) underwent upper abdominal MRI with a 1.5-T scanner. For each subject, fat-saturated T2-weighted turbo spin-echo (TSE) sequences with respiratory compensation (prospective acquisition correction [PACE]) were performed with and without the BLADE technique. Ghosting artifact, artifacts except ghosting artifact such as respiratory motion and bowel movement, sharpness of liver edge, image noise, and overall image quality were evaluated visually by three radiologists using a 5-point scale for qualitative analysis. The Wilcoxon's signed rank test was used to determine whether a significant difference existed between images with and without BLADE. A p value less than 0.05 was considered to be statistically significant. In the BLADE images, image artifacts, sharpness of liver edge, image noise, and overall image quality were significantly improved (p < 0.001). With the BLADE technique, T2-weighted TSE images of the upper abdomen could provide reduced image artifacts including ghosting artifact and image noise and provide better image quality.

  12. Fast direct fourier reconstruction of radial and PROPELLER MRI data using the chirp transform algorithm on graphics hardware.

    PubMed

    Feng, Yanqiu; Song, Yanli; Wang, Cong; Xin, Xuegang; Feng, Qianjin; Chen, Wufan

    2013-10-01

    To develop and test a new algorithm for fast direct Fourier transform (DrFT) reconstruction of MR data on non-Cartesian trajectories composed of lines with equally spaced points. The DrFT, which is normally used as a reference in evaluating the accuracy of other reconstruction methods, can reconstruct images directly from non-Cartesian MR data without interpolation. However, DrFT reconstruction involves substantially intensive computation, which makes the DrFT impractical for clinical routine applications. In this article, the Chirp transform algorithm was introduced to accelerate the DrFT reconstruction of radial and Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) MRI data located on the trajectories that are composed of lines with equally spaced points. The performance of the proposed Chirp transform algorithm-DrFT algorithm was evaluated by using simulation and in vivo MRI data. After implementing the algorithm on a graphics processing unit, the proposed Chirp transform algorithm-DrFT algorithm achieved an acceleration of approximately one order of magnitude, and the speed-up factor was further increased to approximately three orders of magnitude compared with the traditional single-thread DrFT reconstruction. Implementation the Chirp transform algorithm-DrFT algorithm on the graphics processing unit can efficiently calculate the DrFT reconstruction of the radial and PROPELLER MRI data. Copyright © 2012 Wiley Periodicals, Inc.

  13. A comparative quantitative analysis of magnetic susceptibility artifacts in echo planar and PROPELLER diffusion-weighted images

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan

    2013-01-01

    In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.

  14. Contribution of cardiac-induced brain pulsation to the noise of the diffusion tensor in Turboprop diffusion tensor imaging (DTI).

    PubMed

    Gui, Minzhi; Tamhane, Ashish A; Arfanakis, Konstantinos

    2008-05-01

    To assess the effects of cardiac-induced brain pulsation on the noise of the diffusion tensor in Turboprop (a form of periodically rotated overlapping parallel lines with enhanced reconstruction [PROPELLER] imaging) diffusion tensor imaging (DTI). A total of six healthy human subjects were imaged with cardiac-gated as well as nongated Turboprop DTI. Gated and nongated Turboprop DTI datasets were also simulated using actual data acquired exclusively during the diastolic or systolic period of the cardiac cycle. The total variance of the diffusion tensor (TVDT) was measured and compared between acquisitions. The TVDT near the ventricles was significantly reduced in cardiac-gated compared to nongated Turboprop DTI acquisitions. Furthermore, the effects of brain pulsation were reduced, but not eliminated, when increasing the amount of data collected. Finally, data corrupted by cardiac-induced pulsation were not consistently detected by the step of the conventional Turboprop reconstruction algorithm that evaluates the quality of data in different blades. Thus, the inherent quality weighting of the conventional Turboprop reconstruction algorithm was unable to compensate for the increased noise in the diffusion tensor due to brain pulsation. Cardiac-induced brain pulsation increases the TVDT in Turboprop DTI. Use of cardiac gating to limit data acquisition to the diastolic period of the cardiac cycle reduces the TVDT at the expense of imaging time. (c) 2008 Wiley-Liss, Inc.

  15. Evaluation of denitrification potential of rotating biological contactors for treatment of municipal wastewater.

    PubMed

    Hanhan, O; Orhon, D; Krauth, Kh; Günder, B

    2005-01-01

    In this study the effect of retention time and rotation speed in the denitrification process in two full-scale rotating biological contactors (RBC) which were operated parallel and fed with municipal wastewater is evaluated. Each rotating biological contactor was covered to prevent oxygen input. The discs were 40% submerged. On the axle of one of the rotating biological contactors lamellas were placed (RBC1). During the experiments the nitrate removal performance of the rotating biological contactor with lamellas was observed to be less than the other (RBC2) since the lamellas caused oxygen diffusion through their movement. The highest nitrate removal observed was 2.06 g/m2.d achieved by a contact time of 28.84 minutes and a recycle flow of 1 l/s. The rotation speed during this set had the constant value of 0.8 min(-1). Nitrate removal efficiency on RBC1 was decreasing with increasing rotation speed. On the rotating biological contactor without lamellas no effect on denitrification could be determined within a speed range from 0.67 to 2.1 min-1. If operated in proper conditions denitrification on RBC is a very suitable alternative for nitrogen removal that can easily fulfil the nutrient limitations in coastal areas due to the rotating biological contactors economical benefits and uncomplicated handling.

  16. Mental rotation training: transfer and maintenance effects on spatial abilities.

    PubMed

    Meneghetti, Chiara; Borella, Erika; Pazzaglia, Francesca

    2016-01-01

    One of the aims of research in spatial cognition is to examine whether spatial skills can be enhanced. The goal of the present study was thus to assess the benefit and maintenance effects of mental rotation training in young adults. Forty-eight females took part in the study: 16 were randomly assigned to receive the mental rotation training (based on comparing pairs of 2D or 3D objects and rotation games), 16 served as active controls (performing parallel non-spatial activities), and 16 as passive controls. Transfer effects to both untrained spatial tasks (testing both object rotation and perspective taking) and visual and verbal tasks were examined. Across the training sessions, the group given mental rotation training revealed benefits in the time it took to make judgments when comparing 3D and 2D objects, but their mental rotation speed did not improve. When compared with the other groups, the mental rotation training group did show transfer effects, however, in tasks other than those practiced (i.e., in object rotation and perspective-taking tasks), and these benefits persisted after 1 month. The training had no effect on visual or verbal tasks. These findings are discussed from the spatial cognition standpoint and with reference to the (rotation) training literature.

  17. Mental reinstatement of encoding context improves episodic remembering.

    PubMed

    Bramão, Inês; Karlsson, Anna; Johansson, Mikael

    2017-09-01

    This study investigates context-dependent memory retrieval. Previous work has shown that physically re-experiencing the encoding context at retrieval improves memory accessibility. The current study examined if mental reconstruction of the original encoding context would yield parallel memory benefits. Participants performed a cued-recall memory task, preceded either by a mental or by a physical context reinstatement task, and we manipulated whether the context reinstated at retrieval overlapped with the context of the target episode. Both behavioral and electrophysiological measures of brain activity showed strong encoding-retrieval (E-R) overlap effects, with facilitated episodic retrieval when the encoding and retrieval contexts overlapped. The electrophysiological E-R overlap effect was more sustained and involved more posterior regions when context was mentally compared with physically reinstated. Additionally, a time-frequency analysis revealed that context reinstatement alone engenders recollection of the target episode. However, while recollection of the target memory is readily prompted by a physical reinstatement, target recollection during mental reinstatement is delayed and depends on the gradual reconstruction of the context. Taken together, our results show facilitated episodic remembering also when mentally reinstating the encoding context; and that such benefits are supported by both shared and partially non-overlapping neural mechanisms when the encoding context is mentally reconstructed as compared with physically presented at the time of retrieval. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T.

    2016-09-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  19. Connectionist Models: Proceedings of the Summer School Held in San Diego, California on 1990

    DTIC Science & Technology

    1990-01-01

    modes: control network continues activation spreading based There is the sequential version and the parallel version on the actual inputs instead of...ent). 2. Execute all motoric actions based on activations of r a ent.The parallel version of the algorithm is local in time, units in A. Update the...a- movements that help o recognize an entering person.) tions like ’move focus left’, ’rotate focus’ are based on the activations of the C’s output

  20. Investigation on efficiency declines due to spectral overlap between LDAs pump and laser medium in high power double face pumped slab laser

    NASA Astrophysics Data System (ADS)

    Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei

    2018-03-01

    In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.

  1. Artificial photosynthetic systems: assemblies of slipped cofacial porphyrins and phthalocyanines showing strong electronic coupling.

    PubMed

    Satake, Akiharu; Kobuke, Yoshiaki

    2007-06-07

    This paper reviews selected types of structurally well defined assemblies of porphyrins and phthalocyanines with strong electronic coupling. Face-to-face, head-to-tail, slipped cofacial, and non-parallel dimeric motifs constructed by covalent and non-covalent bonds are compared in the earlier sections. Their molecular orientation, electronic overlap, and absorption and fluorescence properties are discussed with a view towards the development of artificial photosynthetic systems and molecular electronics. Complementary coordination dimers are fully satisfactory in terms of structural stability, orientation factor, pi-electronic overlap, and zero fluorescence quenching. In later sections, several polymeric and macrocyclic porphyrin assemblies constructed by a combination of covalent bonds and complementary coordination bonds are discussed from the viewpoint of light-harvesting antenna functions.

  2. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  3. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  4. Carbon Nanotube Tape Vibrating Gyroscope

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor)

    2016-01-01

    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.

  5. Nearshore sandbar rotation at single-barred embayed beaches

    NASA Astrophysics Data System (ADS)

    Blossier, B.; Bryan, K. R.; Daly, C. J.; Winter, C.

    2016-04-01

    The location of a shore-parallel nearshore sandbar derived from 7 years of video imagery data at the single-barred embayed Tairua Beach (NZ) is investigated to assess the contribution of barline rotation to the overall morphodynamics of sandbars in embayed environments and to characterize the process of rotation in relation to external conditions. Rotation induces cross-shore barline variations at the embayment extremities on the order of magnitude of those induced by alongshore uniform cross-shore migration of the bar. Two semiempirical models have been developed to relate the barline cross-shore migration and rotation to external wave forcing conditions. The rotation model is directly derived from the cross-shore migration model. Therefore, its formulation advocates for a primary role of cross-shore processes in the rotation of sandbars at embayed beaches. The orientation evolves toward an equilibrium angle directly related to the alongshore wave energy gradient due to two different mechanisms. Either the bar extremities migrate in opposite directions with no overall cross-shore bar migration (pivotal rotation) or the rotation relates to an overall migration of the barline which is not uniform along the beach (migration-driven rotation). Migration and rotation characteristic response times are similar, ranging from 10 to 30 days for mild and energetic wave conditions and above 200 days during very calm conditions or when the bar is located far offshore.

  6. A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm

    PubMed Central

    Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay

    2012-01-01

    A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747

  7. Tinea nigra showing a parallel ridge pattern on dermoscopy.

    PubMed

    Noguchi, Hiromitsu; Hiruma, Masataro; Inoue, Yuji; Miyata, Keishi; Tanaka, Masaru; Ihn, Hironobu

    2015-05-01

    An 18-year-old healthy female student noticed a brown macule measuring 21 mm in diameter on the left palm and visited our clinic concerned about a cancerous mole. Dermoscopic examination revealed a brown, fine-dotted and granule-like structure overlapping an amorphous light brown macule. However, unlike previous cases, analysis of the high dynamic range-converted image revealed the parallel ridge pattern frequently observed in malignant melanomas. Brown mycelia were detected on direct microscopic examination; black colonies were isolated on fungal culture and the fungus was identified as Hortaea werneckii. The lesion was treated with topical ketoconazole cream, and it diminished 1 month later. © 2015 Japanese Dermatological Association.

  8. Response of semicircular canal dependent units in vestibular nuclei to rotation of a linear acceleration vector without angular acceleration

    PubMed Central

    Benson, A. J.; Guedry, F. E.; Jones, G. Melvill

    1970-01-01

    1. Recent experiments have shown that rotation of a linear acceleration vector round the head can generate involuntary ocular nystagmus in the absence of angular acceleration. The present experiments examine the suggestion that adequate stimulation of the semicircular canals may contribute to this response. 2. Decerebrate cats were located in a stereotaxic device on a platform, slung from four parallel cables, which could be driven smoothly round a circular orbit without inducing significant angular movement of the platform. This Parallel Swing Rotation (PSR) generated a centripetal acceleration of 4·4 m/sec2 which rotated round the head at 0·52 rev/sec. 3. The discharge frequency of specifically lateral canal-dependent neural units in the vestibular nuclei of cats was recorded during PSR to right and left, and in the absence of motion. The dynamic responses to purely angular motion were also examined on a servo-driven turntable. 4. Without exception all proven canal-dependent cells examined (twenty-nine cells in nine cats) were more active during PSR in the direction of endolymph circulation assessed to be excitatory to the unit, than during PSR in the opposite direction. 5. The observed changes in discharge frequency are assessed to have been of a magnitude appropriate for the generation of the involuntary oculomotor response induced by the same stimulus in the intact animal. 6. The findings suggest that a linear acceleration vector which rotates in the plane of the lateral semicircular canals can be an adequate stimulus to ampullary receptors, though an explanation which invokes the modulation of canal cells by a signal dependent upon the sequential activation of macular receptors cannot be positively excluded. PMID:5501270

  9. Retargeting of existing FORTRAN program and development of parallel compilers

    NASA Technical Reports Server (NTRS)

    Agrawal, Dharma P.

    1988-01-01

    The software models used in implementing the parallelizing compiler for the B-HIVE multiprocessor system are described. The various models and strategies used in the compiler development are: flexible granularity model, which allows a compromise between two extreme granularity models; communication model, which is capable of precisely describing the interprocessor communication timings and patterns; loop type detection strategy, which identifies different types of loops; critical path with coloring scheme, which is a versatile scheduling strategy for any multicomputer with some associated communication costs; and loop allocation strategy, which realizes optimum overlapped operations between computation and communication of the system. Using these models, several sample routines of the AIR3D package are examined and tested. It may be noted that automatically generated codes are highly parallelized to provide the maximized degree of parallelism, obtaining the speedup up to a 28 to 32-processor system. A comparison of parallel codes for both the existing and proposed communication model, is performed and the corresponding expected speedup factors are obtained. The experimentation shows that the B-HIVE compiler produces more efficient codes than existing techniques. Work is progressing well in completing the final phase of the compiler. Numerous enhancements are needed to improve the capabilities of the parallelizing compiler.

  10. Computational study of the rovibrational spectrum of CO₂-CS₂.

    PubMed

    Brown, James; Wang, Xiao-Gang; Carrington, Tucker; Grubbs, G S; Dawes, Richard

    2014-03-21

    A new intermolecular potential energy surface, rovibrational transition frequencies, and line strengths are computed for CO2-CS2. The potential is made by fitting energies obtained from explicitly correlated coupled-cluster calculations using an interpolating moving least squares method. The rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All four intermolecular coordinates are included in the calculation. In agreement with previous experiments, the global minimum of the potential energy surface (PES) is cross shaped. The PES also has slipped-parallel minima. Rovibrational wavefunctions are localized in the cross minima and the slipped-parallel minima. Vibrational parent analysis was used to assign vibrational labels to rovibrational states. Tunneling occurs between the two cross minima. Because more than one symmetry operation interconverts the two wells, the symmetry (-oo) of the upper component of the tunneling doublet is different from the symmetry (-ee) of the tunneling coordinate. This unusual situation is due to the multidimensional nature of the double well tunneling. For the cross ground vibrational state, calculated rotational constants differ from their experimental counterparts by less than 0.0001 cm(-1). Most rovibrational states were found to be incompatible with the standard effective rotational Hamiltonian often used to fit spectra. This appears to be due to coupling between internal and overall rotation of the dimer. A simple 2D model accounting for internal rotation was used for two cross-shaped fundamentals to obtain good fits.

  11. Evanescent-wave bonding between optical waveguides.

    PubMed

    Povinelli, Michelle L; Loncar, Marko; Ibanescu, Mihai; Smythe, Elizabeth J; Johnson, Steven G; Capasso, Federico; Joannopoulos, John D

    2005-11-15

    Forces arising from overlap between the guided waves of parallel, microphotonic waveguides are calculated. Both attractive and repulsive forces, determined by the choice of relative input phase, are found. Using realistic parameters for a silicon-on-insulator material system, we estimate that the forces are large enough to cause observable displacements. Our results illustrate the potential for a broader class of optically tunable microphotonic devices and microstructured artificial materials.

  12. Cross-polarised and parallel-polarised light: Viewing and photography for examination and documentation of biological materials in medicine and forensics.

    PubMed

    Hanlon, Katharine L

    2018-01-01

    Cross-polarisation, with regard to visible light, is a process wherein two polarisers with perpendicular orientation to one another are used on the incident and reflected lights. Under cross-polarised light birefringent structures which are otherwise invisible become apparent. Cross-polarised light eliminates glare and specular highlights, allowing for an unobstructed view of subsurface pathology. Parallel-polarisation occurs when the polarisers are rotated to the same orientation. When cross- or parallel-polarisation is applied to photography, images can be generated which aid in visualisation of surface and subsurface elements. Improved access to equipment and education has the potential to benefit practitioners, researchers, investigators and patients.

  13. Atom Interferometry on Atom Chips - A Novel Approach Towards Precision Inertial Navigation System - PINS

    DTIC Science & Technology

    2010-06-01

    Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles

  14. Comparison of manual and automatic MR-CT registration for radiotherapy of prostate cancer.

    PubMed

    Korsager, Anne Sofie; Carl, Jesper; Riis Østergaard, Lasse

    2016-05-08

    In image-guided radiotherapy (IGRT) of prostate cancer, delineation of the clini-cal target volume (CTV) often relies on magnetic resonance (MR) because of its good soft-tissue visualization. Registration of MR and computed tomography (CT) is required in order to add this accurate delineation to the dose planning CT. An automatic approach for local MR-CT registration of the prostate has previously been developed using a voxel property-based registration as an alternative to a manual landmark-based registration. The aim of this study is to compare the two registration approaches and to investigate the clinical potential for replacing the manual registration with the automatic registration. Registrations and analysis were performed for 30 prostate cancer patients treated with IGRT using a Ni-Ti prostate stent as a fiducial marker. The comparison included computing translational and rotational differences between the approaches, visual inspection, and computing the overlap of the CTV. The computed mean translational difference was 1.65, 1.60, and 1.80mm and the computed mean rotational difference was 1.51°, 3.93°, and 2.09° in the superior/inferior, anterior/posterior, and medial/lateral direction, respectively. The sensitivity of overlap was 87%. The results demonstrate that the automatic registration approach performs registrations comparable to the manual registration.

  15. Microstructures and Mechanical Properties of Friction Tapered Stud Overlap Welding for X65 Pipeline Steel Under Wet Conditions

    NASA Astrophysics Data System (ADS)

    Xu, Y. C.; Jing, H. Y.; Han, Y. D.; Xu, L. Y.

    2017-08-01

    This paper exhibits a novel in situ remediation technique named friction tapered stud overlap welding (FTSOW) to repair a through crack in structures and components in extremely harsh environments. Furthermore, this paper presents variations in process data, including rotational speed, stud displacement, welding force, and torque for a typical FTSOW weld. In the present study, the effects of welding parameters on the microstructures and mechanical properties of the welding joints were investigated. Inapposite welding parameters consisted of low rotational speeds and welding forces, and when utilized, they increased the occurrence of a lack of bonding and unfilled defects within the weld. The microstructures with a welding zone and heat-affected zone mainly consisted of upper bainite. The hardness value was highest in the welding zone and lowest in the base material. During the pull-out tests, all the welds failed in the stud. Moreover, the defect-free welds broke at the interface of the lap plate and substrate during the cruciform uniaxial tensile test. The best tensile test results at different depths and shear tests were 721.6 MPa and 581.9 MPa, respectively. The favorable Charpy impact-absorbed energy was 68.64 J at 0 °C. The Charpy impact tests revealed a brittle fracture characteristic with a large area of cleavage.

  16. An Er:YAG laser bone cutting manipulator for precise rotational acetabular osteotomy.

    PubMed

    Kim, D; Owada, H; Hata, N; Dohi, T

    2004-01-01

    Rotational acetabular osteotomy (RAO) has an important advantage in that surgical bony defects are reconstructed with a patients' own tissue. We propose a surgical robot for the RAO using Er:YAG laser irradiating mounted on iliac bone to operate RAO precisely and to reduce recovery and trauma. A water-cooling Er:YAG laser (30 J/cm/sup 2/, l=2.94 mum, 20 Hz, 200 msec) that used optical fiber was operated 4-8 irradiation-overlapping ratio. We kept the distance between the laser and the bone at 0.25 mm using force sensor and spring to maintain effective ablation. Swine scapulae were ablated and performance was evaluated. The manipulator was operated mounting on iliac bone to get a filed position whereby resulting in precise bone cutting. The precision of the manipulator was within 0.3 mm and the efficiency of laser bone ablations per unit time optimized to 0.21 mm/sup 3//secW at the overlapping ratio of the irradiation area was 0.8, meaning a given ablated area was irradiated five times. The troughs showed m charring at this condition and the temperature of the surface was raised to 41.3 degrees C and it lasted only 5 seconds. We are sure that this research will be applied to orthopedics in the near future.

  17. Calculation of the overlap factor for scanning LiDAR based on the tridimensional ray-tracing method.

    PubMed

    Chen, Ruiqiang; Jiang, Yuesong; Wen, Luhong; Wen, Donghai

    2017-06-01

    The overlap factor is used to evaluate the LiDAR light collection ability. Ranging LiDAR is mainly determined by the optical configuration. However, scanning LiDAR, equipped with a scanning mechanism to acquire a 3D coordinate points cloud for a specified target, is essential in considering the scanning effect at the same time. Otherwise, scanning LiDAR will reduce the light collection ability and even cannot receive any echo. From this point of view, we propose a scanning LiDAR overlap factor calculation method based on the tridimensional ray-tracing method, which can be applied to scanning LiDAR with any special laser intensity distribution, any type of telescope (reflector, refractor, or mixed), and any shape obstruction (i.e., the reflector of a coaxial optical system). A case study for our LiDAR with a scanning mirror is carried out, and a MATLAB program is written to analyze the laser emission and reception process. Sensitivity analysis is carried out as a function of scanning mirror rotation speed and detector position, and the results guide how to optimize the overlap factor for our LiDAR. The results of this research will have a guiding significance in scanning LiDAR design and assembly.

  18. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terawaki, Shin-ichi, E-mail: terawaki@gunma-u.ac.jp; SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148; Yoshikane, Asuka

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicDmore » CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site.« less

  19. Parallel-multiplexed excitation light-sheet microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Laser scanning light-sheet imaging allows fast 3D image of live samples with minimal bleach and photo-toxicity. Existing light-sheet techniques have very limited capability in multi-label imaging. Hyper-spectral imaging is needed to unmix commonly used fluorescent proteins with large spectral overlaps. However, the challenge is how to perform hyper-spectral imaging without sacrificing the image speed, so that dynamic and complex events can be captured live. We report wavelength-encoded structured illumination light sheet imaging (λ-SIM light-sheet), a novel light-sheet technique that is capable of parallel multiplexing in multiple excitation-emission spectral channels. λ-SIM light-sheet captures images of all possible excitation-emission channels in true parallel. It does not require compromising the imaging speed and is capable of distinguish labels by both excitation and emission spectral properties, which facilitates unmixing fluorescent labels with overlapping spectral peaks and will allow more labels being used together. We build a hyper-spectral light-sheet microscope that combined λ-SIM with an extended field of view through Bessel beam illumination. The system has a 250-micron-wide field of view and confocal level resolution. The microscope, equipped with multiple laser lines and an unlimited number of spectral channels, can potentially image up to 6 commonly used fluorescent proteins from blue to red. Results from in vivo imaging of live zebrafish embryos expressing various genetic markers and sensors will be shown. Hyper-spectral images from λ-SIM light-sheet will allow multiplexed and dynamic functional imaging in live tissue and animals.

  20. Laser Fabrication of Two-Dimensional Rotating-Lattice Single Crystal

    DOE PAGES

    Savytskii, Dmytro; Au-Yeung, Courtney; Dierolf, Volkmar; ...

    2017-03-09

    A rotating lattice single (RLS) crystal is a unique form of solid, which was fabricated recently as one-dimensional architecture in glass via solid state transformation induced by laser irradiation. In these objects, the lattice rotates gradually and predictably about an axis that lies in the plane of the crystal and is normal to the laser scanning direction. This paper reports on the fabrication of Sb 2S 3 two-dimensional (2D) RLS crystals on the surface of 16SbI 3-84Sb 2S 3 glass, as a model example: individual RLS crystal lines are joined together using "stitching" or "rastering" as two successful protocols. Themore » electron back scattered diffraction mapping and scanning Laue X-ray microdiffraction of the 2D RLS crystals show gradual rotation of lattice comprising of two components, one along the length of each line and another normal to this direction. The former component is determined by the rotation of the first line of the 2D pattern, but the relative contribution of the last component depends on the extent of overlap between two successive lines. By the appropriate choice of initial seed orientation and the direction of scanning, it is possible to control the lattice rotation, and even to reduce it down to 5 for a 50 × 50 μm 2 2D pattern of Sb 2S 3 crystal.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, Patrick; Frolov, Valeri P.; Kubiznak, David

    We obtain and study the equations describing the parallel transport of orthonormal frames along geodesics in a spacetime admitting a nondegenerate, principal, conformal Killing-Yano tensor h. We demonstrate that the operator F, obtained by a projection of h to a subspace orthogonal to the velocity, has in a generic case eigenspaces of dimension not greater than 2. Each of these eigenspaces is independently parallel propagated. This allows one to reduce the parallel transport equations to a set of first order, ordinary, differential equations for the angles of rotation in the 2D eigenspaces. General analysis is illustrated by studying the equationsmore » of the parallel transport in the Kerr-NUT-(A)dS metrics. Examples of three-, four-, and five-dimensional Kerr-NUT-(A)dS are considered, and it is shown that the obtained first order equations can be solved by a separation of variables.« less

  2. Fast polyenergetic forward projection for image formation using OpenCL on a heterogeneous parallel computing platform.

    PubMed

    Zhou, Lili; Clifford Chao, K S; Chang, Jenghwa

    2012-11-01

    Simulated projection images of digital phantoms constructed from CT scans have been widely used for clinical and research applications but their quality and computation speed are not optimal for real-time comparison with the radiography acquired with an x-ray source of different energies. In this paper, the authors performed polyenergetic forward projections using open computing language (OpenCL) in a parallel computing ecosystem consisting of CPU and general purpose graphics processing unit (GPGPU) for fast and realistic image formation. The proposed polyenergetic forward projection uses a lookup table containing the NIST published mass attenuation coefficients (μ∕ρ) for different tissue types and photon energies ranging from 1 keV to 20 MeV. The CT images of interested sites are first segmented into different tissue types based on the CT numbers and converted to a three-dimensional attenuation phantom by linking each voxel to the corresponding tissue type in the lookup table. The x-ray source can be a radioisotope or an x-ray generator with a known spectrum described as weight w(n) for energy bin E(n). The Siddon method is used to compute the x-ray transmission line integral for E(n) and the x-ray fluence is the weighted sum of the exponential of line integral for all energy bins with added Poisson noise. To validate this method, a digital head and neck phantom constructed from the CT scan of a Rando head phantom was segmented into three (air, gray∕white matter, and bone) regions for calculating the polyenergetic projection images for the Mohan 4 MV energy spectrum. To accelerate the calculation, the authors partitioned the workloads using the task parallelism and data parallelism and scheduled them in a parallel computing ecosystem consisting of CPU and GPGPU (NVIDIA Tesla C2050) using OpenCL only. The authors explored the task overlapping strategy and the sequential method for generating the first and subsequent DRRs. A dispatcher was designed to drive the high-degree parallelism of the task overlapping strategy. Numerical experiments were conducted to compare the performance of the OpenCL∕GPGPU-based implementation with the CPU-based implementation. The projection images were similar to typical portal images obtained with a 4 or 6 MV x-ray source. For a phantom size of 512 × 512 × 223, the time for calculating the line integrals for a 512 × 512 image panel was 16.2 ms on GPGPU for one energy bin in comparison to 8.83 s on CPU. The total computation time for generating one polyenergetic projection image of 512 × 512 was 0.3 s (141 s for CPU). The relative difference between the projection images obtained with the CPU-based and OpenCL∕GPGPU-based implementations was on the order of 10(-6) and was virtually indistinguishable. The task overlapping strategy was 5.84 and 1.16 times faster than the sequential method for the first and the subsequent digitally reconstruction radiographies, respectively. The authors have successfully built digital phantoms using anatomic CT images and NIST μ∕ρ tables for simulating realistic polyenergetic projection images and optimized the processing speed with parallel computing using GPGPU∕OpenCL-based implementation. The computation time was fast (0.3 s per projection image) enough for real-time IGRT (image-guided radiotherapy) applications.

  3. Intraplate Crustal Deformation Within the Northern Sinai Microplate: Evidence from Paleomagnetic Directions and Mechanical Modeling

    NASA Astrophysics Data System (ADS)

    Dembo, N.; Granot, R.; Hamiel, Y.

    2017-12-01

    The intraplate crustal deformation found in the northern part of the Sinai Microplate, located near the northern Dead Sea Fault plate boundary, is examined. Previous studies have suggested that distributed deformation in Lebanon is accommodated by regional uniform counterclockwise rigid block rotations. However, remanent magnetization directions observed near the Lebanese restraining bend are not entirely homogeneous suggesting that an unexplained and complex internal deformation pattern exists. In order to explain the variations in the amount of vertical-axis rotations we construct a mechanical model of the major active faults in the region that simulates the rotational deformation induced by motion along these faults. The rotational pattern calculated by the mechanical modeling predicts heterogeneous distribution of rotations around the faults. The combined rotation field that considers both the fault induced rotations and the already suggested regional block rotations stands in general agreement with the observed magnetization directions. Overall, the modeling results provide a more detailed and complete picture of the deformation pattern in this region and show that rotations induced by motion along the Dead Sea Fault act in parallel to rigid block rotations. Finally, the new modeling results unravel important insights as to the fashion in which crustal deformation is distributed within the northern part of the Sinai Microplate and propose an improved deformational mechanism that might be appropriate for other plate margins as well.

  4. Neoclassical poloidal and toroidal rotation in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-08-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite tomore » that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.« less

  5. Preoperative and post-operative sleep quality evaluation in rotator cuff tear patients.

    PubMed

    Serbest, Sancar; Tiftikçi, Uğur; Askın, Aydogan; Yaman, Ferda; Alpua, Murat

    2017-07-01

    The aim of this study was to examine the potential relationship between subjective sleep quality and degree of pain in patients with rotator cuff repair. Thirty-one patients who underwent rotator cuff repair prospectively completed the Pittsburgh Sleep Quality Index, the Western Ontario Rotator Cuff Index, and the Constant and Murley shoulder scores before surgery and at 6 months after surgery. Preoperative demographic, clinical, and radiologic parameters were also evaluated. The study analysed 31 patients with a median age of 61 years. There was a significant difference preoperatively versus post-operatively in terms of all PSQI global scores and subdivisions (p < 0.001). A statistically significant improvement was determined by the Western Ontario Rotator Cuff Scale and the Constant and Murley shoulder scores (p ˂ 0.001). Sleep disorders are commonly seen in patients with rotator cuff tear, and after repair, there is an increase in the quality of sleep with a parallel improvement in shoulder functions. However, no statistically significant correlation was determined between arthroscopic procedures and the size of the tear and sleep quality. It is suggested that rotator cuff tear repair improves the quality of sleep and the quality of life. IV.

  6. Negative Compressibility and Inverse Problem for Spinning Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasily Geyko and Nathaniel J. Fisch

    2013-01-11

    A spinning ideal gas in a cylinder with a smooth surface is shown to have unusual properties. First, under compression parallel to the axis of rotation, the spinning gas exhibits negative compressibility because energy can be stored in the rotation. Second, the spinning breaks the symmetry under which partial pressures of a mixture of gases simply add proportional to the constituent number densities. Thus, remarkably, in a mixture of spinning gases, an inverse problem can be formulated such that the gas constituents can be determined through external measurements only.

  7. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  8. Flexure Based Linear and Rotary Bearings

    NASA Technical Reports Server (NTRS)

    Voellmer, George M. (Inventor)

    2016-01-01

    A flexure based linear bearing includes top and bottom parallel rigid plates; first and second flexures connecting the top and bottom plates and constraining exactly four degrees of freedom of relative motion of the plates, the four degrees of freedom being X and Y axis translation and rotation about the X and Y axes; and a strut connecting the top and bottom plates and further constraining exactly one degree of freedom of the plates, the one degree of freedom being one of Z axis translation and rotation about the Z axis.

  9. Comparison null imaging ellipsometry using polarization rotator

    NASA Astrophysics Data System (ADS)

    Park, Sungmo; Kim, Eunsung; Kim, Jiwon; An, Ilsin

    2018-05-01

    In this study, two-reflection imaging ellipsometry is carried out to compare the changes in polarization states between two samples. By using a polarization rotator, the parallel and perpendicular components of polarization are easily switched between the two samples being compared. This leads to an intensity image consisting of null and off-null points depending on the difference in optical characteristics between the two samples. This technique does not require any movement of optical elements for nulling and can be used to detect defects or surface contamination for quality control of samples.

  10. Reversible vector ratchets for skyrmion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles

    In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less

  11. Reversible vector ratchets for skyrmion systems

    DOE PAGES

    Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles

    2017-03-03

    In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less

  12. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.

    PubMed

    Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N

    2016-07-12

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.

  13. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    DOE PAGES

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less

  14. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Crocker, N. A.; Carter, T. A.

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation,more » it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.« less

  15. Simulation of two-dimensional turbulent flows in a rotating annulus

    NASA Astrophysics Data System (ADS)

    Storey, Brian D.

    2004-05-01

    Rotating water tank experiments have been used to study fundamental processes of atmospheric and geophysical turbulence in a controlled laboratory setting. When these tanks are undergoing strong rotation the forced turbulent flow becomes highly two dimensional along the axis of rotation. An efficient numerical method has been developed for simulating the forced quasi-geostrophic equations in an annular geometry to model current laboratory experiments. The algorithm employs a spectral method with Fourier series and Chebyshev polynomials as basis functions. The algorithm has been implemented on a parallel architecture to allow modelling of a wide range of spatial scales over long integration times. This paper describes the derivation of the model equations, numerical method, testing and performance of the algorithm. Results provide reasonable agreement with the experimental data, indicating that such computations can be used as a predictive tool to design future experiments.

  16. Transverse-displacement stabilizer for passive magnetic bearing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Richard F

    The invention provides a way re-center a rotor's central longitudinal rotational axis with a desired system longitudinal axis. A pair of planar semicircular permanent magnets are pieced together to form a circle. The flux from each magnet is pointed in in opposite directions that are both parallel with the rotational axis. A stationary shorted circular winding the plane of which is perpendicular to the system longitudinal axis and the center of curvature of the circular winding is positioned on the system longitudinal axis. Upon rotation of the rotor, when a transverse displacement of the rotational axis occurs relative to themore » system longitudinal axis, the winding will experience a time-varying magnetic flux such that an alternating current that is proportional to the displacement will flow in the winding. Such time-varying magnetic flux will provide a force that will bring the rotor back to its centered position about the desired axis.« less

  17. Effects of magnetic fields and slow rotation in white dwarfs

    NASA Astrophysics Data System (ADS)

    Terrero, D. Alvear; Paret, D. Manreza; Martínez, A. Pérez

    In this work we use Hartle’s formalism to study the effects of rotation in the structure of magnetized white dwarfs within the framework of general relativity. We describe the inner matter by means of an equation of state for electrons under the action of a constant magnetic field, which introduces an anisotropy in the pressures. Solutions correspond to typical densities of white dwarfs and values of magnetic field below 1013G considering perpendicular and parallel pressures independently, as if associated to two different equations of state. Rotation effects obtained account for an increase of the maximum mass for both magnetized and nonmagnetized stable configurations, up to about 1.5M⊙. Further effects studied include the deformation of the stars, which become oblate spheroids and the solutions for other quantities of interest, such as the moment of inertia, quadrupolar momentum and eccentricity. In all cases, rotation effects are dominant with respect to those of the magnetic field.

  18. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.

    2016-10-01

    By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

  19. Numerical simulation of a low-swirl impinging jet with a rotating convergent nozzle

    NASA Astrophysics Data System (ADS)

    Borynyak, K.; Hrebtov, M.; Bobrov, M.; Kozyulin, N.

    2018-03-01

    The paper presents the results of Large Eddy Simulation of a swirling impinging jet with moderate Reynolds number (104), where the swirl is organized via the rotation of a convergent nozzle. The results show that the effect of the swirl in this configuration leads to an increase of axial velocity, compared to the non-swirling case. It is shown that turbulent stress plays an important role in this effect. The vortex structure of the jet consists of multiple pairs of nearly parallel helical vortices with opposite signs of rotation. The interaction of vortices in the near region of the jet leads to radial contraction of the jet’s core which in turn, causes an the increase in the axial velocity.

  20. Rotation relaxation splitting for optimizing parallel RF excitation pulses with T1 - and T2 -relaxations in MRI

    NASA Astrophysics Data System (ADS)

    Majewski, Kurt

    2018-03-01

    Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.

  1. Near-Resonant Raman Amplification in the Rotational Quantum Wave Packets of Nitrogen Molecular Ions Generated by Strong Field Ionization

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoxiang; Yao, Jinping; Chen, Jinming; Xu, Bo; Chu, Wei; Cheng, Ya

    2018-02-01

    The generation of laserlike narrow bandwidth emissions from nitrogen molecular ions (N2+ ) generated in intense near- and mid infrared femtosecond laser fields has aroused much interest because of the mysterious physics underlying such a phenomenon. Here, we perform a pump-probe measurement on the nonlinear interaction of rotational quantum wave packets of N2+ generated in midinfrared (e.g., at a wavelength centered at 1580 nm) femtosecond laser fields with an ultrashort probe pulse whose broad spectrum overlaps both P - and R -branch rotational transition lines between the electronic states N2+(B2Σu+,v'=0 ) and N2+(X2Σg+,v =0 ) . The results indicate the occurrence of highly efficient near-resonant stimulated Raman scattering in the quantum wave packets of N2+ ions generated in strong laser fields in the midinfrared region, of which the underlying mechanism is different from that of the air lasers generated in atmospheric environment when pumping with 800 nm intense pulses.

  2. Compact holographic optical neural network system for real-time pattern recognition

    NASA Astrophysics Data System (ADS)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  3. Obesity and addiction: neurobiological overlaps.

    PubMed

    Volkow, N D; Wang, G-J; Tomasi, D; Baler, R D

    2013-01-01

    Drug addiction and obesity appear to share several properties. Both can be defined as disorders in which the saliency of a specific type of reward (food or drug) becomes exaggerated relative to, and at the expense of others rewards. Both drugs and food have powerful reinforcing effects, which are in part mediated by abrupt dopamine increases in the brain reward centres. The abrupt dopamine increases, in vulnerable individuals, can override the brain's homeostatic control mechanisms. These parallels have generated interest in understanding the shared vulnerabilities between addiction and obesity. Predictably, they also engendered a heated debate. Specifically, brain imaging studies are beginning to uncover common features between these two conditions and delineate some of the overlapping brain circuits whose dysfunctions may underlie the observed deficits. The combined results suggest that both obese and drug-addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning, self-control, stress reactivity and interoceptive awareness. In parallel, studies are also delineating differences between them that centre on the key role that peripheral signals involved with homeostatic control exert on food intake. Here, we focus on the shared neurobiological substrates of obesity and addiction. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  4. Role of inter-tube coupling and quantum interference on electrical transport in carbon nanotube junctions

    NASA Astrophysics Data System (ADS)

    Tripathy, Srijeet; Bhattacharyya, Tarun Kanti

    2016-09-01

    Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.

  5. Analysis of carbon dioxide bands near 2.2 micrometers

    NASA Technical Reports Server (NTRS)

    Abubaker, M. S.; Shaw, J. H.

    1984-01-01

    Carbon dioxide is one of the more important atmospheric infrared-absorbing gases due to its relatively high, and increasing, concentration. The spectral parameters of its bands are required for understanding radiative heat transfer in the atmosphere. The line intensities, positions, line half-widths, rotational constants, and band centers of three overlapping bands of CO2 near 2.2 microns are presented. Non-linear least squares (NLLS) regression procedures were employed to determine these parameters.

  6. Determination of statistics for any rotation of axes of a bivariate normal elliptical distribution. [of wind vector components

    NASA Technical Reports Server (NTRS)

    Falls, L. W.; Crutcher, H. L.

    1976-01-01

    Transformation of statistics from a dimensional set to another dimensional set involves linear functions of the original set of statistics. Similarly, linear functions will transform statistics within a dimensional set such that the new statistics are relevant to a new set of coordinate axes. A restricted case of the latter is the rotation of axes in a coordinate system involving any two correlated random variables. A special case is the transformation for horizontal wind distributions. Wind statistics are usually provided in terms of wind speed and direction (measured clockwise from north) or in east-west and north-south components. A direct application of this technique allows the determination of appropriate wind statistics parallel and normal to any preselected flight path of a space vehicle. Among the constraints for launching space vehicles are critical values selected from the distribution of the expected winds parallel to and normal to the flight path. These procedures are applied to space vehicle launches at Cape Kennedy, Florida.

  7. Magnocellular pathway for rotation invariant Neocognitron.

    PubMed

    Ting, C H

    1993-03-01

    In the mammalian visual system, magnocellular pathway and parvocellular pathway cooperatively process visual information in parallel. The magnocellular pathway is more global and less particular about the details while the parvocellular pathway recognizes objects based on the local features. In many aspects, Neocognitron may be regarded as the artificial analogue of the parvocellular pathway. It is interesting then to model the magnocellular pathway. In order to achieve "rotation invariance" for Neocognitron, we propose a neural network model after the magnocellular pathway and expand its roles to include surmising the orientation of the input pattern prior to recognition. With the incorporation of the magnocellular pathway, a basic shift in the original paradigm has taken place. A pattern is now said to be recognized when and only when one of the winners of the magnocellular pathway is validified by the parvocellular pathway. We have implemented the magnocellular pathway coupled with Neocognitron parallel on transputers; our simulation programme is now able to recognize numerals in arbitrary orientation.

  8. Neutron transport analysis for nuclear reactor design

    DOEpatents

    Vujic, Jasmina L.

    1993-01-01

    Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.

  9. Neutron transport analysis for nuclear reactor design

    DOEpatents

    Vujic, J.L.

    1993-11-30

    Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values. 28 figures.

  10. Motorized manipulator for positioning a TEM specimen

    DOEpatents

    Schmid, Andreas Karl; Andresen, Nord

    2010-12-14

    The invention relates to a motorized manipulator for positioning a TEM specimen holder with sub-micron resolution parallel to a y-z plane and rotating the specimen holder in the y-z plane, the manipulator comprising a base (2), and attachment means (30) for attaching the specimen holder to the manipulator, characterized in that the manipulator further comprises at least three nano-actuators (3.sup.a, 3.sup.b, 3.sup.c) mounted on the base, each nano-actuator showing a tip (4.sup.a, 4.sup.b, 4.sup.c), the at least three tips defining the y-z plane, each tip capable of moving with respect to the base in the y-z plane; a platform (5) in contact with the tips of the nano-actuators; and clamping means (6) for pressing the platform against the tips of the nano-actuators; as a result of which the nano-actuators can rotate the platform with respect to the base in the y-z plane and translate the platform parallel to the y-z plane.

  11. Control mechanism of double-rotator-structure ternary optical computer

    NASA Astrophysics Data System (ADS)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  12. [Parallel virtual reality visualization of extreme large medical datasets].

    PubMed

    Tang, Min

    2010-04-01

    On the basis of a brief description of grid computing, the essence and critical techniques of parallel visualization of extreme large medical datasets are discussed in connection with Intranet and common-configuration computers of hospitals. In this paper are introduced several kernel techniques, including the hardware structure, software framework, load balance and virtual reality visualization. The Maximum Intensity Projection algorithm is realized in parallel using common PC cluster. In virtual reality world, three-dimensional models can be rotated, zoomed, translated and cut interactively and conveniently through the control panel built on virtual reality modeling language (VRML). Experimental results demonstrate that this method provides promising and real-time results for playing the role in of a good assistant in making clinical diagnosis.

  13. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  14. Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firth, Andrew E., E-mail: a.firth@ucc.i; Blitvich, Bradley J., E-mail: blitvich@iastate.ed; Wills, Norma M., E-mail: nwills@genetics.utah.ed

    2010-03-30

    Flaviviruses have a positive-sense, single-stranded RNA genome of approx11 kb, encoding a large polyprotein that is cleaved to produce approx10 mature proteins. Cell fusing agent virus, Kamiti River virus, Culex flavivirus and several recently discovered flaviviruses have no known vertebrate host and apparently infect only insects. We present compelling bioinformatic evidence for a 253-295 codon overlapping gene (designated fifo) conserved throughout these insect-specific flaviviruses and immunofluorescent detection of its product. Fifo overlaps the NS2A/NS2B coding sequence in the - 1/+ 2 reading frame and is most likely expressed as a trans-frame fusion protein via ribosomal frameshifting at a conserved GGAUUUYmore » slippery heptanucleotide with 3'-adjacent RNA secondary structure (which stimulates efficient frameshifting in vitro). The discovery bears striking parallels to the recently discovered ribosomal frameshifting site in the NS2A coding sequence of the Japanese encephalitis serogroup of flaviviruses and suggests that programmed ribosomal frameshifting may be more widespread in flaviviruses than currently realized.« less

  15. Magnetic positioner having a single moving part

    DOEpatents

    Trumper, David L.; Kim, Won-Jong

    1999-01-01

    A magnetic positioner is provided which is capable of providing long travel in two dimension and short travel in the remaining four dimensions. The positioner has a movable stage and a stator oriented adjacent and substantially parallel to this stage. At least three sets of first magnetic elements, which for preferred embodiments are winding sets capable of generating forces in two directions, are on the portion of the stator adjacent to the stage at any given time, and at least two second magnetic elements, which are magnet arrays for the preferred embodiment, are on the stage adjacent to the stator. At least one of the second magnetic elements overlaps multiple first magnetic elements for all positions of the stage relative to the stator, with one magnet overlapping multiple windings for one preferred embodiment of the invention and two magnets on the stage overlapping multiple windings on the stator for a second embodiment. The windings form a linear motor providing forces in both a corresponding long travel dimension and in a dimension perpendicular to both long travel dimensions.

  16. Clarifying relations between dispositional aggression and brain potential response: overlapping and distinct contributions of impulsivity and stress reactivity.

    PubMed

    Venables, Noah C; Patrick, Christopher J; Hall, Jason R; Bernat, Edward M

    2011-03-01

    Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Spherical aberration correction with an in-lens N-fold symmetric line currents model.

    PubMed

    Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji

    2018-04-01

    In our previous works, we have proposed N-SYLC (N-fold symmetric line currents) models for aberration correction. In this paper, we propose "in-lens N-SYLC" model, where N-SYLC overlaps rotationally symmetric lens. Such overlap is possible because N-SYLC is free of magnetic materials. We analytically prove that, if certain parameters of the model are optimized, an in-lens 3-SYLC (N = 3) doublet can correct 3rd order spherical aberration. By computer simulation, we show that the required excitation current for correction is less than 0.25 AT for beam energy 5 keV, and the beam size after correction is smaller than 1 nm at the corrector image plane for initial slope less than 4 mrad. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme

    DOE PAGES

    Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.; ...

    2016-11-07

    Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less

  19. Load Balancing Strategies for Multi-Block Overset Grid Applications

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biswas, Rupak; Lopez-Benitez, Noe; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The multi-block overset grid method is a powerful technique for high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping structured grids that periodically update and exchange boundary information through interpolation. For efficient high performance computations of large-scale realistic applications using this methodology, the individual grids must be properly partitioned among the parallel processors. Overall performance, therefore, largely depends on the quality of load balancing. In this paper, we present three different load balancing strategies far overset grids and analyze their effects on the parallel efficiency of a Navier-Stokes CFD application running on an SGI Origin2000 machine.

  20. Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.

    Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less

  1. Emplacement and Deformation of Mesozoic Gabbros of the High Atlas (Morocco): Paleomagnetism and Magnetic Fabrics

    NASA Astrophysics Data System (ADS)

    Calvín, P.; Ruiz-Martínez, V. C.; Villalaín, J. J.; Casas-Sainz, A. M.; Moussaid, B.

    2017-12-01

    A paleomagnetic and magnetic fabric study is performed in Upper Jurassic gabbros of the central High Atlas (Morocco). These gabbros were emplaced in the core of preexisting structures developed during the extensional stage and linked to basement faults. These structures were reactivated as anticlines during the Cenozoic compressional inversion. Gabbros from 19 out of the 33 sampled sites show a stable characteristic magnetization, carried by magnetite, which has been interpreted as a primary component. This component shows an important dispersion due to postemplacement tectonic movements. The absence of paleoposition markers in these igneous rocks precludes direct restorations. A novel approach analyzing the orientation of the primary magnetization is used here to restore the magmatic bodies and to understand the deformational history recorded by these rocks. Paleomagnetic vectors are distributed along small circles with horizontal axes, indicating horizontal axis rotations of the gabbro bodies. These rotations are higher when the ratio between shales and gabbros in the core of the anticlines increases. Due to the uncertainties inherent to this work (the igneous bodies recording strong rotations), interpretations must be qualitative. The magnetic fabric is carried by ferromagnetic (s.s.) minerals mimicking the magmatic fabric. Anisotropy of magnetic susceptibility (AMS) axes, using the rotation routine inferred from paleomagnetic results, result in more tightly clustered magnetic lineations, which also become horizontal and are considered in terms of magma flow trend during its emplacement: NW-SE (parallel to the general extensional direction) in the western sector and NE-SW (parallel to the main faults) in the easternmost structures.

  2. Integration experiences and performance studies of A COTS parallel archive systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-bung; Scott, Cody; Grider, Bary

    2010-01-01

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf(COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching and lessmore » robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, ls, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petaflop/s computing system, LANL's Roadrunner, and demonstrated its capability to address requirements of future archival storage systems.« less

  3. Integration experiments and performance studies of a COTS parallel archive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-bung; Scott, Cody; Grider, Gary

    2010-06-16

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf (COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching andmore » less robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, Is, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petafiop/s computing system, LANL's Roadrunner machine, and demonstrated its capability to address requirements of future archival storage systems.« less

  4. Use of inertial properties to orient tomatoes

    USDA-ARS?s Scientific Manuscript database

    Recent theoretical and experimental results have demonstrated that it is possible to orient quasi-round objects such as apples by taking advantage of inertial-effects during rotation. In practice, an apple rolled down a track consisting of two parallel rails tends to move to an orientation where the...

  5. A Biomechanical Comparison Of Pin Configurations Used For Percutaneous Pinning Of Distal Tibia Fractures In Children.

    PubMed

    Brantley, Justin; Majumdar, Aditi; Jobe, J Taylor; Kallur, Antony; Salas, Christina

    2016-01-01

    Percutaneous pin fixation is often used in conjunction with closed-reduction and cast immobilization to treat pediatric distal tibia fractures. The goal of this procedure is to maintain reduction and provide improved stabilization, in effort to facilitate a more anatomic union. We conducted a biomechanical study of the torsional and bending stability of three commonly used pin configurations in distal tibia fracture fixation. A transverse fracture was simulated at the metaphyseal/diaphyseal junction in 15 synthetic tibias. Each fracture was reduced and fixed with two Kirschner wires, arranged in one of three pin configurations: parallel, retrograde, medial to lateral pins entering at the medial malleolus distal to the fracture (group A); parallel, antegrade, medial to lateral pins entering at the medial diaphysis proximal to the fracture (group B); or a cross-pin configuration with one retrograde, medial to lateral pin entering the medial malleolus distal to the fracture and the second an antegrade, medial to lateral pin entering at the medial diaphysis proximal to the fracture (group C). Stability of each construct was assessed by resistance to torsion and bending. Resistance to external rotation stress was significantly higher in group A than group B (P = 0.044). Resistance to internal rotation stress was significantly higher in group C than group B (P = 0.003). There was no significant difference in torsional stiffness when comparing group A with group C. Under a medial-directed load, group B and C specimens were significantly stiffer than those in group A (28 N/mm and 24 N/mm vs. 14 N/mm for A; P = 0.001 and P = 0.009, respectively). None of the three pin configurations produced superior results with respect to all variables studied. Group A configuration provided the highest resistance to external rotation forces, which is the most clinically relevant variable under short-cast immobilization. Parallel, retrograde, medial to lateral pins entering at the medial malleolus provide the greatest resistance to external rotation of the foot while minimizing the potential for iatrogenic injury to soft tissue structures.

  6. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  7. Digital tomosynthesis mammography using a parallel maximum-likelihood reconstruction method

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Zhang, Juemin; Moore, Richard; Rafferty, Elizabeth; Kopans, Daniel; Meleis, Waleed; Kaeli, David

    2004-05-01

    A parallel reconstruction method, based on an iterative maximum likelihood (ML) algorithm, is developed to provide fast reconstruction for digital tomosynthesis mammography. Tomosynthesis mammography acquires 11 low-dose projections of a breast by moving an x-ray tube over a 50° angular range. In parallel reconstruction, each projection is divided into multiple segments along the chest-to-nipple direction. Using the 11 projections, segments located at the same distance from the chest wall are combined to compute a partial reconstruction of the total breast volume. The shape of the partial reconstruction forms a thin slab, angled toward the x-ray source at a projection angle 0°. The reconstruction of the total breast volume is obtained by merging the partial reconstructions. The overlap region between neighboring partial reconstructions and neighboring projection segments is utilized to compensate for the incomplete data at the boundary locations present in the partial reconstructions. A serial execution of the reconstruction is compared to a parallel implementation, using clinical data. The serial code was run on a PC with a single PentiumIV 2.2GHz CPU. The parallel implementation was developed using MPI and run on a 64-node Linux cluster using 800MHz Itanium CPUs. The serial reconstruction for a medium-sized breast (5cm thickness, 11cm chest-to-nipple distance) takes 115 minutes, while a parallel implementation takes only 3.5 minutes. The reconstruction time for a larger breast using a serial implementation takes 187 minutes, while a parallel implementation takes 6.5 minutes. No significant differences were observed between the reconstructions produced by the serial and parallel implementations.

  8. Color vision predicts processing modes of goal activation during action cascading.

    PubMed

    Jongkees, Bryant J; Steenbergen, Laura; Colzato, Lorenza S

    2017-09-01

    One of the most important functions of cognitive control is action cascading: the ability to cope with multiple response options when confronted with various task goals. A recent study implicates a key role for dopamine (DA) in this process, suggesting higher D1 efficiency shifts the action cascading strategy toward a more serial processing mode, whereas higher D2 efficiency promotes a shift in the opposite direction by inducing a more parallel processing mode (Stock, Arning, Epplen, & Beste, 2014). Given that DA is found in high concentration in the retina and modulation of retinal DA release displays characteristics of D2-receptors (Peters, Schweibold, Przuntek, & Müller, 2000), color vision discrimination might serve as an index of D2 efficiency. We used color discrimination, assessed with the Lanthony Desaturated Panel D-15 test, to predict individual differences (N = 85) in a stop-change paradigm that provides a well-established measure of action cascading. In this task it is possible to calculate an individual slope value for each participant that estimates the degree of overlap in task goal activation. When the stopping process of a previous task goal has not finished at the time the change process toward a new task goal is initiated (parallel processing), the slope value becomes steeper. In case of less overlap (more serial processing), the slope value becomes flatter. As expected, participants showing better color vision were more prone to activate goals in a parallel manner as indicated by a steeper slope. Our findings suggest that color vision might represent a predictor of D2 efficiency and the predisposed processing mode of goal activation during action cascading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Parallel Pipelined Renderer for the Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Chiueh, Tzi-Cker; Ma, Kwan-Liu

    1997-01-01

    This paper presents a strategy for efficiently rendering time-varying volume data sets on a distributed-memory parallel computer. Time-varying volume data take large storage space and visualizing them requires reading large files continuously or periodically throughout the course of the visualization process. Instead of using all the processors to collectively render one volume at a time, a pipelined rendering process is formed by partitioning processors into groups to render multiple volumes concurrently. In this way, the overall rendering time may be greatly reduced because the pipelined rendering tasks are overlapped with the I/O required to load each volume into a group of processors; moreover, parallelization overhead may be reduced as a result of partitioning the processors. We modify an existing parallel volume renderer to exploit various levels of rendering parallelism and to study how the partitioning of processors may lead to optimal rendering performance. Two factors which are important to the overall execution time are re-source utilization efficiency and pipeline startup latency. The optimal partitioning configuration is the one that balances these two factors. Tests on Intel Paragon computers show that in general optimal partitionings do exist for a given rendering task and result in 40-50% saving in overall rendering time.

  10. A Data Parallel Multizone Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)

    1995-01-01

    We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.

  11. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution.

    PubMed

    Rössler, Wolfgang; Brill, Martin F

    2013-11-01

    Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.

  12. Contrast-enhanced MR imaging of the brain using T1-weighted FLAIR with BLADE compared with a conventional spin-echo sequence.

    PubMed

    Naganawa, Shinji; Satake, Hiroko; Iwano, Shingo; Kawai, Hisashi; Kubota, Seiji; Komada, Tomohiro; Kawamura, Minako; Sakurai, Yasuo; Fukatsu, Hiroshi

    2008-02-01

    The BLADE and PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) techniques have been proposed to reduce the effect of head motion. Preliminary results have shown that BLADE also reduces pulsation artifacts from venous sinuses. The purpose of this study was to compare T1-weighted FLAIR acquired with BLADE (T1W-FLAIR BLADE) and T1-weighted spin-echo (T1W-SE) for the detection of contrast enhancement in a phantom and in patients with suspected brain lesions and to compare the degree of flow-related artifacts in the patients. A phantom filled with diluted Gd-DTPA was scanned in addition to 27 patients. In the phantom study, the peak contrast-to-noise ratio of T1W-FLAIR BLADE was larger than that of T1W-SE, and the position of the peak was shifted to a lower concentration. In patients, the degree of flow-related artifacts was significantly higher in T1W-SE. Among the 27 patients, 9 had metastatic tumor, and 18 did not. On a patient-by-patient basis, the sensitivity and specificity for the detection of metastatic lesions on axial T1W-SE were 100% and 55.6% respectively, while on axial T1W-FLAIR BLADE they were 100% and 100%. T1W-FLAIR BLADE seems to be capable of replacing T1W-SE, at least for axial post-contrast imaging to detect brain metastases.

  13. Evaluation of cholesteatoma: our experience with DW Propeller imaging.

    PubMed

    Karandikar, Amit; Loke, Siu Cheng; Goh, Julian; Yeo, Seng Beng; Tan, Tiong Yong

    2015-09-01

    Cholesteatoma management includes early detection and surgical exploration. Due to its tendency to recur, it can be potentially locally aggressive. Magnetic resonance imaging (MRI), and in particular diffusion weighted imaging (DWI), plays an important role in management of these lesions. To assess the accuracy of Propeller (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) DW sequence in detecting middle ear and mastoid cholesteatomas in non-operated ears by surgical correlation. A retrospective review of 15 patients was done who underwent Propeller DWI with either clinically confirmed or suspected cholesteatomas. Surgical correlation was done in all cases. All patients had hyperintense foci on Propeller DWI. Surgical correlation performed revealed that 13 patients had cholesteatomas while two patients had mastoid abscesses. The location, extent, and size of cholesteatomas on Propeller DWI matched with the operative findings. Of the 13 patients with cholesteatomas, three patients had multiple foci of hyperintensity on Propeller DWI, which corroborated with the surgical finding of multiple cholesteatomas. The average apparent diffusion coefficient value of cholesteatoma was 0.868 × 10(-3) mm(2)/s, found to be higher than that of abscess, which was 0.425 × 10(-3) mm(2)/s. Propeller DWI was accurate in assessing the location, extent, and size of cholesteatomas as corroborated with surgical findings. Propeller DWI is useful in detecting number of cholesteatoma foci, a vital finding as it may impact the choice of surgery. © The Foundation Acta Radiologica 2014.

  14. Optical computing and image processing using photorefractive gallium arsenide

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Duncan T. H.

    1990-01-01

    Recent experimental results on matrix-vector multiplication and multiple four-wave mixing using GaAs are presented. Attention is given to a simple concept of using two overlapping holograms in GaAs to do two matrix-vector multiplication processes operating in parallel with a common input vector. This concept can be used to construct high-speed, high-capacity, reconfigurable interconnection and multiplexing modules, important for optical computing and neural-network applications.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirac, J. Ignacio; Sierra, German; Instituto de Fisica Teorica, UAM-CSIC, Madrid

    We generalize the matrix product states method using the chiral vertex operators of conformal field theory and apply it to study the ground states of the XXZ spin chain, the J{sub 1}-J{sub 2} model and random Heisenberg models. We compute the overlap with the exact wave functions, spin-spin correlators, and the Renyi entropy, showing that critical systems can be described by this method. For rotational invariant ansatzs we construct an inhomogenous extension of the Haldane-Shastry model with long-range exchange interactions.

  16. Comparison of manual and automatic MR‐CT registration for radiotherapy of prostate cancer

    PubMed Central

    Carl, Jesper; Østergaard, Lasse Riis

    2016-01-01

    In image‐guided radiotherapy (IGRT) of prostate cancer, delineation of the clinical target volume (CTV) often relies on magnetic resonance (MR) because of its good soft‐tissue visualization. Registration of MR and computed tomography (CT) is required in order to add this accurate delineation to the dose planning CT. An automatic approach for local MR‐CT registration of the prostate has previously been developed using a voxel property‐based registration as an alternative to a manual landmark‐based registration. The aim of this study is to compare the two registration approaches and to investigate the clinical potential for replacing the manual registration with the automatic registration. Registrations and analysis were performed for 30 prostate cancer patients treated with IGRT using a Ni‐Ti prostate stent as a fiducial marker. The comparison included computing translational and rotational differences between the approaches, visual inspection, and computing the overlap of the CTV. The computed mean translational difference was 1.65, 1.60, and 1.80 mm and the computed mean rotational difference was 1.51°, 3.93°, and 2.09° in the superior/inferior, anterior/posterior, and medial/lateral direction, respectively. The sensitivity of overlap was 87%. The results demonstrate that the automatic registration approach performs registrations comparable to the manual registration. PACS number(s): 87.57.nj, 87.61.‐c, 87.57.Q‐, 87.56.J‐ PMID:27167285

  17. Arabic handwritten: pre-processing and segmentation

    NASA Astrophysics Data System (ADS)

    Maliki, Makki; Jassim, Sabah; Al-Jawad, Naseer; Sellahewa, Harin

    2012-06-01

    This paper is concerned with pre-processing and segmentation tasks that influence the performance of Optical Character Recognition (OCR) systems and handwritten/printed text recognition. In Arabic, these tasks are adversely effected by the fact that many words are made up of sub-words, with many sub-words there associated one or more diacritics that are not connected to the sub-word's body; there could be multiple instances of sub-words overlap. To overcome these problems we investigate and develop segmentation techniques that first segment a document into sub-words, link the diacritics with their sub-words, and removes possible overlapping between words and sub-words. We shall also investigate two approaches for pre-processing tasks to estimate sub-words baseline, and to determine parameters that yield appropriate slope correction, slant removal. We shall investigate the use of linear regression on sub-words pixels to determine their central x and y coordinates, as well as their high density part. We also develop a new incremental rotation procedure to be performed on sub-words that determines the best rotation angle needed to realign baselines. We shall demonstrate the benefits of these proposals by conducting extensive experiments on publicly available databases and in-house created databases. These algorithms help improve character segmentation accuracy by transforming handwritten Arabic text into a form that could benefit from analysis of printed text.

  18. Investigations on the hierarchy of reference frames in geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Grafarend, E. W.; Mueller, I. I.; Papo, H. B.; Richter, B.

    1979-01-01

    Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions).

  19. Gyrofluid Simulations of Intrinsic Rotation Generation in Reversed Shear Plasmas with Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Jhang, Hogun; Kim, S. S.; Kwon, J. M.; Terzolo, L.; Kim, J. Y.; Diamond, P. H.

    2010-11-01

    It is accepted that the intrinsic rotation is generated via the residual stress, which is non-diffusive components of the turbulent Reynolds stress, without external momentum input. The physics leading to the onset of intrinsic rotation in L- and H- mode plasmas have been elucidated elsewhere. However, the physics responsible for the generation and transport of the intrinsic rotation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) plasmas have not been explored in detail, which is the main subject in the present work. The revised version of the global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. In particular, the role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking in RS plasmas.

  20. Intrinsic Rotation and Momentum Transport in Reversed Shear Plasmas with Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2010-11-01

    The intrinsic rotation in fusion plasmas is believed to be generated via the residual stress without external momentum input. The physical mechanism responsible for the generation and transport of intrinsic rotation in L- and H-mode tokamak plasmas has been studied extensively. However, it is noted that the physics of intrinsic rotation generation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) tokamak plasmas have not been explored in detail, which is the main subject in the present work. A global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. The role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking mechanism in RS plasmas.

  1. Parallel and orthogonal stimulus in ultradiluted neural networks

    NASA Astrophysics Data System (ADS)

    Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.

    2006-10-01

    Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .

  2. Automated Performance Prediction of Message-Passing Parallel Programs

    NASA Technical Reports Server (NTRS)

    Block, Robert J.; Sarukkai, Sekhar; Mehra, Pankaj; Woodrow, Thomas S. (Technical Monitor)

    1995-01-01

    The increasing use of massively parallel supercomputers to solve large-scale scientific problems has generated a need for tools that can predict scalability trends of applications written for these machines. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require substantial manual effort to represent an application in the model's format. The NIK toolkit described in this paper is the result of an on-going effort to automate the formation of analytic expressions of program execution time, with a minimum of programmer assistance. In this paper we demonstrate the feasibility of our approach, by extending previous work to detect and model communication patterns automatically, with and without overlapped computations. The predictions derived from these models agree, within reasonable limits, with execution times of programs measured on the Intel iPSC/860 and Paragon. Further, we demonstrate the use of MK in selecting optimal computational grain size and studying various scalability metrics.

  3. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  4. Effect of spaceflight on the spatial orientation of the vestibulo-ocular reflex during eccentric roll rotation: A case report.

    PubMed

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-01-01

    Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.

  5. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.

    PubMed

    Gandal, Michael J; Haney, Jillian R; Parikshak, Neelroop N; Leppa, Virpi; Ramaswami, Gokul; Hartl, Chris; Schork, Andrew J; Appadurai, Vivek; Buil, Alfonso; Werge, Thomas M; Liu, Chunyu; White, Kevin P; Horvath, Steve; Geschwind, Daniel H

    2018-02-09

    The predisposition to neuropsychiatric disease involves a complex, polygenic, and pleiotropic genetic architecture. However, little is known about how genetic variants impart brain dysfunction or pathology. We used transcriptomic profiling as a quantitative readout of molecular brain-based phenotypes across five major psychiatric disorders-autism, schizophrenia, bipolar disorder, depression, and alcoholism-compared with matched controls. We identified patterns of shared and distinct gene-expression perturbations across these conditions. The degree of sharing of transcriptional dysregulation is related to polygenic (single-nucleotide polymorphism-based) overlap across disorders, suggesting a substantial causal genetic component. This comprehensive systems-level view of the neurobiological architecture of major neuropsychiatric illness demonstrates pathways of molecular convergence and specificity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  7. Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation

    NASA Astrophysics Data System (ADS)

    Bjerlin, J.; Bengtsson, J.; Deuretzbacher, F.; Kristinsdóttir, L. H.; Reimann, S. M.

    2018-02-01

    We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially nonlocalized few-fermion state into a localized state with strong intertrap pairing. With an instant, nonadiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions.

  8. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits.

    PubMed

    Liu, Liu; Ding, Yunhong; Yvind, Kresten; Hvam, Jørn M

    2011-06-20

    A compact and efficient polarization splitting and rotating device built on the silicon-on-insulator platform is introduced, which can be readily used for the interface section of a polarization diversity circuit. The device is compact, with a total length of a few tens of microns. It is also simple, consisting of only two parallel silicon-on-insulator wire waveguides with different widths, and thus requiring no additional and nonstandard fabrication steps. A total insertion loss of -0.6 dB and an extinction ratio of 12 dB have been obtained experimentally in the whole C-band.

  9. Plexus structure imaging with thin slab MR neurography: rotating frames, fly-throughs, and composite projections

    NASA Astrophysics Data System (ADS)

    Raphael, David T.; McIntee, Diane; Tsuruda, Jay S.; Colletti, Patrick; Tatevossian, Raymond; Frazier, James

    2006-03-01

    We explored multiple image processing approaches by which to display the segmented adult brachial plexus in a three-dimensional manner. Magnetic resonance neurography (MRN) 1.5-Tesla scans with STIR sequences, which preferentially highlight nerves, were performed in adult volunteers to generate high-resolution raw images. Using multiple software programs, the raw MRN images were then manipulated so as to achieve segmentation of plexus neurovascular structures, which were incorporated into three different visualization schemes: rotating upper thoracic girdle skeletal frames, dynamic fly-throughs parallel to the clavicle, and thin slab volume-rendered composite projections.

  10. Structural and numerical modeling of fluid flow and evolving stress fields at a transtensional stepover: A Miocene Andean porphyry copper system as a case study.

    NASA Astrophysics Data System (ADS)

    Nuñez, R. C.; Griffith, W. A.; Mitchell, T. M.; Marquardt, C.; Iturrieta, P. C.; Cembrano, J. M.

    2017-12-01

    Obliquely convergent subduction orogens show both margin-parallel and margin-oblique fault systems that are spatially and temporally associated with ore deposits and geothermal systems within the volcanic arc. Fault orientation and mechanical interaction among different fault systems influence the stress field in these arrangements, thus playing a first order control on the regional to local-scale fluid migration paths as documented by the spatial distribution of fault-vein arrays. Our selected case study is a Miocene porphyry copper-type system that crops out in the precordillera of the Maule region along the Teno river Valley (ca. 35°S). Several regional to local faults were recognized in the field: (1) Two first-order, N-striking subvertical dextral faults overlapping at a right stepover; (2) Second-order, N60°E-striking steeply-dipping, dextral-normal faults located at the stepover, and (3) N40°-60°W striking subvertical, sinistral faults crossing the stepover zone. The regional and local scale geology is characterized by volcano-sedimentary rocks (Upper Eocene- Lower Miocene), intruded by Miocene granodioritic plutons (U-Pb zircon age of 18.2 ± 0.11 Ma) and coeval dikes. We implement a 2D boundary element displacement discontinuity method (BEM) model to test the mechanical feasibility of kinematic model of the structural development of the porphyry copper-type system in the stepover between N-striking faults. The model yields the stress field within the stepover region and shows slip and potential opening distribution along the N-striking master faults under a regionally imposed stress field. The model shows that σ1 rotates clockwise where the main faults approach each other, becoming EW when they overlap. This, in turn leads to the generation of both NE- and NW-striking faults within the stepover area. Model results are consistent with the structural and kinematic data collected in the field attesting for enhanced permeability and fluid flow transport and arrest spatially associated with the stepover.

  11. The evolutionary origin of jaw yaw in mammals

    PubMed Central

    Grossnickle, David M.

    2017-01-01

    Theria comprises all but three living mammalian genera and is one of the most ecologically pervasive clades on Earth. Yet, the origin and early history of therians and their close relatives (i.e., cladotherians) remains surprisingly enigmatic. A critical biological function that can be compared among early mammal groups is mastication. Morphometrics and modeling analyses of the jaws of Mesozoic mammals indicate that cladotherians evolved musculoskeletal anatomies that increase mechanical advantage during jaw rotation around a dorsoventrally-oriented axis (i.e., yaw) while decreasing the mechanical advantage of jaw rotation around a mediolaterally-oriented axis (i.e., pitch). These changes parallel molar transformations in early cladotherians that indicate their chewing cycles included significant transverse movement, likely produced via yaw rotation. Thus, I hypothesize that cladotherian molar morphologies and musculoskeletal jaw anatomies evolved concurrently with increased yaw rotation of the jaw during chewing cycles. The increased transverse movement resulting from yaw rotation may have been a crucial evolutionary prerequisite for the functionally versatile tribosphenic molar morphology, which underlies the molars of all therians and is retained by many extant clades. PMID:28322334

  12. Experimental study of the stability and flow characteristics of floating liquid columns confined between rotating disks

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.; Soto, L.; Strong, P. F.; Wang, C. A.

    1980-01-01

    A low Bond number simulation technique was used to establish the stability limits of cylindrical and conical floating liquid columns under conditions of isorotation, equal counter rotation, rotation of one end only, and parallel axis offset. The conditions for resonance in cylindrical liquid columns perturbed by axial, sinusoidal vibration of one end face are also reported. All tests were carried out under isothermal conditions with water and silicone fluids of various viscosities. A technique for the quantitative measurement of stream velocity within a floating, isothermal, liquid column confined between rotatable disks was developed. In the measurement, small, light scattering particles were used as streamline markers in common arrangement, but the capability of the measurement was extended by use of stereopair photography system to provide quantitative data. Results of velocity measurements made under a few selected conditions, which established the precision and accuracy of the technique, are given. The general qualitative features of the isothermal flow patterns under various conditions of end face rotation resulting from both still photography and motion pictures are presented.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Markus, E-mail: appel@ill.eu; Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble; Frick, Bernhard

    We report on quasielastic neutron spectroscopy experiments on ferrocene (bis(η{sup 5}-cyclopentadienyl)iron) in its three different crystalline phases: the disordered monoclinic crystalline phase (T > 164 K), the metastable triclinic phase (T < 164 K), and the stable orthorhombic phase (T < 250 K). The cyclopentadienyl rings in ferrocene are known to undergo rotational reorientations for which the analysis of our large data set suggests partially a revision of the known picture of the dynamics and allows for an extension and completion of previous studies. In the monoclinic phase, guided by structural information, we propose a model for rotational jumps amongmore » non-equivalent sites in contrast to the established 5-fold jump rotation model. The new model takes the dynamical disorder into account and allows the cyclopentadienyl rings to reside in two different configurations which are found to be twisted by an angle of approximately 30°. In the triclinic phase, our analysis demands the use of a 2-ring model accounting for crystallographically independent sites with different barriers to rotation. For the orthorhombic phase of ferrocene, we confirm a significantly increased barrier of rotation using neutron backscattering spectroscopy. Our data analysis includes multiple scattering corrections and presents a novel approach of simultaneous analysis of different neutron scattering data by combining elastic and inelastic fixed window temperature scans with energy spectra, providing a very robust and reliable mean of extracting the individual activation energies of overlapping processes.« less

  14. Two-View Gravity Stress Imaging Protocol for Nondisplaced Type II Supination External Rotation Ankle Fractures: Introducing the Gravity Stress Cross-Table Lateral View.

    PubMed

    Boffeli, Troy J; Collier, Rachel C; Gervais, Samuel J

    Assessing ankle stability in nondisplaced Lauge-Hansen supination external rotation type II injuries requires stress imaging. Gravity stress mortise imaging is routinely used as an alternative to manual stress imaging to assess deltoid integrity with the goal of differentiating type II from type IV injuries in cases without a posterior or medial fracture. A type II injury with a nondisplaced fibula fracture is typically treated with cast immobilization, and a type IV injury is considered unstable and often requires operative repair. The present case series (two patients) highlights a standardized 2-view gravity stress imaging protocol and introduces the gravity stress cross-table lateral view. The gravity stress cross-table lateral view provides a more thorough evaluation of the posterior malleolus owing to the slight external rotation and posteriorly directed stress. External rotation also creates less bony overlap between the tibia and fibula, allowing for better visualization of the fibula fracture. Gravity stress imaging confirmed medial-sided injury in both cases, confirming the presence of supination external rotation type IV or bimalleolar equivalent fractures. Open reduction and internal fixation was performed, and both patients achieved radiographic union. No further treatment was required at 21 and 33 months postoperatively. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    USGS Publications Warehouse

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faubel, M.; Weiner, E.R.

    Rotational level populations of N/sub 2/ were measured downstream from the skimmer in beams of pure N/sub 2/ and in mixtures of N/sub 2/ with He, Ne, and Ar expanded from room temperature nozzles. The range of p/sub 0/D was from 5 to 50 Torr cm. The formation of dimers and higher condensates of beam species was monitored during the runs. The effect of condensation energy release on rotational populations and parallel temperatures was readily observed. Two different methods for evaluating the rotational population distributions were compared. One method is based on a dipole-excitation model and the other on anmore » excitation matrix obtained empirically. Neither method proved clearly superior. Both methods indicated nonequilibrium rotational populations for all of our room temperature nozzle expansion conditions. Much of the nonequilibrium character appears to be due to the behavior of the K = 2 and K = 4 levels, which may be accounted for in terms of the rotational energy level spacing. In particular, the overpopulation of the K = 4 level is explained by a near-resonant transfer of rotational energy between molecules in the K = 6 and K = 0 states, to give two molecules in the K = 4 state. Rotational and vibrational temperatures were determined for pure N/sub 2/ beams from nozzles heated up to 1700 /sup 0/K. The heated nozzle experiments indicated a 40% increase in the rotational collision number between 300 and 1700 /sup 0/K.« less

  17. Flow past a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  18. Gravitational convergence, shear deformation and rotation of magnetic forcelines

    NASA Astrophysics Data System (ADS)

    Giantsos, Vangelis; Tsagas, Christos G.

    2017-11-01

    We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.

  19. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  20. Experimental Observation of the Effects of Translational and Rotational Electrode Misalignment on a Planar Linear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Decker, Trevor K.; McClellan, Joshua S.; Wu, Qinghao; De la Cruz, Abraham; Hawkins, Aaron R.; Austin, Daniel E.

    2018-04-01

    The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs—x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. [Figure not available: see fulltext.

  1. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  2. Time-Dependent Simulations of Turbopump Flows

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan; Chan, William; Williams, Robert

    2002-01-01

    Unsteady flow simulations for RLV (Reusable Launch Vehicles) 2nd Generation baseline turbopump for one and half impeller rotations have been completed by using a 34.3 Million grid points model. MLP (Multi-Level Parallelism) shared memory parallelism has been implemented in INS3D, and benchmarked. Code optimization for cash based platforms will be completed by the end of September 2001. Moving boundary capability is obtained by using DCF module. Scripting capability from CAD (computer aided design) geometry to solution has been developed. Data compression is applied to reduce data size in post processing. Fluid/Structure coupling has been initiated.

  3. Healing disturbance with suture bridge configuration repair in rabbit rotator cuff tear.

    PubMed

    Kim, Sae Hoon; Kim, Jangwoo; Choi, Young Eun; Lee, Hwa-Ryeong

    2016-03-01

    Medial row failure has been reported in the suture bridge technique of rotator cuff repair. This study compared the healing response of suture bridge configuration repair (SBCR) and parallel type transosseous repair (PTR). Acute rotator cuff repair was performed in 32 rabbits. Both shoulders were repaired using PTR or SBCR. In PTR, simple PTR was performed through 2 parallel transosseous tunnels created using a microdrill. In SBCR, 2 additional crisscross transosseous tunnels were added to mimic arthroscopic SBCR. At 1, 2, and 5 weeks postoperatively, comparative biomechanical testing was performed in 8 rabbits, and histologic analysis, including immunohistochemical staining for CD31, was performed in 4 rabbits. Failure loads at 1 week (38.12 ± 20.43 N vs 52.00 ± 27.23 N; P = .284) and 5 weeks (97.93 ± 48.35 N vs 119.60 ± 60.81 N; P = .218) were not statistically different between the SBCR and PTR groups, respectively, but were significantly lower in the SBCR group than in the PTR group (23.56 ± 13.56 N vs. 44.25 ± 12.53 N; P = .009), respectively, at 2 weeks. Markedly greater fibrinoid deposition was observed in the SBCR group than in the PTR group at 2 weeks. For vascularization, there was a tendency that more vessels could be observed in PTR than in SBCR at 2 weeks (15.9 vs 5.6, P = .068). In a rabbit acute rotator cuff repair model, SBCR exhibited inferior mechanical strength, and fewer blood vessels were observed at the healing site at 2 weeks postoperatively. Medial row tendon failure was more common in SBCR. Surgeons should consider the clinical effect of SBCR when performing rotator cuff repair. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Common Evolutionary Origin for the Rotor Domain of Rotary Atpases and Flagellar Protein Export Apparatus

    PubMed Central

    Kishikawa, Jun-ichi; Ibuki, Tatsuya; Nakamura, Shuichi; Nakanishi, Astuko; Minamino, Tohru; Miyata, Tomoko; Namba, Keiichi; Konno, Hiroki; Ueno, Hiroshi; Imada, Katsumi; Yokoyama, Ken

    2013-01-01

    The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F1-γ or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an anti-parallel coiled coil structure without the globular-loop part. Here we report that FliJ of Salmonella enterica serovar Typhimurium shows a rotor like function in Thermus thermophilus A3B3 based on both biochemical and structural analysis. Single molecular analysis indicates that an anti-parallel coiled-coil structure protein (FliJ structure protein) functions as a rotor in A3B3. A rotary ATPase possessing an F1-γ-like protein generated by fusion of the D and F subunits of V1 rotates, suggesting F1-γ could be the result of a fusion of the genes encoding two separate rotor subunits. Together with sequence comparison among the globular part proteins, the data strongly suggest that the rotor domains of the rotary ATPases and the flagellar export apparatus share a common evolutionary origin. PMID:23724081

  5. Electrical tweezer for highly parallelized electrorotation measurements over a wide frequency bandwidth.

    PubMed

    Rohani, Ali; Varhue, Walter; Su, Yi-Hsuan; Swami, Nathan S

    2014-07-01

    Electrorotation (ROT) is a powerful tool for characterizing the dielectric properties of cells and bioparticles. However, its application has been somewhat limited by the need to mitigate disruptions to particle rotation by translation under positive DEP and by frictional interactions with the substrate. While these disruptions may be overcome by implementing particle positioning schemes or field cages, these methods restrict the frequency bandwidth to the negative DEP range and permit only single particle measurements within a limited spatial extent of the device geometry away from field nonuniformities. Herein, we present an electrical tweezer methodology based on a sequence of electrical signals, composed of negative DEP using 180-degree phase-shifted fields for trapping and levitation of the particles, followed by 90-degree phase-shifted fields over a wide frequency bandwidth for highly parallelized electrorotation measurements. Through field simulations of the rotating electrical field under this wave-sequence, we illustrate the enhanced spatial extent for electrorotation measurements, with no limitations to frequency bandwidth. We apply this methodology to characterize subtle modifications in morphology and electrophysiology of Cryptosporidium parvum with varying degrees of heat treatment, in terms of shifts in the electrorotation spectra over the 0.05-40 MHz region. Given the single particle sensitivity and the ability for highly parallelized electrorotation measurements, we envision its application toward characterizing heterogeneous subpopulations of microbial and stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Analysis of Rotationally Resolved Spectra to Non-Degenerate (a''_1) Upper-State Vibronic Levels in the tilde{A} ^2E''-tilde{X}^2A^'_2 Electronic Transition of NO_3

    NASA Astrophysics Data System (ADS)

    Roudjane, Mourad; Codd, Terrance Joseph; Chen, Ming-Wei; Tran, Henry; Melnik, Dmitry G.; Miller, Terry A.; Stanton, John F.

    2015-06-01

    The vibronic structure of the tilde{A}-tilde{X} electronic spectrum of NO_3 has been observed using both room-temperature and jet-cooled samples. A recent analysis of this structure is consistent with the Jahn-Teller effect (JTE) in the e^' ν_3 vibrational mode (N-O stretch) being quite strong while the JTE in the e^' ν_4 mode (O-N-O) bend) is rather weak. Electronic structure calculations qualitatively predict these results but the calculated magnitude of the JTE is quantitatively inconsistent with the spectral analysis. Rotationally resolved spectra have been obtained for over a dozen vibronic bands of the tilde{A}-tilde{X} electronic transition in NO_3. An analysis of these spectra should provide considerably more experimental information about the JTE in the tilde{A} state of NO_3 as the rotational structure should be quite sensitive to the geometric distortion of the molecule due to the JTE. This talk will focus upon the parallel bands, which terminate on tilde{A} state levels of a''_1 vibronic symmetry, which were the subject of a preliminary analysis reported at this meeting in 2014. We have now recorded the rotational structure of over a half-dozen parallel bands and have completed analysis on the 3^1_0 and 3^1_0 4^1_0 transitions with several other bands being reasonably well understood. Two general conclusions emerge from this work. (i) All the spectral bands show evidence of perturbations which can reasonably be assumed to result from interactions of the observed tilde{A} state levels with high vibrational levels of the tilde{X} state. The perturbations range from severe in some bands to quite modest in others. (ii) Analyses of observed spectra, insofar as the perturbations permit, have all been performed with an oblate symmetric top model including only additional spin-rotation effects. This result is, of course, consistent with an effective, undistorted geometry for NO_3 of D3h symmetry on the rotational timescale.

  7. Spot counting on fluorescence in situ hybridization in suspension images using Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Liu, Sijia; Sa, Ruhan; Maguire, Orla; Minderman, Hans; Chaudhary, Vipin

    2015-03-01

    Cytogenetic abnormalities are important diagnostic and prognostic criteria for acute myeloid leukemia (AML). A flow cytometry-based imaging approach for FISH in suspension (FISH-IS) was established that enables the automated analysis of several log-magnitude higher number of cells compared to the microscopy-based approaches. The rotational positioning can occur leading to discordance between spot count. As a solution of counting error from overlapping spots, in this study, a Gaussian Mixture Model based classification method is proposed. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) of GMM are used as global image features of this classification method. Via Random Forest classifier, the result shows that the proposed method is able to detect closely overlapping spots which cannot be separated by existing image segmentation based spot detection methods. The experiment results show that by the proposed method we can obtain a significant improvement in spot counting accuracy.

  8. Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the newmore » assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.« less

  9. Orientation of ripples induced by ultrafast laser pulses on copper in different liquids

    NASA Astrophysics Data System (ADS)

    Maragkaki, Stella; Elkalash, Abdallah; Gurevich, Evgeny L.

    2017-12-01

    Formation of laser-induced periodic surface structures (LIPSS or ripples) was studied on a metallic surface of polished copper using irradiation with multiple femtosecond laser pulses in different environmental conditions (air, water, ethanol and methanol). Uniform LIPSS have been achieved by controlling the peak fluence and the overlapping rate. Ripples in both orientations, perpendicular and parallel to laser polarization, were observed in all liquids simultaneously. The orientation of these ripples in the center of the ablated line was changing with the incident light intensity. For low intensities the orientation of the ripples is perpendicular to the laser polarization, whereas for high intensities it turns parallel to it without considerable changes in the period. Multi-directional LIPSS formation was also observed for moderate peak fluence in liquid environments.

  10. Statistical Earthquake Focal Mechanism Forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    The new whole Earth focal mechanism forecast, based on the GCMT catalog, has been created. In the present forecast, the sum of normalized seismic moment tensors within 1000 km radius is calculated and the P- and T-axes for the focal mechanism are evaluated on the basis of the sum. Simultaneously we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms. This average angle shows tectonic complexity of a region and indicates the accuracy of the prediction. The method was originally proposed by Kagan and Jackson (1994, JGR). Recent interest by CSEP and GEM has motivated some improvements, particularly to extend the previous forecast to polar and near-polar regions. The major problem in extending the forecast is the focal mechanism calculation on a spherical surface. In the previous forecast as our average focal mechanism was computed, it was assumed that longitude lines are approximately parallel within 1000 km radius. This is largely accurate in the equatorial and near-equatorial areas. However, when one approaches the 75 degree latitude, the longitude lines are no longer parallel: the bearing (azimuthal) difference at points separated by 1000 km reach about 35 degrees. In most situations a forecast point where we calculate an average focal mechanism is surrounded by earthquakes, so a bias should not be strong due to the difference effect cancellation. But if we move into polar regions, the bearing difference could approach 180 degrees. In a modified program focal mechanisms have been projected on a plane tangent to a sphere at a forecast point. New longitude axes which are parallel in the tangent plane are corrected for the bearing difference. A comparison with the old 75S-75N forecast shows that in equatorial regions the forecasted focal mechanisms are almost the same, and the difference in the forecasted focal mechanisms rotation angle is close to zero. However, though the forecasted focal mechanisms are similar, closer to the 75 latitude degree, the difference in the rotation angle is large (around a factor 1.5 in some places). The Gamma-index was calculated for the average focal mechanism moment. A non-zero Index indicates that earthquake focal mechanisms around the forecast point have different orientations. Thus deformation complexity displays itself in the average rotation angle and in the Index. However, sometimes the rotation angle is close to zero, whereas the Index is large, testifying to a large CLVD presence. Both new 0.5x0.5 and 0.1x0.1 degree forecasts are posted at http://eq.ess.ucla.edu/~kagan/glob_gcmt_index.html.

  11. Electric alignment of plate shaped clay aggregates in oils

    NASA Astrophysics Data System (ADS)

    Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik

    2016-01-01

    We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  12. Visible and infrared polarization ratio spectroreflectometer

    NASA Technical Reports Server (NTRS)

    Batten, C. E. (Inventor)

    1980-01-01

    The instrument assists in determining the refractive index and absorption index, at different spectral frequencies, of a solid sample by illuminating the sample at various angles in incidence and measuring the corresponding reflected intensities at various spectral frequencies and polarization angles. The ratio of the intensity of the reflected light for parallel polarized light to that for perpendicular polarized light at two different angles of incidence can be used to determine the optical constants of the sample. The invention involves an apparatus for facilitating the utilization of a wide variety of angles of incidence. The light source and polarizing element are positioned on an outer platform; the sample is positioned on an inner platform. The two platforms rotate about a common axis and cooperate in their rotation such that the sample is rotated one degree for every two degrees of rotation of the light source. This maintains the impingement of the reflected light upon the detector for any angle of incidence without moving or adjusting the detector which allows a continuous change in the angle of incidence.

  13. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-04-01

    Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.

  14. Modified dust ion-acoustic surface waves in a semi-bounded magnetized plasma containing the rotating dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion relation for modified dust ion-acoustic surface waves in the magnetized dusty plasma containing the rotating dust grains is derived, and the effects of magnetic field configuration on the resonant growth rate are investigated. We present the results that the resonant growth rates of the wave would increase with the ratio of ion plasma frequency to cyclotron frequency as well as with the increase of wave number for the case of perpendicular magnetic field configuration when the ion plasma frequency is greater than the dust rotation frequency. For the parallel magnetic field configuration, we find that the instability occursmore » only for some limited ranges of the wave number and the ratio of ion plasma frequency to cyclotron frequency. The resonant growth rate is found to decrease with the increase of the wave number. The influence of dust rotational frequency on the instability is also discussed.« less

  15. Three point lead screw positioning apparatus for a cavity tuning plate

    NASA Technical Reports Server (NTRS)

    Calco, Frank S. (Inventor)

    1993-01-01

    Three lead screws are provided for adjusting the position of a traversing plate. Each of the three lead screws is threaded through a collar that is press fitted through the center of one of three pinion gears. A sun gear meshes with all three pinion gears and transversely moves the three lead screws upon actuation of a drive gear. The drive gear meshes with the sun gear and is driven by a handle or servomotor. When the handle or servomotor rotates the drive gear, the sun gear rotates causing the three pinion gears to rotate, thus, causing transverse movement of the three lead screws and, accordingly, transverse movement of the transversing plate. When the drive gear rotates, the traversing plate is driven in and out of a microwave cavity. Thus, the length or size of the cavity can be tuned while maintaining the traversing plate in an exact parallel relationship with an opposing plate on another end of the cavity.

  16. Experimental Investigation of Rotating Menisci

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael E.

    2014-07-01

    In upper stages of spacecrafts, Propellant Management Devices (PMD's) can be used to position liquid propellant over the outlet in the absence of gravity. Centrifugal forces due to spin of the upper stage can drive the liquid away from the desired location resulting in malfunction of the stage. In this study, a simplified model consisting of two parallel, segmented and unsegmented disks and a central tube assembled at the center of the upper disk is analyzed experimentally during rotation in microgravity. For each drop tower experiment, the angular speed caused by a centrifugal stage in the drop capsule is kept constant. Steady-states for the menisci between the disks are observed for moderate rotation. For larger angular speeds, a stable shape of the free surfaces fail to sustain and the liquid is driven away. Additionally, tests were performed without rotation to quantify two effects: the removal of a metallic cylinder around the model to establish the liquid column and the determination of the the settling time from terrestrial to microgravity conditions.

  17. Three point lead screw positioning apparatus for a cavity tuning plate

    NASA Astrophysics Data System (ADS)

    Calco, Frank S.

    1993-09-01

    Three lead screws are provided for adjusting the position of a traversing plate. Each of the three lead screws is threaded through a collar that is press fitted through the center of one of three pinion gears. A sun gear meshes with all three pinion gears and transversely moves the three lead screws upon actuation of a drive gear. The drive gear meshes with the sun gear and is driven by a handle or servomotor. When the handle or servomotor rotates the drive gear, the sun gear rotates causing the three pinion gears to rotate, thus, causing transverse movement of the three lead screws and, accordingly, transverse movement of the transversing plate. When the drive gear rotates, the traversing plate is driven in and out of a microwave cavity. Thus, the length or size of the cavity can be tuned while maintaining the traversing plate in an exact parallel relationship with an opposing plate on another end of the cavity.

  18. Perception of tilt and ocular torsion of vestibular patients during eccentric rotation.

    PubMed

    Clément, Gilles; Deguine, Olivier

    2010-01-04

    Four patients following unilateral vestibular loss and four patients complaining of otolith-dependent vertigo were tested during eccentric yaw rotation generating 1 x g centripetal acceleration directed along the interaural axis. Perception of body tilt in roll and in pitch was recorded in darkness using a somatosensory plate that the subjects maintained parallel to the perceived horizon. Ocular torsion was recorded by a video camera. Unilateral vestibular-defective patients underestimated the magnitude of the roll tilt and had a smaller torsion when the centrifugal force was towards the operated ear compared to the intact ear and healthy subjects. Patients with otolithic-dependent vertigo overestimated the magnitude of roll tilt in both directions of eccentric rotation relative to healthy subjects, and their ocular torsion was smaller than in healthy subjects. Eccentric rotation is a promising tool for the evaluation of vestibular dysfunction in patients. Eye torsion and perception of tilt during this stimulation are objective and subjective measurements, which could be used to determine alterations in spatial processing in the CNS.

  19. Dynamics and mixing mechanism of transverse jet injection into a supersonic combustor with cavity flameholder

    NASA Astrophysics Data System (ADS)

    Liu, Chaoyang; Zhao, Yanhui; Wang, Zhenguo; Wang, Hongbo; Sun, Mingbo

    2017-07-01

    The interaction between sonic transverse jet and supersonic crossflow coupled with a cavity flameholder is investigated using large eddy simulation (LES), where the compressible flow dynamics and fuel mixing mechanism are analyzed emphatically. An adaptive central-upwind 6th-order weighted essentially non-oscillatory (WENO-CU6) scheme along with multi-threaded and multi-process MPI/OpenMP parallel is adopted to improve the accuracy and parallel efficiency of the solver. This simulation aims to reproduce the flow conditions in the experiment, and the results show fairly good agreement with the experimental data for distributions of streamwise and normal velocity components. Instantaneous structures such as the shock, large scale vortices and recirculation zone are identified, and their spatial deformation and temporal evolution are presented to reveal the effect on the subsequent mixing. Then some time-averaged and statistical results are obtained to explain the interesting phenomenon observed in the experiment, that there are two pairs of counter-rotating streamwise vortices existing in and above the cavity with the same rotation direction. The above pair is induced by the transverse momentum of jet in supersonic crossflow, which is so-called counter-rotating vortices (CRVs) in the flat-plate injection. On account of the entrainment, the reflux in the cavity transports to the core of jet wakes, and then another pair of counter-rotating streamwise vortices is formed below with the effect of cavity. A pair of trailing CRVs is generated at the trailing edge of cavity, and the turbulent kinetic energy (TKE) here is obviously higher than that in other regions. To some extent, the cavity can enhance the mixing, but will not bring excess total pressure loss.

  20. Design of non-selective refocusing pulses with phase-free rotation axis by gradient ascent pulse engineering algorithm in parallel transmission at 7T.

    PubMed

    Massire, Aurélien; Cloos, Martijn A; Vignaud, Alexandre; Le Bihan, Denis; Amadon, Alexis; Boulant, Nicolas

    2013-05-01

    At ultra-high magnetic field (≥ 7T), B1 and ΔB0 non-uniformities cause undesired inhomogeneities in image signal and contrast. Tailored radiofrequency pulses exploiting parallel transmission have been shown to mitigate these phenomena. However, the design of large flip angle excitations, a prerequisite for many clinical applications, remains challenging due the non-linearity of the Bloch equation. In this work, we explore the potential of gradient ascent pulse engineering to design non-selective spin-echo refocusing pulses that simultaneously mitigate severe B1 and ΔB0 non-uniformities. The originality of the method lays in the optimization of the rotation matrices themselves as opposed to magnetization states. Consequently, the commonly used linear class of large tip angle approximation can be eliminated from the optimization procedure. This approach, combined with optimal control, provides additional degrees of freedom by relaxing the phase constraint on the rotation axis, and allows the derivative of the performance criterion to be found analytically. The method was experimentally validated on an 8-channel transmit array at 7T, using a water phantom with B1 and ΔB0 inhomogeneities similar to those encountered in the human brain. For the first time in MRI, the rotation matrix itself on every voxel was measured by using Quantum Process Tomography. The results are complemented with a series of spin-echo measurements comparing the proposed method against commonly used alternatives. Both experiments confirm very good performance, while simultaneously maintaining a low energy deposition and pulse duration compared to well-known adiabatic solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Characterizing the plasma of the Rotating Wall Machine

    NASA Astrophysics Data System (ADS)

    Hannum, David A.

    The Rotating Wall Machine (RoWM) is a line-tied linear screw pinch built to study current-driven external kink modes. The plasma column is formed by an array of seven electrostatic washer guns which can also be biased to drive plasma current. The array allows independent control over the electron density ne and current density Jz profiles of the column. Internal measurements of the plasma have been made with singletip Langmuir and magnetic induction ("B-dot") probes for a range of bias currents (Ib = 0, 300, 500 A/gun). Streams from the individual guns are seen to merge at a distance of z ≈ 36 cm from the guns; the exact distance depends on the value of Ib. The density of the column is directly proportional to the Ohmic dissipation power, but the temperature stays at a low, uniform value (Te ≈ 3.5 eV) for each bias level. Electron densities are on the order of ne ˜10 20 m-3. The electron density expands radially (across the Bz guide field) as the plasma moves along the column, though the current density Jz mainly stays parallel to the field lines. The singletip Langmuir probe diagnostic is difficult to analyze for Ib = 500 A/gun plasmas and fails as Ib is raised beyond this level. Spectrographic analysis of the Halpha line indicates that the hydrogen plasmas are nearly fully ionized at each bias level. Azimuthal E x B rotation is axially and radially sheared; rotation slows as the plasma reaches the anode. Perpendicular diffusivity is consistent with the classical value, D⊥ ≈ 5 m2/sec, while parallel resistivity is seen to be twice the classical Spitzer value, 2 x 10-4 O m.

  2. Adaptive dynamics of competition for nutritionally complementary resources: character convergence, displacement, and parallelism.

    PubMed

    Vasseur, David A; Fox, Jeremy W

    2011-10-01

    Consumers acquire essential nutrients by ingesting the tissues of resource species. When these tissues contain essential nutrients in a suboptimal ratio, consumers may benefit from ingesting a mixture of nutritionally complementary resource species. We investigate the joint ecological and evolutionary consequences of competition for complementary resources, using an adaptive dynamics model of two consumers and two resources that differ in their relative content of two essential nutrients. In the absence of competition, a nutritionally balanced diet rarely maximizes fitness because of the dynamic feedbacks between uptake rate and resource density, whereas in sympatry, nutritionally balanced diets maximize fitness because competing consumers with different nutritional requirements tend to equalize the relative abundances of the two resources. Adaptation from allopatric to sympatric fitness optima can generate character convergence, divergence, and parallel shifts, depending not on the degree of diet overlap but on the match between resource nutrient content and consumer nutrient requirements. Contrary to previous verbal arguments that suggest that character convergence leads to neutral stability, coadaptation of competing consumers always leads to stable coexistence. Furthermore, we show that incorporating costs of consuming or excreting excess nonlimiting nutrients selects for nutritionally balanced diets and so promotes character convergence. This article demonstrates that resource-use overlap has little bearing on coexistence when resources are nutritionally complementary, and it highlights the importance of using mathematical models to infer the stability of ecoevolutionary dynamics.

  3. The formation mechanism and evolution of ps-laser-induced high-spatial-frequency periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Yang, H. Z.; Sun, X. F.

    2017-01-01

    We report the formation and evolution mechanisms of HSFLs (high-spatial-frequency laser-induced periodic surface structures) on the commercial pure titanium under 10-ps 532-nm-wavelength laser irradiation. At a lower peak laser fluence, HSFLs in the rough zone are first formed along the surface texture. Subsequently, HSFLs in the flat zone are formed with an orientation parallel to the laser polarization direction. The formation of HSFLs can be attributed to the parallel orientation of the initial periodic modulation of the electron plasma concentration to the laser polarization direction. In particular, the formation of HSFLs along the surface texture occurs because the absorbed laser energy density is along the surface texture. At a higher peak laser fluence, two types of HSFLs appear together with LSFLs. The first type involves HSFLs that initially cover the concave part of the LSFL (low-spatial-frequency laser-induced periodic surface structures) and penetrate inward as the number of spot overlaps increases. This formation mechanism can be attributed to cavitation instability. The second type involves HSFLs that are initially in the convex part of the LSFL, and they are transformed into oxidized nanodots as the number of spot overlaps increases. The oxidized nanodots increase the absorption of laser energy in titanium, which leads to the ablation and removal of the oxidized material. Therefore, the surface of the LSFL becomes smooth.

  4. French comparison exercise with the rotating neutron spectrometer, 'ROSPEC'.

    PubMed

    Crovisier, P; Asselineau, B; Pelcot, G; Van-Ryckeghem, L; Cadiou, A; Truffert, H; Groetz, J E; Benmosbah, M

    2005-01-01

    The French laboratories in charge of 'neutron' dosimetry using the spectrometer 'ROSPEC', formed a working group in 2001. The participants began to study the behaviour of the instrument with a comparison exercise in broad energy neutron fields recommended by the International Organisation for Standardisation (ISO) and available at the LMDN in Cadarache. The complete version of the ROSPEC is made up of six spherical proportional counters fixed to a rotating platform. These counters cover different energy ranges which overlap each other to provide a link between the detectors, within the energy range from thermal neutrons to 4.5 MeV. The irradiation configurations chosen were ISO standard sources (252Cf, (252Cf+D2O)(/Cd), 241Am-Be) and the SIGMA facility. The results show that the 'thermal and epithermal' neutron fluence was widely overestimated by the spectrometer in all configurations.

  5. Parallel processing via a dual olfactory pathway in the honeybee.

    PubMed

    Brill, Martin F; Rosenbaum, Tobias; Reus, Isabelle; Kleineidam, Christoph J; Nawrot, Martin P; Rössler, Wolfgang

    2013-02-06

    In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.

  6. A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.

    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} ofmore » the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.« less

  7. Competition of Perpendicular and Parallel Flows in a Straight Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Jiacong; Diamond, Patrick; Hong, Rongjie; Tynan, George

    2017-10-01

    In tokamaks, intrinsic rotations in both toroidal and poloidal directions are important for the stability and confinement. Since they compete for energy from background turbulence, the coupling of them is the key to understanding the physics of turbulent state and transport bifurcations, e.g. L-H transition. V⊥ can affect the parallel Reynolds stress via cross phase and energetics, and thus regulates the parallel flow generation. In return, the turbulence driven V∥ plays a role in the mean vorticity flux, influencing the generation of V⊥. Also, competition of intrinsic azimuthal and axial flows is observed in CSDX-a linear plasma device with straight magnetic fields. CSDX is a well diagnosed venue to study the basic physics of turbulence-flow interactions in straight magnetic fields. Here, we study the turbulent energy branching between the turbulence driven parallel flow and perpendicular flow. Specifically, the ratio between parallel and perpendicular Reynolds power decreases when the mean perpendicular flow increases. As the mean parallel flow increases, this ratio first increases and then decreases before the parallel flow shear hits the parallel shear flow instability threshold. We seek to understand the flow states and compare with CSDX experiments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  8. Concealed hinge permits flush mounting of doors and hatches

    NASA Technical Reports Server (NTRS)

    Holman, E. V.

    1966-01-01

    Hinge assembly permits flush mounting of doors and hatches of considerable thickness so that the axis of instant rotation, produced by the hinge, lies outside the panel surface and beyond the perimeter adjacent to the hinge. In operation, motion of the assembly is initially parallel, changing to angular after clearing the panel perimeter.

  9. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOEpatents

    Pareg, Walter F.

    1990-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  10. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOEpatents

    Praeg, Walter F.

    1995-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  11. Settling dynamics of asymmetric rigid fibers

    Treesearch

    E.J. Tozzi; C Tim Scott; David Vahey; D.J. Klingenberg

    2011-01-01

    The three-dimensional motion of asymmetric rigid fibers settling under gravity in a quiescent fluid was experimentally measured using a pair of cameras located on a movable platform. The particle motion typically consisted of an initial transient after which the particle approached a steady rate of rotation about an axis parallel to the acceleration of gravity, with...

  12. Local heterogeneities in cardiac systems suppress turbulence by generating multi-armed rotors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Steinbock, Oliver

    2016-05-01

    Ventricular fibrillation is an extremely dangerous cardiac arrhythmia that is linked to rotating waves of electric activity and chaotically moving vortex lines. These filaments can pin to insulating, cylindrical heterogeneities which swiftly become the new rotation backbone of the local wave field. For thin cylinders, the stabilized rotation is sufficiently fast to repel the free segments of the turbulent filament tangle and annihilate them at the system boundaries. The resulting global wave pattern is periodic and highly ordered. Our cardiac simulations show that also thicker cylinders can establish analogous forms of tachycardia. This process occurs through the spontaneous formation of pinned multi-armed vortices. The observed number of wave arms N depends on the cylinder radius and is associated to stability windows that for N = 2, 3 partially overlap. For N = 1, 2, we find a small gap in which the turbulence is removed but the pinned rotor shows complex temporal dynamics. The relevance of our findings to human cardiology are discussed in the context of vortex pinning to more complex-shaped anatomical features and remodeled myocardium.

  13. Sex Differences and Autism: Brain Function during Verbal Fluency and Mental Rotation

    PubMed Central

    Minati, Ludovico; Baron-Cohen, Simon; Lombardo, Michael V.; Lai, Meng-Chuan; Walker, Anne; Howard, Dawn; Gray, Marcus A.; Harrison, Neil A.; Critchley, Hugo D.

    2012-01-01

    Autism spectrum conditions (ASC) affect more males than females. This suggests that the neurobiology of autism: 1) may overlap with mechanisms underlying typical sex-differentiation or 2) alternately reflect sex-specificity in how autism is expressed in males and females. Here we used functional magnetic resonance imaging (fMRI) to test these alternate hypotheses. Fifteen men and fourteen women with Asperger syndrome (AS), and sixteen typically developing men and sixteen typically developing women underwent fMRI during performance of mental rotation and verbal fluency tasks. All groups performed the tasks equally well. On the verbal fluency task, despite equivalent task-performance, both males and females with AS showed enhanced activation of left occipitoparietal and inferior prefrontal activity compared to controls. During mental rotation, there was a significant diagnosis-by-sex interaction across occipital, temporal, parietal, middle frontal regions, with greater activation in AS males and typical females compared to AS females and typical males. These findings suggest a complex relationship between autism and sex that is differentially expressed in verbal and visuospatial domains. PMID:22701630

  14. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems.

    PubMed

    Grisafi, Andrea; Wilkins, David M; Csányi, Gábor; Ceriotti, Michele

    2018-01-19

    Statistical learning methods show great promise in providing an accurate prediction of materials and molecular properties, while minimizing the need for computationally demanding electronic structure calculations. The accuracy and transferability of these models are increased significantly by encoding into the learning procedure the fundamental symmetries of rotational and permutational invariance of scalar properties. However, the prediction of tensorial properties requires that the model respects the appropriate geometric transformations, rather than invariance, when the reference frame is rotated. We introduce a formalism that extends existing schemes and makes it possible to perform machine learning of tensorial properties of arbitrary rank, and for general molecular geometries. To demonstrate it, we derive a tensor kernel adapted to rotational symmetry, which is the natural generalization of the smooth overlap of atomic positions kernel commonly used for the prediction of scalar properties at the atomic scale. The performance and generality of the approach is demonstrated by learning the instantaneous response to an external electric field of water oligomers of increasing complexity, from the isolated molecule to the condensed phase.

  15. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems

    NASA Astrophysics Data System (ADS)

    Grisafi, Andrea; Wilkins, David M.; Csányi, Gábor; Ceriotti, Michele

    2018-01-01

    Statistical learning methods show great promise in providing an accurate prediction of materials and molecular properties, while minimizing the need for computationally demanding electronic structure calculations. The accuracy and transferability of these models are increased significantly by encoding into the learning procedure the fundamental symmetries of rotational and permutational invariance of scalar properties. However, the prediction of tensorial properties requires that the model respects the appropriate geometric transformations, rather than invariance, when the reference frame is rotated. We introduce a formalism that extends existing schemes and makes it possible to perform machine learning of tensorial properties of arbitrary rank, and for general molecular geometries. To demonstrate it, we derive a tensor kernel adapted to rotational symmetry, which is the natural generalization of the smooth overlap of atomic positions kernel commonly used for the prediction of scalar properties at the atomic scale. The performance and generality of the approach is demonstrated by learning the instantaneous response to an external electric field of water oligomers of increasing complexity, from the isolated molecule to the condensed phase.

  16. Sex differences and autism: brain function during verbal fluency and mental rotation.

    PubMed

    Beacher, Felix D C C; Radulescu, Eugenia; Minati, Ludovico; Baron-Cohen, Simon; Lombardo, Michael V; Lai, Meng-Chuan; Walker, Anne; Howard, Dawn; Gray, Marcus A; Harrison, Neil A; Critchley, Hugo D

    2012-01-01

    Autism spectrum conditions (ASC) affect more males than females. This suggests that the neurobiology of autism: 1) may overlap with mechanisms underlying typical sex-differentiation or 2) alternately reflect sex-specificity in how autism is expressed in males and females. Here we used functional magnetic resonance imaging (fMRI) to test these alternate hypotheses. Fifteen men and fourteen women with Asperger syndrome (AS), and sixteen typically developing men and sixteen typically developing women underwent fMRI during performance of mental rotation and verbal fluency tasks. All groups performed the tasks equally well. On the verbal fluency task, despite equivalent task-performance, both males and females with AS showed enhanced activation of left occipitoparietal and inferior prefrontal activity compared to controls. During mental rotation, there was a significant diagnosis-by-sex interaction across occipital, temporal, parietal, middle frontal regions, with greater activation in AS males and typical females compared to AS females and typical males. These findings suggest a complex relationship between autism and sex that is differentially expressed in verbal and visuospatial domains.

  17. Vortex-induced vibration of two parallel risers: Experimental test and numerical simulation

    NASA Astrophysics Data System (ADS)

    Huang, Weiping; Zhou, Yang; Chen, Haiming

    2016-04-01

    The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys- CFX and model tests. The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers. CFX was used to study the single riser and two parallel risers in 2-8 D spacing considering the coupling effect. Because of the limited width of water channel, only three different riser spacings, 2 D, 3 D, and 4 D, were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation. The results indicate that the lift force changes significantly with the increase in spacing, and in the case of 3 D spacing, the lift force of the two parallel risers reaches the maximum. The vortex shedding of the risers in 3 D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area, thus equalizing the period of drag force to that of lift force. It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased. The phase difference of lift force between the two risers is also different as the spacing changes.

  18. On the interplay of morphology and electronic conductivity of rotationally spun carbon fiber mats

    NASA Astrophysics Data System (ADS)

    Opitz, Martin; Go, Dennis; Lott, Philipp; Müller, Sandra; Stollenwerk, Jochen; Kuehne, Alexander J. C.; Roling, Bernhard

    2017-09-01

    Carbon-based materials are used as electrode materials in a wide range of electrochemical applications, e.g., in batteries, supercapacitors, and fuel cells. For these applications, the electronic conductivity of the materials plays an important role. Currently, porous carbon materials with complex morphologies and hierarchical pore structures are in the focus of research. The complex morphologies influence the electronic transport and may lead to an anisotropic electronic conductivity. In this paper, we unravel the influence of the morphology of rotationally spun carbon fiber mats on their electronic conductivity. By combining experiments with finite-element simulations, we compare and evaluate different electrode setups for conductivity measurements. While the "bar-type method" with two parallel electrodes on the same face of the sample yields information about the intrinsic conductivity of the carbon fibers, the "parallel-plate method" with two electrodes on opposite faces gives information about the electronic transport orthogonal to the faces. Results obtained for the van-der-Pauw method suggest that this method is not well suited for understanding morphology-transport relations in these materials.

  19. Low frequency wave propagation in a cold magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Ghosh, S.; Khan, M.

    1998-12-01

    In this paper several characteristics of low frequency waves in a cold magnetized dusty plasma propagating parallel and perpendicular to the static background magnetic field have been investigated. In the case of parallel propagation the negatively charged dust particles resonate with the right circularly polarized (RCP) component of em waves when the wave frequency equals the dust cyclotron frequency. It has been shown that an RCP wave in dusty plasma consists of two branches and there exists a region where an RCP wave propagation is not possible. Dispersion relation, phase velocity and group velocity of RCP waves have been obtained and propagation characteristics have been shown graphically. Poynting flux and Faraday rotation angles have been calculated for both lower and upper branches of the RCP wave. It has been observed that sense of rotation of the plane of polarization of the RCP wave corresponding to two distinct branches are opposite. Finally, the effect of dust particles on the induced magnetization from the inverse Faraday effect (IFE) due to the interaction of low frequency propagating and standing em waves with dusty plasmas has been evaluated.

  20. The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Ballinger, R. G.; Lucas, G. E.; Pelloux, R. M.

    1984-09-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios ( R) were mesured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operation of the principal tensile twinning systems, {101¯2}<1¯011>.

  1. Fractional-wrapped branes with rotation, linear motion and background fields

    NASA Astrophysics Data System (ADS)

    Maghsoodi, Elham; Kamani, Davoud

    2017-09-01

    We obtain two boundary states corresponding to the two folds of a fractional-wrapped Dp-brane, i.e. the twisted version under the orbifold C2 /Z2 and the untwisted version. The brane has rotation and linear motion, in the presence of the following background fields: the Kalb-Ramond tensor, a U (1) internal gauge potential and a tachyon field. The rotation and linear motion are inside the volume of the brane. The brane lives in the d-dimensional spacetime, with the orbifold-toroidal structure Tn ×R 1 , d - n - 5 ×C2 /Z2 in the twisted sector. Using these boundary states we calculate the interaction amplitude of two parallel fractional Dp-branes with the foregoing setup. Various properties of this amplitude such as the long-range behavior will be analyzed.

  2. Realization of mechanical rotation in superfluid helium

    NASA Astrophysics Data System (ADS)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.

    2017-09-01

    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  3. SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walborn, Nolan R.; Morrell, Nidia I.; Nazé, Yaël

    2015-10-15

    Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circularmore » spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses.« less

  4. Local heat transfer in turbine disk-cavities. I - Rotor and stator cooling with hub injection of coolant

    NASA Astrophysics Data System (ADS)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    Detailed radial heat-transfer coefficient distributions applicable to the cooling of disk-cavity regions of gas turbines are obtained experimentally from local heat-transfer data on both the rotating and stationary surfaces of a parallel-geometry disk-cavity system. Attention is focused on the hub injection of a coolant over a wide range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. It is shown that rotor heat transfer exhibits regions of impingement and rotational domination with a transition region between, while stator heat transfer displays flow reattachment and convection regions with an inner recirculation zone.

  5. Burnout, Depression, and Borderline Personality: A 1,163-Participant Study.

    PubMed

    Bianchi, Renzo; Rolland, Jean-Pierre; Salgado, Jesús F

    2017-01-01

    We examined the association of burnout with borderline personality (BP) traits in a study of 1,163 educational staff (80.9% women; mean age: 42.96). Because burnout has been found to overlap with depression, parallel analyses of burnout and depression were conducted. Burnout symptoms were assessed with the Shirom-Melamed Burnout Measure, depressive symptoms with the PHQ-9, and BP traits with the Borderline Personality Questionnaire. Burnout was found to be associated with BP traits, controlling for neuroticism and history of depressive disorders. In women, burnout was linked to both the "affective insecurity" and the "impulsiveness" component of BP. In men, only the link between burnout and "affective insecurity" reached statistical significance. Compared to participants with "low" BP scores, participants with "high" BP scores reported more burnout symptoms, depressive symptoms, neuroticism, and occupational stress and less satisfaction with life. Disattenuated correlations between burnout and depression were close to 1, among both women (0.91) and men (0.94). The patterns of association of burnout and depression with the main study variables were similar, pointing to overlapping nomological networks. Burnout symptoms were only partly attributed to work by our participants. Our findings suggest that burnout is associated with BP traits through burnout-depression overlap.

  6. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed

    Rothwell, Patrick E

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.

  7. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed Central

    Rothwell, Patrick E.

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction. PMID:26903789

  8. Evaluation of a Highly Anticlastic Panel with Tow Overlaps

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Gurdal, Zafer

    2007-01-01

    A rectangular, variable-stiffness panel with tow overlaps was manufactured using an advanced tow placement machine. The cured panel had large anticlastic imperfections, with measured amplitudes of over two times the average panel thickness. These imperfections were not due to the overall steered-fiber layup or the tow overlaps, but instead resulted from local asymmetries in the laminate that were caused by a manufacturing oversight. In the nominal panel layup, fiber angles vary linearly from 60 degrees on the panel axial centerline to 30 degrees on the parallel edges. A geometrically nonlinear analysis was performed with a -280 degree Fahrenheit thermal load to simulate the postcure cooldown to room temperature. The predicted geometric imperfections correlated well with the measured panel shape. Unique structural test fixtures were then developed which greatly reduced these imperfections, but they also caused prestresses in the panel. Surface imperfections measured after the panel was installed in the test fixtures were used with nonlinear finite element analyses to predict these fixturing-induced prestresses. These prestresses were also included in structural analyses of panel end compression to failure, and the analytical results compared well with test data when both geometric and material nonlinearities were included.

  9. Parallel Grid Manipulations in Earth Science Calculations

    NASA Technical Reports Server (NTRS)

    Sawyer, W.; Lucchesi, R.; daSilva, A.; Takacs, L. L.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center is moving its data assimilation system to massively parallel computing platforms. This parallel implementation of GEOS DAS will be used in the DAO's normal activities, which include reanalysis of data, and operational support for flight missions. Key components of GEOS DAS, including the gridpoint-based general circulation model and a data analysis system, are currently being parallelized. The parallelization of GEOS DAS is also one of the HPCC Grand Challenge Projects. The GEOS-DAS software employs several distinct grids. Some examples are: an observation grid- an unstructured grid of points at which observed or measured physical quantities from instruments or satellites are associated- a highly-structured latitude-longitude grid of points spanning the earth at given latitude-longitude coordinates at which prognostic quantities are determined, and a computational lat-lon grid in which the pole has been moved to a different location to avoid computational instabilities. Each of these grids has a different structure and number of constituent points. In spite of that, there are numerous interactions between the grids, e.g., values on one grid must be interpolated to another, or, in other cases, grids need to be redistributed on the underlying parallel platform. The DAO has designed a parallel integrated library for grid manipulations (PILGRIM) to support the needed grid interactions with maximum efficiency. It offers a flexible interface to generate new grids, define transformations between grids and apply them. Basic communication is currently MPI, however the interfaces defined here could conceivably be implemented with other message-passing libraries, e.g., Cray SHMEM, or with shared-memory constructs. The library is written in Fortran 90. First performance results indicate that even difficult problems, such as above-mentioned pole rotation- a sparse interpolation with little data locality between the physical lat-lon grid and a pole rotated computational grid- can be solved efficiently and at the GFlop/s rates needed to solve tomorrow's high resolution earth science models. In the subsequent presentation we will discuss the design and implementation of PILGRIM as well as a number of the problems it is required to solve. Some conclusions will be drawn about the potential performance of the overall earth science models on the supercomputer platforms foreseen for these problems.

  10. Mechanical signals in plant development: a new method for single cell studies

    NASA Technical Reports Server (NTRS)

    Lynch, T. M.; Lintilhac, P. M.

    1997-01-01

    Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.

  11. Effect of rotation on the elastic moduli of solid 4He

    NASA Astrophysics Data System (ADS)

    Tsuiki, T.; Takahashi, D.; Murakawa, S.; Okuda, Y.; Kono, K.; Shirahama, K.

    2018-02-01

    We report measurements of elastic moduli of hcp solid 4He down to 15 mK when the samples are rotated unidirectionally. Recent investigations have revealed that the elastic behavior of solid 4He is dominated by gliding of dislocations and pinning of them by 3He impurities, which move in the solidlike Bloch waves (impuritons). Motivated by the recent controversy of torsional oscillator studies, we have performed direct measurements of shear and Young's moduli of annular solid 4He using pairs of quarter-circle-shape piezoelectric transducers (PZTs) while the whole apparatus is rotated with angular velocity Ω up to 4 rad/s. We have found that shear modulus μ is suppressed by rotation below 80 mK, when shear strain applied by PZT exceeds a critical value, above which μ decreases because the shear strain unbinds dislocations from 3He impurities. The rotation-induced decrement of μ at Ω =4 rad/s is about 14.7(12.3)% of the total change of temperature dependent μ for solid samples of pressure 3.6(5.4) MPa. The decrements indicate that the probability of pinning of 3He on dislocation segment G decreases by several orders of magnitude. We propose that the motion of 3He impuritons under rotation becomes strongly anisotropic by the Coriolis force, resulting a decrease in G for dislocation lines aligning parallel to the rotation axis.

  12. Sleep Quality Associated With Different Work Schedules: A Longitudinal Study of Nursing Staff.

    PubMed

    Niu, Shu-Fen; Miao, Nae-Fang; Liao, Yuan-Mei; Chi, Mei-Ju; Chung, Min-Huey; Chou, Kuei-Ru

    2017-07-01

    To explore the differences in sleep parameters between nurses working a slow, forward rotating shift and those working a fixed day shift. A longitudinal parallel-group comparison design was used in this prospective study. Participants (female) were randomly assigned to a rotating shift or a fixed day shift group. Participants in the rotating shift group worked day shift for the first 4 weeks, followed by evening shift for the second and night shift the third. Those in the day shift group worked day shift for all 12 weeks. Each kept a sleep diary and wore an actigraph (actigraph data were used to calculate total sleep time [TST], sleep onset latency [SOL], wake after sleep onset [WASO], and sleep efficiency [SE]) for 12 days, from Workday 1-4 in each of Weeks 4, 8, and 12. TST in nurses working evening rotating shift was higher than that for those working the day or night rotating shift and fixed day shift. WASO was significantly longer on Day 2 for rotating shift participants working evening versus day shift. SOL and SE were significantly shorter and lower in rotating shift nurses working night versus both day and evening shifts. A comprehensive understanding of the sleep patterns and quality of nurses with different work shifts may lead to better management of work shifts that reduces the influence of shift work on sleep quality.

  13. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  14. Spacer grid assembly and locking mechanism

    DOEpatents

    Snyder, Jr., Harold J.; Veca, Anthony R.; Donck, Harry A.

    1982-01-01

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  15. Optical frequency comb Faraday rotation spectroscopy

    NASA Astrophysics Data System (ADS)

    Johansson, Alexandra C.; Westberg, Jonas; Wysocki, Gerard; Foltynowicz, Aleksandra

    2018-05-01

    We demonstrate optical frequency comb Faraday rotation spectroscopy (OFC-FRS) for broadband interference-free detection of paramagnetic species. The system is based on a femtosecond doubly resonant optical parametric oscillator and a fast-scanning Fourier transform spectrometer (FTS). The sample is placed in a DC magnetic field parallel to the light propagation. Efficient background suppression is implemented via switching the direction of the field on consecutive FTS scans and subtracting the consecutive spectra, which enables long-term averaging. In this first demonstration, we measure the entire Q- and R-branches of the fundamental band of nitric oxide in the 5.2-5.4 µm range and achieve good agreement with a theoretical model.

  16. Kinematic principles of primate rotational vestibulo-ocular reflex. I. Spatial organization of fast phase velocity axes

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The spatial organization of fast phase velocity vectors of the vestibulo-ocular reflex (VOR) was studied in rhesus monkeys during yaw rotations about an earth-horizontal axis that changed continuously the orientation of the head relative to gravity ("barbecue spit" rotation). In addition to a velocity component parallel to the rotation axis, fast phases also exhibited a velocity component that invariably was oriented along the momentary direction of gravity. As the head rotated through supine and prone positions, torsional components of fast phase velocity axes became prominent. Similarly, as the head rotated through left and right ear-down positions, fast phase velocity axes exhibited prominent vertical components. The larger the speed of head rotation the greater the magnitude of this fast phase component, which was collinear with gravity. The main sequence properties of VOR fast phases were independent of head position. However, peak amplitude as well as peak velocity of fast phases were both modulated as a function of head orientation, exhibiting a minimum in prone position. The results suggest that the fast phases of vestibulo-ocular reflexes not only redirect gaze and reposition the eye in the direction of head motion but also reorient the eye with respect to earth-vertical when the head moves relative to gravity. As further elaborated in the companion paper, the underlying mechanism could be described as a dynamic, gravity-dependent modulation of the coordinates of ocular rotations relative to the head.

  17. Sensory substitution information informs locomotor adjustments when walking through apertures.

    PubMed

    Kolarik, Andrew J; Timmis, Matthew A; Cirstea, Silvia; Pardhan, Shahina

    2014-03-01

    The study assessed the ability of the central nervous system (CNS) to use echoic information from sensory substitution devices (SSDs) to rotate the shoulders and safely pass through apertures of different width. Ten visually normal participants performed this task with full vision, or blindfolded using an SSD to obtain information regarding the width of an aperture created by two parallel panels. Two SSDs were tested. Participants passed through apertures of +0, +18, +35 and +70 % of measured body width. Kinematic indices recorded movement time, shoulder rotation, average walking velocity across the trial, peak walking velocities before crossing, after crossing and throughout a whole trial. Analyses showed participants used SSD information to regulate shoulder rotation, with greater rotation associated with narrower apertures. Rotations made using an SSD were greater compared to vision, movement times were longer, average walking velocity lower and peak velocities before crossing, after crossing and throughout the whole trial were smaller, suggesting greater caution. Collisions sometimes occurred using an SSD but not using vision, indicating that substituted information did not always result in accurate shoulder rotation judgements. No differences were found between the two SSDs. The data suggest that spatial information, provided by sensory substitution, allows the relative position of aperture panels to be internally represented, enabling the CNS to modify shoulder rotation according to aperture width. Increased buffer space indicated by greater rotations (up to approximately 35 % for apertures of +18 % of body width) suggests that spatial representations are not as accurate as offered by full vision.

  18. Norm overlap between many-body states: Uncorrelated overlap between arbitrary Bogoliubov product states

    NASA Astrophysics Data System (ADS)

    Bally, B.; Duguet, T.

    2018-02-01

    Background: State-of-the-art multi-reference energy density functional calculations require the computation of norm overlaps between different Bogoliubov quasiparticle many-body states. It is only recently that the efficient and unambiguous calculation of such norm kernels has become available under the form of Pfaffians [L. M. Robledo, Phys. Rev. C 79, 021302 (2009), 10.1103/PhysRevC.79.021302]. Recently developed particle-number-restored Bogoliubov coupled-cluster (PNR-BCC) and particle-number-restored Bogoliubov many-body perturbation (PNR-BMBPT) ab initio theories [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] make use of generalized norm kernels incorporating explicit many-body correlations. In PNR-BCC and PNR-BMBPT, the Bogoliubov states involved in the norm kernels differ specifically via a global gauge rotation. Purpose: The goal of this work is threefold. We wish (i) to propose and implement an alternative to the Pfaffian method to compute unambiguously the norm overlap between arbitrary Bogoliubov quasiparticle states, (ii) to extend the first point to explicitly correlated norm kernels, and (iii) to scrutinize the analytical content of the correlated norm kernels employed in PNR-BMBPT. Point (i) constitutes the purpose of the present paper while points (ii) and (iii) are addressed in a forthcoming paper. Methods: We generalize the method used in another work [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] in such a way that it is applicable to kernels involving arbitrary pairs of Bogoliubov states. The formalism is presently explicated in detail in the case of the uncorrelated overlap between arbitrary Bogoliubov states. The power of the method is numerically illustrated and benchmarked against known results on the basis of toy models of increasing complexity. Results: The norm overlap between arbitrary Bogoliubov product states is obtained under a closed-form expression allowing its computation without any phase ambiguity. The formula is physically intuitive, accurate, and versatile. It equally applies to norm overlaps between Bogoliubov states of even or odd number parity. Numerical applications illustrate these features and provide a transparent representation of the content of the norm overlaps. Conclusions: The complex norm overlap between arbitrary Bogoliubov states is computed, without any phase ambiguity, via elementary linear algebra operations. The method can be used in any configuration mixing of orthogonal and non-orthogonal product states. Furthermore, the closed-form expression extends naturally to correlated overlaps at play in PNR-BCC and PNR-BMBPT. As such, the straight overlap between Bogoliubov states is the zero-order reduction of more involved norm kernels to be studied in a forthcoming paper.

  19. Geometrical Design of a Scalable Overlapping Planar Spiral Coil Array to Generate a Homogeneous Magnetic Field.

    PubMed

    Jow, Uei-Ming; Ghovanloo, Maysam

    2012-12-21

    We present a design methodology for an overlapping hexagonal planar spiral coil (hex-PSC) array, optimized for creation of a homogenous magnetic field for wireless power transmission to randomly moving objects. The modular hex-PSC array has been implemented in the form of three parallel conductive layers, for which an iterative optimization procedure defines the PSC geometries. Since the overlapping hex-PSCs in different layers have different characteristics, the worst case coil-coupling condition should be designed to provide the maximum power transfer efficiency (PTE) in order to minimize the spatial received power fluctuations. In the worst case, the transmitter (Tx) hex-PSC is overlapped by six PSCs and surrounded by six other adjacent PSCs. Using a receiver (Rx) coil, 20 mm in radius, at the coupling distance of 78 mm and maximum lateral misalignment of 49.1 mm (1/√3 of the PSC radius) we can receive power at a PTE of 19.6% from the worst case PSC. Furthermore, we have studied the effects of Rx coil tilting and concluded that the PTE degrades significantly when θ > 60°. Solutions are: 1) activating two adjacent overlapping hex-PSCs simultaneously with out-of-phase excitations to create horizontal magnetic flux and 2) inclusion of a small energy storage element in the Rx module to maintain power in the worst case scenarios. In order to verify the proposed design methodology, we have developed the EnerCage system, which aims to power up biological instruments attached to or implanted in freely behaving small animal subjects' bodies in long-term electrophysiology experiments within large experimental arenas.

  20. Centrifugal acceleration of ions in the polar magnetosphere

    NASA Technical Reports Server (NTRS)

    Swinney, Kenneth R.; Horwitz, James L.; Delcourt, D.

    1987-01-01

    The transport of ionospheric ions originating near the dayside cusp into the magnetotail is parametrically studied using a 3-D model of ion trajectories. It is shown that the centrifugal term in the guiding center parallel force equation dominates the parallel motion after about 4 Re geocentric distance. The dependence of the equatorial crossing distance on initial latitude, energy and convection electric field is presented for ions originating on the dayside ionosphere in the noon-midnight plane. It is also found that up to altitudes of about 5 Re, the motion is similar to that of a bead on a rotating rod, for which a simple analytical solution exists.

  1. Paleomagnetic evidence for rapid vertical-axis rotations during thrusting in an active collision zone, northeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, Peter D.; Coe, Robert S.

    1997-06-01

    A paleomagnetic study of three thrust sheets of the fold and thrust belt north of the Ramu-Markham Fault Zone (RMFZ) indicates very rapid vertical-axis rotations, with differential declination anomalies related to tectonic transport of thrust units. Data from this investigation indicate depositional ages straddling the Brunhes-Matuyama reversal (780 ka) for the Leron Formation in Erap Valley. Net counterclockwise, vertical-axis rotations as great as 90° since 1 Ma have occurred locally in the Erap Valley area. These rotations appear to be kinematically related to shear across a tear fault within the foreland fold and thrust belt of the colliding Finisterre Arc, which in turn is aligned with and may be structurally controlled by a major fault in the lower plate. These data indicate that vertical-axis rotations occurred during thrusting; consequently, the actual rotation rate is likely several times higher than the calculated minimum rate. Such very rapid rotations during thrust sheet emplacement may be more common in fold and thrust belts than is presently recognized. Anisotropy of magnetic susceptibility data yields foliated fabrics with subordinate, well-grouped lineations that differ markedly in azimuth in the three thrust sheets. The susceptibility lineations are rendered parallel by the same bedding-perpendicular rotations used to restore the paleomagnetic remanence to N-S thus independently confirming the rapid rotations. The restored lineations are perpendicular to the direction of tectonic transport, and the minimum susceptibility axes are streaked perpendicular to the lineation. We interpret these anisotropy of magnetic susceptibility data as primary sedimentary fabrics modified by weak strain accompanying foreland thrusting.

  2. A small step for science, a big one for commerce.

    PubMed

    Birkett, Liam

    2005-01-01

    The excellent work that is being performed in medical science advances is to be admired and applauded. In each case the quest is for perfection and to bring the task in hand to its final solution. Along the way there are milestones being passed that may be overlooked, as to their particular merits, because the eyes are focused all the time on the ultimate goal. The conference highlights so many areas of interest and endeavour some of which parallel, duplicate, overlap and/or compliment others.

  3. EFG solar modules

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Six photovoltaic modules using solar cells fabricated from silicon ribbons were assembled and delivered to JPL. Each module was comprised of four separate submodules which were parallel connected. The submodules contained 45 EFG cells which were series interconnected by a shingle or overlapping design. The inherent rectangular shape of the cells allowed a high packing factor to be achieved. The average efficiency of the six modules, corrected to AM1 at 28 C was 8.7%, which indicates that the average encapsulated cell efficiency was 10.0%.

  4. Compact Fiber-Parametric Devices for Biophotonics Applications

    DTIC Science & Technology

    2012-03-01

    coming in the fiber from the pump overlap temporally and spatially with the pulses fed back from a Fabry -Perot cavity (Sharping, 2010). Fiber optical...Some laser systems such as the Nd:YAG system used in this study, uses a Fabry -Perot cavity in which two mirrors are arranged parallel to one another... Fabry -Perot cavity formed between one end of the PCF and a metallic mirror (M3). The output coupler is a short-pass dielectric (SPD) or a long-pass

  5. Mixing, Combustion, and Other Interface Dominated Flows; Paragraphs 3.2.1 A, B, C and 3.2.2 A

    DTIC Science & Technology

    2014-04-09

    Condensed Matter Physics , (12 2010): 43401. doi: H. Lim, Y. Yu, J. Glimm, X. L. Li, D.H. Sharp. Subgrid Models for Mass and Thermal Diffusion in...zone and a series of radial cracks in solid plates hit by high velocity projectiles). • Only 2D dimensional models • Serial codes for running on single ...exter- nal parallel packages TAO and Global Arrays, developed within DOE high performance computing initiatives. A Schwartz-type overlapping domain

  6. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience.

    PubMed

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience

    NASA Astrophysics Data System (ADS)

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    ;Pure shift; NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  8. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform.

    PubMed

    Morales, Jesús; Plaza-Leiva, Victoria; Mandow, Anthony; Gomez-Ruiz, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2018-01-30

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley's K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL.

  9. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform

    PubMed Central

    Plaza-Leiva, Victoria; Serón, Javier

    2018-01-01

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley’s K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL. PMID:29385705

  10. Cis-trans photoisomerization of azobenzene upon excitation to the S1 state: an ab initio molecular dynamics and QM/MM study

    NASA Astrophysics Data System (ADS)

    Pederzoli, Marek; Pittner, Jiří; Barbatti, Mario; Lischka, Hans

    2012-10-01

    The cis-trans isomerization of azobenzene upon S1(n,π*) excitation is studied both in gas phase and in solution. Our study is based on ab initio non-adiabatic dynamics simulations with the non-adiabatic effects included via the fewest-switches surface hopping method with potential-energy surfaces and couplings determined on the fly. The non-adiabatic couplings have been computed based on overlaps of CASSCF wave functions. The solvent is described using classical molecular dynamics employing the quantum mechanics/molecular mechanics (QM/MM) approach. Azobenzene photoisomerization upon S1(n,π*) excitation occurs purely as a rotational motion of the central CNNC moiety. Two non-equivalent rotational pathways, corresponding to clockwise or counterclockwise rotation, are available. The course of the rotational motion is strongly dependent on the initial conditions. The internal conversion occurs via a S0/S1 crossing seam located near the midpoint of both of these rotational pathways. Based on statistical analysis it is shown that the occurrence of one or other pathways can be completely controlled by selecting adequate initial conditions. The effect of the solvent on the reaction mechanism is small. The lifetime of the S1 state is marginally lowered; the effect does not depend on the polarity, but rather on the viscosity of the solvent. The quantum yield is solvent dependent; the simulations in water give smaller quantum yield than those obtained in n-hexane and in gas phase.

  11. Rib forming tool for tubing

    DOEpatents

    Rowley, James P.; Lewandowski, Edward F.; Groh, Edward F.

    1976-01-01

    Three cylindrical rollers are rotatably mounted equidistant from the center of a hollow tool head on radii spaced 120.degree. apart. Each roller has a thin flange; the three flanges lie in a single plane to form an internal circumferential rib in a rotating tubular workpiece. The tool head has two complementary parts with two rollers in one part of the head and one roller in the other part; the two parts are joined by a hinge. A second hinge, located so the rollers are between the two hinges, connects one of the parts to a tool bar mounted in a lathe tool holder. The axes of rotation of both hinges and all three rollers are parallel. A hole exposing equal portions of the three roller flanges is located in the center of the tool head. The two hinges permit the tool head to be opened and rotated slightly downward, taking the roller flanges out of the path of the workpiece which is supported on both ends and rotated by the lathe. The parts of the tool head are then closed on the workpiece so that the flanges are applied to the workpiece and form the rib. The tool is then relocated for forming of the next rib.

  12. The degrees to which transtrochanteric rotational osteotomy moves the region of osteonecrotic femoral head out of the weight-bearing area as evaluated by computer simulation.

    PubMed

    Chen, Weng-Pin; Tai, Ching-Lung; Tan, Chih-Feng; Shih, Chun-Hsiung; Hou, Shun-Hsin; Lee, Mel S

    2005-01-01

    Transtrochanteric rotational osteotomy is a technical demanding procedure. Currently, the pre-operative planning of the transtrochanteric rotational osteotomy is mostly based on X-ray images. The surgeons would need to reconstruct the three-dimensional structure of the femoral head and the necrosis in their mind. This study develops a simulation platform using computer models based on the computed tomography images of the femoral head to evaluate the degree to which transtrochanteric rotational osteotomy moves the region of osteonecrotic femoral head out of the weight-bearing area in stance and gait cycle conditions. Based on this simulation procedure, the surgeons would be better informed before the surgery and the indication can be carefully assessed. A case with osteonecrosis involving 15% of the femoral head was recruited. Virtual models with the same size lesion but at different locations were devised. Computer models were created using SolidWorks 2000 CAD software. The area ratio of weight-bearing zone occupied by the necrotic lesion on two conditions, stance and gait cycle, were measured after surgery simulations. For the specific case and virtual models devised in this study, computer simulation showed the following two findings: (1) The degrees needed to move the necrosis out of the weight-bearing zone in stance were less by anterior rotational osteotomy as compared to that of posterior rotational osteotomy. However, the necrotic region would still overlap with the weight-bearing area during gait cycle. (2) Because the degrees allowed for posterior rotation were less restricted than anterior rotation, posterior rotational osteotomies were often more effective to move the necrotic region out of the weight-bearing area during gait cycle. The computer simulation platform by registering actual CT images is a useful tool to assess the direction and degrees needed for transtrochanteric rotational osteotomy. Although the results indicated that anterior rotational osteotomy was more effective to move the necrosis out of the weight-bearing zone in stance for models devised in this study, in circumstances where the necrotic region located at various locale, considering the limitation of anterior rotation inherited with the risk of vascular compromise, it might be more beneficial to perform posterior rotation osteotomy in taking account of gait cycle.

  13. EVIDENCE FOR ROTATIONAL MOTIONS IN THE FEET OF A QUIESCENT SOLAR PROMINENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco Suarez, D.; Asensio Ramos, A.; Trujillo Bueno, J., E-mail: dorozco@iac.es

    2012-12-20

    We present observational evidence of apparent plasma rotational motions in the feet of a solar prominence. Our study is based on spectroscopic observations taken in the He I 1083.0 nm multiplet with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope. We recorded a time sequence of spectra with 34 s cadence placing the slit of the spectrograph almost parallel to the solar limb and crossing two feet of an intermediate size, quiescent hedgerow prominence. The data show opposite Doppler shifts, {+-}6 km s{sup -1}, at the edges of the prominence feet. We argue that these shifts maymore » be interpreted as prominence plasma rotating counterclockwise around the vertical axis to the solar surface as viewed from above. The evolution of the prominence seen in EUV images taken with the Solar Dynamics Observatory provided us with clues to interpret the results as swirling motions. Moreover, time-distance images taken far from the central wavelength show plasma structures moving parallel to the solar limb with velocities of about 10-15 km s{sup -1}. Finally, the shapes of the observed intensity profiles suggest the presence of, at least, two components at some locations at the edges of the prominence feet. One of them is typically Doppler shifted (up to {approx}20 km s{sup -1}) with respect to the other, thus suggesting the existence of supersonic counter-streaming flows along the line of sight.« less

  14. Vector correlation between the alignment of reactant N{sub 2} (A {sup 3}Σ{sub u}{sup +}) and the alignment of product NO (A {sup 2}Σ{sup +}) rotation in the energy transfer reaction of aligned N{sub 2} (A {sup 3}Σ{sub u}{sup +}) + NO (X {sup 2}Π) → NO (A {sup 2}Σ{sup +}) + N{sub 2} (X {sup 1}Σ{sub g}{sup +})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohoyama, H., E-mail: ohyama@chem.sci.osaka-u.ac.jp

    2013-12-21

    The vector correlation between the alignment of reactant N{sub 2} (A {sup 3}Σ{sub u}{sup +}) and the alignment of product NO (A {sup 2}Σ{sup +}) rotation has been studied in the energy transfer reaction of aligned N{sub 2} (A {sup 3}Σ{sub u}{sup +}) + NO (X {sup 2}Π) → NO (A {sup 2}Σ{sup +}) + N{sub 2} (X {sup 1}Σ{sub g}{sup +}) under the crossed beam condition at a collision energy of ∼0.07 eV. NO (A {sup 2}Σ{sup +}) emission in the two linear polarization directions (i.e., parallel and perpendicular with respect to the relative velocity vector v{sub R}) hasmore » been measured as a function of the alignment of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) along its molecular axis in the collision frame. The degree of polarization of NO (A {sup 2}Σ{sup +}) emission is found to depend on the alignment angle (θ{sub v{sub R}}) of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) in the collision frame. The shape of the steric opacity function at the two polarization conditions turns out to be extremely different from each other: The steric opacity function at the parallel polarization condition is more favorable for the oblique configuration of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) at an alignment angle of θ{sub v{sub R}} ∼ 45° as compared with that at the perpendicular polarization condition. The alignment of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) is found to give a significant effect on the alignment of NO (A {sup 2}Σ{sup +}) rotation in the collision frame: The N{sub 2} (A {sup 3}Σ{sub u}{sup +}) configuration at an oblique alignment angle θ{sub v{sub R}} ∼ 45° leads to a parallel alignment of NO (A {sup 2}Σ{sup +}) rotation (J-vector) with respect to v{sub R}, while the axial and sideways configurations of N{sub 2} (A {sup 3}Σ{sub u}{sup +}) lead to a perpendicular alignment of NO (A {sup 2}Σ{sup +}) rotation with respect to v{sub R}. These stereocorrelated alignments of the product rotation have a good correlation with the stereocorrelated reactivity observed in the multi-dimensional steric opacity function [H. Ohoyama and S. Maruyama, J. Chem. Phys. 137, 064311 (2012)].« less

  15. An Analysis of Performance Enhancement Techniques for Overset Grid Applications

    NASA Technical Reports Server (NTRS)

    Djomehri, J. J.; Biswas, R.; Potsdam, M.; Strawn, R. C.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The overset grid methodology has significantly reduced time-to-solution of high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement techniques on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machine. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.

  16. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOEpatents

    Praeg, W.F.

    1995-01-31

    An apparatus is disclosed for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers. 19 figs.

  17. Wire-Guide Manipulator For Automated Welding

    NASA Technical Reports Server (NTRS)

    Morris, Tim; White, Kevin; Gordon, Steve; Emerich, Dave; Richardson, Dave; Faulkner, Mike; Stafford, Dave; Mccutcheon, Kim; Neal, Ken; Milly, Pete

    1994-01-01

    Compact motor drive positions guide for welding filler wire. Drive part of automated wire feeder in partly or fully automated welding system. Drive unit contains three parallel subunits. Rotations of lead screws in three subunits coordinated to obtain desired motions in three degrees of freedom. Suitable for both variable-polarity plasma arc welding and gas/tungsten arc welding.

  18. Moments of Inertia of Disks and Spheres without Integration

    ERIC Educational Resources Information Center

    Hong, Seok-Cheol; Hong, Seok-In

    2013-01-01

    Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…

  19. Analysis of Variscan dynamics; early bending of the Cantabria-Asturias Arc, northern Spain

    NASA Astrophysics Data System (ADS)

    Kollmeier, J. M.; van der Pluijm, B. A.; Van der Voo, R.

    2000-08-01

    Calcite twinning analysis in the Cantabria-Asturias Arc (CAA) of northern Spain provides a basis for evaluating conditions of Variscan stress and constrains the arc's structural evolution. Twinning typically occurs during earliest layer-parallel shortening, offering the ability to define early conditions of regional stress. Results from the Somiedo-Correcilla region are of two kinds: early maximum compressive stress oriented layer-parallel and at high angles to bedding strike (D1 σ1) and later twin producing compression oriented sub-parallel to strike (D2 σ1). When all D1 compressions are rotated into a uniform east-west reference orientation, a quite linear, north-south trending fold-thrust belt results showing a slight deflection of the southern zone to the south-southeast. North-south-directed D2 σ1 compression was recorded prior to bending of the belt. Calcite twinning data elucidate earliest structural conditions that could not be obtained by other means, whereas the kinematics of arc tightening during D2 is constrained by paleomagnetism. A large and perhaps protracted D2 σ1 is suggested by our results, as manifested by approximately 50% arc tightening prior to acquisition of paleomagnetic remagnetizations throughout the CAA. Early east-west compression (D1 σ1) likely resulted from the Ebro-Aquitaine massif docking to Laurussia whereas the north-directed collision of Africa (D2 σ1) produced clockwise bending in the northern zone, radial folding in the hinge, and rotation of thrusts in the southern zone.

  20. Medical students as learners: transforming the resident-level microskills of teaching into a parallel curriculum for medical students to aid the transition from classroom to OB/GYN clerkship.

    PubMed

    Amorosa, Jennifer M H; Graham, Mark J; Ratan, Rini B

    2012-01-01

    The objective of the study was to describe and assess a brief curricular intervention designed to help medical students adopt active learning strategies. Based on student interest, we created a one-hour workshop that focused on seven microskills of learning and presented it to our medical students during their Obstetrics and Gynecology clerkship. The workshop utilized a modified version of the "Five-Step 'Microskills' Model of Clinical Teaching" first described by Neher in 1992 and paralleled the model our residents are taught as part of their "Resident-as-Teacher" curriculum. Students were surveyed at various time points following the workshop to evaluate the perceived usefuness, value, and durability of the skills taught. Immediate postworkshop feedback was favorable with 93% of students expecting to use the skills taught. At the end of the rotation, students reported a significant increase in usage of each microskill via a retrospective pre/postquestionnaire. While response rates at 1, 3, and 6 months after the rotation were moderate, the majority of the students responding stated that they had utilized the microskills. In its pilot year, the Microskills of Learning workshop was a beneficial addition to our clinical clerkship curriculum. By utilizing a parallel curriculum to that of our residents, the workshop mutually enhanced the educational process by encouraging teachers and learners to speak the same language.

Top