Science.gov

Sample records for rotating false color

  1. Moon - False Color Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This false-color mosaic was constructed from a series of 53 images taken through three spectral filters by Galileo's imaging system as the spacecraft flew over the northern regions of the Moon on December 7, 1992. The part of the Moon visible from Earth is on the left side in this view. The color mosaic shows compositional variations in parts of the Moon's northern hemisphere. Bright pinkish areas are highlands materials, such as those surrounding the oval lava-filled Crisium impact basin toward the bottom of the picture. Blue to orange shades indicate volcanic lava flows. To the left of Crisium, the dark blue Mare Tranquillitatis is richer in titanium than the green and orange maria above it. Thin mineral-rich soils associated with relatively recent impacts are represented by light blue colors; the youngest craters have prominent blue rays extending from them. The Galileo project, whose primary mission is the exploration of the Jupiter system in 1995-97, is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory.

  2. False Color Bands

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    In a gray scale image, the suble variations seen in this false color image are almost impossible to identify. Note the orange band in the center of the frame, and the bluer bands to either side of it.

    Image information: VIS instrument. Latitude 87, Longitude 65.5 East (294.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. False color viewing device

    DOEpatents

    Kronberg, J.W.

    1992-10-20

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  4. False color viewing device

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  5. False color viewing device

    DOEpatents

    Kronberg, J.W.

    1991-05-08

    This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  6. North Polar False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This full resolution image contains dunes, and small areas of 'blue' which may represent fresh (ie. not dust covered) frost or ice.

    Image information: VIS instrument. Latitude 85, Longitude 235.8 East (124.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. False Color Aurora

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Data from NASA's Galileo spacecraft were used to produce this false-color composite of Jupiter's northern aurora on the night side of the planet. The height of the aurora, the thickness of the auroral arc, and the small-scale structure are revealed for the first time. Images in Galileo's red, green, and clear filters are displayed in red, green, and blue respectively. The smallest resolved features are tens of kilometers in size, which is a ten-fold improvement over Hubble Space Telescope images and a hundred-fold improvement over ground-based images.

    The glow is caused by electrically charged particles impinging on the atmosphere from above. The particles travel along Jupiter's magnetic field lines, which are nearly vertical at this latitude. The auroral arc marks the boundary between the 'closed' field lines that are attached to the planet at both ends and the 'open' field lines that extend out into interplanetary space. At the boundary the particles have been accelerated over the greatest distances, and the glow is especially intense.

    The latitude-longitude lines refer to altitudes where the pressure is 1 bar. The image shows that the auroral emissions originate about 500 kilometers (about 310 miles) above this surface. The colored background is light scattered from Jupiter's bright crescent, which is out of view to the right. North is at the top. The images are centered at 57 degrees north and 184 degrees west and were taken on April 2, 1997 at a range of 1.7 million kilometers (1.05 million miles) by Galileo's Solid State Imaging (SSI) system.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http:// galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  8. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  9. Iani Chaos in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of a portion of the Iani Chaos region was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -2.6 Longitude 342.4 East (17.6 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The

  10. Mimas Showing False Colors #2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This false color image of Saturn's moon Mimas reveals variation in either the composition or texture across its surface.

    During its approach to Mimas on Aug. 2, 2005, the Cassini spacecraft narrow-angle camera obtained multi-spectral views of the moon from a range of 228,000 kilometers (142,500 miles).

    This image is a color composite of narrow-angle ultraviolet, green, infrared and clear filter images, which have been specially processed to accentuate subtle changes in the spectral properties of Mimas' surface materials. To create this view, three color images (ultraviolet, green and infrared) were combined with a single black and white picture that isolates and maps regional color differences to create the final product.

    Shades of blue and violet in the image at the right are used to identify surface materials that are bluer in color and have a weaker infrared brightness than average Mimas materials, which are represented by green.

    Herschel crater, a 140-kilometer-wide (88-mile) impact feature with a prominent central peak, is visible in the upper right of the image. The unusual bluer materials are seen to broadly surround Herschel crater. However, the bluer material is not uniformly distributed in and around the crater. Instead, it appears to be concentrated on the outside of the crater and more to the west than to the north or south. The origin of the color differences is not yet understood. It may represent ejecta material that was excavated from inside Mimas when the Herschel impact occurred. The bluer color of these materials may be caused by subtle differences in the surface composition or the sizes of grains making up the icy soil.

    This image was obtained when the Cassini spacecraft was above 25 degrees south, 134 degrees west latitude and longitude. The Sun-Mimas-spacecraft angle was 45 degrees and north is at the top.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian

  11. Mimas Showing False Colors #1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    False color images of Saturn's moon, Mimas, reveal variation in either the composition or texture across its surface.

    During its approach to Mimas on Aug. 2, 2005, the Cassini spacecraft narrow-angle camera obtained multi-spectral views of the moon from a range of 228,000 kilometers (142,500 miles).

    The image at the left is a narrow angle clear-filter image, which was separately processed to enhance the contrast in brightness and sharpness of visible features. The image at the right is a color composite of narrow-angle ultraviolet, green, infrared and clear filter images, which have been specially processed to accentuate subtle changes in the spectral properties of Mimas' surface materials. To create this view, three color images (ultraviolet, green and infrared) were combined into a single black and white picture that isolates and maps regional color differences. This 'color map' was then superimposed over the clear-filter image at the left.

    The combination of color map and brightness image shows how the color differences across the Mimas surface materials are tied to geological features. Shades of blue and violet in the image at the right are used to identify surface materials that are bluer in color and have a weaker infrared brightness than average Mimas materials, which are represented by green.

    Herschel crater, a 140-kilometer-wide (88-mile) impact feature with a prominent central peak, is visible in the upper right of each image. The unusual bluer materials are seen to broadly surround Herschel crater. However, the bluer material is not uniformly distributed in and around the crater. Instead, it appears to be concentrated on the outside of the crater and more to the west than to the north or south. The origin of the color differences is not yet understood. It may represent ejecta material that was excavated from inside Mimas when the Herschel impact occurred. The bluer color of these materials may be caused by subtle differences in

  12. Dusty Crater In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This false color image of a crater rim illustrates just how complete the dust cover can be. The small white/blue regions on the rim are of areas where the dust cover has been removed - due to heating on sun facing slopes or by gravitational effects.

    Image information: VIS instrument. Latitude 70.1, Longitude 352.8 East (7.2 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Uranus in True and False Color

    NASA Technical Reports Server (NTRS)

    1986-01-01

    These two pictures of Uranus -- one in true color (left) and the other in false color -- were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. The spacecraft was 9.1 million kilometers (5.7 million miles) from the planet, several days from closest approach. The picture at left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The picture is a composite of images taken through blue, green and orange filters. The darker shadings at the upper right of the disk correspond to the day-night boundary on the planet. Beyond this boundary lies the hidden northern hemisphere of Uranus, which currently remains in total darkness as the planet rotates. The blue-green color results from the absorption of red light by methane gas in Uranus' deep, cold and remarkably clear atmosphere. The picture at right uses false color and extreme contrast enhancement to bring out subtle details in the polar region of Uranus. Images obtained through ultraviolet, violet and orange filters were respectively converted to the same blue, green and red colors used to produce the picture at left. The very slight contrasts visible in true color are greatly exaggerated here. In this false-color picture, Uranus reveals a dark polar hood surrounded by a series of progressively lighter concentric bands. One possible explanation is that a brownish haze or smog, concentrated over the pole, is arranged into bands by zonal motions of the upper atmosphere. The bright orange and yellow strip at the lower edge of the planet's limb is an artifact of the image enhancement. In fact, the limb is dark and uniform in color around the planet. The Voyager project is manages for NASA by the Jet Propulsion Laboratory.

  14. Cape Verde in False Color

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A promontory nicknamed 'Cape Verde' can be seen jutting out from the walls of Victoria Crater in this false-color picture taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity. The rover took this picture on martian day, or sol, 1329 (Oct. 20, 2007), more than a month after it began descending down the crater walls -- and just 9 sols shy of its second Martian birthday on sol 1338 (Oct. 29, 2007). Opportunity landed on the Red Planet on Jan. 25, 2004. That's nearly four years ago on Earth, but only two on Mars because Mars takes longer to travel around the sun than Earth. One Martian year equals 687 Earth days.

    This view was taken using three panoramic-camera filters, admitting light with wavelengths centered at 750 nanometers (near infrared), 530 nanometers (green) and 430 nanometers (violet).

  15. Ice Surfaces In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This full resolution image shows a marked difference in the 'blueness' of the ice surfaces. The lower (presumably older) surface is oranger and the top (presumably younger) surface is blue. This may represent the fresher ice of the upper surface which has not yet covered with as much dust as the lower surface.

    Image information: VIS instrument. Latitude 80.8, Longitude 302.1 East (57.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Polar Layers in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image again illustrates the oranger/bluer nature of the polar layers.

    Image information: VIS instrument. Latitude 80.6, Longitude 70.2 East (289.8 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Sand Sea in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image is of part of the northern sand sea. The small dunes in the image are bluer than the ice/dust filled central crater.

    Image information: VIS instrument. Latitude 73.7, Longitude 323 East (37 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. False-color Dalmatian Terrain

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 10 May 2004 This daytime visible color image was collected on May 18, 2003 during the Southern Spring season in Noachis Terra.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -74, Longitude 351.9 East (8.1 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space

  19. Southern Spring in False Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    This image was collected June 25, 2003 during the southern spring season. This false color image shows both the layered ice cap and darker 'spots' that are seen only when the sun first lights the polar surface.

    Image information: VIS instrument. Latitude -82.3, Longitude 306 East (54 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the

  20. Spirit Beholds Bumpy Boulder (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As NASA's Mars Exploration Rover Spirit began collecting images for a 360-degree panorama of new terrain, the rover captured this view of a dark boulder with an interesting surface texture. The boulder sits about 40 centimeters (16 inches) tall on Martian sand about 5 meters (16 feet) away from Spirit. It is one of many dark, volcanic rock fragments -- many pocked with rounded holes called vesicles -- littering the slope of 'Low Ridge.' The rock surface facing the rover is similar in appearance to the surface texture on the outside of lava flows on Earth.

    Spirit took this false-color image with the panoramic camera on the rover's 810th sol, or Martian day, of exploring Mars (April 13, 2006). This image is a false-color rendering using camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  1. Two Holes in 'Wooly Patch' (False Color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The rock abrasion tool on NASA's Mars Exploration Rover Spirit ground two holes in a relatively soft rock called 'Wooly Patch' near the base of the 'Columbia Hills' inside Gusev Crater on Mars. This false-color image from the panoramic camera was taken on sol 200 (July 25, 2004) and generated using the camera's 750-, 530-, and 430-nanometer filters. It highlights the material ground up by the rock abrasion tool, grayish-blue in appearance in this image. The color of the material excavated suggests the interior of the rock contains iron minerals that are less oxidized than the dust or possibly weathered coating on the exterior of the rock. Scientists speculate that this relatively soft rock (compared to others analyzed by Spirit) may have been modified by water. Small cracks in the surface outside the drill holes may be the result of interactions with water-rich fluids.

  2. Opportunity View of 'Gilbert' Layer (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from NASA's Mars Exploration Rover Opportunity shows bedock within a stratigraphic layer informally named 'Gilbert,' which is the rover's next target after completing an examination of three stratigtaphic layers forming a bright band around the inside of Victoria Crater. The rover will descend deeper into the crater to reach the Gilbert layer.

    Opportunity used its panoramic camera (Pancam) to capture this image with low-sun angle at a local solar time of 3:30 p.m. during the rover's 1,429th Martian day, of sol (Jan. 31, 2008).

    This view combines separate images taken through the Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers. It is presented in a false-color stretch to bring out subtle color differences in the scene.

  3. Opportunity View of 'Lyell' Layer (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from NASA's Mars Exploration Rover Opportunity shows bedrock within a stratigraphic layer informally named 'Lyell,' which is the lowermost of three layers the rover has examined at a bright band around the inside of Victoria Crater.

    Opportunity used its panoramic camera (Pancam) to capture this image with low-sun angle at a local solar time of 3:21 p.m. during the rover's 1,433rd Martian day, of sol (Feb. 4, 2008).

    This view combines separate images taken through the Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers. It is presented in a false-color stretch to bring out subtle color differences in the scene.

  4. View from Spirit's Overwintering Position (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Mars Exploration Rover Spirit has this view northward from the position at the north edge of the 'Home Plate' plateau where the rover will spend its third Martian winter.

    Husband Hill is on the horizon. The dark area in the middle distance is 'El Dorado' sand dune field.

    Spirit used its panoramic camera (Pancam) to capture this image during the rover's 1,448th Martian day, of sol (Jan. 29, 2008).

    This view combines separate images taken through the Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers. It is presented in a false-color stretch to bring out subtle color differences in the scene.

  5. Natural and False Color Views of Europa

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This image shows two views of the trailing hemisphere of Jupiter's ice-covered satellite, Europa. The left image shows the approximate natural color appearance of Europa. The image on the right is a false-color composite version combining violet, green and infrared images to enhance color differences in the predominantly water-ice crust of Europa. Dark brown areas represent rocky material derived from the interior, implanted by impact, or from a combination of interior and exterior sources. Bright plains in the polar areas (top and bottom) are shown in tones of blue to distinguish possibly coarse-grained ice (dark blue) from fine-grained ice (light blue). Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. The bright feature containing a central dark spot in the lower third of the image is a young impact crater some 50 kilometers (31 miles) in diameter. This crater has been provisionally named 'Pwyll' for the Celtic god of the underworld.

    Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. This image was taken on September 7, 1996, at a range of 677,000 kilometers (417,900 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its second orbit around Jupiter. The image was processed by Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo

  6. Spirit Scans Winter Haven (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand.

    This view is a false-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  7. Blue Polar Dunes In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    The small dunes in this image are 'bluer' than the rest of the layered ice/dust units to the left.

    Image information: VIS instrument. Latitude 84.5, Longitude 206.6 East (153.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Dunes and Clouds in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    The small greenish features in this image are sand dunes. The white feature on the right side is likely an ice cloud.

    Image information: VIS instrument. Latitude 84.6, Longitude 203.1 East (156.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. A Frosty Rim In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    Our final image combines the features of the past two days, with a dust covered frosty crater rim and the bluer sand dunes of the north polar region.

    Image information: VIS instrument. Latitude 70.1, Longitude 351.8 East (8.2 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. False Color Mosaic Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    False color representation of Jupiter's Great Red Spot (GRS) taken through three different near-infrared filters of the Galileo imaging system and processed to reveal cloud top height. Images taken through Galileo's near-infrared filters record sunlight beyond the visible range that penetrates to different depths in Jupiter's atmosphere before being reflected by clouds. The Great Red Spot appears pink and the surrounding region blue because of the particular color coding used in this representation. Light reflected by Jupiter at a wavelength (886 nm) where methane strongly absorbs is shown in red. Due to this absorption, only high clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (732 nm) where methane absorbs less strongly is shown in green. Lower clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere is shown in blue: This light is reflected from the deepest clouds. Thus, the color of a cloud in this image indicates its height. Blue or black areas are deep clouds; pink areas are high, thin hazes; white areas are high, thick clouds. This image shows the Great Red Spot to be relatively high, as are some smaller clouds to the northeast and northwest that are surprisingly like towering thunderstorms found on Earth. The deepest clouds are in the collar surrounding the Great Red Spot, and also just to the northwest of the high (bright) cloud in the northwest corner of the image. Preliminary modeling shows these cloud heights vary over 30 km in altitude. This mosaic, of eighteen images (6 in each filter) taken over a 6 minute interval during the second GRS observing sequence on June 26, 1996, has been map-projected to a uniform grid of latitude and longitude. North is at the top.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet

  11. 'Endurance Crater's' Dazzling Dunes (false-color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    As NASA's Mars Exploration Rover Opportunity creeps farther into 'Endurance Crater,' the dune field on the crater floor appears even more dramatic. This false-color image taken by the rover's panoramic camera shows that the dune crests have accumulated more dust than the flanks of the dunes and the flat surfaces between them. Also evident is a 'blue' tint on the flat surfaces as compared to the dune flanks. This results from the presence of the hematite-containing spherules ('blueberries') that accumulate on the flat surfaces.

    Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere.

    Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.

  12. Earth - False Color Mosaic of the Andes

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This false-color mosaic of the central part of the Andes mountains of South America (70 degrees west longitude, 19 degrees south latitude) is made up of 42 images acquired by the Galileo spacecraft from an altitude of about 25,000 kilometers (15,000 miles). A combination of visible (green) and near-infrared (0.76 and 1.0-micron) filters was chosen for this view to separate regions with distinct vegetation and soil types. The mosaic shows the area where Chile, Peru and Bolivia meet. The Pacific Coast appears at the left of the image-- Galileo captured this view as it traveled west over the Pacific Ocean, looking back at the Andes. Lakes Titicaca and Poopo are nearly black patches at the top and center, respectively; a large light-blue area below and to the left of Lake Poopo is Salar de Uyuni, a dry salt lake some 120 kilometers (75 miles) across. These lakes lie in the Altiplano, a region between the western and eastern Andes, which are covered by clouds. The vegetation-bearing Gran Chaco plains east of the Andes appear pale green. Light-blue patches in the mountains to the north are glaciers.

  13. Deep Hole in 'Clovis' (False Color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    At a rock called 'Clovis,' the rock abrasion tool on NASA's Mars Exploration Rover Spirit cut a 9-millimeter (0.35-inch) hole during the rover's 216th martian day, or sol (Aug. 11, 2004). The hole is the deepest drilled in a rock on Mars so far. This false color view was made from images taken by Spirit's panoramic camera on sol 226 (Aug. 21, 2004) at around 12:50 p.m. local true solar time -- early afternoon in Gusev Crater on Mars. To the right is a 'brush flower' of circles produced by scrubbing the surface of the rock with the abrasion tool's wire brush. Scientists used rover's Moessbauer spectrometer and alpha particle X-ray spectrometer to look for iron-bearing minerals and determine the elemental chemical composition of the rock. This composite combines images taken with the camera's 750-, 530-, and 430-nanometer filters. The grayish-blue hue in this image suggests that the interior of the rock contains iron minerals that are less oxidized than minerals on the surface. The diameter of the hole cut into the rock is 4.5 centimeters (1.8 inches).

  14. False-color composite of Oetztal, Austria

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image is a false-color composite of Oetztal, Austria located in the Central Alps centered at 46.8 degrees north latitude, 10.70 degrees east longitude, at the border between Switzerland (top), Italy (left) and Austria (right and bottom). The area shown is 50 kilometers (30 miles) south of Inssbruck, Austria. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperature Radar (SIR-C/X-SAR) flying on the Space Shuttle Endeavour on its 14th orbit. Approximately one quarter of this image is covered by glaciers, the largest of which, Gepatschferner, is visible as a triangular yellow patch in the center of the scene. The blue areas are lakes (Gepatsch dam at center right; Lake Muta at top right) and glacier ice. The yellow areas are slopes facing the radar and areas of dry snow. Purple corresponds to slopes facing away from the radar. Yellow in the valley bottom corresponds to tree covered areas. The Jet Propulsion Laboratory alternative photo number is P-43890.

  15. 'Lyell' Panorama inside Victoria Crater (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay.

    Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.'

    This view combines many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). Images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers were mixed to produce this view, which is presented in a false-color stretch to bring out subtle color differences in the scene. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera.

  16. Spirit's West Valley Panorama (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Sprit spent the closing months of 2007.

    After several months near the base of the plateau called 'Home Plate' in the inner basin of the Columbia Hills range inside Gusev Crater, Spirit climbed onto the eastern edge of the plateau during the rover's 1,306th Martian day, or sol, (Sept. 5, 2007). It examined rocks and soils at several locations on the southern half of Home Plate during September and October. It was perched near the western edge of Home Plate when it used its panoramic camera (Pancam) to take the images used in this view on sols 1,366 through 1,369 (Nov. 6 through Nov. 9, 2007). With its daily solar-energy supply shrinking as Martian summer turned to fall, Spirit then drove to the northern edge of Home Plate for a favorable winter haven. The rover reached that northward-tilting site in December, in time for the fourth Earth-year anniversary of its landing on Mars. Spirit reached Mars on Jan. 4, 2004, Universal Time (Jan. 3, 2004, Pacific Standard Time). It landed at a site at about the center of the horizon in this image.

    This panorama covers a scene spanning left to right from southwest to northeast. The western edge of Home Plate is in the foreground, generally lighter in tone than the more distant parts of the scene. A rock-dotted hill in the middle distance across the left third of the image is 'Tsiolkovski Ridge,' about 30 meters or 100 feet from the edge of Home Plate and about that same distance across. A bump on the horizon above the left edge of Tsiolkovski Ridge is 'Grissom Hill,' about 8 kilometers or 5 miles away. At right, the highest point of the horizon is 'Husband Hill,' to the north and about 800 meters or half a mile away.

    This view combines separate images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers. It is presented in a false-color stretch to bring out subtle

  17. Spirit View of 'Wishstone' (False Color)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    Scientists working with NASA's Mars Exploration Rover Spirit decided to examine this rock, dubbed 'Wishstone,' based on data from the miniature thermal emission spectrometer. That instrument's data indicated that the mineralogy of the rocks in this area is different from that of rocks encountered either on the plains of Gusev Crater or in bedrock outcrops examined so far in the 'Columbia Hills' inside the crater. Spirit used its rock abrasion tool first to scour a patch of the rock's surface with a wire brush, then to grind away the surface to reveal interior material. Placement of the rover's alpha particle X-ray spectrometer on the exposed circle of interior material revealed that the rock is rich in phosphorus. Spirit used its panoramic camera during the rover's 342nd martian day, or sol, (Dec. 18, 2004) to take the three individual images that were combined to produce this false-color view emphasizing the freshly ground dust around the hole cut by the rock abrasion tool.

    Unusually Rich in Phosophorus The graph in figure 1 compares the elemental makeup of a rock dubbed 'Wishstone' with the average composition of rocks that Spirit examined on the western spur of the 'Columbia Hills.' Wishstone lies farther into the hills than that spur. It is richer in phosphorus than any other Mars rock ever examined. Scientists plan to examine other rocks near Wishstone to help explain the significance of the high phosphorus concentration. The vertical scale is the ratio of the concentration of an element in the hills rocks to the concentration of the same element in a typical volcanic rock from the plains that Spirit crossed to reach the hills.

  18. Panorama from 'Cape Verde' (False Color)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Opportunity captured this vista of 'Victoria Crater' from the viewpoint of 'Cape Verde,' one of the promontories that are part of the scalloped rim of the crater. Opportunity drove onto Cape Verde shortly after arriving at the rim of Victoria in September 2006. The view combines hundreds of exposures taken by the rover's panoramic camera (Pancam). The camera began taking the component images during Opportunity's 970th Martian day, or sol, on Mars (Oct. 16, 2006). Work on the panorama continued through the solar conjunction period, when Mars was nearly behind the sun from Earth's perspective and communications were minimized. Acquisition of images for this panorama was completed on Opportunity's 991st sol (Nov. 7, 2006).

    The top of Cape Verde is in the immediate foreground at the center of the image. To the left and right are two of the more gradually sloped bays that alternate with the cliff-faced capes or promontories around the rim of the crater. 'Duck Bay,' where Opportunity first reached the rim, is to the right. Beyond Duck Bay counterclockwise around the rim, the next promontory is 'Cabo Frio,' about 150 meters (500 feet) from the rover. On the left side of the panorama is 'Cape St. Mary,' the next promontory clockwise from Cape Verde and about 40 meters (130 feet) from the rover. The vantage point atop Cape Verde offered a good view of the rock layers in the cliff face of Cape St. Mary, which is about 15 meters or 50 feet tall. By about two weeks after the Pancam finished collecting the images for this panorama, Opportunity had driven to Cape St. Mary and was photographing Cape Verde's rock layers.

    The far side of the crater lies about 800 meters (half a mile) away, toward the southeast.

    This view combines images taken through three of the Pancam's filters, admitting light with wavelengths centered at 750 nanometers (near infrared), 530 nanometers (green) and 430 nanometers (violet). It is presented in false

  19. Gusev Rocks Solidified from Lava (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    to identify rocks and features investigated by Spirit during the Chinese New Year celebration period. In ancient Chinese myth, FuYi was the first great emperor and lived in the east. He explained the theory of 'Yin' and 'Yang' to his people, invented the net to catch fish, was the first to use fire to cook food, and invented a musical instrument known as the 'Se' to accompany his peoples' songs and dances. Other rocks and features are being informally named for Chinese gods, warriors, inventors, and scientists, as well as rivers, lakes, and mountains.

    Spirit took this image on the rover's Martian day, or sol, 731 (Jan. 23, 2006). This is a false-color composite combining images taken with the Pancam's 750-nanometer, 530-nanometer and 430-nanometer filters.

  20. Jupiter in True and False Color

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These color composite frames of the mid-section of Jupiter were of narrow angle images acquired on December 31, 2000, a day after Cassini's closest approach to the planet. The smallest features in these frames are roughly 60 kilometers. The left is natural color, composited to yield the color that Jupiter would have if seen by the naked eye. The right frame is composed of 3 images: two were taken through narrow band filters centered on regions of the spectrum where the gaseous methane in Jupiter's atmosphere absorbs light, and the third was taken in a red continuum region of the spectrum, where Jupiter has no absorptions. The combination yields an image whose colors denote the height of the clouds. Red regions are deep water clouds, bright blue regions are high haze (like the blue covering the Great Red Spot). Small, intensely bright white spots are energetic lightning storms which have penetrated high into the atmosphere where there is no opportunity for absorption of light: these high cloud systems reflect all light equally. The darkest blue regions -- for example, the long linear regions which border the northern part of the equatorial zone, are the very deep 'hot spots', seen in earlier images, from which Jovian thermal emission is free to escape to space. This is the first time that global images of Jupiter in all the methane and attendant continuum filters have been acquired by a spacecraft. From images like these, the stratigraphy of Jupiter's dynamic atmosphere will be determined.

  1. False Color Terrain Model of Phoenix Workspace

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is a terrain model of Phoenix's Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix's Surface Stereo Imager (SSI). Red indicates low-lying areas that appear to be troughs. Blue indicates higher areas that appear to be polygons.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Venus - False Color of Sacajawea Petera

    NASA Technical Reports Server (NTRS)

    1990-01-01

    the patera and are seen in the upper portion of the image. Color has been added to this image to simulate the appearance of the Venus surface.

  3. False-color composite image of Raco, Michigan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image is a false color composite of Raco, Michigan, centered at 46.39 north latitude and 84.88 east longitude. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on the 20th orbit of the Shuttle Endeavour. The area shown is approximately 20 kilometers by 50 kilometers. Raco is located at the eastern end of Michigan's upper peninsula, west of Sault Ste. Marie and south of Whitefish Bay on Lake Superior. In this color representation, darker areas in the image are smooth surfaces such as frozen lakes and other non-forested areas. The colors are related to the types of trees and the brightness is related to the amount of plant material covering the surface, called forest biomass. The Jet Propulsion Laboratory alternative photo number is P-43882.

  4. Using false colors to protect visual privacy of sensitive content

    NASA Astrophysics Data System (ADS)

    Ćiftçi, Serdar; Korshunov, Pavel; Akyüz, Ahmet O.; Ebrahimi, Touradj

    2015-03-01

    Many privacy protection tools have been proposed for preserving privacy. Tools for protection of visual privacy available today lack either all or some of the important properties that are expected from such tools. Therefore, in this paper, we propose a simple yet effective method for privacy protection based on false color visualization, which maps color palette of an image into a different color palette, possibly after a compressive point transformation of the original pixel data, distorting the details of the original image. This method does not require any prior face detection or other sensitive regions detection and, hence, unlike typical privacy protection methods, it is less sensitive to inaccurate computer vision algorithms. It is also secure as the look-up tables can be encrypted, reversible as table look-ups can be inverted, flexible as it is independent of format or encoding, adjustable as the final result can be computed by interpolating the false color image with the original using different degrees of interpolation, less distracting as it does not create visually unpleasant artifacts, and selective as it preserves better semantic structure of the input. Four different color scales and four different compression functions, one which the proposed method relies, are evaluated via objective (three face recognition algorithms) and subjective (50 human subjects in an online-based study) assessments using faces from FERET public dataset. The evaluations demonstrate that DEF and RBS color scales lead to the strongest privacy protection, while compression functions add little to the strength of privacy protection. Statistical analysis also shows that recognition algorithms and human subjects perceive the proposed protection similarly

  5. 'McMurdo' Panorama from Spirit's 'Winter Haven' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    the panorama, and that image will be released on the Web shortly to augment this McMurdo panorama view.

    This beautiful scene reveals a tremendous amount of detail in Spirit's surroundings. Many dark, porous-textured volcanic rocks can be seen around the rover, including many on Low Ridge. Two rocks to the right of center, brighter and smoother-looking in this image and more reflective in infrared observations by Spirit's miniature thermal emission spectrometer, are thought to be meteorites. On the right, 'Husband Hill' on the horizon, the rippled 'El Dorado' sand dune field near the base of that hill, and lighter-toned 'Home Plate' below the dunes provide context for Spirit's travels since mid-2005. Left of center, tracks and a trench dug by Spirit's right-front wheel, which no longer rotates, have exposed bright underlying material. This bright material is evidence of sulfur-rich salty minerals in the subsurface, which may provide clues about the watery past of this part of Gusev Crater.

    Spirit has stayed busy at Winter Haven during the past six months even without driving. In addition to acquiring this spectacular panorama, the rover team has also acquired significant new assessments of the elemental chemistry and mineralogy of rocks and soil targets within reach of the rover's arm. The team plans soon to have Spirit drive to a very nearby spot on Low Ridge to access different rock and soil samples while maintaining a good solar panel tilt toward the sun for the rest of the Martian winter.

    Despite the long span of time needed for acquiring this 360-degree view -- a few images at a time every few sols over a total of 119 sols because the available power was so low -- the lighting and color remain remarkably uniform across the mosaic. This fact attests to the repeatability of wintertime sols on Mars in the southern hemisphere. This is the time of year when Mars is farthest from the sun, so there is much less dust storm and dust devil activity than at

  6. 'McMurdo' Panorama from Spirit's 'Winter Haven' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    the panorama, and that image will be released on the Web shortly to augment this McMurdo panorama view.

    This beautiful scene reveals a tremendous amount of detail in Spirit's surroundings. Many dark, porous-textured volcanic rocks can be seen around the rover, including many on Low Ridge. Two rocks to the right of center, brighter and smoother-looking in this image and more reflective in infrared observations by Spirit's miniature thermal emission spectrometer, are thought to be meteorites. On the right, 'Husband Hill' on the horizon, the rippled 'El Dorado' sand dune field near the base of that hill, and lighter-toned 'Home Plate' below the dunes provide context for Spirit's travels since mid-2005. Left of center, tracks and a trench dug by Spirit's right-front wheel, which no longer rotates, have exposed bright underlying material. This bright material is evidence of sulfur-rich salty minerals in the subsurface, which may provide clues about the watery past of this part of Gusev Crater.

    Spirit has stayed busy at Winter Haven during the past six months even without driving. In addition to acquiring this spectacular panorama, the rover team has also acquired significant new assessments of the elemental chemistry and mineralogy of rocks and soil targets within reach of the rover's arm. The team plans soon to have Spirit drive to a very nearby spot on Low Ridge to access different rock and soil samples while maintaining a good solar panel tilt toward the sun for the rest of the Martian winter.

    Despite the long span of time needed for acquiring this 360-degree view -- a few images at a time every few sols over a total of 119 sols because the available power was so low -- the lighting and color remain remarkably uniform across the mosaic. This fact attests to the repeatability of wintertime sols on Mars in the southern hemisphere. This is the time of year when Mars is farthest from the sun, so there is much less dust storm and dust devil activity than at

  7. Rover's Wheel Churns Up Bright Martian Soil (False Color)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel.

    The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life.

    The image is presented here in false color that is used to bring out subtle differences in color.

  8. Opportunity Approaches the Bowl of Beagle Crater (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars Exploration Rover Opportunity acquired this false-color image of the rim of the 35-meter (115-foot) diameter Beagle Crater on Martian day, or sol, 894 (July 30, 2006) using the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. At the time the rover was about 25 meters (82 feet) from Beagle Crater, looking east-southeast. The image reveals ejecta blocks near the rover, the largest of which is about 50 centimeters (20 inches) across. The image also shows a portion of the eastern interior rim of Beagle Crater, which appears composed of jumbled, angular blocks of brighter and darker outcrop rocks. The rover will drive to the rim of Beagle and acquire an extensive color panorama of the crater rim and interior in the coming sols.

  9. Daisy in Full Bloom on 'Mazatzal' (False Color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from NASA's Mars Exploration Rover Spirit shows a daisy pattern created by the rover's rock abrasion tool on a rock dubbed 'Mazatzal.' The pattern was made as the rover brushed dust away from a large enough area of the surface of the wind-scalloped, volcanic rock to match the field of view of the rover's miniature thermal emission spectrometer. As Spirit ground into the surface with the diamond cutting teeth of the rock abrasion tool, a mineral-filled fracture in the rock suggested the possible presence of past water. The circles cut by the tool are about 5 centimeters (2 inches) in diameter.

    Spirit acquired this image on Sol 86 (March 31, 2004) with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The image is presented here in false color that is used to bring out subtle color differences.

  10. Possible Meteorites in the Martian Hills (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    From its winter outpost at 'Low Ridge' inside Gusev Crater, NASA's Mars Exploration Rover Spirit took this spectacular, color mosaic of hilly, sandy terrain and two potential iron meteorites. The two light-colored, smooth rocks about two-thirds of the way up from the bottom of the frame have been labeled 'Zhong Shan' and 'Allan Hills.'

    The two rocks' informal names are in keeping with the rover science team's campaign to nickname rocks and soils in the area after locations in Antarctica. Zhong Shang is an Antarctic base that the People's Republic of China opened on Feb. 26, 1989, at the Larsemann Hills in Prydz Bay in East Antarctica. Allan Hills is a location where researchers have found many Martian meteorites, including the controversial ALH84001, which achieved fame in 1996 when NASA scientists suggested that it might contain evidence for fossilized extraterrestrial life. Zhong Shan was the given name of Dr. Sun Yat-sen (1866-1925), known as the 'Father of Modern China.' Born to a peasant family in Guangdong, Sun moved to live with his brother in Honolulu at age 13 and later became a medical doctor. He led a series of uprisings against the Qing dynasty that began in 1894 and eventually succeeded in 1911. Sun served as the first provisional president when the Republic of China was founded in 1912.

    The Zhong Shan and Allan Hills rocks, at the left and right, respectively, have unusual morphologies and miniature thermal emission spectrometer signatures that resemble those of a rock known as 'Heat Shield' at the Meridiani site explored by Spirit's twin, Opportunity. Opportunity's analyses revealed Heat Shield to be an iron meteorite.

    Spirit acquired this false-color image on the rover's 872nd Martian day, or sol (June 16, 2006), using exposures taken through three of the panoramic camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers. The image is presented in false color to emphasize differences among

  11. Descent from the Summit of 'Husband Hill' (False Color)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In late November 2005 while descending 'Husband Hill,' NASA's Mars Exploration Rover Spirit took the most detailed panorama so far of the 'Inner Basin,' the rover's next target destination. Spirit acquired the 405 individual images that make up this 360-degree view of the surrounding terrain using five different filters on the panoramic camera. The rover took the images on Martian days, or sols, 672 to 677 (Nov. 23 to 28, 2005 -- the Thanksgiving holiday weekend).

    This image is a false-color rendering using camera's 750-, 530-, and 430-nanometer filters, emphasizing some colors more than others to enhance striking but subtle color differences among rocks, soils, hills, and plains.

    'Home Plate,' a bright, semi-circular feature scientists hope to investigate, is harder to discern in this image than in earlier views taken from higher up the hill. Spirit acquired this more oblique view, known as the 'Seminole panorama,' from about halfway down the south flank of Husband Hill, 50 meters (164 feet) or so below the summit. Near the center of the panorama, on the horizon, are 'McCool Hill' and 'Ramon Hill,' named, like Husband Hill, in honor of the fallen astronauts of the space shuttle Columbia. Husband Hill is visible behind the rover, on the right and left sides of the panorama. An arc of rover tracks made while avoiding obstacles and getting into position to examine rock outcrops can be traced over a long distance by zooming in to explore the panorama in greater detail.

    Spirit is now significantly farther downhill toward the center of this panorama, en route to Home Plate and other enigmatic soils and outcrop rocks in the quest to uncover the history of Gusev Crater and the 'Columbia Hills.'

  12. After Attempted Sample Delivery on Sol 60, False Color

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from the Surface Stereo Imager on NASA's Phoenix Mars Lander on the mission's 60th Martian day, or sol, (July 26, 2008) was taken after the lander's scoop sprinkled a soil sample over Thermal and Evolved-Gas Analyzer (TEGA).

    The upper part of the picture shows the robotic arm scoop parked open-face down above the TEGA after delivery. The TEGA doors farthest to the right were open to receive the sample into one of TEGA's eight ovens. Not enough material reached the oven to allow an analysis to begin. Some of the soil sample can be seen at the bottom of the adjacent pair of doors.

    This view is presented in false color, which makes the reddish color of the soil-sample material easy to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. 'Gibson' Panorama by Spirit at 'Home Plate' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars Exploration Rover Spirit acquired this high-resolution view of intricately layered exposures of rock while parked on the northwest edge of the bright, semi-circular feature known as 'Home Plate.' The rover was perched at a 27-degree upward tilt while creating the panorama, resulting in the 'U' shape of the mosaic. In reality, the features along the 1-meter to 2-meter (1-foot to 6.5-foot) vertical exposure of the rim of Home Plate in this vicinity are relatively level. Rocks near the rover in this view, known as the 'Gibson' panorama, include 'Barnhill,' 'Rogan,' and 'Mackey.'

    Spirit acquired 246 separate images of this scene using 6 different filters on the panoramic camera (Pancam) during the rover's Martian days, or sols, 748 through 751 (Feb. 9 through Feb. 12, 2006). The field of view covers 160 degrees of terrain around the rover. This image is a false-color rendering using using Pancam's 753-nanometer, 535-namometer, and 432-nanometer filters, presented to enhance many subtle color differences between rocks and soils in the scene. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.

  14. False color image of Safsaf Oasis in southern Egypt

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a false color image of the uninhabited Safsaf Oasis in southern Egypt near the Egypt/Sudan border. It was produced from data obtained from the L-band and C-band radars that are part of the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar onboard the Shuttle Endeavour on April 9, 1994. The image is centered at 22 degrees North latitude, 29 degrees East longitude. It shows detailed structures of bedrock, and the dark blue sinuous lines are braided channels that occupy part of an old broad river valley. Virtually everything visible on this radar composite image cannot be seen either when standing on the ground or when viewing photographs or satellite images such as Landsat. The Jet Propulsion Laboratory alternative photo number is P-43920.

  15. Layers of 'Cape Verde' in 'Victoria Crater' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This view of Victoria crater is looking north from 'Duck Bay' towards the dramatic promontory called 'Cape Verde.' The dramatic cliff of layered rocks is about 50 meters (about 165 feet) away from the rover and is about 6 meters (about 20 feet) tall. The taller promontory beyond that is about 100 meters (about 325 feet) away, and the vista beyond that extends away for more than 400 meters (about 1300 feet) into the distance. This is an enhanced false color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.

  16. Layers of 'Cabo Frio' in 'Victoria Crater' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is an enhanced false color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.

  17. Characterizing pigments with hyperspectral imaging variable false-color composites

    NASA Astrophysics Data System (ADS)

    Hayem-Ghez, Anita; Ravaud, Elisabeth; Boust, Clotilde; Bastian, Gilles; Menu, Michel; Brodie-Linder, Nancy

    2015-11-01

    Hyperspectral imaging has been used for pigment characterization on paintings for the last 10 years. It is a noninvasive technique, which mixes the power of spectrophotometry and that of imaging technologies. We have access to a visible and near-infrared hyperspectral camera, ranging from 400 to 1000 nm in 80-160 spectral bands. In order to treat the large amount of data that this imaging technique generates, one can use statistical tools such as principal component analysis (PCA). To conduct the characterization of pigments, researchers mostly use PCA, convex geometry algorithms and the comparison of resulting clusters to database spectra with a specific tolerance (like the Spectral Angle Mapper tool on the dedicated software ENVI). Our approach originates from false-color photography and aims at providing a simple tool to identify pigments thanks to imaging spectroscopy. It can be considered as a quick first analysis to see the principal pigments of a painting, before using a more complete multivariate statistical tool. We study pigment spectra, for each kind of hue (blue, green, red and yellow) to identify the wavelength maximizing spectral differences. The case of red pigments is most interesting because our methodology can discriminate the red pigments very well—even red lakes, which are always difficult to identify. As for the yellow and blue categories, it represents a good progress of IRFC photography for pigment discrimination. We apply our methodology to study the pigments on a painting by Eustache Le Sueur, a French painter of the seventeenth century. We compare the results to other noninvasive analysis like X-ray fluorescence and optical microscopy. Finally, we draw conclusions about the advantages and limits of the variable false-color image method using hyperspectral imaging.

  18. False-Color View of a 'Rat' Hole Trail

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This view from the Mars Exploration Rover Opportunity's panoramic camera is a false-color composite rendering of the first seven holes that the rover's rock abrasion tool dug on the inner slope of 'Endurance Crater.' The rover was about 12 meters (about 39 feet) down into the crater when it acquired the images combined into this mosaic. The view is looking back toward the rim of the crater, with the rover's tracks visible. The tailings around the holes drilled by the rock abrasion tool, or 'Rat,' show evidence for fine-grained red hematite similar to what was observed months earlier in 'Eagle Crater' outcrop holes.

    Last week, viewers were asked to try seeing as many holes as they could from a black-and-white, navigation-camera image (PIA06716). Most viewers will find it far easier to see the seven holes in this exaggerated color image; the same is true for scientists who are studying the holes from millions of miles away.

    Starting from the uppermost pictured (closest to the crater rim) to the lowest, the rock abrasion tool hole targets are called 'Tennessee,' 'Cobblehill,' 'Virginia,' 'London,' 'Grindstone,' 'Kettlestone,' and 'Drammensfjorden.' Opportunity drilled these holes on sols 138 (June 13, 2004), 143 (June 18), 145 (June 20), 148 (June 23), 151 (June 26), 153 (June 28) and 161 (July 7), respectively. Each hole is 4.5 centimeters (1.8 inches) in diameter.

    This image was generated using the panoramic camera's 750-, 530-, and 430-nanometer filters. It was taken on sol 173 (July 19).

  19. Ice Layer Cross-Section In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image of shows a cross sectional view of the ice layers. Note the subtle peach banding on the left side of the image. The time variation that the bands represent is not yet understood.

    Image information: VIS instrument. Latitude 83.5, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. E4 True and false color hot spot mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    True and false color views of Jupiter from NASA's Galileo spacecraft show an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles). The top mosaic combines the violet and near infrared continuum filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  1. Spirit Says Goodbye to 'Home Plate' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    For the past several weeks, Spirit has been examining spectacular layered rocks exposed at 'Home Plate.' The rover has been driving around the northern and eastern edges of Home Plate, on the way to 'McCool Hill.' Before departing, Spirit took this image showing some of the most complex layering patterns seen so far at this location.

    The layered nature of these rocks presents new questions for the rover team. In addition to their chemical properties, which scientists can study using Spirit's spectrometers, these rocks record a detailed history of the physical properties that formed them. In the center of this image, one group of layers slopes downward to the right. The layers above and below this group are more nearly horizontal. Where layers of different orientations intersect, other layers are truncated. This indicates that there were complex patterns of alternating erosion and deposition occurring when these layers were being deposited. Similar patterns can be found in some sedimentary rocks on Earth. Physical relationships among the various layers exposed at Home Plate are crucial evidence in understanding how these Martian rocks formed. Scientists suspect that the rocks at Home Plate were formed in the aftermath of a volcanic explosion or impact event, and they are investigating the possibility that wind may also have played a role in redistributing materials after such an event.

    Images like this one from panoramic camera (Pancam), which shows larger-scale layering, as well as those from the microscopic imager, which reveal the individual sand-sized grains that make up these rocks, are essential to understanding the geologic history of Home Plate.

    This view is a false-color rendering that combines separate images taken through the Pancam's 753-nanometer, 535-namometer, and 432-nanometer filters, enhanced to emphasize color differences among the rocks and soils. It was taken during Spirit's 774th Martian day (March 8, 2006).

  2. Landsat ETM+ False-Color Image Mosaics of Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2007-01-01

    In 2005, the U.S. Agency for International Development and the U.S. Trade and Development Agency contracted with the U.S. Geological Survey to perform assessments of the natural resources within Afghanistan. The assessments concentrate on the resources that are related to the economic development of that country. Therefore, assessments were initiated in oil and gas, coal, mineral resources, water resources, and earthquake hazards. All of these assessments require geologic, structural, and topographic information throughout the country at a finer scale and better accuracy than that provided by the existing maps, which were published in the 1970's by the Russians and Germans. The very rugged terrain in Afghanistan, the large scale of these assessments, and the terrorist threat in Afghanistan indicated that the best approach to provide the preliminary assessments was to use remotely sensed, satellite image data, although this may also apply to subsequent phases of the assessments. Therefore, the first step in the assessment process was to produce satellite image mosaics of Afghanistan that would be useful for these assessments. This report discusses the production of the Landsat false-color image database produced for these assessments, which was produced from the calibrated Landsat ETM+ image mosaics described by Davis (2006).

  3. Three frequency false-color image of Prince Albert, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-frequency, false color image of Prince Albert, Canada, centered at 53.91 north latitude and 104.69 west longitude. It was produced using data from the X-band, C-band and L-band radars that comprise the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). SIR-C/X-SAR acquired this image on the 20th orbit of the Shuttle Endeavour. The area is located 40 km north and 30 km east of the town of Prince Albert in the Saskatchewan province of Canada. The image covers the area east of the Candle Lake, between gravel surface highways 120 and 106 and west of 106. The area in the middle of the image covers the entire Nipawin (Narrow Hills) provincial park. Most of the dark blue areas in the image are the ice covered lakes. The dark area on the top right corner of the image is the White Gull Lake north of the intersection of highway 120 and 913. The right middle part of the image shows Lake Ispuchaw and Lower Fishing Lake. The deforested areas are shown by light

  4. False-color composite image of Prince Albert, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a false color composite of Prince Albert, Canada, centered at 53.91 north latitude and 104.69 west longitude. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on the 20th orbit of the Shuttle Endeavour. The area is located 40 km north and 30 km east of the town of Prince Albert in the Saskatchewan province of Canada. The image covers the area east of the Candle Lake, between gravel surface highways 120 and 106 and west of 106. The area in the middle of the image covers the entire Nipawin (Narrow Hills) provincial park. The look angle of the radar is 30 degrees and the size of the image is approximately 20 kilometers by 50 kilometers (12 by 30 miles). Most of the dark areas in the image are the ice-covered lakes in the region. The dark area on the top right corner of the image is the White Gull Lake north of the intersection of Highway 120 and 913. The right middle part of the image shows Lake Ispuchaw and Lower Fishing Lake

  5. Three frequency false color image of Flevoland, the Netherlands

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-frequency false color image of Flevoland, the Netherlands, centered at 52.4 degrees north latitude, 5.4 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Shuttle Endeavour. The area shown covers an area approximately 25 kilometers by 28 kilometers. Flevoland, which fills the lower two-thirds of the image, is a very flat area that is made up of reclaimed land that is used for agriculture and forestry. At the top of the image, across the canal from Flevoland, is an older forest shown in red; the city of Harderwijk is shown in white on the shore of the canal. At this time of the year, the agricultural fields are bare soil, and they show up in this image in blue. The dark blue areas are water and the small dots in the canal are boats. The Jet Propulsion Laboratory alternative photo number is P-43941.

  6. View Northward from Spirit's Winter Roost (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    One part of the research program that NASA's Mars Exploration Rover Spirit is conducting while sitting at a favorable location for wintertime solar energy is the most detailed panorama yet taken on the surface of Mars. This view is a partial preliminary product from the continuing work on the full image, which will be called the 'McMurdo Panorama.'

    Spirit's panoramic camera (Pancam) began taking exposures for the McMurdo Panorama on the rover's 814th Martian day (April 18, 2006). The rover has accumulated more than 900 exposures for this panorama so far, through all of the Pancam mineralogy filters and using little or no image compression. Even with a tilt toward the winter sun, the amount of energy available daily is small, so the job will still take one to two more months to complete.

    This portion of the work in progress looks toward the north. 'Husband Hill,' which Spirit was climbing a year ago, is on the horizon near the center. 'Home Plate' is a between that hill and the rover's current position. Wheel tracks imprinted when Spirit drove south from Home Plate can be seen crossing the middle distance of the image from the center to the right.

    This view is presented in false color to emphasize differences among rock and soil materials. It combines exposures taken through three of the panoramic camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers and 430 nanometers.

  7. Sulfur-Rich Rocks and Dirt (False Color)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Rover Spirit has been analyzing sulfur-rich rocks and surface materials in the 'Columbia Hills' in Gusev Crater on Mars. This image of a very soft, nodular, layered rock nicknamed 'Peace' in honor of Martin Luther King Jr. shows a 4.5-centimeter-wide (1.8-inch-wide) hole Spirit ground into the surface with the rover's rock abrasion tool. The high sulfur content of the rock measured by Spirit's alpha particle X-ray spectrometer and its softness measured by the abrasion tool are probably evidence of past alteration by water. Spirit's panoramic camera took this false-color image on martian day, or sol, 381 (Jan. 27, 2005), using Pancam filters at wavelengths of 750, 530, and 430 nanometers. Darker red hues in the image correspond to greater concentrations of oxidized soil and dust. Bluer hues correspond to sulfur-rich rock excavated or exposed by the abrasion tool and not as heavily coated with soils or not as highly oxidized.

  8. Southern Half of Spirit's 'Bonestell' Panorama (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    highest point is 'McCool Hill.' This is one of the seven larger hills in the Columbia Hills range. Home Plate is in the inner basin of the range, between McCool Hill to the south and 'Husband Hill' to the north. To the right of McCool Hill, in the center of the image and closer to Home Plate, is a smaller hill capped with a light-toned outcrop. This hill is called 'Von Braun,' and it is a possible destination the rover team has discussed for the next season of driving by Spirit, after the solar energy level increases in the Martian spring. The flat horizon in the right-hand portion of the panorama is the basaltic plain onto which Spirit landed on Jan. 4, 2004.

    This is a false-color, red-green-blue composite panorama generated from images taken through the Pancam's 750-nanometer, 530-nanometer and 430-nanometer filters. The false color enhances visibility of differences among the types of rock and soil material in the image.

  9. Spirit Examines Light-Toned 'Halley' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Stretching along 'Low Ridge' in front of the winter haven for NASA's Mars Exploration Rover Spirit are several continuous rock layers that make up the ridge. Some of these layers form fins that stick out from the other rocks in a way that suggests that they are resistant to erosion. Spirit is currently straddling one of these fin-like layers and can reach a small bit of light-toned material that might be a broken bit of it. Informally named 'Halley,' this rock was broken by Spirit's wheels when the rover drove over it.

    The first analyses of Halley showed it to be unusual in composition, containing a lot of the minor element zinc relative to the soil around it and having much of its iron tied up in the mineral hematite. When scientists again placed the scientific instruments on Spirit's robotic arm on a particularly bright-looking part of Halley, they found that the chemical composition of the bright spots was suggestive of a calcium sulfate mineral. Bright soils that Spirit has examined earlier in the mission contain iron sulfate.

    This discovery raises new questions for the science team: Why is the sulfate mineralogy here different? Did Halley and the fin material form by water percolating through the layered rocks of Low Ridge? When did the chemical alteration of this rock occur? Spirit will continue to work on Halley and other light-toned materials along Low Ridge in the coming months to try to answer these questions.

    Spirit took this red-green-blue composite image with the panoramic camera on the rover's 820th sol, or Martian day, of exploring Mars (April 24, 2006). The image is presented in false color to emphasize differences among materials in the rocks and soil. It combines frames taken through the camera's 750-nanometer, 530-nanometer, and 430-nanometer filters. The middle of the imaged area has dark basaltic sand. Spirit's wheel track is at the left edge of the frame. Just to the right of the wheel track in the lower left are two types

  10. Venus and Earth , false twins: really different rotational properties

    NASA Astrophysics Data System (ADS)

    Cottereau, L.

    2010-12-01

    Although Venus and the Earth are the most similar planets in the Solar system, the rotation of these two planets has quite different characteristics. Of the very slow retrograde rotation of Venus, due to a balance between atmospheric and solid body tidal torques, emerge many differences on the evolution of the rotational state of Venus with respect to the Earth one. A complete study of the rotation of Venus on short time scale is presented and compared to the results obtained for the Earth. Applying the theoretical models of Kinoshita (1972, 1977) already used for the Earth, the polhody and the nutation of the figure axis of a rigid Venus is determined. Then evaluating the deformations produced by the zonal part of the tidal potential on the principal moment of inertia, the periodic variations of the speed of rotation of Venus is presented. At last the differences between the results obtained for Venus and for the Earth are explained. Preliminary results on the effect of the atmosphere and the interior of the planet on its rotation state will also be discussed.

  11. Correction of axial and lateral chromatic aberration with false color filtering.

    PubMed

    Chang, Joonyoung; Kang, Hee; Kang, Moon Gi

    2013-03-01

    In this paper, we propose a chromatic aberration (CA) correction algorithm based on a false color filtering technique. In general, CA produces color distortions called color fringes near the contrasting edges of captured images, and these distortions cause false color artifacts. In the proposed method, a false color filtering technique is used to filter out the false color components from the chroma-signals of the input image. The filtering process is performed with the adaptive weights obtained from both the gradient and color differences, and the weights are designed to reduce the various types of color fringes regardless of the colors of the artifacts. Moreover, as preprocessors of the filtering process, a transient improvement (TI) technique is applied to enhance the slow transitions of the red and blue channels that are blurred by the CA. The TI process improves the filtering performance by narrowing the false color regions before the filtering process when severe color fringes (typically purple fringes) occur widely. Last, the CA-corrected chroma-signal is combined with the TI chroma-signal to avoid incorrect color adjustment. The experimental results show that the proposed method substantially reduces the CA artifacts and provides natural-looking replacement colors, while it avoids incorrect color adjustment.

  12. Global View of Io (Natural and False/Enhanced Color)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Global view of Jupiter's volcanic moon Io obtained on 07 September, 1996 Universal Time using the near-infrared, green, and violet filters of the Solid State Imaging system aboard NASA/JPL's Galileo spacecraft. The top disk is intended to show the satellite in natural color, similar to what the human eye would see (but colors will vary with display devices), while the bottom disk shows enhanced color to highlight surface details. The reddest and blackest areas are closely associated with active volcanic regions and recent surface deposits. Io was imaged here against the clouds of Jupiter. North is to the top of the frames. The finest details that can discerned in these frames are about 4.9 km across.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  13. Venus - False Color Perspective of Sif and Gula Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A portion of western Eistla Regio is shown in this three dimensional, computer-generated view of the surface of Venus. The viewpoint is at an elevation of 1.2 kilometers (0.75 mile) at a location 700 kilometers (435 miles) southeast of Gula Mons, the volcano on the right horizon. Gula Mons reaches 3 kilometers (1.8 miles) high and is located around 22 degrees north latitude and 359 degrees east longitude. Sif Mons, the volcano on the left horizon, has a diameter of 300 kilometers (186 miles) and a height of 2 kilometers (1.2 miles). Magellan imaging and altimetry data are combined to develop a three-dimensional computer view of the planet's surface. Simulated color based on color images from the Soviet Venera 13 and 14 spacecraft is added to enhance small-scale structure. This image was produced at JPL's Multimission Image Processing Laboratory by Eric De Jong, Jeff Hall and Myche McAuley. Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day, is the length of a Magellan mapping cycle. The spacecraft completed its first mapping cycle and primary mission on May 15, 1991, and immediately began its second cycle. During the first cycle, Magellan mapped more than 80 percent of the planet's surface and the current and subsequent cycles of equal duration will provide complete mapping of Venus. Magellan was launched May 4, 1989, aboard the space shuttle Atlantis and went into orbit around Venus August 10, 1990.

  14. False Color Processing to Enhance Differences Around Yogi

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this scene showing the rover deployed at rock Yogi, the colors have similarly been enhanced to bring out differences. The same three kinds of rocks are recognized as in the distance. Yogi (red arrow), one of the large rocks with a weathered coating, exhibits a fresh face to the northeast, resulting perhaps from eolian scouring or from fracturing off of pieces to expose a fresher surface. Barnacle Bill and Cradle (blue arrows) are typical of the unweathered smaller rocks. During its traverse to Yogi the rover stirred the soil and exposed material from several cm in depth. During one of the turns to deploy Sojourner's Alpha Proton X-Ray Spectrometer (inset and white arrow), the wheels dug particularly deeply and exposed white material. Spectra of this white material show it is virtually identical to Scooby Doo, and such white material may underlie much of the site. The lander's rear ramp, which Sojourner used to descend to the Martian surface, is at lower left.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  15. Jupiter's Northern Hemisphere in False Color (Time Set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.

    This mosaic uses the Galileo imaging camera's three near-infrared wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. The clouds and haze over the ovals are high, extending into Jupiter's stratosphere. Dark purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  16. Jupiter's Northern Hemisphere in False Color (Time Set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.

    This mosaic uses the Galileo imaging camera's three near-infrared wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. The clouds and haze over the ovals are high, extending into Jupiter's stratosphere. Dark purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Jupiter's Northern Hemisphere in False Color (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.

    This mosaic uses the Galileo imaging camera's three near-infrared wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. The clouds and haze over the ovals are high, extending into Jupiter's stratosphere. Dark purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. Development and usage of a false color display technique for presenting Seasat-A scatterometer data

    NASA Technical Reports Server (NTRS)

    Jackson, C. B.

    1980-01-01

    A computer generated false color program which creates digital multicolor graphics to display geophysical surface parameters measured by the Seasat-A satellite scatterometer (SASS) is described. The data is incrementally scaled over the range of acceptable values and each increment and its data points are assigned a color. The advantage of the false color display is that it visually infers cool or weak data versus hot or intense data by using the rainbow of colors. For example, with wind speeds, levels of yellow and red could be used to imply high winds while green and blue could imply calmer air. The SASS data is sorted into geographic regions and the final false color images are projected onto various world maps with superimposed land/water boundaries.

  19. The Use of False Color Landsat Imagery with a Fifth Grade Class.

    ERIC Educational Resources Information Center

    Harnapp, Vern R.

    Fifth grade students can become familiar with images of earth generated by space sensor Landsat satellites which sense nearly all surfaces of the earth once every 18 days. Two false color composites in which different colors represent various geographic formations were obtained for the northern Ohio region where the students live. The class had no…

  20. Rotational excitations in two-color photoassociation

    NASA Astrophysics Data System (ADS)

    Hazra, Jisha; Deb, Bimalendu

    2010-02-01

    We show that it is possible to excite higher rotational states J>2 in ultracold photoassociation by two laser fields. Usually higher J states are suppressed in photoassociation at ultracold temperatures in the regime of Wigner threshold laws. We propose a scheme in which one strong laser field drives photoassociation transition close to either J=1 or J=2 rotational state of a particular vibrational level of an electronically excited molecule. The other laser field is tuned near photoassociation resonance with J>2 rotational levels of the same vibrational state. The strong laser field induces a strong continuum-bound dipole coupling. The resulting dipole force between two colliding atoms modifies the continuum states forming continuum-bound dressed states with a significant component of higher partial waves in the continuum configuration. When the second laser is scanned near the resonance of the higher J states, these states become populated due to photoassociative transitions from the modified continuum.

  1. Seed viability detection using computerized false-color radiographic image enhancement

    NASA Technical Reports Server (NTRS)

    Vozzo, J. A.; Marko, Michael

    1994-01-01

    Seed radiographs are divided into density zones which are related to seed germination. The seeds which germinate have densities relating to false-color red. In turn, a seed sorter may be designed which rejects those seeds not having sufficient red to activate a gate along a moving belt containing the seed source. This results in separating only seeds with the preselected densities representing biological viability lending to germination. These selected seeds demand a higher market value. Actual false-coloring isn't required for a computer to distinguish the significant gray-zone range. This range can be predetermined and screened without the necessity of red imaging. Applying false-color enhancement is a means of emphasizing differences in densities of gray within any subject from photographic, radiographic, or video imaging. Within the 0-255 range of gray levels, colors can be assigned to any single level or group of gray levels. Densitometric values then become easily recognized colors which relate to the image density. Choosing a color to identify any given density allows separation by morphology or composition (form or function). Additionally, relative areas of each color are readily available for determining distribution of that density by comparison with other densities within the image.

  2. A FALSE COLOR FUSION STRATEGY FOR DRUSEN AND GA VISUALIZATION IN OCT IMAGES

    PubMed Central

    CHEN, QIANG; LENG, THEODORE; NIU, SIJIE; SHI, JIAJIA; DE SISTERNES, LUIS; RUBIN, DANIEL L.

    2014-01-01

    Purpose To display drusen and GA in a single projection image from 3D SD-OCT images based on a novel false color fusion strategy. Methods We present a false color fusion strategy to combine drusen and GA projection images. The drusen projection image is generated with a restricted summed-voxel projection (RSVP, axial sum of the reflectivity values in a SD-OCT cube, limited to the region where drusen in present). The GA projection image is generated by incorporating two GA characteristics: bright choroid and thin retina pigment epithelium (RPE). The false color fusion method was evaluated in 82 3D OCT datasets obtained from 7 patients, for which two readers independently identified drusen and GA as the gold standard. The mean drusen and GA overlap ratio was used as the metric to determine accuracy of visualization of the proposed method when compared to the conventional summed-voxel projection (SVP, axial sum of the reflectivity values in the complete SD-OCT cube) technique and color fundus photographs (CFP). Results Comparative results demonstrate that the false color image is more effective in displaying drusen and GA than SVP and CFP. The mean drusen/GA overlap ratios based on the conventional SVP method, CFP and the false color fusion method were 6.4%/100%, 64.1%/66.7%, and 85.6%/100%, respectively. Conclusions The false color fusion method was more effective for simultaneous visualization of drusen and GA than the conventional SVP method and CFP, and it appears promising as an alternative method for visualizing drusen and GA in the retinal fundus, which commonly occur together and can be confusing to differentiate without methods such as our proposed method. PMID:25062439

  3. False-Color-Image Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. False-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. False-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. False-Color-Image Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. False-Color-Image Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. False-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. False-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Synesthesia and memory: color congruency, von Restorff, and false memory effects.

    PubMed

    Radvansky, Gabriel A; Gibson, Bradley S; McNerney, M Windy

    2011-01-01

    In the current study, we explored the influence of synesthesia on memory for word lists. We tested 10 grapheme-color synesthetes who reported an experience of color when reading letters or words. We replicated a previous finding that memory is compromised when synesthetic color is incongruent with perceptual color. Beyond this, we found that, although their memory for word lists was superior overall, synesthetes did not exhibit typical color- or semantic-defined von Restorff isolation effects (von Restorff, 1933) compared with control participants. Moreover, our synesthetes exhibited a reduced Deese-Roediger-McDermott false memory effect (Deese, 1959; Roediger & McDermott, 1995). Taken as a whole, these findings are consistent with the idea that color-grapheme synesthesia can lead people to place a greater emphasis on item-specific processing and surface form characteristics of words in a list (e.g., the letters that make them up) relative to relational processing and more meaning-based processes. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  11. False-positive scalp activity in 131I imaging associated with hair coloring.

    PubMed

    Yan, Di; Doss, Mohan; Mehra, Ranee; Parsons, Rosaleen B; Milestone, Barton N; Yu, Jian Q

    2013-03-01

    A patient with metastatic papillary thyroid carcinoma (after surgical resection of tumor and positive lymph nodes) undergoing thyroid ablation therapy with (131)I is described. Whole-body scintigraphy was performed 1 wk after ablation therapy to evaluate the presence of residual disease. The whole-body images demonstrated an artifact caused by tracer accumulation in the patient's scalp related to recent hair coloring. Common etiologies of false-positive (131)I scintigraphic findings are briefly reviewed. The importance of taking preventative measures to decrease the number of false-positive findings and recognizing these findings when they occur is discussed.

  12. Keeping the band together: evidence for false boundary disruptive coloration in a butterfly.

    PubMed

    Seymoure, B M; Aiello, A

    2015-09-01

    There is a recent surge of evidence supporting disruptive coloration, in which patterns break up the animal's outline through false edges or boundaries, increasing survival in animals by reducing predator detection and/or preventing recognition. Although research has demonstrated that false edges are successful for reducing predation of prey, research into the role of internal false boundaries (i.e. stripes and bands) in reducing predation remains warranted. Many animals have stripes and bands that may function disruptively. Here, we test the possible disruptive function of wing band patterning in a butterfly, Anartia fatima, using artificial paper and plasticine models in Panama. We manipulated the band so that one model type had the band shifted to the wing margin (nondisruptive treatment) and another model had a discontinuous band located on the wing margin (discontinuous edge treatment). We kept the natural wing pattern to represent the false boundary treatment. Across all treatment groups, we standardized the area of colour and used avian visual models to confirm a match between manipulated and natural wing colours. False boundary models had higher survival than either the discontinuous edge model or the nondisruptive model. There was no survival difference between the discontinuous edge model and the nondisruptive model. Our results demonstrate the importance of wing bands in reducing predation on butterflies and show that markings set in from the wing margin can reduce predation more effectively than marginal bands and discontinuous marginal patterns. This study demonstrates an adaptive benefit of having stripes and bands.

  13. The rotation, color, phase coefficient, and diameter of 1915 Quetzalcoatl

    NASA Astrophysics Data System (ADS)

    Binzel, R. P.; Tholen, D. J.

    1983-09-01

    Photoelectric observations of 1915 Quetzalcoatl on March 2, 1981 show that this asteroid has a rotational period of 4.9 + or - 0.3 hr and a lightcurve amplitude of 0.26 magnitudes. B-V and U-B colors are found to be 0.83 + or - 0.04 and 0.43 + or - 0.03, respectively, consistent with Quetzalcoatl being an S-type asteroid. Additional observations from March 31, 1981, give a linear phase coefficient of 0.033 mag/deg and a mean B(1,0) magnitude of 20.10. The resulting estimated mean diameter for Quetzalcoatl is only 0.37 km, making it one of the smallest asteroids for which physical observations have yet been made.

  14. The rotation, color, phase coefficient, and diameter of 1915 Quetzalcoatl

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Tholen, D. J.

    1983-01-01

    Photoelectric observations of 1915 Quetzalcoatl on March 2, 1981 show that this asteroid has a rotational period of 4.9 + or - 0.3 hr and a lightcurve amplitude of 0.26 magnitudes. B-V and U-B colors are found to be 0.83 + or - 0.04 and 0.43 + or - 0.03, respectively, consistent with Quetzalcoatl being an S-type asteroid. Additional observations from March 31, 1981, give a linear phase coefficient of 0.033 mag/deg and a mean B(1,0) magnitude of 20.10. The resulting estimated mean diameter for Quetzalcoatl is only 0.37 km, making it one of the smallest asteroids for which physical observations have yet been made.

  15. False-color image of the near-infrared sky as seen by the DIRBE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    False-color image of the near-infrared sky as seen by the DIRBE. Data at 1.25, 2.2, and 3.5 Aum wavelengths are represented respectively as blue, green and red colors. The image is presented in Galactic coordinates, with the plane of the Milky Way Galaxy horizontal across the middle and the Galactic center at the center. The dominant sources of light at these wavelengths are stars within our Galaxy. The image shows both the thin disk and central bulge populations of stars in our spiral galaxy. Our Sun, much closer to us than any other star, lies in the disk (which is why the disk appears edge-on to us) at a distance of about 28,000 light years from the center. The image is redder in directions where there is more dust between the stars absorbing starlight from distant stars. This absorption is so strong at visible wavelengths that the central part of the Milky Way cannot be seen. DIRBE data will facilitate studies of the content, energetics and large scale structure of the Galaxy, as well as the nature and distribution of dust within the Solar System. The data also will be studied for evidence of a faint, uniform infrared background, the residual radiation from the first stars and galaxies formed following the Big Bang.

  16. False-color L-band image of Manaus region of Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This false-color L-band image of the Manaus region of Brazil was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperature Radar (SIR-C/X-SAR) flying on the Space Shuttle Endeavour on its 46th orbit. The area shown is approximately 8 kilometers by 40 kilometers (5 by 25 miles). At the top of the image are the Solimoes and Rio Negro River. The image is centered at about 3 degrees south latitude, and 61 degrees west longitude. Blue areas show low returns at VV poloarization; hence the bright blue colors of the smooth river surfaces. Green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest. Between Rio Solimoes and Rio Negro, a road can be seen running from some cleared areas (visible as blue rectangles north of Rio Solimoes) north toward a tributary or Rio Negro. The Jet Propulsion Laboratory alternative photo number is P-43895.

  17. Synesthesia and Memory: Color Congruency, Von Restorff, and False Memory Effects

    ERIC Educational Resources Information Center

    Radvansky, Gabriel A.; Gibson, Bradley S.; McNerney, M. Windy

    2011-01-01

    In the current study, we explored the influence of synesthesia on memory for word lists. We tested 10 grapheme-color synesthetes who reported an experience of color when reading letters or words. We replicated a previous finding that memory is compromised when synesthetic color is incongruent with perceptual color. Beyond this, we found that,…

  18. A Jovian Hotspot in True and False Colors (Time set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    True and false color views of an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers. The top mosaic combines the violet (410 nanometers or nm) and near-infrared continuum (756 nm) filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths (756 nm, 727 nm, and 889 nm displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. A Jovian Hotspot in True and False Colors (Time set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    True and false color views of an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers. The top mosaic combines the violet (410 nanometers or nm) and near-infrared continuum (756 nm) filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths (756 nm, 727 nm, and 889 nm displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Spirit's 'Paige' Panorama of the Interior of 'Home Plate' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On Feb. 19, 2006, the 758th Martian day of exploration of the red planet by NASA's Mars Exploration Rover Spirit, the rover acquired this panoramic view of the interior of 'Home Plate,' a circular topographic feature amid the 'Columbia Hills.' This view, called the 'Paige' panorama, is from the top of Home Plate. It shows layered rocks exposed at the edge as well as dark rocks exhibiting both smooth and sponge-like 'scoriaceous' textures. To the east from this vantage point, 'McCool Hill' looms on the horizon. At the base of McCool Hill is a reddish outcrop called 'Oberth,' which Spirit may explore during the rapidly approaching Martian winter. 'Von Braun' and 'Goddard' hills are partially visible beyond the opposite rim of Home Plate.

    The limited spatial coverage of this panorama is the result of steadily decreasing power available to the rover for science activities as the Martian winter arrives and the sun traces a lower path across the sky. The rover team anticipates that the north-facing slopes of McCool Hill should sufficiently tilt the rover's solar panels toward the sun to allow Spirit to survive the winter.

    The view covers about 230 degrees of terrain around the rover. Spirit's panoramic camera (Pancam) took 72 separate images of this scene with four different Pancam filters. This is a false-color rendering using the Pancam's 75-nanometer, 535-nanometer, and 432-nanometer filters, enhanced to show many subtle color differences in rocks, soils, and hills in the scene. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.

  1. Three dimensional perspective view of false-color image of eastern Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three dimensional perspective view of false-color image of the eastern part of the Big Island of Hawaii. It was produced using all three radar frequencies C-Band and L-Band. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The image was acquired on April 12, 1994 during the 52nd orbit of the Shuttle Endeavour by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The area shown is approximately 34 by 57 kilomters with the top of the image pointing toward north-west. The image is centered at about 155.25 degrees west longitude and 19.5 degrees north latitude. Visible in the center of the image in blue are the summit crater (Kilauea Caidera) which contains the smaller Halemaumau Crater, and the line of collapsed craters below them that form the Chain of Craters Road. The rain forest appears bright in the image while green areas correspond to lower vegetation. The lava flows have differen

  2. Three frequency false-color image of Oberpfaffenhofen supersite in Germany

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-frequency, false color image of the Oberpfaffenhofen supersite, an area just south-west of Munich in southern Germany. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Shuttle Endeavour, April 11, 1994. The image is centered at 48.09 degrees north, 11.29 degrees east. The dark area on the left is Lake Ammersee. The two smaller lakes are the Woerthsee and the Pilsensee. On the bottom is the tip of the Starnbergersee. The city of Munich is located just beyond the right of the image. The forested areas have a reddish tint (L-Band). THe green areas seen near both the Ammersee and the Pilsensee lakes indicate marshy areas. The agricultural fields in the upper right hand corner appear mostly in blue and green (X-band and C-band). The white areas are mostly urban areas, while the smooth surfaces of the lakes appear very dark. The Jet Propulsion Laboratory alternative photo number is P-43930.

  3. Morning Frost in Trench Dug by Phoenix, Sol 113 (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench.

    The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench.

    This image is presented in false color that enhances the visibility of the frost.

    The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide.

    Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  4. A search for color heterogeneity on the surfaces of rapidly rotating rubble pile asteroids

    NASA Astrophysics Data System (ADS)

    Polishook, David; Moskovitz, Nicholas

    2014-02-01

    We propose to use ANDICAM's unique capabilities (IR+visible) to obtain simultaneous observations in the visible and near-infrared to detect rotational color variation on asteroidal surfaces. Our survey focuses on fast-rotating asteroids (P<=2.5 hours) on the edge of the "rubble pile spin barrier", where objects larger than 200 meters in diameter shed mass and disintegrate. Detecting color variation, due to exposure of "fresh" material, will allow us to model the mass shedding process, its extent and age, and thus support or reject hypotheses of rotational-fission. We will obtain V-J colors where the distinction between "fresh" and "weathered" surfaces are most prominent.

  5. The Use of Infra-Red False Color Satellite Maps by Grades 3, 4, and 5 Pupils and Teachers.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    A research project in Alberta, Canada, explored the ability of elementary school students to understand and interpret infrared false color Landsat maps. Landsat maps are representations of the earth's land surface produced by orbiting satellites. Infrared is used to delineate vegetation. Accuracy and timeliness of Landsat maps make them useful for…

  6. False-Color-Image Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. False-Color-Image Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. False-Color-Image Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. False-Color-Image Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. False-Color-Image Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. False-Color-Image Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. False-Color-Image Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. False-Color-Image Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. False-Color-Image Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. False-Color-Image Map of Quadrangle 3468, Chak Wardak-Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. False-Color-Image Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Effects of stimulus color, pattern, and practice on sex differences in mental rotations task performance.

    PubMed

    Alington, D E; Leaf, R C; Monaghan, J R

    1992-09-01

    Redundant color information improved performance for both sexes on the Shepard Mental Rotations Task (MRT; Shepard & Metzler, 1971). Absolute score gains for women were larger than those for men; therefore, relative improvement was greater. Substantial practice effects, also favoring women, were apparent in both studies. Study 1 showed that redundant color improved performance by 0.25 SD. Study 2 demonstrated that redundant black-and-white pattern information did not have any effect; a second visuospatial channel, redundant color, was a critical factor in improving scores of men and women on difficult mental rotations tasks.

  18. THE COLOR-PERIOD DIAGRAM AND STELLAR ROTATIONAL EVOLUTION-NEW ROTATION PERIOD MEASUREMENTS IN THE OPEN CLUSTER M34

    SciTech Connect

    Meibom, Soeren; Saar, Steven H.; Mathieu, Robert D.; Stassun, Keivan G.; Liebesny, Paul

    2011-06-01

    We present the results of a 5 month photometric time-series survey for stellar rotation periods combined with a 4 year radial-velocity survey for membership and binarity in the 220 Myr open cluster M34. We report surface rotation periods for 120 stars, 83 of which are kinematic and photometric late-type cluster members. A comparison to previous work serves to illustrate the importance of high-cadence long baseline photometric observations and membership information. The new M34 periods are less biased against slow rotation and cleaned for non-members. The rotation periods of the cluster members span over more than an order of magnitude from 0.5 days up to 11.5 days, and trace two distinct rotational sequences-fast (C) and moderate-to-slow (I)-in the color-period diagram. The sequences represent two different states (fast and slow) in the rotational evolution of the late-type cluster members. We use the color-period diagrams for M34 and for younger and older clusters to estimate the timescale for the transition from the C to the I sequence and find {approx}<150 Myr, {approx}150-300 Myr, and {approx}300-600 Myr for G, early-mid K, and late K dwarfs, respectively. The small number of stars in the gap between C and I suggests a quick transition. We estimate a lower limit on the maximum spin-down rate (dP/dt) during this transition to be {approx}0.06 days Myr{sup -1} and {approx}0.08 days Myr{sup -1} for early and late K dwarfs, respectively. We compare the I sequence rotation periods in M34 and the Hyades for G and K dwarfs and find that K dwarfs spin down slower than the Skumanich {radical}t rate. We determine a gyrochronology age of 240 Myr for M34. The gyro-age has a small formal uncertainty of 2% which reflects the tight I sequence in the M34 color-period diagram. We measure the effect of cluster age uncertainties on the gyrochronology age for M34 and find the resulting error on the gyro-age to be consistent with the {approx}15% error estimate for the technique in

  19. An Operational Assessment of the MODIS False Color Composite with the Great Falls, Montana National Weather Service

    NASA Technical Reports Server (NTRS)

    Loss, GIna; Mercer, Michael; Fuell, Kevin K.; Stano, Geoffrey T.

    2009-01-01

    The close and productive collaborations between the NWS Warning and Forecast Office (WFO) in Great Falls, MT and the Short Term Prediction and Research Transition (SPORT) Center at NASA/Marshall Space Flight Center have provided a unique opportunity for science sharing and technology transfer. In particular, SPoRT has provided a false color composite product derived from MODIS data, which is part of NASA's Earth Observing System. This product is designed to delineate snow and ice covered ground, bare ground and clouds. The Great Falls WFO has been a test bed of the MODIS false color composite as a tool in operations to monitor the development and dissipation of snow cover In particular, preliminary applications have shown that the product can be used to monitor snow cover in remote locations as well as ice in rivers. This information can lead to improved assessments of flooding potential during post event conditions where rapid melting and runoff are anticipated. The potential of this product on future geostationary satellites may substantially contribute to the NWS mission by providing enhanced situational awareness. The operational use of this product has been transitioned at WFO Great Falls through a process of product implementation, discussions with the service hydrologist and forecasters, and post event analysis. A concentrated assessment period from January to March, 2008 was initiated to investigate the impact of the MODIS false color product on WFO Great Falls' operations. This presentation will emphasize the impact the MODIS false color product had in the WFO's situational awareness and how best this information can be used to influence operational decisions.

  20. The utilization of false color aerial photography for macrophyte biomass estimation in the Oosterschelde (the Netherlands)

    NASA Astrophysics Data System (ADS)

    Meulstee, C.; Vanstokkom, H.

    1985-01-01

    The correlation between the biomass of sea grass and seaweed samples in a sidebranch of the Oosterschelde delta (Netherlands) and density ratios of this area on color infrared aerial photographs was investigated. As the Oosterschelde will become more divided from the North Sea after pier dam completion, an increase of macrophytes is expected. In an area where the weeds Ulva, Cheatomorpha, Entermorpha, Cladophora, Fucus vesuculosis, and the grasses Zostera noltii and Zostera marina are found, 53 biomass samples of a 0.054 sq m surface each were collected. The relation between covering degree and biomass was estimated. Using a transmission-densitometer adjusted to 3 to 1 mm, densities on 1:10,000 and 1:20,000 scale photographs were measured. A gage line was determined in a density-biomass diagram. The method is shown to be useful for an efficient, accurate biomass determination in the Oosterschelde.

  1. Rotation, scale and translation invariant pattern recognition system for color images

    NASA Astrophysics Data System (ADS)

    Barajas-García, Carolina; Solorza-Calderón, Selene; Álvarez-Borrego, Josué

    2016-12-01

    This work presents a color image pattern recognition system invariant to rotation, scale and translation. The system works with three 1D signatures, one for each RGB color channel. The signatures are constructed based on Fourier transform, analytic Fourier-Mellin transform and Hilbert binary rings mask. According with the statistical theory of box-plots, the pattern recognition system has a confidence level at least of 95.4%.

  2. Photographer : JPL Range : 1,094,666 km (677,000 mi.) This false color picture of Callisto was taken

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 1,094,666 km (677,000 mi.) This false color picture of Callisto was taken by Voyager 2 and is centered on 11 degrees N and 171 degrees W. This rendition uses an ultraviolet image for the blue component. Because the surface displays regional contrast in UV, variations in surface materials are apparent. Notice in particular the dark blue haloes which surround bright craters in the eastern hemisphere. The surface of Callisto is the most heavily cratered of the Galilean satellites and resembles ancient heavily cratered terrains on the moon, Mercury and Mars. The bright areas are ejecta thrown out by relatively young impact craters. A large ringed structure, probably an impact basin, is shown in the upper left part of the picture. The color version of this picture was constructed by compositing black and white images taken through the ultraviolet, clear and orange filters.

  3. Color and Kerr rotation in a dielectric/ferromagnetic double layers structure

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yunsong

    2017-02-01

    By the multiple reflections and transmissions in a dielectric on a ferromagnetic metal, color and Kerr rotation correlate with each other. It is revealed that the real refractive index of dielectric plays a major role on the variations of color and Kerr signal, while the absorbing term adjusts the intensive color exhibition and Kerr enhancement at much thinner dielectric thickness. The intensive Kerr signal variation is always accompanied by the color transition with the dielectric thickness changing. Experimental results observed in silicon(or silica)/iron samples are well consistent with calculations. Nanometer dielectric optical coating can not only enhance Kerr effect but also endow magnetic surface with chromatics, which has promising potential applications in anti-fake brands, colorful decorations, camouflages, and even bionics.

  4. Searching for color variation on fast rotating asteroids with simultaneous V-J observations

    NASA Astrophysics Data System (ADS)

    Polishook, David; Moskovitz, Nicholas

    2015-08-01

    Motivation: Boulders, rocks and regolith on fast rotating asteroids (~2.5 hours) might slide towards the equator due to a strong centrifugal force and a low cohesion force, as described by models (Walsh et al. 2008, Sánchez & Scheeres 2014). As a result, a fresh material might be exposed, if the surface consists of weathered ordinary chondrite (S-complex). Detecting color variation, due to the exposure of fresh material, will allow us to model the mass shedding process, its extent and age, and thus support or reject hypotheses of rotational-fission.Method: Detecting color variation on small and fast rotating asteroids is difficult with spectroscopy since color differences are mild while the exposure time must be short to measure a narrow rotational phase. Broadband photometry is also problematic since it introduces large systematic errors when images in different filters are calibrated with standard stars. We describe a novel technique in which the asteroid is simultaneously observed in the visible and near-IR wavelength ranges. This technique is possible if a dichroic split the light into two beams that hit two detectors. In this technique atmospheric interference are self-calibrated between the visible and the near-IR image. We use a V and a J filters since the distinction between fresh and weathered surfaces are most prominent in these wavelengths and range between 10-20%.Observations: We observed 3 asteroids with CTIO’s 1.3m telescope and ANDICAM detector. The asteroids were observed during 2 rotational cycles to confirm features on the color-curve. There is ~5% variation of the mean color. There are a few measurements with a larger/smaller color in the range of ~10%, but these do not repeat in a second rotation cycle and we cannot confirm them as real. Therefore, we cannot detect fresh colors (as seen on Q-type asteroids) on the surface. This suggests one of the following statements: 1. No landslides occurred within the timescale of space weathering. 2

  5. Using rotation for steerable needle detection in 3D color-Doppler ultrasound images.

    PubMed

    Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne

    2015-08-01

    This paper demonstrates a new way to detect needles in 3D color-Doppler volumes of biological tissues. It uses rotation to generate vibrations of a needle using an existing robotic brachytherapy system. The results of our detection for color-Doppler and B-Mode ultrasound are compared to a needle location reference given by robot odometry and robot ultrasound calibration. Average errors between detection and reference are 5.8 mm on needle tip for B-Mode images and 2.17 mm for color-Doppler images. These results show that color-Doppler imaging leads to more robust needle detection in noisy environment with poor needle visibility or when needle interacts with other objects.

  6. Pattern recognition system invariant to rotation and scale to identify color images

    NASA Astrophysics Data System (ADS)

    Coronel-Beltrán, Angel

    2014-10-01

    This work presents a pattern recognition digital system based on nonlinear correlations. The correlation peak values given by the system were analyzed by the peak-to-correlation energy (PCE) metric to determine the optimal value of the non-linear coefficient kin the k-law. The system was tested with 18 different color images of butterflies; each image was rotated from 0° to 180° with increments of 1° and scaled ±25% with increments of 1% and to take advantage of the color property of the images the RGB model was employed. The boxplot statistical analysis of the mean with ±2*EE (standard errors) for the PCE values set that the system invariant to rotation and scale has a confidence level at least of 95.4%.

  7. BIA interpretation techniques for vegetation mapping using thematic mapper false color composites (interim report for San Carlos Reservation)

    USGS Publications Warehouse

    Bonner, W.J.; English, T.C.; Haas, R.H.; Feagan, T.R.; McKinley, R.A.

    1987-01-01

    The Bureau of Indian Affairs (BIA) is responsible for the natural resource management of approximately 52 million acres of Trust lands in the contiguous United States. The lands are distributed in a "patchwork" fashion throughout the country. Management responsibilities on these areas include: minerals, range, timber, fish and wildlife, agricultural, cultural, and archaeological resources. In an age of decreasing natural resources and increasing natural resource values, effective multiple resource management is critical. BIA has adopted a "systems approach" to natural resource management which utilizes Geographic Information System (GIS) technology. The GIS encompasses a continuum of spatial and relational data elements, and included functional capabilities such as: data collection, data entry, data base development, data analysis, data base management, display, and report generalization. In support of database development activities, BIA and BLM/TGS conducted a cooperative effort to investigate the potential of 1:100,000 scale Thematic Mapper (TM) False Color Composites (FCCs) for providing vegetation information suitable for input to the GIS and to later be incorporated as a generalized Bureau wide land cover map. Land cover information is critical as the majority of reservations currently have no land cover information in either map or digital form. This poster outlines an approach which includes the manual interpretation of land cover using TM FCCs, the digitizing of interpreted polygons, and the editing of digital data, used upon ground truthing exercises. An efficient and cost-effective methodology for generating large area land cover information is illustrated for the Mineral Strip area on the San Carlos Indian Reservation in Arizona. Techniques which capitalize on the knowledge of the local natural resources professionals, while minimizing machine processing requirements, are suggested.

  8. False-Color-Image Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. False-Color-Image Map of Quadrangles 3560 and 3562, Sir Band (402), Khawja-Jir (403), and Bala-Murghab (404) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. False-Color-Image Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. False-Color-Image Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. False-Color-Image Map of Quadrangles 3870 and 3770, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. False-Color-Image Map of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. False-Color-Image Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. False-Color-Image Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. False-Color-Image Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Quantum representation and watermark strategy for color images based on the controlled rotation of qubits

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Xiao, Hong; Li, Binxu

    2016-11-01

    In this paper, a novel quantum representation and watermarking scheme based on the controlled rotation of qubits are proposed. Firstly, a flexible representation for quantum color image (FRQCI) is proposed to facilitate the image processing tasks. Some basic image processing operations based on FRQCI representation are introduced. Then, a novel watermarking scheme for quantum images is presented. In our scheme, the carrier image is stored in the phase θ of a qubit; at the same time, the watermark image is embedded into the phase φ of a qubit, which will not affect the carrier image's visual effect. Before being embedded into the carrier image, the watermark image is scrambled to be seemingly meaningless using quantum circuits, which further ensures the security of the watermark image. All the operations mentioned above are implemented by the controlled rotation of qubits. The experimental results on the classical computer show that the proposed watermarking scheme has better visual quality under a higher embedding capacity and outperforms the existing schemes in the literature.

  18. Why Are Rapidly Rotating M Dwarfs in the Pleiades so (Infra)red? New Period Measurements Confirm Rotation-dependent Color Offsets From the Cluster Sequence

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Agüeros, Marcel A.; Law, Nicholas M.; Liu, Jiyu; Ahmadi, Aida; Laher, Russ; Levitan, David; Sesar, Branimir; Surace, Jason

    2016-05-01

    Stellar rotation periods (P rot) measured in open clusters have proved to be extremely useful for studying stars’ angular momentum content and rotationally driven magnetic activity, which are both age- and mass-dependent processes. While P rot measurements have been obtained for hundreds of solar-mass members of the Pleiades, measurements exist for only a few low-mass (<0.5 M ⊙) members of this key laboratory for stellar evolution theory. To fill this gap, we report P rot for 132 low-mass Pleiades members (including nearly 100 with M ≤ 0.45 M ⊙), measured from photometric monitoring of the cluster conducted by the Palomar Transient Factory in late 2011 and early 2012. These periods extend the portrait of stellar rotation at 125 Myr to the lowest-mass stars and re-establish the Pleiades as a key benchmark for models of the transport and evolution of stellar angular momentum. Combining our new P rot with precise BVIJHK photometry reported by Stauffer et al. and Kamai et al., we investigate known anomalies in the photometric properties of K and M Pleiades members. We confirm the correlation detected by Kamai et al. between a star's P rot and position relative to the main sequence in the cluster's color-magnitude diagram. We find that rapid rotators have redder (V - K) colors than slower rotators at the same V, indicating that rapid and slow rotators have different binary frequencies and/or photospheric properties. We find no difference in the photometric amplitudes of rapid and slow rotators, indicating that asymmetries in the longitudinal distribution of starspots do not scale grossly with rotation rate.

  19. Rotation and color properties of the nucleus of Comet 2P/Encke

    NASA Astrophysics Data System (ADS)

    Lowry, Stephen C.; Weissman, Paul R.

    2007-05-01

    We present results from CCD observations of Comet 2P/Encke acquired at Steward Observatory's 2.3 m Bok Telescope on Kitt Peak. The observations were carried out in October 2002 when the comet was near aphelion. Rotational lightcurves in B-, V-, and R-filters were acquired over two nights of observations, and analysed to study the physical and color properties of the nucleus. The average apparent R-filter magnitude across both nights corresponds to a mean effective radius of 3.95±0.06 km, and this value is similar to that found for the V- and B-filters. Taking the observed brightness range, we obtain a/b⩾1.44±0.06 for the semi-axial ratio of Encke's nucleus. Applying the axial ratio to the R-filter photometry gives nucleus semi-axes of [3.60±0.09]×[5.20±0.13] km, using the empirically-derived albedo and phase coefficient. No coma or tail was seen despite deep imaging of the comet, and flux limits from potential unresolved coma do not exceed a few percent of the total measured flux, for standard coma models. This is consistent with many other published data sets taken when the comet was near aphelion. Our data includes the first detailed time series multi-color measurements of a cometary nucleus, and significant color variations were seen on October 3, though not repeated on October 4. The average color indices across both nights are: (V-R)=0.39±0.06 and (B-V)=0.73±0.06 ( R¯=19.76±0.03). We analysed the R-filter time-series photometry using the method of Harris et al. [Harris, A.W., Young, J.W., Bowell, E., Martin, L.J., Millis, R.L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H.J., Debehogne, H., Zeigler, K.W., 1989. Icarus 77, 171-186] to constrain the rotation period of the comet's nucleus, and find that a period of ˜11.45 h will satisfy the data, however the errors bars are large. We have successfully linked our data with the September 2002 data from Fernández et al. [Fernández, Y.R., Lowry, S.C., Weissman, P.R., Mueller, B.E.A., Samarasinha

  20. False-color images from observations by the Supernova Cosmology Project of one of the two most dista

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TFalse-color images from observations by the Supernova Cosmology Project of one of the two most distant spectroscopically confirmed supernova. From the left: the first two images, from the Cerro Tololo Interamerican Observatory 4-meter telescope, show a small region of sky just before and just after the the appearance of a type-Ia supernova that exploded when the universe was about half its present age. The third image shows the same supernova as observed with the Hubble Space Telescope. This much sharper picture allows a much better measurement of the apparent brightness and hence the distance of this supernova. Because their intrinsic brightness is predictable, such supernovae help to determine the deceleration, and so the eventual fate, of the universe. Credit: Perlmutter et al., The Supernova Cosmology Project

  1. COMBINED EFFECTS OF BINARIES AND STELLAR ROTATION ON THE COLOR-MAGNITUDE DIAGRAMS OF INTERMEDIATE-AGE STAR CLUSTERS

    SciTech Connect

    Li Zhongmu; Mao Caiyan; Chen Li; Zhang Qian

    2012-12-20

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows 'golf club' color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  2. Combined Effects of Binaries and Stellar Rotation on the Color-Magnitude Diagrams of Intermediate-age Star Clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian

    2012-12-01

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows "golf club" color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  3. Equilibrium sequences of nonrotating and rapidly rotating crystalline color-superconducting hybrid stars

    NASA Astrophysics Data System (ADS)

    Ippolito, Nicola D.; Ruggieri, Marco; Rischke, Dirk H.; Sedrakian, Armen; Weber, Fridolin

    2008-01-01

    The three-flavor crystalline color-superconducting (CCS) phase of quantum chromodynamics (QCD) is a candidate phase for the ground state of cold matter at moderate densities above the density of the deconfinement phase transition. Apart from being a superfluid, the CCS phase has properties of a solid, such as a lattice structure and a shear modulus, and hence the ability to sustain multipolar deformations in gravitational equilibrium. We construct equilibrium configurations of hybrid stars composed of nuclear matter at low, and CCS quark matter at high, densities. Phase equilibrium between these phases is possible only for rather stiff equations of state of nuclear matter and large couplings in the effective Nambu—Jona-Lasinio Lagrangian describing the CCS state. We identify a new branch of stable CCS hybrid stars within a broad range of central densities which, depending on the details of the equations of state, either bifurcate from the nuclear sequence of stars when the central density exceeds that of the deconfinement phase transition or form a new family of configurations separated from the purely nuclear sequence by an instability region. The maximum masses of our nonrotating hybrid configurations are consistent with the presently available astronomical bounds. The sequences of hybrid configurations that rotate near the mass-shedding limit are found to be more compact and thus support substantially larger spins than their same mass nuclear counterparts.

  4. Multi-color, rotationally resolved photometry of asteroid 21 Lutetia from OSIRIS/Rosetta observations

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Faury, G.; Jorda, L.; Kaasalainen, M.; Hviid, S. F.

    2010-10-01

    Context. Asteroid 21 Lutetia is the second target of the Rosetta space mission. Extensive pre-encounter, space-, and ground-based observations are being performed to prepare for the flyby in July 2010. Aims: The aim of this article is to accurately characterize the photometric properties of this asteroid over a broad spectral range from the ultraviolet to the near-infrared and to search for evidence of surface inhomogeneities. Methods: The asteroid was imaged on 2 and 3 January 2007 with the Narrow Angle Camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) during the cruise phase of the Rosetta spacecraft. The geometric conditions were such that the aspect angle was 44^circ (i.e., mid-northern latitudes) and the phase angle 22.4^circ. Lutetia was continuously monitored over 14.3 h, thus exceeding one rotational period and a half, with twelve filters whose spectral coverage extended from 271 to 986 nm. An accurate photometric calibration was obtained from the observations of a solar analog star, 16 Cyg B. Results: High-quality light curves in the U, B, V, R and I photometric bands were obtained. Once they were merged with previous light curves from over some 45 years, the sidereal period is accurately determined: Prot = 8.168271 ± 0.000002 h. Color variations with rotational phase are marginally detected with the ultraviolet filter centered at 368 nm but are absent in the other visible and near-infrared filters. The albedo is directly determined from the observed maximum cross-section obtained from an elaborated shape model that results from a combination of adaptive-optics imaging and light curve inversion. Using current solutions for the phase function, we find geometric albedos pV = 0.130 ± 0.014 when using the linear phase function and pV(H-G) = 0.180 ± 0.018 when using the (H-G) phase function, which incorporates the opposition effect. The spectral variation of the reflectance indicates a steady decrease with decreasing

  5. The Four-Color Broadband Photometry for Physical Characterization of Fast Rotator NEOs

    NASA Astrophysics Data System (ADS)

    Kikwaya Eluo, Jean-Baptiste; Gilmour, Cosette M.; Fedorets, Grigori

    2016-10-01

    Fast rotator NEOs, having size in the range of several meters in diameter (H > 22), turn to be very faint. In order to study their physical characterization using photometry, it is required to use a system of filters that covers for each of them a large bandwidth of at least 0.8 micrometers. Traditional and inexpensive Johnson-Cousins broadband filters (B, V, R, I) work efficiently well.11 NEOs were observed at the Vatican Advanced Technology Telescope (VATT) from 2014 to 2016. Their absolute magnitudes range from 21.9 to 28.2. We found that their spin rates vary from 0.172+/- 0.003 to 2.300 +/- 0.003 hours. 6 of them (2014 AY28, 2015 TB25, 2015 VM64, 2015 VT64, 2015 XZ1, and 2016 GW221) are clearly of C-type and dominate our sample, while one (2014 KS40) belongs to X-type. One NEO (2016 EW1) falls between C-type and S-type asteroids on the plot (B-V) versus (V-R) while on the plot (V-I) versus (V-R), it is among C-type asteroids. We rule it to be C-type asteroid. NEO 2014 WF201 stays between C-type and S-type on both plots.NEO 2014 EC appears to us of very special interest as its V-R color index is close to zero. Its relative reflectance normalized to R-filter shows that it belongs to B-type asteroid. Would it be an indication of fresh interior material excavated by a recent impact?

  6. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation.

    PubMed

    Carraro, Ugo; Edmunds, Kyle J; Gargiulo, Paolo

    2015-03-11

    This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the

  7. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation

    PubMed Central

    Carraro, Ugo; Edmunds, Kyle J.

    2015-01-01

    This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the

  8. A color-period diagram for the open cluster M 48 (NGC 2548), and its rotational age

    NASA Astrophysics Data System (ADS)

    Barnes, Sydney A.; Weingrill, Joerg; Granzer, Thomas; Spada, Federico; Strassmeier, Klaus G.

    2015-11-01

    Rotation periods are increasingly being used to derive ages for cool single field stars. Such ages are based on an empirical understanding of how cool stars spin down, acquired by constructing color-period diagrams (CPDs) for a series of open clusters. Our main aims here are to construct a CPD for M 48, to compare this with other clusters of similar age to check for consistency, and to derive a rotational age for M 48 using gyrochronology. We monitored M 48 photometrically for over 2 months with AIP's STELLA I 1.2 m telescope and the WiFSIP 4K imager in Tenerife. Light curves with 3 mmag precision for bright (V ~ 14 mag) stars were produced and then analysed to provide rotation periods. A cluster CPD has then been constructed. We report 62 rotation periods for cool stars in M 48. The CPD displays a clear slow/I-sequence of rotating stars, similar to those seen in the 625 Myr-old Hyades and 590 Myr-old Praesepe clusters, and below both, confirming that M 48 is younger. A similar comparison with the 250 Myr-old M 34 cluster shows that M 48 is older and does not possess any fast/C-sequence G or early K stars like those in M 34, although relatively fast rotators do seem to be present among the late-K and M stars. A more detailed comparison of the CPD with rotational evolution models shows that the cluster stars have a mean age of 450 Myr, and its (rotating) stars can be individually dated to ± 117 Myr (26%). Much of this uncertainty stems from intrinsic astrophysical spread in initial periods, and almost all stars are consistent with a single age of 450 Myr. The gyro-age of M 48 as a whole is 450 ± 50 Myr, in agreement with the previously determined isochrone age of 400 ± 100 Myr. Based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC; this paper presents results for the STELLA Open Cluster Survey (SOCS).Appendices A and B are available in electronic form at http://www.aanda.orgThe cluster photometry

  9. New BVI {sub C} photometry of low-mass pleiades stars: Exploring the effects of rotation on broadband colors

    SciTech Connect

    Kamai, Brittany L.; Stassun, Keivan G.; Vrba, Frederick J.; Stauffer, John R.

    2014-08-01

    We present new BVI{sub C} photometry for 350 Pleiades proper motion members with 9 < V ≲ 17. Importantly, our new catalog includes a large number of K- and early M-type stars, roughly doubling the number of low-mass stars with well-calibrated Johnson/Cousins photometry in this benchmark cluster. We combine our new photometry with existing photometry from the literature to define a purely empirical isochrone at Pleiades age (≈100 Myr) extending from V = 9 to 17. We use the empirical isochrone to identify 48 new probable binaries and 14 likely nonmembers. The photometrically identified single stars are compared against their expected positions in the color-magnitude diagram (CMD). At 100 Myr, the mid K and early M stars are predicted to lie above the zero-age main sequence (ZAMS) having not yet reached the ZAMS. We find in the B – V versus V CMD that mid K and early M dwarfs are instead displaced below (or blueward of) the ZAMS. Using the stars' previously reported rotation periods, we find a highly statistically significant correlation between rotation period and CMD displacement, in the sense that the more rapidly rotating stars have the largest displacements in the B – V CMD.

  10. False-Color-Image Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. False-Color-Image Map of Quadrangles 3064, 3066, 2964, and 2966, Laki-Bander (611), Jahangir-Naweran (612), Sreh-Chena (707), Shah-Esmail (617), Reg-Alaqadari (618), and Samandkhan-Karez (713) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. False-Color-Image Map of Quadrangle 3470 and the Northern Edge of Quadrangle 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. False-Color-Image Map of Quadrangles 3772, 3774, 3672, and 3674, Gaz-Khan (313), Sarhad (314), Kol-I-Chaqmaqtin (315), Khandud (319), Deh-Ghulaman (320), and Ertfah (321) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. False assumptions.

    PubMed

    Swaminathan, M

    1997-01-01

    Indian women do not have to be told the benefits of breast feeding or "rescued from the clutches of wicked multinational companies" by international agencies. There is no proof that breast feeding has declined in India; in fact, a 1987 survey revealed that 98% of Indian women breast feed. Efforts to promote breast feeding among the middle classes rely on such initiatives as the "baby friendly" hospital where breast feeding is promoted immediately after birth. This ignores the 76% of Indian women who give birth at home. Blaming this unproved decline in breast feeding on multinational companies distracts attention from more far-reaching and intractable effects of social change. While the Infant Milk Substitutes Act is helpful, it also deflects attention from more pressing issues. Another false assumption is that Indian women are abandoning breast feeding to comply with the demands of employment, but research indicates that most women give up employment for breast feeding, despite the economic cost to their families. Women also seek work in the informal sector to secure the flexibility to meet their child care responsibilities. Instead of being concerned about "teaching" women what they already know about the benefits of breast feeding, efforts should be made to remove the constraints women face as a result of their multiple roles and to empower them with the support of families, governmental policies and legislation, employers, health professionals, and the media.

  15. Venus - False Color of Volcanic Plains

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This Magellan full-resolution mosaic of Venus, centered at 10 degrees north latitude, 301 degrees east longitude, shows an area replete with diverse volcanic features. The image, of an area 489 kilometers long by 311 kilometers wide (303 by 193 miles), is dominated by volcanic plains which appear mottled because of varying roughnesses of each solidified lava flow. The rougher the terrain the brighter it appears in the radar image. The small, bright bumps clustered in the left portion of the image are a grouping of small volcanoes called a shield field. Each shield volcano is approximately 2 to 5 kilometers (1.2 to 3.1 miles) in diameter and has very subdued relief. It is believed that the lava flows that make up each shield originates from a common source. To the right of the shield field is another type of volcano, called a scalloped dome. It is 25 kilometers (16 miles) in diameter and has a central pit. Some of the indistinct lobe-shaped pattern around the dome may either be lava flows or rocky debris which has fallen from the scalloped cliffs surrounding the domes. The small radial ridges characteristic of scalloped domes are remnants of catastrophic landslides. To the right of that feature is a large depression called a volcanic caldera. The caldera was formed when lava was expelled from an underground chamber, which when emptied, subsequently collapsed forming the depression. The feature furthermost to the east (right) is another scalloped dome, 35 kilometers (22 miles) in diameter. That feature is unusual in that lava came out through the southeastern margin, rafting a large portion of the dome for 20 kilometers (12 miles). The lava continues into the lower right portion of the area in the image. Its steep rounded boundaries suggest it was a very sticky, oozing lava. That same type of lava is what scientists propose formed the steep-sided domes such as the bright, round feature, slightly northeast of center. It is highly likely that the features are all part of a single volcanic complex, where a large body of molten rock formed beneath the surface feeding each of the volcanoes above. The presence of fractures in the west, partially surrounding the volcanoes supports this theory.

  16. New BVI C Photometry of Low-Mass Pleiades Stars: Exploring the Effects of Rotation on Broadband Colors

    DTIC Science & Technology

    2014-08-01

    no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ...statistical significance, the sug- gestion of Stauffer et al. (2003) that for K and early M dwarfs (1.0 < B−V < 1.45) in the Pleiades rapid rotation

  17. Colored Flag by Double Refraction.

    ERIC Educational Resources Information Center

    Reid, Bill

    1994-01-01

    Describes various demonstrations that illustrate double refraction and rotation of the plane of polarization in stressed, transparent plastics, with the consequent production of colored designs. (ZWH)

  18. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table IV. Table IV Color terms Black varieties Red varieties White varieties...

  19. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table IV. Table IV Color terms Black varieties Red varieties White varieties...

  20. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table...

  1. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table...

  2. 7 CFR 51.2276 - Color chart.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color chart. 51.2276 Section 51.2276 Agriculture....2276 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2281 and 51.2282 illustrates the four shades of walnut skin color listed as color classifications....

  3. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table...

  4. 7 CFR 51.2276 - Color chart.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color chart. 51.2276 Section 51.2276 Agriculture....2276 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2281 and 51.2282 illustrates the four shades of walnut skin color listed as color classifications....

  5. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the most ...

  6. 7 CFR 29.3011 - Color intensity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color intensity. 29.3011 Section 29.3011 Agriculture... Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to all colors...

  7. 7 CFR 29.3011 - Color intensity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color intensity. 29.3011 Section 29.3011 Agriculture... Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to all colors...

  8. 7 CFR 28.403 - Middling Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Middling Color. 28.403 Section 28.403 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.403 Middling Color. Middling Color is color which is within the...

  9. 7 CFR 28.403 - Middling Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Middling Color. 28.403 Section 28.403 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.403 Middling Color. Middling Color is color which is within the...

  10. 7 CFR 51.1436 - Color classifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color classifications. 51.1436 Section 51.1436... STANDARDS) United States Standards for Grades of Shelled Pecans Color Classifications § 51.1436 Color classifications. (a) The skin color of pecan kernels may be described in terms of the color...

  11. 7 CFR 29.3011 - Color intensity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color intensity. 29.3011 Section 29.3011 Agriculture... Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to all colors...

  12. 7 CFR 29.3011 - Color intensity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color intensity. 29.3011 Section 29.3011 Agriculture... Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to all colors...

  13. 7 CFR 28.403 - Middling Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Color. 28.403 Section 28.403 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.403 Middling Color. Middling Color is color which is within the...

  14. 7 CFR 51.1436 - Color classifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color classifications. 51.1436 Section 51.1436... STANDARDS) United States Standards for Grades of Shelled Pecans Color Classifications § 51.1436 Color classifications. (a) The skin color of pecan kernels may be described in terms of the color...

  15. 7 CFR 28.403 - Middling Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Middling Color. 28.403 Section 28.403 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.403 Middling Color. Middling Color is color which is within the...

  16. 7 CFR 29.3011 - Color intensity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color intensity. 29.3011 Section 29.3011 Agriculture... Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to all colors...

  17. 7 CFR 51.1436 - Color classifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color classifications. 51.1436 Section 51.1436... STANDARDS) United States Standards for Grades of Shelled Pecans Color Classifications § 51.1436 Color classifications. (a) The skin color of pecan kernels may be described in terms of the color...

  18. 7 CFR 28.403 - Middling Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Middling Color. 28.403 Section 28.403 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.403 Middling Color. Middling Color is color which is within the...

  19. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low Middling Color and Low Middling Spotted Color....

  20. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low Middling Color and Low Middling Spotted Color....

  1. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low Middling Color and Low Middling Spotted Color....

  2. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling Color and Middling Spotted Color....

  3. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is between Good Middling Color and Good Middling Spotted Color....

  4. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low Middling Color and Low Middling Spotted Color....

  5. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color....

  6. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low Middling Color and Low Middling Spotted Color....

  7. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is between Good Middling Color and Good Middling Spotted Color....

  8. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color....

  9. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling Color and Middling Spotted Color....

  10. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is between Good Middling Color and Good Middling Spotted Color....

  11. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color....

  12. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling Color and Middling Spotted Color....

  13. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling Color and Middling Spotted Color....

  14. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is between Good Middling Color and Good Middling Spotted Color....

  15. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color....

  16. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is between Good Middling Color and Good Middling Spotted Color....

  17. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color....

  18. Rovibrational-state-selected photoionization of acetylene by the two-color IR+VUV scheme: observation of rotationally resolved Rydberg transitions.

    PubMed

    Qian, X-M; Kung, A H; Zhang, Tao; Lau, K C; Ng, C Y

    2003-12-05

    We have demonstrated a rovibrational-state-selected photoionization experiment using an IR laser and high-resolution VUV-synchrotron radiation. The VUV photoionization of acetylene [C2H2(Xtilde; (1)Sigma(+)(g);nu(3)=1,J(')=8 or 10)] prepared by IR excitation reveals three strong autoionizing Rydberg series converging to C2H+2(Xtilde; (2)Pi(u);nu(+)(3)=1) with little ion background interference. Rotational transitions resolved for the Rydberg states provide an estimate of approximately 1.8 ps for their lifetimes. This experiment opens the way for state-selective photoionization studies of polyatomic molecules using VUV-synchrotron radiation.

  19. The Colors of 'Endurance'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image shows visible mineral changes between the materials that make up the rim of the impact crater known as 'Endurance.' The image was taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity using all 13 color filters. The cyan blue color denotes basalts, whereas the dark green color denotes a mixture of iron oxide and basaltic materials. Reds and yellows indicate dusty material containing sulfates. Scientists are very interested in exploring the interior and exterior material around the crater's rim for clues to the processes that formed the crater, as well as the rocks and textures that define the crater.

  20. Color blindness

    MedlinePlus

    ... have trouble telling the difference between red and green. This is the most common type of color ... color blindness often have problems seeing reds and greens, too. The most severe form of color blindness ...

  1. Information through color imagery

    USGS Publications Warehouse

    Colvocoresses, Alden P.

    1975-01-01

    The color-sensing capability of the human eye is a powerful tool. In remote sensing we should use color to display data more meaningfully, not to re-create the scene. Color disappears with distance, and features change color with viewing angle. Color infrared film lets us apply color with additional meaning even though we introduce a false color response. Although the marginal gray scale on an ERTS (Earth Resources Technology Satellite) image may indicate balance between the green, red, and infrared bands, and although each band may be printed in a primary color, tests show that we are not fully applying the three primary colors. Therefore, contrast in the green band should be raised. For true three-color remote sensing of the Earth, we must find two generally meaningful signatures in the visible spectrum, or perhaps extend our spectral range. Before turning to costly digital processing we should explore analog processing. Most ERTS users deal with relative spectral radiance; the few concerned with absolute radiance could use the computer-compatible tapes or special annotations. NASA (National Aeronautics and Space Administration), which assigns the range and contrast to the ERTS image, controls processing and could adjust the density range for maximum contrast in any ERTS scene. NASA cannot alter processing for local changes in reflective characteristics of the Earth but could adjust for Sun elevation and optimize the contrast in a given band.

  2. Uranus, towards the planet's pole of rotation.

    NASA Technical Reports Server (NTRS)

    1986-01-01

    These two pictures of Uranus were compiled from images recorded by Voyager 2 on Jan. 1O, 1986, when the NASA spacecraft was 18 million kilometers (11 million miles) from the planet. The images were obtained by Voyager's narrow-angle camera; the view is toward the planet's pole of rotation, which lies just left of center. The picture on the left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The second picture is an exaggerated false-color view that reveals details not visible in the true-color view -- including indications of what could be a polar haze of smog-like particles. The true-color picture was made by combining pictures taken through blue, green and orange filters. The dark shading of the upper right edge of the disk is the terminator, or day-night boundary. The blue-green appearance of Uranus results from methane in the atmosphere; this gas absorbs red wavelengths from the incoming sunlight, leaving the predominant bluish color seen here. The picture on the right uses false color and contrast enhancement to bring out subtle details in the polar region of the atmosphere. Images shuttered through different color filters were added and manipulated by computer, greatly enhancing the low-contrast details in the original images. Ultraviolet, violet- and orange-filtered images were displayed, respectively, as blue, green and red to produce this false-color picture. The planet reveals a dark polar hood surrounded by a series of progressively lighter convective bands. The banded structure is real, though exaggerated here. The brownish color near the center of the planet could be explained as being caused by a thin haze concentrated over the pole -- perhaps the product of chemical reactions powered by ultraviolet light from the Sun. One such reaction produces acetylene from methane -- acetylene has been detected on Uranus by an Earth-orbiting spacecraft -- and further reactions involving acetylene are known to

  3. 7 CFR 28.442 - Middling Yellow Stained Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Middling Yellow Stained Color. 28.442 Section 28.442... Stained Color. Middling Yellow Stained Color is American Upland cotton which in color is deeper than Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] below color grade cotton...

  4. 7 CFR 28.442 - Middling Yellow Stained Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Middling Yellow Stained Color. 28.442 Section 28.442... Stained Color. Middling Yellow Stained Color is American Upland cotton which in color is deeper than Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] below color grade cotton...

  5. 7 CFR 51.1403 - Kernel color classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color classifications provided in this section. When the color of kernels in a...

  6. 7 CFR 28.442 - Middling Yellow Stained Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Yellow Stained Color. 28.442 Section 28.442... Stained Color. Middling Yellow Stained Color is American Upland cotton which in color is deeper than Middling Tinged Color. below color grade cotton...

  7. 7 CFR 28.442 - Middling Yellow Stained Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Middling Yellow Stained Color. 28.442 Section 28.442... Stained Color. Middling Yellow Stained Color is American Upland cotton which in color is deeper than Middling Tinged Color. below color grade cotton...

  8. 7 CFR 28.442 - Middling Yellow Stained Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Middling Yellow Stained Color. 28.442 Section 28.442... Stained Color. Middling Yellow Stained Color is American Upland cotton which in color is deeper than Middling Tinged Color. below color grade cotton...

  9. 7 CFR 51.1403 - Kernel color classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color classifications provided in this section. When the color of kernels in a...

  10. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine.

    PubMed

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming

    2013-05-24

    We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant kb, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0×10(-8) to 2.0×10(-5) mol L(-1), with a low limit of detection (LOD) of 1.25×10(-8) mol L(-1) for SY and 1.43×10(-8) mol L(-1) for TT (SN(-1)=3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant differences were found. By the treatment of the experimental data, the electrochemical reaction mechanisms of SY and TT both involved a one-electron-one-proton-transfer process.

  11. 7 CFR 51.2283 - Off color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Off color. 51.2283 Section 51.2283 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Color Requirements § 51.2283 Off color. The term “off color” is not a color classification, but shall be applied...

  12. 7 CFR 29.3505 - Brown colors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Brown colors. 29.3505 Section 29.3505 Agriculture... Type 95) § 29.3505 Brown colors. A group of colors ranging from a light brown to a dark brown. These colors vary from medium to low saturation and from medium to very low brillance. As used in...

  13. 7 CFR 58.329 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Color. 58.329 Section 58.329 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....329 Color. Coloring, when used shall be Annatto or any color which is approved by the U.S. Food...

  14. 7 CFR 51.2276 - Color chart.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color chart. 51.2276 Section 51.2276 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) General § 51.2276 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2281 and 51.2282 illustrates the four shades...

  15. 7 CFR 29.3025 - General color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false General color. 29.3025 Section 29.3025 Agriculture... General color. The color of tobacco considered in relation to the type as a whole. General color is distinguished from the restricted use of the term “color” within a group. It is basically related to body...

  16. 7 CFR 29.3509 - Color intensity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color intensity. 29.3509 Section 29.3509 Agriculture... Type 95) § 29.3509 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to...

  17. 7 CFR 29.2254 - Brown colors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Brown colors. 29.2254 Section 29.2254 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low...

  18. 7 CFR 29.3505 - Brown colors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Brown colors. 29.3505 Section 29.3505 Agriculture... Type 95) § 29.3505 Brown colors. A group of colors ranging from a light brown to a dark brown. These colors vary from medium to low saturation and from medium to very low brillance. As used in...

  19. 7 CFR 29.3025 - General color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false General color. 29.3025 Section 29.3025 Agriculture... General color. The color of tobacco considered in relation to the type as a whole. General color is distinguished from the restricted use of the term “color” within a group. It is basically related to body...

  20. 7 CFR 51.2281 - Color classifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color classifications. 51.2281 Section 51.2281... STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Color Requirements § 51.2281 Color classifications. The following classifications are provided to describe the color of any...

  1. 7 CFR 29.3509 - Color intensity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color intensity. 29.3509 Section 29.3509 Agriculture... Type 95) § 29.3509 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to...

  2. 7 CFR 51.305 - Color requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color requirements. 51.305 Section 51.305 Agriculture... Standards for Grades of Apples Color Requirements § 51.305 Color requirements. In addition to the... percentage of color specified for the variety in table I appearing in this section. All apple varieties...

  3. 7 CFR 29.3505 - Brown colors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Brown colors. 29.3505 Section 29.3505 Agriculture... Type 95) § 29.3505 Brown colors. A group of colors ranging from a light brown to a dark brown. These colors vary from medium to low saturation and from medium to very low brillance. As used in...

  4. 7 CFR 51.1860 - Color classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color classification. 51.1860 Section 51.1860... STANDARDS) United States Standards for Fresh Tomatoes 1 Color Classification § 51.1860 Color classification... describing the color as an indication of the stage of ripeness of any lot of mature tomatoes of a red...

  5. 7 CFR 58.329 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Color. 58.329 Section 58.329 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....329 Color. Coloring, when used shall be Annatto or any color which is approved by the U.S. Food...

  6. 7 CFR 29.1006 - Color intensity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of...

  7. 7 CFR 51.1436 - Color classifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color classifications. 51.1436 Section 51.1436... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Color Classifications § 51.1436 Color classifications. (a) The skin color of pecan kernels may be described in terms...

  8. 7 CFR 58.435 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Color. 58.435 Section 58.435 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....435 Color. Coloring when used, shall be Annatto or any cheese or butter color which meet...

  9. 7 CFR 58.329 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Color. 58.329 Section 58.329 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....329 Color. Coloring, when used shall be Annatto or any color which is approved by the U.S. Food...

  10. 7 CFR 51.1436 - Color classifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color classifications. 51.1436 Section 51.1436... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Color Classifications § 51.1436 Color classifications. (a) The skin color of pecan kernels may be described in terms...

  11. 7 CFR 51.2276 - Color chart.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color chart. 51.2276 Section 51.2276 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) General § 51.2276 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2281 and 51.2282 illustrates the four shades...

  12. 7 CFR 29.3509 - Color intensity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color intensity. 29.3509 Section 29.3509 Agriculture... Type 95) § 29.3509 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to...

  13. 7 CFR 29.3012 - Color symbols.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green....

  14. 7 CFR 58.435 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Color. 58.435 Section 58.435 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....435 Color. Coloring when used, shall be Annatto or any cheese or butter color which meet...

  15. 7 CFR 29.1006 - Color intensity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of...

  16. 7 CFR 51.305 - Color requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color requirements. 51.305 Section 51.305 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Color Requirements § 51.305 Color... of these grades shall have the percentage of color specified for the variety in table I appearing...

  17. 7 CFR 29.2504 - Brown colors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Brown colors. 29.2504 Section 29.2504 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2504 Brown colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low to medium saturation and from...

  18. 7 CFR 51.305 - Color requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color requirements. 51.305 Section 51.305 Agriculture... Standards for Grades of Apples Color Requirements § 51.305 Color requirements. In addition to the... percentage of color specified for the variety in table I appearing in this section. All apple varieties...

  19. 7 CFR 52.1006 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 52.1006 Section 52.1006 Agriculture Regulations... § 52.1006 Color. (a) (A) classification. Whole or pitted dates that possess a good color may be given a score of 18 to 20 points. “Good color” means that the color of the dates is practically uniform;...

  20. 7 CFR 51.2283 - Off color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Off color. 51.2283 Section 51.2283 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Color Requirements § 51.2283 Off color. The term “off color” is not a color classification, but shall be applied to any lot which fails to meet...

  1. 7 CFR 29.1006 - Color intensity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of...

  2. 7 CFR 29.3505 - Brown colors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Brown colors. 29.3505 Section 29.3505 Agriculture... Type 95) § 29.3505 Brown colors. A group of colors ranging from a light brown to a dark brown. These colors vary from medium to low saturation and from medium to very low brillance. As used in...

  3. 7 CFR 51.2281 - Color classifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color classifications. 51.2281 Section 51.2281... STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Color Requirements § 51.2281 Color classifications. The following classifications are provided to describe the color of any...

  4. 7 CFR 51.305 - Color requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color requirements. 51.305 Section 51.305 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Color Requirements § 51.305 Color... of these grades shall have the percentage of color specified for the variety in table I appearing...

  5. 7 CFR 58.329 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Color. 58.329 Section 58.329 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....329 Color. Coloring, when used shall be Annatto or any color which is approved by the U.S. Food...

  6. 7 CFR 51.2283 - Off color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Off color. 51.2283 Section 51.2283 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Color Requirements § 51.2283 Off color. The term “off color” is not a color classification, but shall be applied to any lot which fails to meet...

  7. 7 CFR 29.3509 - Color intensity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color intensity. 29.3509 Section 29.3509 Agriculture... Type 95) § 29.3509 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to...

  8. 7 CFR 52.1006 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 52.1006 Section 52.1006 Agriculture Regulations... § 52.1006 Color. (a) (A) classification. Whole or pitted dates that possess a good color may be given a score of 18 to 20 points. “Good color” means that the color of the dates is practically uniform;...

  9. 7 CFR 51.2281 - Color classifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color classifications. 51.2281 Section 51.2281...) Color Requirements § 51.2281 Color classifications. The following classifications are provided to describe the color of any lot: “Extra Light”, “Light”, “Light Amber” or “Amber”. The portions of kernels...

  10. 7 CFR 51.2281 - Color classifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color classifications. 51.2281 Section 51.2281... STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Color Requirements § 51.2281 Color classifications. The following classifications are provided to describe the color of any...

  11. 7 CFR 29.3012 - Color symbols.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green....

  12. 7 CFR 51.2283 - Off color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Off color. 51.2283 Section 51.2283 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Color Requirements § 51.2283 Off color. The term “off color” is not a color classification, but shall be applied to any lot which fails to meet...

  13. 7 CFR 58.435 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Color. 58.435 Section 58.435 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....435 Color. Coloring when used, shall be Annatto or any cheese or butter color which meet...

  14. 7 CFR 51.305 - Color requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color requirements. 51.305 Section 51.305 Agriculture... Standards for Grades of Apples Color Requirements § 51.305 Color requirements. In addition to the... percentage of color specified for the variety in table I appearing in this section. All apple varieties...

  15. 7 CFR 29.1006 - Color intensity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of...

  16. 7 CFR 29.2254 - Brown colors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Brown colors. 29.2254 Section 29.2254 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low...

  17. 7 CFR 51.2281 - Color classifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color classifications. 51.2281 Section 51.2281...) Color Requirements § 51.2281 Color classifications. The following classifications are provided to describe the color of any lot: “Extra Light”, “Light”, “Light Amber” or “Amber”. The portions of kernels...

  18. 7 CFR 29.3012 - Color symbols.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green....

  19. 7 CFR 29.2254 - Brown colors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Brown colors. 29.2254 Section 29.2254 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low...

  20. 7 CFR 51.2276 - Color chart.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color chart. 51.2276 Section 51.2276 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) General § 51.2276 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2281 and 51.2282 illustrates the four shades...

  1. 7 CFR 58.435 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Color. 58.435 Section 58.435 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....435 Color. Coloring when used, shall be Annatto or any cheese or butter color which meet...

  2. 7 CFR 29.2254 - Brown colors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Brown colors. 29.2254 Section 29.2254 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low...

  3. 7 CFR 29.2254 - Brown colors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Brown colors. 29.2254 Section 29.2254 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low...

  4. 7 CFR 29.3025 - General color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false General color. 29.3025 Section 29.3025 Agriculture... General color. The color of tobacco considered in relation to the type as a whole. General color is distinguished from the restricted use of the term “color” within a group. It is basically related to body...

  5. 7 CFR 29.3025 - General color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false General color. 29.3025 Section 29.3025 Agriculture... General color. The color of tobacco considered in relation to the type as a whole. General color is distinguished from the restricted use of the term “color” within a group. It is basically related to body...

  6. 7 CFR 51.2283 - Off color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Off color. 51.2283 Section 51.2283 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Color Requirements § 51.2283 Off color. The term “off color” is not a color classification, but shall be applied...

  7. 7 CFR 29.3509 - Color intensity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color intensity. 29.3509 Section 29.3509 Agriculture... Type 95) § 29.3509 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. It is applicable to...

  8. 7 CFR 29.3025 - General color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false General color. 29.3025 Section 29.3025 Agriculture... General color. The color of tobacco considered in relation to the type as a whole. General color is distinguished from the restricted use of the term “color” within a group. It is basically related to body...

  9. 7 CFR 29.2504 - Brown colors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Brown colors. 29.2504 Section 29.2504 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2504 Brown colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low to medium saturation and from...

  10. 7 CFR 29.2504 - Brown colors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Brown colors. 29.2504 Section 29.2504 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2504 Brown colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low to medium saturation and from...

  11. 7 CFR 51.1860 - Color classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color classification. 51.1860 Section 51.1860... STANDARDS) United States Standards for Fresh Tomatoes 1 Color Classification § 51.1860 Color classification... describing the color as an indication of the stage of ripeness of any lot of mature tomatoes of a red...

  12. 7 CFR 51.2946 - Color chart.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color chart. 51.2946 Section 51.2946 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Walnuts in the Shell General § 51.2946 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2948, 51.2949,...

  13. 7 CFR 58.435 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Color. 58.435 Section 58.435 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....435 Color. Coloring when used, shall be Annatto or any cheese or butter color which meet...

  14. 7 CFR 51.1860 - Color classification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color classification. 51.1860 Section 51.1860... STANDARDS) United States Standards for Fresh Tomatoes 1 Color Classification § 51.1860 Color classification... describing the color as an indication of the stage of ripeness of any lot of mature tomatoes of a red...

  15. 7 CFR 29.1006 - Color intensity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of...

  16. 7 CFR 29.3505 - Brown colors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Brown colors. 29.3505 Section 29.3505 Agriculture... Type 95) § 29.3505 Brown colors. A group of colors ranging from a light brown to a dark brown. These colors vary from medium to low saturation and from medium to very low brillance. As used in...

  17. 7 CFR 58.329 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Color. 58.329 Section 58.329 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....329 Color. Coloring, when used shall be Annatto or any color which is approved by the U.S. Food...

  18. 7 CFR 29.2504 - Brown colors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Brown colors. 29.2504 Section 29.2504 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2504 Brown colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low to medium saturation and from...

  19. 7 CFR 51.2946 - Color chart.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color chart. 51.2946 Section 51.2946 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Walnuts in the Shell General § 51.2946 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2948, 51.2949,...

  20. 7 CFR 29.2504 - Brown colors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Brown colors. 29.2504 Section 29.2504 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2504 Brown colors. A group of colors ranging from a reddish brown to yellowish brown. These colors vary from low to medium saturation and from...

  1. 7 CFR 51.778 - Slightly colored.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Slightly colored. 51.778 Section 51.778 Agriculture... Standards for Grades of Florida Grapefruit Definitions § 51.778 Slightly colored. Slightly colored means that except for an aggregate area of green color which does not exceed the area of a circle 2...

  2. 7 CFR 51.778 - Slightly colored.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Slightly colored. 51.778 Section 51.778 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Florida Grapefruit Definitions § 51.778 Slightly colored. Slightly colored means that except for an aggregate area of green color which does...

  3. 7 CFR 51.3062 - Well colored.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Well colored. 51.3062 Section 51.3062 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Florida Avocados Definitions § 51.3062 Well colored. Well colored means that the avocado has the color characteristic of the variety....

  4. 7 CFR 51.3062 - Well colored.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Well colored. 51.3062 Section 51.3062 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Florida Avocados Definitions § 51.3062 Well colored. Well colored means that the avocado has the color characteristic of the variety....

  5. Visual Distinctiveness and the Development of Children's False Memories

    ERIC Educational Resources Information Center

    Howe, Mark L.

    2008-01-01

    Distinctiveness effects in children's (5-, 7-, and 11-year-olds) false memory illusions were examined using visual materials. In Experiment 1, developmental trends (increasing false memories with age) were obtained using Deese-Roediger-McDermott lists presented as words and color photographs but not line drawings. In Experiment 2, when items were…

  6. Color realism and color science.

    PubMed

    Byrne, Alex; Hilbert, David R

    2003-02-01

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically, types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in the mind." The article has two other purposes: First, to introduce an interdisciplinary audience to some distinctively philosophical tools that are useful in tackling the problem of color realism and, second, to clarify the various positions and central arguments in the debate. The first part explains the problem of color realism and makes some useful distinctions. These distinctions are then used to expose various confusions that often prevent people from seeing that the issues are genuine and difficult, and that the problem of color realism ought to be of interest to anyone working in the field of color science. The second part explains the various leading answers to the problem of color realism, and (briefly) argues that all views other than our own have serious difficulties or are unmotivated. The third part explains and motivates our own view, that colors are types of reflectances and defends it against objections made in the recent literature that are often taken as fatal.

  7. Entropy, color, and color rendering.

    PubMed

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  8. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  9. Color Facsimile.

    DTIC Science & Technology

    1995-02-01

    modification of existing JPEG compression and decompression software available from Independent JPEG Users Group to process CIELAB color images and to use...externally specificed Huffman tables. In addition a conversion program was written to convert CIELAB color space images to red, green, blue color space

  10. Seeing Color

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…

  11. Positive consequences of false memories.

    PubMed

    Howe, Mark L; Garner, Sarah R; Patel, Megan

    2013-01-01

    Previous research is replete with examples of the negative consequences of false memories. In the current research, we provide a different perspective on false memories and their development and demonstrate that false memories can have positive consequences. Specifically, we examined the role false memories play in subsequent problem-solving tasks. Children and adults studied and recalled neutral or survival-relevant lists of associated words. They then solved age-normed compound remote associates, some of whose solutions had been primed by false memories created when studying the previous lists. The results showed that regardless of age: (a) survival-related words were not only better recollected but were also more susceptible than neutral words to false memory illusions; and (b) survival-related false memories were better than neutral false memories as primes for problem-solving. These findings are discussed in the context of recent speculation concerning the positive consequences of false memories, and the adaptive nature of reconstructive memory.

  12. False Position, Double False Position and Cramer's Rule

    ERIC Educational Resources Information Center

    Boman, Eugene

    2009-01-01

    We state and prove the methods of False Position (Regula Falsa) and Double False Position (Regula Duorum Falsorum). The history of both is traced from ancient Egypt and China through the work of Fibonacci, ending with a connection between Double False Position and Cramer's Rule.

  13. Color Categories and Color Appearance

    ERIC Educational Resources Information Center

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  14. Color Terms and Color Concepts

    ERIC Educational Resources Information Center

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  15. False memories for aggressive acts.

    PubMed

    Laney, Cara; Takarangi, Melanie K T

    2013-06-01

    Can people develop false memories for committing aggressive acts? How does this process compare to developing false memories for victimhood? In the current research we used a simple false feedback procedure to implant false memories for committing aggressive acts (causing a black eye or spreading malicious gossip) or for victimhood (receiving a black eye). We then compared these false memories to other subjects' true memories for equivalent events. False aggressive memories were all too easy to implant, particularly in the minds of individuals with a proclivity towards aggression. Once implanted, the false memories were indistinguishable from true memories for the same events, on several dimensions, including emotional content. Implications for aggression-related memory more generally as well as false confessions are discussed.

  16. The Kepler False Positive Table

    NASA Astrophysics Data System (ADS)

    Bryson, Steve; Kepler False Positive Working Group

    2015-01-01

    The Kepler Space Telescope has detected thousands of candidate exoplanets by observing transit signals in a sample of more than 190,000 stars. Many of these transit signals are false positives, defined as a transit-like signal that is not due to a planet orbiting the target star (or a bound companion if the target is a multiple-star system). Astrophysical causes of false positives include background eclipsing binaries, planetary transits not associated with the target star, and non-planetary eclipses of the target star by stellar companions. The fraction of Kepler planet candidates that are false positives ranges from about 10% at high Galactic latitudes to 40% at low Galactic latitudes. Creating a high-reliability planet candidate catalog for statistical studies such as occurrence rate calculations requires removing clearly identified false positives.The Kepler Object of Interest (KOI) catalog at the NExScI NASA Exoplanet Archive flags false positives, and will soon provide a high-level classification of false positives, but lacks detailed description of why a KOI was determined to be a false positive. The Kepler False Positive Working Group (FPWG) examines each false positive in detail to certify that it is correctly identified as a false positive, and determines the primary reason(s) a KOI is classified as a false positive. The work of the FPWG will be published as the Kepler False Positive Table, hosted at the NExScI NASA Exoplanet Archive.The Kepler False Positive Table provides detailed information on the evidence for background binaries, transits caused by stellar companions, and false alarms. In addition to providing insight into the Kepler false positive population, the false positive table gives information about the background binary population and other areas of astrophysical interest. Because a planet around a star not associated with the target star is considered a false positive, the false positive table likely contains further planet candidates

  17. 7 CFR 28.431 - Strict Middling Tinged Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Middling Tinged Color. 28.431 Section 28.431 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Tinged Color is color which is better than Middling Tinged Color....

  18. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the...

  19. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than...

  20. 21 CFR 73.169 - Grape color extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Grape color extract. 73.169 Section 73.169 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.169 Grape color extract. (a) Identity. (1) The color additive grape color extract is an aqueous solution of anthocyanin grape pigments made...

  1. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  2. 7 CFR 28.401 - Good Middling Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Good Middling Color. 28.401 Section 28.401 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.401 Good Middling Color. Good Middling Color is color which is within the...

  3. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than...

  4. 21 CFR 73.169 - Grape color extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Grape color extract. 73.169 Section 73.169 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.169 Grape color extract. (a) Identity. (1) The color additive grape color extract is an aqueous solution of anthocyanin grape pigments made...

  5. 7 CFR 28.407 - Good Ordinary Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Good Ordinary Color. 28.407 Section 28.407 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.407 Good Ordinary Color. Good Ordinary Color is color which is within the...

  6. 7 CFR 51.3418 - Optional test for fry color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Optional test for fry color. 51.3418 Section 51.3418... color. Fry color may be determined in accordance with contract specifications by using the Munsell Color...°F or 21/2 minutes at 375°F. 5 Munsell Color Standards for Frozen French Fried Potatoes,...

  7. 7 CFR 28.407 - Good Ordinary Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Good Ordinary Color. 28.407 Section 28.407 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.407 Good Ordinary Color. Good Ordinary Color is color which is within the...

  8. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than...

  9. 7 CFR 51.1447 - Fairly uniform in color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly uniform in color. 51.1447 Section 51.1447... color. Fairly uniform in color means that 90 percent or more of the kernels in the lot have skin color within the range of one or two color classifications....

  10. 7 CFR 51.3418 - Optional test for fry color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Optional test for fry color. 51.3418 Section 51.3418... color. Fry color may be determined in accordance with contract specifications by using the Munsell Color...°F or 21/2 minutes at 375°F. 5 Munsell Color Standards for Frozen French Fried Potatoes,...

  11. 7 CFR 28.421 - Good Middling Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Good Middling Spotted Color. 28.421 Section 28.421 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Good Middling Spotted Color is color which is better than Strict Middling Spotted Color....

  12. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color....

  13. 21 CFR 73.169 - Grape color extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Grape color extract. 73.169 Section 73.169 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.169 Grape color extract. (a) Identity. (1) The color additive grape color extract is an aqueous solution of anthocyanin grape pigments made...

  14. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  15. 7 CFR 28.401 - Good Middling Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Good Middling Color. 28.401 Section 28.401 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.401 Good Middling Color. Good Middling Color is color which is within the...

  16. 7 CFR 28.401 - Good Middling Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Good Middling Color. 28.401 Section 28.401 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.401 Good Middling Color. Good Middling Color is color which is within the...

  17. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of...

  18. 7 CFR 28.407 - Good Ordinary Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Good Ordinary Color. 28.407 Section 28.407 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.407 Good Ordinary Color. Good Ordinary Color is color which is within the...

  19. 7 CFR 28.405 - Low Middling Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Low Middling Color. 28.405 Section 28.405 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.405 Low Middling Color. Low Middling Color is color which is within the...

  20. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color....

  1. 7 CFR 51.1447 - Fairly uniform in color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly uniform in color. 51.1447 Section 51.1447... § 51.1447 Fairly uniform in color. Fairly uniform in color means that 90 percent or more of the kernels in the lot have skin color within the range of one or two color classifications....

  2. 7 CFR 28.421 - Good Middling Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Good Middling Spotted Color. 28.421 Section 28.421 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Good Middling Spotted Color is color which is better than Strict Middling Spotted Color....

  3. 7 CFR 28.507 - Color Grade No. 7.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color Grade No. 7. 28.507 Section 28.507 Agriculture... American Pima Cotton § 28.507 Color Grade No. 7. American Pima cotton which in color is inferior to Color Grade No. 6 shall be designated as “Color Grade No. 7.”...

  4. 7 CFR 28.401 - Good Middling Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Good Middling Color. 28.401 Section 28.401 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.401 Good Middling Color. Good Middling Color is color which is within the...

  5. 7 CFR 28.507 - Color Grade No. 7.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color Grade No. 7. 28.507 Section 28.507 Agriculture... American Pima Cotton § 28.507 Color Grade No. 7. American Pima cotton which in color is inferior to Color Grade No. 6 shall be designated as “Color Grade No. 7.”...

  6. 7 CFR 28.431 - Strict Middling Tinged Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Middling Tinged Color. 28.431 Section 28.431 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Tinged Color is color which is better than Middling Tinged Color....

  7. 21 CFR 73.169 - Grape color extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Grape color extract. 73.169 Section 73.169 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.169 Grape color extract. (a) Identity. (1) The color additive grape color extract is an aqueous solution of anthocyanin grape pigments made...

  8. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  9. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than...

  10. 7 CFR 28.431 - Strict Middling Tinged Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Middling Tinged Color. 28.431 Section 28.431 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Tinged Color is color which is better than Middling Tinged Color....

  11. 7 CFR 28.407 - Good Ordinary Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Good Ordinary Color. 28.407 Section 28.407 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.407 Good Ordinary Color. Good Ordinary Color is color which is within the...

  12. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color....

  13. 7 CFR 51.1447 - Fairly uniform in color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly uniform in color. 51.1447 Section 51.1447... § 51.1447 Fairly uniform in color. Fairly uniform in color means that 90 percent or more of the kernels in the lot have skin color within the range of one or two color classifications....

  14. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the...

  15. 7 CFR 28.405 - Low Middling Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Low Middling Color. 28.405 Section 28.405 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.405 Low Middling Color. Low Middling Color is color which is within the...

  16. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the...

  17. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  18. 7 CFR 28.405 - Low Middling Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Low Middling Color. 28.405 Section 28.405 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.405 Low Middling Color. Low Middling Color is color which is within the...

  19. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the...

  20. 7 CFR 28.507 - Color Grade No. 7.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color Grade No. 7. 28.507 Section 28.507 Agriculture... American Pima Cotton § 28.507 Color Grade No. 7. American Pima cotton which in color is inferior to Color Grade No. 6 shall be designated as “Color Grade No. 7.”...

  1. 7 CFR 51.1447 - Fairly uniform in color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly uniform in color. 51.1447 Section 51.1447... color. Fairly uniform in color means that 90 percent or more of the kernels in the lot have skin color within the range of one or two color classifications....

  2. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  3. 7 CFR 28.431 - Strict Middling Tinged Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Middling Tinged Color. 28.431 Section 28.431 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Tinged Color is color which is better than Middling Tinged Color....

  4. 7 CFR 28.407 - Good Ordinary Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Good Ordinary Color. 28.407 Section 28.407 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.407 Good Ordinary Color. Good Ordinary Color is color which is within the...

  5. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the...

  6. 7 CFR 51.1447 - Fairly uniform in color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly uniform in color. 51.1447 Section 51.1447... color. Fairly uniform in color means that 90 percent or more of the kernels in the lot have skin color within the range of one or two color classifications....

  7. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992]...

  8. 7 CFR 28.421 - Good Middling Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Good Middling Spotted Color. 28.421 Section 28.421 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Good Middling Spotted Color is color which is better than Strict Middling Spotted Color....

  9. 7 CFR 28.405 - Low Middling Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Low Middling Color. 28.405 Section 28.405 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.405 Low Middling Color. Low Middling Color is color which is within the...

  10. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of...

  11. 7 CFR 28.401 - Good Middling Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Good Middling Color. 28.401 Section 28.401 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.401 Good Middling Color. Good Middling Color is color which is within the...

  12. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of...

  13. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of...

  14. 7 CFR 28.431 - Strict Middling Tinged Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Tinged Color. 28.431 Section 28.431 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Tinged Color is color which is better than Middling Tinged Color....

  15. 7 CFR 28.421 - Good Middling Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Good Middling Spotted Color. 28.421 Section 28.421 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Good Middling Spotted Color is color which is better than Strict Middling Spotted Color....

  16. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992]...

  17. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than...

  18. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of...

  19. 7 CFR 28.405 - Low Middling Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Low Middling Color. 28.405 Section 28.405 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton § 28.405 Low Middling Color. Low Middling Color is color which is within the...

  20. 7 CFR 28.421 - Good Middling Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Good Middling Spotted Color. 28.421 Section 28.421 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Good Middling Spotted Color is color which is better than Strict Middling Spotted Color....

  1. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.413 Middling Light Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between...

  2. Color terms and color concepts.

    PubMed

    Davidoff, Jules

    2006-08-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction are taken up in the current commentary, especially with regard to the neuropsychological evidence. Data from aphasic patients also argue for a priority for abstract thought, but nevertheless it may still be that the use of color terms is the only way in which to form color categories even if both linguistic and attentional factors play an important role.

  3. 7 CFR 28.414 - Strict Low Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Light Spotted Color. 28.414... Low Middling Light Spotted Color. Strict Low Middling Light Spotted Color is color which in spot or color, or both, is between Strict Low Middling Color and Strict Low Middling Spotted Color....

  4. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or color, or both, is between Strict Good Ordinary Color and Strict Good Ordinary Spotted Color....

  5. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or color, or both, is between Strict Good Ordinary Color and Strict Good Ordinary Spotted Color....

  6. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or color, or both, is between Strict Good Ordinary Color and Strict Good Ordinary Spotted Color....

  7. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or color, or both, is between Strict Good Ordinary Color and Strict Good Ordinary Spotted Color....

  8. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or color, or both, is between Strict Good Ordinary Color and Strict Good Ordinary Spotted Color....

  9. Color Analysis

    NASA Astrophysics Data System (ADS)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  10. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  11. Sleep deprivation and false memories.

    PubMed

    Frenda, Steven J; Patihis, Lawrence; Loftus, Elizabeth F; Lewis, Holly C; Fenn, Kimberly M

    2014-09-01

    Many studies have investigated factors that affect susceptibility to false memories. However, few have investigated the role of sleep deprivation in the formation of false memories, despite overwhelming evidence that sleep deprivation impairs cognitive function. We examined the relationship between self-reported sleep duration and false memories and the effect of 24 hr of total sleep deprivation on susceptibility to false memories. We found that under certain conditions, sleep deprivation can increase the risk of developing false memories. Specifically, sleep deprivation increased false memories in a misinformation task when participants were sleep deprived during event encoding, but did not have a significant effect when the deprivation occurred after event encoding. These experiments are the first to investigate the effect of sleep deprivation on susceptibility to false memories, which can have dire consequences.

  12. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  13. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  14. Quantum Color

    ScienceCinema

    Lincoln, Don

    2016-07-20

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  15. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  16. Planetwide Color Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The first color movie of Jupiter from NASA's Cassini spacecraft shows what it would look like to peel the entire globe of Jupiter, stretch it out on a wall into the form of a rectangular map, and watch its atmosphere evolve with time.

    The brief movie clip spans 24 Jupiter rotations between Oct. 31 and Nov. 9, 2000.

    Various patterns of motion are apparent all across Jupiter at the cloudtop level seen here. The Great Red Spot shows its counterclockwise rotation, and the uneven distribution of its high haze is obvious. To the east (right) of the Red Spot, oval storms, like ball bearings, roll over and pass each other. Horizontal bands adjacent to each other move at different rates. Strings of small storms rotate around northern-hemisphere ovals. The large grayish-blue 'hot spots' at the northern edge of the white Equatorial Zone change over the course of time as they march eastward across the planet. Ovals in the north rotate counter to those in the south. Small, very bright features appear quickly and randomly in turbulent regions, candidates for lightning storms.

    The clip consists of 14 unevenly spaced timesteps, each a true color cylindrical projection of the complete circumference of Jupiter, from 60 degrees south to 60 degrees north. The maps are made by first assembling mosaics of six images taken by Cassini's narrow-angle camera in the same spectral filter over the course of one Jupiter rotation and, consequently, covering the whole planet. Three such global maps -- in red, green and blue filters -- are combined to make one color map showing Jupiter during one Jovian rotation. Fourteen such maps, spanning 24 Jovian rotations at uneven time intervals comprise the movie. The maps were reduced in scale by a factor of two to make them accessible on the Internet at reasonable rates. Occasional appearances of Io, Europa, and their shadows have not been removed.

    The smallest visible features at the equator are about 600 kilometers (about 370 miles

  17. Color measurement and discrimination

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.

    1985-01-01

    Theories of color measurement attempt to provide a quantative means for predicting whether two lights will be discriminable to an average observer. All color measurement theories can be characterized as follows: suppose lights a and b evoke responses from three color channels characterized as vectors, v(a) and v(b); the vector difference v(a) - v(b) corresponds to a set of channel responses that would be generated by some real light, call it *. According to theory a and b will be discriminable when * is detectable. A detailed development and test of the classic color measurement approach are reported. In the absence of a luminance component in the test stimuli, a and b, the theory holds well. In the presence of a luminance component, the theory is clearly false. When a luminance component is present discrimination judgements depend largely on whether the lights being discriminated fall in separate, categorical regions of color space. The results suggest that sensory estimation of surface color uses different methods, and the choice of method depends upon properties of the image. When there is significant luminance variation a categorical method is used, while in the absence of significant luminance variation judgments are continuous and consistant with the measurement approach.

  18. 7 CFR 29.3510 - Color symbols.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...

  19. 7 CFR 29.3508 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  20. 14 CFR 25.1397 - Color specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Color specifications. 25.1397 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  1. 14 CFR 27.1397 - Color specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Color specifications. 27.1397 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  2. 7 CFR 29.2259 - Color symbols.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...

  3. 7 CFR 29.3508 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  4. 7 CFR 52.778 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 52.778 Section 52.778 Agriculture Regulations... United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Factors of Quality § 52.778 Color. (a) (A) classification. Canned red tart pitted cherries that have a good color may be given a...

  5. 7 CFR 29.1005 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  6. 7 CFR 52.806 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 52.806 Section 52.806 Agriculture Regulations... United States Standards for Grades of Frozen Red Tart Pitted Cherries Factors of Quality § 52.806 Color. (a) (A) Classification. Frozen red tart pitted cherries that possess a good red color may be given...

  7. 7 CFR 58.633 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Color. 58.633 Section 58.633 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....633 Color. Coloring used for ice cream and related products shall be those certified by the U.S....

  8. 14 CFR 25.1397 - Color specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Color specifications. 25.1397 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  9. 7 CFR 29.2507 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type....

  10. 7 CFR 29.2258 - Color intensity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color intensity. 29.2258 Section 29.2258 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2258 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes...

  11. 7 CFR 29.2508 - Color intensity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color intensity. 29.2508 Section 29.2508 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2508 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a...

  12. 7 CFR 29.3010 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color...

  13. 14 CFR 23.1397 - Color specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Color specifications. 23.1397 Section 23.1397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Color specifications. Each position light color must have the applicable International Commission...

  14. 14 CFR 29.1397 - Color specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Color specifications. 29.1397 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  15. 7 CFR 52.1006 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 52.1006 Section 52.1006 Agriculture Regulations... United States Standards for Grades of Dates Factors of Quality § 52.1006 Color. (a) (A) classification. Whole or pitted dates that possess a good color may be given a score of 18 to 20 points. “Good...

  16. 7 CFR 29.3508 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  17. 7 CFR 29.3510 - Color symbols.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...

  18. 7 CFR 29.2258 - Color intensity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color intensity. 29.2258 Section 29.2258 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2258 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes...

  19. 7 CFR 29.2507 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type....

  20. 7 CFR 29.3510 - Color symbols.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...

  1. 14 CFR 29.1397 - Color specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Color specifications. 29.1397 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  2. 7 CFR 29.1007 - Color symbols.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.1007 Section 29.1007 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1007 Color symbols. As applied to flue-cured tobacco, color symbols are L—lemon,...

  3. 7 CFR 29.2507 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type....

  4. 7 CFR 51.1860 - Color classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color classification. 51.1860 Section 51.1860... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Fresh Tomatoes 1 Color Classification § 51.1860 Color classification. (a) The following terms may be used, when specified in connection...

  5. 14 CFR 25.1397 - Color specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Color specifications. 25.1397 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  6. 7 CFR 29.3510 - Color symbols.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...

  7. 7 CFR 52.1006 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 52.1006 Section 52.1006 Agriculture Regulations... United States Standards for Grades of Dates Factors of Quality § 52.1006 Color. (a) (A) classification. Whole or pitted dates that possess a good color may be given a score of 18 to 20 points. “Good...

  8. 7 CFR 29.2508 - Color intensity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color intensity. 29.2508 Section 29.2508 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2508 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a...

  9. 7 CFR 29.1007 - Color symbols.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color symbols. 29.1007 Section 29.1007 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1007 Color symbols. As applied to flue-cured tobacco, color symbols are L—lemon,...

  10. 7 CFR 29.3510 - Color symbols.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...

  11. 7 CFR 52.806 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 52.806 Section 52.806 Agriculture Regulations... Cherries Factors of Quality § 52.806 Color. (a) (A) Classification. Frozen red tart pitted cherries that possess a good red color may be given a score of 27 to 30 points. “Good red color” means that the...

  12. 7 CFR 29.2508 - Color intensity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color intensity. 29.2508 Section 29.2508 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2508 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a...

  13. 7 CFR 29.2507 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type....

  14. 7 CFR 52.778 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 52.778 Section 52.778 Agriculture Regulations... Cherries 1 Factors of Quality § 52.778 Color. (a) (A) classification. Canned red tart pitted cherries that have a good color may be given a score of 18 to 20 points. “Good color” means a practically...

  15. 14 CFR 29.1397 - Color specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Color specifications. 29.1397 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  16. 14 CFR 27.1397 - Color specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Color specifications. 27.1397 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  17. 7 CFR 58.633 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Color. 58.633 Section 58.633 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....633 Color. Coloring used for ice cream and related products shall be those certified by the U.S....

  18. 14 CFR 29.1397 - Color specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Color specifications. 29.1397 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  19. 7 CFR 29.2257 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values...

  20. 7 CFR 29.1007 - Color symbols.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color symbols. 29.1007 Section 29.1007 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1007 Color symbols. As applied to flue-cured tobacco, color symbols are L—lemon,...

  1. 7 CFR 29.2508 - Color intensity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color intensity. 29.2508 Section 29.2508 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2508 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a...

  2. 14 CFR 23.1397 - Color specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Color specifications. 23.1397 Section 23.1397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Color specifications. Each position light color must have the applicable International Commission...

  3. 14 CFR 27.1397 - Color specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Color specifications. 27.1397 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  4. 7 CFR 29.2259 - Color symbols.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...

  5. 7 CFR 29.3508 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  6. 7 CFR 29.2259 - Color symbols.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...

  7. 14 CFR 25.1397 - Color specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Color specifications. 25.1397 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  8. 7 CFR 58.633 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Color. 58.633 Section 58.633 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....633 Color. Coloring used for ice cream and related products shall be those certified by the U.S....

  9. 7 CFR 29.1005 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  10. 14 CFR 25.1397 - Color specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Color specifications. 25.1397 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  11. 7 CFR 52.778 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 52.778 Section 52.778 Agriculture Regulations... United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Factors of Quality § 52.778 Color. (a) (A) classification. Canned red tart pitted cherries that have a good color may be given a...

  12. 7 CFR 29.3508 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  13. 7 CFR 29.3010 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color...

  14. 7 CFR 51.1860 - Color classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color classification. 51.1860 Section 51.1860... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Fresh Tomatoes 1 Color Classification § 51.1860 Color classification. (a) The following terms may be used, when specified in connection...

  15. 7 CFR 29.2257 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values...

  16. 14 CFR 23.1397 - Color specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Color specifications. 23.1397 Section 23.1397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Color specifications. Each position light color must have the applicable International Commission...

  17. 7 CFR 29.1005 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  18. 7 CFR 52.806 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 52.806 Section 52.806 Agriculture Regulations... Cherries Factors of Quality § 52.806 Color. (a) (A) Classification. Frozen red tart pitted cherries that possess a good red color may be given a score of 27 to 30 points. “Good red color” means that the...

  19. 7 CFR 29.2258 - Color intensity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color intensity. 29.2258 Section 29.2258 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2258 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes...

  20. 7 CFR 52.806 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 52.806 Section 52.806 Agriculture Regulations... United States Standards for Grades of Frozen Red Tart Pitted Cherries Factors of Quality § 52.806 Color. (a) (A) Classification. Frozen red tart pitted cherries that possess a good red color may be given...

  1. 7 CFR 29.2259 - Color symbols.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...

  2. 14 CFR 23.1397 - Color specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Color specifications. 23.1397 Section 23.1397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Color specifications. Each position light color must have the applicable International Commission...

  3. 7 CFR 29.1005 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  4. 7 CFR 29.2508 - Color intensity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color intensity. 29.2508 Section 29.2508 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2508 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a...

  5. 7 CFR 29.2257 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values...

  6. 7 CFR 29.1007 - Color symbols.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color symbols. 29.1007 Section 29.1007 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1007 Color symbols. As applied to flue-cured tobacco, color symbols are L—lemon,...

  7. 7 CFR 29.3010 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color...

  8. 7 CFR 29.1007 - Color symbols.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color symbols. 29.1007 Section 29.1007 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1007 Color symbols. As applied to flue-cured tobacco, color symbols are L—lemon,...

  9. 7 CFR 58.633 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Color. 58.633 Section 58.633 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....633 Color. Coloring used for ice cream and related products shall be those certified by the U.S....

  10. 7 CFR 52.806 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 52.806 Section 52.806 Agriculture Regulations... United States Standards for Grades of Frozen Red Tart Pitted Cherries Factors of Quality § 52.806 Color. (a) (A) Classification. Frozen red tart pitted cherries that possess a good red color may be given...

  11. 7 CFR 29.2259 - Color symbols.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...

  12. 7 CFR 29.1005 - Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type....

  13. 7 CFR 29.2258 - Color intensity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color intensity. 29.2258 Section 29.2258 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2258 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes...

  14. 7 CFR 29.3010 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color...

  15. 14 CFR 23.1397 - Color specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Color specifications. 23.1397 Section 23.1397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Color specifications. Each position light color must have the applicable International Commission...

  16. 7 CFR 29.2257 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values...

  17. 7 CFR 52.778 - Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 52.778 Section 52.778 Agriculture Regulations... Cherries 1 Factors of Quality § 52.778 Color. (a) (A) classification. Canned red tart pitted cherries that have a good color may be given a score of 18 to 20 points. “Good color” means a practically...

  18. 7 CFR 29.2258 - Color intensity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color intensity. 29.2258 Section 29.2258 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2258 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes...

  19. 7 CFR 52.778 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 52.778 Section 52.778 Agriculture Regulations... United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Factors of Quality § 52.778 Color. (a) (A) classification. Canned red tart pitted cherries that have a good color may be given a...

  20. 14 CFR 27.1397 - Color specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Color specifications. 27.1397 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  1. 7 CFR 29.2257 - Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values...

  2. 14 CFR 27.1397 - Color specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Color specifications. 27.1397 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  3. 7 CFR 58.633 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Color. 58.633 Section 58.633 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....633 Color. Coloring used for ice cream and related products shall be those certified by the U.S....

  4. 7 CFR 29.3010 - Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color...

  5. 7 CFR 29.2507 - Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type....

  6. 14 CFR 29.1397 - Color specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Color specifications. 29.1397 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1397 Color specifications. Each position light color must have the applicable International Commission on Illumination...

  7. 7 CFR 51.1533 - Well colored.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Well colored. 51.1533 Section 51.1533 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Well colored. “Well colored,” as applied to Italian type prunes, means that 95 percent of the...

  8. 7 CFR 51.1533 - Well colored.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Well colored. 51.1533 Section 51.1533 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Well colored. “Well colored,” as applied to Italian type prunes, means that 95 percent of the...

  9. 7 CFR 51.3062 - Well colored.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well colored. 51.3062 Section 51.3062 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Florida Avocados Definitions § 51.3062 Well colored. Well colored means that the avocado...

  10. 7 CFR 51.3062 - Well colored.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well colored. 51.3062 Section 51.3062 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Florida Avocados Definitions § 51.3062 Well colored. Well colored means that the avocado...

  11. 7 CFR 51.1533 - Well colored.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Well colored. 51.1533 Section 51.1533 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Fresh Plums and Prunes Definitions § 51.1533 Well colored. “Well colored,”...

  12. 7 CFR 51.1533 - Well colored.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well colored. 51.1533 Section 51.1533 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Fresh Plums and Prunes Definitions § 51.1533 Well colored. “Well colored,”...

  13. 7 CFR 51.1533 - Well colored.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well colored. 51.1533 Section 51.1533 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Fresh Plums and Prunes Definitions § 51.1533 Well colored. “Well colored,”...

  14. 7 CFR 51.3062 - Well colored.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Well colored. 51.3062 Section 51.3062 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Florida Avocados Definitions § 51.3062 Well colored. Well colored means that the avocado...

  15. Reduced False Memory after Sleep

    ERIC Educational Resources Information Center

    Fenn, Kimberly M.; Gallo, David A.; Margoliash, Daniel; Roediger, Henry L., III; Nusbaum, Howard C.

    2009-01-01

    Several studies have shown that sleep contributes to the successful maintenance of previously encoded information. This research has focused exclusively on memory for studied events, as opposed to false memories. Here we report three experiments showing that sleep reduces false memories in the Deese-Roediger-McDermott (DRM) memory illusion. False…

  16. Study modality and false recall.

    PubMed

    Smith, Rebekah E; Engle, Randall W

    2011-01-01

    False memories occur when individuals mistakenly report an event as having taken place when that event did not in fact occur. The DRM (Deese, 1959; Roediger & McDermott, 1995) paradigm provides an effective technique for creating and investigating false memories. In this paradigm participants study a list of words (e.g., SOUR, CANDY,…) that are highly associated to a non-presented critical item (e.g., SWEET). The study phase is followed by a test of memory for the study list words. Researchers typically find very high levels of false recall of the critical non-presented item. However, the likelihood of falsely remembering the non-presented critical items can be reduced by presenting studied associates visually rather than auditorally (e.g., Smith & Hunt, 1998). This is referred to as the modality effect in false memory. The current study investigated the role of resource availability in the expression of this modality effect in false recall. In Experiment 1 false recall was reduced in the visual study presentation condition relative to the auditory condition for participants with higher working memory capacity, but not for participants with lower working memory capacity. In Experiment 2 the effect of study modality on false recall was eliminated by the addition of a divided attention task at encoding. Both studies support the proposal that resource availability plays a role in the expression of the modality effect in the DRM paradigm (Smith, Lozito, & Bayen, 2005).

  17. Color Metric.

    ERIC Educational Resources Information Center

    Illinois State Office of Education, Springfield.

    This booklet was designed to convey metric information in pictoral form. The use of pictures in the coloring book enables the more mature person to grasp the metric message instantly, whereas the younger person, while coloring the picture, will be exposed to the metric information long enough to make the proper associations. Sheets of the booklet…

  18. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings.

  19. Tunneling decay of false kinks

    NASA Astrophysics Data System (ADS)

    Dupuis, Éric; Gobeil, Yan; MacKenzie, Richard; Marleau, Luc; Paranjape, M. B.; Ung, Yvan

    2015-07-01

    We consider the decay of "false kinks," that is, kinks formed in a scalar field theory with a pair of degenerate symmetry-breaking false vacua in 1 +1 dimensions. The true vacuum is symmetric. A second scalar field and a peculiar potential are added in order for the kink to be classically stable. We find an expression for the decay rate of a false kink. As with any tunneling event, the rate is proportional to exp (-SE) where SE is the Euclidean action of the bounce describing the tunneling event. This factor varies wildly depending on the parameters of the model. Of interest is the fact that for certain parameters SE can get arbitrarily small, implying that the kink is only barely stable. Thus, while the false vacuum itself may be very long-lived, the presence of kinks can give rise to rapid vacuum decay.

  20. False allegation of child abduction.

    PubMed

    Canning, Kathleen E; Hilts, Mark A; Muirhead, Yvonne E

    2011-05-01

    Cases in which a child has been falsely reported as missing or abducted can be extremely challenging to the law enforcement agencies responsible for their investigation. In the absence of a witnessed abduction or an obvious crime scene, it is difficult to determine whether a child has actually been abducted or has become a victim of a homicide and a false allegation. The purpose of this study was to examine falsely alleged kidnapping cases and identify successful investigative strategies. Sixty-one adjudicated false allegation cases involving 66 victims were analyzed. The mean age of the victim was 5 years. Victims came from generally unstable, high-risk family situations and were killed primarily by biological parents. Victims were killed because they were unwanted or viewed as an obstacle to a desired goal, or they were victims of abuse or maltreatment that ended in fatality.

  1. Quantum Color

    SciTech Connect

    Lincoln, Don

    2016-07-05

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  2. 7 CFR 29.3012 - Color symbols.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green. [24 FR 8771, Oct. 29, 1959, as amended...

  3. 7 CFR 51.2946 - Color chart.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color chart. 51.2946 Section 51.2946 Agriculture... Standards for Grades of Walnuts in the Shell General § 51.2946 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2948, 51.2949, 51.2950, 51.2954, and...

  4. 7 CFR 29.3012 - Color symbols.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green. [24 FR 8771, Oct. 29, 1959, as amended...

  5. 7 CFR 51.2946 - Color chart.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color chart. 51.2946 Section 51.2946 Agriculture... Standards for Grades of Walnuts in the Shell General § 51.2946 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2948, 51.2949, 51.2950, 51.2954, and...

  6. 7 CFR 51.2946 - Color chart.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color chart. 51.2946 Section 51.2946 Agriculture... Standards for Grades of Walnuts in the Shell General § 51.2946 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2948, 51.2949, 51.2950, 51.2954, and...

  7. Color View of Ceres

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is a NASA Hubble Space Telescope color image of Ceres, the largest object in the asteroid belt.

    Astronomers enhanced the sharpness in these Advanced Camera for Surveys images to bring out features on Ceres' surface, including brighter and darker regions that could be asteroid impact features. The observations were made in visible and ultraviolet light between December 2003 and January 2004.

    The colors represent the differences between relatively red and blue regions. These differences may simply be due to variation on the surface among different types of material.

    Ceres' round shape suggests that its interior is layered like those of terrestrial planets such as Earth. Ceres may have a rocky inner core, an icy mantle, and a thin, dusty outer crust inferred from its density and rotation rate of 9 hours. Ceres is approximately 590 miles (950 kilometers) across and was first discovered in 1801.

  8. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  9. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  10. Bubbling the false vacuum away

    SciTech Connect

    Gleiser, M.; Rogers, B.; Thorarinson, J.

    2008-01-15

    We investigate the role of nonperturbative, bubblelike inhomogeneities on the decay rate of false-vacuum states in two- and three-dimensional scalar field theories. The inhomogeneities are induced by setting up large-amplitude oscillations of the field about the false vacuum, as, for example, after a rapid quench or in certain models of cosmological inflation. We show that, for a wide range of parameters, the presence of large-amplitude bubblelike inhomogeneities greatly accelerates the decay rate, changing it from the well-known exponential suppression of homogeneous nucleation to a power-law suppression. It is argued that this fast, power-law vacuum decay--known as resonant nucleation--is promoted by the presence of long-lived oscillons among the nonperturbative fluctuations about the false vacuum. A phase diagram is obtained distinguishing three possible mechanisms for vacuum decay: homogeneous nucleation, resonant nucleation, and crossover. Possible applications are briefly discussed.

  11. Tunneling decay of false vortices

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han

    2013-10-01

    We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum, the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.

  12. Sleep Loss Produces False Memories

    PubMed Central

    Diekelmann, Susanne; Landolt, Hans-Peter; Lahl, Olaf; Born, Jan; Wagner, Ullrich

    2008-01-01

    People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., “night”, “dark”, “coal”,…), lacking the strongest common associate or theme word (here: “black”). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss. PMID:18946511

  13. The Danger of False Dichotomies.

    ERIC Educational Resources Information Center

    LaBoskey, Vicky Kubler

    1998-01-01

    Responds to an article that examined 10 dichotomies in teacher education (SP 527 128), suggesting that too much time and energy are spent debating false dichotomies and addressing two specific dichotomies (preservice versus inservice and campus versus school site). Recommends that professional educators pool their energy and collaborate (rather…

  14. Evolutionary Psychology and False Confession

    ERIC Educational Resources Information Center

    Bering, Jesse M.; Shackelford, Todd K.

    2005-01-01

    This paper presents comments on Kassin's review, (see record 2005-03019-002) of the psychology of false confessions. The authors note that Kassin's review makes a compelling argument for the need for legal reform in police interrogation practices. Because his work strikes at the heart of the American criminal justice system--its fairness--the…

  15. Sleep deprivation and false confessions

    PubMed Central

    Frenda, Steven J.; Berkowitz, Shari R.; Loftus, Elizabeth F.; Fenn, Kimberly M.

    2016-01-01

    False confession is a major contributor to the problem of wrongful convictions in the United States. Here, we provide direct evidence linking sleep deprivation and false confessions. In a procedure adapted from Kassin and Kiechel [(1996) Psychol Sci 7(3):125–128], participants completed computer tasks across multiple sessions and repeatedly received warnings that pressing the “Escape” key on their keyboard would cause the loss of study data. In their final session, participants either slept all night in laboratory bedrooms or remained awake all night. In the morning, all participants were asked to sign a statement, which summarized their activities in the laboratory and falsely alleged that they pressed the Escape key during an earlier session. After a single request, the odds of signing were 4.5 times higher for the sleep-deprived participants than for the rested participants. These findings have important implications and highlight the need for further research on factors affecting true and false confessions. PMID:26858426

  16. Sleep loss produces false memories.

    PubMed

    Diekelmann, Susanne; Landolt, Hans-Peter; Lahl, Olaf; Born, Jan; Wagner, Ullrich

    2008-01-01

    People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal",...), lacking the strongest common associate or theme word (here: "black"). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss.

  17. MSPI False Indication Probability Simulations

    SciTech Connect

    Dana Kelly; Kurt Vedros; Robert Youngblood

    2011-03-01

    This paper examines false indication probabilities in the context of the Mitigating System Performance Index (MSPI), in order to investigate the pros and cons of different approaches to resolving two coupled issues: (1) sensitivity to the prior distribution used in calculating the Bayesian-corrected unreliability contribution to the MSPI, and (2) whether (in a particular plant configuration) to model the fuel oil transfer pump (FOTP) as a separate component, or integrally to its emergency diesel generator (EDG). False indication probabilities were calculated for the following situations: (1) all component reliability parameters at their baseline values, so that the true indication is green, meaning that an indication of white or above would be false positive; (2) one or more components degraded to the extent that the true indication would be (mid) white, and “false” would be green (negative) or yellow (negative) or red (negative). In key respects, this was the approach taken in NUREG-1753. The prior distributions examined were the constrained noninformative (CNI) prior used currently by the MSPI, a mixture of conjugate priors, the Jeffreys noninformative prior, a nonconjugate log(istic)-normal prior, and the minimally informative prior investigated in (Kelly et al., 2010). The mid-white performance state was set at ?CDF = ?10 ? 10-6/yr. For each simulated time history, a check is made of whether the calculated ?CDF is above or below 10-6/yr. If the parameters were at their baseline values, and ?CDF > 10-6/yr, this is counted as a false positive. Conversely, if one or all of the parameters are set to values corresponding to ?CDF > 10-6/yr but that time history’s ?CDF < 10-6/yr, this is counted as a false negative indication. The false indication (positive or negative) probability is then estimated as the number of false positive or negative counts divided by the number of time histories (100,000). Results are presented for a set of base case parameter values

  18. Color vision test

    MedlinePlus

    ... from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... test - color; Ishihara color vision test Images Color blindness tests References Adams AJ, Verdon WA, Spivey BE. ...

  19. 7 CFR 52.1847 - Colors of golden seedless raisins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Colors of golden seedless raisins. 52.1847 Section 52... Raisins § 52.1847 Colors of golden seedless raisins. The color of Golden Seedless Raisins is not a factor of quality for the purpose of these grades. The color requirements applicable to the respective...

  20. 7 CFR 28.424 - Strict Low Middling Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Low Middling Spotted Color. 28.424 Section 28.424 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Low Middling Spotted Color is color which is within the range represented by a...