Mechanical features of the shuttle rotating service structure
NASA Technical Reports Server (NTRS)
Crump, J. M.
1985-01-01
With the development of the space shuttle launching facilities, it became mandatory to develop a shuttle rotating service structure to provide for the insertion and/or removal of payloads at the launch pads. The rotating service structure is a welded tubular steel space frame 189 feet high, 65 feet wide, and weighing 2100 tons. At the pivot column the structure is supported on a 30 inch diameter hemispherical bearing. At the opposite terminus the structure is supported on two truck assemblies each having eight 36 inch diameter double flanged wheels. The following features of the rotating service structure are discussed: (1) thermal expansion and contraction; (2) hurricane tie downs; (3) payload changeout room; (4) payload ground handling mechanism; (5) payload and orbiter access platforms; and (6) orbiter cargo bay access.
STS-117 Rotating Service Structure move
2007-01-30
Workers on Launch Pad 39A get ready to begin the movement of the rotating service structure above them. The RSS has not been rotated for more than a year during the maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15.
STS-117 Rotating Service Structure move
2007-01-30
The rotating service structure on Launch Pad 39A has moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15.
STS-117 Rotating Service Structure move
2007-01-30
The rotating service structure on Launch Pad 39A is being moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15.
STS-117 Rotating Service Structure move
2007-01-30
The rotating service structure on Launch Pad 39A has been fully opened for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton
2008-02-15
KENNEDY SPACE CENTER, FLA. -- The payload canister containing the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre, nears the rotating service structure on Launch Pad 39A at NASA's Kennedy Space Center. The payload will be transferred to the payload changeout room on the service structure. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. The payload will be installed into Endeavour for launch on the STS-123 mission targeted for March 11. Photo credit: NASA/Kim Shiflett
2008-09-21
CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is in place at the payload changeout room on the rotating service structure. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. At right is Atlantis, atop the mobile launcher platform. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller
2007-01-30
KENNEDY SPACE CENTER, FLA. -- Workers on Launch Pad 39A get ready to begin the movement of the rotating service structure above them. The RSS has not been rotated for more than a year during the maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton
2002-02-14
KENNEDY SPACE CENTER, FLA. - Sir David Attenborough (center) works with a film crew on Launch Pad 39A. Space Shuttle Columbia, atop the Mobile Launcher Platform, is seen in the background. At left are the Rotating Service Structure, which is open, and the Fixed Service Structure. Attenborough is filming commentary for a documentary
2008-02-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister containing the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre, is lifted up toward the payload changeout room in the rotating service structure. Umbilical lines are still attached. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. The payload will be installed into Endeavour for launch on the STS-123 mission targeted for March 11. Photo credit: NASA/Kim Shiflett
2007-05-15
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, mounted on a mobile launch platform, finally rests on the hard stand of Launch Pad 39A, straddling the flame trench. This is the second rollout for the shuttle. The flame trench transecting the pad's mound at ground level is 490 feet long, 58 feet wide and 40 feet high. It is made of concrete and refractory brick. Pad structures are insulated from the intense heat of launch by the flame deflector system, which protects the flame trench floor and the pad surface along the top of the flame trench. On the left of the shuttle are the fixed service structure and rotating service structure in open position. When closed, the rotating structure provides protected access to the orbiter for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots about a vertical axis on the west side of the pad's flame trench. The white area in the center is the Payload Changeout Room, an enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and subsequent vertical installation in the orbiter payload bay. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
2006-07-26
KENNEDY SPACE CENTER, FLA. - After a several-hour trip from the Canister Rotation Facility, the payload canister arrives on Launch Pad 39B. Inside the canister is the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The canister will be positioned alongside the rotating service structure and beneath the payload changeout room (PCR) for transfer of the truss into the PCR. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
STS-30 Atlantis, OV-104, at KSC LC Pad 39B atop mobile launcher platform
NASA Technical Reports Server (NTRS)
1989-01-01
STS-30 Atlantis, Orbiter Vehicle (OV) 104, arrives at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop mobile launcher platform. The fixed service structure (FSS) towers above OV-104, its external tank (ET), and its solid rocket boosters (SRBs). The rotating service structure (RSS) is retracted. The launch tower catwalks are also retracted.
2000-09-12
KENNEDY SPACE CENTER, Fla. -- While the morning sun paints the sky pale gold, the structures on Launch Pad 39A are silhouetted in brown. Space Shuttle Discovery can be seen on the other side of the Fixed Service Structure; the Rotating Service Structure at right is still open. At left is the 300,000-gallon water tank that is part of the sound suppression system during launches. Discovery will launch on mission STS-92 Oct. 5, 2000
2000-09-12
KENNEDY SPACE CENTER, Fla. -- While the morning sun paints the sky pale gold, the structures on Launch Pad 39A are silhouetted in brown. Space Shuttle Discovery can be seen on the other side of the Fixed Service Structure; the Rotating Service Structure at right is still open. At left is the 300,000-gallon water tank that is part of the sound suppression system during launches. Discovery will launch on mission STS-92 Oct. 5, 2000
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, the Rotating Service Structure at Launch Complex 39A at NASA's Kennedy Space Center housed space shuttle payloads temporarily so they could be loaded inside the 60-foot-long cargo bay of a shuttle before launch. The RSS, as the structure was known, was hinged to the Fixed Service Structure on one side and rolled on a rail on the other. As its name suggests, the enclosed facility would rotate into place around the shuttle as it stood at the launch pad. Once in place, the RSS protected the shuttle and its cargo. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
STS-27 Atlantis, Orbiter Vehicle (OV) 104, at KSC Launch Complex (LC) pad 39B
NASA Technical Reports Server (NTRS)
1988-01-01
STS-27 Atlantis, Orbiter Vehicle (OV) 104, sits atop the mobile launcher platform at Kennedy Space Center (KSC) Launch Complex (LC) pad 39B. Profile of OV-104 mounted on external tank and flanked by solid rocket boosters (SRBs) is obscured by a flock of seagulls in the foreground. The fixed service structure (FSS) with rotating service structure (RSS) retracted appears in the background. Water resevoir is visible at the base of the launch pad concrete structure.
2002-04-03
KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Atlantis stands ready for launch on mission STS-110. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-110 crew will enter Atlantis. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure has access platforms at five levels to provide access to the payload bay. The FSS provides access to the orbiter and the RSS. . Mission STS-110 is scheduled to launch April 4 on its 11-day mission to the International Space Station
2008-04-24
CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, technicians monitor the rotation of the payload canister to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module. The canister will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann
2008-04-24
CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is suspended vertically after rotation from the horizontal. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann
2006-07-26
KENNEDY SPACE CENTER, FLA. - On Launch Pad 39B, the payload canister is lifted toward the payload changeout room (PCR) for transfer of its cargo into the PCR. The canister holds the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The red umbilical lines are still attached to the transporter, below it. To the right of the rotating structure is the fixed service structure with the 80-foot lightning mast on top. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
2008-03-10
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, rollback of the rotating service structure reveals space shuttle Endeavour atop the mobile launcher platform. First motion was at 8:23 a.m. and rollback was complete at 8:55 a.m. Above the orange external tank is seen the "beanie cap" at the end of the gaseous oxygen vent arm, extending from the fixed service structure. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below is the orbiter access arm with the White Room at the end, flush against the shuttle. The crew gains access into the orbiter through the White Room. On either side of the main engines and below the wings are the tail service masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another. The rotating structure provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure is supported by a rotating bridge that pivots about a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Launch is scheduled for 2:28 a.m. EDT March 11. Photo credit: NASA/Kim Shiflett
2008-03-10
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the rotating service structure has rolled away to uncover space shuttle Endeavour, resting on the mobile launcher platform. First motion was at 8:23 a.m. and rollback was complete at 8:55 a.m. Above the orange external tank is seen the "beanie cap" at the end of the gaseous oxygen vent arm, extending from the fixed service structure. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below is the orbiter access arm with the White Room at the end, flush against the shuttle. The crew gains access into the orbiter through the White Room. On either side of the main engines and below the wings are the tail service masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another. The rotating structure provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure is supported by a rotating bridge that pivots about a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Launch is scheduled for 2:28 a.m. EDT March 11. Photo credit: NASA/Kim Shiflett
2008-03-10
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, rollback of the rotating service structure (at left) reveals space shuttle Endeavour atop the mobile launcher platform. First motion was at 8:23 a.m. and rollback was complete at 8:55 a.m. Above the orange external tank is seen the "beanie cap" at the end of the gaseous oxygen vent arm, extending from the fixed service structure. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below is the orbiter access arm with the White Room at the end, flush against the shuttle. The crew gains access into the orbiter through the White Room. On either side of the main engines and below the wings are the tail service masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another. The rotating structure provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure is supported by a rotating bridge that pivots about a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Launch is scheduled for 2:28 a.m. EDT March 11. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads is lifted toward the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett
2009-03-11
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Discovery is revealed after the rotating service structure has been rolled back. The rollback is in preparation for Discovery's liftoff on the STS-119 mission with a crew of seven. The rotating structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The mission is the 28th to the International Space Station and the 125th space shuttle flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Liftoff of Discovery is scheduled for 9:20 p.m. EDT on March 11. Photo credit: NASA/Kim Shiflett
2008-09-20
CAPE CANAVERAL, Fla. - With a crystal blue Atlantic Ocean in the background, space shuttle Endeavour sits on Launch Pad B at NASA’s Kennedy Space Center in Florida. At left of the shuttle is the open rotating service structure with the payload changeout room revealed. The rotating service structures provide protection for weather and access to the shuttle. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis’ upcoming mission to repair NASA’s Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for its STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Troy Cryder
2007-01-30
KENNEDY SPACE CENTER, FLA. -- The rotating service structure on Launch Pad 39A is being moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton
2007-01-30
KENNEDY SPACE CENTER, FLA. -- The rotating service structure on Launch Pad 39A has been fully opened for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton
2007-01-30
KENNEDY SPACE CENTER, FLA. -- The rotating service structure on Launch Pad 39A has moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton
2007-01-30
KENNEDY SPACE CENTER, FLA. -- The rotating service structure on Launch Pad 39A is being moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton
Determination Method of Bridge Rotation Angle Response Using MEMS IMU.
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-11-09
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges.
2008-09-20
CAPE CANAVERAL, Fla. - In the Canister Rotation Facility at NASA's Kennedy Space Center, workers check cable fittings that will lift the payload canister to a vertical position for the trip to Launch Pad 39A. The canister’s cargo consists of four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. At the pad, the cargo will be moved into the Payload Changeout Room. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller
2003-01-15
KENNEDY SPACE CENTER, FLA. -- After rollback of the Rotating Service Structure on Launch Pad 39A, the top of Space Shuttle Columbia's external tank and solid rocket booster are bathed in sunlight. Shadows from the Fixed Service Structure stretch across the Shuttle and landscape. Visible are the orbiter access arm with the White Room extended to Columbia's cockpit, and at the top, the gaseous oxygen vent arm and cap, called the "beanie cap." Columbia is scheduled for launch Jan. 16 at 10:39 a.m. EST on mission STS-107, a research mission.
1998-09-28
KENNEDY SPACE CENTER, FLA. -- At left, the payload canister for Space Shuttle Discovery is lifted from its canister movement vehicle to the top of the Rotating Service Structure on Launch Pad 39-B. Discovery (right), sitting atop the Mobile Launch Platform and next to the Fixed Service Structure, is scheduled for launch on Oct. 29, 1998, for the STS-95 mission. That mission includes the International Extreme Ultraviolet Hitchhiker (IEH-3), the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar-observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process
2000-10-31
Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was stalled several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour passes through the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. To the left is the Fixed Service Structure and Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour is nearly through the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. To the left is the Fixed Service Structure and Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was stalled several hours to fix a broken cleat on the crawler-transporter. To the left is the Rotating Service Structure. The Orbiter Access Arm is already extended from the Fixed Service Structure to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour passes through the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. To the left is the Fixed Service Structure and Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour is nearly through the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. To the left is the Fixed Service Structure and Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2008-05-30
CAPE CANAVERAL, Fla. -- Against the dark sky, lights bathe space shuttle Discovery, revealed after rollback of the rotating service structure in preparation for launch on the STS-124 mission. First motion was at 8:33 p.m. and rollback was complete at 9:07 p.m. The rotating structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots on a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Above the orange external tank is the oxygen vent hood, called the "beanie cap," at the end of the gaseous oxygen vent arm extending from the fixed service structure. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below is the orbiter access arm with the White Room at the end, flush against the shuttle. The White Room provides access into the shuttle. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Launch is scheduled for 5:02 p.m. May 31. Photo credit: NASA/Troy Cryder
Investigation of improved designs for rotational micromirrors using multiuser MEMS processes
NASA Astrophysics Data System (ADS)
Lin, Julianna E.; Michael, Feras S. J.; Kirk, Andrew G.
2001-04-01
In recent years, the design of rotational micromirrors for use in optical cross connects has received much attention. Although several companies have already produced and marketed a number of torsional mirror devices, more work is still needed to determine how these mirrors can be integrated into optical systems to form compact optical switches. However, recently several commercial MEMS foundry services have become available. Thus, due to the low cost of these prototyping services, new devices can be fabricated in short amounts of time and the designs adapted to meet the needs of different applications. The purpose of this work is to investigate the fabrication of new micromirror designs using the Multi-User MEMS Processes (MUMPs) foundry service available from Cronos Integrated Microsystems, located in North Carolina, USA). Several sets of mirror designs were submitted for fabrication and the resulting structures characterized using a phase-shifting Mirau interferometer. The results of these devices are presented.
Determination Method of Bridge Rotation Angle Response Using MEMS IMU
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-01-01
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges. PMID:27834871
Joint Task Force Headquarters Master Training Guide
2003-09-01
roles, and relationships that differ from those of Service organizations. (6) Understand the rotation policy for individual augmentees assigned to the...JTF. Although the Combatant Commander ultimately establishes individual and unit rotation policies, they will not necessarily be uniform. One...Service might have a 90-day rotation policy while the other Services have 120-day or 179-day rotation policies. To stabilize key billets, consider
2009-03-11
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the orbiter access arm and White Room are extended toward space shuttle Discovery after rollback of the rotating service structure. The White Room provides crew access into the shuttle. The rollback is in preparation for Discovery's liftoff on the STS-119 mission with a crew of seven. The rotating structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The mission is the 28th to the International Space Station and the 125th space shuttle flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Liftoff of Discovery is scheduled for 9:20 p.m. EDT on March 11. Photo credit: NASA/Kim Shiflett
2009-03-11
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the orbiter access arm and White Room are extended toward space shuttle Discovery after rollback of the rotating service structure. Above the external tank is the oxygen vent hood, called the "beanie cap." The rollback is in preparation for Discovery's liftoff on the STS-119 mission with a crew of seven. The rotating structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The mission is the 28th to the International Space Station and the 125th space shuttle flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Liftoff of Discovery is scheduled for 9:20 p.m. EDT on March 11. Photo credit: NASA/Kim Shiflett
Pine Ridge Indian Health Service Primary Care Resident Rotation: a summary.
Jerde, O M; Vogt, H B
1996-10-01
The Pine Ridge Indian Health Service Primary Care Resident Rotation was officially established in January 1992 and operated through May 1996. Sponsored by an Indian Health Service grant, the rotation was conceived in an effort to help address the problem of recruitment and retention of physicians at Pin Ridge in the long term, while offering a unique educational experience for residents. Fifty-eight residents from 40 Family Practice, General Internal Medicine and General Pediatric Residency Programs in 18 states completed the rotation. Four of the rotation "graduates" are currently employed by the IHS at Pine Ridge and two other sites. A fifth physician provided short term service to a fourth site.
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was delayed several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was delayed several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
Rotational Stiffness of Precast Beam-Column Connection using Finite Element Method
NASA Astrophysics Data System (ADS)
Hashim, N.; Agarwal, J.
2018-04-01
Current design practice in structural analysis is to assume the connection as pinned or rigid, however this cannot be relied upon for safety against collapse because during services the actual connection reacts differently where the connection has rotated in relevance. This situation may lead to different reactions and consequently affect design results and other frame responses. In precast concrete structures, connections play an important part in ensuring the safety of the whole structure. Thus, investigates on the actual connection behavior by construct the moment-rotation relationship is significant. Finite element (FE) method is chosen for modeling a 3-dimensional beam-column connection. The model is built in symmetry to reduce analysis time. Results demonstrate that precast billet connection is categorized as semi-rigid connection with Sini of 23,138kNm/rad. This is definitely different from the assumption of pinned or rigid connection used in design practice. Validation were made by comparing with mathematical equation and small differences were achieved that led to the conclusion where precast billet connection using FE method is acceptable.
27 CFR 6.99 - Stocking, rotation, and pricing service.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Stocking, rotation, and pricing service. 6.99 Section 6.99 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions § 6.99 Stocking, rotation, and pricing service. (a) General. Industry member...
Socio-ecological implications of modifying rotation lengths in forestry.
Roberge, Jean-Michel; Laudon, Hjalmar; Björkman, Christer; Ranius, Thomas; Sandström, Camilla; Felton, Adam; Sténs, Anna; Nordin, Annika; Granström, Anders; Widemo, Fredrik; Bergh, Johan; Sonesson, Johan; Stenlid, Jan; Lundmark, Tomas
2016-02-01
The rotation length is a key component of even-aged forest management systems. Using Fennoscandian forestry as a case, we review the socio-ecological implications of modifying rotation lengths relative to current practice by evaluating effects on a range of ecosystem services and on biodiversity conservation. The effects of shortening rotations on provisioning services are expected to be mostly negative to neutral (e.g. production of wood, bilberries, reindeer forage), while those of extending rotations would be more varied. Shortening rotations may help limit damage by some of today's major damaging agents (e.g. root rot, cambium-feeding insects), but may also increase other damage types (e.g. regeneration pests) and impede climate mitigation. Supporting (water, soil nutrients) and cultural (aesthetics, cultural heritage) ecosystem services would generally be affected negatively by shortened rotations and positively by extended rotations, as would most biodiversity indicators. Several effect modifiers, such as changes to thinning regimes, could alter these patterns.
1997-02-10
KENNEDY SPACE CENTER, FLA. - The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, M-113 armored personnel carriers transport workers away from the pad. In the background are the Fixed (tall) and Rotating Service Structures. To the left is the water tower that holds 300,000 gallons used during liftoffs.The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.
2000-08-16
KENNEDY SPACE CENTER, FLA. -- Technicians facilitate the transfer the STS-106 payload to Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The circular structure shown is the docking adapter. The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad’s Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift
2000-08-16
KENNEDY SPACE CENTER, FLA. -- Technicians facilitate the transfer the STS-106 payload to Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The circular structure shown is the docking adapter. The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad’s Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift
2002-04-03
KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Atlantis stands ready for launch on mission STS-110. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-110 crew will enter Atlantis. Above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure has access platforms at five levels to provide access to the payload bay. The FSS provides access to the orbiter and the RSS. Mission STS-110 is scheduled to launch April 4 on its 11-day mission to the International Space Station
Stanley, Matthew D; Davenport, Daniel L; Procter, Levi D; Perry, Jacob E; Kearney, Paul A; Bernard, Andrew C
2011-03-01
Surgical resident rotations on trauma services are criticized for little operative experience and heavy workloads. This has resulted in diminished interest in trauma surgery among surgical residents. Acute care surgery (ACS) combines trauma and emergency/elective general surgery, enhancing operative volume and balancing operative and nonoperative effort. We hypothesize that a mature ACS service provides significant operative experience. A retrospective review was performed of ACGME case logs of 14 graduates from a major, academic, Level I trauma center program during a 3-year period. Residency Review Committee index case volumes during the fourth and fifth years of postgraduate training (PGY-4 and PGY-5) ACS rotations were compared with other service rotations: in total and per resident week on service. Ten thousand six hundred fifty-four cases were analyzed for 14 graduates. Mean cases per resident was 432 ± 57 in PGY-4, 330 ± 40 in PGY-5, and 761 ± 67 for both years combined. Mean case volume on ACS for both years was 273 ± 44, which represented 35.8% (273 of 761) of the total experience and exceeded all other services. Residents averaged 8.9 cases per week on the ACS service, which exceeded all other services except private general surgery, gastrointestinal/minimally invasive surgery, and pediatric surgery rotations. Disproportionately more head/neck, small and large intestine, gastric, spleen, laparotomy, and hernia cases occurred on ACS than on other services. Residents gain a large operative experience on ACS. An ACS model is viable in training, provides valuable operative experience, and should not be considered a drain on resident effort. Valuable ACS rotation experiences as a resident may encourage graduates to pursue ACS as a career. Copyright © 2011 by Lippincott Williams & Wilkins
Job Rotation at Cardiff University Library Service: A Pilot Study
ERIC Educational Resources Information Center
Earney, Sally; Martins, Ana
2009-01-01
This paper presents case study research of a job rotation pilot involving six library assistants in Cardiff University Library Service (ULS). Firstly, it investigates whether job rotation improves motivation and secondly, whether there is an improvement in skills, both technical and "soft". Following a review of the literature,…
1997-02-10
KENNEDY SPACE CENTER, FLA. - The White Room is seen at the upper left where the astronauts enter the Space Shuttle for flight. The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.
STS-26 Discovery, Orbiter Vehicle (OV) 103, at KSC LC pad 39B
1988-07-04
S88-42101 (15 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, awaits further processing at Kennedy Space Center (KSC) launch complex (LC) pad 39B. OV-103 arrived at LC pad 39B after a six-hour journey from the vehicle assembly building (VAB). The rotating service structure is retracted.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis reaches its destination, Launch Pad 39A, for liftoff no earlier than Jan. 19 on mission STS-98. To its immediate left is the Fixed Service Structure, with its 80-foot-tall white lighting mast on top. Further to the left is the Rotating Service Structure, where the white payload canister is being lifted to the Payload Changeout Room. The payload for the mission is the U.S. Lab Destiny, a key element in the construction of the International Space Station. The lab has five system racks for experiments already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B
NASA Technical Reports Server (NTRS)
1992-01-01
Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-967.
1998-09-28
KENNEDY SPACE CENTER, FLA. -- At left, the payload canister for Space Shuttle Discovery is lifted from its canister movement vehicle to the top of the Rotating Service Structure on Launch Pad 39-B. Discovery (right), sitting atop the Mobile Launch Platform and next to the Fixed Service Structure (FSS), is scheduled for launch on Oct. 29, 1998, for the STS-95 mission. That mission includes the International Extreme Ultraviolet Hitchhiker (IEH-3), the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar-observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process. At the top of the FSS can be seen the 80-foot lightning mast . The 4-foot-high lightning rod on top helps prevent lightning current from passing directly through the Space Shuttle and the structures on the pad
2000-10-31
After repair of a cracked cleat on the crawler-transporter, Space Shuttle Endeavour finally rests on Launch Pad 39B. To the left is the Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2008-09-21
CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted to the payload changeout room above. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller
2008-09-21
CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted toward the payload changeout room above. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller
2008-09-21
CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted toward the payload changeout room above. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, the view from the top of the Fixed Service Structure at Launch Complex 39A at NASA's Kennedy Space Center. The FSS, as the structure is known, is 285 feet high and overlooks the Rotating Service Structure that was rolled into place when a space shuttle was at the pad. The path taken by NASA's massive crawler-transporters that carried the shuttle stack 3 miles from Vehicle Assembly Building are also visible leading up to the launch pad. In the distance are seen the launch pads and support structures at Cape Canaveral Air Force Station for the Atlas V, Delta IV and Falcon 9 rockets. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Under gray skies, the Rotating Service Structure rolls back into its protective position around Space Shuttle Endeavour on Launch Pad 39A. The launch of Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Under gray skies, the Rotating Service Structure rolls back into its protective position around Space Shuttle Endeavour on Launch Pad 39A. The launch of Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2010-11-03
The space shuttle Discovery is seen on launch Pad 39a after the Rotating Service Structure (RSS) is rolled back on Wednesday, Nov. 3, 2010 at the NASA Kennedy Space Center in Cape Canaveral, Fla. During space shuttle Discovery's final spaceflight, the STS-133 crew members will take important spare parts to the International Space Station along with the Express Logistics Carrier-4. Photo Credit: (NASA/Bill Ingalls)
2008-05-30
CAPE CANAVERAL, Fla. -- Bathed in lights surrounding Launch Pad 39A and its structures at NASA's Kennedy Space Center, space shuttle Discovery is poised for launch on the STS-124 mission after rollback of the rotating service structure. First motion was at 8:33 p.m. and rollback was complete at 9:07 p.m. The structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots on a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Behind the shuttle is the orange external tank and the two solid rocket boosters (only one seen here). Beneath the shuttle's starboard wing is one of two tail service masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Launch is scheduled for 5:02 p.m. May 31. Photo credit: NASA/Troy Cryder
27 CFR 6.99 - Stocking, rotation, and pricing service.
Code of Federal Regulations, 2010 CFR
2010-04-01
... pricing service. 6.99 Section 6.99 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... pricing service. (a) General. Industry members may, at a retail establishment, stock, rotate and affix the price to distilled spirits, wine, or malt beverages which they sell, provided products of other industry...
Payload canister for Discovery is lifted in place for transfer
NASA Technical Reports Server (NTRS)
1998-01-01
At left, the payload canister for Space Shuttle Discovery is lifted from its canister movement vehicle to the top of the Rotating Service Structure on Launch Pad 39-B. Discovery (right), sitting atop the Mobile Launch Platform and next to the Fixed Service Structure (FSS), is scheduled for launch on Oct. 29, 1998, for the STS-95 mission. That mission includes the International Extreme Ultraviolet Hitchhiker (IEH-3), the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar- observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process. At the top of the FSS can be seen the 80-foot lightning mast . The 4- foot-high lightning rod on top helps prevent lightning current from passing directly through the Space Shuttle and the structures on the pad.
The evolving integrated vascular surgery residency curriculum.
Smith, Brigitte K; Greenberg, Jacob A; Mitchell, Erica L
2014-10-01
Since their introduction several years ago, integrated (0 + 5) vascular surgery residency programs are being increasingly developed across the country. To date, however, there is no defined "universal" curriculum for these programs and each program is responsible for creating its own curriculum. The aim of this study was to review the experiences of current 0 + 5 program directors (PDs) to determine what factors contributed to the curricular development within their institution. Semistructured interviews were conducted with 0 + 5 PDs to explore their experiences with program development, factors influencing the latter, and rationale for current curricula. The interview script was loosely structured to explore several factors including time of incoming residents' first exposure to the vascular surgical service, timing and rationale behind the timing of core surgical rotations throughout the 5 year program, educational value of nonsurgical rotations, opportunities for leadership and scholarly activity, and influence the general surgery program and institutional climate had on curricular structure. All interviews were conducted by a single interviewer. All interviews were qualitatively analyzed using emergent theme analysis. Twenty-six 0 + 5 PDs participated in the study. A total of 69% believed establishing professional identity early reduces resident attrition and recommend starting incoming trainees on vascular surgical services. Sixty-two percent spread core surgical rotations over the first 3 years to optimize general surgical exposure and most of the programs have eliminated specific rotations, as they were not considered valuable to the goals of training. Factors considered most important by PDs in curricular development include building on existing institutional opportunities (96%), avoiding rotations considered unsuccessful by "experienced" programs (92%), and maintaining a good working relationship with general surgery (77%). Fifty-eight percent of PDs voiced concern over the lack of standardization among the differing programs and most of the PDs agree that some degree of programmatic standardization is critical for the continued success of the 0 + 5 training paradigm. Qualitative evaluation of PD experiences with the development of 0 + 5 vascular surgery residency programs reveals the key factors that commonly influence program design. Programs continue to evolve in both structure and content as PDs respond to these influences. Learning from the collective experience of PDs and some standardization of the curricula may help current and future programs avoid common pitfalls in curricular development. Copyright © 2014 Elsevier Inc. All rights reserved.
2008-05-31
CAPE CANAVERAL, Fla. – A new NASA helicopter circles space shuttle Discovery on Launch Pad 39A prior to launch on the STS-124 mission. To the left of the shuttle is the fixed service structure with the 80-foot lightning mast on top. The rotating service structure, normally closed around the shuttle, is open for liftoff. At right of the pad is the 300,000-gallon water tower that provides the water used for sound suppression on the pad during liftoff. In the background is the Atlantic Ocean. Discovery is making its 35th flight. The STS-124 mission is the 26th in the assembly of the space station. It is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory.
STS-65 Columbia, OV-102, lifts off from KSC Launch Complex (LC) Pad 39A
NASA Technical Reports Server (NTRS)
1994-01-01
Columbia, Orbiter Vehicle (OV) 102, atop its external tank (ET) rises above the Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A after liftoff at 12:43 pm Eastern Daylight Time (EDT). OV-102 starboard side and one of the two solid rocket boosters (SRBs) are visible in this launch view. The retracted rotating service structure (RSS) is nearly covered in the shuttle's exhaust at the left as OV-102 clears the fixed service structure (FSS) tower. The space shuttle main engines produce a diamond shock effect. Once in orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2) mission.
2010-09-10
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, construction crews lay sand, reinforcing steel and large wooden mats under the rotating service structure (RSS) of Launch Pad 39B to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
2010-09-10
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, construction crews lay sand, reinforcing steel and large wooden mats under the rotating service structure (RSS) of Launch Pad 39B to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
2010-09-10
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, construction crews lay sand, reinforcing steel and large wooden mats under the rotating service structure (RSS) of Launch Pad 39B to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
Many-level multilevel structural equation modeling: An efficient evaluation strategy.
Pritikin, Joshua N; Hunter, Michael D; von Oertzen, Timo; Brick, Timothy R; Boker, Steven M
2017-01-01
Structural equation models are increasingly used for clustered or multilevel data in cases where mixed regression is too inflexible. However, when there are many levels of nesting, these models can become difficult to estimate. We introduce a novel evaluation strategy, Rampart, that applies an orthogonal rotation to the parts of a model that conform to commonly met requirements. This rotation dramatically simplifies fit evaluation in a way that becomes more potent as the size of the data set increases. We validate and evaluate the implementation using a 3-level latent regression simulation study. Then we analyze data from a state-wide child behavioral health measure administered by the Oklahoma Department of Human Services. We demonstrate the efficiency of Rampart compared to other similar software using a latent factor model with a 5-level decomposition of latent variance. Rampart is implemented in OpenMx, a free and open source software.
1999-06-24
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the payload canister carrying the Chandra X-ray Observatory nears the end of its ascent up the Rotating Service Structure (RSS) to the Payload Changeout Room. Umbilical hoses, which maintain a controlled environment for the observatory, are still attached to the payload canister transporter below that transferred the payload from the Vertical Processing Facility. The observatory will be moved into the payload bay of the Space Shuttle Columbia, seen in the background, after the RSS rotates to a position behind Columbia. The world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch no earlier than July 20 aboard Space Shuttle Columbia, on mission STS-93
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
Microelectromechanical Systems; A DoD Dual Use Technology Industrial Assessment.
1995-12-01
systems, • embedded sensors and actuators for condition-based maintenance of machines and vehicles, on-demand amplified structural strength in...will transmit temperature, pressure, and number-of- rotations information to a hand-held receiver used by the maintenance and service personnel. This...automobile industry being the major driver for most micro- machined sensors (pressure, acceleration and oxygen). In 1994 model year Projected Growth
Chakravarthy, Bharath; Posadas, Emerson; Ibrahim, Deena; McArthur, Kurt; Osborn, Megan; Hoonpongsimanont, Wirachin; Wong, Andrew; Lotfipour, Shahram
2015-04-01
Differences in productivity between off-service residents rotating in the emergency department (ED) and their emergency medicine (EM) resident counterparts have never been directly quantified. We sought to quantify the difference between off-service residents rotating in the ED and their EM resident counterparts. We also sought to find whether shift cards could be used to increase the productivity of off-service residents rotating in the ED. This is a prospective cohort study conducted at an urban, tertiary, Level I trauma center. We implemented the use of shift cards for off-service residents during their EM rotation. Completion of the shift card involved recording patients seen and their dispositions, procedures done, and documenting a learned bedside teaching point from their shift that day. Productivity was measured in terms of patients seen per hour (PPH) and relative value units per hour (RVU/h). Off-service residents showed a productivity of 0.529 PPH (95% confidence interval [CI] 0.493-0.566) and 1.40 RVU/h (95% CI 1.28-1.53) prior to implementation of shift cards. With the introduction of shift cards, productivity increased to 0.623 PPH (95% CI 0.584-0.663, p = 0.001) and 1.77 RVU/h (95% CI 1.64-1.91, p = 0.001). In comparison, first year EM resident productivity was 0.970 PPH (95% CI 0.918-1.02) and 3.01 RVU/h (95% CI 2.83-3.19). Shift cards can be used to foster motivation for off-service residents rotating in the ED, and is a simple and cost-effective method to improve system-based practices and utilization of resources. Copyright © 2015 Elsevier Inc. All rights reserved.
Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure
NASA Astrophysics Data System (ADS)
Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.
1995-05-01
The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.
Practice-based learning experience to develop residents as clinical faculty members.
Slazak, Erin M; Zurick, Gina M
2009-07-01
A practice-based learning experience designed to expose postgraduate year 1 (PGY1) and 2 (PGY2) residents to and prepare them for a career as clinical faculty is described. A practice-based learning experience was designed to give PGY1 and PGY2 residents exposure to the responsibilities of a clinical faculty member, integrating clinical practice, preceptor duties, and other academia-related responsibilities. The learning experience is a four-week, elective rotation for PGY1 and PGY2 residents. The rotation is designed to correspond to a four-week advanced pharmacy practice experience (APPE) rotation, allowing the resident to work continuously with the same one or two APPE students for the entire rotation. The resident is required to design and implement a rotation for the students and provide clinical services while integrating students into daily tasks, facilitating topic and patient discussions, evaluating assignments, providing constructive feedback, and assigning a final rotation grade. The resident also attends all academic and committee meetings and teaching obligations with his or her residency director, if applicable. The resident is mentored by the residency director throughout all phases of the rotation and is evaluated using goals and objectives tailored to this experience. The development of a formal, structured rotation to give postgraduate residents experience as a preceptor provided an opportunity for residents to further explore their interests in academia and allowed them to serve as a primary preceptor while being guided and evaluated by a mentor.
STS-101 Space Shuttle Atlantis after RSS rollback at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
The Rotating Service Structure (left) begins rolling back from Space Shuttle Atlantis on Launch Pad 39A. Atlantis is targeted for liftoff at 4:15 p.m. EDT April 24 on mission STS-101. The mission will take the crew of seven to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.
2002-04-03
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis is revealed as the Rotating Service Structure rolls back into launch position. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure has access platforms at five levels to provide access to the payload bay. The Shuttle rests on the Mobile Launcher Platform (MLP), which straddles the flame trench below. The flame trench is part of the Flame Deflector System that insulates pad structures from the intense heat of the launch. Above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. Mission STS-110 is scheduled to launch April 4 on its 11-day mission to the International Space Station
2010-11-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media learn about the transformation of Launch Pad 39B from Jose Perez-Morales, NASA's Launch Pad 39B senior manager. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The transformation includes the removal of the rotating service structure (RSS) and fixed service structure (FSS), refurbishment of the liquid oxygen and liquid hydrogen tanks, and the upgrade of about 1.3 million feet of cable. The new lightning protection system, which was in place for the October 2009 launch of Ares I-X, will remain. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
Salstein, David A.; Kann, Deirdre M.; Miller, Alvin J.; Rosen, Richard D.
1993-01-01
By exchanging angular momentum with the solid portion of the earth, the atmosphere plays a vital role in exciting small but measurable changes in the rotation of our planet. Recognizing this relationship, the International Earth Rotation Service invited the U.S. National Meteorological Center to organize a Sub-bureau for Atmospheric Angular Momentum (SBAAM) for the purpose of collecting, distributing, archiving, and analyzing atmospheric parameters relevant to earth rotation/polar motion. These functions of wind and surface pressure are being computed with data from several of the world's weather services, and they are being widely applied to the research and operations of the geodetic community. The SBAAM began operating formally in October 1989, and this article highlights its development, operations, and significance.
2015-04-12
decrease the number of errors due to fatigue” and improve production and efficiency ( Ivancevich , Konopaske, & Matteson, 2014, p. 151). “There are...Services, Ford, and Deloitte Services LP have utilized different forms of job rotation strategy” ( Ivancevich et al., 2014, p. 151). Further research...L. (2005, July). Job rotation. Credit Union Management, 28(7), 50–53. Ivancevich , J. M., Konopaske, R., & Matteson, M. T. (2014). Organizational
2000-08-16
KENNEDY SPACE CENTER, FLA. -- During the transfer the STS-106 payload to Atlantis on Launch Pad 39-B, a technician turns a switch to move the Payload Ground Handling Mechanism (PGHM). The mechanism is located inside the Payload Changeout Room (PCR) of each shuttle launch pad’s Rotating Service Structure. The PGHM (pronounced pigem) removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift
2000-08-16
KENNEDY SPACE CENTER, FLA. -- The STS-106 payload within the SPACEHAB Module is shown after being loaded onto Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad’s Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift
2000-08-16
KENNEDY SPACE CENTER, FLA. -- The STS-106 payload within the SPACEHAB Module is shown after being loaded onto Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad’s Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift
2000-08-16
KENNEDY SPACE CENTER, FLA. -- During the transfer the STS-106 payload to Atlantis on Launch Pad 39-B, a technician turns a switch to move the Payload Ground Handling Mechanism (PGHM). The mechanism is located inside the Payload Changeout Room (PCR) of each shuttle launch pad’s Rotating Service Structure. The PGHM (pronounced pigem) removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift
2007-11-06
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is positioned under the payload changeout room, on the rotating service structure. The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. They will be transferred into the payload changeout room on the pad. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis
Rotational characterization of methyl methacrylate: Internal dynamics and structure determination
NASA Astrophysics Data System (ADS)
Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe
2018-01-01
Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.
Rotating plug bearing and seal
Wade, Elman E.
1977-01-01
A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.
STS-84 Atlantis on Pad 39-A after RSS roll back
NASA Technical Reports Server (NTRS)
1997-01-01
News media representatives watch and record as the Space Shuttle Atlantis in full launch configuration is revealed after the Rotating Service Structure (RSS) is rotated back at Launch Pad 39A. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). Atlantis and its crew of seven are in final preparations for liftoff on Mission STS-84, the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Launch is scheduled at about 4:08 a.m. during an approximately 7-minute launch window. The exact liftoff time will be determined about 90 minutes prior to launch, based on the most current location of Mir.
Conceptual design of a mobile remote manipulator system
NASA Technical Reports Server (NTRS)
Bush, H. G.; Mikulas, M. M., Jr.; Wallsom, R. E.; Jensen, J. K.
1984-01-01
A mobile remote manipulator system has been identified as a necessary device for space station. A conceptual design for an MRMS is presented which features (1) tracks on the MRMS and guide pins only on the truss structure, (2) a push/pull drive mechanism which rotates to permit movement in four directions, and (3) spacecrane and mobile foot restraint manipulators (or arms). Operational and design features of the MRMS elements are described and illustrated. Concepts are also presented which permit rotating the operational plane of the MRMS through 90 deg. Such a system has been found to have great utility for initial space station construction, maintenance and repair, and to provide a construction capability for future station growth or large spacecraft assembly and/or servicing.
2008-10-14
CAPE CANAVERAL, Fla. – As the sunset faces behind Launch Pad 39A at NASA's Kennedy Space Center in Florida, lights on the rotating and fixed service structures take over the luminescence in the night. Space shuttle Atlantis is on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder
NASA Technical Reports Server (NTRS)
1997-01-01
The Rotating Service Structure has been retracted at Pad 39A. Discovery, the Space Shuttle for STS-82 Mission is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Which will be installed, the Fine Guidance Sensor #1 (FGS-1) and the Space Telescope Imaging Spectrograph (STIS) which will be installed. STS-82 will launch with a crew of seven at 3:54 a.m. February 11, 1997. The launch window is 65 minutes. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope and provide a reboost to the optimum altitude.
2008-10-14
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the rising moon stands out alongside the rotating and fixed service structures around space shuttle Atlantis. At left is the 300,000-gallon water tower used for sound suppression during liftoffs. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder
Rotating Connection for Electrical Cables
NASA Technical Reports Server (NTRS)
Manges, D. R.
1986-01-01
Cable reel provides electrical connections between fixed structure and rotating one. Reel carries power and signal lines while allowing rotating structure to turn up to 360 degrees with respect to fixed structure. Reel replaces sliprings. Can be used to electrically connect arm of robot with body. Reel releases cable to rotating part as it turns and takes up cable as rotating part comes back to its starting position, without tangling, twisting, or kinking.
Exploratory Bi-factor Analysis: The Oblique Case.
Jennrich, Robert I; Bentler, Peter M
2012-07-01
Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (Psychometrika 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (Psychometrika 76:537-549, 2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bifactor rotation criterion designed to produce a rotated loading matrix that has an approximate bi-factor structure. Among other things this can be used as an aid in finding an explicit bi-factor structure for use in a confirmatory bi-factor analysis. They considered only orthogonal rotation. The purpose of this paper is to consider oblique rotation and to compare it to orthogonal rotation. Because there are many more oblique rotations of an initial loading matrix than orthogonal rotations, one expects the oblique results to approximate a bi-factor structure better than orthogonal rotations and this is indeed the case. A surprising result arises when oblique bi-factor rotation methods are applied to ideal data.
USDA-ARS?s Scientific Manuscript database
Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The Land-use and Agricultural Management Practices web-Service (LAMPS) provides crop rotation and management information for user-specified areas within...
Space Shuttle Discovery is Prepared for Launch
2011-02-23
The space shuttle Discovery is seen shortly after the Rotating Service Structure was rolled back at launch pad 39A, at the Kennedy Space Center in Cape Canaveral, Florida, on Wednesday, Feb. 23, 2011. Discovery, on its 39th and final flight, will carry the Italian-built Permanent Multipurpose Module (PMM), Express Logistics Carrier 4 (ELC4) and Robonaut 2, the first humanoid robot in space to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2001-08-08
KENNEDY SPACE CENTER, Fla. -- On Launch Pad 39a, the Rotating Service Structure rolls back from around Space Shuttle Discovery in preparation for launch on mission STS-105. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
Broadband integrated polarization rotator using three-layer metallic grating structures
Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen; ...
2018-01-05
In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.
Broadband integrated polarization rotator using three-layer metallic grating structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen
In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.
2010-09-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, construction crews lay large wooden mats on top of sand and reinforcing steel to protect the concrete under the rotating service structure (RSS) of Launch Pad 39B during deconstruction. Starting in 2009, the structure at Pad B was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
2002-04-29
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour rests on Launch Pad 39A after rollout from the Vehicle Assembly Building. The Shuttle comprises the orbiter, in front, and the taller orange external tank behind it flanked by twin solid rocket boosters. The Shuttle sits on the Mobile Launcher Platform that straddles the flame trench below. On either side of Endeavour's tail and main engines are the tail service masts that support the fluid,, gas and electrical requirements of the orbiter's liquid oxyen and liquid hydrogen aft T-0 umbilicals. At left is the open Rotating Service Structure and the Fixed Service Structure to its right, with its 80-foot lightning mast on top. Mission STS-111 is designated UF-2, the 14th assembly flight to the International Space Station. Endeavour's payload includes the Multi-Purpose Logistics Module Leonardo and Mobile Base System. The mission also will swap resident crews on the Station, carrying the Expedition 5 crew and returning to Earth Expedition 4. Liftoff of Endeavour is scheduled between 4 and 8 p.m. May 30, 2002
Quality Improvement of Chrome-Diamond Coatings on Flowing Chrome Plating
NASA Astrophysics Data System (ADS)
Belyaev, V. N.; Koslyuk, A. Yu; Lobunets, A. V.; Andreyev, A. S.
2016-04-01
The research results of the process of flowing chrome plating of internal surfaces of long-length cylindrical articles with the usage of electrolyte with ultra-dispersed diamonds when continuous article rotation, while chromium-plating, are presented. During experiments the following varying technological parameters: electrolyte temperature and article frequency rotation were chosen, and experimental samples were obtained. Estimation of porosity, micro-hardness, thickness of chrome coatings and uniformity were performed as well as the precipitation structure by the method of scanning electron microscopy. The results showed that the use of ultra-dispersed diamonds and realization of the scheme with rotation of detail-cathode when flowing chromium-plating allows one to increase servicing characteristics of the coating due to the decrease of grains size of chrome coating and porosity, and due to the increase of micro-hardness, so confirming the efficiency of using the suggested scheme of coating application and the given type of ultra-dispersed fillers when chromium-plating.
Nayback-Beebe, Ann M; Yoder, Linda H
2011-06-01
The Interpersonal Relationship Inventory-Short Form (IPRI-SF) has demonstrated psychometric consistency across several demographic and clinical populations; however, it has not been psychometrically tested in a military population. The purpose of this study was to psychometrically evaluate the reliability and component structure of the IPRI-SF in active duty United States Army female service members (FSMs). The reliability estimates were .93 for the social support subscale and .91 for the conflict subscale. Principal component analysis demonstrated an obliquely rotated three-component solution that accounted for 58.9% of the variance. The results of this study support the reliability and validity of the IPRI-SF for use in FSMs; however, a three-factor structure emerged in this sample of FSMs post-deployment that represents "cultural context." Copyright © 2011 Wiley Periodicals, Inc.
2008-04-24
CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, workers on either side monitor the progress of the payload canister as it is raised to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2008-04-24
CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is being raised to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
Earth Rotation Parameters from DSN VLBI: 1994
NASA Technical Reports Server (NTRS)
Steppe, J. A.; Oliveau, S. H.; Sovers, O. J.
1994-01-01
In this report, Earth Rotation Parameter (ERP) estimates ahve been obtained from an analysis of Deep Space Network (DSN) VLBI data that directly aligns its celestial and terrestrial reference frames with those of the International Earth Rotation Service (IERS).
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the rotating service structure (RSS) on Launch Pad 39B is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crews are dismantling the rotating service structure (RSS) on Launch Pad 39B. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crews are dismantling the rotating service structure (RSS) on Launch Pad 39B. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crews are dismantling the rotating service structure (RSS) on Launch Pad 39B. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the rotating service structure (RSS) on Launch Pad 39B is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the rotating service structure (RSS) on Launch Pad 39B is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-10-04
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crews continue dismantling the rotating service structure (RSS) on Launch Pad 39B. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jack Pfaller
20 CFR 332.7 - Consideration of evidence.
Code of Federal Regulations, 2013 CFR
2013-04-01
... in rotating extra board, pool, or chain gang service shall, in the absence of evidence to the... work during the period covered by his claim. When it appears clear that an employee in rotating extra board, pool, or chain gang service who fails to report the number of miles or hours' credit earned on...
20 CFR 332.7 - Consideration of evidence.
Code of Federal Regulations, 2011 CFR
2011-04-01
... miles or hours' credit earned in rotating extra board, pool, or chain gang service shall, in the absence... equivalent of full-time work during the period covered by his claim. When it appears clear that an employee in rotating extra board, pool, or chain gang service who fails to report the number of miles or hours...
20 CFR 332.7 - Consideration of evidence.
Code of Federal Regulations, 2014 CFR
2014-04-01
... in rotating extra board, pool, or chain gang service shall, in the absence of evidence to the... work during the period covered by his claim. When it appears clear that an employee in rotating extra board, pool, or chain gang service who fails to report the number of miles or hours' credit earned on...
20 CFR 332.7 - Consideration of evidence.
Code of Federal Regulations, 2012 CFR
2012-04-01
... miles or hours' credit earned in rotating extra board, pool, or chain gang service shall, in the absence... equivalent of full-time work during the period covered by his claim. When it appears clear that an employee in rotating extra board, pool, or chain gang service who fails to report the number of miles or hours...
Willett, Lisa; Houston, Thomas K; Heudebert, Gustavo R; Estrada, Carlos
2012-09-01
Providing high-quality teaching to residents during attending rounds is challenging. Reasons include structural factors that affect rounds, which are beyond the attending's teaching style and control. To develop a new evaluation tool to identify the structural components of ward rounds that most affect teaching quality in an internal medicine (IM) residency program. The authors developed a 10-item Ecological Momentary Assessment (EMA) tool and collected daily evaluations for 18 months from IM residents rotating on inpatient services. Residents ranked the quality of teaching on rounds that day, and questions related to their service (general medicine, medical intensive care unit, and subspecialty services), patient census, absenteeism of team members, call status, and number of teaching methods used by the attending. Residents completed 488 evaluation cards over 18 months. This found no association between perceived teaching quality and training level, team absenteeism, and call status. We observed differences by service (P < .001) and patient census (P = .009). After adjusting for type of service, census was no longer significant. Use of a larger variety of teaching methods was associated with higher perceived teaching quality, regardless of service or census (P for trend < .001). The EMA tool successfully identified that higher patient census was associated with lower perceived teaching quality, but the results were also influenced by the type of teaching service. We found that, regardless of census or teaching service, attendings can improve their teaching by diversifying the number of methods used in daily rounds.
Cooling for a rotating anode X-ray tube
Smither, Robert K.
1998-01-01
A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.
Development of a pharmacy resident rotation to expand decentralized clinical pharmacy services.
Hill, John D; Williams, Jonathan P; Barnes, Julie F; Greenlee, Katie M; Cardiology, Bcps-Aq; Leonard, Mandy C
2017-07-15
The development of a pharmacy resident rotation to expand decentralized clinical pharmacy services is described. In an effort to align with the initiatives proposed within the ASHP Practice Advancement Initiative, the department of pharmacy at Cleveland Clinic, a 1,400-bed academic, tertiary acute care medical center in Cleveland, Ohio, established a goal to provide decentralized clinical pharmacy services for 100% of patient care units within the hospital. Patient care units that previously had no decentralized pharmacy services were evaluated to identify opportunities for expansion. Metrics analyzed included number of medication orders verified per hour, number of pharmacy dosing consultations, and number of patient discharge counseling sessions. A pilot study was conducted to assess the feasibility of this service and potential resident learning opportunities. A learning experience description was drafted, and feedback was solicited regarding the development of educational components utilized throughout the rotation. Pharmacists who were providing services to similar patient populations were identified to serve as preceptors. Staff pharmacists were deployed to previously uncovered patient care units, with pharmacy residents providing decentralized services on previously covered areas. A rotating preceptor schedule was developed based on geographic proximity and clinical expertise. An initial postimplementation assessment of this resident-driven service revealed that pharmacy residents provided a comparable level of pharmacy services to that of staff pharmacists. Feedback collected from nurses, physicians, and pharmacy staff also supported residents' ability to operate sufficiently in this role to optimize patient care. A learning experience developed for pharmacy residents in a large medical center enabled the expansion of decentralized clinical services without requiring additional pharmacist full-time equivalents. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Sex differences in mental rotation tasks: Not just in the mental rotation process!
Boone, Alexander P; Hegarty, Mary
2017-07-01
The paper-and-pencil Mental Rotation Test (Vandenberg & Kuse, 1978) consistently produces large sex differences favoring men (Voyer, Voyer, & Bryden, 1995). In this task, participants select 2 of 4 answer choices that are rotations of a probe stimulus. Incorrect choices (i.e., foils) are either mirror reflections of the probe or structurally different. In contrast, in the mental rotation experimental task (Shepard & Metzler, 1971) participants judge whether 2 stimuli are the same but rotated or different by mirror reflection. The goal of the present research was to examine sources of sex differences in mental rotation, including the ability to capitalize on the availability of structure foils. In 2 experiments, both men and women had greater accuracy and faster reaction times (RTs) for structurally different compared with mirror foils in different versions of the Vandenberg and Kuse Mental Rotation Test (Experiment 1) and the Shepard and Metzler experimental task (Experiment 2). A significant male advantage in accuracy but not response time was found for both trial types. The male advantage was evident when all foils were structure foils so that mental rotation was not necessary (Experiment 3); however, when all foils were structure foils and participants were instructed to look for structure foils a significant sex difference was no longer evident (Experiment 4). Results suggest that the mental rotation process is not the only source of the sex difference in mental rotation tasks. Alternative strategy use is another source of sex differences in these tasks. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
2003-01-15
KENNEDY SPACE CENTER, FLA. -- The late afternoon sun highlights the external tank and solid rocket booster on Space Shuttle Columbia after rollback of the Rotating Service Structure on Launch Pad 39A. Visible are the orbiter access arm with the White Room extended to Columbia's cockpit, and at the top, the gaseous oxygen vent arm and cap, called the "beanie cap." Columbia is scheduled for launch Jan. 16 at 10:39 a.m. EST on mission STS-107, a research mission.
2003-01-15
KENNEDY SPACE CENTER, FLA. -- The late afternoon sun highlights the external tank and solid rocket booster on Space Shuttle Columbia after rollback of the Rotating Service Structure on Launch Pad 39A. Visible are the orbiter access arm with the White Room extended to Columbia's cockpit, and at the top, the gaseous oxygen vent arm and cap, called the "beanie cap." Columbia is scheduled for launch Jan. 16 at 10:39 a.m. EST on mission STS-107, a research mission.
2008-10-13
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the rotating service structure is open, revealing space shuttle Atlantis on the pad for the STS-125 mission, the fifth and final shuttle servicing mission for NASA’s Hubble Space Telescope. On the RSS, the payload canister is in position at the payload changeout room to receive the Hubble hardware. The payload comprises four carriers holding various equipment for the mission. The hardware will be transported back to Kennedy’s Payload Hazardous Servicing Facility where it will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Tim Jacobs
Relevance, Challenge and Motivation: The Ingredients of a Novel Managerial Development Program
ERIC Educational Resources Information Center
Hart, Gail; Austen, Gaynor; Cochrane, Tom; Daniel, Robyn; Thelander, Neil; Tweedale, Robyn
2005-01-01
The Division of Information and Academic Services (DIAS) is a large service division (over 400 staff) at Queensland University of Technology (QUT). In 2002 it supported a novel one-month rotation of roles by the three department directors. The rotation was conceived as an important professional development opportunity for each of the directors and…
Aljerian, Nawfal; Omair, Aamir; Yousif, Sami A.; Alqahtani, Abdulrahman S.; Alhusain, Faisal A.; Alotaibi, Bader; Alshehri, Mohammad F.; Aljuhani, Majed; Albaiz, Saad; Alaska, Yasser; Alanazi, Abdullah F.
2018-01-01
Background: Saudi Board of Emergency Medicine (SBEM) graduates are involved in a 1-month rotation in emergency medical services (EMSs) and disaster medicine. The purpose of this study was to evaluate change in knowledge and attitude of EM residents after the introduction of the EMS and disaster medicine rotation. Materials and Methods: The study included 32 3rd-year SBEM residents. A pretest/posttest design and a five-point Likert scale were used. The data included a response to a questionnaire developed by EMS and disaster experts. The questionnaire was distributed on the 1st day of the rotation and 45 days after. Satisfaction questionnaires were distributed after the rotation. The data were analyzed using SPSS 20. Results: Twenty-five residents responded to the satisfaction survey (75%). The overall satisfaction with the course modules was high; the course content showed the highest level of satisfaction (96%), and the lowest satisfaction was for the air ambulance ride outs (56%). The results of the pre-/post-test questionnaire showed an increase of 18.5% in the residents mean score (P < 0.001). In the open-ended section, the residents requested that the schedule is distributed before the course start date, to have more field and hands-on experience, and to present actual disaster incidents as discussion cases. The residents were impressed with the organization and diversity of the lectures, and to a lesser extent for the ambulance ride outs and the mass casualty incident drill l. Seventy-one percent indicated that they would recommend this course to other residents. Conclusion/Recommendation: This study showed that a structured course in EMS and disaster medicine had improved knowledge and had an overall high level of satisfaction among the residents of the SBEM. Although overall satisfaction and improvement in knowledge were significant, there are many areas in need of better organization. PMID:29628668
2006-08-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At right are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
2006-08-29
KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
2006-08-29
KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Under wispy white morning clouds, Space Shuttle Atlantis approaches Launch Pad 39A, which shows the Rotating Service Structure open (left) and the Fixed Service Structure (right). At the RSS, the payload canister is being lifted up to the Payload Changeout Room. This is the Shuttle’s second attempt at rollout. Jan. 2 a failed computer processor on the crawler transporter aborted the rollout and the Shuttle was returned to the Vehicle Assembly Building using a secondary computer processor on the vehicle. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
2008-10-20
CAPE CANAVERAL, Fla. - Space shuttle Atlantis rolls away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion was at 6:48 a.m. EDT. In the background are the open rotating service structure and the fixed service structure topped by its 80-foot-tall lightning mast. Atlantis is rolling back to the Vehicle Assembly Building to await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. The space shuttle is mounted on a Mobile Launcher Platform and will be delivered to the Vehicle Assembly Building atop a crawler transporter. traveling slower than 1 mph during the 3.4-mile journey. The rollback is expected to take approximately six hours. Photo credit: NASA/Kim Shiflett
2001-01-03
KENNEDY SPACE CENTER, Fla. -- At the top of Launch Pad 39A, Space Shuttle Atlantis closes in on the Rotating Service Structure (left). On the RSS, the payload canister can be seen half way up the structure as it is lifted to the Payload Changeout Room. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
Pletnev, Sergei; Subach, Fedor V; Verkhusha, Vladislav V; Dauter, Zbigniew
2014-01-01
The rotational order-disorder (OD) structure of the reversibly photoswitchable fluorescent protein rsTagRFP is discussed in detail. The structure is composed of tetramers of 222 symmetry incorporated into the lattice in two different orientations rotated 90° with respect to each other around the crystal c axis and with tetramer axes coinciding with the crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates the rotational OD structure with statistically averaged I422 symmetry. Despite order-disorder pathology, the structure of rsTagRFP has electron-density maps of good quality for both non-overlapping and overlapping parts of the model. The crystal contacts, crystal internal architecture and a possible mechanism of rotational OD crystal formation are discussed.
DOT National Transportation Integrated Search
1985-02-01
Two types of shift rotation in the same air traffic facility were investigated in order to determine the relative advantages and disadvantages of nonrotating shift work (steady shift) and rotating shift work. The rotating shift work chosen for compar...
2008-05-30
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center, the rotating service structure, or RSS, has rolled back on its axis to uncover space shuttle Discovery, lighted against the night sky, in preparation for launch on the STS-124 mission. Support for the outer end of the bridge is provided by two eight-wheel, motor-driven trucks (one is seen at bottom left) that move along circular twin rails installed flush with the pad surface. First motion was at 8:33 p.m. and rollback was complete at 9:07 p.m. The structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots on a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Above the orange external tank is the oxygen vent hood, called the "beanie cap," at the end of the gaseous oxygen vent arm extending from the fixed service structure. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below is the orbiter access arm with the White Room at the end, flush against the shuttle. The White Room provides access into the shuttle. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Launch is scheduled for 5:02 p.m. May 31. Photo credit: NASA/Troy Cryder
ERIC Educational Resources Information Center
Randall, Melinda; Romero-Gonzalez, Mauricio; Gonzalez, Gerardo; Klee, Anne; Kirwin, Paul
2011-01-01
Objective: Psychiatric rehabilitation is an evidence-based service with the goal of recovery for people with severe mental illness. Psychiatric residents should understand the services and learn the principles of psychiatric rehabilitation. This study assessed whether a 3-month rotation in a psychiatric rehabilitation center changes the competency…
Mayhew, Susannah H; Warren, Charlotte E; Collumbien, Martine; Ndwiga, Charity; Mutemwa, Richard; Lut, Irina; Colombini, Manuela; Vassall, Anna
2017-01-01
Abstract Drawing on rich data from the Integra evaluation of integrated HIV and reproductive-health services, we explored the interaction of systems hardware and software factors to explain why some facilities were able to implement and sustain integrated service delivery while others were not. This article draws on detailed mixed-methods data for four case-study facilities offering reproductive-health and HIV services between 2009 and 2013 in Kenya: (i) time-series client flow, tracking service uptake for 8841 clients; (ii) structured questionnaires with 24 providers; (iii) in-depth interviews with 17 providers; (iv) workload and facility data using a periodic activity review and cost-instruments; and (v) contextual data on external activities related to integration in study sites. Overall, our findings suggested that although structural factors like stock-outs, distribution of staffing and workload, rotation of staff can affect how integrated care is provided, all these factors can be influenced by staff themselves: both frontline and management. Facilities where staff displayed agency of decision making, worked as a team to share workload and had management that supported this, showed better integration delivery and staff were able to overcome some structural deficiencies to enable integrated care. Poor-performing facilities had good structural integration, but staff were unable to utilize this because they were poorly organized, unsupported or teams were dysfunctional. Conscientious objection and moralistic attitudes were also barriers. Integra has demonstrated that structural integration is not sufficient for integrated service delivery. Rather, our case studies show that in some cases excellent leadership and peer-teamwork enabled facilities to perform well despite resource shortages. The ability to provide support for staff to work flexibly to deliver integrated services and build resilient health systems to meet changing needs is particularly relevant as health systems face challenges of changing burdens of disease, climate change, epidemic outbreaks and more. PMID:29194544
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Under wispy white morning clouds, Space Shuttle Atlantis nears the Rotating Service Structure on Launch Pad 39A. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
2000-08-16
KENNEDY SPACE CENTER, FLA. -- Technicians facilitate the transfer the STS-106 payload to Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The payload within the SPACEHAB module is shown just after being loaded in the payload bay of Atlantis. The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift
2000-08-16
KENNEDY SPACE CENTER, FLA. -- Technicians facilitate the transfer the STS-106 payload to Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The payload within the SPACEHAB module is shown just after being loaded in the payload bay of Atlantis. The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift
2007-11-06
KENNEDY SPACE CENTER, FLA. -- At NASA's Kennedy Space Center, the payload canister atop its transporter reaches the top of Launch Pad 39A. The canister will be positioned under the payload changeout room, on the rotating service structure at left. The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. They will be transferred into the payload changeout room on the pad. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis
2001-08-08
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery is bathed in light after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. The Shuttle comprises the two solid rocket boosters, external tank and orbiter, all of which are secured on the mobile launcher platform beneath them. Extending toward Discovery from the fixed service structure at left is the orbiter access arm. At the end of the arm is the White Room, an environmental chamber that mates with the orbiter and allows personnel to enter the crew compartment. Below, on either side of the orbiter’s tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
2010-10-04
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, this image shows the progress of the rotating service structure (RSS) on Launch Pad 39B as it is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jack Pfaller
2010-10-04
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, this long range view shows the progress of the rotating service structure (RSS) on Launch Pad 39B as it is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jack Pfaller
2010-10-04
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, this image shows the progress of the rotating service structure (RSS) on Launch Pad 39B as it is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jack Pfaller
DOE Office of Scientific and Technical Information (OSTI.GOV)
KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI
2000-07-13
The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decompositionmore » and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.« less
Cosolvent effect on the dynamics of water in aqueous binary mixtures
NASA Astrophysics Data System (ADS)
Zhang, Xia; Zhang, Lu; Jin, Tan; Zhang, Qiang; Zhuang, Wei
2018-04-01
Water rotational dynamics in the mixtures of water and amphiphilic molecules, such as acetone and dimethyl sulfoxide (DMSO), measured by femtosecond infrared, often vary non-monotonically as the amphiphilic molecule's molar fraction changes from 0 to 1. Recent study has attributed the non-ideal water rotation with concentration in DMSO-water mixtures to different microscopic hydrophilic-hydrophobic segregation structure in water-rich and water-poor mixtures. Interestingly, the acetone molecule has very similar molecular structure to DMSO, but the extremum of the water rotational time in the DMSO-water mixtures significantly shifts to lower concentration and the rotation of water is much faster than those in acetone-water mixtures. The simulation results here shows that the non-ideal rotational dynamics of water in both mixtures are due to the frame rotation during the interval of hydrogen bond (HB) switchings. A turnover of the frame rotation with concentration takes place as the structure transition of mixture from the hydrogen bond percolation structure to the hydrophobic percolation structure. The weak acetone-water hydrogen bond strengthens the hydrophobic aggregation and accelerates the relaxation of the hydrogen bond, so that the structure transition takes places at lower concentration and the rotation of water is faster in acetone-water mixture than in DMSO-water mixture. A generally microscopic picture on the mixing effect on the water dynamics in binary aqueous mixtures is presented here.
NASA Astrophysics Data System (ADS)
Craig, Norman C.; Demaison, J.; Rudolph, Heinz Dieter; Gurusinghe, Ranil M.; Tubergen, Michael; Coudert, L. H.; Szalay, Peter; Császár, Attila
2017-06-01
FT microwave spectra have been observed and analyzed for the S (in-plane) and A (out-of-plane) conformers of propene-3-{d}_1 in the 10-22 GHz region. Both conformers display splittings due to deuterium quadrupole coupling; for the latter one only, a 19 MHz splitting due to internal rotation of the partially deuterated methyl group has been observed. In addition to rotational constants, the analysis yielded quadrupole coupling constants and parameters describing the tunneling splitting and its rotational dependence. Improved rotational constants for parent propene and the three ^{13}C_1 species are recently available. Use of vibration-rotation interaction constants computed at the MP2(FC)/cc-pVTZ level gave equilibrium rotational constants for these six species and for fourteen more deuterium isotopologues with diminished accuracy from early literature data. A semiexperimental equilibrium structure, r_e^{SE}, has been determined for propene by fitting fourteen structural parameters to the equilibrium rotational constants. The new r_e^{SE} structure compares well with an ab initio equilibrium structure computed with the all-electron CCSD(T)/cc-pV(Q,T)Z model and with a structure obtained using the mixed regression method with predicates and equilibrium rotational constants. N. C. Craig, P. Groner, A. R. Conrad, R. Gurusinghe, M. J. Tubergen J. Mol. Spectrosc. 248, 1-6 (2016).
Ordered structures in rotating ultracold Bose gases
NASA Astrophysics Data System (ADS)
Barberán, N.; Lewenstein, M.; Osterloh, K.; Dagnino, D.
2006-06-01
Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Ω increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N<10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Ω .
2001-03-08
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery shines on Launch Pad 39B after rollback of the Rotating Service Structure. Situated above the external tank is the Gaseous Oxygen Vent Arm with the “beanie cap,” a vent hood. Extended out from the Fixed Service Structure (left) to the orbiter is the orbiter access arm with an environmentally controlled chamber, known as the White Room, at the end of the arm. The White Room provides entrance for the astronaut crew into the orbiter. On either side of the tail and main engines are the tail service masts. Rising 31 feet above the Mobile Launcher Platform, the tail masts provide umbilical connections for liquid oxygen and liquid hydrogen lines to fuel the external tank from storage tanks adjacent to the launch pad. Discovery carries the Multi-Purpose Logistics Module Leonardo, the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. Launch on mission STS-102 is scheduled March 8 at 6:42 a.m. EST
Consecutive Short-Scan CT for Geological Structure Analog Models with Large Size on In-Situ Stage.
Yang, Min; Zhang, Wen; Wu, Xiaojun; Wei, Dongtao; Zhao, Yixin; Zhao, Gang; Han, Xu; Zhang, Shunli
2016-01-01
For the analysis of interior geometry and property changes of a large-sized analog model during a loading or other medium (water or oil) injection process with a non-destructive way, a consecutive X-ray computed tomography (XCT) short-scan method is developed to realize an in-situ tomography imaging. With this method, the X-ray tube and detector rotate 270° around the center of the guide rail synchronously by switching positive and negative directions alternately on the way of translation until all the needed cross-sectional slices are obtained. Compared with traditional industrial XCTs, this method well solves the winding problems of high voltage cables and oil cooling service pipes during the course of rotation, also promotes the convenience of the installation of high voltage generator and cooling system. Furthermore, hardware costs are also significantly decreased. This kind of scanner has higher spatial resolution and penetrating ability than medical XCTs. To obtain an effective sinogram which matches rotation angles accurately, a structural similarity based method is applied to elimination of invalid projection data which do not contribute to the image reconstruction. Finally, on the basis of geometrical symmetry property of fan-beam CT scanning, a whole sinogram filling a full 360° range is produced and a standard filtered back-projection (FBP) algorithm is performed to reconstruct artifacts-free images.
Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance
NASA Astrophysics Data System (ADS)
Sadeghi, S.; Hamidi, S. M.
2018-04-01
Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.
NASTRAN forced vibration analysis of rotating cyclic structures
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.; Gallo, A. M.
1983-01-01
Theoretical aspects of a new capability developed and implemented in NASTRAN level 17.7 to analyze forced vibration of a cyclic structure rotating about its axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of turbomachines are some examples of such structures. The capability includes the effects of Coriolis and centripetal accelerations on the rotating structure which can be loaded with: (1) directly applied loads moving with the structure and (2) inertial loas due to the translational acceleration of the axis of rotation (''base' acceleration). Steady-state sinusoidal or general periodic loads are specified to represent: (1) the physical loads on various segments of the complete structure, or (2) the circumferential harmonic components of the loads in (1). The cyclic symmetry feature of the rotating structure is used in deriving and solving the equations of forced motion. Consequently, only one of the cyclic sectors is modelled and analyzed using finite elements, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. A tuned twelve bladed disc example is used to demonstrate the various features of the capability.
NASA Astrophysics Data System (ADS)
Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.
2015-11-01
A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.
Wade, Elman E.
1979-01-01
A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.
Internal rotation in halogenated toluenes: Rotational spectrum of 2,3-difluorotoluene
NASA Astrophysics Data System (ADS)
Nair, K. P. Rajappan; Herbers, Sven; Grabow, Jens-Uwe; Lesarri, Alberto
2018-07-01
The microwave rotational spectrum of 2,3-difluorotoluene has been studied by pulsed supersonic jet using Fourier transform microwave spectroscopy. The tunneling splitting due to the methyl internal rotation in the ground torsional state could be unambiguously identified and the three-fold (V3) potential barrier hindering the internal rotation of the methyl top was determined as 2518.70(15) J/mol. The ground-state rotational parameters for the parent and seven 13C isotopic species in natural abundance were determined with high accuracy, including all quartic centrifugal distortion constants. The molecular structure was derived using the substitution (rs) method. From the rotational constants of the different isotopic species the rs structure as well as the r0 structure was determined. Supporting ab initio (MP2) and DFT (B3LYP) calculations provided comparative values for the potential barrier and molecular parameters.
NASA Astrophysics Data System (ADS)
Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.
2018-05-01
The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.
ERIC Educational Resources Information Center
Kambilombilo, Dennis; Sakala, Whyson
2015-01-01
The study was conducted to investigate the challenges in-service mathematics student teachers face in transformational geometry; reflection and rotation. The Van Hiele Theory of levels of Thought was used as the theoretical framework for this study. A case study was undertaken using a written test. The research was carried on second and third…
2009-04-18
CAPE CANAVERAL, Fla. –– On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted toward the payload changeout room, or PCR, on the rotating service structure. The red umbilical lines are still attached. The canister's cargo of Hubble Space Telescope equipment will be deposited in the PCR and later transferred to the payload bay on space shuttle Atlantis, at right. Atlantis' 11-day STS-125 mission to service Hubble is targeted for launch May 12. The flight will include five spacewalks in which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014. Photo credit: NASA/Kim Shiflett
2001-07-26
KENNEDY SPACE CENTER, FLA. -- Day in the Life, page 2. Preparing the pad. Workers maintain Pad A at Kennedy Space Center’s Launch Complex 39. Jack Hanover of SDB Engineers and Constructors Inc. prepares to change a bearing in the Rotating Service Structure. This photograph was taken for a special color edition of Spaceport News designed to portray in photographs a single day at KSC, July 26, 2000. The special edition, published Aug. 25, 2000, was created to give readers a look at KSC’s diverse workforce and the critical roles workers play in the nation’s space program. Spaceport News is an official publication of the Kennedy Space Center and is published on alternate Fridays by the Public Affairs Office in the interest of KSC civil service and contractor employees
Rotatable electric cable connecting system
NASA Technical Reports Server (NTRS)
Manges, D. R. (Inventor)
1985-01-01
A cable reel assembly is described which is particularly adapted for, but not limited to, a system for providing electrical connection of power and data signals between an orbiter vehicle, such as a space shuttle, and a recovered satellite. The assembly is comprised of two mutually opposing ring type structures having 180 deg relative rotation with one of the structures being held in fixed position while the other structure is rotatable. Motor controlled berthing latches and umbilical cable connectors for the satellite are located on the rim of the rotatable ring structure. The electrical cable assembly is fed in two sections from the orbiter vehicle into the outer rim portion of the fixed ring structure where they are directed inwardly and attached to two concentrically coiled metal bands whose respective ends are secured to inner and outer post members of circular sets of guide pins located on opposing circular plate members, one rotatable and one fixed. The cable sections are fed out as three output cable sections through openings in the central portion of the circular plate of the rotatable ring structure where they are directed to the latches and connectors located on its rim.
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
Space station rotational equations of motion
NASA Technical Reports Server (NTRS)
Rheinfurth, M. H.; Carroll, S. N.
1985-01-01
Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.
A case of iatrogenic stress? Results of the RCOG August rotation survey.
Cooke, M; Morris, E
2014-10-01
Although there are a number of studies of patient safety during the August rotation, they often focus on newly qualified doctors. It remains unclear whether negative impacts are due to doctors' inexperience, lack of technical skill or other aspects of rotation. This study used an electronic survey to seek the views of doctors working in obstetrics and gynaecology in the UK. A total of 1,879 responses were received. The August rotation was felt to be a stressful time, with a negative effect on patient care (82%) and safety (73%), lasting up to 1 month (62%). Although reducing services was thought to be helpful, there was strong support for staggering the rotation by grade (80%). This would ensure availability of doctors to cover services during the induction period, which should improve patient care and reduce staff stress. In addition, intensive skills training for junior staff and a supportive culture during the 1st month could optimise the integration and performance of doctors of all grades.
Low-loss, high-speed, high-T.sub.c superconducting bearings
Hull, John R.; Mulcahy, Thomas M.; Uherka, Kenneth L.
1997-01-01
A flywheel energy storage device including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize the rotating iron structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing
We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less
Kahol, Kanav; Huston, Carrie; Hamann, Jessica; Ferrara, John J
2011-03-01
Health care continues to expand in scope and in complexity. In this changing environment, residents are challenged with understanding its intricacies and the impact it will have on their professional activities and careers. Embedding each of the competency elements in residents in a meaningful way remains a challenge for many surgery residency program directors. We established a nonclinical rotation to provide surgery postgraduate year-1 (PGY-1) residents with a structured, multifaceted, largely self-directed curriculum into which each of the 6 core competencies are woven. Posttesting strategies were established for most curricular experiences to ensure to the greatest possible extent that each resident will have achieved an acceptable level of understanding of each of the competency areas before being given credit for the rotation. By uniformly exceeding satisfactory scores on respective objective analyses, residents demonstrated an increased (at least short-term) understanding of each of the assessed competency areas. Our project sought to address a prior lack of opportunity for our residents to develop a sound foundation for our residents in systems-based practice. Our new rotation addresses systems-based practice in several different learning environments, including emergency medical service ride-along, sentinel event participation, and hospice visits. Several research projects have enhanced the overall learning program. Our experience shows that a rotation dedicated to competency training can provide an innovative and engaging means of teaching residents the value of each element.
The Z1 truss is transported to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
Before dawn, the payload canister (left) with the Integrated Truss Structure Z1 moves slowly up the crawlerway ramp on Launch Pad 39A toward Space Shuttle Discovery in the background. The canister will be lifted up the Rotating Service Structure to the Payload Changeout Room where the Z1 will be removed and transferred to Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.
The Z1 truss begins its ride up the RSS on Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
With the onset of dawn, the payload canister (left) with the Integrated Truss Structure Z1 inside begins its journey up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.
The Z1 truss is transported to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
At Launch Pad 39A, the payload canister at left draws closer to the Rotating Service Structure where it will be lifted to the Payload Changeout Room. There its cargo, the Integrated Truss Structure Z1, will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.
The Z1 truss begins its ride up the RSS on Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
As the sky grows lighter, , the payload canister (left) with the Integrated Truss Structure Z1 inside is slowly lifted up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.
The Z1 truss is transported to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.
2000-09-13
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT
2000-09-13
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT
NASA Astrophysics Data System (ADS)
Rahman, Abdul Ghaffar Abdul; Noroozi, Siamak; Dupac, Mihai; Mahathir Syed Mohd Al-Attas, Syed; Vinney, John E.
2013-03-01
Complex rotating machinery requires regular condition monitoring inspections to assess their running conditions and their structural integrity to prevent catastrophic failures. Machine failures can be divided into two categories. First is the wear and tear during operation, they range from bearing defects, gear damage, misalignment, imbalance or mechanical looseness, for which simple condition-based maintenance techniques can easily detect the root cause and trigger remedial action process. The second factor in machine failure is caused by the inherent design faults that usually happened due to many reasons such as improper installation, poor servicing, bad workmanship and structural dynamics design deficiency. In fact, individual machines components are generally dynamically well designed and rigorously tested. However, when these machines are assembled on sight and linked together, their dynamic characteristics will change causing unexpected behaviour of the system. Since nondestructive evaluation provides an excellent alternative to the classical monitoring and proved attractive due to the possibility of performing reliable assessments of all types of machinery, the novel dynamic design verification procedure - based on the combination of in-service operation deflection shape measurement, experimental modal analysis and iterative inverse finite element analysis - proposed here allows quick identification of structural weakness, and helps to provide and verify the solutions.
Low-loss, high-speed, high-{Tc} superconducting bearings
Hull, J.R.; Mulcahy, T.M.; Uherka, K.L.
1997-06-24
A flywheel energy storage device is disclosed including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize the rotating iron structure. 15 figs.
Low-loss, high-speed, high-T.sub.C superconducting bearings
Hull, John R.; Mulcahy, Thomas M.; Uherka, Kenneth L.
1996-01-01
A flywheel energy storage device including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize and levitate the rotating iron structure.
2001-07-25
KENNEDY SPACE CENTER, Fla. -- The payload canister is lifted up the Rotating Service Structure on Launch Pad 39A. At right is Space Shuttle Discovery. Inside the canister are the primary payloads on mission STS-105, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room and then moved into the Discovery’s payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9
STS-105 MPLM is moved into the PCR
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The payload canister is lifted up the Rotating Service Structure on Launch Pad 39A. At right is Space Shuttle Discovery. Inside the canister are the primary payloads on mission STS-105, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room and then moved into the Discoverys payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.
Bennett, Nadia L; Flesch, Judd D; Cronholm, Peter; Reilly, James B; Ende, Jack
2017-04-01
The Chiefs' Service (CS), a structured approach to inpatient teaching rounds, focuses on resident education and patient-centered care without disrupting patient census sizes or admitting cycles. It has five key elements: morning huddles; bedside rounds; diagnostic "time-outs"; day-of-discharge rounds; and postdischarge follow-up rounds. The authors hypothesized the CS model would be well received by residents and considered more effective than more-traditional rounds. The CS was implemented on Penn Presbyterian Medical Center's general medicine inpatient service using a quasi-experimental design. Its first year (January 2013-January 2014) was evaluated with a mixed-methods approach. Residents completed end-of-rotation evaluation questionnaires; 20 CS and 10 traditional service (TS) residents were interviewed. Measures of resident agreement on questionnaire items were compared across groups using independent sample t testing. A modified grounded theory approach was used to assess CS residents' perspectives on the CS elements and identify emergent themes. The questionnaires were completed by 183/188 residents (response rate 97%). Compared with TS residents, CS residents reported significantly greater satisfaction in the domains of resident education and patient care, and they rated the overall value of the rotation significantly higher. The majority of CS residents found the CS elements to be effective. CS residents described the CS as focused on resident education, patient-centered care, and collaboration with an interdisciplinary team. The CS approach to inpatient rounding is seen by residents as valuable and is associated with positive outcomes in terms of residents' perceptions of learning, interdisciplinary communication, and patient care.
2008-10-13
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the rotating service structure is open, revealing space shuttle Atlantis on the pad for the STS-125 mission, the fifth and final shuttle servicing mission for NASA’s Hubble Space Telescope. On the RSS, the payload canister is in position at the payload changeout room to receive the Hubble hardware. High winds, however, have delayed the transfer. The payload comprises four carriers holding various equipment for the mission. The hardware will be transported back to Kennedy’s Payload Hazardous Servicing Facility where it will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Tim Jacobs
2008-10-13
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the rotating service structure is open, revealing space shuttle Atlantis on the pad for the STS-125 mission, the fifth and final shuttle servicing mission for NASA’s Hubble Space Telescope. On the RSS, the payload canister is in position at the payload changeout room to receive the Hubble hardware. High winds, however, have delayed the transfer. The payload comprises four carriers holding various equipment for the mission. The hardware will be transported back to Kennedy’s Payload Hazardous Servicing Facility where it will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Tim Jacobs
A Required Rotation in Clinical Laboratory Management for Pathology Residents
Hoda, Syed T.; Crawford, James M.
2016-01-01
Leadership and management training during pathology residency have been identified repeatedly by employers as insufficient. A 1-month rotation in clinical laboratory management (CLM) was created for third-year pathology residents. We report on our experience and assess the value of this rotation. The rotation was one-half observational and one-half active. The observational component involved being a member of department and laboratory service line leadership, both at the departmental and institutional level. Observational participation enabled learning of both the content and principles of leadership and management activities. The active half of the rotation was performance of a project intended to advance the strategic trajectory of the department and laboratory service line. In our program that matriculates 4 residents per year, 20 residents participated from April 2010 through December 2015. Their projects either activated a new priority area or helped propel an existing strategic priority forward. Of the 16 resident graduates who had obtained their first employment or a fellowship position, 9 responded to an assessment survey. The majority of respondents (5/9) felt that the rotation significantly contributed to their ability to compete for a fellowship or their first employment position. The top reported benefits of the rotation included people management; communication with staff, departmental, and institutional leadership; and involvement in department and institutional meetings and task groups. Our 5-year experience demonstrates both the successful principles by which the CLM rotation can be established and the high value of this rotation to residency graduates. PMID:28725766
Low-loss, high-speed, high-{Tc} superconducting bearings
Hull, J.R.; Mulcahy, T.M.; Uherka, K.L.
1996-07-30
A flywheel energy storage device is disclosed including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize and levitate the rotating iron structure. 15 figs.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- At the top of the incline to Launch Pad 39A, Space Shuttle Atlantis nears the Rotating Service Structure (left). Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
Wade, Elman E.
1978-01-01
A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.
Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules
NASA Astrophysics Data System (ADS)
Garner, Scott M.; Miller, Terry A.
2017-06-01
The structure in rotational spectra of many free radical molecules is complicated by Jahn-Teller distortions. Understanding the magnitudes of these distortions is vital to determining the equilibrium geometric structure and details of potential energy surfaces predicted from electronic structure calculations. For example, in the recently studied {\\widetilde{A}^2E^{''} } state of the NO_3 radical, the magnitudes of distortions are yet to be well understood as results from experimental spectroscopic studies of its vibrational and rotational structure disagree with results from electronic structure calculations of the potential energy surface. By fitting either vibrationally resolved spectra or vibronic levels determined by a calculated potential energy surface, we obtain vibronic eigenfunctions for the system as linear combinations of basis functions from products of harmonic oscillators and the degenerate components of the electronic state. Using these vibronic eigenfunctions we are able to predict parameters in the rotational Hamiltonian such as the Watson Jahn-Teller distortion term, h_1, and compare with the results from the analysis of rotational experiments.
STS-103 Discovery crawls to Launch Pad 39B
NASA Technical Reports Server (NTRS)
1999-01-01
Space Shuttle Discovery, atop the mobile launcher platform and crawler transporter, nears the top of Launch Pad 39B after a 4.2-mile crawl from the Vehicle Assembly Building. At left are the Rotating Service Structure and the Fixed Service Structure, which will enable final preparations of the orbiter, external tank and solid rocket boosters for the STS-103 launch targeted for Dec. 6, 1999, at 2:37 a.m. EST. The mission is a 'call-up' due to the need to replace and repair portions of the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France, both with the European Space Agency.
2008-10-20
CAPE CANAVERAL, Fla. - In the early morning hours, space shuttle Atlantis begins to roll away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion was at 6:48 a.m. EDT. At left are the fixed service structure topped by its 80-foot lightning mast and the rotating service structure. At far left is the 300,000-gallon water tower, which contents are used for sound suppression during liftoff. Atlantis is rolling back to the Vehicle Assembly Building to await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. The space shuttle is mounted on a Mobile Launcher Platform and will be delivered to the Vehicle Assembly Building atop a crawler transporter. traveling slower than 1 mph during the 3.4-mile journey. The rollback is expected to take approximately six hours. Photo credit: NASA/Kim Shiflett
Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO 3
Gao, Ran; Dong, Yongqi; Xu, Han; ...
2016-05-24
We can use epitaxial strain to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide a route to manipulate material properties. We examine the evolution of the lattice (i.e., parameters, symmetry, and octahedral rotations) of SrRuO 3 films grown on substrates engineered to have the same lattice parameters, but 2 different octahedral rotations. SrRuO 3 films grown on SrTiO 3 (001) (no octahedral rotations) and GdScO 3-buffered SrTiO 3 (001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transportmore » and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based half-order Bragg peak analysis reveals that the octahedral rotation pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). Furthermore, the abnormal rotation pattern observed in tetragonal SrRuO 3 indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.« less
Rotating plasma structures in the cross-field discharge of Hall thrusters
NASA Astrophysics Data System (ADS)
Mazouffre, Stephane; Grimaud, Lou; Tsikata, Sedina; Matyash, Konstantin
2016-09-01
Rotating plasma structures, also termed rotating spokes, are observed in various types of low-pressure discharges with crossed electric and magnetic field configurations, such as Penning sources, magnetron discharges, negative ion sources and Hall thrusters. Such structures correspond to large-scale high-density plasma blocks that rotate in the E×B drift direction with a typical frequency on the order of a few kHz. Although such structures have been extensively studied in many communities, the mechanism at their origin and their role in electron transport across the magnetic field remain unknown. Here, we will present insights into the nature of spokes, gained from a combination of experiments and advanced particle-in-cell numerical simulations that aim at better understanding the physics and the impact of rotating plasma structures in the ExB discharge of the Hall thruster. As rotating spokes appear in the ionization region of such thrusters, and are therefore difficult to probe with diagnostics, experiments have been performed with a wall-less Hall thruster. In this configuration, the entire plasma discharge is pushed outside the dielectric cavity, through which the gas is injected, using the combination of specific magnetic field topology with appropriate anode geometry.
NASA Astrophysics Data System (ADS)
Caprio, Mark A.; McCoy, Anna E.; Dytrych, Tomas
2017-09-01
Rotational band structure is readily apparent as an emergent phenomenon in ab initio nuclear many-body calculations of light nuclei, despite the incompletely converged nature of most such calculations at present. Nuclear rotation in light nuclei can be analyzed in terms of approximate dynamical symmetries of the nuclear many-body problem: in particular, Elliott's SU (3) symmetry of the three-dimensional harmonic oscillator and the symplectic Sp (3 , R) symmetry of three-dimensional phase space. Calculations for rotational band members in the ab initio symplectic no-core configuration interaction (SpNCCI) framework allow us to directly examine the SU (3) and Sp (3 , R) nature of rotational states. We present results for rotational bands in p-shell nuclei. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suenram, Richard D.; Pate, Brooks H.; Lesarri, Alberto
Twenty-five microwave lines were observed for cis-1,3,5-hexatriene (0.05 D dipole moment) and a smaller number for its three 13C isotopomers in natural abundance. Ground-state rotational constants were fitted for all four species to a Watson-type rotational Hamiltonian for an asymmetric top (κ ) -0.9768). Vibration-rotation (alpha) constants were predicted with a B3LYP/cc-pVTZ model and used to adjust the ground-state rotational constants to equilibrium rotational constants. The small inertial defect for cis-hexatriene shows that the molecule is planar, despite significant H-H repulsion. The substitution method was applied to the equilibrium rotational constants to give a semiexperimental equilibrium structure for the C6more » backbone. This structure and one predicted with the B3LYP/cc-pVTZ model show structural evidence for increased π-electron delocalization in comparison with butadiene, the first member of the polyene series.« less
2004-01-01
International Earth Rotation and Reference Systems Service (IERS) Service International de la Rotation Terrestre et des Systèmes de Référence IERS...Equation for the determination of the density of moist air (1981/91),” Metrologia , 29, pp. 67–70. Giacomo, P., 1982, “Equation for the determination of...the density of moist air (1981),” Metrologia , 18, pp. 33–40. Herring, T. A., 1992, “Modeling Atmospheric Delays in the Analysis of Space Geodetic Data
Zeroing in on red blood cell unit expiry.
Ayyalil, Fathima; Irwin, Greg; Ross, Bryony; Manolis, Michael; Enjeti, Anoop K
2017-12-01
Expiry of red blood cell (RBC) units is a significant contributor to wastage of precious voluntary donations. Effective strategies aimed at optimal resource utilization are required to minimize wastage. This retrospective study analyzed the strategic measures implemented to reduce expiry of RBC units in an Australian tertiary regional hospital. The measures, which included inventory rearrangement, effective stock rotation, and the number of emergency courier services required during a 24-month period, were evaluated. There was no wastage of RBC units due to expiry over the 12 months after policy changes. Before these changes, approximately half of RBC wastage (261/511) was due to expiry. The total number of transfusions remained constant in this period and there was no increase in the use of emergency couriers. Policy changes implemented were decreasing the RBC inventory level by one-third and effective stock rotation and using a computerized system to link the transfusion services across the area. Effective stock rotation resulted in a reduction in older blood (>28 days) received in the main laboratory rotated from peripheral hospitals, down from 6%-41% to 0%-2.5%. Age-related expiry of blood products is preventable and can be significantly reduced by improving practices in the pathology service. This study provides proof of principle for "zero tolerance for RBC unit expiry" across a large networked blood banking service. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.
Measuring smoking knowledge, attitudes and services (S-KAS) among clients in addiction treatment
Guydish, Joseph; Tajima, Barbara; Chan, Mable; Delucchi, Kevin L.; Ziedonis, Douglas
2010-01-01
Background Addiction treatment programs are increasingly working to address prevalent and comorbid tobacco dependence in their service populations. However at present there are few published measurement tools, with known psychometric properties, that can be used to assess client-level constructs related to tobacco dependence in addiction treatment settings. Following on previous work that developed a staff-level survey instrument, this report describes the development and measurement characteristics of the Smoking Knowledge, Attitudes and Services (S-KAS) for use with clients in addiction treatment settings. Method 250 clients enrolled in residential drug abuse treatment programs were surveyed. Summary statistics were used to characterize both the participants and their responses, and exploratory factor analysis (EFA) was used to examine the underlying factor structure. Results Examination of the rotated factor pattern indicated that the latent structure was formed by one Knowledge factor, one Attitude factor, and two “service” factors reflecting Program Services and Clinician Services related to tobacco dependence. Standardized Cronbach’s alpha coefficients for the four scales were, respectively, .57, .75, .82 and .82. Conclusions The proposed scales have reasonably good psychometric characteristics, although the knowledge scale leaves room for improvement, and will allow researchers to quantify client knowledge, attitudes and services regarding tobacco dependence treatment. Researchers, program administrators, and clinicians may find the S-KAS useful in changing organizational culture and clinical practices related to tobacco addiction, help in program evaluation studies, and in tracking and improving client motivation. PMID:21055884
Experimental verification of a tuned inertial mass electromagnetic transducer
NASA Astrophysics Data System (ADS)
Watanabe, Yuta; Sugiura, Keita; Asai, Takehiko
2018-03-01
This research reports on the design and experimental verification of a tuned inertial mass electromagnetic trans- ducer (TIMET) for energy harvesting from vibrating large structures and structural vibration control devices. The TIMET consists of a permanent-magnetic synchronous motor (PMSM), a rotational mass, and a tuning spring. The PMSM and the rotational mass are connected to a ball screw mechanism so that the rotation of the PMSM is synchronized with the rotational mass. And the tuning spring interfaced to the shaft of the ball screw mechanism is connected to the vibrating structure. Thus, through this ball screw mechanism, transla- tional vibration motion of the structure is converted to rotational behavior and mechanical energy is absorbed as electrical energy by the PMSM. Moreover, the amplified equivalent inertial mass effect is obtained by rotating relatively small physical masses. Therefore, when the stiffness of the tuning spring is determined so that the inertial mass resonates with the natural frequency of the vibratory structure, the PMSM rotates more effectively. As a result, the generated energy by the PMSM can be increased. The authors design a prototype of the TIMET and carry out experiments using sine and sine seep waves to show the effectiveness of the tuned inertial mass mechanism. Also, an analytical model of the proposed device is developed using a curve fitting technique to simulate the behavior of the TIMET.
Mayhew, Susannah H; Sweeney, Sedona; Warren, Charlotte E; Collumbien, Martine; Ndwiga, Charity; Mutemwa, Richard; Lut, Irina; Colombini, Manuela; Vassall, Anna
2017-11-01
Drawing on rich data from the Integra evaluation of integrated HIV and reproductive-health services, we explored the interaction of systems hardware and software factors to explain why some facilities were able to implement and sustain integrated service delivery while others were not. This article draws on detailed mixed-methods data for four case-study facilities offering reproductive-health and HIV services between 2009 and 2013 in Kenya: (i) time-series client flow, tracking service uptake for 8841 clients; (ii) structured questionnaires with 24 providers; (iii) in-depth interviews with 17 providers; (iv) workload and facility data using a periodic activity review and cost-instruments; and (v) contextual data on external activities related to integration in study sites. Overall, our findings suggested that although structural factors like stock-outs, distribution of staffing and workload, rotation of staff can affect how integrated care is provided, all these factors can be influenced by staff themselves: both frontline and management. Facilities where staff displayed agency of decision making, worked as a team to share workload and had management that supported this, showed better integration delivery and staff were able to overcome some structural deficiencies to enable integrated care. Poor-performing facilities had good structural integration, but staff were unable to utilize this because they were poorly organized, unsupported or teams were dysfunctional. Conscientious objection and moralistic attitudes were also barriers.Integra has demonstrated that structural integration is not sufficient for integrated service delivery. Rather, our case studies show that in some cases excellent leadership and peer-teamwork enabled facilities to perform well despite resource shortages. The ability to provide support for staff to work flexibly to deliver integrated services and build resilient health systems to meet changing needs is particularly relevant as health systems face challenges of changing burdens of disease, climate change, epidemic outbreaks and more. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
Paré, Jessica; Froehlich, John E
2017-01-01
Context Recent advances within the field of genetics are currently changing many of the methodologies in which medicine is practiced. These advances are also beginning to influence the manner in which physical therapy services are rendered. Rotator cuff pathology is one of the most common diagnoses treated by the sports physical therapist. The purpose of this commentary is to educate sports physical therapists on the recent advances regarding how genetics influences rotator cuff pathology, including rotator cuff tears, and provide a perspective on how this information will likely influence post-operative shoulder rehabilitation in the near future. Evidence Acquisition A comprehensive review of the literature was completed using the Medline database along with individual searches of relevant physical therapy, surgical, cell biology, and sports medicine journals. Search terms included: shoulder, rotator cuff pathology, genetics, apoptosis, and physical therapy. Search results were compiled and evaluated; relevant primary studies and review articles were gathered; the results from this comprehensive review are summarized here. Study Design Clinical Commentary, Review of the Literature Results Recent advances within the understanding of rotator cuff pathology have further elucidated the cellular and molecular mechanisms associated with rotator cuff tears. There appears to be a hypoxic-induced apoptotic cellular pathway that contributes to rotator cuff tears. Activation of specific proteins termed matrix metalloproteinases appear to be involved in not only primary rotator cuff tears, but also may influence the re-tear rate after surgical intervention. Further advancements in the understanding of the cellular mechanisms contributing to rotator cuff tears and postoperative techniques to help prevent re-tears, may soon influence the methodology in which physical therapy services are provided to patients sustaining a rotator cuff injury. Conclusions At this time continued research is required to more fully develop a comprehensive understanding of the role of genetic variables both within primary rotator cuff tears and their influences on post-operative rehabilitation from rotator cuff repair surgery. Level of Evidence Level 5 PMID:28515982
The structure of rotational discontinuities. [in solar wind
NASA Technical Reports Server (NTRS)
Neugebauer, M.
1989-01-01
This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle theta between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When theta is large, angular 'overshoots' are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (when theta is small), many different types of structure are seen, ranging from straight lines, to S-shaped curves, to complex, disorganized shapes.
Development of advanced micromirror arrays by flip-chip assembly
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Bright, Victor M.
2001-10-01
This paper presents the design, commercial prefabrication, modeling and testing of advanced micromirror arrays fabricated using a novel, simple and inexpensive flip-chip assembly technique. Several polar piston arrays and rectangular cantilever arrays were fabricated using flip-chip assembly by which the upper layers of the array are fabricated on a separate chip and then transferred to a receiving module containing the lower layers. Typical polar piston arrays boast 98.3% active surface area, highly planarized surfaces, low address potentials compatible with CMOS electronics, highly standardized actuation between devices, and complex segmentation of mirror surfaces which allows for custom aberration configurations. Typical cantilever arrays boast large angles of rotation as well as an average surface planarity of only 1.779 nm of RMS roughness across 100 +m mirrors. Continuous torsion devices offer stable operation through as much as six degrees of rotation while binary operation devices offer stable activated positions with as much as 20 degrees of rotation. All arrays have desirable features of costly fabrication services like five structural layers and planarized mirror surfaces, but are prefabricated in the less costly MUMPs process. Models are developed for all devices and used to compare empirical data.
Rotational spectroscopy of antipyretics: Conformation, structure, and internal dynamics of phenazone
NASA Astrophysics Data System (ADS)
Écija, Patricia; Cocinero, Emilio J.; Lesarri, Alberto; Fernández, José A.; Caminati, Walther; Castaño, Fernando
2013-03-01
The conformational and structural preferences of phenazone (antipyrine), the prototype of non-opioid pyrazolone antipyretics, have been probed in a supersonic jet expansion using rotational spectroscopy. The conformational landscape of the two-ring assembly was first explored computationally, but only a single conformer was predicted, with the N-phenyl and N-methyl groups on opposite sides of the pyrazolone ring. Consistently, the microwave spectrum evidenced a rotational signature arising from a single molecular structure. The spectrum exhibited very complicated fine and hyperfine patterns (not resolvable with any other spectroscopic technique) originated by the simultaneous coupling of the methyl group internal rotation and the spins of the two 14N nuclei with the overall rotation. The internal rotation tunnelling was ascribed to the C-CH3 group and the barrier height established experimentally (7.13(10) kJ mol-1). The internal rotation of the N-CH3 group has a lower limit of 9.4 kJ mol-1. The structure of the molecule was determined from the rotational parameters, with the phenyl group elevated ca. 25° with respect to the average plane of the pyrazolic moiety and a phenyl torsion of ca. 52°. The origin of the conformational preferences is discussed in terms of the competition between intramolecular C-H⋯N and C-H⋯O weak hydrogen bonds.
Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal.
Takahashi, S; Tandaechanurat, A; Igusa, R; Ota, Y; Tatebayashi, J; Iwamoto, S; Arakawa, Y
2013-12-02
Optical rotation is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC) at a telecommunication wavelength. We design a rotationally-stacked woodpile PhC structure, where neighboring layers are rotated by 45° and four layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. The linearly polarized light incident on the structure undergoes optical rotation during transmission. The obtained results show good agreement with numerical simulations. The measurement demonstrates the largest optical rotation angle as large as ∼ 23° at 1.3 μm wavelength for a single helical unit.
Silver, Emily J.; D'Amato, Anthony W.; Fraver, Shawn; Palik, Brian J.; Bradford, John B.
2013-01-01
The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types. Moreover, the effectiveness of approaches recommended for restoring old-growth structural conditions to managed forests, such as the application of extended rotation forestry, has been little studied. This study uses several long-term datasets from old growth, extended rotation, and unmanaged second growth Pinus resinosa (red pine) forests in northern Minnesota, USA, to quantify the range of variation in structural conditions for this forest type and to evaluate the effectiveness of extended rotation forestry at promoting the development of late-successional structural conditions. Long-term tree population data from permanent plots for one of the old-growth stands and the extended rotation stands (87 and 61 years, respectively) also allowed for an examination of the long-term structural dynamics of these systems. Old-growth forests were more structurally complex than unmanaged second-growth and extended rotation red pine stands, due in large part to the significantly higher volumes of coarse woody debris (70.7 vs. 11.5 and 4.7 m3/ha, respectively) and higher snag basal area (6.9 vs. 2.9 and 0.5 m2/ha, respectively). In addition, old-growth forests, although red pine-dominated, contained a greater abundance of other species, including Pinus strobus, Abies balsamea, and Picea glauca relative to the other stand types examined. These differences between stand types largely reflect historic gap-scale disturbances within the old-growth systems and their corresponding structural and compositional legacies. Nonetheless, extended rotation thinning treatments, by accelerating advancement to larger tree diameter classes, generated diameter distributions more closely approximating those found in old growth within a shorter time frame than depicted in long-term examinations of old-growth structural development. These results suggest that extended rotation treatments may accelerate the development of old-growth structural characteristics, provided that coarse woody debris and snags are deliberately retained and created on site. These and other developmental characteristics of old-growth systems can inform forest management when objectives include the restoration of structural conditions found in late-successional forests.
2009-11-15
CAPE CANAVERAL, Fla. - At Launch Pad 39A at NASA's Kennedy Space Center in Florida, the rotating service structure has been retracted from space shuttle Atlantis as the countdown progresses toward launch on Nov. 16 at 2:28 p.m. EST of the STS-129 mission. The movable structure, which provides weather protection and access for technicians to work on the shuttle, began being retracted at 5:20 p.m. EST and was in the park position by 5:56 p.m. STS-129 crew members are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On the STS-129 mission to the International Space Station, the crew will deliver two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Troy Cryder
Rishi, Arvind; Hoda, Syed T; Crawford, James M
2016-01-01
Leadership and management training during pathology residency have been identified repeatedly by employers as insufficient. A 1-month rotation in clinical laboratory management (CLM) was created for third-year pathology residents. We report on our experience and assess the value of this rotation. The rotation was one-half observational and one-half active. The observational component involved being a member of department and laboratory service line leadership, both at the departmental and institutional level. Observational participation enabled learning of both the content and principles of leadership and management activities. The active half of the rotation was performance of a project intended to advance the strategic trajectory of the department and laboratory service line. In our program that matriculates 4 residents per year, 20 residents participated from April 2010 through December 2015. Their projects either activated a new priority area or helped propel an existing strategic priority forward. Of the 16 resident graduates who had obtained their first employment or a fellowship position, 9 responded to an assessment survey. The majority of respondents (5/9) felt that the rotation significantly contributed to their ability to compete for a fellowship or their first employment position. The top reported benefits of the rotation included people management; communication with staff, departmental, and institutional leadership; and involvement in department and institutional meetings and task groups. Our 5-year experience demonstrates both the successful principles by which the CLM rotation can be established and the high value of this rotation to residency graduates.
2006-05-23
KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller
2006-05-23
KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is lowered into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller
The Z1 truss is transported to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
At Launch Pad 39A, the payload canister with the Integrated Truss Structure Z1 inside arrives at the spot under the Rotating Service Structure where the canister can be lifted to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.
2009-07-31
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett
2009-07-31
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett
2009-07-31
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett
2009-07-31
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett
2010-09-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, construction crews lay large wooden mats on top of sand and reinforcing steel to protect the concrete under the rotating service structure (RSS) of Launch Pad 39B during deconstruction. In the background, space shuttle Discovery stands tall on Launch Pad 39A, awaiting its STS-133 mission to the International Space Station. Starting in 2009, the structure at Pad B was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
Factor analysis of financial and operational performance measures of non-profit hospitals.
Das, Dhiman
2009-01-01
To understand the important dimensions of the financial and operational performance of non-profit hospitals. Secondary data for non-profit US hospitals between 1996 and 2004. I use iterative principal factor analysis of hospitals' financial and operational ratios for each year of the study. For factor interpretation, I use oblique rotation. Financial ratios were created using cost report data from HCRIS 2552-96 available from the Centers for Medicaid & Medicare Services (CMS). I identify five factors--capital structure, profitability, activity, liquidity, and an operational factor--that explain most of the variation in the performance of non-profit hospitals. I also find that capital structure is more important than profitability in determining the performance of these hospitals. The importance of capital structure highlights a significant shift in the organization of the non-profit hospitals' finances.
Staff rotation: implications for occupational therapy.
Taylor, A; Andriuk, M L; Langlois, P; Provost, E
1995-10-01
Occupational therapy departments of tertiary care hospitals can provide staff with opportunities to gain diverse clinical experience if they rotate through the various services such as surgery, medicine, geriatrics, plastic surgery and orthopaedics. The system of rotation offers both advantages and disadvantages for the staff and the institution. The Royal Victoria Hospital in Montreal, a large university teaching hospital, had traditionally offered staff the opportunity to rotate. Changes in staffing and their needs however, resulted in rotation becoming an important issue within the department. This article presents the pros and the cons of rotation and non-rotation systems as identified by therapists and administrators across Canada. Staff rotation was found to have an effect on job satisfaction and a therapist's career orientation. Given these findings, administrators may want to reconsider the role of the generalist and specialist in their facilities.
Understanding and predicting profile structure and parametric scaling of intrinsic rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, W. X.; Grierson, B. A.; Ethier, S.
2017-08-10
This study reports on a recent advance in developing physical understanding and a first-principles-based model for predicting intrinsic rotation profiles in magnetic fusion experiments. It is shown for the first time that turbulent fluctuation-driven residual stress (a non-diffusive component of momentum flux) along with diffusive momentum flux can account for both the shape and magnitude of the observed intrinsic toroidal rotation profile. Both the turbulence intensity gradient and zonal flow E×B shear are identified as major contributors to the generation of the k ∥-asymmetry needed for the residual stress generation. The model predictions of core rotation based on global gyrokineticmore » simulations agree well with the experimental measurements of main ion toroidal rotation for a set of DIII-D ECH discharges. The validated model is further used to investigate the characteristic dependence of residual stress and intrinsic rotation profile structure on the multi-dimensional parametric space covering the turbulence type, q-profile structure, and up-down asymmetry in magnetic geometry with the goal of developing the physics understanding needed for rotation profile control and optimization. It is shown that in the flat-q profile regime, intrinsic rotations driven by ITG and TEM turbulence are in the opposite direction (i.e., intrinsic rotation reverses). The predictive model also produces reversed intrinsic rotation for plasmas with weak and normal shear q-profiles.« less
Understanding and Predicting Profile Structure and Parametric Scaling of Intrinsic Rotation
NASA Astrophysics Data System (ADS)
Wang, Weixing
2016-10-01
It is shown for the first time that turbulence-driven residual Reynolds stress can account for both the shape and magnitude of the observed intrinsic toroidal rotation profile. Nonlinear, global gyrokinetic simulations using GTS of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced non-diffusive momentum flux generated around a mid-radius-peaked intrinsic toroidal rotation profile. The non-diffusive momentum flux is dominated by the residual stress with a negligible contribution from the momentum pinch. The residual stress profile shows a robust anti-gradient, dipole structure in a set of ECH discharges with varying ECH power. Such interesting features of non-diffusive momentum fluxes, in connection with edge momentum sources and sinks, are found to be critical to drive the non-monotonic core rotation profiles in the experiments. Both turbulence intensity gradient and zonal flow ExB shear are identified as major contributors to the generation of the k∥-asymmetry needed for the residual stress generation. By balancing the residual stress and the momentum diffusion, a self-organized, steady-state rotation profile is calculated. The predicted core rotation profiles agree well with the experimentally measured main-ion toroidal rotation. The validated model is further used to investigate the characteristic dependence of global rotation profile structure in the multi-dimensional parametric space covering turbulence type, q-profile structure and collisionality with the goal of developing physics understanding needed for rotation profile control and optimization. Interesting results obtained include intrinsic rotation reversal induced by ITG-TEM transition in flat-q profile regime and by change in q-profile from weak to normal shear.. Fluctuation-generated poloidal Reynolds stress is also shown to significantly modify the neoclassical poloidal rotation in a way consistent with experimental observations. Finally, the first-principles-based model is applied to studying the ρ * -scaling and predicting rotations in ITER regime. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.
Gas-Phase Structures of Linalool and Coumarin Studied by Microwave Spectroscopy
NASA Astrophysics Data System (ADS)
Nguyen, H. V. L.; Stahl, W.; Grabow, J.-U.
2013-06-01
The microwave spectra of two natural substances, linalool and coumarin, were recorded in the microwave range from 9 to 16 GHz and 8.5 to 10.5 GHz, respectively.Linalool is an acyclic monoterpene and the main component of lavender oil. It has a structure with many possible conformations. The geometry of the lowest energy conformer has been determined by a combination of microwave spectroscopy and quantum chemical calculations. Surprisingly, a globular rather than a prolate shape was found. This structure is probably stabilized by a π interaction between two double bonds which are arranged in two stacked layers of atoms within the molecule. A-E splittings due to the internal rotation of one methyl group could be resolved and the barrier to internal rotation was determined to be 400.20(64) cm^{-1}. The standard deviation of the fit was close to experimental accuracy. For an identification of the observed conformer not only the rotational constants but also the internal rotation parameters of one of the methyl groups were needed. Coumarin is a widely used flavor in perfumery as sweet woodruff scent. The aromatic structure allows solely for one planar conformer, which was found under molecular beam conditions and compared to other molecules with similar structures. Here, the rotational spectrum could be described by a set of parameters including the rotational constants and the centrifugal distortion constants using a semi-rigid molecule Hamiltonian. Furthermore, the rotational transitions of all nine ^{13}C isotopologues were measured in natural abundance. As a consequence, the microwave structure of coumarin could be almost completely determined.
Astronauts Bob Behnken and Eric Boe walk the Crew Access Arm at
2017-08-30
Astronauts Bob Behnken, left, and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The access arm will be installed on the launch pad, providing a bridge between the launch tower it’s the Fixed Service Structure, as noted below, and SpaceX’s Dragon 2 spacecraft for astronauts flying to the International Space Station on the company’s Falcon 9 rocket as part of NASA’s Commercial Crew Program. The access arm is being readied for installation in early 2018. It will be installed 70 feet higher than the former space shuttle access arm on the launch pad’s Fixed Service Structure. SpaceX continues to modify the historic launch site from its former space shuttle days, removing more than 500,000 pounds of steel from the pad structure, including the Rotating Service Structure that was once used for accessing the payload bay of the shuttle. SpaceX also is using the modernized site to launch commercial payloads, as well as cargo resupply missions to and from the International Space Station for NASA. The first SpaceX launch from the historic Apollo and space shuttle site was this past February. NASA’s Commercial Crew Program is working with private companies, Boeing and SpaceX, with a goal of once again flying people to and from the International Space Station, launching from the United States.
Micro-structure and motion of two-dimensional dense short spherocylinder liquids
NASA Astrophysics Data System (ADS)
Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin
2018-03-01
We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.
NASA Astrophysics Data System (ADS)
Uriarte, Iciar; Ecija, Patricia; Cocinero, Emilio J.; Perez, Cristobal; Caballero-Mancebo, Elena; Lesarri, Alberto
2015-06-01
Alkaloids such as nicotine, cotinine or anabasine share a common floppy structural motif consisting of a two-ring assembly with a 3-pyridil methylamine skeleton. In order to investigate the structure-activity relationship of these biomolecules, structural studies with rotational resolution have been carried out for nicotine and anabasine in the gas phase, where these molecules can be probed in an "interaction-free" environment (no solvent or crystal-packing interactions). We hereby present a structural investigation of cotinine in a jet expansion using the chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer recently built at the University of the Basque Country (UPV-EHU). The rotational spectrum (6-18 GHz) reveals the presence of two different conformations. The conformational preferences of cotinine originate from the internal rotation of the two ring moieties, the detected species differing in a near 180° rotation of pyridine. The final structure is modulated by steric effects. J.-U. Grabow, S. Mata, J. L. Alonso, I. Peña, S. Blanco, J. C. López, C. Cabezas, Phys. Chem. Chem. Phys. 2011, 13, 21063. A. Lesarri, E. J. Cocinero, L. Evangelisti, R. D. Suenram, W. Caminati, J.-U. Grabow, Chem. Eur. J. 2010, 16, 10214.
Conrad, A R; Teumelsan, N H; Wang, P E; Tubergen, M J
2010-01-14
Rotational spectra were recorded in natural abundance for the (13)C isotopomers of two conformers of glycidol. Moments of inertia from the (13)C isotopomers were used to calculate the substitution coordinates and C-C bond lengths of two glycidol monomer conformations. The structures of seven different conformational minima were found from ab initio (MP2/6-311++G(d,p)) optimizations of glycidol-water. The rotational spectrum of glycidol-water was recorded using microwave spectroscopy, and the rotational constants were determined to be A = 3902.331 (11) MHz, B = 2763.176 (3) MHz, and C = 1966.863 (3) MHz. Rotational spectra were also recorded for glycidol-H(2)(18)O, glycidol-D(b)OH, and glycidol-d(O)-D(2)O. The rotational spectra were assigned to the lowest-energy ab initio structure, and the structure was improved by fitting to the experimental moments of inertia. The best-fit structure shows evidence for structural changes in glycidol to accommodate formation of the intermolecular hydrogen bonding network: the O-C-C-O torsional angle in glycidol was found to increase from 40.8 degrees for the monomer to 49.9 degrees in the water complex.
A chief of service rotation as an alternative approach to pediatric otolaryngology inpatient care.
Adil, Eelam; Xiao, Roy; McGill, Trevor; Rahbar, Reza; Cunningham, Michael
2014-09-01
Maintaining an outpatient practice and providing high-quality inpatient care pose significant challenges to the traditional call team approach. To introduce a unique rotating hospitalist inpatient program and assess its clinical, educational, and financial impact. The chief of service (COS) program requires 1 attending physician to rotate weekly as chief of the inpatient service with no conflicting elective duties. This was a retrospective internal billing data review performed at a tertiary pediatric hospital. A total of 1241 patients were evaluated by the COS from October 2012 through October 2013. All patients were treated by the inpatient service under the supervision of the COS. A retrospective analysis of patient encounters and procedures, including International Classification of Diseases, Ninth Revision (ICD-9) and Current Procedural Terminology (CPT) codes, locations of service, clinicians, service dates, and average weekly relative value units (RVUs). Over the study period, the COS was involved in the care of 1241 patients, generating 2786 billable patient encounters. The COS averaged 11.2 patient encounters per day. The most common reasons for consultation were respiratory distress, dysphagia, and stridor. Of patient encounters, 63.0% resulted in a procedure; 82.8% of those procedures were performed in the operating room with the most common being lower airway endoscopy (340 [19.4%]). The average weekly RVUs for the COS (232) were comparable with those of the average weekly outpatient clinic and procedural RVUs of the other otolaryngology faculty in the group (240). The COS program was created to meet the clinical, educational, and organizational demands of a high-volume and high-acuity inpatient service. It is a financially sustainable model with unique advantages, particularly for the staff who maintain their outpatient practices without disruption and for the trainees who have the opportunity to work closely with the entire faculty. Patients are provided supervised evaluations and continuity of care. This rotating hospitalist program is a viable alternative to the full-time hospitalist staff model.
Shaft flexibility effects on aeroelastic stability of a rotating bladed disk
NASA Technical Reports Server (NTRS)
Khader, Naim; Loewy, Robert
1989-01-01
A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.
Nonlinear model of a rotating hub-beams structure: Equations of motion
NASA Astrophysics Data System (ADS)
Warminski, Jerzy
2018-01-01
Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.
Complex demodulation in VLBI estimation of high frequency Earth rotation components
NASA Astrophysics Data System (ADS)
Böhm, S.; Brzeziński, A.; Schuh, H.
2012-12-01
The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of high frequency Earth rotation components and thus represents a qualified tool for future studies of irregular geophysical signals in ERP measured by space geodetic techniques.
FLEXAN (version 2.0) user's guide
NASA Technical Reports Server (NTRS)
Stallcup, Scott S.
1989-01-01
The FLEXAN (Flexible Animation) computer program, Version 2.0 is described. FLEXAN animates 3-D wireframe structural dynamics on the Evans and Sutherland PS300 graphics workstation with a VAX/VMS host computer. Animation options include: unconstrained vibrational modes, mode time histories (multiple modes), delta time histories (modal and/or nonmodal deformations), color time histories (elements of the structure change colors through time), and rotational time histories (parts of the structure rotate through time). Concurrent color, mode, delta, and rotation, time history animations are supported. FLEXAN does not model structures or calculate the dynamics of structures; it only animates data from other computer programs. FLEXAN was developed to aid in the study of the structural dynamics of spacecraft.
Actuator assembly including a single axis of rotation locking member
Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.
2009-12-08
An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.
Propulsion of flexible polymer structures in a rotating magnetic field.
Garstecki, Piotr; Tierno, Pietro; Weibel, Douglas B; Sagués, Francesc; Whitesides, George M
2009-05-20
We demonstrate a new concept for the propulsions of abiological structures at low Reynolds numbers. The approach is based on the design of flexible, planar polymer structures with a permanent magnetic moment. In the presence of an external, uniform, rotating magnetic field these structures deform into three-dimensional shapes that have helical symmetry and translate linearly through fluids at Re between 10(-1) and 10. The mechanism for the motility of these structures involves reversible deformation that breaks their planar symmetry and generates propulsion. These elastic propellers resemble microorganisms that use rotational mechanisms based on flagella and cilia for their motility in fluids at low Re.
Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy
NASA Astrophysics Data System (ADS)
Yuan, Han; Chapelle, Frédéric; Fauroux, Jean-Christophe; Balandraud, Xavier
2018-05-01
In line with the recent development of soft actuators involving shape-memory alloys (SMAs) embedded in compliant structures, this paper proposes a concept for a rotary actuator driven by a SMA wire placed inside a 3D-printed helical structure. The concept consists of using the one-way memory effect of the SMA (activated by Joule heating) to create the rotation of a material point of the structure, while the inverse rotation is obtained during the return to ambient temperature thanks to the structure’s elasticity. The study was performed in three steps. First, a prototype was designed from a chain of design rules, and tested to validate the feasibility of the concept. Thermal and geometrical measurements were performed using infrared and visible-range stereo cameras. A clockwise rotation (250°) followed by an anti-clockwise rotation (‑200°) were obtained, enabling us to validate the concept despite the partial reversibility of the movement. Second, finite element simulations were performed to improve rotation reversibility. The high compliance of the mechanical system required a framework of large displacements for the calculations (in the strength of materials sense), due to the high structural flexibility. Finally, a second prototype was constructed and tested. Attention was paid to the rotation (fully reversible rotation of 150° reached) as well as to parasitic movements due to overall structural deformation. This study opens new prospects for the design and analysis of 3D-printed soft actuators activated by smart materials.
Rotational actuator of motor based on carbon nanotubes
Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.
2008-11-18
A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.
Rotational actuator or motor based on carbon nanotubes
Zetti, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.
2006-05-30
A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.
Andreas Vesalius' five hundreth anniversary: initiation of the rotator cuff concept.
Brinkman, Romy J; Hage, J Joris
2015-12-01
The rotator cuff concept refers to the four scapulohumeral muscles that stabilize and rotate the humerus relative to the scapula. To date, the first description of the rotator cuff remained unidentified. In light of the 500th birthday of Andreas Vesalius (1515-1564) we searched his 1543 masterwork "Fabrica Corporis Humani Libri Septem" for references to the morphology and function of the rotator cuff muscles. Even though he distinguished three rather than four scapulohumeral muscles, Vesalius recognized the need for structures that prevent dislocation of the shoulder inherent to the morphology of the humeral caput and scapular socket. He recorded "three strong ligaments" and the "three muscles that rotate the arm" of which the tendons completely "embrace the ligaments of the joint" as such structures. Vesalius defined the rotator cuff concept avant la lettre.
The Controllable Ball Joint Mechanism
NASA Astrophysics Data System (ADS)
Tung, Yung Cheng; Chieng, Wei-Hua; Ho, Shrwai
A controllable ball joint mechanism with three rotational degrees of freedom is proposed in this paper. The mechanism is composed of three bevel gears, one of which rotates with respect to a fixed frame and the others rotate with respect to individual floating frames. The output is the resultant motion of the differential motions by the motors that rotates the bevel gears at the fixed frame and the floating frames. The mechanism is capable of a large rotation, and the structure is potentially compact. The necessary inverse and forward kinematic analyses as well as the derivation of kinematic singularity are provided according to the kinematical equivalent structure described in this paper.
Rotational and fine structure of open-shell molecules in nearly degenerate electronic states
NASA Astrophysics Data System (ADS)
Liu, Jinjun
2018-03-01
An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.
Modal testing of a rotating wind turbine
NASA Astrophysics Data System (ADS)
Carne, T. G.; Nord, A. R.
1982-11-01
A testing technique was developed to measure the modes of vibration of a rotating vertical-axis wind turbine. This technique was applied to the Sandia Two-Meter Turbine, where the changes in individual modal frequencies as a function of the rotational speed were tracked from 0 rpm (parked) to 600 rpm. During rotational testing, the structural response was measured using a combination of strain gages and accelerometers, passing the signals through slip rings. Excitation of the turbine structure was provided by a scheme which suddenly released a pretensioned cable, thus plucking the turbine as it was rotating at a set speed. In addition to calculating the real modes of the parked turbine, the modes of the rotating turbine were also determined at several rotational speeds. The modes of the rotating system proved to be complex due to centrifugal and Coriolis effects. The modal data for the parked turbine were used to update a finite-element model. Also, the measured modal parameters for the rotating turbine were compared to the analytical results, thus verifying the analytical procedures used to incorporate the effects of the rotating coordinate system.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Under wispy white clouds, Space Shuttle Atlantis slowly moves toward the Rotating and Fixed Service Structures on Launch Pad 39A. The 80-foot-tall white lighting mast is seen atop the FSS. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
Commerical Crew Astronauts Visit Launch Complex 39A
2018-03-27
Commercial Crew Program astronauts, from the left, Suni Williams, Eric Boe, Bob Behnken and Doug Hurley take in the view from the top of Launch Complex 39A at Kennedy Space Center. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. Tower modifications included l removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.
Commerical Crew Astronauts Visit Launch Complex 39A
2018-03-27
Commercial Crew Program astronauts, from the left Doug Hurley, Eric Boe, Bob Behnken and Suni Williams, pose just outside Launch Complex 39A at NASA's Kennedy Space Center in Florida. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. The tower modifications included removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.
Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads
NASA Technical Reports Server (NTRS)
1990-01-01
Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) is being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is set to begin preparations for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1269. Also see S90-48650 for similar view with alternate KSC number KSC-90PC-1268.
Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads
NASA Technical Reports Server (NTRS)
1990-01-01
Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) and being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is prepared for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1268. Also see S90-48904 for a similar view with alternate KSC number KSC-90PC-1269.
Space Shuttle Endeavour STS-134
2011-04-29
An faint profile outline of the space shuttle Endeavour is seen projected in the sky as powerful xenon lights illuminate launch pad 39a shortly after the rollback of the Rotating Service Structure (RSS) from Endeavour, Thursday, April 28, 2011, at Kennedy Space Center in Cape Canaveral, Fla. During the 14-day mission, Endeavour and the STS-134 crew will deliver the Alpha Magnetic Spectrometer (AMS) and spare parts including two S-band communications antennas, a high-pressure gas tank and additional spare parts for Dextre. Launch is targeted for Friday, April 29 at 3:47 p.m. EDT. Photo credit: (NASA/Bill Ingalls)
SUNSPOT ROTATION AS A DRIVER OF MAJOR SOLAR ERUPTIONS IN THE NOAA ACTIVE REGION 12158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P.; Ravindra, B.; Cheng, X., E-mail: vemareddy@iiap.res.in
We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h{sup −1} with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the ARmore » magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.« less
Iskra-Golec, Irena; Smith, Lawrence; Wilczek-Rużyczka, Ewa; Siemiginowska, Patrycja; Wątroba, Joanna
2017-02-21
Existing research has documented that shiftwork consequences may depend on the shift system parameters. Fast rotating systems (1-3 shifts of the same kind in a row) and day work have been found to be less disruptive biologically and socially than slower rotating systems and afternoon and night work. The aim of this study was to compare day workers and shift workers of different systems in terms of rotation speed and shifts worked with regard to work-family and family-work positive and negative spillover, marital communication style, job satisfaction and health. Employees (N = 168) of the maintenance workshops of transportation service working different shift systems (day shift, weekly rotating 2 and 3‑shift system, and fast rotating 3-shift system) participated in the study. They completed the Work- Family Spillover Questionnaire, Marital Communication Questionnaire, Minnesota Job Satisfaction Questionnaire and the Physical Health Questionnaire (a part of the Standard Shiftwork Index). The workers of quicker rotating 3-shift systems reported significantly higher scores of family-to-work facilitation (F(3, 165) = 4.175, p = 0.007) and a higher level of constructive style of marital communication (Engagement F(3, 165) = 2.761, p = 0.044) than the workers of slower rotating 2-shift systems. There were no differences between the groups of workers with regard to health and job satisfaction. A higher level of work-family facilitation and a more constructive style of marital communication were found among the workers of faster rotating 3-shift system when compared to the workers of a slower rotating 2-shift system (afternoon, night). This may indicate that the fast rotating shift system in contrary to the slower rotating one is more friendly for the work and family domains and for the relationship between them. Int J Occup Med Environ Health 2017;30(1):121-131. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Photogeological analysis of Europan tectonic features
NASA Technical Reports Server (NTRS)
Tufts, B. R.
1993-01-01
Preliminary photogeological analyses of the Pelorus Linea and Sidon Flexus regions of Europa were conducted to explore the proposal by Schenk that lateral motion of crustal blocks has occurred in a 'rift zone' including possible strike-slip, tension fracturing, and geometric plate rotation about an Euler pole. These analyses revealed features interpreted as tensional structures and block rotation in a strike-slip regime consistent with the Schenk hypotheses and implied the presence of at least two stages of crustal deformation consistent with a chronology developed by Lucchitta. Confirmation of regional scale Euler pole rotation was ambiguous, however. Up to 80 kilometers of possible extension was identified in the rift zone; to accommodate this, 'cryosubduction' is speculatively proposed as a mechanism for recycling Europan 'ice lithosphere'. The cumulative width of wedge-shaped bands included in the rift zone was measured and plotted versus distance from the inferred rotation pole. Three sharp decreases in the total width were noted. These occur roughly where certain triple bands cross the rift zone suggesting that the bands are structural features that predate and influence the zone. While the curve hints at one or more sinusoidal relationships consistent with rotation geometry, given the low photographic resolution and the preliminary nature of this examination the question of whether the observations represent coherent regional rotation modified by crosscutting structures or instead imply independent local rotations separated by these structures is unanswered by this analysis.
Urbic, T.; Mohoric, T.
2017-01-01
Non–equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes–Benz water model. We establish a non–equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard–Jones fluid like.
NASA Astrophysics Data System (ADS)
Urbic, T.; Mohoric, T.
2017-03-01
Non-equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes-Benz water model. We establish a non-equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard-Jones fluid like.
Forced vibration analysis of rotating cyclic structures in NASTRAN
NASA Technical Reports Server (NTRS)
Elchuri, V.; Gallo, A. M.; Skalski, S. C.
1981-01-01
A new capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axis of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical, user's, programmer's and demonstration manuals for this new capability are presented.
NASA Astrophysics Data System (ADS)
Evangelisti, Luca; Caminati, Walther; Patterson, David; Thomas, Javix; Xu, Yunjie; West, Channing; Pate, Brooks
2017-06-01
The introduction of three wave mixing rotational spectroscopy by Patterson, Schnell, and Doyle [1,2] has expanded applications of molecular rotational spectroscopy into the field of chiral analysis. Chiral analysis of a molecule is the quantitative measurement of the relative abundances of all stereoisomers of the molecule and these include both diastereomers (with distinct molecular rotational spectra) and enantiomers (with equivalent molecular rotational spectra). This work adapts a common strategy in chiral analysis of enantiomers to molecular rotational spectroscopy. A "chiral tag" is attached to the molecule of interest by making a weakly bound complex in a pulsed jet expansion. When this tag molecule is enantiopure, it will create diastereomeric complexes with the two enantiomers of the molecule being analyzed and these can be differentiated by molecule rotational spectroscopy. Identifying the structure of this complex, with knowledge of the absolute configuration of the tag, establishes the absolute configuration of the molecule of interest. Furthermore, the diastereomer complex spectra can be used to determine the enantiomeric excess of the sample. The ability to perform chiral analysis will be illustrated by a study of solketal using propylene oxide as the tag. The possibility of using current methods of quantum chemistry to assign a specific structure to the chiral tag complex will be discussed. Finally, chiral tag rotational spectroscopy offers a "gold standard" method for determining the absolute configuration of the molecule through determination of the substitution structure of the complex. When this measurement is possible, rotational spectroscopy can deliver a quantitative three dimensional structure of the molecule with correct stereochemistry as the analysis output. [1] David Patterson, Melanie Schnell, John M. Doyle, Nature 497, 475 (2013). [2] David Patterson, John M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).
Sensitivity analysis for axis rotation diagrid structural systems according to brace angle changes
NASA Astrophysics Data System (ADS)
Yang, Jae-Kwang; Li, Long-Yang; Park, Sung-Soo
2017-10-01
General regular shaped diagrid structures can express diverse shapes because braces are installed along the exterior faces of the structures and the structures have no columns. However, since irregular shaped structures have diverse variables, studies to assess behaviors resulting from various variables are continuously required to supplement the imperfections related to such variables. In the present study, materials elastic modulus and yield strength were selected as variables for strength that would be applied to diagrid structural systems in the form of Twisters among the irregular shaped buildings classified by Vollers and that affect the structural design of these structural systems. The purpose of this study is to conduct sensitivity analysis for axial rotation diagrid structural systems according to changes in brace angles in order to identify the design variables that have relatively larger effects and the tendencies of the sensitivity of the structures according to changes in brace angles and axial rotation angles.
Microwave Spectra and AB Initio Studies of the Ne-Acetone Complex
NASA Astrophysics Data System (ADS)
Gao, Jiao; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang
2015-06-01
Microwave spectra of the neon-acetone van der Waals complex were measured using a cavity-based molecular beam Fourier-transform microwave spectrometer in the region from 5 to 18 GHz. Both 20Ne and 22Ne containing isotopologues were studied and both c- and weaker a-type rotational transitions were observed. The transitions are split into multiplets due to the internal rotation of two methyl groups in acetone. Electronic structure calculations were done at the MP2 level of theory with the 6-311++g (2d, p) basis set for all atoms and the internal rotation barrier height of the methyl groups was determined to be about 2.8 kJ/mol. The ab initio rotational constants were the basis for our spectroscopic searches, but the multiplet structures and floppiness of the complex made the quantum number assignment very difficult. The assignment was finally achieved with the aid of constructing closed frequency loops and predicting internal rotation splittings using the XIAM code. Analyses of the spectra yielded rotational and centrifugal distortion constants, as well as internal rotation parameters, which were interpreted in terms of structure and internal dynamics of the complex. H. Hartwig and H. Dreizler, Z. Naturforsch. A 51, 923 (1996).
Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd
Yun, Mikyung; Bronner, C.Eric; Park, Cheon-Gil; Cha, Sun-Shin; Park, Hee-Won; Endow, Sharyn A.
2003-01-01
Molecular motors undergo conformational changes to produce force and move along cytoskeletal filaments. Structural changes have been detected in kinesin motors; however, further changes are expected because previous crystal structures are in the same or closely related conformations. We report here a 2.5 Å crystal structure of the minus-end kinesin, Ncd, with the coiled-coil stalk/neck and one head rotated by ∼75° relative to the other head. The two heads are asymmetrically positioned with respect to the stalk and show asymmetry of nucleotide state: one head is fully occupied, but the other is unstably bound to ADP. Unlike previous structures, our new atomic model can be fit into cryoelectron microscopy density maps of the motor attached to microtubules, where it appears to resemble a one-head-bound motor with the stalk rotated towards the minus end. Interactions between neck and motor core residues, observed in the head that moves with the stalk, are disrupted in the other head, permitting rotation of the stalk/neck. The rotation could represent a force-producing stroke that directs the motor to the minus end. PMID:14532111
2001-07-25
KENNEDY SPACE CENTER, Fla. -- Just before sunrise the payload canister arrives at Launch Pad 39A. In the background is Space Shuttle Discovery, waiting to launch on mission STS-105. Inside the canister are the primary payloads on the mission, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room on the Rotation Service Structure where they will be moved into the Discovery’s payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9
STS-105 MPLM is moved into the PCR
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Just before sunrise the payload canister arrives at Launch Pad 39A. In the background is Space Shuttle Discovery, waiting to launch on mission STS-105. Inside the canister are the primary payloads on the mission, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room on the Rotation Service Structure where they will be moved into the Discoverys payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.
OA-7 Cargo Module Hatch Closure and Rotate to Vertical at SSPF
2017-02-12
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the hatch is closed on the Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. The module is then rotated to vertical for mating to the service module. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
Back-to-basics with a surgical rotation programme.
Hall, Catherine L
This article describes the development and implementation of a rotation programme for Band 5 nurses within the surgical directorate at Heart of England NHS Foundation Trust. The article highlights the challenges raised for nurses with health service modernization and develops the rationale for the need for a different way of thinking. At Heart of England NHS Foundation Trust, the authors evaluation has led to the development of the surgical rotation programme for Band 5 nurses. This rotation programme challenged basic clinical practice and traditional modes of staff placement. Indications, so far, are that quality of care for patients has improved and nurses satisfaction has increased as a result of the implementation of the Band 5 surgical rotation programme.
Effects of mass variation on structures of differentially rotating polytropic stars
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan
2018-07-01
A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.
Turbulent Compressible Convection with Rotation. Part 1; Flow Structure and Evolution
NASA Technical Reports Server (NTRS)
Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri
1996-01-01
The effects of Coriolis forces on compressible convection are studied using three-dimensional numerical simulations carried out within a local modified f-plane model. The physics is simplified by considering a perfect gas occupying a rectilinear domain placed tangentially to a rotating sphere at various latitudes, through which a destabilizing heat flux is driven. The resulting convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers, evaluating conditions where the influence of rotation is both weak and strong. Given the computational demands of these high-resolution simulations, the parameter space is explored sparsely to ascertain the differences between laminar and turbulent rotating convection. The first paper in this series examines the effects of rotation on the flow structure within the convection, its evolution, and some consequences for mixing. Subsequent papers consider the large-scale mean shear flows that are generated by the convection, and the effects of rotation on the convective energetics and transport properties. It is found here that the structure of rotating turbulent convection is similar to earlier nonrotating studies, with a laminar, cellular surface network disguising a fully turbulent interior punctuated by vertically coherent structures. However, the temporal signature of the surface flows is modified by inertial motions to yield new cellular evolution patterns and an overall increase in the mobility of the network. The turbulent convection contains vortex tubes of many scales, including large-scale coherent structures spanning the full vertical extent of the domain involving multiple density scale heights. Remarkably, such structures align with the rotation vector via the influence of Coriolis forces on turbulent motions, in contrast with the zonal tilting of streamlines found in laminar flows. Such novel turbulent mechanisms alter the correlations which drive mean shearing flows and affect the convective transport properties. In contrast to this large-scale anisotropy, small-scale vortex tubes at greater depths are randomly orientated by the rotational mixing of momentum, leading to an increased degree of isotropy on the medium to small scales of motion there. Rotation also influences the thermodynamic mixing properties of the convection. In particular, interaction of the larger coherent vortices causes a loss of correlation between the vertical velocity and the temperature leaving a mean stratification which is not isentropic.
Microwave structure for the propiolic acid-formic acid complex.
Kukolich, Stephen G; Mitchell, Erik G; Carey, Spencer J; Sun, Ming; Sargus, Bryan A
2013-10-03
New microwave spectra were measured to obtain rotational constants and centrifugal distortion constants for the DCCCOOH···HOOCH and HCCCOOD···DOOCH isotopologues. Rotational transitions were measured in the frequency range of 4.9-15.4 GHz, providing accurate rotational constants, which, combined with previous rotational constants, allowed an improved structural fit for the propiolic acid-formic acid complex. The new structural fit yields reasonably accurate orientations for both the propiolic and formic acid monomers in the complex and more accurate structural parameters describing the hydrogen bonding. The structure is planar, with a positive inertial defect of Δ = 1.33 amu Å(2). The experimental structure exhibits a greater asymmetry for the two hydrogen bond lengths than was obtained from the ab initio mp2 calculations. The best-fit hydrogen bond lengths have an r(O1-H1···O4) of 1.64 Å and an r(O3-H2···O2) of 1.87 Å. The average of the two hydrogen bond lengths is r(av)(exp) = 1.76 Å, in good agreement with r(av)(theory) = 1.72 Å. The center of mass separation of the monomers is R(CM) = 3.864 Å. Other structural parameters from the least-squares fit using the experimental rotational constants are compared with theoretical values. The spectra were obtained using two different pulsed beam Fourier transform microwave spectrometers.
Freely-tunable broadband polarization rotator for terahertz waves
NASA Astrophysics Data System (ADS)
Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu
It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.
NASA Astrophysics Data System (ADS)
Baqersad, Javad
Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or interior locations where failures may occur. Within this work, an unique expansion algorithm was extended and combined with finite element (FE) modeling and an optical measurement technique to identify the dynamic strain in rotating structures. The merit of the approach is shown by using the approach to predict the dynamic strain on a small non-rotating and rotating wind turbine. A three-bladed wind turbine having 2.3-meter long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. A finite element model of the three wind turbine blades assembled to the hub was created and used to extract resonant frequencies and mode shapes. The FE model was validated and updated using experimental modal tests. For the non-rotating optical test, the turbine was excited using a sinusoidal excitation, a pluck test, arbitrary impacts on three blades, and random force excitations with a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure the displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the work show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for all of the three loading conditions. Similar to the non-rotating case, optical measurements were also preformed on a rotating wind turbine. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. In order to validate the results for the rotating turbine, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system. The approach used in this work to predict the strain showed higher accuracy than measurements obtainable by using the digital image correlation technique. The new expansion approach is able to extract dynamic strain all over the entire structure, even inside the structure beyond the line of sight of the measurement system. Because the method is based on a non-contacting measurement approach, it can be readily applied to a variety of structures having different boundary and operating conditions, including rotating blades.
A Numerical-Analytical Approach to Modeling the Axial Rotation of the Earth
NASA Astrophysics Data System (ADS)
Markov, Yu. G.; Perepelkin, V. V.; Rykhlova, L. V.; Filippova, A. S.
2018-04-01
A model for the non-uniform axial rotation of the Earth is studied using a celestial-mechanical approach and numerical simulations. The application of an approximate model containing a small number of parameters to predict variations of the axial rotation velocity of the Earth over short time intervals is justified. This approximate model is obtained by averaging variable parameters that are subject to small variations due to non-stationarity of the perturbing factors. The model is verified and compared with predictions over a long time interval published by the International Earth Rotation and Reference Systems Service (IERS).
Collins, Joel T; Hooper, David C; Mark, Andrew G; Kuppe, Christian; Valev, Ventsislav Kolev
2018-05-31
Chiral plasmonic nanostructures, those lacking mirror symmetry, can be designed to manipulate the polarization of incident light resulting in chiroptical (chiral optical) effects such as circular dichroism (CD) and optical rotation (OR). Due to high symmetry sensitivity, corresponding effects in second harmonic generation (SHG-CD and SHG-OR) are typically much stronger in comparison. These nonlinear effects have long been used for chiral molecular analysis and characterization, however both linear and nonlinear optical rotation can occur even in achiral structures, if the structure is birefringent due to anisotropy. Crucially, chiroptical effects resulting from anisotropy typically exhibit a strong dependence on structural orientation. Here we report large second-harmonic generation optical rotation of ±45°, due to intrinsic chirality in a highly anisotropic helical metamaterial. The SHG intensity is found to strongly relate to the structural anisotropy, however the angle of SHG-OR is invariant under sample rotation. We show that by tuning the geometry of anisotropic nanostructures, the interaction between anisotropy, chirality, and experiment geometry can allow even greater control over the chiroptical properties of plasmonic metamaterials.
Solar Magnetized Tornadoes: Rotational Motion in a Tornado-like Prominence
NASA Astrophysics Data System (ADS)
Su, Yang; Gömöry, Peter; Veronig, Astrid; Temmer, Manuela; Wang, Tongjiang; Vanninathan, Kamalam; Gan, Weiqun; Li, YouPing
2014-04-01
Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ~5 km s-1.
2006-05-23
KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, workers maneuver the multi-purpose logistics module Leonardo into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller
2006-05-23
KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller
Controllable rotational inversion in nanostructures with dual chirality.
Dai, Lu; Zhu, Ka-Di; Shen, Wenzhong; Huang, Xiaojiang; Zhang, Li; Goriely, Alain
2018-04-05
Chiral structures play an important role in natural sciences due to their great variety and potential applications. A perversion connecting two helices with opposite chirality creates a dual-chirality helical structure. In this paper, we develop a novel model to explore quantitatively the mechanical behavior of normal, binormal and transversely isotropic helical structures with dual chirality and apply these ideas to known nanostructures. It is found that both direction and amplitude of rotation can be finely controlled by designing the cross-sectional shape. A peculiar rotational inversion of overwinding followed by unwinding, observed in some gourd and cucumber tendril perversions, not only exists in transversely isotropic dual-chirality helical nanobelts, but also in the binormal/normal ones when the cross-sectional aspect ratio is close to 1. Beyond this rotational inversion region, the binormal and normal dual-chirality helical nanobelts exhibit a fixed directional rotation of unwinding and overwinding, respectively. Moreover, in the binormal case, the rotation of these helical nanobelts is nearly linear, which is promising as a possible design for linear-to-rotary motion converters. The present work suggests new designs for nanoscale devices.
Rotationally Molded Liquid Crystalline Polymers
NASA Technical Reports Server (NTRS)
Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce
2002-01-01
Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.
21 CFR 890.5180 - Manual patient rotation bed.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual patient rotation bed. 890.5180 Section 890.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5180 Manual patient...
21 CFR 890.5225 - Powered patient rotation bed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered patient rotation bed. 890.5225 Section 890.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5225 Powered patient...
21 CFR 890.5180 - Manual patient rotation bed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual patient rotation bed. 890.5180 Section 890.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5180 Manual patient...
21 CFR 890.5225 - Powered patient rotation bed.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered patient rotation bed. 890.5225 Section 890.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5225 Powered patient...
21 CFR 890.5225 - Powered patient rotation bed.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered patient rotation bed. 890.5225 Section 890.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5225 Powered patient...
21 CFR 890.5180 - Manual patient rotation bed.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual patient rotation bed. 890.5180 Section 890.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5180 Manual patient...
21 CFR 890.5225 - Powered patient rotation bed.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered patient rotation bed. 890.5225 Section 890.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5225 Powered patient...
21 CFR 890.5180 - Manual patient rotation bed.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual patient rotation bed. 890.5180 Section 890.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5180 Manual patient...
21 CFR 890.5225 - Powered patient rotation bed.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered patient rotation bed. 890.5225 Section 890.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5225 Powered patient...
21 CFR 890.5180 - Manual patient rotation bed.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual patient rotation bed. 890.5180 Section 890.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5180 Manual patient...
Pan, Li; Cao, Jujiang; Liu, Min; Fu, Weiwei
2017-11-30
High speed data transmission rotating connector system for signal high-speed transmission used in the fixed end and rotating end, it is one of the core component in the CT system. This paper involves structure design and analysis of the retaining ring in the CT high speed data transmission rotating connector system based on the principle of off-axis free space optical transmission. According to the problem of the actual engineering application of space limitations, optical fiber fixed and collimator installation location, we designed the structure of the retaining ring. Using the static analysis function of ANSYS Workbench, it verifies rationality and safety of the strength of retaining ring structure. And based on modal analysis function of ANSYS Workbench, it evaluates the effect of the retaining ring on the stability of the system date transmission, and provides theoretical basis for the feasibility of the structure in practical application.
Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows
NASA Astrophysics Data System (ADS)
Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.
2016-10-01
By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.
Medical education and the quality improvement spiral: A case study from Mpumalanga, South Africa
Bergh, Anne-Marie; Etsane, Mama E.; Hugo, Jannie
2015-01-01
Background: The short timeframe of medical students’ rotations is not always conducive to successful, in-depth quality-improvement projects requiring a more longitudinal approach. Aim: To describe the process of inducting students into a longitudinal quality-improvement project, using the topic of the Mother- and Baby-Friendly Initiative as a case study; and to explore the possible contribution of a quality-improvement project to the development of student competencies. Setting: Mpumalanga clinical learning centres, where University of Pretoria medical students did their district health rotations. Method: Consecutive student groups had to engage with a hospital's compliance with specific steps of the Ten Steps to Successful Breastfeeding that form the standards for the Mother- and Baby-Friendly Initiative. Primary data sources included an on-site PowerPoint group presentation (n = 42), a written group report (n = 42) and notes of individual interviews in an end-of-rotation objectively structured clinical examination station (n = 139). Results: Activities in each rotation varied according to the needs identified through the application of the quality-improvement cycle in consultation with the local health team. The development of student competencies is described according to the roles of a medical expert in the CanMEDS framework: collaborator, health advocate, scholar, communicator, manager and professional. The exposure to the real-life situation in South African public hospitals had a great influence on many students, who also acted as catalysts for transforming practice. Conclusion: Service learning and quality-improvement projects can be successfully integrated in one rotation and can contribute to the development of the different roles of a medical expert. More studies could provide insight into the potential of this approach in transforming institutions and student learning. PMID:26245606
Vidal-García, Marta; Bandara, Lashi; Keogh, J Scott
2018-05-01
The quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate into modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures. While there are existing methods for analyzing shape variation in articulated structures in two-dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research. Here, we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space, so it can be applied to any morphometric problem that also uses 3D coordinates (e.g., spherical harmonics). We demonstrate the method by applying it to a landmark-based dataset for analyzing shape variation using geometric morphometrics. We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Norman C.; Tian, Hengfeng; Blake, Thomas A.
trans-Hexatriene-1-13C1 (tHTE-1-13C1) has been synthesized, and its high-resolution (0.0015 cm-1) infrared spectrum has been recorded. The rotational structure in the C-type bands for v26 at 1011 cm-1 and v30 at 894 cm-1 has been analyzed. To the 1458 ground state combination differences from these bands, ground state rotational constants were fitted to a Watson-type Hamiltonian to give A0 = 0.8728202(9), B0 = 0.0435868(4), and C0 = 0.0415314(2) cm-1. Upper state rotational constants for the v30 band were also fitted. Predictions of the ground state rotational constants for t-HTE-1-13C1 from a B3LYP/cc-pVTZ model with scale factors based on the normal speciesmore » were in excellent agreement with observations. Similar good agreement was found between predicted and observed ground state rotational constants for the three 13C1 isotopologues of cis-hexatriene (cHTE), as determined from microwave spectroscopy. Equilibrium rotational constants for tHTE and its three 13C1 isotopologues, of which two were predicted, were used to find a semiexperimental equilibrium structure for the C6 backbone of tHTE. This structure shows increased structural effects of pi-electron delocalization in comparison with butadiene.« less
Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations
NASA Astrophysics Data System (ADS)
Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto
2018-04-01
Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.
Rotational MEMS mirror with latching arm for silicon photonics
NASA Astrophysics Data System (ADS)
Brière, Jonathan; Beaulieu, Philippe-Olivier; Saidani, Menouer; Nabki, Frederic; Menard, Michaël.
2015-02-01
We present an innovative rotational MEMS mirror that can control the direction of propagation of light beams inside of planar waveguides implemented in silicon photonics. Potential applications include but are not limited to optical telecommunications, medical imaging, scan and spectrometry. The mirror has a half-cylinder shape with a radius of 300 μm that provides low and constant optical losses over the full angular displacement range. A circular comb drive structure is anchored such that it allows free or latched rotation experimentally demonstrated over 8.5° (X-Y planar rotational movement) using 290V electrostatic actuation. The entire MEMS structure was implemented using the MEMSCAP SOIMUMPs process. The center of the anchor beam is designed to be the approximate rotation point of the circular comb drive to counter the rotation offset of the mirror displacement. A mechanical characterization of the MEMS mirror is presented. The latching mechanism provides up to 20 different angular locking positions allowing the mirror to counter any resonance or vibration effects and it is actuated with an electrostatic linear comb drive. An innovative gap closing structure was designed to reduce optical propagation losses due to beam divergence in the interstitial space between the mirror and the planar waveguide. The gap closing structure is also electrostatically actuated and includes two side stoppers to prevent stiction.
2007-07-11
KENNEDY SPACE CENTER, FLA. - The crawler way, in the foreground, still bears the tracks of the crawler-transporter that delivered Space Shuttle Endeavour to Launch Pad 39A, in the background. At far left is the rotating service structure, which can be rolled around to enclose the shuttle for access during processing. Behind it is the fixed service structure, topped by an 80-foot-tall lightning mast. At right is the 290-foot-tall water tank, which provides the deluge over the mobile launcher platform for sound suppression during liftoff. Endeavour is scheduled to launch on mission STS-118 on Aug. 7. During the mission, Endeavour will carry into orbit the S5 truss, SPACEHAB module and external stowage platform 3. The mission is the 22nd flight to the International Space Station and will mark the first flight of Mission Specialist Barbara Morgan, the teacher-turned-astronaut whose association with NASA began more than 20 years ago. STS-118 will be the first flight since 2002 for Endeavour, which has undergone extensive modifications, including the addition of safety upgrades already added to orbiters Discovery and Atlantis. Photo credit: NASA/Ken Thornsley
2002-11-10
KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Endeavour stands ready for launch on mission STS-113. Above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.
STS-110 Atlantis rolls out to Launch Pad 39-A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- In the foreground, white herons at the canal's edge pay scant attention the immense Space Shuttle towering above them. The Shuttle is inching its way to the top of the launch pad. In the background are seen the Rotating Service Structure (open) and the Fixed Service Structure, which holds the 80-foot lightning mast on top. The Shuttle sits on top of the Mobile Launcher Platform, which rests on the crawler-transporter. Atlantis is scheduled for launch April 4 on mission STS-110, which will install the S0 truss, the framework that eventually will hold the power and cooling systems needed for future international research laboratories on the International Space Station. The Canadarm2 robotic arm will be used exclusively to hoist the 13-ton truss from the payload bay to the Station. The S0 truss will be the first major U.S. component launched to the Station since the addition of the Quest airlock in July 2001. The four spacewalks planned for the construction will all originate from the airlock. The mission will be Atlantis' 25th trip to space.
2002-03-12
KENNEDY SPACE CENTER, FLA. -- In the foreground, white herons at the canal's edge pay scant attention the immense Space Shuttle towering above them. The Shuttle is inching its way to the top of the launch pad. In the background are seen the Rotating Service Structure (open) and the Fixed Service Structure, which holds the 80-foot lightning mast on top. The Shuttle sits on top of the Mobile Launcher Platform, which rests on the crawler-transporter. Atlantis is scheduled for launch April 4 on mission STS-110, which will install the S0 truss, the framework that eventually will hold the power and cooling systems needed for future international research laboratories on the International Space Station. The Canadarm2 robotic arm will be used exclusively to hoist the 13-ton truss from the payload bay to the Station. The S0 truss will be the first major U.S. component launched to the Station since the addition of the Quest airlock in July 2001. The four spacewalks planned for the construction will all originate from the airlock. The mission will be Atlantis' 25th trip to space
2000-11-14
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour waits on Launch Pad 39B for launch on mission STS-97. Behind it are the orange external tank flanked by two solid rocket boosters. On either side of Endeavour’s tail are the tail service masts, which support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. The masts also protect the ground half of those umbilicals from the harsh launch environment. At launch, the masts rotate backward, triggering a compressed-gas thruster and causing a protective hood to move into place and completely seal the structure from the main engine exhaust. At the end of the orbiter access arm, near the nose of Endeavour, is the White Room, an environmental chamber that provides both entrance to the orbiter and emergency egress, if needed. The arm remains extended until 7 minutes, 24 seconds before launch. The arm extends from the Fixed Service Structure. In the center of Endeavour are the payload bay doors. Endeavour is scheduled to launch Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour waits on Launch Pad 39B for launch on mission STS-97. Behind it are the orange external tank flanked by two solid rocket boosters. On either side of Endeavour’s tail are the tail service masts, which support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. The masts also protect the ground half of those umbilicals from the harsh launch environment. At launch, the masts rotate backward, triggering a compressed-gas thruster and causing a protective hood to move into place and completely seal the structure from the main engine exhaust. At the end of the orbiter access arm, near the nose of Endeavour, is the White Room, an environmental chamber that provides both entrance to the orbiter and emergency egress, if needed. The arm remains extended until 7 minutes, 24 seconds before launch. The arm extends from the Fixed Service Structure. In the center of Endeavour are the payload bay doors. Endeavour is scheduled to launch Nov. 30 at 10:06 p.m. EST
Structure and symmetry in coherent perfect polarization rotation
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Zhou, Chuanhong; Andrews, James H.; Baker, Michael A.
2015-01-01
Theoretical investigations of different routes to coherent perfect polarization rotation illustrate its phenomenological connection with coherent perfect absorption. Our study of systems with broken parity, layering, combined Faraday rotation and optical activity, or a rotator-loaded optical cavity highlights their similarity and suggests alternate approaches to improving and miniaturizing optical devices.
The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing
NASA Astrophysics Data System (ADS)
Yoon, S.; Choi, K. K.
2017-12-01
Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.
Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy.
Pérez, Cristóbal; Muckle, Matt T; Zaleski, Daniel P; Seifert, Nathan A; Temelso, Berhane; Shields, George C; Kisiel, Zbigniew; Pate, Brooks H
2012-05-18
Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18-substituted water (H(2)(18)O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.
2011-06-16
CAPE CANAVERAL, Fla. -- Inside the Canister Rotation Facility, the container that carries the Raffaello multi-purpose logistics module (MPLM), secured on its transportation vehicle, is ready for its journey to Launch Pad 39A at NASA's Kennedy Space Center in Florida. Once there, the canister will be lifted to the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into space shuttle Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux
An Event-Related Potentials Study of Mental Rotation in Identifying Chemical Structural Formulas
ERIC Educational Resources Information Center
Huang, Chin-Fei; Liu, Chia-Ju
2012-01-01
The purpose of this study was to investigate how mental rotation strategies affect the identification of chemical structural formulas. This study conducted event-related potentials (ERPs) experiments. In addition to the data collected in the ERPs, a Chemical Structure Conceptual Questionnaire and interviews were also admin-istered for data…
NASA Astrophysics Data System (ADS)
Lutz, D. A.; Burakowski, E. A.; Murphy, M. B.; Borsuk, M. E.; Niemiec, R. M.; Howarth, R. B.
2014-12-01
Albedo is an important physical property of the land surface which influences the total amount of incoming solar radiation that is reflected back into space. It is a critical ecosystem service that helps regulate the Earth's energy balance and, in the context of climate mitigation, has been shown to have a strong influence on the overall effectiveness of land management schemes designed to counteract climate change. Previously, we demonstrated that incorporating the physical effects of albedo into an ecological economic forest model of locations in the White Mountain National Forest, in New Hampshire, USA, leads to a substantially shorter optimal rotation period for forest harvest than under a carbon- and timber-only approach. In this study, we investigate similar tradeoffs at 565 sites across the entire state of New Hampshire in a variety of different forest types, latitudes, and elevations. Additionally, we use a regression tree approach to calculate the influence of biogeochemical and physical factors on the optimal rotation period. Our results suggest that in many instances, incorporating albedo may lead to optimal rotation times approaching zero, or, perpetual clear-cut. Overall, the difference between growing season and winter-time albedo for forested and harvested states was the most significant variable influencing the rotation period, followed by timber stumpage price, and biomass growth rate. These results provide an initial understanding of tradeoffs amongst these three ecosystem services and provide guidance for forest managers as to the relative important properties of their forests when these three services are incentivized economically.
Lutz, David A; Burakowski, Elizabeth A; Murphy, Mackenzie B; Borsuk, Mark E; Niemiec, Rebecca M; Howarth, Richard B
2016-01-01
Forests are more frequently being managed to store and sequester carbon for the purposes of climate change mitigation. Generally, this practice involves long-term conservation of intact mature forests and/or reductions in the frequency and intensity of timber harvests. However, incorporating the influence of forest surface albedo often suggests that long rotation lengths may not always be optimal in mitigating climate change in forests characterized by frequent snowfall. To address this, we investigated trade-offs between three ecosystem services: carbon storage, albedo-related radiative forcing, and timber provisioning. We calculated optimal rotation length at 498 diverse Forest Inventory and Analysis forest sites in the state of New Hampshire, USA. We found that the mean optimal rotation lengths across all sites was 94 yr (standard deviation of sample means = 44 yr), with a large cluster of short optimal rotation lengths that were calculated at high elevations in the White Mountain National Forest. Using a regression tree approach, we found that timber growth, annual storage of carbon, and the difference between annual albedo in mature forest vs. a post-harvest landscape were the most important variables that influenced optimal rotation. Additionally, we found that the choice of a baseline albedo value for each site significantly altered the optimal rotation lengths across all sites, lowering the mean rotation to 59 yr with a high albedo baseline, and increasing the mean rotation to 112 yr given a low albedo baseline. Given these results, we suggest that utilizing temperate forests in New Hampshire for climate mitigation purposes through carbon storage and the cessation of harvest is appropriate at a site-dependent level that varies significantly across the state.
A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections
Vicente, Miguel A.; Gonzalez, Dorys C.; Minguez, Jesus; Schumacher, Thomas
2018-01-01
The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation. PMID:29587380
A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections.
Vicente, Miguel A; Gonzalez, Dorys C; Minguez, Jesus; Schumacher, Thomas
2018-03-25
The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation.
Influence of the axial rotation angle on tool mark striations.
Garcia, Derrel Louis; Pieterman, René; Baiker, Martin
2017-10-01
A tool's axial rotation influences the geometric properties of a tool mark. The larger the axial rotation angle, the larger the compression of structural details like striations. This complicates comparing tool marks at different axial rotations. Using chisels, tool marks were made from 0° to 75° axial rotation and compared using an automated approach Baiker et al. [10]. In addition, a 3D topographic surface of a chisel was obtained to generate virtual tool marks and to test whether the axial rotation angle of a mark could be predicted. After examination of the tool mark and chisel data-sets it was observed that marks lose information with increasing rotation due to the change in relative distance between geometrical details on the tool and the disappearance of smaller details. The similarity and repeatability were high for comparisons between marks with no difference in axial rotation, but decreasing with increased rotation angle from 0° to 75°. With an increasing difference in the rotation angles, the tool marks had to be corrected to account for the different compression factors between them. For compression up to 7.5%, this was obtained automatically by the tool mark alignment method. For larger compression, manually re-sizing the marks to the uncompressed widths at 0° rotation before the alignment was found suitable for successfully comparing even large differences in axial rotation. The similarity and repeatability were decreasing however, with increasing degree of re-sizing. The quality was assessed by determining the similarity at different detail levels within a tool mark. With an axial rotation up to 75°, tool marks were found to reliably represent structural details down to 100μm. The similarity of structural details below 100μm was dependent on the angle, with the highest similarity at small rotation angles and the lowest similarity at large rotation angles. Filtering to remove the details below 100μm lead to consistently higher similarity between tool marks at all angles and allowed for a comparison of marks up to 75° axial rotation. Finally, generated virtual tool mark profiles with an axial rotation were compared to experimental tool marks. The similarity between virtual and experimental tool marks remained high up to 60° rotation after which it decreased due to the loss in quality in both marks. Predicting the rotation angle is possible under certain conditions up to 45° rotation with an accuracy of 2.667±0.577° rotation. Copyright © 2017 Elsevier B.V. All rights reserved.
Nonlinear vibrations analysis of rotating drum-disk coupling structure
NASA Astrophysics Data System (ADS)
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
Measurements of the Structure of the Plasma Rotation in Slowly Rotating Tearing Modes in DIII-D
NASA Astrophysics Data System (ADS)
Taylor, N. Z.; Ferraro, N. M.; La Haye, R. J.; Petty, C. C.; Bowman, C.
2014-10-01
A helically modified ion flow by an island can lead to helical ion polarization currents which can affect tearing mode stability. This issue is of particular importance to ITER where large inertia and relatively low torque will likely result in low rotation. In DIII-D cases either (1) a m/n = 2/1 mode is slowed down to ~1 kHz (faster than the inverse wall time) by near balanced neutral beams or (2) an island is entrained by applied rotating n = 1 magnetic field at 10 Hz (slower than the inverse wall time). The n = 1 island structure is measured with electron cyclotron emission radiometry. The ion rotation and temperature are measured by fast resolution (274 μ s) charge exchange recombination (CER) spectroscopy in the 1 kHz freely rotating case and by standard CER (5 ms) in the 10 Hz entrainment. Tangential and vertical CER arrays allow for the radial profile of the helically perturbed rotation to be determined. A comparison of the measured nonlinear island structures with that from the linear resistive stability code M3D-C1 will be presented. Work supported in part by the US Department of Energy under DE-FG02-95ER54309 and DE-FC02-04ER54698.
Laboratory detection of the rotational-tunnelling spectrum of the hydroxymethyl radical, CH2OH
NASA Astrophysics Data System (ADS)
Bermudez, C.; Bailleux, S.; Cernicharo, J.
2017-02-01
Context. Of the two structural isomers of CH3O, methoxy is the only radical whose astronomical detection has been reported through the observation of several rotational lines at 2 and 3 mm wavelengths. Although the hydroxymethyl radical, CH2OH, is known to be thermodynamically the most stable (by 3300 cm-1), it has so far eluded rotational spectroscopy presumably because of its high chemical reactivity. Aims: Recent high-resolution ( 10 MHz) sub-Doppler rovibrationally resolved infrared spectra of CH2OH (symmetric CH stretching a-type band) provided accurate ground vibrational state rotational constants, thus reviving the quest for its millimeter-wave spectrum in laboratory and subsequently in space. Methods: The search and assignment of the rotational spectrum of this fundamental species were guided by our quantum chemical calculations and by using rotational constants derived from high-resolution IR data. The hydroxymethyl radical was produced by hydrogen abstraction from methanol by atomic chlorine. Results: Ninety-six b-type rotational transitions between the v = 0 and v = 1 tunnelling sublevels involving 25 fine-structure components of Q branches (with Ka = 1 ← 0) and 4 fine-structure components of R branches (assigned to Ka = 0 ← 1) were measured below 402 GHz. Hyperfine structure alternations due to the two identical methylenic hydrogens were observed and analysed based on the symmetry and parity of the rotational levels. A global fit including infrared and millimeter-wave lines has been conducted using Pickett's reduced axis system Hamiltonian. The recorded transitions (odd ΔKa) did not allow us to evaluate the Coriolis tunnelling interaction term. The comparison of the experimentally determined constants for both tunnelling levels with their computed values secures the long-awaited first detection of the rotational-tunnelling spectrum of this radical. In particular, a tunnelling rate of 139.73 ± 0.10 MHz (4.6609(32) × 10-3 cm-1) was obtained along with the rotational constants, electron spin-rotation interaction parameters and several hyperfine coupling terms. Conclusions: The laboratory characterization of CH2OH by millimeter-wave spectroscopy now offers the possibility for its astronomical detection for the first time.
The Influence of Fluorination on Structure of the Trifluoroacetonitrile Water Complex
NASA Astrophysics Data System (ADS)
Lin, Wei; Wu, Anan; Lu, Xin; Obenchain, Daniel A.; Novick, Stewart E.
2015-06-01
Acetonitrile, CH_3CN, and trifluoroacetonitrile, CF_3CN, are symmetric tops. In a recent study of the rotational spectrum of the acetonitrile and water complex, it was observed that the structure was also an effective symmetric top, with the external hydrogen freely rotating about the O-H bond aligned towards the nitrogen of the cyanide of CH_3CN. Unlike the CH_3CN-H_2O complex, the CH_3CN-Ar and CF_3CN-Ar complexes were observed to be asymmetric tops. Having a series of symmetric and asymmetric top complexes of acetonitrile and trifluoracetonitrile for comparison, we report the rotational spectrum of the weakly bound complex between trifluoroacetonitrile and water. Rotational constants and quadrupole coupling constants will be presented, and the structure of CF_3CN-H_2O will be revealed. Lovas, F.J.; Sobhanadri, J. Microwave rotational spectral study of CH_3CN-H_2O and Ar-CH_3CN. J. Mol. Spetrosc. 2015, 307, 59-64. SPOILER ALERT: It's an asymmetric top.
Randall, Melinda; Romero-Gonzalez, Mauricio; Gonzalez, Gerardo; Klee, Anne; Kirwin, Paul
2011-01-01
psychiatric rehabilitation is an evidence-based service with the goal of recovery for people with severe mental illness. Psychiatric residents should understand the services and learn the principles of psychiatric rehabilitation. This study assessed whether a 3-month rotation in a psychiatric rehabilitation center changes the competency level of second-year psychiatric residents in evidence-based treatment of severe mental illness. the study is a prospective, case-control comparison using the validated Competency Assessment Instrument (CAI), which measures 15 provider competencies critical to recovery, rehabilitation, and empowerment for people with severe mental illness, providing a score for each competency. Participants were second-year psychiatric residents attending a 3-month rotation at the Community Reintegration Program, a psychiatric rehabilitation day program. The authors administered the CAI at the beginning and the end of the residents' 3-month rotation in order to assess change in their competency in psychiatric rehabilitation. The authors also administered the CAI to a comparison group of second-year psychiatric residents who did not rotate through the Community Reintegration Program, and therefore had no formal training in psychiatric rehabilitation. a 3-month rotation in psychiatric rehabilitation significantly improved residents' competency in the domains of goal functioning, client preferences, holistic approach, skills, and team value relative to nonrotating residents. a brief community psychiatry rotation in the second year of residency likely improves some skills in the treatment of people with severe mental illness. Future research should evaluate year-long electives and public psychiatry fellowships.
40 CFR 63.11915 - What are my compliance requirements for equipment leaks?
Code of Federal Regulations, 2014 CFR
2014-07-01
... pumps, compressors, and agitators. You must meet the requirements of paragraphs (b)(1) and (2) of this... meet the requirements of paragraph (a) of this section. (1) Rotating pumps. HAP emissions from seals on all rotating pumps in HAP service are to be minimized by either installing sealless pumps, pumps with...
40 CFR 63.11915 - What are my compliance requirements for equipment leaks?
Code of Federal Regulations, 2012 CFR
2012-07-01
... pumps, compressors, and agitators. You must meet the requirements of paragraphs (b)(1) and (2) of this... meet the requirements of paragraph (a) of this section. (1) Rotating pumps. HAP emissions from seals on all rotating pumps in HAP service are to be minimized by either installing sealless pumps, pumps with...
40 CFR 63.11915 - What are my compliance requirements for equipment leaks?
Code of Federal Regulations, 2013 CFR
2013-07-01
... pumps, compressors, and agitators. You must meet the requirements of paragraphs (b)(1) and (2) of this... meet the requirements of paragraph (a) of this section. (1) Rotating pumps. HAP emissions from seals on all rotating pumps in HAP service are to be minimized by either installing sealless pumps, pumps with...
Teacher Exchange and Rotation Is Not Equivalent to Partner Assistance
ERIC Educational Resources Information Center
Guilin, Yuan
2018-01-01
Given that education quality has long lagged behind in China's rural schools, one-way "partner assistance" no longer conforms to the new situation of integrated urban-rural governance and the equalization of public services. Only two-way "exchange and rotation" with full participation can truly support schools and teachers in…
Changes of crop rotation in Iowa determined from the USDA-NASS cropland data layer product
USDA-ARS?s Scientific Manuscript database
Crop rotation is one of the important decisions made independently by numerous farm managers, and is a critical variable in models of crop growth and soil carbon. By combining multiple years (2001-2009) of the USDA National Agricultural Statistics Service (NASS) cropland data layer (CDL), it is pos...
Wei, Wei; Chen, Chuansheng; Dong, Qi; Zhou, Xinlin
2016-01-01
Behavioral studies have reported that males perform better than females in 3-dimensional (3D) mental rotation. Given the important role of the hippocampus in spatial processing, the present study investigated whether structural differences in the hippocampus could explain the sex difference in 3D mental rotation. Results showed that after controlling for brain size, males had a larger anterior hippocampus, whereas females had a larger posterior hippocampus. Gray matter volume (GMV) of the right anterior hippocampus was significantly correlated with 3D mental rotation score. After controlling GMV of the right anterior hippocampus, sex difference in 3D mental rotation was no longer significant. These results suggest that the structural difference between males’ and females’ right anterior hippocampus was a neurobiological substrate for the sex difference in 3D mental rotation. PMID:27895570
Geometry of tracer trajectories in turbulent rotating convection
NASA Astrophysics Data System (ADS)
Alards, Kim; Rajaei, Hadi; Kunnen, Rudie; Toschi, Federico; Clercx, Herman
2016-11-01
In Rayleigh-Bénard convection rotation is known to cause transitions in flow structures and to change the level of anisotropy close to the horizontal plates. To analyze this effect of rotation, we collect curvature and torsion statistics of passive tracer trajectories in rotating Rayleigh-Bénard convection, using both experiments and direct numerical simulations. In previous studies, focusing on homogeneous isotropic turbulence (HIT), curvature and torsion PDFs are found to reveal pronounced power laws. In the center of the convection cell, where the flow is closest to HIT, we recover these power laws, regardless of the rotation rate. However, near the top plate, where we expect the flow to be anisotropic, the scaling of the PDFs deviates from the HIT prediction for lower rotation rates. This indicates that anisotropy clearly affects the geometry of tracer trajectories. Another effect of rotation is observed as a shift of curvature and torsion PDFs towards higher values. We expect this shift to be related to the length scale of typical flow structures. Using curvature and torsion statistics, we can characterize how these typical length scales evolve under rotation and moreover analyze the effect of rotation on more complicated flow characteristics, such as anisotropy.
Pine Ridge Indian Health Service Primary Care Resident Rotation: an update.
Vogt, H B; Jerde, O M
1994-04-01
The Pine Ridge Indian Health Service Primary Care Resident Rotation has been in existence for 2 years. It was conceived in an effort to help address the problem of recruitment and retention of physicians at Pine Ridge in the long term, while offering a unique educational experience for primary care residents. Twenty-five residents from family practice, general internal medicine, and general pediatric residency programs across the country have participated in calendar years 1992 and 1993. Three of the original 12 residents have returned following completion of their residency programs to join the Pine Ridge medical staff.
Heath, Matthew; Colino, Francisco L; Chan, Jillian; Krigolson, Olave E
2018-02-01
The visuomotor mental rotation (VMR) of a saccade requires a response to a region of space that is dissociated from a stimulus by a pre-specified angle, and work has shown a monotonic increase in reaction times as a function of increasing oblique angles of rotation. These results have been taken as evidence of a continuous process of rotation and have generated competing hypotheses. One hypothesis asserts that rotation is mediated via frontoparietal structures, whereas a second states that a continuous shift in the activity of direction-specific neurons in the superior colliculus (SC) supports rotation. Research to date, however, has not examined the neural mechanisms underlying VMR saccades and both hypotheses therefore remain untested. The present study measured the behavioural data and event-related brain potentials (ERP) of standard (i.e., 0° of rotation) and VMR saccades involving 35°, 70° and 105° of rotation. Behavioural results showed that participants adhered to task-based rotation demands and ERP findings showed that the amplitude of the contingent negative variation (CNV) linearly decreased with increasing angle of rotation. The cortical generators of the CNV are linked to frontoparietal structures supporting movement preparation. Although our ERP design does not allow us to exclude a possible role of the SC in the rotation of a VMR saccade, they do demonstrate that such actions are supported by a continuous and cortically based rotation process. Copyright © 2017 Elsevier Ltd. All rights reserved.
A comparison of VRML and animation of rotation for teaching 3-dimensional crystal lattice structures
NASA Astrophysics Data System (ADS)
Sauls, Barbara Lynn
Chemistry students often have difficulty visualizing abstract concepts of molecules and atoms, which may lead to misconceptions. The three-dimensionality of these structures presents a challenge to educators. Typical methods of teaching include text with two-dimensional graphics and structural models. Improved methods to allow visualization of 3D structures may improve learning of these concepts. This research compared the use of Virtual Reality Modeling Language (VRML) and animation of rotation for teaching three-dimensional structures. VRML allows full control of objects by altering angle, size, rotation, and provides the ability to zoom into and through objects. Animations may only be stopped, restarted and replayed. A web-based lesson teaching basic concepts of crystals, which requires comprehension of their three-dimensional structure was given to 100 freshmen chemistry students. Students were stratified by gender then randomly to one of two lessons, which were identical except for the multimedia method used to show the lattices and unit cells. One method required exploration of the structures using VRML, the other provided animations of the same structures rotating. The students worked through an examination as the lesson progressed. A Welch t' test was used to compare differences between groups. No significant difference in mean achievement was found between the two methods, between genders, or within gender. There was no significant difference in mean total SAT in the animation and VRML group. Total time on task had no significant difference nor did enjoyment of the lesson. Students, however, spent 14% less time maneuvering VRML structures than viewing the animations of rotation. Neither method proved superior for presenting three-dimensional information. The students spent less time maneuvering the VRML structures with no difference in mean score so the use of VRML may be more efficient. The investigator noted some manipulation difficulties using VRML to rotate structures. Some students had difficulty obtaining the correct angle required to properly interpret spatial relationships. This led to frustration and caused some students to quit trying before they could answer questions fully. Even though there were some difficulties, outcomes were not affected. Higher scores, however, may have been achieved had the students been proficient in VRML maneuvering.
Rotational Symmetry Breaking in Baby Skyrme Models
NASA Astrophysics Data System (ADS)
Karliner, Marek; Hen, Itay
We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.
Optimal Superpositioning of Flexible Molecule Ensembles
Gapsys, Vytautas; de Groot, Bert L.
2013-01-01
Analysis of the internal dynamics of a biological molecule requires the successful removal of overall translation and rotation. Particularly for flexible or intrinsically disordered peptides, this is a challenging task due to the absence of a well-defined reference structure that could be used for superpositioning. In this work, we started the analysis with a widely known formulation of an objective for the problem of superimposing a set of multiple molecules as variance minimization over an ensemble. A negative effect of this superpositioning method is the introduction of ambiguous rotations, where different rotation matrices may be applied to structurally similar molecules. We developed two algorithms to resolve the suboptimal rotations. The first approach minimizes the variance together with the distance of a structure to a preceding molecule in the ensemble. The second algorithm seeks for minimal variance together with the distance to the nearest neighbors of each structure. The newly developed methods were applied to molecular-dynamics trajectories and normal-mode ensembles of the Aβ peptide, RS peptide, and lysozyme. These new (to our knowledge) superpositioning methods combine the benefits of variance and distance between nearest-neighbor(s) minimization, providing a solution for the analysis of intrinsic motions of flexible molecules and resolving ambiguous rotations. PMID:23332072
SOLAR MAGNETIZED TORNADOES: ROTATIONAL MOTION IN A TORNADO-LIKE PROMINENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yang; Veronig, Astrid; Temmer, Manuela
Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtainedmore » from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ∼5 km s{sup –1}.« less
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny is ready to move into the orbiter'''s payload bay from the Payload Changeout Room. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Technicians in the Payload Changeout Room oversee the transfer of the U.S. Lab Destiny to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads
1990-09-05
S90-48650 (5 Sept 1990) --- This rare view shows two space shuttles on adjacent pads at Launch Complex 39 with the Rotating Service Structures (RSR) retracted. Space Shuttle Columbia (foreground) is on Pad A where it awaits further processing for a September 6 early morning launch on STS-35. Discovery, its sister spacecraft, is set to begin preparations for an October liftoff on STS-41 when the Ulysses spacecraft is scheudled to be taxied into space. PLEASE NOTE: Following the taking of this photograph, STS-35 was postponed and STS-41's Discovery was successfully launched on Oct. 6.
STS-98 Atlantis rolls out to Pad 39A for the second time
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Under wispy white clouds, Space Shuttle Atlantis slowly moves toward the Rotating and Fixed Service Structures on Launch Pad 39A. The 80-foot-tall white lighting mast is seen atop the FSS. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five.
STS-38 Atlantis, OV-104, lifts off from KSC LC Pad during night launch
NASA Technical Reports Server (NTRS)
1990-01-01
STS-38 Atlantis, Orbiter Vehicle (OV) 104, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad at 6:48:15:0639 pm (Eastern Standard Time (EST)) for Department of Defense (DOD)-devoted mission. OV-104, atop the external tank (ET) and flanked by solid rocket boosters (SRBs), is almost clear of the launch tower which is lit up by the SRB and space shuttle main engine (SSME) firings. Spotlight equipment is silhouetted against the SRB/SSME glow in the foreground. The retracted rotating service structure (RSS) is highlighted against the evening darkness by the launch fireworks.
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the S3/S4 integrated truss is being moved out of the payload canister. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the opening doors of the canister reveal the S3/S4 integrated truss inside. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, workers prepare to open the canister containing the S3/S4 integrated truss. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2000-11-30
After rollback of the Rotating Service Structure (at left), Space Shuttle Endeavour stands ready for launch targeted for 10:06 p.m. EST tonight on mission STS-97 to the International Space Station. The orbiter carries the P6 Integrated Truss Segment containing solar arrays that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections
STS-97 Endeavour after RSS rollback
NASA Technical Reports Server (NTRS)
2000-01-01
After rollback of the Rotating Service Structure (at left), Space Shuttle Endeavour stands ready for launch targeted for 10:06 p.m. EST tonight on mission STS-97 to the International Space Station. The orbiter carries the P6 Integrated Truss Segment containing solar arrays that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections.
Lee, Jongsuh; Wang, Semyung; Pluymers, Bert; Desmet, Wim; Kindt, Peter
2015-02-01
Generally, the dynamic characteristics (natural frequency, damping, and mode shape) of a structure can be estimated by experimental modal analysis. Among these dynamic characteristics, mode shape requires multiple measurements of the structure at different positions, which increases the experimental cost and time. Recently, the Hilbert-Huang transform (HHT) method has been introduced to extract mode-shape information from a continuous measurement, which requires vibration measurements from one position to another position continuously with a non-contact sensor. In this research study, an effort has been made to estimate the mode shapes of a rolling tire with a single measurement instead of using the conventional experimental setup (i.e., measurement of the vibration of a rolling tire at multiple positions similar to the case of a non-rotating structure), which is used to estimate the dynamic behavior of a rolling tire. For this purpose, HHT, which was used in the continuous measurement of a non-rotating structure in previous research studies, has been used for the case of a rotating system in this study. Ambiguous mode combinations can occur in this rotating system, and therefore, a method to overcome this ambiguity is proposed in this study. In addition, the specific phenomenon for a rotating system is introduced, and the effect of this phenomenon with regard to the obtained results through HHT is investigated.
1999-12-17
An olivaceous cormorant soars in the cloud-streaked sky near the Space Shuttle Discovery as it waits for liftoff on mission STS-103. To the left of Discovery is the Rotating Service Structure, rolled back on Dec. 16 in preparation for launch. At right is a 290-foot-high water tank with a capacity of 300,000 gallons. The tank is part of the sound suppression water system used during launch. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST
2001-08-08
KENNEDY SPACE CENTER, Fla. -- Floodlights reveal the Space Shuttle Discovery after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. Above the external tank, the “beanie cap” is poised, waiting for loading of the propellants. The cap, or vent hood, is on the end of the gaseous oxygen vent arm that allows gaseous oxygen vapors to vent away from the Space Shuttle. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
Cherry-Bukowiec, Jill R; Machado-Aranda, David; To, Kathleen; Englesbe, Michael; Ryszawa, Susan; Napolitano, Lena M
2015-11-01
The unpredictable and sometimes chaotic environment present in acute care surgery services (trauma, burn, surgical critical care, and nontrauma emergency surgery) can cause high levels of anxiety and stress that could impact a medical students' experience during their third year of medical school surgical clerkship. This negative perception perhaps is a determinant influence in diverting talented students into other medical subspecialties. We sought out to objectively identify potential areas of improvement through direct feedback and implement programmatic changes to address these areas. We hypothesized that as the changes were made, students' perception of the rotation would improve. Review of end of clerkship third year of medical school trauma burn surgery rotation evaluations and comments was performed for the 2010-2011 academic year. Trends in negative feedback were identified and categorized into five areas for improvement as follows: logistics, student expectations, communication, team integration, and feedback. A plan was designed and implemented for each category. Feedback on improvements to the rotation was monitored via surveys and during monthly end of rotation face-to-face student feedback sessions with the rotation faculty facilitator and surgery clerkship director. Data were compiled and reviewed. Perceptions of the rotation markedly improved within the first month of the changes and continued to improve over the study time frame (2011-2013) in all five categories. We also observed an increase in the number of students selecting a surgical residency in the National Resident Matching Program match from a low of 8% in 2009-2010 before any interventions to 25% after full implementation of the improvement measures in 2011-2012. A systematic approach using direct feedback from students to address service-specific issues improves perceptions of students on the educational value of a busy trauma-burn acute care surgery service and may have a positive influence on students considering surgical careers to pursue a surgical specialty. Published by Elsevier Inc.
Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter
2015-04-01
Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.
Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan
2017-04-01
The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault
Rotationally Molded Liquid Crystalline Polymers
NASA Technical Reports Server (NTRS)
Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce
2002-01-01
Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.
NASA Astrophysics Data System (ADS)
Wacha, K.; Papanicolaou, T.; Wilson, C. G.
2012-12-01
To meet the food production demands on a finite area of land for an exponentially growing, global population, intensive agricultural management practices are being used. The implications of this these practices lead to soil degradation, loss of biodiversity, increased greenhouse gas emissions, and decreased water quality depending on the level of conservation practices implemented in a watershed. To offset these negative environmental effects, ecosystem services should be analyzed for possible economic valuation to provide incentives for good land stewardship. In this study a Multifunctional Agriculture (MFA) evaluation in a representative agricultural watershed in Iowa was performed by assessing the ecosystem services of water quality, crop/grain production, carbon sequestration, reduction in carbon dioxide emissions and biodiversity for representative land covers (e.g., corn-soybean rotation, alfalfa, oats, and Conservation Reserve Program, or CRP). The services were analyzed using a geo-spatial platform that simulated carbon dynamics with the biogeochemical model, CENTURY, as well as soil erosion/deposition and surface runoff with the Water Erosion Prediction Project (WEPP). Economic values given to the various services were based on current grain prices, water treatment costs, and hypothetical carbon storage credits. Results showed that crop/grain production for the corn-soybean rotations provided the largest service for the study site, followed by alfalfa. CRP provided the largest decrease in surface water runoff and CO2 emissions, while alfalfa provided the largest form of plant species diversity. The largest sequestration of carbon came from the corn-soybean rotation due to large amounts dead plant material being incorporated into the soil through tillage. Overall the MFA assessment can provide a framework for payment of ecosystem services supplied by agroecosystems which promote more sustainable land management practices.
Neptune's small dark spot (D2)
NASA Technical Reports Server (NTRS)
1999-01-01
This bulls-eye view of Neptune's small dark spot (D2) was obtained by Voyager 2's narrow-angle camera. Banding surrounding the feature indicates unseen strong winds, while structures within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yet been measured, but the V-shaped structure near the right edge of the bright area indicates that the spot rotates clockwise. Unlike the Great Red Spot on Jupiter, which rotates counterclockwise, if the D2 spot on Neptune rotates clockwise, the material will be descending in the dark oval region. The fact that infrared data will yield temperature information about the region above the clouds makes this observation especially valuable. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Self-locking mechanical center joint
NASA Technical Reports Server (NTRS)
Bush, H. G.; Wallsom, R. E. (Inventor)
1985-01-01
A device for connecting, rotating and locking together a pair of structural half columns is described. The device is composed of an identical pair of cylindrical hub assemblies connected at their inner faces by a spring loaded hinge; each hub assembly having a structural half column attached to its outer end. Each hub assembly has a spring loading locking ring member movably attached adjacent to its inner face and includes a latch member for holding the locking ring in a rotated position subject to the force of its spring. Each hub assembly also has a hammer member for releasing the latch on the opposing hub assembly when the hub assemblies are rotated together. The spring loaded hinge connecting the hub assemblies rotates the hub assemblies and attached structural half columns together bringing the inner faces of the opposing hub assemblies into contact with one another.
ERIC Educational Resources Information Center
Trenkler, G.; Trenkler, D.
2008-01-01
Using the elementary tools of matrix theory, we show that the product of two rotations in the three-dimensional Euclidean space is a rotation again. For this purpose, three types of rotation matrices are identified which are of simple structure. One of them is the identity matrix, and each of the other two types can be uniquely characterized by…
NASA Astrophysics Data System (ADS)
Du, Jia-Wei; Wang, Xuan-Yin; Zhu, Shi-Qiang
2017-10-01
Based on the process by which the spatial depth clue is obtained by a single eye, a monocular stereo vision to measure the depth information of spatial objects was proposed in this paper and a humanoid monocular stereo measuring system with two degrees of freedom was demonstrated. The proposed system can effectively obtain the three-dimensional (3-D) structure of spatial objects of different distances without changing the position of the system and has the advantages of being exquisite, smart, and flexible. The bionic optical imaging system we proposed in a previous paper, named ZJU SY-I, was employed and its vision characteristic was just like the resolution decay of the eye's vision from center to periphery. We simplified the eye's rotation in the eye socket and the coordinated rotation of other organs of the body into two rotations in the orthogonal direction and employed a rotating platform with two rotation degrees of freedom to drive ZJU SY-I. The structure of the proposed system was described in detail. The depth of a single feature point on the spatial object was deduced, as well as its spatial coordination. With the focal length adjustment of ZJU SY-I and the rotation control of the rotation platform, the spatial coordinates of all feature points on the spatial object could be obtained and then the 3-D structure of the spatial object could be reconstructed. The 3-D structure measurement experiments of two spatial objects with different distances and sizes were conducted. Some main factors affecting the measurement accuracy of the proposed system were analyzed and discussed.
NASA Astrophysics Data System (ADS)
Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.
2018-03-01
We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.
Nancarrow, Susan
2007-07-01
The purpose of this study was to examine, in depth, the impact of intermediate care services on staff job satisfaction, skills development and career development opportunities. Recruitment and retention difficulties present a major barrier to the effective delivery of intermediate care services in the UK. The limited existing literature is contradictory, but points to the possibility of staff deskilling and suggests that intermediate care is poorly understood and may be seen by other practitioners as being of lower status than hospital work. These factors have the potential to reduce staff morale and limit the possibilities of recruiting staff. The research is based on interviews with 26 staff from case studies of two intermediate care services in South Yorkshire. Participants reported high levels of job satisfaction, which was because of the enabling philosophy of care, increased autonomy, the setting of care and the actual teams within which the workers were employed. For most disciplines, intermediate care facilitated the application of existing skills in a different way; enhancing some skills, while restricting the use of others. Barriers to career development opportunities were attributed to the relative recency of intermediate care services, small size of the services and lack of clear career structures. Career development opportunities in intermediate care could be improved through staff rotations through acute, community and intermediate care to increase their awareness of the roles of intermediate care staff. The non-hierarchical management structures limits management career development opportunities, instead, there is a need to enhance professional growth opportunities through the use of consultant posts and specialization within intermediate care. This study provides insight into the impact of an increasingly popular model of care on the roles and job satisfaction of workers and highlights the importance of this learning for recruitment and retention of staff.
Natural selection in the colloid world: active chiral spirals.
Zhang, Jie; Granick, Steve
2016-10-06
We present a model system in which to study natural selection in the colloid world. In the assembly of active Janus particles into rotating pinwheels when mixed with trace amounts of homogeneous colloids in the presence of an AC electric field, broken symmetry in the rotation direction produces spiral, chiral shapes. Locked into a central rotation point by the centre particle, the spiral arms are found to trail rotation of the overall cluster. To achieve a steady state, the spiral arms undergo an evolutionary process to coordinate their motion. Because all the particles as segments of the pinwheel arms are self-propelled, asymmetric arm lengths are tolerated. Reconfiguration of these structures can happen in various ways and various mechanisms of this directed structural change are analyzed in detail. We introduce the concept of VIP (very important particles) to express that sustainability of active structures is most sensitive to only a few particles at strategic locations in the moving self-assembled structures.
Jeffrey H. Gove; Mark J. Ducey; William B. Leak; Lianjun Zhang
2008-01-01
Stand structures from a combined density manipulation and even- to uneven-aged conversion experiment on the Bartlett Experimental Forest (New Hampshire, USA) were examined 25 years after initial treatment for rotated sigmoidal diameter distributions. A comparison was made on these stands between two probability density functions for fitting these residual structures:...
NASA Astrophysics Data System (ADS)
Wu, H.-H.; Chen, C.-C.; Chen, C.-M.
2012-03-01
We propose a united-residue model of membrane proteins to investigate the structures of helix bundle membrane proteins (HBMPs) using coarse-grained (CG) replica exchange Monte-Carlo (REMC) simulations. To demonstrate the method, it is used to identify the ground state of HBMPs in a CG model, including bacteriorhodopsin (BR), halorhodopsin (HR), and their subdomains. The rotational parameters of transmembrane helices (TMHs) are extracted directly from the simulations, which can be compared with their experimental measurements from site-directed dichroism. In particular, the effects of amphiphilic interaction among the surfaces of TMHs on the rotational angles of helices are discussed. The proposed CG model gives a reasonably good structure prediction of HBMPs, as well as a clear physical picture for the packing, tilting, orientation, and rotation of TMHs. The root mean square deviation (RMSD) in coordinates of Cα atoms of the ground state CG structure from the X-ray structure is 5.03 Å for BR and 6.70 Å for HR. The final structure of HBMPs is obtained from the all-atom molecular dynamics simulations by refining the predicted CG structure, whose RMSD is 4.38 Å for BR and 5.70 Å for HR.
Asymmetrical perception of body rotation after unilateral injury to human vestibular cortex.
Philbeck, John W; Behrmann, Marlene; Biega, Tim; Levy, Lucien
2006-01-01
Vestibular information plays a key role in many perceptual and cognitive functions, but surprisingly little is known about how vestibular signals are processed at the cortical level in humans. To address this issue, we tested the ability of two patients, with damage to key components of the vestibular network in either the left or right hemisphere, to perceive passive whole-body rotations (25-125 degrees) about the yaw axis. In both patients, the posterior insula, hippocampus, putamen, and thalamus were extensively damaged. The patients' responses were compared with those of nine age- and sex-matched neurologically intact participants. The body rotations were conducted without vision and the peak angular velocities ranged from 40 degrees to 90 degrees per second. Perceived rotation was assessed by open-loop manual pointing. The right hemisphere patient exhibited poor sensitivity for body rotations toward the contralesional (left) hemispace and generally underestimated the rotations. By contrast, his judgments of rotations toward the ipsilesional (right) hemispace greatly overestimated the physical rotation by 50-70 degrees for all tested magnitudes. The left hemisphere patient's responses were more appropriately scaled for both rotation directions, falling in the low-normal range. These findings suggest that there is some degree of hemispheric specialization in the cortical processing of dynamic head rotations in the yaw plane. In this view, right hemisphere structures play a dominant role, processing rotations in both directions, while left hemisphere structures process rotations only toward the contralesional hemispace.
2000-11-30
Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.
Project ASPIRE: Incorporating Integrative Medicine Into Residency Training
Nawaz, Haq; Via, Christina M.; Ali, Ather; Rosenberger, Lisa D.
2016-01-01
Griffin Hospital, a community hospital affiliated with Yale School of Public Health and Yale School of Medicine, received Health Resources and Services Administration funding to strengthen and improve its combined internal medicine and general preventive medicine residency program by incorporating an integrative medicine curriculum. The purpose of project ASPIRE (Advancing Skills of Preventive medicine residents through Integrative medicine Education, Research and Evaluation) was to create, implement, and evaluate a needs-based, innovative training curriculum in integrative medicine. Through this robust new training, the authors aimed to produce preventive medicine-trained physicians with competencies in integrative medicine to collaboratively work with other integrative medicine practitioners in interdisciplinary teams to provide holistic, patient-centered care. The multifaceted collaborative curriculum was composed of didactics, grand rounds, journal club, objective structured clinical examinations, and two new practicum rotations in integrative medicine. The new practicum rotations included block rotations at the Integrative Medicine Center at Griffin Hospital and the Yale Stress Center. Between 2012 and 2014, three cohorts participated in the curriculum; two of these cohorts included three advanced preventive medicine residents each and the fourth included four residents. Project faculty conducted 14 lectures and journal clubs, and two grand rounds. Six of the ten participating residents (60%) completed integrative medicine clinical rotations. Residents’ attitudes toward integrative medicine were evaluated through self-assessment using the Complementary, Alternative, and Integrative Medicine Attitudes Questionnaire; data were analyzed in 2015. This article describes the results of this prospective observational study based on single-institution experience over the course of the 2-year project period. PMID:26477907
NASA Astrophysics Data System (ADS)
Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo
2013-07-01
In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s-2)-2, while that of the original device is just 5.47 mW (m s-2)-2. These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle-moderate wind conditions.
Structural Studies of CH_3SiF_2-X (x = Nco, Cl) by Microwave Spectroscopy
NASA Astrophysics Data System (ADS)
Guirgis, Gamil A.; Gause, Korreda K.; Seifert, Nathan A.; Zaleski, Daniel P.; Pate, Brooks H.; Palmer, Michael H.; Peebles, Rebecca A.; Peebles, Sean A.; Elmuti, Lena F.; Obenchain, Daniel A.
2012-06-01
The structures of CH_3SiF_2-NCO and CH_3SiF_2-Cl have been studied by molecular rotational spectroscopy in the 6.5-18 GHz band. The rotational spectrum was measured by cavity Fourier transform microwave (FTMW) and chirped-pulse FTMW spectroscopy. The experiment targeted the study of CH_3SiF_2-NCO, but CH_3SiF_2-Cl was also observed as an impurity. Due to the dynamic range achieved on these spectra, all isotopologs with natural abundance ≥0.2% were assigned, which includes two doubly-substituted isotopologs for the chloride (29Si/37Cl and 30Si/37Cl). Strategies for obtaining the molecular structure for these two molecules using either a Kraitchman analysis (to obtain a partial substitution structure) or r_0 analysis (with additional constraints on the structure supplied by the theoretical structure) will be discussed. Derived structural parameters for the CH_3-SiF_2-X base structure are the same for the two compounds. The hyperfine and internal rotation effects in the spectra have been analyzed for all isotopologs and the Hamiltonian parameters are in very good agreement with ab initio results. The barriers to methyl group internal rotation for the two compounds 446(50) cm-1 and 463(3) cm-1 and are independent of the isotopic structure of the heavy atom frame.
Uniform rotating field network structure to efficiently package a magnetic bubble domain memory
NASA Technical Reports Server (NTRS)
Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor); Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor)
1978-01-01
A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.
Finite Rotation Analysis of Highly Thin and Flexible Structures
NASA Technical Reports Server (NTRS)
Clarke, Greg V.; Lee, Keejoo; Lee, Sung W.; Broduer, Stephen J. (Technical Monitor)
2001-01-01
Deployable space structures such as sunshields and solar sails are extremely thin and highly flexible with limited bending rigidity. For analytical investigation of their responses during deployment and operation in space, these structures can be modeled as thin shells. The present work examines the applicability of the solid shell element formulation to modeling of deployable space structures. The solid shell element formulation that models a shell as a three-dimensional solid is convenient in that no rotational parameters are needed for the description of kinematics of deformation. However, shell elements may suffer from element locking as the thickness becomes smaller unless special care is taken. It is shown that, when combined with the assumed strain formulation, the solid shell element formulation results in finite element models that are free of locking even for extremely thin structures. Accordingly, they can be used for analysis of highly flexible space structures undergoing geometrically nonlinear finite rotations.
Reflections on Government Service Rotations by an Academic Health Education Professional
ERIC Educational Resources Information Center
Green, Lawrence W.
2016-01-01
This reflection is on a health education professional's rotation from professor in a school of public health to a government position and back parallels that of Professor Howard Koh's journey to Assistant Secretary of Health, one level higher in the same federal bureaucracy. We both acknowledge the steep learning curve and some bureaucratic…
Short-rotation management of Eucalyptus: guidelines for plantations in Hawaii
Craig D. Whitesell; Dean S. DeBell; Thomas H. Schubert; Robert F. Strand; Thomas B. Crabb
1992-01-01
A 10-year research and development program was conducted by the BioEnergy Development Corporation, USDA Forest Service, and U.S. Department of Energy on the island of Hawaii, where nearly 230,000 acres are suitable for growing biomass in short-rotation Eucalyptus plantations. Successful techniques are described for seedling production, plantation establishment (site...
1989-08-24
Voyager II Imagery; Neptune. This bulls-eye view of Neptune's small dark spot (D2) was obtained by Voyager 2's narrow-angle camera , when Neptune was within 1.1 million km (680,000 miles) of the planet. The smallest structures that can be seen are 20 km (12 miles) across. This unplanned photograph was obtained when the infrared spectrograph was mapping the the highest-resolution view of the feature taken during the flyby. Banding surrounding the feature indicates unseen strong winds, while structues within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yet been measured, but the v-shaped structure near the right edge of the bright area indicates that the spot rotates clockwise. Unlike the Great Red Spot on Jupiter, which rotates counterclockwise, if the D2 spot on Neptune rotates clockwise, the material will be descending in the dark oval region. The fact that infrared data will yield temperature information about the region above the clouds makes this observation especially valuable. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applicaitons. (JPL ref: P-34749 Voyager N-71) taken during the flyby. Banding surrounding the feature indicates unseen strong winds, while structures within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yest been measured, but the Vv-sphped
Walker, A. R. Hight; Suenram, R. D.; Samuels, Alan; Jensen, James; Ellzy, Michael W.; Lochner, J. Michael; Zeroka, Daniel
2001-05-01
As part of an effort to examine the possibility of using molecular-beam Fourier-transform microwave spectroscopy to unambiguously detect and monitor chemical warfare agents, we report the first observation and assignment of the rotational spectrum of the nerve agent Sarin (GB) (Methylphosphonofluoridic acid 1-methyl-ethyl ester, CAS #107-44-8) at frequencies between 10 and 22 GHz. Only one of the two low-energy conformers of this organophosphorus compound (C(4)H(10)FO(2)P) was observed in the rotationally cold (T(rot)<2 K) molecular beam. The experimental asymmetric-rotor ground-state rotational constants of this conformer are A=2874.0710(9) MHz, B=1168.5776(4) MHz, C=1056.3363(4) MHz (Type A standard uncertainties are given, i.e., 1sigma), as obtained from a least-squares analysis of 74 a-, b-, and c-type rotational transitions. Several of the transitions are split into doublets due to the internal rotation of the methyl group attached to the phosphorus. The three-fold-symmetry barrier to internal rotation estimated from these splittings is 677.0(4) cm(-1). Ab initio electronic structure calculations using Hartree-Fock, density functional, and Moller-Plesset perturbation theories have also been made. The structure of the lowest-energy conformer determined from a structural optimization at the MP2/6-311G(**) level of theory is consistent with our experimental findings. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Walker, A. R. Hight; Suenram, R. D.; Samuels, Alan; Jensen, James; Ellzy, Michael W.; Lochner, J. Michael; Zeroka, Daniel
2001-05-01
As part of an effort to examine the possibility of using molecular-beam Fourier-transform microwave spectroscopy to unambiguously detect and monitor chemical warfare agents, we report the first observation and assignment of the rotational spectrum of the nerve agent Sarin (GB) (Methylphosphonofluoridic acid 1-methyl-ethyl ester, CAS #107-44-8) at frequencies between 10 and 22 GHz. Only one of the two low-energy conformers of this organophosphorus compound (C4H10FO2P) was observed in the rotationally cold (Trot<2 K) molecular beam. The experimental asymmetric-rotor ground-state rotational constants of this conformer are A=2874.0710(9) MHz, B=1168.5776(4) MHz, C=1056.3363(4) MHz (Type A standard uncertainties are given, i.e., 1σ), as obtained from a least-squares analysis of 74 a-, b-, and c-type rotational transitions. Several of the transitions are split into doublets due to the internal rotation of the methyl group attached to the phosphorus. The three-fold-symmetry barrier to internal rotation estimated from these splittings is 677.0(4) cm-1. Ab initio electronic structure calculations using Hartree-Fock, density functional, and Moller-Plesset perturbation theories have also been made. The structure of the lowest-energy conformer determined from a structural optimization at the MP2/6-311G** level of theory is consistent with our experimental findings.
Closeup view of the aft fuselage of the Orbiter Discovery ...
Close-up view of the aft fuselage of the Orbiter Discovery looking at the thrust structure that supports the Space Shuttle Main Engines (SSMEs). In this view, SSME number two position is on the left and SSME number three position is on the right. The thrust structure transfers the forces produce by the engines into and through the airframe of the orbiter. The thrust structure includes the SSMEs load reaction truss structure, engine interface fittings and the hydraulic-actuator support structure. The propellant feed lines are the plugged and capped orifices within the engine bays. Note that SSME position two is rotated ninety degrees from position three and one. This was needed to enable enough clearance for the engines to fit and gimbal. Note in engine bay three is a clear view of the actuators that control the gambling of that engine. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Ryabov, Yaroslav; Fushman, David
2008-01-01
We present a simple and robust approach that uses the overall rotational diffusion tensor as a structural constraint for domain positioning in multidomain proteins and protein-protein complexes. This method offers the possibility to use NMR relaxation data for detailed structure characterization of such systems provided the structures of individual domains are available. The proposed approach extends the concept of using long-range information contained in the overall rotational diffusion tensor. In contrast to the existing approaches, we use both the principal axes and principal values of protein’s rotational diffusion tensor to determine not only the orientation but also the relative positioning of the individual domains in a protein. This is achieved by finding the domain arrangement in a molecule that provides the best possible agreement with all components of the overall rotational diffusion tensor derived from experimental data. The accuracy of the proposed approach is demonstrated for two protein systems with known domain arrangement and parameters of the overall tumbling: the HIV-1 protease homodimer and Maltose Binding Protein. The accuracy of the method and its sensitivity to domain positioning is also tested using computer-generated data for three protein complexes, for which the experimental diffusion tensors are not available. In addition, the proposed method is applied here to determine, for the first time, the structure of both open and closed conformations of Lys48-linked di-ubiquitin chain, where domain motions render impossible accurate structure determination by other methods. The proposed method opens new avenues for improving structure characterization of proteins in solution. PMID:17550252
Code of Federal Regulations, 2012 CFR
2012-07-01
... REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EARLY INTERVENTION PROGRAM FOR INFANTS AND TODDLERS WITH... who are qualified mediators and knowledgeable in laws and regulations relating to the provision of early intervention services. (ii) The lead agency must select mediators on a random, rotational, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EARLY INTERVENTION PROGRAM FOR INFANTS AND TODDLERS WITH... who are qualified mediators and knowledgeable in laws and regulations relating to the provision of early intervention services. (ii) The lead agency must select mediators on a random, rotational, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EARLY INTERVENTION PROGRAM FOR INFANTS AND TODDLERS WITH... who are qualified mediators and knowledgeable in laws and regulations relating to the provision of early intervention services. (ii) The lead agency must select mediators on a random, rotational, or...
Freely Tunable Broadband Polarization Rotator for Terahertz Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping
2014-12-28
A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.
The rotation of the sun - Observations at Stanford
NASA Technical Reports Server (NTRS)
Scherrer, P. H.; Wilcox, J. M.; Svalgaard, L.
1980-01-01
Daily observations of the photospheric rotation rate using the Doppler effect have been made at the Stanford Solar Observatory since May 1976. These observations show no daily or long-period variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is the same as that of the sunspots and the large-scale magnetic field structures.
A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
Eberle, A L; Dickerson, B H; Reinhall, P G; Daniel, T L
2015-03-06
Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings
Eberle, A. L.; Dickerson, B. H.; Reinhall, P. G.; Daniel, T. L.
2015-01-01
Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. PMID:25631565
Rotation of hard particles in a soft matrix
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing
Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.
Extreme-ultraviolet observations of global coronal wave rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attrill, G. D. R.; Long, D. M.; Green, L. M.
2014-11-20
We present evidence of global coronal wave rotation in EUV data from SOHO/EIT, STEREO/EUVI, and SDO/AIA. The sense of rotation is found to be consistent with the helicity of the source region (clockwise for positive helicity, anticlockwise for negative helicity), with the source regions hosting sigmoidal structures. We also study two coronal wave events observed by SDO/AIA where no clear rotation (or sigmoid) is observed. The selected events show supporting evidence that they all originate with flux rope eruptions. We make comparisons across this set of observations (both with and without clear sigmoidal structures). On examining the magnetic configuration ofmore » the source regions, we find that the nonrotation events possess a quadrupolar magnetic configuration. The coronal waves that do show a rotation originate from bipolar source regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki, E-mail: baba@kuchem.kyoto-u.ac.jp
High-resolution spectra of the S{sub 1}←S{sub 0} transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S{sub 1} state. The degenerate 6{sup 1} levels of C{sub 6}H{sub 6} or C{sub 6}D{sub 6} are split into 6a{sup 1} and 6b{sup 1} in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantlymore » shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms.« less
A Study of 2-Iodobutane by Rotational Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenault, Eric A.; Obenchain, Daniel A.; Choi, Yoon Jeong
2016-09-15
The rotational transitions belonging to 2-iodobutane (sec-butyl-iodide, CH3CHICH2CH3) have been measured over the frequency range 5.5-16.5 GHz via jet-pulsed Fourier transform microwave (FTMW) spectroscopy. The complete nuclear quadrupole coupling tensor of iodine, ¬, has been obtained for the gauche (g)-, anti (a)-, and gauche0 (g0)-conformers, as well as the four 13C isotopologues of the gauche species. Rotational constants, centrifugal distortion constants, quadrupole coupling constants, and nuclear spin-rotation constants were determined for each species. Changes in the ¬ of the iodine nucleus, resulting from conformational and isotopic dierences, will be discussed. Isotopic substitution of g-2-iodobutane allowed for a rs structure tomore » be determined for the carbon backbone. Additionally, isotopic substitution, in conjunction with an ab initio structure, allowed for a t of various r0 structural parameters belonging to g-2-iodobutane.« less
Rotationally Resolved Electronic Spectroscopy of Biomolecules in the Gas Phase. Melatonin.
NASA Astrophysics Data System (ADS)
Yi, John T.; Pratt, David W.; Brand, Christian; Wollenhaupt, Miriam; Schmitt, Michael; Meerts, W. Leo
2011-06-01
Rotationally resolved electronic spectra of the A and B bands of melatonin have been analyzed using an evolutionary strategy approach. From a comparison of the ab initio calculated structures of energy selected conformers to the experimental rotational constants, the A band could be shown to be due to a gauche structure of the side chain, while the B band is an anti structure. Both bands show a complicated pattern due to a splitting from the three-fold internal rotation of the methyl rotor in the N-acetyl group of the molecules. From a torsional analysis we additionally were able to determine the barriers of the methyl torsion in both electronic states. The electronic nature of the lowest excited singlet state could be determined to be 1LB (as in the chromophore indole) from comparison to the results of ab initio calculations.
Schematic construction of flanged nanobearings from double-walled carbon nanotubes.
Shenai, Prathamesh Mahesh; Zhao, Yang
2010-08-01
The performance of nanobearings constructed from double walled carbon nanotubes is considered to be crucially dependent on the initial rotational speed. Wearless rotation ceases for a nanobearing operating beyond a certain angular velocity. We propose a new design of nanobearings by manipulation of double walled carbon nanotubes leading to a flanged structure which possesses a built-in hindrance to the intertube oscillation without obstructing rotational motion. Through blocking the possible leakage path for rotational kinetic energy to the intertube oscillatory motion, the flanged bearing lowers its dissipative tendency when set into motion. Using molecular dynamics, it is shown that on account of its distinctive structure, the flanged bearing has superior operating characteristics and a broader working domain.
Using tidal streams to investigate the rotation of the Milky Way's dark matter halo
NASA Astrophysics Data System (ADS)
Valluri, Monica; Snyder, Sarah Jean; Price-Whelan, Adrian M.
2017-06-01
The dark matter halos surrounding Milky Way-like galaxies that are formed in cosmological simulations are triaxial. These simulated triaxial halos are expected to be slowly rotating with log-normal distribution of pattern speeds centered on ~0.148h km/s/kpc (Bailin & Steinmetz 2004, ApJ., 616, 27). Stellar streams arising from a satellite experiencing tidal disruption inside such a slowly rotating triaxial halo are expected to be subject to additional forces (e.g. Coriolis forces) that affect the structure of the tidal streams. Using the Python Galaxy dynamics package Gala (Price-Whelan, http://gala.adrian.pw) we have generated simulations of tidal streams in a range of triaxial potentials to explore how the structure of Milky Way's tidal streams, especially the structure of stream bifurcations and the stream orbital plane, are altered by a slow figure rotation of the triaxial dark matter halo. We investigate what can be inferred about halo rotation from current and future data including upcoming data from Gaia. This work is supported by NASA-ATP award NNX15AK79G to the University of Michigan.
Numerical study of the effects of rotating forced downdraft in reproducing tornado-like vortices
NASA Astrophysics Data System (ADS)
Zhu, Jinwei; Cao, Shuyang; Tamura, Tetsuro; Tokyo Institute of Technology Collaboration; Tongji Univ Collaboration
2016-11-01
Appropriate physical modeling of a tornado-like vortex is a prerequisite to studying near-surface tornado structure and tornado-induced wind loads on structures. Ward-type tornado simulator modeled tornado-like flow by mounting guide vanes around the test area to provide angular momentum to converging flow. Iowa State University, USA modified the Ward-type simulator by locating guide vanes at a high position to allow vertical circulation of flow that creates a rotating forced downdraft in the process of generating a tornado. However, the characteristics of the generated vortices have not been sufficiently investigated till now. In this study, large-eddy simulations were conducted to compare the dynamic vortex structure generated with/without the effect of rotating forced downdraft. The results were also compared with other CFD and experimental results. Particular attention was devoted to the behavior of vortex wander of generated tornado-like vortices. The present study shows that the vortex center wanders more significantly when the rotating forced downdraft is introduced into the flow. The rotating forced downdraft is advantageous for modeling the rear flank downdraft phenomenon of a real tornado.
International Laser Ranging Service (ILRS): Terms of Reference
NASA Technical Reports Server (NTRS)
Husson, Van; Noll, Carey
2000-01-01
The International Laser Ranging Service (ILRS) is an established Service within Section II , Advanced Space Technology, of the International Association of Geodesy (IAG). The primary objective of the ILRS is to provide a service to support, through Satellite and Lunar Laser Ranging data and related products, geodetic and geophysical research activities as well as International Earth Rotation Service (IERS) products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). The service also develops the necessary standards/specifications and encourages international adherence to its conventions.
2001-08-08
KENNEDY SPACE CENTER, Fla. -- Floodlights reveal the Space Shuttle Discovery after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. Above the external tank, the “beanie cap” is poised, waiting for loading of the propellants. The cap, or vent hood, is on the end of the gaseous oxygen vent arm that allows gaseous oxygen vapors to vent away from the Space Shuttle. Below, on either side of the orbiter’s tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the International Space Station, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
NASA Technical Reports Server (NTRS)
Vernon, Lura
1993-01-01
A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic, transonic, and supersonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. In addition, studies were conducted to determine optimal excitation parameters, such as sweep duration, sweep type, and energy levels. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The comparison indicated that the vane with a rotating slotted cylinder provides superior results. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.
Turbulent structures in cylindrical density currents in a rotating frame of reference
NASA Astrophysics Data System (ADS)
Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas
2018-06-01
Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.
Rotatable superconducting cyclotron adapted for medical use
Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.
1985-01-01
A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.
NASA Astrophysics Data System (ADS)
Pueyo, Emilio L.; Oliván, Carlota; Soto, Ruth; Rodríguez-Pintó, Adriana; Santolaria, Pablo; Luzón, Aránzazu; Casas, Antonio M.; Ayala, Conxi
2017-04-01
Vertical axis rotations are common in all deformation settings. At larger scales, for example in fold and thrust belts, they are usually related to differential shortening along strike and this may be caused by a number of reasons (interplay of plate boundaries, sedimentary wedges, detachment level distribution, etc.). At smaller scales, local stress fields, interference of non-coaxial deformation phases, development of non-cylindrical structures, etc. may play an important role to accommodate significant magnitudes of rotation. Apart from their implication in the truly 4D understanding of geological structures, the occurrence of vertical axis rotation usually precludes the application of most 3D restoration techniques and thus, increases the uncertainty in any 3D reconstruction. Salt structures may form in different geological settings, but focusing on compressive regimes, very little is known about the relation between their geometry and kinematics and their ability to accommodate vertical axis rotations (i.e. local or regional lateral gradients of shortening). The Barbastro-Balaguer anticline (BBA) is the southernmost structure of the Central Pyrenees. It is a large detachment fold spreading more than 150 km along the front. In contrast to most frontal Pyrenean structures, the BBA is detached in Priabonian evaporites and was folded during Oligocene times as witnessed by well exposed growth strata. Along strike changes in the fold axis trend may reach 50°, an overall the anticline displays a convex shape towards the foreland (south). A residual Bouguer anomaly map based on a densely sampled gravimetric surveying (10.000 stations) has helped delineating a heterogeneous distribution of the Eocene detachment level in the subsurface. In this contribution we explore the interplay between vertical axis rotations, detachment level distribution and the fold geometry (structural trend and style based on hundreds of data). Seventy paleomagnetic sites evenly and densely distributed along the structure have been analyzed for this purpose. About 600 standard specimens have been thermally demagnetized in the Paleomagnetic Laboratory of the Burgos University (ASC TD48DC thermal demagnetizer and 2G superconducting magnetometer). Data processing has been carried out with the VPD program, applying standard PCA and virtual direction analyses. The ChRM directions passes the fold test and display two polarities, pointing to the primary character of the magnetization (key factor for the 3D restoration). This large dataset allows us to draw a robust network of rotation magnitudes along strike the western sector of the BBA that are key to understand its kinematics together to the aforementioned factors. We also pretend to use this network of vertical axis rotations to restore in 3D this salt structure.
Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian
2017-01-01
Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ireland, Lewis G.; Browning, Matthew K.
2018-04-01
Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloba, E.; Guhathakurta, P.; Boselli, A.
2015-02-01
We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λ{sub Re} and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster than fast rotators in the inner parts of the cluster. Moreover, 10 out of the 11 slow rotators are located in the inner 3° (D < 1 Mpc) of the cluster. The fast rotators contain subtle disk-like structures that are visible in high-pass filtered optical images, while the slow rotatorsmore » do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo Cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between λ{sub Re} and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram-pressure stripping, although some of it can be retained in their core, their star formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.« less
Apparatus for checking dimensions of workpieces
Possati, Mario; Golinelli, Guido
1992-01-01
An apparatus for checking features of workpieces with rotational symmetry defining a geometrical axis, which includes a base, rest devices fixed to the base for supporting the workpiece with the geometrical axis horizontally arranged, and a support structure coupled to the base for rotation about a horizontal axis. A counterweight and sensor are coupled to the support structure and movable with the support structure from a rest position, allowing loading of the workpiece to be checked onto the rest devices to a working position where the sensor is brought into cooperation with the workpiece. The axis of rotation of the support structure is arranged below the axis of the workpiece, in correspondence to a vertical geometrical plane passing through the workpiece geometric axis when the workpiece is positioned on the rest devices.
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
NASA Astrophysics Data System (ADS)
Malkin, Z.; Capitaine, N.
2015-08-01
The Journées 2014 "Systèmes de référence spatio-temporels", with the sub-title "Recent developments and prospects in ground-based and space astrometry", were organized from 22 to 24 September 2014 at Pulkovo Observatory, St.Petersburg, Russia. The scientific programme of the Journees 2014 was focused on the issues related to the astronomical space and time reference systems and their relativistic aspects, realization of the next ICRF, astrometric catalogs, Earth rotation and geodynamics, astronomical almanacs and software, and planetary ephemerides. A special session was devoted to the history of the Pulkovo observatory. The sessions included several discussions on issues related to e.g. the Working Group on "Theory of Earth Rotation" or the future of almanac services. A general discussion was devoted to the re-organization of the IAU structure. Electronic version of the Proceedings: http://syrte.obspm.fr/jsr/journees2014/pdf/ PDF file of the Proceedings: http://syrte.obspm.fr/jsr/journees2014/pdf/ProcJSR2014_270415.pdf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esselman, Brian J.; Amberger, Brent K.; Shutter, Joshua D.
2013-12-14
The rotational spectrum of pyridazine (o-C{sub 4}H{sub 4}N{sub 2}), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, [4-{sup 13}C]-C{sub 4}H{submore » 4}N{sub 2}, and [1-{sup 15}N]-C{sub 4}H{sub 4}N{sub 2}, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (R{sub e}) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final R{sub e} structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (I{sub a} and I{sub b} for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to be in excellent agreement with ones predicted from coupled-cluster calculations, which proved to be the key to unambiguous assignment of the satellite spectra to specific vibration modes.« less
Tailoring Electronic Properties in Semiconducting Perovskite Materials through Octahedral Control
NASA Astrophysics Data System (ADS)
Choquette, Amber K.
Perovskite oxides, which take the chemical formula ABO 3, are a very versatile and interesting materials family, exhibiting properties that include ferroelectricity, ferromagnetism, mixed ionic/electronic conductivity, metal-insulator behavior and multiferroicity. Key to these functionalities is the network of BO6 corner-connected octahedra, which are known to distort and rotate, directly altering electronic and ferroic properties. By controlling the BO6 octahedral distortions and rotations through cationic substitutions, the use of strain engineering, or through the formation of superlattice structures, the functional properties of perovskites can be tuned. Motivating the use of structure-driven design in oxide heterostructures is the prediction of hybrid improper ferroelectricity in A'BO3/ABO3 superlattices. Two key design rules to realizing hybrid improper ferroelectricity are the growth of high quality superlattice structures with odd periodicities of the A / A' layers, and the control of the octahedral rotation pattern. My work explores the rotational response in perovskite oxides to strain and interface effects in thin films of RFeO3 ( R = La, Eu). I demonstrate a synchrotron x-ray diffraction technique to identify the rotation pattern that is present in the films. I then establish substrate imprinting as a key tool for controlling the rotation patterns in heterostructures, providing a means to realize the necessary structural variants of the predicted hybrid improper ferroelectricity in superlattices. In addition, by pairing measured diffraction data with a structure factor calculation, I demonstrate how one can extract both A-site and oxygen atomic positions in single crystal perovskite oxide films. Finally, I show results from (LaFeO 3)n/(EuFeO3)n superlattices (n = 1-5), synthesized to test the motivating predictions of hybrid improper ferroelectricity in oxide superlattices.
Operating principles of rotary molecular motors: differences between F1 and V1 motors
Yamato, Ichiro; Kakinuma, Yoshimi; Murata, Takeshi
2016-01-01
Among the many types of bioenergy-transducing machineries, F- and V-ATPases are unique bio- and nano-molecular rotary motors. The rotational catalysis of F1-ATPase has been investigated in detail, and molecular mechanisms have been proposed based on the crystal structures of the complex and on extensive single-molecule rotational observations. Recently, we obtained crystal structures of bacterial V1-ATPase (A3B3 and A3B3DF complexes) in the presence and absence of nucleotides. Based on these new structures, we present a novel model for the rotational catalysis mechanism of V1-ATPase, which is different from that of F1-ATPases. PMID:27924256
NASA Astrophysics Data System (ADS)
Suaza, Y. A.; Laroze, D.; Fulla, M. R.; Marín, J. H.
2018-05-01
The D2+ molecular complex fundamental properties in a uniform and multi-hilled semiconductor quantum ribbon under orthogonal electric and magnetic fields are theoretically studied. The energy structure is calculated by using adiabatic approximation combined with diagonalization procedure. The D2+ energy structure is more strongly controlled by the geometrical structural hills than the Coulomb interaction. The formation of vibrational and rotational states is discussed. Aharanov-Bohm oscillation patterns linked to rotational states as well as the D2+ molecular complex stability are highly sensitive to the number of hills while electric field breaks the electron rotational symmetry and removes the energy degeneration between low-lying states.
Cantilever Beam Natural Frequencies in Centrifugal Inertia Field
NASA Astrophysics Data System (ADS)
Jivkov, V. S.; Zahariev, E. V.
2018-03-01
In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.
Wong, David T; Yau, Brian; Thapar, Shikha; Adhikary, Sanjib D
2010-10-01
This study examined the effect of external fibreoptic bronchoscope (FOB) rotations on endotracheal tube (ETT) orientations at the glottic level. Using a mannequin, a nasal FOB was inserted for image capture. A second FOB with a preloaded ETT taped to its top was inserted orally into mid-trachea. The FOB with the taped ETT was rotated as a unit in the axial plane to five different external angles (-90°, -45°, 0°, +45°, +90°). At each external rotation, the ETT was advanced into the trachea. The image of the ETT at the glottic level was captured. Endotracheal tube orientation was quantified according to the glottic zone faced by the ETT. The ETT orientations were compared amongst the five external FOB rotations using the Kruskal-Wallis Test, while the ETT orientations at -90°, -45°, +45°, and +90° FOB rotations were compared with 0° rotation using the Mann-Whitney U test. There was a significant difference in the ETT orientations amongst the five FOB rotations (P < 0.001). The ETT orientations at -90°, -45°, +45°, and +90° FOB rotations were different from the 0° rotation (P < 0.001 for all comparisons). A -90° FOB rotation was most effective in turning the ETT tip away from the right laryngeal structures and the interarytenoid tissue. With the ETT loaded on a FOB, rotation of the FOB prior to advancing the ETT is effective in changing the ETT orientation at the glottis. A -90° FOB rotation is most effective in turning the ETT tip away from the right laryngeal structures and interarytenoid tissue.
2007-11-10
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, secured atop a mobile launch platform, is nearing the top of the five percent grade to the top of the hardstand on its final approach to Launch Pad 39A. The rotating service structure, adjoined to the fixed service structure at left, has been rolled back in preparation for the shuttle's arrival. First motion out of the Vehicle Assembly Building was at 4:43 a.m. EST, and the shuttle was hard down on the pad at 11:51 a.m. Rollout is a milestone for Atlantis' launch to the International Space Station on mission STS-122, targeted for Dec. 6. On this mission, Atlantis will deliver the Columbus module to the International Space Station. The European Space Agency's largest contribution to the station, Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony. The module is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. The laboratory will expand the research facilities aboard the station, providing crew members and scientists from around the world the ability to conduct a variety of experiments in the physical, materials and life sciences. Photo credit: NASA/Kim Shiflett
2007-11-10
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, secured atop a mobile launch platform, ascends the five percent grade to the top of the hardstand on Launch Pad 39A. The rotating service structure, adjoined to the fixed service structure at left, has been rolled back in preparation for the shuttle's arrival. First motion out of the Vehicle Assembly Building was at 4:43 a.m. EST, and the shuttle was hard down on the pad at 11:51 a.m. Rollout is a milestone for Atlantis' launch to the International Space Station on mission STS-122, targeted for Dec. 6. On this mission, Atlantis will deliver the Columbus module to the International Space Station. The European Space Agency's largest contribution to the station, Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony. The module is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. The laboratory will expand the research facilities aboard the station, providing crew members and scientists from around the world the ability to conduct a variety of experiments in the physical, materials and life sciences. Photo credit: NASA/Kim Shiflett
2007-11-10
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, secured atop a mobile launch platform, ascends the five percent grade to the top of the hardstand on Launch Pad 39A. The rotating service structure, adjoined to the fixed service structure at right, has been rolled back in preparation for the shuttle's arrival. First motion out of the Vehicle Assembly Building was at 4:43 a.m. EST, and the shuttle was hard down on the pad at 11:51 a.m. Rollout is a milestone for Atlantis' launch to the International Space Station on mission STS-122, targeted for Dec. 6. On this mission, Atlantis will deliver the Columbus module to the International Space Station. The European Space Agency's largest contribution to the station, Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony. The module is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. The laboratory will expand the research facilities aboard the station, providing crew members and scientists from around the world the ability to conduct a variety of experiments in the physical, materials and life sciences. Photo credit: NASA/Kim Shiflett
LC-39A RSS Rollback before launch of STS-113
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Endeavour stands ready for launch on mission STS-113. Above the golden external tank is the vent hood (known as the 'beanie cap') at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Morgan, Huw; Leonard, Drew
During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, withmore » emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.« less
Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules
NASA Astrophysics Data System (ADS)
Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik
2018-04-01
A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.
NASA Astrophysics Data System (ADS)
Kernicky, Timothy; Whelan, Matthew; Al-Shaer, Ehab
2018-06-01
A methodology is developed for the estimation of internal axial force and boundary restraints within in-service, prismatic axial force members of structural systems using interval arithmetic and contractor programming. The determination of the internal axial force and end restraints in tie rods and cables using vibration-based methods has been a long standing problem in the area of structural health monitoring and performance assessment. However, for structural members with low slenderness where the dynamics are significantly affected by the boundary conditions, few existing approaches allow for simultaneous identification of internal axial force and end restraints and none permit for quantifying the uncertainties in the parameter estimates due to measurement uncertainties. This paper proposes a new technique for approaching this challenging inverse problem that leverages the Set Inversion Via Interval Analysis algorithm to solve for the unknown axial forces and end restraints using natural frequency measurements. The framework developed offers the ability to completely enclose the feasible solutions to the parameter identification problem, given specified measurement uncertainties for the natural frequencies. This ability to propagate measurement uncertainty into the parameter space is critical towards quantifying the confidence in the individual parameter estimates to inform decision-making within structural health diagnosis and prognostication applications. The methodology is first verified with simulated data for a case with unknown rotational end restraints and then extended to a case with unknown translational and rotational end restraints. A laboratory experiment is then presented to demonstrate the application of the methodology to an axially loaded rod with progressively increased end restraint at one end.
ARE GIANT TORNADOES THE LEGS OF SOLAR PROMINENCES?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc
Observations in the 171 A channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events aremore » present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional H{alpha} observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale.« less
Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum
Rico, Y; Wagner, H H
2016-01-01
Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations. PMID:27381322
Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.
Rico, Y; Wagner, H H
2016-11-01
Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.
Are Giant Tornadoes the Legs of Solar Prominences?
NASA Astrophysics Data System (ADS)
Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc; Bosnjak, Antonija; Antolin, Patrick
2013-09-01
Observations in the 171 Å channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events are present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional Hα observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale.
A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system. PMID:22969348
A vision-based dynamic rotational angle measurement system for large civil structures.
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system.
NASA Astrophysics Data System (ADS)
Jilani, K.; Mirza, Arshad M.; Iqbal, J.
2015-02-01
The propagation of electron acoustic solitary waves (EASWs) in a magneto-rotating electron-positron-ion (epi) plasma containing cold dynamical electrons, nonthermal electrons and positrons obeying Cairns' distribution have been explored in the stationary background of massive positive ions. Through the linear dispersion relation (LDR) the effects of nonthermal components, magnetic field and rotation have been analyzed, wherein, various limiting cases have been deduced from the LDR. For nonlinear analysis, Korteweg-de Vries (KdV) equation is obtained using the reductive perturbation technique. It is found that in the presence of nonthermal positrons both hump and dip type solitons appear to excite, the structural properties of these solitary waves change drastically with magneto-rotating effects. The present work may be employed to explore and to understand the formation of electron acoustic solitary structures in the space and laboratory plasmas with nonthermal electrons and positrons under magneto-rotating effects.
NASA Astrophysics Data System (ADS)
Hamilton, Andrew J. S.
2017-10-01
Numerical evidence is presented that the Poisson-Israel mass inflation instability at the inner horizon of an accreting, rotating black hole is generically followed by Belinskii-Khalatnikov-Lifshitz oscillatory collapse to a spacelike singularity. The computation involves following all 6 degrees of freedom of the gravitational field. To simplify the problem, the computation takes as initial conditions the conformally separable solutions of Andrew J. S. Hamilton and Gavin Polhemus [Interior structure of rotating black holes. I. Concise derivation, Phys. Rev. D 84, 124055 (2011), 10.1103/PhysRevD.84.124055] and Andrew J. S. Hamilton [Interior structure of rotating black holes. II. Uncharged black holes, Phys. Rev. D 84, 124056 (2011), 10.1103/PhysRevD.84.124056] just above the inner horizon of a slowly accreting, rotating black hole and integrates the equations inward along single latitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong-Yeon; Hahn, Insik; Kim, Yeongduk
2009-06-15
The soft-rotator model is applied to self-consistent analyses of the nuclear level structures and the nucleon interaction data of the even-even Sn isotopes, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, and {sup 122}Sn. The model successfully describes low-lying collective levels of these isotopes, which exhibit neither typical rotational nor harmonic vibrational structures. The experimental nucleon interaction data--total neutron cross sections, proton reaction cross sections, and nucleon elastic and inelastic scattering data--are well described up to 200 MeV in a coupled-channels optical model approach. For the calculations, nuclear wave functions for the Sn isotopes are taken from the nonaxial soft-rotator model withmore » the model parameters adjusted to fit the measured low-lying collective level structures. We find that the {beta}{sub 2} and {beta}{sub 3} deformations for incident protons are larger than those for incident neutrons by {approx}15%, which is clear evidence of the deviation from the pure collective model for these isotopes.« less
NASA Technical Reports Server (NTRS)
Vernon, Lura
1993-01-01
A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic and transonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.
Band structures in a two-dimensional phononic crystal with rotational multiple scatterers
NASA Astrophysics Data System (ADS)
Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele
2017-03-01
In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.
Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding.
Adrian, Michael; Winnerdy, Fernaldo Richtia; Heddi, Brahim; Phan, Anh Tuân
2017-08-22
Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Gemelli-obturator complex in the deep gluteal space: an anatomic and dynamic study.
Balius, Ramon; Susín, Antonio; Morros, Carles; Pujol, Montse; Pérez-Cuenca, Dolores; Sala-Blanch, Xavier
2018-06-01
To investigate the behavior of the sciatic nerve during hip rotation at subgluteal space. Sonographic examination (high-resolution ultrasound machine at 5.0-14 MHZ) of the gemelli-obturator internus complex following two approaches: (1) a study on cadavers and (2) a study on healthy volunteers. The cadavers were examined in pronation, pelvis-fixed position by forcing internal and external rotations of the hip with the knee in 90° flexion. Healthy volunteers were examined during passive internal and external hip rotation (prone position; lumbar and pelvic regions fixed). Subjects with a history of major trauma, surgery or pathologies affecting the examined regions were excluded. The analysis included eight hemipelvis from six fresh cadavers and 31 healthy volunteers. The anatomical study revealed the presence of connective tissue attaching the sciatic nerve to the structures of the gemellus-obturator system at deep subgluteal space. The amplitude of the nerve curvature during rotating position was significantly greater than during resting position. During passive internal rotation, the sciatic nerve of both cadavers and healthy volunteers transformed from a straight structure to a curved structure tethered at two points as the tendon of the obturator internus contracted downwards. Conversely, external hip rotation caused the nerve to relax. Anatomically, the sciatic nerve is closely related to the gemelli-obturator internus complex. This relationship results in a reproducible dynamic behavior of the sciatic nerve during passive hip rotation, which may contribute to explain the pathological mechanisms of the obturator internal gemellus syndrome.
Lee, William H K.
2016-01-01
Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.
Small Scale High Speed Turbomachinery
NASA Technical Reports Server (NTRS)
London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)
2015-01-01
A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.
Aston-Brown, Roberta E; Branson, Bonnie; Gadbury-Amyot, Cynthia C; Bray, Kimberly Krust
2009-03-01
National reports outlining disparities in oral health care in the United States have focused attention on ways to encourage health care providers to become more involved in the public health arena. Utilization of service-learning in professional health education programs is one method being explored. The purpose of this study was to conduct a retrospective review of a service-learning rotation within a dental hygiene public health course. The study utilized data sources generated by students as part of a course evaluation. These sources included student journals (qualitative/quantitative) and Likert-scaled (quantitative) and open-ended (qualitative) student satisfaction survey items. Mixed methodology data analysis techniques were used to analyze and triangulate data in order to form conclusions related to the effectiveness of service-learning as a teaching strategy in dental hygiene. This investigation suggests that service-learning is an effective learning strategy for increasing student awareness of underserved populations, cultural diversity, and ethical patient care. The study also suggests that service-learning helped students to determine their level of interest in public health as a career choice by giving them a real-world experience in public health patient care.
The rotation of the Sun: Observations at Stanford. [using the Doppler effect
NASA Technical Reports Server (NTRS)
Scherrer, J. M.; Wilcox, J. M.; Svalgaard, L.
1980-01-01
Daily observations of the photospheric rotation rate using the Doppler effect made at the Stanford Solar Observatory since May 1976 are analyzed. Results show that these observations show no daily or long period variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is the same as that of the sunspot and the large-scale magnetic field structures.
Dynamic behavior of a black phosphorus and carbon nanotube composite system
NASA Astrophysics Data System (ADS)
Shi, Jiao; Cai, Haifang; Cai, Kun; Qin, Qing-Hua
2017-01-01
A double walled nanotube composite is constructed by placing a black-phosphorene-based nanotube (BPNT) in a carbon nanotube (CNT). When driving the CNT to rotate by stators in a thermal driven rotary nanomotor, the BPNT behaves differently from the CNT. For instance, the BPNT can be actuated to rotate by the CNT, but its rotational acceleration differs from that of the CNT. The BPNT oscillates along the tube axis when it is longer than the CNT. The results obtained indicate that the BPNT functions with high structural stability when acting as a rotor with rotational frequency of ~20 GHz at 250 K. If at a higher temperature than 250 K, say 300 K, the rotating BPNT shows weaker structural stability than its status at 250 K. When the two tubes in the rotor are of equal length, the rotational frequency of the BPNT drops rapidly after the BPNT is collapsed, owing to more broken P-P bonds. When the black-phosphorene nanotube is longer than the CNT, it rotates synchronously with the CNT even if it is collapsed. Hence, in the design of a nanomotor with a rotor from BPNT, the working rotational frequency should be lower than a certain threshold at a higher temperature.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room check the movement of the U.S. Lab Destiny, which is being transferred to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians prepare the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured on a special test stand. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician prepares the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is being prepared for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
2007-02-12
KENNEDY SPACE CENTER, FLA. -- A worker in the payload changeout room (PCR) on Launch Pad 39A monitors the payload ground-handling mechanism that is used to transfer the payload into the PCR and the shuttle's payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the doors of the canister are opened to reveal the S3/S4 integrated truss inside. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the doors of the canister are opened to reveal the S3/S4 integrated truss inside. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
NICER Transfer (for SpaceX CRS-11)
2017-04-12
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, a worker prepares the mechanism to open the doors of the canister containing the S3/S4 integrated truss. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2000-11-30
Against a cloudless blue sky, Space Shuttle Endeavour stands ready for launch after the rollback of the Rotating Service Structure, at left. Endeavour is targeted for launch tonight at about 10:06 p.m. EST on mission STS-97 to the International Space Station. The orbiter carries the P6 Integrated Truss Segment containing solar arrays that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections
ARE TORNADO-LIKE MAGNETIC STRUCTURES ABLE TO SUPPORT SOLAR PROMINENCE PLASMA?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luna, M.; Moreno-Insertis, F.; Priest, E.
Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominencemore » plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present.« less
Creating structure for continuation of initiatives.
McClave, Stephen A; Mechanick, Jeffrey I; Kushner, Robert F; DeLegge, Mark H
2010-01-01
The Summit for Increasing Physician Nutrition Experts brought nutrition leaders from North America together to forge new strategies for promoting greater physician involvement in clinical nutrition. The initiatives derived from the Summit address issues related to education, board certification, research, and clinical practice. To seek consensus from participating societies and to establish a format for the implementation of these initiatives, a council of representatives needs to be formed. The council must be noncompetitive, promote collaboration and facilitation of nutrition activities for participating societies, and ultimately provide service to the healthcare system and individual practitioners. The structure of this council may evolve from a temporary task force to an enduring committee. Participating societies will be asked to fund expenses for their representative and host council meetings on a rotating basis. The council will assume responsibility for pursuing Summit initiatives and providing ongoing communication and collaboration between participant groups.
2010-11-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, xenon lights illuminate space shuttle Discovery on Launch Pad 39A following the retraction of the rotating service structure. The structure provides weather protection and access to the shuttle while it awaits lift off on the pad. Launch of Discovery on the STS-133 mission to the International Space Station is set for 3:29 p.m. on Nov. 4. During the 11-day mission, Discovery and its six crew members will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Troy Cryder
Peptoid nanosheets exhibit a new secondary-structure motif.
Mannige, Ranjan V; Haxton, Thomas K; Proulx, Caroline; Robertson, Ellen J; Battigelli, Alessia; Butterfoss, Glenn L; Zuckermann, Ronald N; Whitelam, Stephen
2015-10-15
A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers--structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Σ('sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Σ-sheet. The binary rotational-state motif of the Σ-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system.
Shock modon: a new type of coherent structure in rotating shallow water.
Lahaye, Noé; Zeitlin, Vladimir
2012-01-27
We show that a new type of coherent structure, a shock modon, exists in a rotating shallow water model at large Rossby numbers. It is a combination of an asymmetric vortex dipole with a stationary hydraulic jump. The structure is long living, despite the energy dissipation by the hydraulic jump, and moving along a circular path. Collisions of shock modons can be elastic, or lead to formation of shock tripoles.
Teaching and learning in an 80-hour work week: a novel day-float rotation for medical residents.
Wong, Jeffrey G; Holmboe, Eric S; Huot, Stephen J
2004-05-01
The 80-hour workweek limit for residents provides an opportunity for residency directors to creatively innovate their programs. Our novel day-float rotation augmented both the educational structure within the inpatient team setting and the ability for house staff to complete their work within the mandated limits. Descriptive evaluation of the rotation was performed through an end-of-rotation questionnaire. The average length of the ward residents' work week was quantified before and after the rotation's implementation. Educational portfolios and mentored peer-teaching opportunities enriched the rotation. As measured by our evaluation, this new rotation enhanced learning and patient care while reducing work hours for inpatient ward residents.
Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen
2012-07-14
Supported by accurate quantum-chemical calculations, the rotational spectra of the mono- and bi-deuterated species of fluoroiodomethane, CHDFI and CD(2)FI, as well as of the (13)C-containing species, (13)CH(2)FI, were recorded for the first time. Three different spectrometers were employed, a Fourier-transform microwave spectrometer, a millimeter/submillimter-wave spectrometer, and a THz spectrometer, thus allowing to record a huge portion of the rotational spectrum, from 5 GHz up to 1.05 THz, and to accurately determine the ground-state rotational and centrifugal-distortion constants. Sub-Doppler measurements allowed to resolve the hyperfine structure of the rotational spectrum and to determine the complete iodine quadrupole-coupling tensor as well as the diagonal elements of the iodine spin-rotation tensor. The present investigation of rare isotopic species of CH(2)FI together with the results previously obtained for the main isotopologue [C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, J. Chem. Phys. 134, 174312 (2011); G. Cazzoli, A. Baldacci, A. Baldan, and C. Puzzarini, Mol. Phys. 109, 2245 (2011)] enabled us to derive a semi-experimental equilibrium structure for fluoroiodomethane by means of a least-squares fit procedure using the available experimental ground-state rotational constants together with computed vibrational corrections. Problems related to the missing isotopic substitution of fluorine and iodine were overcome thanks to the availability of an accurate theoretical equilibrium geometry (computed at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations).
Professional Staff in Canadian University Libraries.
ERIC Educational Resources Information Center
Rothstein, Samuel
1986-01-01
Data from three Canadian university libraries on length of service, degree of mobility, and age of professional staff suggest that the combination of middle age, long service, and immobility results in severe deficiencies of motivation, morale, and creativity. Job rotation and job enlargement are suggested as solutions. (EM)
Applications technology satellite advanced missions study, volume 1
NASA Technical Reports Server (NTRS)
Robinson, D. L.
1972-01-01
Four different spacecraft configurations were developed for geostationary service as a high power communications satellite. The first configuration is a Thor-Delta launch into a low orbit with a spiral ascent to synchronous altitude by ion engine propulsion. The spacecraft is earth oriented with rotating solar arrays. Configuration 2 is a direct injection Atlas/Centaur/Burner II vehicle which when in orbit is sun-oriented with a rotating transponder tower. Configurations 3 and 4 are Titan IIIC launches, and are therefore larger and heavier than Configuration 2. They are both sun-oriented, with rotating transponder towers and are directly injected into orbit. Technology discussed includes high power (up to 2 kW) transmitters with collectors radiating heat directly into space, and contoured antenna patterns designed to illuminate particular earth regions. There is also a review of potential users of the services which can be performed by this type satellite in such areas as information networking, public broadcasting and educational television.
Cao, Severine Z; Nambudiri, Vinod E
2017-12-15
The highly competitive nature of the dermatology match requires applicants to undertake a variety of measures in the hopes of securing a residency position. Among the opportunities available to applicants is the chance to participate in away or "audition" rotations during their final year of undergraduate medical education. Away rotations are now performed by a majority of medical students applying into dermatology, but littleresearch has been done to describe the nature of this opportunity for interested applicants. An analysis of all dermatology electives offered in the Visiting Student Application Service (VSAS) database wasperformed. Results indicate that students have the option to pursue electives in a variety of subjects offered by 100 sponsoring institutions spread across a wide geographic distribution. Although manyopportunities exist, this analysis sheds light on several areas for improving the quality of this experience for interested applicants, including providing more electives in advanced subject matter, permitting more flexibility in scheduling, and promoting wider participation in VSAS.
Chreiman, Kristen M; Prakash, Priya S; Kim, Patrick K; Mehta, Samir; McGinnis, Kelly; Gallagher, John J; Reilly, Patrick M
2017-01-01
Communicating service-specific practice patterns, guidelines, and provider information to a new team of learners that rotate frequently can be challenging. Leveraging individual and healthcare electronic resources, a mobile device platform was implemented into a newly revised resident onboarding process. We hypothesized that offering an easy-to-use mobile application would improve communication across multiple disciplines as well as improve provider experiences when transitioning to a new rotation. A mobile platform was created and deployed to assist with enhancing communication within a trauma service and its resident onboarding process. The platform had resource materials such as: divisional policies, Clinical Practice Guidelines (CMGs), and onboarding manuals along with allowing for the posting of divisional events, a divisional directory that linked to direct dialing, text or email messaging, as well as on-call schedules. A mixed-methods study, including an anonymous survey, aimed at providing information on team member's impressions and usage of the mobile application was performed. Usage statistics over a 3-month period were analyzed on those providers who completed the survey. After rotation on the trauma service, trainees were asked to complete an anonymous, online survey addressing both the experience with, as well as the utility of, the mobile app. Thirty of the 37 (81%) residents and medical students completed the survey. Twenty-five (83%) trainees stated that this was their first experience rotating on the trauma service and 6 (20%) were from outside of the health system. According to those surveyed, the most useful function of the app were access to the directory (15, 50%), the divisional calendar (4, 13.3%), and the on-call schedules (3, 10%). Overall, the app was felt to be easy to use (27, 90%) and was accessed an average of 7 times per day (1–50, SD 9.67). Over half the survey respondents felt that the mobile app was helpful in completing their everyday tasks (16, 53.3%). Fifteen (50%) of the respondents stated that the app made the transition to the trauma service easier. Twenty-five (83.3%) stated it was valuable knowing about departmental events and announcements, and 17 (56.7%) felt more connected to the division. The evolution of mobile technology is rapidly becoming fundamental in medical education and training. We found that integrating a service-specific mobile application improved the learner's experience when transitioning to a new service and was a valuable onboarding instrument. Level of evidence IV. PMID:29766089
Chreiman, Kristen M; Prakash, Priya S; Martin, Niels D; Kim, Patrick K; Mehta, Samir; McGinnis, Kelly; Gallagher, John J; Reilly, Patrick M
2017-01-01
Communicating service-specific practice patterns, guidelines, and provider information to a new team of learners that rotate frequently can be challenging. Leveraging individual and healthcare electronic resources, a mobile device platform was implemented into a newly revised resident onboarding process. We hypothesized that offering an easy-to-use mobile application would improve communication across multiple disciplines as well as improve provider experiences when transitioning to a new rotation. A mobile platform was created and deployed to assist with enhancing communication within a trauma service and its resident onboarding process. The platform had resource materials such as: divisional policies, Clinical Practice Guidelines (CMGs), and onboarding manuals along with allowing for the posting of divisional events, a divisional directory that linked to direct dialing, text or email messaging, as well as on-call schedules. A mixed-methods study, including an anonymous survey, aimed at providing information on team member's impressions and usage of the mobile application was performed. Usage statistics over a 3-month period were analyzed on those providers who completed the survey. After rotation on the trauma service, trainees were asked to complete an anonymous, online survey addressing both the experience with, as well as the utility of, the mobile app. Thirty of the 37 (81%) residents and medical students completed the survey. Twenty-five (83%) trainees stated that this was their first experience rotating on the trauma service and 6 (20%) were from outside of the health system. According to those surveyed, the most useful function of the app were access to the directory (15, 50%), the divisional calendar (4, 13.3%), and the on-call schedules (3, 10%). Overall, the app was felt to be easy to use (27, 90%) and was accessed an average of 7 times per day (1-50, SD 9.67). Over half the survey respondents felt that the mobile app was helpful in completing their everyday tasks (16, 53.3%). Fifteen (50%) of the respondents stated that the app made the transition to the trauma service easier. Twenty-five (83.3%) stated it was valuable knowing about departmental events and announcements, and 17 (56.7%) felt more connected to the division. The evolution of mobile technology is rapidly becoming fundamental in medical education and training. We found that integrating a service-specific mobile application improved the learner's experience when transitioning to a new service and was a valuable onboarding instrument. Level of evidence IV.
1979-12-01
Green Beans Nicoise Egg Plant Parmesan or Zucchini Parmesan Club Spinach Dinner: Cheese Ravioli (frozen) rotate or Beef Ravioli (frozen) Cheese...Manicotti (frozen) rotate or Beef Manicotti (frozen) Meat Sauce (for ravioli and manicotti) Spaghetti w/ Meatballs Assorted Pizzas Baked Lasagna Veal Parmesan
Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara
2014-07-01
Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.
Sequence-dependent rotation axis changes in tennis.
Hansen, Clint; Martin, Caroline; Rezzoug, Nasser; Gorce, Philippe; Bideau, Benoit; Isableu, Brice
2017-09-01
The purpose of this study was to evaluate the role of rotation axes during a tennis serve. A motion capture system was used to evaluate the contribution of the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis) during the four discrete tennis serve phases (loading, cocking, acceleration and follow through). Ten ranked athletes (International Tennis Number 1-3) repeatedly performed a flat service aiming at a target on the other side of the net. The four serve phases are distinct and thus, each movement phase seems to be organised around specific rotation axes. The results showed that the limbs' rotational axis does not necessarily coincide with the minimum inertia axis across the cocking phase of the tennis serve. Even though individual serving strategies were exposed, all participants showed an effect due to the cocking phase and changed the rotation axis during the task. Taken together, the results showed that despite inter-individual differences, nine out of 10 participants changed the rotation axis towards the minimum inertia and/or the mass axis in an endeavour to maximise external rotation of the shoulder to optimally prepare for the acceleration phase.
Kanna, Balavenkatesh; Deng, Changchun; Erickson, Savil N; Valerio, Jose A; Dimitrov, Vihren; Soni, Anita
2006-10-17
In the United States, the Accreditation Council of graduate medical education (ACGME) requires all accredited Internal medicine residency training programs to facilitate resident scholarly activities. However, clinical experience and medical education still remain the main focus of graduate medical education in many Internal Medicine (IM) residency-training programs. Left to design the structure, process and outcome evaluation of the ACGME research requirement, residency-training programs are faced with numerous barriers. Many residency programs report having been cited by the ACGME residency review committee in IM for lack of scholarly activity by residents. We would like to share our experience at Lincoln Hospital, an affiliate of Weill Medical College Cornell University New York, in designing and implementing a successful structured research curriculum based on ACGME competencies taught during a dedicated "research rotation". Since the inception of the research rotation in 2004, participation of our residents among scholarly activities has substantially increased. Our residents increasingly believe and appreciate that research is an integral component of residency training and essential for practice of medicine. Internal medicine residents' outlook in research can be significantly improved using a research curriculum offered through a structured and dedicated research rotation. This is exemplified by the improvement noted in resident satisfaction, their participation in scholarly activities and resident research outcomes since the inception of the research rotation in our internal medicine training program.
Kanna, Balavenkatesh; Deng, Changchun; Erickson, Savil N; Valerio, Jose A; Dimitrov, Vihren; Soni, Anita
2006-01-01
Background In the United States, the Accreditation Council of graduate medical education (ACGME) requires all accredited Internal medicine residency training programs to facilitate resident scholarly activities. However, clinical experience and medical education still remain the main focus of graduate medical education in many Internal Medicine (IM) residency-training programs. Left to design the structure, process and outcome evaluation of the ACGME research requirement, residency-training programs are faced with numerous barriers. Many residency programs report having been cited by the ACGME residency review committee in IM for lack of scholarly activity by residents. Methods We would like to share our experience at Lincoln Hospital, an affiliate of Weill Medical College Cornell University New York, in designing and implementing a successful structured research curriculum based on ACGME competencies taught during a dedicated "research rotation". Results Since the inception of the research rotation in 2004, participation of our residents among scholarly activities has substantially increased. Our residents increasingly believe and appreciate that research is an integral component of residency training and essential for practice of medicine. Conclusion Internal medicine residents' outlook in research can be significantly improved using a research curriculum offered through a structured and dedicated research rotation. This is exemplified by the improvement noted in resident satisfaction, their participation in scholarly activities and resident research outcomes since the inception of the research rotation in our internal medicine training program. PMID:17044924
Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.; ...
2016-12-06
We report the discovery of noncentrosymmetry in the family of HRTiO 4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden-Popper derivative structure, by second harmonic generation and synchrotron x-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is broken by oxygen octahedral rotations, a mechanism that is not active in simple perovskites. We discover a competition between oxygen octahedral rotations and sliding of the octahedral perovskite blocks at the OH layers. For the smaller rare earth ions, R = Eu, Gd, Dy, which favor themore » octahedral rotations, noncentrosymmetry is present but the sliding at the OH layer is absent. For the larger rare earth ions, R = Nd and Sm, the octahe-dral rotations are absent, but sliding of the octahedral blocks at the OH layer is present, likely to optimize the hydrogen bond length arising from the directional nature of these bonds in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetry in layered oxides, and chemical-structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. In conclusion, we construct a complete phase diagram of temperature versus rare earth ionic radius for the HRTiO 4 family.« less
Novel Spiral-Like Electrode Structure Design for Realization of Two Modes of Energy Harvesting.
Chen, Lin; Guo, Hengyu; Xia, Xiaona; Liu, Guanlin; Shi, Haofei; Wang, Mingjun; Xi, Yi; Hu, Chenguo
2015-08-05
A planar spiral-like electrodes (PSE) based triboelectric generator has been designed for harvesting rotary mechanical energy to translate into electricity. The performance of the PSE-triboelectric generator with different cycles of spiral-like electrode strip at different rotating speeds is investigated, which demonstrates the open-circuit voltage and short-circuit current of 470 V and 9.0 μA at rotating speed of 500 r/min with three cycles. In addition, a novel coaxially integrated multilayered PSE-triboelectric generator is built, which can enhance the output of the power effectively. The short-circuit current, the open-circuit voltage, and output power reach to 41.55 μA, 500 V, and 11.73 mW, respectively, at rotating speed of 700 r/min. The output power of the multilayered PSE-triboelectric generator can drive 200 LEDs connected in antiparallel and charge a 110 μF commercial capacitor to 6 V in 23 s. Besides, due to the spiral-like electrode structure, the PSE-generator can work simultaneously in the modes of triboelectricity and electromagnetic induced electricity by sticking a small magnet on the rotating disk. The electromagnetic induced output power reaches to 21 μW at a loading resistance of 2 Ω at a rotating rate of 200 r/min. The spiral-like electrode structure not only broadens the electrode structure design but also adds a new function to the electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.
We report the discovery of noncentrosymmetry in the family of HRTiO 4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden-Popper derivative structure, by second harmonic generation and synchrotron x-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is broken by oxygen octahedral rotations, a mechanism that is not active in simple perovskites. We discover a competition between oxygen octahedral rotations and sliding of the octahedral perovskite blocks at the OH layers. For the smaller rare earth ions, R = Eu, Gd, Dy, which favor themore » octahedral rotations, noncentrosymmetry is present but the sliding at the OH layer is absent. For the larger rare earth ions, R = Nd and Sm, the octahe-dral rotations are absent, but sliding of the octahedral blocks at the OH layer is present, likely to optimize the hydrogen bond length arising from the directional nature of these bonds in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetry in layered oxides, and chemical-structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. In conclusion, we construct a complete phase diagram of temperature versus rare earth ionic radius for the HRTiO 4 family.« less
Organized motions in a jet in crossflow
NASA Astrophysics Data System (ADS)
Rivero, A.; Ferré, J. A.; Giralt, Francesc
2001-10-01
An experimental study to identify the structures present in a jet in crossflow has been carried out at a jet-to-crossflow velocity ratio U/Ucf = 3.8 and Reynolds number Re = UcfD/v = 6600. The hot-wire velocity data measured with a rake of eight X-wires at x/D = 5 and 15 and flow visualizations using planar laser-induced fluorescence (PLIF) confirm that the well-established pair of counter-rotating vortices is a feature of the mean field and that the upright, tornado-like or Fric's vortices that are shed to the leeward side of the jet are connected to the jet flow at the core. The counter-rotating vortex pair is strongly modulated by a coherent velocity field that, in fact, is as important as the mean velocity field. Three different structures folded vortex rings, horseshoe vortices and handle-type structures contribute to this coherent field. The new handle-like structures identified in the current study link the boundary layer vorticity with the counter-rotating vortex pair through the upright tornado-like vortices. They are responsible for the modulation and meandering of the counter-rotating vortex pair observed both in video recordings of visualizations and in the instantaneous velocity field. These results corroborate that the genesis of the dominant counter-rotating vortex pair strongly depends on the high pressure gradients that develop in the region near the jet exit, both inside and outside the nozzle.
Studies on dynamic behavior of rotating mirrors
NASA Astrophysics Data System (ADS)
Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie
2005-02-01
A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.
NASA Astrophysics Data System (ADS)
Pérès, Guénola; Menasseri, Safya; Hallaire, Vincent; Cluzeau, Daniel; Heddadj, Djilali; Cotinet, Patrice; Manceau, Olivier; Pulleman, Mirjam
2017-04-01
In the current context of soil degradation, reduced tillage systems (including reduced soil disturbance, use of cover crops and crop rotation, and improved organic matter management) are expected to be good alternatives to conventional system which have led to a decrease of soil multi-functionality. Many studies worldwide have analysed the impact of tillage systems on different soil functions, but overran integrated view of the impact of these systems is still lacking. The SUSTAIN project (European SNOWMAN programme), performed in France and the Netherlands, proposes an interdisciplinary collaboration. The goals of SUSTAIN are to assess the multi-functionality of soil and to study how reduced-tillage systems impact on multiple ecosystem services such as soil biodiversity regulation (earthworms, nematodes, microorganisms), soil structure maintenance (aggregate stability, compaction, soil erosion), water regulation (run-off, transfer of pesticides) and food production. Moreover, a socio-economic study on farmer networks has been carried out to identify the drivers of adoption of reduced-tillage systems. Data have been collected in long-term experimental fields (5 - 13 years), representing conventional and organic farming strategies, and were complemented with data from farmer networks. The impact of different reduced tillage systems (direct seeding, minimum tillage, non-inverse tillage, superficial ploughing) were analysed and compared to conventional ploughing. Measurements (biological, chemical, physical, agronomical, water and element transfer) have been done at several dates which allow an overview of the evolution of the soil properties according to climate variation and crop rotation. A sociological approach was performed on several farms covering different production types, different courses (engagement in reduced tillage systems) and different geographical locations. Focusing on French trials, this multiple ecosystem services approach clearly showed that reduced tillage systems improved soil ecosystem services such as soil biodiversity, water regulation (quantity, quality), carbon storage and soil stability; however, the effects on crop production were more variable (-10% to +7 % range), strongly depending on crop type and agricultural practices (fertilisation, rotation, cover crop). Sociological approach showed that saving labour time and fuel costs were the main motivations for change. Agronomic and environmental benefits are not the trigger but are increasingly recognized and contribute to the maintenance of the practice. Farmers also expressed a need for stronger networking and technical advice, which plays a crucial role. Scientists and experts raise awareness, support collective learning and provide instrumental. Recommendations were provided for sustainable soil management aiming at ecological intensification of agricultural land.
Stochl, Jan; Croudace, Tim
2013-01-01
Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.
NASA Astrophysics Data System (ADS)
Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.
2018-03-01
The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.
Papenmeier, Frank; Schwan, Stephan
2016-02-01
Viewing objects with stereoscopic displays provides additional depth cues through binocular disparity supporting object recognition. So far, it was unknown whether this results from the representation of specific stereoscopic information in memory or a more general representation of an object's depth structure. Therefore, we investigated whether continuous object rotation acting as depth cue during encoding results in a memory representation that can subsequently be accessed by stereoscopic information during retrieval. In Experiment 1, we found such transfer effects from continuous object rotation during encoding to stereoscopic presentations during retrieval. In Experiments 2a and 2b, we found that the continuity of object rotation is important because only continuous rotation and/or stereoscopic depth but not multiple static snapshots presented without stereoscopic information caused the extraction of an object's depth structure into memory. We conclude that an object's depth structure and not specific depth cues are represented in memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Rotationally resolved electronic spectroscopy of biomolecules in the gas phase. Melatonin
NASA Astrophysics Data System (ADS)
Yi, John T.; Brand, Christian; Wollenhaupt, Miriam; Pratt, David W.; Leo Meerts, W.; Schmitt, Michael
2011-07-01
Rotationally resolved electronic spectra of the A and B bands of melatonin have been analyzed using an evolutionary strategy approach. From a comparison of the ab initio calculated structures of energy selected conformers to the experimental rotational constants, the A band could be shown to be due to a gauche structure of the side chain, while the B band is an anti structure. Both bands show a complicated pattern due to a splitting from the threefold internal rotation of the methyl rotor in the N-acetyl group of the molecules. From a torsional analysis we additionally were able to determine the barriers of the methyl torsion in both electronic states of melatonin B and give an estimate for the change of the barrier upon electronic excitation in melatonin A. The electronic nature of the lowest excited singlet state could be determined to be 1Lb (as in the chromophore indole) from comparison to the results of ab initio calculations.
NASA Astrophysics Data System (ADS)
Turkoglu, F.; Koseoglu, H.; Zeybek, S.; Ozdemir, M.; Aygun, G.; Ozyuzer, L.
2018-04-01
In this study, aluminum-doped zinc oxide (AZO) thin films were deposited by DC magnetron sputtering at room temperature. The distance between the substrate and target axis, and substrate rotation speed were varied to get high quality AZO thin films. The influences of these deposition parameters on the structural, optical, and electrical properties of the fabricated films were investigated by X-ray diffraction (XRD), Raman spectroscopy, spectrophotometry, and four-point probe techniques. The overall analysis revealed that both sample position and substrate rotation speed are effective in changing the optical, structural, and electrical properties of the AZO thin films. We further observed that stress in the films can be significantly reduced by off-center deposition and rotating the sample holder during the deposition. An average transmittance above 85% in the visible range and a resistivity of 2.02 × 10-3 Ω cm were obtained for the AZO films.
Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data
NASA Technical Reports Server (NTRS)
Scargle, Jeff; Keil, Steve; Worden, Pete
2011-01-01
Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.
Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei
2016-02-15
The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.
NASA Technical Reports Server (NTRS)
Gregory, T. J.
1977-01-01
Apparatus holds remotely piloted arm that accelerates until launching speed is reached. Then vehicle and counterweight at other end of arm are released simultaneously to avoid structural damage from unbalanced rotating forces.
The solar gravitational figure: J2 and J4
NASA Technical Reports Server (NTRS)
Ulrich, R. K.; Hawkins, G. W.
1980-01-01
The theory of the solar gravitational figure is derived including the effects of differential rotation. It is shown that J sub 4 is smaller than J sub 2 by a factor of about 10 rather than being of order J sub 2 squared as would be expected for rigid rotation. The dependence of both J sub 2 and J sub 4 on envelope mass is given. High order p-mode oscillation frequencies provide a constraint on solar structure which limits the range in envelope mass to the range 0.01 M sub E/solar mass 0.04. For an assumed rotation law in which the surface pattern of differential rotation extends uniformly throughout the convective envelope, this structural constraint limits the ranges of J sub 2 and J sub 4 in units of 10 to the -8th power to 10 J sub 2 15 and 0.6 -J sub 4 1.5. Deviations from these ranges would imply that the rotation law is not constant with depth and would provide a measure of this rotation law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping
We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with ourmore » numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. - Highlights: • A binary quantum gases with unequal atomic masses is considered. • Effects of the ratio of atomic masses and rotation frequency are discussed in full parameter space. • The detailed information about both the cloud and vortices are also discussed.« less
Milky Way Kinematics. II. A Uniform Inner Galaxy H I Terminal Velocity Curve
NASA Astrophysics Data System (ADS)
McClure-Griffiths, N. M.; Dickey, John M.
2016-11-01
Using atomic hydrogen (H I) data from the VLA Galactic Plane Survey, we measure the H I terminal velocity as a function of longitude for the first quadrant of the Milky Way. We use these data, together with our previous work on the fourth Galactic quadrant, to produce a densely sampled, uniformly measured, rotation curve of the northern and southern Milky Way between 3 {kpc}\\lt R\\lt 8 {kpc}. We determine a new joint rotation curve fit for the first and fourth quadrants, which is consistent with the fit we published in McClure-Griffiths & Dickey and can be used for estimating kinematic distances interior to the solar circle. Structure in the rotation curves is now exquisitely well defined, showing significant velocity structure on lengths of ˜200 pc, which is much greater than the spatial resolution of the rotation curve. Furthermore, the shape of the rotation curves for the first and fourth quadrants, even after subtraction of a circular rotation fit shows a surprising degree of correlation with a roughly sinusoidal pattern between 4.2\\lt R\\lt 7 kpc.
Resonant vibration control of rotating beams
NASA Astrophysics Data System (ADS)
Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan
2011-04-01
Rotating structures, like e.g. wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor-actuator system, governed by a resonant controller. The theory is here demonstrated by an active strut, connecting two cross-sections of a rotating beam. The structure is modeled by beam elements in a rotating frame of reference following the beam. The geometric stiffness is derived in a compact form from an initial stress formulation in terms of section forces and moments. The stiffness, and thereby the natural frequencies, of the beam depend on the rotation speed and the controller is tuned to current rotation speed to match the resonance frequency of the selected mode. It is demonstrated that resonant control leads to introduction of the intended level of damping in the selected mode and, with good modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briscoe, M; Ploquin, N; Voroney, JP
2015-06-15
Purpose: To quantify the effect of patient rotation in stereotactic radiation therapy and establish a threshold where rotational patient set-up errors have a significant impact on target coverage. Methods: To simulate rotational patient set-up errors, a Matlab code was created to rotate the patient dose distribution around the treatment isocentre, located centrally in the lesion, while keeping the structure contours in the original locations on the CT and MRI. Rotations of 1°, 3°, and 5° for each of the pitch, roll, and yaw, as well as simultaneous rotations of 1°, 3°, and 5° around all three axes were applied tomore » two types of brain lesions: brain metastasis and acoustic neuroma. In order to analyze multiple tumour shapes, these plans included small spherical (metastasis), elliptical (acoustic neuroma), and large irregular (metastasis) tumour structures. Dose-volume histograms and planning target volumes were compared between the planned patient positions and those with simulated rotational set-up errors. The RTOG conformity index for patient rotation was also investigated. Results: Examining the tumour volumes that received 80% of the prescription dose in the planned and rotated patient positions showed decreases in prescription dose coverage of up to 2.3%. Conformity indices for treatments with simulated rotational errors showed decreases of up to 3% compared to the original plan. For irregular lesions, degradation of 1% of the target coverage can be seen for rotations as low as 3°. Conclusions: This data shows that for elliptical or spherical targets, rotational patient set-up errors less than 3° around any or all axes do not have a significant impact on the dose delivered to the target volume or the conformity index of the plan. However the same rotational errors would have an impact on plans for irregular tumours.« less
NASA Astrophysics Data System (ADS)
Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán
2018-01-01
The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.
Factors affecting rotator cuff healing.
Mall, Nathan A; Tanaka, Miho J; Choi, Luke S; Paletta, George A
2014-05-07
Several studies have noted that increasing age is a significant factor for diminished rotator cuff healing, while biomechanical studies have suggested the reason for this may be an inferior healing environment in older patients. Larger tears and fatty infiltration or atrophy negatively affect rotator cuff healing. Arthroscopic rotator cuff repair, double-row repairs, performing a concomitant acromioplasty, and the use of platelet-rich plasma (PRP) do not demonstrate an improvement in structural healing over mini-open rotator cuff repairs, single-row repairs, not performing an acromioplasty, or not using PRP. There is conflicting evidence to support postoperative rehabilitation protocols using early motion over immobilization following rotator cuff repair.
NASA Technical Reports Server (NTRS)
Lai, Steven H.-Y.
1992-01-01
A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.
Ecosystem services of woody crop production systems
Ronald S. Zalesny Jr.; John A. Stanturf; Emile S. Gardiner; James H. Perdue; Timothy M. Young; David R. Coyle; William L. Headlee; Gary S. Ba??uelos; Amir Hass
2016-01-01
Short-rotation woody crops are an integral component of regional and national energy portfolios, as well as providing essential ecosystem services such as biomass supplies, carbon sinks, clean water, and healthy soils. We review recent USDA Forest Service Research and Development efforts from the USDA Biomass Research Centers on the provisioning of these ecosystem...
Educational Strategies in Ambulatory Care
ERIC Educational Resources Information Center
Barker, Lee R.
1978-01-01
In 1974 an ambulatory practice was developed for the house staff in the Department of Medicine at Baltimore City Hospital and integrated into the traditional residency program, which is based upon block rotations in inpatient services, emergency service, and subspeciality electives. The goals and strategies of this program are described. (LB H)
NASA Astrophysics Data System (ADS)
Cruzan, Jeff D.; Viant, Mark R.; Brown, Mac G.; Lucas, Don D.; Liu, Kun; Saykally, Richard J.
1998-08-01
The vibration-rotation-tunneling (VRT) spectrum of a low-frequency intermolecular vibration of (D 2O) 5 was recorded near 0.9 THz (30.2 cm -1). From an analysis of the relative intensities in the compact Q-branch region, the ground-state C-rotational constant is estimated to be 975±60 MHz, consistent with ab initio structural predictions. The precisely determined B-rotational constant ( B=1750.96±0.20 MHz) agrees well with previous results. Efforts to resolve possible bifurcation tunneling fine structure, such as that observed in VRT spectra of (D 2O) 3, revealed no such effects. This constrains the splittings to be less than 450 kHz, or roughly 3 times smaller than required by previous results.
The Rotational Spectrum and Conformational Structures of Methyl Valerate
NASA Astrophysics Data System (ADS)
Nguyen, Ha Vinh Lam; Stahl, Wolfgang
2015-06-01
Methyl valerate, C4H9COOCH3, belongs to the class of fruit esters, which play an important role in nature as odorants of different fruits, flowers, and wines. A sufficient explanation for the structure-odor relation of is not available. It is known that predicting the odor of a substance is not possible by knowing only its chemical formula. A typical example is the blueberry- or pine apple-like odor of ethyl isovalerate while its isomers ethyl valerate and isoamyl acetate smell like green apple and banana, respectively. Obviously, not only the composition but also the molecular structures are not negligible by determining the odor of a substance. Gas phase structures of fruit esters are thus important for a first step towards the determination of structure-odor relation since the sense of smell starts from gas phase molecules. For this purpose, a combination of microwave spectroscopy and quantum chemical calculations (QCCs) is an excellent tool. Small esters often have sufficient vapor pressure to be transferred easily in the gas phase for a rotational study but already contain a large number of atoms which makes them too big for classical structure determination by isotopic substitution and requires nowadays a comparison with the structures optimized by QCCs. On the other hand, the results from QCCs have to be validated by the experimental values. About the internal dynamics, the methoxy methyl group -COOCH3 of methyl acetate shows internal rotation with a barrier of 424.581(56) wn. A similar barrier height of 429.324(23) wn was found in methyl propionate, where the acetyl group is extended to the propionyl group. The investigation on methyl valerate fits well in this series of methyl alkynoates. In this talk, the structure of the most energetic favorable conformer as well as the internal rotation shown by the methoxy methyl group will be reported. It could be confirmed that the internal rotation barrier of the methoxy methyl group remains by longer alkyl chain.
NASA Astrophysics Data System (ADS)
Craig, Norman C.; Tian, Hengfeng; Blake, Thomas A.
2011-06-01
Hexatriene-1-13C1 was synthesized by reaction of 2,4-pentadienal and (methyl-13C)-triphenylphosphonium iodide (Wittig reagent). The trans isomer was isolated by preparative gas chromatography, and the high-resolution (0.0015 Cm-1) infrared spectrum was recorded on a Bruker IFS 125HR instrument. The rotational structure in two C-type bands was analyzed. For this species the bands at 1010.7 and 893.740 Cm-1 yielded composite ground state rotational constants of A0 = 0.872820(1), B0 = 0.0435868(4), and C0 = 0.0415314(2) Cm-1. The ground state rotational constants for the 1-13C species were also predicted with Gaussian 03 software and the B3LYP/cc-pVTZ model. After scaling by the ratio of the observed and predicted ground state rotational constants for the normal species, the predicted ground state rotational constants for the 1-13C species agreed within 0.005 % with the observed values. Similar good agreement between observed and calculated values (0.016 %) was found for the three 13C species of the cis isomer. We conclude that ground state rotational constants for single heavy atom substitution can be calculated with adequate accuracy for use in determining semi-experimental equilibrium structures of small molecules. It will be unnecessary to synthesize the other two 13C species of trans-hexatriene. R. D. Suenram, B. H. Pate, A. Lesarri, J. L. Neill, S. Shipman, R. A. Holmes, M. C. Leyden, N. C. Craig J. Phys. Chem. A 113, 1864-1868 (2009).
Numerical study on air-structure coupling dynamic characteristics of the axial fan blade
NASA Astrophysics Data System (ADS)
Chen, Q. G.; Xie, B.; Li, F.; Gu, W. G.
2013-12-01
In order to understand the dynamic characteristics of the axial-flow fan blade due to the effect of rotating stress and the action of unsteady aerodynamic forces caused by the airflow, a numerical simulation method for air-structure coupling in an axial-flow fan with fixed rear guide blades was performed. The dynamic characteristics of an axial-flow fan rotating blade were studied by using the two-way air-structure coupling method. Based on the standard k-ε turbulence model, and using weak coupling method, the preceding six orders modal parameters of the rotating blade were obtained, and the distributions of stress and strain on the rotating blade were presented. The results show that the modal frequency from the first to the sixth order is 3Hz higher than the modal frequency without considering air-structure coupling interaction; the maximum stress and the maximum strain are all occurred in the vicinity of root area of the blade no matter the air-structure coupling is considered or not, thus, the blade root is the dangerous location subjected to fatigue break; the position of maximum deformation is at the blade tip, so the vibration of the blade tip is significant. This study can provide theoretical references for the further study on the strength analysis and mechanical optimal design.
Resonance between a Prolate and a Superprolate Structure of the Er Nucleus.
Pauling, L; Blethen, J
1974-07-01
Observed energy levels of (162)Er from the normal state J = 0 to the excited rotational state J = 18 correspond to values of the moment of inertia and rotational frequency that indicate that a pronounced change in structure occurs at about J = 14. It is shown that the observed values agree well with the values calculated on the assumption that there is resonance between a more stable prolate structure with a core of two spherons and a less stable superprolate structure with a core of three spherons in line.