Sample records for rotating stellar core

  1. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.

    PubMed

    Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A

    2011-12-07

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

  2. Single rotating stars and the formation of bipolar planetary nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Segura, G.; Villaver, E.; Langer, N.

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproducemore » the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.« less

  3. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    NASA Astrophysics Data System (ADS)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  4. Evolutionary models of rotating dense stellar systems: challenges in software and hardware

    NASA Astrophysics Data System (ADS)

    Fiestas, Jose

    2016-02-01

    We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of initial axisymmetry due to rotation. Central black hole seeds are alternatively included in our models, and black hole growth due to consumption of stellar matter is simulated until the central potential dominates the kinematics in the core. Goal is to study the long-term evolution (~ Gyr) of relaxed dense stellar systems, which deviate from spherical symmetry, their morphology and final kinematics. With this purpose, we developed a 2D Fokker-Planck analytical code, which results we confirm by detailed N-Body techniques, applying a high performance code, developed for GPU machines. We compare our models to available observations of galactic rotating globular clusters, and conclude that initial rotation modifies significantly the shape and lifetime of these systems, and can not be neglected in studying the evolution of globular clusters, and the galaxy itself.

  5. LITHIUM DEPLETION IS A STRONG TEST OF CORE-ENVELOPE RECOUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu

    2016-09-20

    Rotational mixing is a prime candidate for explaining the gradual depletion of lithium from the photospheres of cool stars during the main sequence. However, previous mixing calculations have relied primarily on treatments of angular momentum transport in stellar interiors incompatible with solar and stellar data in the sense that they overestimate the internal differential rotation. Instead, recent studies suggest that stars are strongly differentially rotating at young ages but approach a solid body rotation during their lifetimes. We modify our rotating stellar evolution code to include an additional source of angular momentum transport, a necessary ingredient for explaining the openmore » cluster rotation pattern, and examine the consequences for mixing. We confirm that core-envelope recoupling with a ∼20 Myr timescale is required to explain the evolution of the mean rotation pattern along the main sequence, and demonstrate that it also provides a more accurate description of the Li depletion pattern seen in open clusters. Recoupling produces a characteristic pattern of efficient mixing at early ages and little mixing at late ages, thus predicting a flattening of Li depletion at a few Gyr, in agreement with the observed late-time evolution. Using Li abundances we argue that the timescale for core-envelope recoupling during the main sequence decreases sharply with increasing mass. We discuss the implications of this finding for stellar physics, including the viability of gravity waves and magnetic fields as agents of angular momentum transport. We also raise the possibility of intrinsic differences in initial conditions in star clusters using M67 as an example.« less

  6. The Interior Angular Momentum of Core Hydrogen Burning Stars from Gravity-mode Oscillations

    NASA Astrophysics Data System (ADS)

    Aerts, C.; Van Reeth, T.; Tkachenko, A.

    2017-09-01

    A major uncertainty in the theory of stellar evolution is the angular momentum distribution inside stars and its change during stellar life. We compose a sample of 67 stars in the core hydrogen burning phase with a {log} g value from high-resolution spectroscopy, as well as an asteroseismic estimate of the near-core rotation rate derived from gravity-mode oscillations detected in space photometry. This assembly includes 8 B-type stars and 59 AF-type stars, covering a mass range from 1.4 to 5 M ⊙, I.e., it concerns intermediate-mass stars born with a well-developed convective core. The sample covers projected surface rotation velocities v\\sin I\\in [9,242] km s-1 and core rotation rates up to 26 μHz, which corresponds to 50% of the critical rotation frequency. We find deviations from rigid rotation to be moderate in the single stars of this sample. We place the near-core rotation rates in an evolutionary context and find that the core rotation must drop drastically before or during the short phase between the end of the core hydrogen burning and the onset of core helium burning. We compute the spin parameter, which is the ratio of twice the rotation rate to the mode frequency (also known as the inverse Rossby number), for 1682 gravity modes and find the majority (95%) to occur in the sub-inertial regime. The 10 stars with Rossby modes have spin parameters between 14 and 30, while the gravito-inertial modes cover the range from 1 to 15.

  7. The Arduous Journey to Black Hole Formation in Potential Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; O'Connor, Evan; Ott, Christian D.

    2012-07-01

    We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity—objects that are proposed as likely progenitors of long-duration γ-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black hole formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.

  8. THE ARDUOUS JOURNEY TO BLACK HOLE FORMATION IN POTENTIAL GAMMA-RAY BURST PROGENITORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessart, Luc; O'Connor, Evan; Ott, Christian D., E-mail: Luc.Dessart@oamp.fr, E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu

    2012-07-20

    We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity-objects that are proposed as likely progenitors of long-duration {gamma}-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black holemore » formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.« less

  9. A central black hole in M32

    NASA Technical Reports Server (NTRS)

    Tonry, John L.

    1987-01-01

    Observations are presented of the stellar rotation and velocity dispersion in M32. The projected rotation curve has an unresolved cusp at the center, with an amplitude of at least 60 km/s. The stellar velocity dispersion is constant at 56 + or - 5 km/s to a radius of 20 arcsec; a central bump in the observed dispersion is an artifact due to the rotation. The form of the rotation is such that isophotes have constant angular rotation velocity. The three-dimensional rotation field is modeled and the internal mean rotation of the stars around the center of M32 must reach at least 90 km/s at a radius of 2 pc. Hydrostatic equilibrium then requires 3-10 x 10 to the 6th solar masses of dark mass within the central parsec of M32. The possibility that M32 is undergoing core collapse and that this dark mass consists of dark stellar remnants is discussed, but ultimately rejected because the time scale for core collapse of M32 should be 2000 Hubble times. A more likely explanation of this dark mass, especially because of the presence of an X-ray point source at the center of M32, is a massive black hole.

  10. Key issues review: numerical studies of turbulence in stars

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  11. Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis

    NASA Astrophysics Data System (ADS)

    Kővári, Zs.; Strassmeier, K. G.; Carroll, T. A.; Oláh, K.; Kriskovics, L.; Kővári, E.; Kovács, O.; Vida, K.; Granzer, T.; Weber, M.

    2017-10-01

    Context. Stars with about 1-2 solar masses at the red giant branch (RGB) represent an intriguing period of stellar evolution, I.e. when the convective envelope interacts with the fast-rotating core. During these mixing episodes freshly synthesized lithium can come up to the stellar surface along with high angular momentum material. This high angular momentum may alter the surface rotation pattern. Aims: The single rapidly rotating K-giant V1192 Ori is revisited to determine its surface differential rotation, lithium abundance, and basic stellar properties such as a precise rotation period. The aim is to independently verify the antisolar differential rotation of the star and possibly find a connection to the surface lithium abundance. Methods: We applied time-series Doppler imaging to a new multi-epoch data set. Altogether we reconstructed 11 Doppler images from spectroscopic data collected with the STELLA robotic telescope between 2007-2016. We used our inversion code iMap to reconstruct all stellar surface maps. We extracted the differential rotation from these images by tracing systematic spot migration as a function of stellar latitude from consecutive image cross-correlations. Results: The position of V1192 Ori in the Hertzsprung-Russell diagram suggests that the star is in the helium core-burning phase just leaving the RGB bump. We measure A(Li)NLTE = 1.27, I.e. a value close to the anticipated transition value of 1.5 from Li-normal to Li-rich giants. Doppler images reveal extended dark areas arranged quasi-evenly along an equatorial belt. No cool polar spot is found during the investigated epoch. Spot displacements clearly suggest antisolar surface differential rotation with α = - 0.11 ± 0.02 shear coefficient. Conclusions: The surface Li enrichment and the peculiar surface rotation pattern may indicate a common origin. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  12. STELLAR KINEMATICS AND STRUCTURAL PROPERTIES OF VIRGO CLUSTER DWARF EARLY-TYPE GALAXIES FROM THE SMAKCED PROJECT. III. ANGULAR MOMENTUM AND CONSTRAINTS ON FORMATION SCENARIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloba, E.; Guhathakurta, P.; Boselli, A.

    2015-02-01

    We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λ{sub Re} and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster than fast rotators in the inner parts of the cluster. Moreover, 10 out of the 11 slow rotators are located in the inner 3° (D < 1 Mpc) of the cluster. The fast rotators contain subtle disk-like structures that are visible in high-pass filtered optical images, while the slow rotatorsmore » do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo Cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between λ{sub Re} and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram-pressure stripping, although some of it can be retained in their core, their star formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.« less

  13. A Rotating Stellar Collapse Model for Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Fukugita, M.

    It is shown that the bunch structure of the Kamiokande neutrino events associated with SN 1987A can be naturally understood, if one assumes that the core of the progenitor star was rotating moderately with q(≡Jc/GM2) ≈ 3 with J the total angular momentum and M the gravitational mass of the core.

  14. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main-sequence stars from their mass and rotation period that is largely independent of the wind braking model adopted. These effectively represent gyro-chronology relationships that take the physics of the two-zone model for the stellar angular momentum evolution into account.

  15. Modelling the Centers of Galaxies

    NASA Technical Reports Server (NTRS)

    Smith, B. F.; Miller, R. H.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The key to studying central regions by means of nobody numerical experiments is to concentrate on the central few parsecs of a galaxy, replacing the remainder of the galaxy by a suitable boundary condition, rather after the manner in which stellar interiors can be studied without a detailed stellar atmosphere by replacing the atmosphere with a boundary condition. Replacements must be carefully designed because the long range gravitational force means that the core region is sensitive to mass outside that region and because particles can exchange between the outer galaxy and the core region. We use periodic boundary conditions, coupled with an iterative procedure to generate initial particle loads in isothermal equilibrium. Angular momentum conservation is ensured for problems including systematic rotation by a circular reflecting boundary and by integrating in a frame that rotates with the mean flow. Mass beyond the boundary contributes to the gravitational potential, but does not participate in the dynamics. A symplectic integration scheme has been developed for rotating coordinate systems. This combination works well, leading to robust configurations. Some preliminary results with this combination show that: (1) Rotating systems are extremely sensitive to non-axisymmetric external potentials, and (2) that a second core, orbiting near the main core (like the M31 second core system), shows extremely rapid orbital decay. The experimental setups will be discussed, along with preliminary results.

  16. Protomagnetar and black hole formation in high-mass stars

    NASA Astrophysics Data System (ADS)

    Obergaulinger, M.; Aloy, M. Á.

    2017-07-01

    Using axisymmetric simulations coupling special relativistic magnetohydrodynamics (MHD), an approximate post-Newtonian gravitational potential and two-moment neutrino transport, we show different paths for the formation of either protomagnetars or stellar mass black holes. The fraction of prototypical stellar cores which should result in collapsars depends on a combination of several factors, among which the structure of the progenitor star and the profile of specific angular momentum are probably the foremost. Along with the implosion of the stellar core, we also obtain supernova-like explosions driven by neutrino heating and hydrodynamic instabilities or by magneto-rotational effects in cores of high-mass stars. In the latter case, highly collimated, mildly relativistic outflows are generated. We find that after a rather long post-collapse phase (lasting ≳1 s) black holes may form in cases both of successful and failed supernova-like explosions. A basic trend is that cores with a specific angular momentum smaller than that obtained by standard, one-dimensional stellar evolution calculations form black holes (and eventually collapsars). Complementary, protomagnetars result from stellar cores with the standard distribution of specific angular momentum obtained from prototypical stellar evolution calculations including magnetic torques and moderate to large mass-loss rates.

  17. INTERNAL ROTATION OF THE RED-GIANT STAR KIC 4448777 BY MEANS OF ASTEROSEISMIC INVERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mauro, M. P.; Cardini, D.; Ventura, R.

    We study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from Kepler observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure to extract the rotational splittings from the power spectrum. We find not only that the core rotates from a minimum of 8 to a maximum of 17 times faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al.), but we also estimate the variation of the angularmore » velocity within the helium core with a spatial resolution of 0.001R and verify the hypothesis of a sharp discontinuity in the inner stellar rotation. The results show that the entire core rotates rigidly and provide evidence for an angular velocity gradient around the base of the hydrogen-burning shell; however, we do not succeed in characterizing the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of 68 ± 22 nHz. We conclude that a set of data that includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.« less

  18. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  19. Improved models of stellar core collapse and still no explosions: what is missing?

    PubMed

    Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K

    2003-06-20

    Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.

  20. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  1. Magnetic braking of stellar cores in red giants and supergiants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeder, André; Meynet, Georges, E-mail: andre.maeder@unige, E-mail: georges.meynet@unige.ch

    2014-10-01

    Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchangesmore » of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.« less

  2. The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2018-06-01

    Integral field spectroscopy surveys provide spatially resolved gas and stellar kinematics of galaxies. They have unveiled a range of atypical kinematic phenomena, which require detailed modelling to understand. We present results from a cosmological simulation that includes stellar and AGN feedback. We find that the distribution of angles between the gas and stellar angular momenta of galaxies is not affected by projection effects. We examine five galaxies (≈6 per cent of well resolved galaxies) that display atypical kinematics; two of the galaxies have kinematically distinct cores (KDC), while the other three have counter-rotating gas and stars. All five form the majority of their stars in the field, subsequently falling into cosmological filaments where the relative orientation of the stellar angular momentum and the bulk gas flow leads to the formation of a counter-rotating gas disc. The accreted gas exchanges angular momentum with pre-existing co-rotating gas causing it to fall to the centre of the galaxy. This triggers low-level AGN feedback, which reduces star formation. Later, two of the galaxies experience a minor merger (stellar mass ratio ˜1/10) with a galaxy on a retrograde orbit compared to the spin of the stellar component of the primary. This produces the KDCs, and is a different mechanism than suggested by other works. The role of minor mergers in the kinematic evolution of galaxies may have been under-appreciated in the past, and large, high-resolution cosmological simulations will be necessary to gain a better understanding in this area.

  3. Properties of gamma-ray burst progenitor stars.

    PubMed

    Kumar, Pawan; Narayan, Ramesh; Johnson, Jarrett L

    2008-07-18

    We determined some basic properties of stars that produce spectacular gamma-ray bursts at the end of their lives. We assumed that accretion of the outer portion of the stellar core by a central black hole fuels the prompt emission and that fall-back and accretion of the stellar envelope later produce the plateau in the x-ray light curve seen in some bursts. Using x-ray data for three bursts, we estimated the radius of the stellar core to be approximately (1 - 3) x 10(10) cm and that of the stellar envelope to be approximately (1 - 2) x 10(11) cm. The density profile in the envelope is fairly shallow, with rho approximately r(-2) (where rho is density and r is distance from the center of the explosion). The rotation speeds of the core and envelope are approximately 0.05 and approximately 0.2 of the local Keplerian speed, respectively.

  4. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less

  5. The rotational shear in pre-collapse cores of massive stars

    NASA Astrophysics Data System (ADS)

    Zilberman, Noa; Gilkis, Avishai; Soker, Noam

    2018-02-01

    We evolve stellar models to study the rotational profiles of the pre-explosion cores of single massive stars that are progenitors of core collapse supernovae (CCSNe), and find large rotational shear above the iron core that might play an important role in the jet feedback explosion mechanism by amplifying magnetic fields before and after collapse. Initial masses of 15 and 30 M⊙ and various values of the initial rotation velocity are considered, as well as a reduced mass-loss rate along the evolution and the effect of core-envelope coupling through magnetic fields. We find that the rotation profiles just before core collapse differ between models, but share the following properties. (1) There are narrow zones of very large rotational shear adjacent to convective zones. (2) The rotation rate of the inner core is slower than required to form a Keplerian accretion disc. (3) The outer part of the core and the envelope have non-negligible specific angular momentum compared to the last stable orbit around a black hole (BH). Our results suggest the feasibility of magnetic field amplification which might aid a jet-driven explosion leaving behind a neutron star. Alternatively, if the inner core fails in exploding the star, an accretion disc from the outer parts of the core might form and lead to a jet-driven CCSN which leaves behind a BH.

  6. Rotation and magnetism in intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Quentin, Léo G.; Tout, Christopher A.

    2018-06-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  7. The evolution of rotating very massive stars with LMC composition

    NASA Astrophysics Data System (ADS)

    Köhler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Gräfener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.

    2015-01-01

    Context. With growing evidence for the existence of very massive stars at subsolar metallicity, there is an increased need for corresponding stellar evolution models. Aims: We present a dense model grid with a tailored input chemical composition appropriate for the Large Magellanic Cloud (LMC). Methods: We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses from 70 to 500 M⊙ and with initial surface rotational velocities from 0 to 550 km s-1, covering the core-hydrogen burning phase of evolution. Results: We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 M⊙, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above ~150 M⊙ at zero age, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum ZAMS surface temperature of ~56 000 K, at ~180 M⊙, and to an evolution of stars in the mass range 50 M⊙...100 M⊙ to the regime of luminous blue variables in the Hertzsprung-Russell diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above ~180 M⊙. Conclusions: The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses. The dataset of the presented stellar evolution models is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A71Appendices are available in electronic form at http://www.aanda.org

  8. Black Hole Formation in Failing Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan; Ott, Christian D.

    2011-04-01

    We present results of a systematic study of failing core-collapse supernovae and the formation of stellar-mass black holes (BHs). Using our open-source general-relativistic 1.5D code GR1D equipped with a three-species neutrino leakage/heating scheme and over 100 presupernova models, we study the effects of the choice of nuclear equation of state (EOS), zero-age main sequence (ZAMS) mass and metallicity, rotation, and mass-loss prescription on BH formation. We find that the outcome, for a given EOS, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing protoneutron star (PNS) structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer PNS core is responsible for raising the maximum PNS mass by up to 25% above the cold NS value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions, establishing, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also study the effect of progenitor rotation and find that the dimensionless spin of nascent BHs may be robustly limited below a* = Jc/GM 2 = 1 by the appearance of nonaxisymmetric rotational instabilities.

  9. An Argument for Weakly Magnetized, Slowly Rotating Progenitors of Long Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Moreno Méndez, Enrique

    2014-01-01

    Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BH formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B <~ 102 G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi, E-mail: ktakahashi@astron.s.u-tokyo.ac.jp

    We perform a stellar evolution simulation of first stars and calculate stellar yields from the first supernovae. The initial masses are taken from 12 to 140 M {sub ☉} to cover the whole range of core-collapse supernova progenitors, and stellar rotation is included, which results in efficient internal mixing. A weak explosion is assumed in supernova yield calculations, thus only outer distributed matter, which is not affected by the explosive nucleosynthesis, is ejected in the models. We show that the initial mass and the rotation affect the explosion yield. All the weak explosion models have abundances of [C/O] larger thanmore » unity. Stellar yields from massive progenitors of >40-60 M {sub ☉} show enhancement of Mg and Si. Rotating models yield abundant Na and Al, and Ca is synthesized in nonrotating heavy massive models of >80 M {sub ☉}. We fit the stellar yields to the three most iron-deficient stars and constrain the initial parameters of the mother progenitor stars. The abundance pattern in SMSS 0313–6708 is well explained by 50-80 M {sub ☉} nonrotating models, rotating 30-40 M {sub ☉} models well fit the abundance of HE 0107-5240, and both nonrotating and rotating 15-40 M {sub ☉} models explain HE 1327-2326. The presented analysis will be applicable to other carbon-enhanced hyper-metal-poor stars observed in the future. The abundance analyses will give valuable information about the characteristics of the first stars.« less

  11. Topics in Core-Collapse Supernova Theory: The Formation of Black Holes and the Transport of Neutrinos

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan Patrick

    Core-Collapse Supernovae are one of the most complex astrophysical systems in the universe. They deeply entwine aspects of physics and astrophysics that are rarely side by side in nature. To accurately model core-collapse supernovae one must self-consistently combine general relativity, nuclear physics, neutrino physics, and magneto-hydrodynamics in a symmetry-free computational environment. This is a challenging task, as each one of these aspects on its own is an area of great study. We take an open approach in an effort to encourage collaboration in the core-collapse supernovae community. In this thesis, we develop a new open-source general-relativistic spherically-symmetric Eulerian hydrodynamics code for studying stellar collapse, protoneutron star formation, and evolution until black hole formation. GR1D includes support for finite temperature equations of state and an efficient and qualitatively accurate treatment of neutrino leakage. GR1D implements spherically-symmetric rotation, allowing for the study of slowly rotating stellar collapse. GR1D is available at http://www.stellarcollapse.org. We use GR1D to perform an extensive study of black hole formation in failing core-collapse supernovae. Over 100 presupernova models from various sources are used in over 700 total simulations. We systematically explore the dependence of black hole formation on the input physics: initial zero-age main sequence (ZAMS) mass and metallicity, nuclear equation of state, rotation, and stellar mass loss rates. Assuming the core-collapse supernova mechanism fails and a black hole forms, we find that the outcome, for a given equation of state, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing the protoneutron star structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer protoneutron star core is responsible for raising the maximum protoneutron star mass by up to 25% above the cold neutron star value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions. This establishes, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also use GR1D to study proposed progenitors of long-duration gamma-ray bursts. We find that many of the proposed progenitors have core structures similar to garden-variety core-collapse supernovae. These are not expected to form black holes, a key ingredient of the collapsar model of long-duration gamma-ray bursts. The small fraction of proposed progenitors that are compact enough to form black holes have fast rotating iron cores, making them prone to a magneto-rotational explosion and the formation of a protomagnetar rather than a black hole. Finally, we present preliminary work on a fully general-relativistic neutrino transport code and neutrino-interaction library. Following along with the trends explored in our black hole formation study, we look at the dependence of the neutrino observables on the bounce compactness. We find clear relationships that will allow us to extract details of the core structure from the next galactic supernova. Following the open approach of GR1D, the neutrino transport code will be made open-source upon completion. The open-source neutrino-interaction library, NuLib, is already available at http://www.nulib.org.

  12. Talks also presented at the Symposium

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Bray, J. C.; McClelland, L. A. S.; Xiao, L.

    2017-11-01

    Internal rotation and magnetism are key ingredients that largely affect explosive stellar deaths (Supernovae and Gamma Ray Bursts) and the properties of stellar remnants (White Dwarfs, Neutron Stars and Black Holes). However, the study of these subtle internal stellar properties has been limited to very indirect proxies. In the last couple of years, exciting asteroseismic results have been obtained by the Kepler satellite. Among these results are 1) The direct measure of the degree of radial differential rotation in many evolved low-mass stars and in a few massive stars, and 2) The detection of strong (>105 G) internal magnetic fields in thousands of red giant stars that had convective cores during their main sequence. I will discuss the impact of these important findings for our understanding of massive star evolution.

  13. Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ΛCDM scaling relations

    NASA Astrophysics Data System (ADS)

    Katz, Harley; Lelli, Federico; McGaugh, Stacy S.; Di Cintio, Arianna; Brook, Chris B.; Schombert, James M.

    2017-04-01

    Cosmological N-body simulations predict dark matter (DM) haloes with steep central cusps (e.g. NFW). This contradicts observations of gas kinematics in low-mass galaxies that imply the existence of shallow DM cores. Baryonic processes such as adiabatic contraction and gas outflows can, in principle, alter the initial DM density profile, yet their relative contributions to the halo transformation remain uncertain. Recent high-resolution, cosmological hydrodynamic simulations by Di Cintio et al. (DC14) predict that inner density profiles depend systematically on the ratio of stellar-to-DM mass (M*/Mhalo). Using a Markov Chain Monte Carlo approach, we test the NFW and the M*/Mhalo-dependent DC14 halo models against a sample of 147 galaxy rotation curves from the new Spitzer Photometry and Accurate Rotation Curves data set. These galaxies all have extended H I rotation curves from radio interferometry as well as accurate stellar-mass-density profiles from near-infrared photometry. The DC14 halo profile provides markedly better fits to the data compared to the NFW profile. Unlike NFW, the DC14 halo parameters found in our rotation-curve fits naturally fall within two standard deviations of the mass-concentration relation predicted by Λ cold dark matter (ΛCDM) and the stellar mass-halo mass relation inferred from abundance matching with few outliers. Halo profiles modified by baryonic processes are therefore more consistent with expectations from ΛCDM cosmology and provide better fits to galaxy rotation curves across a wide range of galaxy properties than do halo models that neglect baryonic physics. Our results offer a solution to the decade long cusp-core discrepancy.

  14. An argument for weakly magnetized, slowly rotating progenitors of long gamma-ray bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno Méndez, Enrique, E-mail: enriquemm@astro.unam.mx

    2014-01-20

    Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BHmore » formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B ≲ 10{sup 2} G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.« less

  15. Are pulsars spun up or down by SASI spiral modes?

    NASA Astrophysics Data System (ADS)

    Kazeroni, Rémi; Guilet, Jérôme; Foglizzo, Thierry

    2017-10-01

    Pulsars may either be spun up or down by hydrodynamic instabilities during the supernova explosion of massive stars. Besides rapidly rotating cases related to bipolar explosions, stellar rotation may affect the explosion of massive stars in the more common situations where the centrifugal force is minor. Using 2D simulations of a simplified set-up in cylindrical geometry, we examine the impact of rotation on the standing accretion shock instability (SASI) and the corotation instability, also known as low-T/|W|. The influence of rotation on the saturation amplitude of these instabilities depends on the specific angular momentum in the accretion flow and the ratio of the shock to the neutron star radii. The spiral mode of SASI becomes more vigorous with faster rotation only if this ratio is large enough. A corotation instability develops at large rotation rates and impacts the dynamics more dramatically, leading to a strong one-armed spiral wave. Non-axisymmetric instabilities are able to redistribute angular momentum radially and affect the pulsar spin at birth. A systematic study of the relationship between the core rotation period of the progenitor and the initial pulsar spin is performed. Stellar rotation rates for which pulsars are spun up or down by SASI are estimated. Rapidly spinning progenitors are modestly spun down by spiral modes, less than ˜30 per cent, when a corotation instability develops. Given the observational constraints on pulsar spin periods at birth, this suggests that rapid rotation might not play a significant hydrodynamic role in most core-collapse supernovae.

  16. Asteroseismology of the δ Scuti star HD 50844

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Li, Y.; Lai, X. J.; Wu, T.

    2016-09-01

    Aims: We aim to probe the internal structure and investigate with asteroseismology for more detailed information on the δ Scuti star HD 50844. Methods: We analyse the observed frequencies of the δ Scuti star HD 50844 and search for possible multiplets, which are based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 only by means of rotational splitting. We then compare these with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model. Results: There are three multiplets, including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree l and azimuthal number m are unique. The corresponding rotational period of HD 50844 is found to be 2.44 days. The physical parameters of HD 50844 are well limited in a small region by three modes that have been identified as nonradial ones (f11, f22, and f29) and by the fundamental radial mode (f4). Our results show that the three nonradial modes (f11, f22, and f29) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4) mainly represents the property of the stellar envelope. To fit these four pulsation modes, both the helium core and the stellar envelope need to be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ± 0.004 M⊙ for the first time. The physical parameters of HD 50844 are determined to be M = 1.81 ± 0.01 M⊙, Z = 0.008 ± 0.001. Teff = 7508 ± 125 K, log g = 3.658 ± 0.004, R = 3.300 ± 0.023 R⊙, L = 30.98 ± 2.39 L⊙.

  17. Chasing discs around O-type (proto)stars: Evidence from ALMA observations

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Sánchez-Monge, Á.; Beltrán, M. T.; Johnston, K. G.; Maud, L. T.; Moscadelli, L.; Mottram, J. C.; Ahmadi, A.; Allen, V.; Beuther, H.; Csengeri, T.; Etoka, S.; Fuller, G. A.; Galli, D.; Galván-Madrid, R.; Goddi, C.; Henning, T.; Hoare, M. G.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Lumsden, S.; Peters, T.; Rivilla, V. M.; Schilke, P.; Testi, L.; van der Tak, F.; Vig, S.; Walmsley, C. M.; Zinnecker, H.

    2017-06-01

    Context. Circumstellar discs around massive stars could mediate the accretion onto the star from the infalling envelope, and could minimize the effects of radiation pressure. Despite such a crucial role, only a few convincing candidates have been provided for discs around deeply embedded O-type (proto)stars. Aims: In order to establish whether disc-mediated accretion is the formation mechanism for the most massive stars, we have searched for circumstellar, rotating discs around a limited sample of six luminous (>105L⊙) young stellar objects. These objects were selected on the basis of their IR and radio properties in order to maximize the likelihood of association with disc+jet systems. Methods: We used ALMA with 0.̋2 resolution to observe a large number of molecular lines typical of hot molecular cores. In this paper we limit our analysis to two disc tracers (methyl cyanide, CH3CN, and its isotopologue, 13CH3CN), and an outflow tracer (silicon monoxide, SiO). Results: We reveal many cores, although their number depends dramatically on the target. We focus on the cores that present prominent molecular line emission. In six of these a velocity gradient is seen across the core,three of which show evidence of Keplerian-like rotation. The SiO data reveal clear but poorly collimated bipolar outflow signatures towards two objects only. This can be explained if real jets are rare (perhaps short-lived) in very massive objects and/or if stellar multiplicity significantly affects the outflow structure.For all cores with velocity gradients, the velocity field is analysed through position-velocity plots to establish whether the gas is undergoing rotation with νrot ∝ R- α, as expected for Keplerian-like discs. Conclusions: Our results suggest that in three objects we are observing rotation in circumstellar discs, with three more tentative cases, and one core where no evidence for rotation is found. In all cases but one, we find that the gas mass is less than the mass of any embedded O-type star, consistent with the (putative) discs undergoing Keplerian-like rotation. With the caveat of low number statistics, we conclude that the disc detection rate could be sensitive to the evolutionary stage of the young stellar object. In young, deeply embedded sources, the evidence for discs could be weak because of confusion with the surrounding envelope, while in the most evolved sources the molecular component of the disc could have already been dispersed. Only in those objects that are at an intermediate stage of the evolution would the molecular disc be sufficiently prominent and relatively less embedded to be detectable by mm/submm observations.

  18. Low edge safety factor operation and passive disruption avoidance in current carrying plasmas by the addition of stellarator rotational transform

    NASA Astrophysics Data System (ADS)

    Pandya, M. D.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Maurer, D. A.; Roberds, N. A.; Traverso, P. J.

    2015-11-01

    Low edge safety factor operation at a value less than two ( q (a )=1 /ι̷tot(a )<2 ) is routine on the Compact Toroidal Hybrid device with the addition of sufficient external rotational transform. Presently, the operational space of this current carrying stellarator extends down to q (a )=1.2 without significant n = 1 kink mode activity after the initial plasma current rise phase of the discharge. The disruption dynamics of these low edge safety factor plasmas depend upon the fraction of helical field rotational transform from external stellarator coils to that generated by the plasma current. We observe that with approximately 10% of the total rotational transform supplied by the stellarator coils, low edge q disruptions are passively suppressed and avoided even though q(a) < 2. When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, helical mode numbers of m /n =3 /2 and 4/3 observed on external magnetic sensors and m /n =1 /1 activity observed on core soft x-ray emissivity measurements. Even though the edge safety factor passes through and becomes much less than q(a) < 2, external n = 1 kink mode activity does not appear to play a significant role in the disruption phenomenology observed.

  19. Infrared spectra of rotating protostars

    NASA Technical Reports Server (NTRS)

    Adams, F. C.; Shu, F. H.

    1986-01-01

    Earlier calculations of the infrared emission expected from stars in the process of being made are corrected to include the most important observable effects of rotation and generalized. An improved version of the spherical model of a previous paper is developed, and the corresponding emergent spectral energy distributions are calculated for the theoretically expected mass infall rate in the cores of cool and quiescent molecular clouds. The dust grain opacity model and the temperature profile parameterization are improved. It is shown that the infrared spectrum of the IRAS source 04264+2426, which is associated with a Herbig-Haro object, can be adequately represented in terms of a rotating and accreting protostar. This strengthens the suggestion that collimated outflows in young stellar objects originate when a stellar wind tries to emerge and reverse the swirling pattern of infall which gave birth to the central star.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triana, S. A.; Moravveji, E.; Pápics, P. I.

    The internal angular momentum distribution of a star is the key to determining its evolution. Fortunately, stellar internal rotation can be probed through studies of rotationally split nonradial oscillation modes. In particular, the detection of nonradial gravity modes (g modes) in massive young stars has recently become feasible thanks to the Kepler space mission. Our goal is to derive the internal rotation profile of the Kepler B8V star KIC 10526294 through asteroseismology. We interpret the observed rotational splittings of its dipole g modes using four different approaches based on the best seismic models of the star and their rotational kernels.more » We show that these kernels can resolve differential rotation within the radiative envelope if a smooth rotational profile is assumed and if the observational errors are small. Based on Kepler data, we find that the rotation rate near the core-envelope boundary is well constrained to 163 ± 89 nHz. The seismic data are consistent with rigid rotation but a profile with counter-rotation within the envelope has a statistical advantage over constant rotation. Our study should be repeated for other massive stars with a variety of stellar parameters in order to determine the physical conditions that control the internal rotation profile of young massive stars, with the aim of improving the input physics of their models.« less

  1. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However,more » recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.« less

  2. Stellar Structure Models of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Zubairi, Omair; Wigley, David; Weber, Fridolin

    Traditional stellar structure models of non-rotating neutron stars work under the assumption that these stars are perfect spheres. This assumption of perfect spherical symmetry is not correct if the matter inside neutron stars is described by an anisotropic model for the equation of state. Certain classes of neutron stars such as Magnetars and neutron stars which contain color-superconducting quark matter cores are expected to be deformed making them oblong spheroids. In this work, we investigate the stellar structure of these deformed neutron stars by deriving stellar structure equations in the framework of general relativity. Using a non-isotropic equation of state model, we solve these structure equations numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure profiles and investigate changes from standard spherical models.

  3. The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-04-01

    We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.

  4. Effect of rotation on fingering convection in stellar and planetary interiors

    NASA Astrophysics Data System (ADS)

    Sengupta, Sutirtha; Garaud, Pascale

    2018-01-01

    We study the effects of global rotation on the growth and saturation of the fingering (double-diffusive) instability at low Prandtl numbers and estimate the compositional transport rates as a function of the relevant non-dimensional parameters - the Taylor number, Ta^* (defined in terms of the rotation rate, Ω, thermal diffusivity κ_T and associated finger length scale d) and density ratio through direct numerical simulations. Within our explored range of parameters, we find rotation to have very little effect on vertical transport apart for an exceptional case where a cyclonic large scale vortex (LSV) is observed at low density ratio and fairly high Taylor number. The LSV leads to significant enhancement in the fingering transport rates by concentrating high composition fluid at its core which moves downward. The formation of such LSVs is of particular interest for solving the missing mixing problem in the astrophysical context of RGB stars though the parameter regime in which we observe the emergence of this LSV seems to be quite far from the stellar scenario. However, understanding the basic mechanism driving such large scale structures as observed frequently in polar regions of planets (e.g. those seen by Juno near the poles of Jupiter) is important in general for studies of rotating turbulence and its applications to stellar and planetary interior studies, and will be investigated in further detail in a forthcoming work.

  5. Progenitors of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hirschi, R.; Arnett, D.; Cristini, A.; Georgy, C.; Meakin, C.; Walkington, I.

    2017-02-01

    Massive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.

  6. Evidence for Cluster to Cluster Variations in Low-mass Stellar Rotational Evolution

    NASA Astrophysics Data System (ADS)

    Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M.

    2016-12-01

    The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar-disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star-disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport. For slow rotators, we confirm the need for star-disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.

  7. The nuclear activity and central structure of the elliptical galaxy NGC 5322

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Knapen, Johan H.; Williams, David R. A.; Beswick, Robert J.; Bendo, George; Baldi, Ranieri D.; Argo, Megan; McHardy, Ian M.; Muxlow, Tom; Westcott, J.

    2018-04-01

    We have analysed a new high-resolution e-MERLIN 1.5 GHz radio continuum map together with HST and SDSS imaging of NGC 5322, an elliptical galaxy hosting radio jets, aiming to understand the galaxy's central structure and its connection to the nuclear activity. We decomposed the composite HST + SDSS surface brightness profile of the galaxy into an inner stellar disc, a spheroid, and an outer stellar halo. Past works showed that this embedded disc counter-rotates rapidly with respect to the spheroid. The HST images reveal an edge-on nuclear dust disc across the centre, aligned along the major-axis of the galaxy and nearly perpendicular to the radio jets. After careful masking of this dust disc, we find a central stellar mass deficit Mdef in the spheroid, scoured by SMBH binaries with final mass MBH such that Mdef/MBH ˜ 1.3-3.4. We propose a three-phase formation scenario for NGC 5322, where a few (2-7) `dry' major mergers involving SMBHs built the spheroid with a depleted core. The cannibalism of a gas-rich satellite subsequently creates the faint counter-rotating disc and funnels gaseous material directly on to the AGN, powering the radio core with a brightness temperature of TB, core ˜ 4.5 × 107 K and the low-power radio jets (Pjets ˜ 7.04 × 1020 W Hz-1), which extend ˜1.6 kpc. The outer halo can later grow via minor mergers and the accretion of tidal debris. The low-luminosity AGN/jet-driven feedback may have quenched the late-time nuclear star formation promptly, which could otherwise have replenished the depleted core.

  8. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity

    NASA Astrophysics Data System (ADS)

    Gallet, F.; Bolmont, E.; Mathis, S.; Charbonnel, C.; Amard, L.

    2017-08-01

    Context. Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of particular importance and should be correctly treated. Aims: We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital evolution. Methods: We couple the tidal dissipation formalism previously described to the stellar evolution code STAREVOL and apply this coupling to rotating stars with masses between 0.3 and 1.4 M⊙. As a first step, this formalism assumes a simplified bi-layer stellar structure with corresponding averaged densities for the radiative core and the convective envelope. We use a frequency-averaged treatment of the dissipation of tidal inertial waves in the convection zone (but neglect the dissipation of tidal gravity waves in the radiation zone). In addition, we generalize a recent work by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution. Results: On the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the contracting star. On the main sequence it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by about four orders of magnitude on the main sequence, compared to a normalized dissipation rate that only takes into account structural changes. Conclusions: The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From the pre-main sequence up to the tip of the red-giant branch, it varies by several orders of magnitude, with strong consequences for the orbital evolution of close-in massive planets. These effects are the strongest during the pre-main sequence, implying that the planets are mainly sensitive to the star's early history.

  9. General circular velocity relation of a test particle in a 3D gravitational potential: application to the rotation curves analysis and total mass determination of UGC 8490 and UGC 9753

    NASA Astrophysics Data System (ADS)

    Repetto, P.; Martínez-García, E. E.; Rosado, M.; Gabbasov, R.

    2018-06-01

    In this paper, we derive a novel circular velocity relation for a test particle in a 3D gravitational potential applicable to every system of curvilinear coordinates, suitable to be reduced to orthogonal form. As an illustration of the potentiality of the determined circular velocity expression, we perform the rotation curves analysis of UGC 8490 and UGC 9753 and we estimate the total and dark matter mass of these two galaxies under the assumption that their respective dark matter haloes have spherical, prolate, and oblate spheroidal mass distributions. We employ stellar population synthesis models and the total H I density map to obtain the stellar and H I+He+metals rotation curves of both galaxies. The subtraction of the stellar plus gas rotation curves from the observed rotation curves of UGC 8490 and UGC 9753 generates the dark matter circular velocity curves of both galaxies. We fit the dark matter rotation curves of UGC 8490 and UGC 9753 through the newly established circular velocity formula specialized to the spherical, prolate, and oblate spheroidal mass distributions, considering the Navarro, Frenk, and White, Burkert, Di Cintio, Einasto, and Stadel dark matter haloes. Our principal findings are the following: globally, cored dark matter profiles Burkert and Einasto prevail over cuspy Navarro, Frenk, and White, and Di Cintio. Also, spherical/oblate dark matter models fit better the dark matter rotation curves of both galaxies than prolate dark matter haloes.

  10. Evidence from stellar rotation of enhanced disc dispersal. I. The case of the triple visual system BD-21 1074 in the β Pictoris association

    NASA Astrophysics Data System (ADS)

    Messina, S.; Monard, B.; Biazzo, K.; Melo, C. H. F.; Frasca, A.

    2014-10-01

    Context. The early stage of stellar evolution is characterized by a magnetic coupling between a star and its accretion disc, known as a star-disc locking mechanism. The disc-locking prevents the star to spin its rotation up, and its timescale depends on the disc lifetime, which should not be longer than about 10 Myr. Some mechanisms can significantly shorten this lifetime, allowing a few stars to start spinning up much earlier than other stars and increasing the observed rotation period dispersion among coeval stars. Aims: In the present study, we aim to investigate how the properties of the circumstellar environment can shorten the disc lifetime, more specifically the presence of a close stellar companion. Methods: We have identified a few multiple stellar systems, composed of stars with similar masses, which belong to associations with a known age. Since all parameters that are responsible for the rotational evolution, with the exception of environment properties and initial stellar rotation, are similar for all components, we expect that significant differences among the rotation periods can only arise from differences in the disc lifetimes. A photometric timeseries allowed us to measure the rotation periods of each component, while high-resolution spectra provided us with the fundamental parameters, v sin i and chromospheric line fluxes. Results: In the present study, we have collected timeseries photometry of BD-21 1074, a member of the 21 Myr old β Pictoris association, and measured the rotation periods of its brightest components A and B. They differ significantly, and the component B, which has a closer companion C, rotates faster than the more distant and isolated component A. It also displays a slightly higher chromospheric activity level. Conclusions: Since components A and B have similar mass, age, and initial chemical composition, we can ascribe the rotation period difference to either different initial rotation periods or different disc-locking phases arising from the presence of the close companion C. In the specific case of BD-21 1074, the second scenario seems to be more favored. However, a statistically meaningful sample is yet needed to be able to infer which scenario is more likely. In our hypothesis of different disc-locking phase, any planet orbiting this star, if found by future investigations, is likely formed very rapidly owing to a gravitational instability mechanism, rather than core accretion. Only a large difference of initial rotation periods alone could account for the observed period difference, leaving comparable disc lifetimes.

  11. Operation in low edge safety factor regime and passive disruption avoidance due to stellarator rotational transform in the Compact Toroidal Hybrid

    NASA Astrophysics Data System (ADS)

    Pandya, M. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.

    2015-11-01

    Low edge safety factor operation at a value less than two (q (a) = 1 /ttot (a) < 2) is routine on the Compact Toroidal Hybrid device. Presently, the operational space of this current carrying stellarator extends down to q (a) = 1 . 2 without significant n = 1 kink mode activity after the initial plasma current rise of the discharge. The disruption dynamics of these low q (a) plasmas depend upon the fraction of rotational transform produced by external stellarator coils to that generated by the plasma current. We observe that when about 10% of the total rotational transform is supplied by the stellarator coils, low q (a) disruptions are passively suppressed and avoided even though q (a) < 2 . When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, mode numbers of m / n = 3 / 2 and 4 / 3 observed by external magnetic sensors, and m / n = 1 / 1 activity observed by core soft x-ray emissivity measurements. Even though q (a) passes through and becomes much less than two, external n = 1 kink mode activity does not appear to play a significant role in the observed disruption phenomenology. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  12. The difference in age of the two counter-rotating stellar disks of the spiral galaxy NGC 4138

    NASA Astrophysics Data System (ADS)

    Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontà, E.; Coccato, L.; Sanjana, G.

    2014-10-01

    Context. Galaxies accrete material from the environment through acquisitions and mergers. These processes contribute to the galaxy assembly and leave their fingerprints on the galactic morphology, internal kinematics of gas and stars, and stellar populations. Aims: The Sa spiral NGC 4138 is known to host two counter-rotating stellar disks, with the ionized gas co-rotating with one of them. We measured the kinematics and properties of the two counter-rotating stellar populations to constrain their formation scenario. Methods: A spectroscopic decomposition of the observed major-axis spectrum was performed to disentangle the relative contribution of the two counter-rotating stellar and one ionized-gas components. The line-strength indices of the two counter-rotating stellar components were measured and modeled with single stellar population models that account for the α/Fe overabundance. Results: The counter-rotating stellar population is younger, marginally more metal poor, and more α-enhanced than the main stellar component. The younger stellar component is also associated with a star-forming ring. Conclusions: The different properties of the counter-rotating stellar components of NGC 4138 rule out the idea that they formed because of bar dissolution. Our findings support the results of numerical simulations in which the counter-rotating component assembled from gas accreted on retrograde orbits from the environment or from the retrograde merging with a gas-rich dwarf galaxy. Based on observation carried out at the Galileo 1.22 m telescope at Padua University.

  13. Stellar Rotation: New Insight from CoRoT

    NASA Astrophysics Data System (ADS)

    Catala, C.; Goupil, M. J.; Michel, E.; Baglin, A.; de Medeiros, J. Renan; Gondoin, Ph.

    2009-02-01

    We present an overview of the new insight provided by the CoRoT satellite on stellar rotation. Thanks to its ultra-high precision, high duty cycle, long photometric monitoring of thousands of stars, CoRoT gives us a powerful tool to study stellar rotational modulation, and therefore to measure stellar rotational periods and to study active structures at the surface of stars. This paper presents preliminary results concerning this type of study. CoRoT will also provide us with an insight of internal stellar rotation via the measurement and exploitation of rotational splittings of oscillation modes. This approach to stellar rotation with CoRoT will require a careful analysis of the oscillation power spectra, which is in progress, but prospects for such measurements are presented.

  14. Torsional Alfv\\xE9n resonances as an efficient damping mechanism for non-radial oscillations in red giant stars

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2017-05-01

    Stars are self-gravitating fluids in which pressure, buoyancy, rotation and magnetic fields provide the restoring forces for global modes of oscillation. Pressure and buoyancy energetically dominate, while rotation and magnetism are generally assumed to be weak perturbations and often ignored. However, observations of anomalously weak dipole mode amplitudes in red giant stars suggest that a substantial fraction of these are subject to an additional source of damping localized to their core region, with indirect evidence pointing to the role of a deeply buried magnetic field. It is also known that in many instances, the gravity-mode character of affected modes is preserved, but so far, no effective damping mechanism has been proposed that accommodates this aspect. Here we present such a mechanism, which damps the oscillations of stars harbouring magnetised cores via resonant interactions with standing Alfvén modes of high harmonic index. The damping rates produced by this mechanism are quantitatively on par with those associated with turbulent convection, and in the range required to explain observations, for realistic stellar models and magnetic field strengths. Our results suggest that magnetic fields can provide an efficient means of damping stellar oscillations without needing to disrupt the internal structure of the modes, and lay the groundwork for an extension of the theory of global stellar oscillations that incorporates these effects.

  15. Spinning Like a Blue Straggler: The Population of Fast Rotating Blue Straggler Stars in ω Centauri

    NASA Astrophysics Data System (ADS)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.; Monaco, L.

    2014-12-01

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ~40 km s-1 (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ~200 km s-1. About 40% of the sample has ve sin i > 40 km s-1 and about 20% has ve sin i > 70 km s-1. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments. Based on observations collected at the ESO-VLT under the programs 077.D-0696(A), 081.D-0356(A), and 089.D-0298(A).

  16. The 2D dynamics of radiative zones of low-mass stars

    NASA Astrophysics Data System (ADS)

    Hypolite, D.; Mathis, S.; Rieutord, M.

    2018-02-01

    Context. Helioseismology and asteroseismology allow us to probe the differential rotation deep within low-mass stars. In the solar convective envelope, the rotation varies with latitude with an equator rotating faster than the pole, which results in a shear applied on the radiative zone below. However, a polar acceleration of the convective envelope can be obtained through 3D numerical simulations in other low-mass stars and the dynamical interaction of the surface convective envelope with the radiative core needs to be investigated in the general case. Aim. In the context of secular evolution, we aim to describe the dynamics of the radiative core of low-mass stars to get a deeper understanding of the internal transport of angular momentum in such stars, which results in a solid rotation in the Sun from 0.7R⊙ to 0.2R⊙ and a weak radial core-envelope differential rotation in solar-type stars. This study requires at least a 2D description to capture the latitudinal variations of the differential rotation. Methods: We build 2D numerical models of a radiative core on the top of which we impose a latitudinal shear so as to reproduce a conical or cylindrical differential rotation in a convective envelope. We perform a systematic study over the Rossby number ℛo = ΔΩ/2Ω0 measuring the latitudinal differential rotation at the radiative-convective interface. We provide a 2D description of the differential rotation and the associated meridional circulation in the incompressible and stably stratified cases using the Boussinesq approximation. Results: The imposed shear generates a geostrophic flow implying a cylindrical differential rotation in the case of an isotropic viscosity. When compared to the baroclinic flow that arises from the stable stratification, we find that the geostrophic flow is dominant when the Rossby number is high enough (ℛo ≥ 1) with a cylindrical rotation profile. For low Rossby numbers (ℛo < 1), the baroclinic solution dominates with a quasi-shellular rotation profile. Using scaling laws from 3D simulations, we show that slow rotators (Ω0 < 30Ω⊙) are expected to have a cylindrical rotation profile. Fast rotators (Ω0 > 30Ω⊙) may have a shellular profile at the beginning of the main sequence in stellar radiative zones. Conclusions: This study enables us to predict different types of differential rotation and emphasizes the need for a new generation of 2D rotating stellar models developed in synergy with 3D numerical simulations. The shear induced by a surface convective zone has a strong impact on the dynamics of the underlying radiative zone in low-mass stars. However, it cannot produce a flat internal rotation profile in a solar configuration calling for additional processes for the transport of angular momentum in both radial and latitudinal directions.

  17. EVIDENCE FOR CLUSTER TO CLUSTER VARIATIONS IN LOW-MASS STELLAR ROTATIONAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M., E-mail: coker@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu, E-mail: terndrup@astronomy.ohio-state.edu

    2016-12-10

    The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar–disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star–disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport.more » For slow rotators, we confirm the need for star–disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.« less

  18. Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.

    2017-04-01

    Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.

  19. Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars

    NASA Astrophysics Data System (ADS)

    Paxton, Bill; Cantiello, Matteo; Arras, Phil; Bildsten, Lars; Brown, Edward F.; Dotter, Aaron; Mankovich, Christopher; Montgomery, M. H.; Stello, Dennis; Timmes, F. X.; Townsend, Richard

    2013-09-01

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ⊙ stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

  20. Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.; Lada, Charles J.; DeVincenzi, Donald L. (Technical Monitor)

    2002-01-01

    We present high-resolution (R is approximately equal to 18,000), high signal-to-noise 2 micron spectra of two luminous, X-ray flaring Class I protostars in the rho Ophiuchi cloud acquired with the NIRSPEC (near infrared spectrograph) of the Keck II telescope. We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L (sub bol) = 10 solar luminosity) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r(sub k) = 3.0. Its derived stellar luminosity (3 stellar luminosity) and stellar radius (3.1 solar radius) are consistent with those of a 0.5 solar mass pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.7 x 10(exp -6) solar masses yr(exp -1). We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute significantly to its near-IR (infrared) continuum veiling. Its rotational velocity v sin i = 50 km s(exp -1) is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 - 3 R(sub *). It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r(sub k) is greater than or equal to 4.6. Its low luminosity (2 solar masses) and high veiling dictate that its central protostar is very low mass, M is approx. 0.1 solar masses. We also evaluate multi-epoch X ray data along with these spectra and conclude that the X ray variabilities of these sources are not directly related to their protostellar rotation velocities.

  1. Non-standard s-process in low metallicity massive rotating stars

    NASA Astrophysics Data System (ADS)

    Frischknecht, U.; Hirschi, R.; Thielemann, F.-K.

    2012-02-01

    Context. Rotation is known to have a strong impact on the nucleosynthesis of light elements in massive stars, mainly by inducing mixing in radiative zones. In particular, rotation boosts the primary nitrogen production, and models of rotating stars are able to reproduce the nitrogen observed in low-metallicity halo stars. Aims: Here we present the first grid of stellar models for rotating massive stars at low metallicity, where a full s-process network is used to study the impact of rotation-induced mixing on the neutron capture nucleosynthesis of heavy elements. Methods: We used the Geneva stellar evolution code that includes an enlarged reaction network with nuclear species up to bismuth to calculate 25 M⊙ models at three different metallicities (Z = 10-3,10-5, and 10-7) and with different initial rotation rates. Results: First, we confirm that rotation-induced mixing (shear) between the convective H-shell and He-core leads to a large production of primary 22Ne (0.1 to 1% in mass fraction), which is the main neutron source for the s-process in massive stars. Therefore rotation boosts the s-process in massive stars at all metallicities. Second, the neutron-to-seed ratio increases with decreasing Z in models including rotation, which leads to the complete consumption of all iron seeds at metallicities below Z = 10-3 by the end of core He-burning. Thus at low Z, the iron seeds are the main limitation for this boosted s-process. Third, as the metallicity decreases, the production of elements up to the Ba peak increases at the expense of the elements of the Sr peak. We studied the impact of the initial rotation rate and of the highly uncertain 17O(α,γ) rate (which strongly affects the strength of 16O as a neutron poison) on our results. This study shows that rotating models can produce significant amounts of elements up to Ba over a wide range of Z, which has important consequences for our understanding of the formation of these elements in low-metallicity environments like the halo of our galaxy and globular clusters. Fourth, compared to the He-core, the primary 22Ne production induced by rotation in the He-shell is even higher (greater than 1% in mass fraction at all metallicities), which could open the door for an explosive neutron capture nucleosynthesis in the He-shell, with a primary neutron source.

  2. Deep HST Imaging in 47 Tucanae: A Global Dynamical Model

    NASA Astrophysics Data System (ADS)

    Heyl, J.; Caiazzo, I.; Richer, H.; Anderson, J.; Kalirai, J.; Parada, J.

    2017-12-01

    Multi-epoch observations with the Advanced Camera Survey and WFC3 on the Hubble Space Telescope provide a unique and comprehensive probe of stellar dynamics within 47 Tucanae. We confront analytic models of the globular cluster with the observed stellar proper motions that probe along the main sequence from just above 0.8-0.1M ⊙ as well as white dwarfs younger than 1 Gyr. One field lies just beyond the half-light radius where dynamical models (e.g., lowered Maxwellian distributions) make robust predictions for the stellar proper motions. The observed proper motions in this outer field show evidence for anisotropy in the velocity distribution as well as skewness; the latter is evidence of rotation. The measured velocity dispersions and surface brightness distributions agree in detail with a rotating anisotropic model of the stellar distribution function with mild dependence of the proper-motion dispersion on mass. However, the best-fitting models underpredict the rotation and skewness of the stellar velocities. In the second field, centered on the core of the cluster, the mass segregation in proper motion is much stronger. Nevertheless the model developed in the outer field can be extended inward by taking this mass segregation into account in a heuristic fashion. The proper motions of the main-sequence stars yield a mass estimate of the cluster of 1.31+/- 0.02× {10}6{M}⊙ at a distance of 4.7 kpc. By comparing the proper motions of a sample of giant and subgiant stars with the observed radial velocities we estimate the distance to the cluster kinematically to be 4.29 ± 0.47 kpc.

  3. Dynamical Stability and Long-term Evolution of Rotating Stellar Systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.

    2011-05-01

    We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.

  4. The Rotation of M Dwarfs Observed by the Apache Point Galactic Evolution Experiment

    NASA Astrophysics Data System (ADS)

    Gilhool, Steven H.; Blake, Cullen H.; Terrien, Ryan C.; Bender, Chad; Mahadevan, Suvrath; Deshpande, Rohit

    2018-01-01

    We present the results of a spectroscopic analysis of rotational velocities in 714 M-dwarf stars observed by the SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) survey. We use a template-fitting technique to estimate v\\sin i while simultaneously estimating {log}g, [{{M}}/{{H}}], and {T}{eff}. We conservatively estimate that our detection limit is 8 km s‑1. We compare our results to M-dwarf rotation studies in the literature based on both spectroscopic and photometric measurements. Like other authors, we find an increase in the fraction of rapid rotators with decreasing stellar temperature, exemplified by a sharp increase in rotation near the M4 transition to fully convective stellar interiors, which is consistent with the hypothesis that fully convective stars are unable to shed angular momentum as efficiently as those with radiative cores. We compare a sample of targets observed both by APOGEE and the MEarth transiting planet survey and find no cases where the measured v\\sin i and rotation period are physically inconsistent, requiring \\sin i> 1. We compare our spectroscopic results to the fraction of rotators inferred from photometric surveys and find that while the results are broadly consistent, the photometric surveys exhibit a smaller fraction of rotators beyond the M4 transition by a factor of ∼2. We discuss possible reasons for this discrepancy. Given our detection limit, our results are consistent with a bimodal distribution in rotation that is seen in photometric surveys.

  5. 2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander

    2015-08-01

    We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.

  6. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Heger, A.; Woosley, S. E.; Spruit, H. C.

    2005-06-01

    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.

  7. Interior rotation of a sample of γ Doradus stars from ensemble modelling of their gravity-mode period spacings

    NASA Astrophysics Data System (ADS)

    Van Reeth, T.; Tkachenko, A.; Aerts, C.

    2016-10-01

    Context. Gamma Doradus stars (hereafter γ Dor stars) are known to exhibit gravity- and/or gravito-intertial modes that probe the inner stellar region near the convective core boundary. The non-equidistant spacing of the pulsation periods is an observational signature of the stellar evolutions and current internal structure and is heavily influenced by rotation. Aims: We aim to constrain the near-core rotation rates for a sample of γ Dor stars for which we have detected period spacing patterns. Methods: We combined the asymptotic period spacing with the traditional approximation of stellar pulsation to fit the observed period spacing patterns using χ2-optimisation. The method was applied to the observed period spacing patterns of a sample of stars and used for ensemble modelling. Results: For the majority of stars with an observed period spacing pattern we successfully determined the rotation rates and the asymptotic period spacing values, although the uncertainty margins on the latter were typically large. This also resulted directly in the identification of the modes that correspond to the detected pulsation frequencies, which for most stars were prograde dipole gravity and gravito-inertial modes. The majority of the observed retrograde modes were found to be Rossby modes. We also discuss the limitations of the method that are due to the neglect of the centrifugal force and the incomplete treatment of the Coriolis force. Conclusions: Despite its current limitations, the proposed method was successful to derive the rotation rates and to identify the modes from the observed period spacing patterns. It forms the first step towards detailed seismic modelling based on observed period spacing patterns of moderately to rapidly rotating γDor stars. Based on data gathered with the NASA Discovery mission Kepler and the HERMES spectrograph, which is installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany.

  8. Extended Main-sequence Turn-offs in Intermediate-age Star Clusters: Stellar Rotation Diminishes, but Does Not Eliminate, Age Spreads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul; Correnti, Matteo; Girardi, Léo, E-mail: goudfroo@stsci.edu

    Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotationmore » velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.« less

  9. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints - The open cluster NGC 6633 and field stars-

    NASA Astrophysics Data System (ADS)

    Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit

    2015-08-01

    The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.

  10. Warm gas towards young stellar objects in Corona Australis. Herschel/PACS observations from the DIGIT key programme

    NASA Astrophysics Data System (ADS)

    Lindberg, Johan E.; Jørgensen, Jes K.; Green, Joel D.; Herczeg, Gregory J.; Dionatos, Odysseas; Evans, Neal J.; Karska, Agata; Wampfler, Susanne F.

    2014-05-01

    Context. The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an intermediate-mass young star. Aims: We study the effects of the irradiation coming from the young luminous Herbig Be star R CrA on the warm gas and dust in a group of low-mass young stellar objects. Methods: Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented. The distributions of CO, OH, H2O, [C ii], [O i], and continuum emission are investigated. We have developed a deconvolution algorithm which we use to deconvolve the maps, separating the point-source emission from the extended emission. We also construct rotational diagrams of the molecular species. Results: By deconvolution of the Herschel data, we find large-scale (several thousand AU) dust continuum and spectral line emission not associated with the point sources. Similar rotational temperatures are found for the warm CO (282 ± 4 K), hot CO (890 ± 84 K), OH (79 ± 4 K), and H2O (197 ± 7 K) emission in the point sources and the extended emission. The rotational temperatures are also similar to those found in other more isolated cores. The extended dust continuum emission is found in two ridges similar in extent and temperature to molecular millimetre emission, indicative of external heating from the Herbig Be star R CrA. Conclusions: Our results show that nearby luminous stars do not increase the molecular excitation temperatures of the warm gas around young stellar objects (YSOs). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated with these protostars and their surroundings compared to similar objects not subjected to external irradiation. Table 9 and appendices are available in electronic form at http://www.aanda.org

  11. Tidal Dissipation In Rotating Low Mass Stars: Implications For The Orbital Evolution Of Close In Planets

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann

    2017-10-01

    Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.

  12. Dynamo action and magnetic activity during the pre-main sequence: Influence of rotation and structural changes

    NASA Astrophysics Data System (ADS)

    Emeriau-Viard, Constance; Brun, Allan Sacha

    2017-10-01

    During the PMS, structure and rotation rate of stars evolve significantly. We wish to assess the consequences of these drastic changes on stellar dynamo, internal magnetic field topology and activity level by mean of HPC simulations with the ASH code. To answer this question, we develop 3D MHD simulations that represent specific stages of stellar evolution along the PMS. We choose five different models characterized by the radius of their radiative zone following an evolutionary track, from 1 Myr to 50 Myr, computed by a 1D stellar evolution code. We introduce a seed magnetic field in the youngest model and then we spread it through all simulations. First of all, we study the consequences that the increase of rotation rate and the change of geometry of the convective zone have on the dynamo field that exists in the convective envelop. The magnetic energy increases, the topology of the magnetic field becomes more complex and the axisymmetric magnetic field becomes less predominant as the star ages. The computation of the fully convective MHD model shows that a strong dynamo develops with a ratio of magnetic to kinetic energy reaching equipartition and even super-equipartition states in the faster rotating cases. Magnetic fields resulting from our MHD simulations possess a mixed poloidal-toroidal topology with no obvious dominant component. We also study the relaxation of the vestige dynamo magnetic field within the radiative core and found that it satisfies stability criteria. Hence it does not experience a global reconfiguration and instead slowly relaxes by retaining its mixed poloidal-toroidal topology.

  13. Inferring probabilistic stellar rotation periods using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh

    2018-02-01

    Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.

  14. The slow ionized wind and rotating disklike system that are associated with the high-mass young stellar object G345.4938+01.4677

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzmán, Andrés E.; Garay, Guido; Bronfman, Leonardo

    2014-12-01

    We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40α, H42α, and H50β emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 16562–3959. The HRLs exhibit Voigt profiles, which is a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need for a high-velocity component. The Lorentzian line wings implymore » electron densities of 5 × 10{sup 7} cm{sup –3} on average. In addition, we detect SO and SO{sub 2} emission arising from a compact (∼3000 AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient that is perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.« less

  15. The γ Dor stars as revealed by Kepler: A key to reveal deep-layer rotation in A and F stars

    NASA Astrophysics Data System (ADS)

    Salmon, S. J. A. J.; Ouazzani, R.-M.; Antoci, V.; Bedding, T. R.; Murphy, S. J.

    2017-09-01

    The γ Dor pulsating stars present high-order gravity modes, which make them important targets in the intermediate-and low-mass main-sequence region of the Hertzsprung-Russell diagram. Whilst we have only access to rotation in the envelope of the Sun, the g modes of γ Dor stars can in principle deliver us constraints on the inner layers. With the puzzling discovery of unexpectedly low rotation rates in the core of red giants, the γ Dor stars appear now as unique targets to explore internal angular momentum transport in the progenitors of red giants. Yet, the γ Dor pulsations remain hard to detect from the ground for their periods are close to 1 day. While the CoRoT space mission first revealed intriguing frequency spectra, the almost uninterrupted 4-year photometry from the Kepler mission eventually shed a new light on them. It revealed regularities in the spectra, expected to bear signature of physical processes, including rotation, in the shear layers close to the convective core. We present here the first results of our effort to derive exploitable seismic diagnosis for mid- to fast rotators among γ Dor stars. We confirm their potential to explore the rotation history of this early phase of stellar evolution.

  16. THE ROLE OF THE MAGNETOROTATIONAL INSTABILITY IN MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, J. Craig; Kagan, Daniel; Chatzopoulos, Emmanouil, E-mail: wheel@astro.as.utexas.edu

    2015-01-20

    The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic effects due to the Spruit-Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive star models. We find that the MRI can be active in the later stages ofmore » massive star evolution, leading to mixing effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can move models of given zero-age main sequence mass across ''boundaries'' from degenerate CO cores to degenerate O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with the observed ''initial'' rotation rates of pulsars. The MRI analysis suggests that localized fields ∼10{sup 12} G may exist at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M {sub ☉} model, we find that the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even blue supergiant supernova progenitors that would not be standard SN IIP.« less

  17. Precision Scaling Relations for Disk Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Salucci, P.; Danese, L.

    2018-05-01

    We build templates of rotation curves as a function of the I-band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about 550 local disk-dominated galaxies with high-quality measurements of the optical radius R opt and of the corresponding rotation velocity V opt. Specifically, we determine the stellar M ⋆ and halo M H masses, the halo size R H and velocity scale V H, and the specific angular momenta of the stellar j ⋆ and dark matter j H components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak-lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with 1σ dispersion around the mean relationships of less than 0.1 dex. We thus set new standard local relationships that must be reproduced by detailed physical models, which offer a basis for improving the subgrid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.

  18. Non-radial oscillation modes with long lifetimes in giant stars.

    PubMed

    De Ridder, Joris; Barban, Caroline; Baudin, Frédéric; Carrier, Fabien; Hatzes, Artie P; Hekker, Saskia; Kallinger, Thomas; Weiss, Werner W; Baglin, Annie; Auvergne, Michel; Samadi, Réza; Barge, Pierre; Deleuil, Magali

    2009-05-21

    Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.

  19. Pair-instability supernovae of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2015-01-01

    We present 2D simulations of pair-instability supernovae considering rapid rotation during their explosion phases. Recent studies of the Population III (Pop III) star formation suggested that these stars could be born with a mass scale about 100 M⊙ and with a strong rotation. Based on stellar evolution models, these massive Pop III stars might have died as highly energetic pair-instability supernovae. We perform 2D calculations to investigate the impact of rotation on pair-instability supernovae. Our results suggest that rotation leads to an aspherical explosion due to an anisotropic collapse. If the first stars have a 50% of keplerian rotational rate of the oxygen core before their pair-instability explosions, the overall 56Ni production can be significantly reduced by about two orders of magnitude. An extreme case of 100% keplerian rotational rate shows an interesting feature of fluid instabilities along the equatorial plane caused by non-synchronized and non-isotropic ignitions of explosions, so that the shocks run into the in-falling gas and generate the Richtmyer-Meshkov instability.

  20. The diversity of atomic hydrogen in slow rotator early-type galaxies

    NASA Astrophysics Data System (ADS)

    Young, Lisa M.; Serra, Paolo; Krajnović, Davor; Duc, Pierre-Alain

    2018-06-01

    We present interferometric observations of H I in nine slow rotator early-type galaxies of the Atlas3D sample. With these data, we now have sensitive H I searches in 34 of the 36 slow rotators. The aggregate detection rate is 32 per cent ± 8 per cent, consistent with the previous work; however, we find two detections with extremely high H I masses, whose gas kinematics are substantially different from what was previously known about H I in slow rotators. These two cases (NGC 1222 and NGC 4191) broaden the known diversity of H I properties in slow rotators. NGC 1222 is a merger remnant with prolate-like rotation and, if it is indeed prolate in shape, an equatorial gas disc; NGC 4191 has two counter-rotating stellar discs and an unusually large H I disc. We comment on the implications of this disc for the formation of 2σ galaxies. In general, the H I detection rate, the incidence of relaxed H I discs, and the H I/stellar mass ratios of slow rotators are indistinguishable from those of fast rotators. These broad similarities suggest that the H I we are detecting now is unrelated to the galaxies' formation processes and was often acquired after their stars were mostly in place. We also discuss the H I non-detections; some of these galaxies that are undetected in H I or CO are detected in other tracers (e.g. FIR fine structure lines and dust). The question of whether there is cold gas in massive galaxies' scoured nuclear cores still needs work. Finally, we discuss an unusual isolated H I cloud with a surprisingly faint (undetected) optical counterpart.

  1. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral Rose

    2016-06-01

    The high dark matter content and the shallow potential wells of low mass galaxies (10^3 Msun < Mstar < 10^9.5 Msun) make them excellent testbeds for differing theories of galaxy formation. Additionally, the recent up-tick in the number and detail of Local Group dwarf galaxy observations provides a rich dataset for comparison to simulations that attempt to answer important questions in near field cosmology: why are there so few observed dwarfs compared to the number predicted by simulations? What shuts down star formation in ultra-faint galaxies? Why do dwarfs have inverted age gradients and what does it take to convert a dwarf irregular (dIrrs) into a dwarf spheroidal (dSph) galaxy?We to attempt to answer these questions by running ultra-high resolution cosmological FIRE simulations of isolated dwarf galaxies. We predict that many ultra-faint dwarfs should exist as satellites of more massive isolated Local Group dwarfs. The ultra-faints (Mstar < 10^4 Msun) formed in these simulations have uniformly ancient stellar populations (> 10 Gyr), having had their star formation shut down by reionization. Additionally, we show that the kinematics and ellipticities of isolated simulated dwarf centrals are consistent with observed dSphs satellites without the need for harassment from a massive host. We further show that most (but not all) observed *isolated* dIrrs in the Local Volume also have dispersion-supported stellar populations, contradicting the previous view that these objects are rotating. Finally, we investigate the stellar age gradients in dwarfs — showing that early mergers and strong feedback can create an inverted gradient, with the older stars occupying larger galactocentric radii.These results offer an interesting direction in testing models that attempt to solve dark matter problems via explosive feedback episodes. Can the same models that create large cores in simulated dwarfs preserve the mild stellar rotation that is seen in a minority of isolated dIrrs? Can the bursty star formation that created a dark matter core also match observed stellar gradients in low mass galaxies? Comparisons between our simulations and observed dwarfs should provide an important benchmark for this question going forward.

  2. RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiners, Ansgar; Mohanty, Subhanjoy, E-mail: Ansgar.Reiners@phys.uni-goettingen.de

    2012-02-10

    Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from themore » large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.« less

  3. VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2016-06-01

    Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).

  4. Tidal effects on stellar activity

    NASA Astrophysics Data System (ADS)

    Poppenhaeger, K.

    2017-10-01

    The architecture of many exoplanetary systems is different from the solar system, with exoplanets being in close orbits around their host stars and having orbital periods of only a few days. We can expect interactions between the star and the exoplanet for such systems that are similar to the tidal interactions observed in close stellar binary systems. For the exoplanet, tidal interaction can lead to circularization of its orbit and the synchronization of its rotational and orbital period. For the host star, it has long been speculated if significant angular momentum transfer can take place between the planetary orbit and the stellar rotation. In the case of the Earth-Moon system, such tidal interaction has led to an increasing distance between Earth and Moon. For stars with Hot Jupiters, where the orbital period of the exoplanet is typically shorter than the stellar rotation period, one expects a decreasing semimajor axis for the planet and enhanced stellar rotation, leading to increased stellar activity. Also excess turbulence in the stellar convective zone due to rising and subsiding tidal bulges may change the magnetic activity we observe for the host star. I will review recent observational results on stellar activity and tidal interaction in the presence of close-in exoplanets, and discuss the effects of enhanced stellar activity on the exoplanets in such systems.

  5. Rotational properties of hypermassive neutron stars from binary mergers

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst

    2017-08-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  6. Is the Critical Rotation of Be Stars Really Critical for the Be Phenomenon?

    NASA Astrophysics Data System (ADS)

    Stee, Ph.; Meilland, A.

    We aim to study the effect of the fast rotation, stellar wind and circumstellar disks around active hot stars and their effects on the formation and evolution of these massive stars. For that purpose, we obtained, for the first time, interferometric measurements of three active hot stars, namely α Arae, κ CMa and Achernar, using the VLTI /AMBER and VLTI/MIDI instruments which allow us to study the kinematics of the central star and its surrounding circumstellar matter. These data coupled with our numerical code SIMECA (SIMulation pour Etoiles Chaudes Actives) seem to indicate that the presence of equatorial disks and polar stellar wind around Be stars are not correlated. A polar stellar wind was detected for α Arae and Achernar whereas κ CMa seems to exhibit no stellar wind. On the other hand, these two first Be stars are certainly nearly critical rotators whereas the last one seems to be far from the critical rotation. Thus a polar stellar wind may be due to the nearly critical rotation which induces a local effective temperature change following the von Zeipel theorem, producing a hotter polar region triggering a polar stellar wind. This critical rotation may also explain the formation of a circumstellar disk which is formed by the centrifugal force balancing the equatorial effective gravity of the central star. Following these results we try to investigate if critical rotation may be the clue for the Be phenomenon.

  7. The edge of galaxy formation - II. Evolution of Milky Way satellite analogues after infall

    NASA Astrophysics Data System (ADS)

    Frings, Jonas; Macciò, Andrea; Buck, Tobias; Penzo, Camilla; Dutton, Aaron; Blank, Marvin; Obreja, Aura

    2017-12-01

    In the first paper, we presented 27 hydrodynamical cosmological simulations of galaxies with total masses between 5 × 108 and 1010 M⊙. In this second paper, we use a subset of these cosmological simulations as initial conditions (ICs) for more than 40 hydrodynamical simulations of satellite and host galaxy interaction. Our cosmological ICs seem to suggest that galaxies on these mass scales have very little rotational support and are velocity dispersion (σ) dominated. Accretion and environmental effects increase the scatter in the galaxy scaling relations (e.g. size-velocity dispersion) in very good agreement with observations. Star formation is substantially quenched after accretion. Mass removal due to tidal forces has several effects: it creates a very flat stellar velocity dispersion profile, and it reduces the dark matter content at all scales (even in the centre), which in turn lowers the stellar velocity on scales around 0.5 kpc even when the galaxy does not lose stellar mass. Satellites which start with a cored dark matter profile are more prone to either be destroyed or to end up in a very dark matter poor galaxy. Finally, we found that tidal effects always increase the 'cuspyness' of the dark matter profile, even for haloes that infall with a core.

  8. ON THE IMF IN A TRIGGERED STAR FORMATION CONTEXT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tingtao; Huang, Chelsea X.; Lin, D. N. C.

    2015-07-20

    The origin of the stellar initial mass function (IMF) is a fundamental issue in the theory of star formation. It is generally fit with a composite power law. Some clues on the progenitors can be found in dense starless cores that have a core mass function (CMF) with a similar shape. In the low-mass end, these mass functions increase with mass, albeit the sample may be somewhat incomplete; in the high-mass end, the mass functions decrease with mass. There is an offset in the turn-over mass between the two mass distributions. The stellar mass for the IMF peak is lowermore » than the corresponding core mass for the CMF peak in the Pipe Nebula by about a factor of three. Smaller offsets are found between the IMF and the CMFs in other nebulae. We suggest that the offset is likely induced during a starburst episode of global star formation which is triggered by the formation of a few O/B stars in the multi-phase media, which naturally emerged through the onset of thermal instability in the cloud-core formation process. We consider the scenario that the ignition of a few massive stars photoionizes the warm medium between the cores, increases the external pressure, reduces their Bonnor–Ebert mass, and triggers the collapse of some previously stable cores. We quantitatively reproduce the IMF in the low-mass end with the assumption of additional rotational fragmentation.« less

  9. A method to deconvolve stellar rotational velocities II. The probability distribution function via Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Christen, Alejandra; Escarate, Pedro; Curé, Michel; Rial, Diego F.; Cassetti, Julia

    2016-10-01

    Aims: Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin I, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods: After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results: This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions: Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin I data directly without the need for any convergence criteria.

  10. Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.

    1985-01-01

    The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.

  11. VizieR Online Data Catalog: Rotating Wolf-Rayet stars in post RSG/LBV phase (Graefener+, 2012)

    NASA Astrophysics Data System (ADS)

    Graefener, G.; Vink, J. S.; Harries, T. J.; Langer, N.

    2013-01-01

    Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km/s have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy. We use linear line-depolarization as an indicator of rotation, nebular morphology as an indicator of stellar ejecta, and velocity patterns in UV absorption features as an indicator of increased velocities in the CS environment. (2 data files).

  12. Magnetic Fields in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Briggs, G.; Ferrario, L.; Tout, C. A.; Wickramasinghe, D. T.

    2018-01-01

    Wickramasinghe et al. (2014) and Briggs et al. (2015) have proposed that the strong magnetic fields observed in some single white dwarfs (MWDs) are formed by an α—Ω dynamo driven by differential rotation when two stars, the more massive one with a degenerate core, merge during common envelope (CE) evolution (Ferrario et al., 2015b). We synthesise a population of binaries to investigate if fields in the magnetic cataclysmic variables (MCVs) may also originate during stellar interaction in the CE phase.

  13. CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution

    NASA Astrophysics Data System (ADS)

    Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo

    2012-02-01

    CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.

  14. VizieR Online Data Catalog: Evolution of rotating very massive LC stars (Kohler, 2015)

    NASA Astrophysics Data System (ADS)

    Kohler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Grafener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.

    2014-11-01

    A dense model grid with chemical composition appropriate for the Large Magellanic Cloud is presented. A one-dimensional hydrodynamic stellar evolution code was used to compute our models on the main sequence, taking into account rotation, transport of angular momentum by magnetic fields and stellar wind mass loss. We present stellar evolution models with initial masses of 70-500M⊙ and with initial surface rotational velocities of 0-550km/s. (2 data files).

  15. Deriving stellar inclination of slow rotators using stellar activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumusque, X., E-mail: xdumusque@cfa.harvard.edu

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle.more » For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.« less

  16. In pursuit of gamma-ray burst progenitors: the identification of a sub-population of rotating Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Vink, J. S.; Gräfener, G.; Harries, T. J.

    2011-12-01

    Long-duration gamma-ray bursts (GRBs) involve the most powerful cosmic explosions since the Big Bang. Whilst it has been established that GRBs are related to the death throes of massive stars, the identification of their elusive progenitors has proved challenging. Theoretical modelling suggests that rotating Wolf-Rayet (WR) stars are the best candidates. Wolf-Rayet stars are thought to be in advanced core burning stages, just prior to explosion, but their strong stellar winds shroud their surfaces, preventing a direct measurement of their rotation. Fortunately, linear spectropolarimetry may be used to probe the flattening of their winds because of stellar spin. Spectropolarimetry surveys have shown that the vast majority of WR stars (80%) have spherically symmetric winds and are therefore rotating slowly, yet a small minority (of 20%) display a spectropolarimetric signature indicative of rotation. Here we find a highly significant correlation between WR objects that carry the signature of stellar rotation and the small subset of WR stars with ejecta nebulae that have only recently transitioned from a previous red sugergiant or luminous blue variable phase. As these youthful WR stars have yet to spin-down because of mass loss, they are the best candidate GRB progenitors identified to date. When we take recently published WR ejecta nebula numbers (of Stock & Barlow 2010, MNRAS, 409, 1429), we find that five out of the six line-effect WR stars are surrounded by ejecta nebulae. The statistics imply that the null hypothesis of no correlation between line-effect WR stars and ejecta nebulae can be rejected at the 0.0004% level. Given that four line-effect and WR ejecta nebula have spectroscopically been confirmed to contain nucleo-synthetic products, we argue that the correlation is both statistically significant and physically convincing. The implication is that we have identified a sub-population of WR stars that fulfils the necessary criteria for making GRBs. Finally, we discuss the potential of identifying GRB progenitors via linear spectropolarimetry with extremely large telescopes.

  17. Dynamical Model for Spindown of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Sood, Aditi; Kim, Eun-jin; Hollerbach, Rainer

    2016-12-01

    After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength | B| versus rotation rate, and frequency of magnetic field {ω }{cyc} versus rotation rate. For fast rotating stars we find that: (I) there is an exponential spindown {{Ω }}\\propto {e}-1.35t, with t measured in Gyr; (II) magnetic activity saturates for higher rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}0.83. For slow rotating stars we find: (I) a power-law spindown {{Ω }}\\propto {t}-0.52; (II) that magnetic activity scales roughly linearly with rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}1.16. The results obtained from our investigations are in good agreement with observations. The Vaughan-Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution.

  18. A complex approach to the blue-loop problem

    NASA Astrophysics Data System (ADS)

    Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga

    2015-08-01

    The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.

  19. Effects of Dynamical Evolution on Globular Clusters’ Internal Kinematics

    NASA Astrophysics Data System (ADS)

    Tiongco, Maria; Vesperini, Enrico; Varri, Anna Lisa

    2018-01-01

    The synergy between recent photometric, spectroscopic, and astrometric studies is revealing that globular clusters deviate from the traditional picture of dynamically simple and single stellar population systems. Complex kinematical features such as velocity anisotropy and rotation, and the existence of multiple stellar populations are some of the key observational findings. My thesis work has aimed to build a theoretical framework to interpret these new observational results and to understand their link with a globular cluster’s dynamical history.I have focused on the study of the evolution of globular clusters' internal kinematics, as driven by two-body relaxation, and the interplay between internal angular momentum and the external Galactic tidal field. With a specifically-designed, large survey of direct N-body simulations, I have explored the three-dimensional structure of the velocity space of tidally-perturbed clusters, by characterizing their degree of anisotropy and their rotational properties. These studies have proved that a cluster's kinematical properties contain a distinct imprints of the cluster’s initial structural properties, dynamical history, and tidal environment. By relaxing a number of simplifying assumptions that are traditionally imposed, I have also showed how the interplay between a cluster's internal evolution and the interaction with the host galaxy can produce complex morphological and kinematical properties, such as a counter-rotating core and a twisting of the projected isodensity contours.Building on this fundamental understanding, I have then studied the dynamics of multiple stellar populations in globular clusters, with attention to the largely unexplored role of angular momentum. I have analyzed the evolution of clusters with stellar populations characterized by different initial structural and kinematical properties to determine how long these differences are preserved, and in what cases they could still be observable in present-day systems.This body of results provides essential guidance for a meaningful interpretation of the emerging dynamical complexity of globular clusters in the era of Gaia and other upcoming large spectroscopic surveys.

  20. Seismic probing of the first dredge-up event through the eccentric red-giant and red-giant spectroscopic binary KIC 9163796. How different are red-giant stars with a mass ratio of 1.015?

    NASA Astrophysics Data System (ADS)

    Beck, P. G.; Kallinger, T.; Pavlovski, K.; Palacios, A.; Tkachenko, A.; Mathis, S.; García, R. A.; Corsaro, E.; Johnston, C.; Mosser, B.; Ceillier, T.; do Nascimento, J.-D.; Raskin, G.

    2018-04-01

    Context. Binaries in double-lined spectroscopic systems (SB2) provide a homogeneous set of stars. Differences of parameters, such as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed differences are determined by the difference in stellar mass between the two components. The mass ratio can be determined with much higher accuracy than the actual stellar mass. Aim. In this work, we aim to study the eccentric binary system KIC 9163796, whose two components are very close in mass and both are low-luminosity red-giant stars. Methods: We analysed four years of Kepler space photometry and we obtained high-resolution spectroscopy with the Hermes instrument. The orbital elements and the spectra of both components were determined using spectral disentangling methods. The effective temperatures, and metallicities were extracted from disentangled spectra of the two stars. Mass and radius of the primary were determined through asteroseismology. The surface rotation period of the primary is determined from the Kepler light curve. From representative theoretical models of the star, we derived the internal rotational gradient, while for a grid of models, the measured lithium abundance is compared with theoretical predictions. Results: From seismology the primary of KIC 9163796 is a star of 1.39 ± 0.06 M⊙, while the spectroscopic mass ratio between both components can be determined with much higher precision by spectral disentangling to be 1.015 ± 0.005. With such mass and a difference in effective temperature of 600 K from spectroscopy, the secondary and primary are, respectively, in the early and advanced stage of the first dredge-up event on the red-giant branch. The period of the primary's surface rotation resembles the orbital period within ten days. The radial rotational gradient between the surface and core in KIC 9163796 is found to be 6.9-1.0+2.0. This is a low value but not exceptional if compared to the sample of typical single field stars. The seismic average of the envelope's rotation agrees with the surface rotation rate. The lithium'abundance is in agreement with quasi rigidly rotating models. Conclusions: The agreement between the surface rotation with the seismic result indicates that the full convective envelope is rotating quasi-rigidly. The models of the lithium abundance are compatible with a rigid rotation in the radiative zone during the main sequence. Because of the many constraints offered by oscillating stars in binary systems, such objects are important test beds of stellar evolution. Based on observations made with the Kepler space telescope and the Hermes spectrograph mounted on the 1.2 m Mercator Telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  1. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  2. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  3. Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Milone, Antonino P.

    2017-08-01

    An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color-magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet-visual CMDs of four Large and Small Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35-50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.

  4. Rotation Period of Blanco 1 Members from KELT Light Curves: Comparing Rotation-Ages to Various Stellar Chronometers at 100 Myr

    NASA Astrophysics Data System (ADS)

    Cargile, Phillip; James, D. J.; Pepper, J.; Kuhn, R.; Siverd, R. J.; Stassun, K. G.

    2012-01-01

    The age of a star is one of its most fundamental properties, and yet tragically it is also the one property that is not directly measurable in observations. We must therefore rely on age estimates based on mostly model-dependent or empirical methods. Moreover, there remains a critical need for direct comparison of different age-dating techniques using the same stars analyzed in a consistent fashion. One chronometer commonly being employed is using stellar rotation rates to measure stellar ages, i.e., gyrochronology. Although this technique is one of the better-understood chronometers, its calibration relies heavily on the solar datum, as well as benchmark open clusters with reliable ages, and also lacks a comprehensive comparative analysis to other stellar chronometers. The age of the nearby (? pc) open cluster Blanco 1 has been estimated using various techniques, including being one of only 7 clusters with an LDB age measurement, making it a unique and powerful comparative laboratory for stellar chronometry, including gyrochronology. Here, we present preliminary results from our light-curve analysis of solar-type stars in Blanco 1 in order to identify and measure rotation periods of cluster members. The light-curve data were obtained during the engineering and calibration phase of the KELT-South survey. The large area on the sky and low number of contaminating field stars makes Blanco 1 an ideal target for the extremely wide field and large pixel scale of the KELT telescope. We apply a period-finding technique using the Lomb-Scargle periodogram and FAP statistics to measure significant rotation periods in the KELT-South light curves for confirmed Blanco 1 members. These new rotation periods allow us to test and inform rotation evolution models for stellar ages at ? Myr, determining a rotation-age for Blanco 1 using gyrochronology, and compare this rotation-age to other age measurements for this cluster.

  5. Adiabatic growth of a black hole in a rotating stellar system

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Goodman, Jeremy

    1989-01-01

    The consequences of slowly adding a massive black hole to the center of a rotating stellar system are considered. Although both the rotation velocity V and the velocity dispersion sigma increase when the black hole is added, the rotation velocity increases faster. The effect goes in the right direction but is too gradual to explain the V/sigma profiles recently observed in several galactic nuclei.

  6. Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas

    2018-01-01

    We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.

  7. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    PubMed

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  8. Rapidly rotating second-generation progenitors for the 'blue hook' stars of ω Centauri.

    PubMed

    Tailo, Marco; D'Antona, Francesca; Vesperini, Enrico; Di Criscienzo, Marcella; Ventura, Paolo; Milone, Antonino P; Bellini, Andrea; Dotter, Aaron; Decressin, Thibaut; D'Ercole, Annibale; Caloi, Vittoria; Capuzzo-Dolcetta, Roberto

    2015-07-16

    Horizontal branch stars belong to an advanced stage in the evolution of the oldest stellar galactic population, occurring either as field halo stars or grouped in globular clusters. The discovery of multiple populations in clusters that were previously believed to have single populations gave rise to the currently accepted theory that the hottest horizontal branch members (the 'blue hook' stars, which had late helium-core flash ignition, followed by deep mixing) are the progeny of a helium-rich 'second generation' of stars. It is not known why such a supposedly rare event (a late flash followed by mixing) is so common that the blue hook of ω Centauri contains approximately 30 per cent of the horizontal branch stars in the cluster, or why the blue hook luminosity range in this massive cluster cannot be reproduced by models. Here we report that the presence of helium core masses up to about 0.04 solar masses larger than the core mass resulting from evolution is required to solve the luminosity range problem. We model this by taking into account the dispersion in rotation rates achieved by the progenitors, whose pre-main-sequence accretion disk suffered an early disruption in the dense environment of the cluster's central regions, where second-generation stars form. Rotation may also account for frequent late-flash-mixing events in massive globular clusters.

  9. STELLAR ROTATION EFFECTS IN POLARIMETRIC MICROLENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir

    2016-07-10

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation throughmore » polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.« less

  10. The Radius and Entropy of a Magnetized, Rotating, Fully Convective Star: Analysis with Depth-dependent Mixing Length Theories

    NASA Astrophysics Data System (ADS)

    Ireland, Lewis G.; Browning, Matthew K.

    2018-04-01

    Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.

  11. How Massive Single Stars End Their Life

    NASA Technical Reports Server (NTRS)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  12. Climbing to the top of the galactic mass ladder: evidence for frequent prolate-like rotation among the most massive galaxies

    NASA Astrophysics Data System (ADS)

    Krajnović, Davor; Emsellem, Eric; den Brok, Mark; Marino, Raffaella Anna; Schmidt, Kasper Borello; Steinmetz, Matthias; Weilbacher, Peter M.

    2018-07-01

    We present the stellar velocity maps of 25 massive early-type galaxies located in dense environments observed with MUSE. Galaxies are selected to be brighter than MK = -25.7 mag, reside in the core of the Shapley Super Cluster or be the brightest galaxy in clusters richer than the Virgo Cluster. We thus targeted galaxies more massive than 1012 M⊙ and larger than 10 kpc (half-light radius). The velocity maps show a large variety of kinematic features: oblate-like regular rotation, kinematically distinct cores, and various types of non-regular rotation. The kinematic misalignment angles show that massive galaxies can be divided into two categories: those with small or negligible misalignment and those with misalignment consistent with being 90°. Galaxies in this latter group, comprising just under half of our galaxies, have prolate-like rotation (rotation around the major axis). Among the brightest cluster galaxies the incidence of prolate-like rotation is 50 per cent, while for a magnitude limited sub-sample of objects within the Shapley Super Cluster (mostly satellites), 35 per cent of galaxies show prolate-like rotation. Placing our galaxies on the mass-size diagram, we show that they all fall on a branch extending almost an order of magnitude in mass and a factor of 5 in size from the massive end of galaxies, previously recognized as associated with major dissipation-less mergers. The presence of galaxies with complex kinematics and, particularly, prolate-like rotators suggests, according to current numerical simulations, that the most massive galaxies grow predominantly through dissipation-less equal-mass mergers.

  13. Climbing to the top of the galactic mass ladder: evidence for frequent prolate-like rotation among the most massive galaxies

    NASA Astrophysics Data System (ADS)

    Krajnović, Davor; Emsellem, Eric; den Brok, Mark; Marino, Raffaella Anna; Schmidt, Kasper Borello; Steinmetz, Matthias; Weilbacher, Peter M.

    2018-04-01

    We present the stellar velocity maps of 25 massive early-type galaxies located in dense environments observed with MUSE. Galaxies are selected to be brighter than MK = -25.7 magnitude, reside in the core of the Shapley Super Cluster or be the brightest galaxy in clusters richer than the Virgo Cluster. We thus targeted galaxies more massive than 1012 M⊙ and larger than 10 kpc (half-light radius). The velocity maps show a large variety of kinematic features: oblate-like regular rotation, kinematically distinct cores and various types of non-regular rotation. The kinematic misalignment angles show that massive galaxies can be divided into two categories: those with small or negligible misalignment, and those with misalignment consistent with being 90°. Galaxies in this latter group, comprising just under half of our galaxies, have prolate-like rotation (rotation around the major axis). Among the brightest cluster galaxies the incidence of prolate-like rotation is 50 per cent, while for a magnitude limited sub-sample of objects within the Shapley Super Cluster (mostly satellites), 35 per cent of galaxies show prolate-like rotation. Placing our galaxies on the mass - size diagram, we show that they all fall on a branch extending almost an order of magnitude in mass and a factor of 5 in size from the massive end of galaxies, previously recognised as associated with major dissipation-less mergers. The presence of galaxies with complex kinematics and, particularly, prolate-like rotators suggests, according to current numerical simulations, that the most massive galaxies grow predominantly through dissipation-less equal-mass mergers.

  14. Stellar Differential Rotation of F-Stars Using DI and ZDI: The Case of HR1817

    NASA Astrophysics Data System (ADS)

    Marsden, Stephen

    2018-04-01

    The measure of surface differential rotation via the motion of spots and/or magnetic features on the stellar surface is a critical part of understanding the stellar dynamo. Here we present several epochs of (Zeeman) Doppler imaging of the young late-F star HR1817 from 2001 until 2011. These results show that HR1817 exhibits a high shear of its surface features, significantly above the solar value. It would appear that F stars, with thin convective zones, have surface differential rotation rates much higher than that of low mass stars.

  15. Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai

    An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color–magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet–visual CMDs of four Large and Smallmore » Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35–50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.« less

  16. Sir Fred Hoyle and the theory of the synthesis of the elements

    NASA Astrophysics Data System (ADS)

    Arnett, David

    Some of Fred Hoyle's pioneering ideas about the site and the nature of the synthesis of the elements are examined in a modern context of theory, experiment and observations. Hoyle's ideas concerning the nucleosynthesis cycle of stellar birth and death, rotational instability of supernovae, the onion-skin model of presupernovae, neutronization, nuclear statistical equilibrium and core collapse, thermonuclear supernovae, nucleosynthesis processes and freeze-out are discussed. The history of the clash of theory and experiment on the second excited state of 8Be and helium ignition in red giants is reviewed.

  17. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster

    NASA Astrophysics Data System (ADS)

    Kovacs, Geza

    2018-04-01

    The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2

  18. On the stability and maximum mass of differentially rotating relativistic stars

    NASA Astrophysics Data System (ADS)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano

    2018-01-01

    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that `quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  19. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  20. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ < M* < 5 × 109 M⊙, EWHα < 2 Å, and all have red colours (u - r) > 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot < 15 km s-1 at ˜1 Re, and may be dominated by pressure support at all radii. Two galaxies in our sample have kinematically distinct cores in their stellar component, likely the result of accretion. Six contain ionized gas despite not hosting ongoing star formation, and this gas is typically kinematically misaligned from their stellar component. This is the first large-scale Integral Field Unit (IFU) study of low-mass galaxies selected without bias against low-density environments. Nevertheless, we find the majority of these galaxies are within ˜1.5 Mpc of a bright neighbour (MK < -23; or M* > 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  1. New results on the apsidal-motion test to stellar structure and evolution including the effects of dynamic tides

    NASA Astrophysics Data System (ADS)

    Claret, A.; Willems, B.

    2002-06-01

    We revised the current status of the apsidal-motion test to stellar structure and evolution. The observational sample was increased by about 50% in comparison to previous studies. Classical and relativistic systems were analyzed simultaneously and only systems with accurate absolute dimensions were considered. New interior models incorporating recent opacity tables, stellar rotation, mass loss, and moderate core overshooting were used as theoretical tools to compare the predicted with the observed shifts of the position of the periastron. The stellar models were computed for the precise observed masses and the adopted chemical compositions are consistent with the corresponding tables of opacities to avoid the inherent problems of interpolation in mass and in (X, Z). The derived chemical composition for each individual system was used to infer the primordial helium content as well as a law of enrichment. The values found are in good agreement with those obtained from various independent sources. For the first time, the effects of dynamic tides are taken into account systematically to determine the contribution of the tidal distortion to the predicted apsidal-motion rate. The deviations between the apsidal-motion rates resulting from the classical formula and those determined by taking into account the effects of dynamic tides are presented as a function of the level of synchronism. For systems close to synchronisation, dynamic tides cause deviations with respect to the classical apsidal-motion formula due to the effects of the compressibility of the stellar fluid. For systems with higher rotational angular velocities, additional deviations due to resonances arise when the forcing frequencies of the dynamic tides come into the range of the free oscillation modes of the component stars. The resulting comparison shows a good agreement between the observed and theoretical apsidal-motion rates. No systematic effects in the sense that models are less mass concentrated than real stars and no correlations with the evolutionary status of the systems were detected.

  2. Disentangling rotational velocity distribution of stars

    NASA Astrophysics Data System (ADS)

    Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra

    2017-11-01

    Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.

  3. Why is there a dearth of close-in planets around fast-rotating stars?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teitler, Seth; Königl, Arieh, E-mail: satelite@gmail.com, E-mail: akonigl@uchicago.edu

    2014-05-10

    We propose that the reported dearth of Kepler objects of interest (KOIs) with orbital periods P {sub orb} ≲ 2-3 days around stars with rotation periods P {sub rot} ≲ 5-10 days can be attributed to tidal ingestion of close-in planets by their host stars. We show that the planet distribution in this region of the log P {sub orb}-log P {sub rot} plane is qualitatively reproduced with a model that incorporates tidal interaction and magnetic braking as well as the dependence on the stellar core-envelope coupling timescale. We demonstrate the consistency of this scenario with the inferred break inmore » the P {sub orb} distribution of close-in KOIs and point out a potentially testable prediction of this interpretation.« less

  4. The future of solar physics

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1985-01-01

    Outstanding problems for the future of solar physics and stellar physics are examined. The physics of stellar interiors has been called into serious question by the very low measured neutrino flux from the sun. The Ga-71 neutrino detection experiment is the next step in unravelling this mystery. The new methods of helioseismology, for probing the interior of the sun, have already found the primordial rapid rotation of the central core. The forthcoming worldwide helioseismology observing network will permit fuller exploitation of the method, promising to provide the first direct sounding of the interior of a star, hitherto known to us only through theoretical inference and the discrepant neutrino emission. An essential step in developing the physics of stellar activity will be the Solar Optical Telescope (presently planned by NASA to be launched early in the next decade) to permit a 'microscopic' examination of the surface of the sun to study the source of the action. The activity and X-ray emission of other stars depend on much the same effects, so that the study of the sun is essential to determining the significance of the X-ray emission from other stars.

  5. Radial velocity variability and stellar properties of FGK stars in the cores of NGC 2516 and NGC 2422

    NASA Astrophysics Data System (ADS)

    Bailey, John I.; Mateo, Mario; White, Russel J.; Shectman, Stephen A.; Crane, Jeffrey D.

    2018-04-01

    We present multi-epoch high-dispersion optical spectra obtained with the Michigan/Magellan Fibre System of 126 and 125 Sun-like stars in the young clusters NGC 2516 (141 Myr) and NGC 2422 (73 Myr). We determine stellar properties including radial velocity (RV), Teff, [Fe/H], [α/Fe] and the line-of-sight rotation rate, vrsin (i), from these spectra. Our median RV precision of 80 m s-1 on individual epochs that span a temporal baseline of 1.1 yr enables us to investigate membership and stellar binarity, and to search for sub-stellar companions. We determine membership probabilities and RV variability probabilities for our sample along with candidate companion orbital periods for a select subset of stars. In NGC 2516, we identified 81 RV members, 27 spectroscopic binaries (17 previously identified as photometric binaries) and 16 other stars that show significant RV variability after accounting for average stellar jitter at the 74 m s-1 level. In NGC 2422, we identify 57 members, 11 spectroscopic binaries and three other stars that show significant RV variability after accounting for an average jitter of 138 m s-1. We use Monte Carlo simulations to verify our stellar jitter measurements, determine the proportion of exoplanets and stellar companions to which we are sensitive, and estimate companion-mass limits for our targets. We also report mean cluster metallicity, velocity and velocity dispersion based on our member targets. We identify 58 non-member stars as RV variables, 24 of which have RV amplitudes that imply stellar or brown-dwarf mass companions. Finally, we note the discovery of a separate RV clustering of stars in our NGC 2422 sample.

  6. Genesis of magnetic fields in isolated white dwarfs

    NASA Astrophysics Data System (ADS)

    Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.

    2018-05-01

    A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.

  7. Genesis of magnetic fields in isolated white dwarfs

    NASA Astrophysics Data System (ADS)

    Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.

    2018-07-01

    A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high-field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc are formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here, we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that the field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture, a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.

  8. Stellar models with microscopic diffusion and rotational mixing. 2: Application to open clusters

    NASA Technical Reports Server (NTRS)

    Chaboyer, B.; Demarque, P.; Pinsonneault, M. H.

    1995-01-01

    Stellar models with masses ranging from 05.5 to 1.3 solar mass were constructed for comparison with young cluster observations of Li and of rotation velocities. The amount of Li depletion in cool stars is sensitive to the amount of overshoot at the base of the surface convection zone, and the exact metallicity of the models. Even when this is taken into account, the Li observations are a severe constraint for the models and rule out standard models and pure diffusion models. Stellar models which include diffusion and rotational mixing in the radiative regions of stars are able to simultaneously match the Li abundances observed in the Pleiades, the UMa Group, The Hyades, Praesepe, NGC 752, and M67. They also match the observed rotation periods in the Hyades. However, these models are unable to simultaneously explain the presence of the rapidly rotating late G and K stars in the Pleiades and the absence of rapidly rotating late F and early G stars.

  9. Establishing a relation between the mass and the spin of stellar-mass black holes.

    PubMed

    Banerjee, Indrani; Mukhopadhyay, Banibrata

    2013-08-09

    Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate (M) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given M. However, slowly spinning BHs can turn out to be more massive than spinning BHs if M at their formation stage was higher compared to faster spinning BHs.

  10. VizieR Online Data Catalog: Massive stars in 30 Dor (Schneider+, 2018)

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Grafener, G.; Langer, N.; Ramirez-Agudelo, O. H.; Sabin-Sanjulian, C.; Simon-Diaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Henault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Apellaniz, J. M.; Markova, N.; Najarro, F.; Podsiadlowski, P.; Puls, J.; Taylor, W. D.; van Loon, J. T.; Vink, J. S.; Norman, C.

    2018-02-01

    Through the use of the Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (VLT), the VLT-FLAMES Tarantula Survey (VFTS) has obtained optical spectra of ~800 massive stars in 30 Dor, avoiding the core region of the dense star cluster R136 because of difficulties with crowding. Repeated observations at multiple epochs allow determination of the orbital motion of potentially binary objects. For a sample of 452 apparently single stars, robust stellar parameters-such as effective temperatures, luminosities, surface gravities, and projected rotational velocities-are determined by modeling the observed spectra. Composite spectra of visual multiple systems and spectroscopic binaries are not considered here because their parameters cannot be reliably inferred from the VFTS data. To match the derived atmospheric parameters of the apparently single VFTS stars to stellar evolutionary models, we use the Bayesian code Bonnsai. (2 data files).

  11. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits,more » the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.« less

  12. The Information Content in Analytic Spot Models of Broadband Precision Light Curves

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  13. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.

    PubMed

    Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P

    2010-01-14

    For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

  14. Dark Matter Profiles in Dwarf Galaxies: A Statistical Sample Using High-Resolution Hα Velocity Fields from PCWI

    NASA Astrophysics Data System (ADS)

    Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo

    2018-01-01

    We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.

  15. The seven sisters DANCe. II. Proper motions and the lithium rotation-activity connection for G and K Pleiades

    NASA Astrophysics Data System (ADS)

    Barrado, D.; Bouy, H.; Bouvier, J.; Moraux, E.; Sarro, L. M.; Bertin, E.; Cuillandre, J.-C.; Stauffer, J. R.; Lillo-Box, J.; Pollock, A.

    2016-12-01

    Context. Stellar clusters open the window to understanding stellar evolution and, in particular, the change with time and the dependence on mass of different stellar properties. As such, stellar clusters act as laboratories where different theories can be tested. Aims: We try to understand the origin of the connection between lithium depletion in F, G, and K stars, rotation and activity in the Pleiades open cluster. Methods: We have collected all the relevant data in the literature, including information regarding rotation period, binarity, and activity, and cross-matched this data with proper motions, multiwavelength photometry, and membership probability from the DANCe database. To avoid biases, we only included single members of the Pleiades with probabilities larger than 75% in the discussion. Results: The analysis confirms that there is a strong link between activity, rotation, and the lithium equivalent width excess, especially for the range Lum(bol) = 0.5-0.2L⊙ (about K2-K7 spectral types or 0.75-0.95 M⊙). Conclusions: It is not possible to disentangle these effects, but we cannot exclude that the observed lithium overabundance is partially an observational effect from enhanced activity owing to a large coverage by stellar spots induced by high rotation rates. Since a bona fide lithium enhancement is present in young, fast rotators, both activity and rotation should play a role in the lithium problem. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A113

  16. Measuring M Dwarf Rotation in the Pan-STARRS 1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Fong, Erin R.; Williams, Peter K. G.; Berger, Edo

    2016-01-01

    The rise of large-format CCDs and automated detection methods has greatly increased the tractability of large-scale studies of stellar rotation. Studies of the relationship between stellar rotation and magnetic activity show a strong correlation, supporting the concept of a rotationally-driven dynamo. However, the number of confirmed rotation periods for stars in the fully convective regime, whose magnetic dynamos are less well understood, remains low. Here we report on ongoing work to measure rotation periods for the M dwarf stellar population observed by the Pan-STARRS 1 Medium Deep Survey (PS1/MDS). We refine an initial sample of around 4.3 million sources using color cuts in each of the five Pan-STARRS 1 filters. Of these sources, we estimate there to be around 135,000 sources which are candidate M dwarfs with a spectral type of M1 or higher. We discuss the outcomes of various rotation period detection methods and present preliminary results. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.

  17. ALMA Observations of a Misaligned Binary Protoplanetary Disk System in Orion

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; Mann, Rita K.; Di Francesco, James; Andrews, Sean M.; Hughes, A. Meredith; Ricci, Luca; Bally, John; Johnstone, Doug; Matthews, Brenda

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO+ 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ~9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ~72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  18. WHY ARE RAPIDLY ROTATING M DWARFS IN THE PLEIADES SO (INFRA)RED? NEW PERIOD MEASUREMENTS CONFIRM ROTATION-DEPENDENT COLOR OFFSETS FROM THE CLUSTER SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, Kevin R.; Agüeros, Marcel A.; Liu, Jiyu

    2016-05-10

    Stellar rotation periods ( P {sub rot}) measured in open clusters have proved to be extremely useful for studying stars’ angular momentum content and rotationally driven magnetic activity, which are both age- and mass-dependent processes. While P {sub rot} measurements have been obtained for hundreds of solar-mass members of the Pleiades, measurements exist for only a few low-mass (<0.5 M {sub ⊙}) members of this key laboratory for stellar evolution theory. To fill this gap, we report P {sub rot} for 132 low-mass Pleiades members (including nearly 100 with M ≤ 0.45 M {sub ⊙}), measured from photometric monitoring ofmore » the cluster conducted by the Palomar Transient Factory in late 2011 and early 2012. These periods extend the portrait of stellar rotation at 125 Myr to the lowest-mass stars and re-establish the Pleiades as a key benchmark for models of the transport and evolution of stellar angular momentum. Combining our new P {sub rot} with precise BVIJHK photometry reported by Stauffer et al. and Kamai et al., we investigate known anomalies in the photometric properties of K and M Pleiades members. We confirm the correlation detected by Kamai et al. between a star's P {sub rot} and position relative to the main sequence in the cluster's color–magnitude diagram. We find that rapid rotators have redder ( V − K ) colors than slower rotators at the same V , indicating that rapid and slow rotators have different binary frequencies and/or photospheric properties. We find no difference in the photometric amplitudes of rapid and slow rotators, indicating that asymmetries in the longitudinal distribution of starspots do not scale grossly with rotation rate.« less

  19. On the Terminal Rotation Rates of Giant Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2018-04-01

    Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.

  20. Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations.

    PubMed

    Strugarek, A; Beaudoin, P; Charbonneau, P; Brun, A S; do Nascimento, J-D

    2017-07-14

    The magnetic fields of solar-type stars are observed to cycle over decadal periods-11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun's cycle and those of other solar-type stars. Copyright © 2017, American Association for the Advancement of Science.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groot, Paul J., E-mail: pgroot@astro.ru.nl

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometricmore » light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.« less

  2. What can the SEDs of first hydrostatic core candidates reveal about their nature?

    NASA Astrophysics Data System (ADS)

    Young, Alison K.; Bate, Matthew R.; Mowat, Chris F.; Hatchell, Jennifer; Harries, Tim J.

    2018-02-01

    The first hydrostatic core (FHSC) is the first stable object to form in simulations of star formation. This stage has yet to be observed definitively, although several candidate FHSCs have been reported. We have produced synthetic spectral energy distributions (SEDs) from 3D hydrodynamical simulations of pre-stellar cores undergoing gravitational collapse for a variety of initial conditions. Variations in the initial rotation rate, radius and mass lead to differences in the location of the SED peak and far-infrared flux. Secondly, we attempt to fit the SEDs of five FHSC candidates from the literature and five newly identified FHSC candidates located in the Serpens South molecular cloud with simulated SEDs. The most promising FHSC candidates are fitted by a limited number of model SEDs with consistent properties, which suggests that the SED can be useful for placing constraints on the age and rotation rate of the source. The sources we consider most likely to be in FHSC phase are B1-bN, CB17-MMS, Aqu-MM1 and Serpens South candidate K242. We were unable to fit SerpS-MM22, Per-Bolo 58 and Chamaeleon-MMS1 with reasonable parameters, which indicates that they are likely to be more evolved.

  3. NIHAO - XIV. Reproducing the observed diversity of dwarf galaxy rotation curve shapes in ΛCDM

    NASA Astrophysics Data System (ADS)

    Santos-Santos, Isabel M.; Di Cintio, Arianna; Brook, Chris B.; Macciò, Andrea; Dutton, Aaron; Domínguez-Tenreiro, Rosa

    2018-02-01

    The significant diversity of rotation curve (RC) shapes in dwarf galaxies has recently emerged as a challenge to Λ cold dark matter (ΛCDM): in dark matter (DM) only simulations, DM haloes have a universal cuspy density profile that results in self-similar RC shapes. We compare RC shapes of simulated galaxies from the NIHAO (Numerical Investigation of a Hundred Astrophysical Objects) project with observed galaxies from the homogeneous SPARC data set. The DM haloes of the NIHAO galaxies can expand to form cores, with the degree of expansion depending on their stellar-to-halo mass ratio. By means of the V2kpc-VRlast relation (where VRlast is the outermost measured rotation velocity), we show that both the average trend and the scatter in RC shapes of NIHAO galaxies are in reasonable agreement with SPARC: this represents a significant improvement compared to simulations that do not result in DM core formation, suggesting that halo expansion is a key process in matching the diversity of dwarf galaxy RCs. Note that NIHAO galaxies can reproduce even the extremely slowly rising RCs of IC 2574 and UGC 5750. Revealingly, the range where observed galaxies show the highest diversity corresponds to the range where core formation is most efficient in NIHAO simulations, 50 < VRlast/km s-1 < 100. A few observed galaxies in this range cannot be matched by any NIHAO RC nor by simulations that predict a universal halo profile. Interestingly, the majority of these are starbursts or emission-line galaxies, with steep RCs and small effective radii. Such galaxies represent an interesting observational target providing new clues to the process/viability of cusp-core transformation, the relationship between starburst and inner potential well, and the nature of DM.

  4. f-Mode Secular Instabilities in Deleptonizing Fizzlers

    NASA Astrophysics Data System (ADS)

    Imamura, James N.; Durisen, Richard H.

    2004-12-01

    Fizzlers are intermediate states that may form between white dwarf and neutron star densities during the collapse of massive rotating stars. This paper studies the gravitational radiation reaction (GRR) driven f-mode secular instabilities of fizzlers with angular momentum distributions h(mc) appropriate to the core collapse of massive rotating stars, where h is the specific angular momentum and mc is the cylindrical mass fraction. For core collapses that maintain axial symmetry, the h(mc) of the remnant reflects the conditions in the precollapse stellar core, and, thus, the h(mc) will resemble that of a uniformly rotating star supported by the pressure of relativistically degenerate electrons. Such an h(mc) concentrates most angular momentum toward the equatorial region of the object. The onset of f-mode secular instabilities in such fizzlers is affected strongly by the h(mc), whereas instability depends only weakly on compressibility. For a broad range of fizzler equations of state and the core h(mc), the f-mode secular instability thresholds drop to T/W~0.034-0.042, 0.019-0.021, and 0.012-0.0135, for m=2, 3, and 4, respectively. These same thresholds with the Maclaurin spheroid h(mc) are T/W=0.13-0.15, 0.10-0.11, and 0.08-0.09, respectively. The growth times τgw for GRR-driven m=2 modes are long. For fizzlers with specific angular momentum J/M~1.5×1016 cm2 s-1 and T/W<~0.24 (ρc<~1014 g cm-3), τgw>400 s. For these fizzlers, τgw>>τde, the deleptonization timescale, and GRR-driven secular instabilities will not grow along a deleptonizing fizzler sequence except, possibly, at T/W near the dynamic bar mode instability threshold, T/W~0.27.

  5. Simultaneous observations of Ca II K and Mg II k in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Calvet, N.; Basri, G.; Imhoff, C. L.; Giampapa, M. S.

    1985-01-01

    The first simultaneous, calibrated observations of the Ca II K and Mg II k resonance lines in T Tauri stars are presented. It is found that for T Tauri stars with mass greater than 1.5 solar mass, which have radiative cores and tend to be fast rotators, the k line seems to arise in an extended region (probably also responsible for the H-alpha emission), whereas the K line apparently originates closer to the highly inhomogeneous stellar surface. The lower mass stars, which are fully convective and tend to be slow rotators, are more easily described by a largely chromospheric model, consistent with main-sequence activity structures but at greater values of the nonradiative flux. The strongest emission-line stars in the low-mass group, however, are also likely to have extended k line regions.

  6. Radial dependence of the dark matter distribution in M33

    NASA Astrophysics Data System (ADS)

    López Fune, E.; Salucci, P.; Corbelli, E.

    2017-06-01

    The stellar and gaseous mass distributions, as well as the extended rotation curve, in the nearby galaxy M33 are used to derive the radial distribution of dark matter density in the halo and to test cosmological models of galaxy formation and evolution. Two methods are examined to constrain the dark mass density profiles. The first method deals directly with fitting the rotation curve data in the range of galactocentric distances 0.24 ≤ r ≤ 22.72 kpc. Using the results of collisionless Λ cold dark matter numerical simulations, we confirm that the Navarro-Frenkel-White (NFW) dark matter profile provides a better fit to the rotation curve data than the cored Burkert profile (BRK) profile. The second method relies on the local equation of centrifugal equilibrium and on the rotation curve slope. In the aforementioned range of distances, we fit the observed velocity profile, using a function that has a rational dependence on the radius, and we derive the slope of the rotation curve. Then, we infer the effective matter densities. In the radial range 9.53 ≤ r ≤ 22.72 kpc, the uncertainties induced by the luminous matter (stars and gas) become negligible, because the dark matter density dominates, and we can determine locally the radial distribution of dark matter. With this second method, we tested the NFW and BRK dark matter profiles and we can confirm that both profiles are compatible with the data, even though in this case the cored BRK density profile provides a more reasonable value for the baryonic-to-dark matter ratio.

  7. Observations of Pre-Stellar Cores

    NASA Astrophysics Data System (ADS)

    Tafalla, M.

    2005-08-01

    Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains in the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected toward the core centers. Such a selective behavior of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large `freeze out holes' in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has begun to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.

  8. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellar metallicity

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Gallet, F.; Mathis, S.; Charbonnel, C.; Amard, L.; Alibert, Y.

    2017-08-01

    Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.

  9. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of extrasolar planets can only be fully exploited when analyzed together.

  10. Stars caught in the braking stage in young Magellanic Cloud clusters

    NASA Astrophysics Data System (ADS)

    D'Antona, Francesca; Milone, Antonino P.; Tailo, Marco; Ventura, Paolo; Vesperini, Enrico; di Criscienzo, Marcella

    2017-08-01

    The colour-magnitude diagrams of many Magellanic Cloud clusters (with ages up to 2 billion years) display extended turnoff regions where the stars leave the main sequence, suggesting the presence of multiple stellar populations with ages that may differ even by hundreds of millions of years 1,2,3 . A strongly debated question is whether such an extended turnoff is instead due to populations with different stellar rotations3,4,5,6 . The recent discovery of a 'split' main sequence in some younger clusters (~80-400 Myr) added another piece to this puzzle. The blue side of the main sequence is consistent with slowly rotating stellar models, and the red side consistent with rapidly rotating models7,8,9,10. However, a complete theoretical characterization of the observed colour-magnitude diagram also seemed to require an age spread9. We show here that, in the three clusters so far analysed, if the blue main-sequence stars are interpreted with models in which the stars have always been slowly rotating, they must be ~30% younger than the rest of the cluster. If they are instead interpreted as stars that were initially rapidly rotating but have later slowed down, the age difference disappears, and this 'braking' also helps to explain the apparent age differences of the extended turnoff. The age spreads in Magellanic Cloud clusters are thus a manifestation of rotational stellar evolution. Observational tests are suggested.

  11. Star formation in early-type galaxies: the role of stellar winds and kinematics.

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Negri, Andrea; Ciotti, Luca

    2015-08-01

    Early-Type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae (SNIa) and the thermalization of stellar motions. Recent high resolution 2D hydrodynamical simulations (Negri et al. 2014) showed that ordered rotation in the stellar component alters significantly the evolution of the hot ISM, and results in the formation of a centrifugally supported cold equatorial disc. This agrees well with the recent evidence that approximately 50% of massive ETGs host significant quantities of cold gas (Morganti et al. 2006; Young et al. 2014), often in settled configurations, sharing the same kinematics of the stars. In particular, in a systematic investigation of the ATLAS3D sample, the most massive fast-rotating ETGs always have kinematically aligned gas, which suggests an internal origin for it, and molecular gas is detected only in fast rotators (Davis et al. 2011). The observed cold gas seems also to provide material for low level star formation (SF) activity (Combes et al. 2007, Davis et al. 2014). Interestingly, in the ATLAS3D sample, SF and young stellar populations are detected only in fast rotators (Sarzi et al. 2013). In a recent work we investigated whether and how SF takes place in the cold gas disc typically produced in rotating ETGs by our previous 2D simulations, by adding to them the possibility for the gas to form stars (Negri et al. 2015). We also inserted the injection of mass, momentum and energy appropriate for the newly (and continuously) forming stellar population. We found that subsequent generations of stars are formed, and that most of the extended and massive cold disc is consumed by this process, leaving at the present epoch cold gas masses that compare well with those observed. The mass in secondary generations of stars resides mostly in a disc, and could be related to a younger, more metal rich disky stellar component indeed observed in fast rotator ETGs (Cappellari et al. 2013). Most of the mass in newly formed stars formed a few Gyr ago; the SF rate at the present epoch is low (≤0.1 M⊙/yr) and agrees well with that observed, at least for ETGs of stellar mass <1011 M⊙.

  12. NuGrid Stellar Data Set. I.Stellar Yields from H to Bi for Stars with Metallicities Z = 0.02 and Z = 0.01

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F. X.; Ritter, C.; Heger, A.; Jones, S.; Battino, U.; Dotter, A.; Trappitsch, R.; Diehl, S.; Frischknecht, U.; Hungerford, A.; Magkotsios, G.; Travaglio, C.; Young, P.

    2016-08-01

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the {}13{{C}} pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced.

  13. ULTRAVIOLET SPECTROSCOPY OF RAPIDLY ROTATING SOLAR-MASS STARS: EMISSION-LINE REDSHIFTS AS A TEST OF THE SOLAR-STELLAR CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linsky, Jeffrey L.; Bushinsky, Rachel; Ayres, Tom

    2012-07-20

    We compare high-resolution ultraviolet spectra of the Sun and thirteen solar-mass main-sequence stars with different rotational periods that serve as proxies for their different ages and magnetic field structures. In this, the second paper in the series, we study the dependence of ultraviolet emission-line centroid velocities on stellar rotation period, as rotation rates decrease from that of the Pleiades star HII314 (P{sub rot} = 1.47 days) to {alpha} Cen A (P{sub rot} = 28 days). Our stellar sample of F9 V to G5 V stars consists of six stars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescopemore » (HST) and eight stars observed with the Space Telescope Imaging Spectrograph on HST. We find a systematic trend of increasing redshift with more rapid rotation (decreasing rotation period) that is similar to the increase in line redshift between quiet and plage regions on the Sun. The fastest-rotating solar-mass star in our study, HII314, shows significantly enhanced redshifts at all temperatures above log T = 4.6, including the corona, which is very different from the redshift pattern observed in the more slowly rotating stars. This difference in the redshift pattern suggests that a qualitative change in the magnetic-heating process occurs near P{sub rot} = 2 days. We propose that HII314 is an example of a solar-mass star with a magnetic heating rate too large for the physical processes responsible for the redshift pattern to operate in the same way as for the more slowly rotating stars. HII314 may therefore lie above the high activity end of the set of solar-like phenomena that is often called the 'solar-stellar connection'.« less

  14. Search for exoplanets around pulsating stars of A-F type in Kepler short-cadence data and the case of KIC 8197761

    NASA Astrophysics Data System (ADS)

    Sowicka, Paulina; Handler, Gerald; Dębski, Bartłomiej; Jones, David; Van de Sande, Marie; Pápics, Péter I.

    2017-06-01

    We searched for extrasolar planets around pulsating stars by examining Kepler data for transit-like events hidden in the intrinsic variability. All short-cadence observations for targets with 6000 < Teff < 8500 K were visually inspected for transit-like events following the removal of pulsational signals by sinusoidal fits. Clear transit-like events were detected in KIC 5613330 and KIC 8197761. KIC 5613330 is a confirmed exoplanet host (Kepler-635b), where the transit period determined here is consistent with the literature value. KIC 8197761 is a γ Doradus-δ Scuti star exhibiting eclipses/transits occurring every 9.868 6667(27) d, having durations of 8.37 h and causing brightness drops Δ F/F = 0.006 29(29). The star's pulsation spectrum contains several mode doublets and triplets, identified as l = 1, with a mean spacing of 0.001 659(15) d-1 , implying an internal rotation period of 301 ± 3 d. Trials to calculate the size of the light travel time effect (LTTE) from the pulsations to constrain the companion's mass ended inconclusive. Finding planets around γ Doradus stars from the pulsational LTTE, therefore, is concluded to be unrealistic. Spectroscopic monitoring of KIC 8197761 revealed sinusoidal radial velocity variations with a semi-amplitude of 19.75 ± 0.32 km s-1, while individual spectra present rotational broadening consistent with vsin I = 9 ± 1 km s-1. This suggests that the stellar surface rotation is synchronized with the orbit, whereas the stellar core rotates ˜30 times slower. Combining the observed radial velocity variability with the transit photometry, constrains the companion's mass to be ≈0.28 M⊙, ruling out an exoplanet hypothesis.

  15. Close encounters of a rotating star with planets in parabolic orbits of varying inclination and the formation of hot Jupiters

    NASA Astrophysics Data System (ADS)

    Ivanov, P. B.; Papaloizou, J. C. B.

    2011-10-01

    In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5-6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4-5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet's semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5-2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet-planet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.

  16. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  17. Time-scales of stellar rotational variability and starspot diagnostics

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-01-01

    The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.

  18. Rotation of the asymptotic giant branch star R Doradus

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Khouri, T.; Beck, E. De; Olofsson, H.; García-Segura, G.; Villaver, E.; Baudry, A.; Humphreys, E. M. L.; Maercker, M.; Ramstedt, S.

    2018-05-01

    High-resolution observations of the extended atmospheres of asymptotic giant branch (AGB) stars can now directly be compared to the theories that describe stellar mass loss. Using Atacama Large Millimeter/submillimeter Array (ALMA) high angular resolution (30 × 42 mas) observations, we have for the first time resolved stellar rotation of an AGB star, R Dor. We measure an angular rotation velocity of ωR sin i = (3.5 ± 0.3) × 10-9 rad s-1, which indicates a rotational velocity of |υrot sin i| = 1.0 ± 0.1 km s-1 at the stellar surface (R* = 31.2 mas at 214 GHz). The rotation axis projected on the plane of the sky has a position angle Φ = 7 ± 6°. We find that the rotation of R Dor is two orders of magnitude faster than expected for a solitary AGB star that will have lost most of its angular momentum. Its rotational velocity is consistent with angular momentum transfer from a close companion. As a companion has not been directly detected, we suggest R Dor has a low-mass, close-in companion. The rotational velocity approaches the critical velocity, set by the local sound speed in the extended envelope, and is thus expected to affect the mass-loss characteristics of R Dor.

  19. ASTEROSEISMIC CLASSIFICATION OF STELLAR POPULATIONS AMONG 13,000 RED GIANTS OBSERVED BY KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stello, Dennis; Bedding, Timothy R.; Benomar, Othman

    2013-03-10

    Of the more than 150,000 targets followed by the Kepler Mission, about 10% were selected as red giants. Due to their high scientific value, in particular for Galaxy population studies and stellar structure and evolution, their Kepler light curves were made public in late 2011. More than 13,000 (over 85%) of these stars show intrinsic flux variability caused by solar-like oscillations making them ideal for large-scale asteroseismic investigations. We automatically extracted individual frequencies and measured the period spacings of the dipole modes in nearly every red giant. These measurements naturally classify the stars into various populations, such as the redmore » giant branch, the low-mass (M/M{sub Sun} {approx}< 1.8) helium-core-burning red clump, and the higher-mass (M/M{sub Sun} {approx}> 1.8) secondary clump. The period spacings also reveal that a large fraction of the stars show rotationally induced frequency splittings. This sample of stars will undoubtedly provide an extremely valuable source for studying the stellar population in the direction of the Kepler field, in particular when combined with complementary spectroscopic surveys.« less

  20. Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Mathis, Stéphane

    2016-11-01

    Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star-planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from 0.6~M_⊙ to 1.2~M_⊙) where we compute the simultaneous evolution of the star's structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.

  1. r-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments

    NASA Astrophysics Data System (ADS)

    Halevi, Goni; Mösta, Philipp

    2018-06-01

    We investigate r-process nucleosynthesis in three-dimensional general relativistic magnetohydrodynamic simulations of jet-driven supernovae resulting from rapidly rotating, strongly magnetized core-collapse. We explore the effect of misaligning the pre-collapse magnetic field with respect to the rotation axis by performing four simulations: one aligned model and models with 15°, 30°, and 45° misalignments. The simulations we present employ a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to post-bounce neutrino emission and absorption. We track the thermodynamic properties of the ejected material with Lagrangian tracer particles and analyse its composition with the nuclear reaction network SKYNET. By using different neutrino luminosities in post-processing the tracer data with SKYNET, we constrain the impact of uncertainties in neutrino luminosities. We find that, for the aligned model considered here, the use of an approximate leakage scheme results in neutrino luminosity uncertainties corresponding to a factor of 100-1000 uncertainty in the abundance of third peak r-process elements. Our results show that for misalignments of 30° or less, r-process elements are robustly produced as long as neutrino luminosities are reasonably low (≲ 5 × 1052 erg s-1). For a more extreme misalignment of 45°, we find the production of r-process elements beyond the second peak significantly reduced. We conclude that robust r-process nucleosynthesis in magnetorotational supernovae requires a progenitor stellar core with a large poloidal magnetic field component that is at least moderately (within ˜30°) aligned with the rotation axis.

  2. STELLAR DYNAMOS AND CYCLES FROM NUMERICAL SIMULATIONS OF CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubé, Caroline; Charbonneau, Paul, E-mail: dube@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca

    We present a series of kinematic axisymmetric mean-field αΩ dynamo models applicable to solar-type stars, for 20 distinct combinations of rotation rates and luminosities. The internal differential rotation and kinetic helicity profiles required to calculate source terms in these dynamo models are extracted from a corresponding series of global three-dimensional hydrodynamical simulations of solar/stellar convection, so that the resulting dynamo models end up involving only one free parameter, namely, the turbulent magnetic diffusivity in the convecting layers. Even though the αΩ dynamo solutions exhibit a broad range of morphologies, and sometimes even double cycles, these models manage to reproduce relativelymore » well the observationally inferred relationship between cycle period and rotation rate. On the other hand, they fail in capturing the observed increase of magnetic activity levels with rotation rate. This failure is due to our use of a simple algebraic α-quenching formula as the sole amplitude-limiting nonlinearity. This suggests that α-quenching is not the primary mechanism setting the amplitude of stellar magnetic cycles, with magnetic reaction on large-scale flows emerging as the more likely candidate. This inference is coherent with analyses of various recent global magnetohydrodynamical simulations of solar/stellar convection.« less

  3. Strong evidences for a nonextensive behavior of the rotation period in open clusters

    NASA Astrophysics Data System (ADS)

    de Freitas, D. B.; Nepomuceno, M. M. F.; Soares, B. B.; Silva, J. R. P.

    2014-11-01

    Time-dependent nonextensivity in a stellar astrophysical scenario combines nonextensive entropic indices qK derived from the modified Kawaler's parametrization, and q, obtained from rotational velocity distribution. These q's are related through a heuristic single relation given by q≈ q0(1-Δ t/qK) , where t is the cluster age. In a nonextensive scenario, these indices are quantities that measure the degree of nonextensivity present in the system. Recent studies reveal that the index q is correlated to the formation rate of high-energy tails present in the distribution of rotation velocity. On the other hand, the index qK is determined by the stellar rotation-age relationship. This depends on the magnetic-field configuration through the expression qK=1+4aN/3 , where a and N denote the saturation level of the star magnetic field and its topology, respectively. In the present study, we show that the connection q-qK is also consistent with 548 rotation period data for single main-sequence stars in 11 open clusters aged less than 1 Gyr. The value of qK ˜ 2.5 from our unsaturated model shows that the mean magnetic-field topology of these stars is slightly more complex than a purely radial field. Our results also suggest that stellar rotational braking behavior affects the degree of anti-correlation between q and cluster age t. Finally, we suggest that stellar magnetic braking can be scaled by the entropic index q.

  4. A Period-Activity Relation for Active RS CVN Stars

    NASA Astrophysics Data System (ADS)

    Simon, Theodore

    Soft X ray observations of RS CVn binaries point to a correlation between L x /Lbol (the X ray to bolometric luminosity ratio that measures the coronal heating rate) and Omega (the stellar angular velocity). This correlation is almost certainly caused by a stellar dynamo, operating in rapidly-rotating late-type stars with deep convection zones. We are proposing to extend the X ray "rotation-activity relation" to the uv transition region and chromospheric emission lines observable with IUE. If the non-radiative heating rates of stellar transition regions and chromospheres are determined largely by magnetic processes associated with a stellar dynamo, then a similar correlation may be found. We have selected a group of recently discovered active long-period systems, which we believe will be very bright at uv wavelengths. One important goal of this program is to determine whether past studies of the "rotation-activity connection" have been compromised by the omission of active long-period RS CVn systems.

  5. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  6. 3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2018-01-01

    Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.

  7. Shape of a slowly rotating star measured by asteroseismology

    PubMed Central

    Gizon, Laurent; Sekii, Takashi; Takata, Masao; Kurtz, Donald W.; Shibahashi, Hiromoto; Bazot, Michael; Benomar, Othman; Birch, Aaron C.; Sreenivasan, Katepalli R.

    2016-01-01

    Stars are not perfectly spherically symmetric. They are deformed by rotation and magnetic fields. Until now, the study of stellar shapes has only been possible with optical interferometry for a few of the fastest-rotating nearby stars. We report an asteroseismic measurement, with much better precision than interferometry, of the asphericity of an A-type star with a rotation period of 100 days. Using the fact that different modes of oscillation probe different stellar latitudes, we infer a tiny but significant flattening of the star’s shape of ΔR/R = (1.8 ± 0.6) × 10−6. For a stellar radius R that is 2.24 times the solar radius, the difference in radius between the equator and the poles is ΔR = 3 ± 1 km. Because the observed ΔR/R is only one-third of the expected rotational oblateness, we conjecture the presence of a weak magnetic field on a star that does not have an extended convective envelope. This calls to question the origin of the magnetic field. PMID:28138541

  8. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less

  9. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  10. A catalog of stellar spectrophotometry

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Pyper, D. M.; Shore, S. N.; White, R. E.; Warren, W. H., Jr.

    1989-01-01

    A machine-readable catalog of stellar spectrophotometric measurements made with rotating grating scanner is introduced. Consideration is given to the processes by which the stellar data were collected and calibrated with the fluxes of Vega (Hayes and Latham, 1975). A sample page from the spectrophotometric catalog is presented.

  11. Revealing Stellar Surface Structure Behind Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2018-04-01

    During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provide spectra of small surface segments temporarily hidden behind the planet. Line profile changes across the stellar disk offer diagnostics for hydrodynamic modeling, while exoplanet analyses require stellar background spectra to be known along the transit path. Since even giant planets cover only a small fraction of any main-sequence star, very precise observations are required, as well as averaging over numerous spectral lines with similar parameters. Spatially resolved Fe I line profiles across stellar disks have now been retrieved for HD209458 (G0V) and HD189733A (K1V), using data from the UVES and HARPS spectrometers. Free from rotational broadening, spatially resolved profiles are narrower and deeper than in integrated starlight. During transit, the profiles shift towards longer wavelengths, illustrating both stellar rotation at the latitude of transit and the prograde orbital motion of the exoplanets. This method will soon become applicable to more stars, once additional bright exoplanet hosts have been found.

  12. Abnormal behaviour of lithium in coeval stars?

    NASA Astrophysics Data System (ADS)

    Llorente de Andrés, F.; Morales-Durán, C.; Chavero, C.; de la Reza, R.

    2015-05-01

    Due to its fragility, the light element lithium (Li) is an excellent and very used indicator of stellar processes. Our interest here is to explore and try to understand the Li dispersion observed in some stellar open clusters which are not explained by the standard theories. A typical and historical case, for example, is that found for stars cooler than the stellar effective temperature Teff ˜ 5500 K in the Pleiades cluster with an age of ˜ 130 My (see details in Figure 2 of this poster). What is the mechanism that provoques this dispersion?. Up to now, mainly three mechanisms are being proposed : (1) Episodic accretion during the protostellar phase (Barafee et al. 2010). (2) Rotational stellar internal mixing shears due to a star-disk interaction (Eggenberger at al. 2012) and (3) Li depletion by an increased stellar radius (Somers et al. 2014). We will explore this problem using the rotational option (2) (Chavero et al. 2014) and also identifying stellar interlopers in some groups.

  13. I-Love-Q Anisotropically

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolas

    2015-04-01

    Recent work shows that rotating incompressible stars with anisotropic matter in the weak-field limit become prolate, which is rather counter-intuitive. We construct slowly-rotating, incompressible and anisotropic stellar solutions in full General Relativity valid to quadratic order in spin and show that the stellar shape shifts from prolate to oblate as one increases the relativistic effect. Anisotropic stars are also interesting because they can be more compact than isotropic stars, and can even be as compact as black holes. We present how stellar multipole moments approach the black hole limit as one increases the compactness, suggesting that they reach the black hole limit continuously.

  14. The shape of dark matter haloes - IV. The structure of stellar discs in edge-on galaxies

    NASA Astrophysics Data System (ADS)

    Peters, S. P. C.; de Geyter, G.; van der Kruit, P. C.; Freeman, K. C.

    2017-01-01

    We present optical and near-infrared archival observations of eight edge-on galaxies. These observations are used to model the stellar content of each galaxy using the FITSKIRT software package. Using FITSKIRT, we can self-consistently model a galaxy in each band simultaneously while treating for dust. This allows us to measure accurately both the scalelength and scaleheight of the stellar disc, plus the shape parameters of the bulge. By combining these data with the previously reported integrated magnitudes of each galaxy, we can infer their true luminosities. We have successfully modelled seven out of the eight galaxies in our sample. We find that stellar discs can be modelled correctly, but we have not been able to model the stellar bulge reliably. Our sample consists for the most part of slowly rotating galaxies and we find that the average dust layer is much thicker than is reported for faster rotating galaxies.

  15. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  16. α Centauri A as a potential stellar model calibrator: establishing the nature of its core

    NASA Astrophysics Data System (ADS)

    Nsamba, B.; Monteiro, M. J. P. F. G.; Campante, T. L.; Cunha, M. S.; Sousa, S. G.

    2018-05-01

    Understanding the physical process responsible for the transport of energy in the core of α Centauri A is of the utmost importance if this star is to be used in the calibration of stellar model physics. Adoption of different parallax measurements available in the literature results in differences in the interferometric radius constraints used in stellar modelling. Further, this is at the origin of the different dynamical mass measurements reported for this star. With the goal of reproducing the revised dynamical mass derived by Pourbaix & Boffin, we modelled the star using two stellar grids varying in the adopted nuclear reaction rates. Asteroseismic and spectroscopic observables were complemented with different interferometric radius constraints during the optimisation procedure. Our findings show that best-fit models reproducing the revised dynamical mass favour the existence of a convective core (≳ 70% of best-fit models), a result that is robust against changes to the model physics. If this mass is accurate, then α Centauri A may be used to calibrate stellar model parameters in the presence of a convective core.

  17. Rotation Periods and Photometric Amplitudes for Cool Stars with TESS

    NASA Astrophysics Data System (ADS)

    Andrews, Hannah; Dominguez, Zechariah; Johnson, Sara; Buzasi, Derek L.

    2018-06-01

    The original Kepler mission observed 200000 stars in the same field nearly continuously for over four years, generating an unparalleled set of stellar rotation curves and new insights into the correlation between rotation periods and photometric variability on the lower main sequence. The continuation of Kepler in the guise of K2 has allowed us to examine a stellar sample comparable in size to that observed with Kepler, but drawn from new stellar populations. However, K2 observed each field for at most three months, limiting the inferences that can be drawn, particularly for older, slower-rotating stars. The upcoming TESS spacecraft will provide light curves for perhaps two orders of magnitude more stars, but with time windows as short as 27 days. In this work, we resample Kepler light curves using the TESS observing window, and study what can be learned from high-precision light curves of such short lengths, and how to compare those results to what we have learned from Kepler.

  18. IN-SYNC I: Homogeneous stellar parameters from high-resolution apogee spectra for thousands of pre-main sequence stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.

    2014-10-20

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, wemore » identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.« less

  19. IN-SYNC I: Homogeneous Stellar Parameters from High-resolution APOGEE Spectra for Thousands of Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel; Covey, Kevin R.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail

    2014-10-01

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J - H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  20. Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii

    NASA Astrophysics Data System (ADS)

    Boardman, Nicholas Fraser; Weijmans, Anne-Marie; van den Bosch, Remco; Kuntschner, Harald; Emsellem, Eric; Cappellari, Michele; de Zeeuw, Tim; Falcón-Barroso, Jesus; Krajnović, Davor; McDermid, Richard; Naab, Thorsten; van de Ven, Glenn; Yildirim, Akin

    2017-11-01

    We observed 12 nearby H I-detected early-type galaxies (ETGs) of stellar mass ˜1010 M⊙ ≤ M* ≤ ˜1011 M⊙ with the Mitchell Integral-Field Spectrograph, reaching approximately three half-light radii in most cases. We extracted line-of-sight velocity distributions for the stellar and gaseous components. We find little evidence of transitions in the stellar kinematics of the galaxies in our sample beyond the central effective radius, with centrally fast-rotating galaxies remaining fast-rotating and centrally slow-rotating galaxies likewise remaining slow-rotating. This is consistent with these galaxies having not experienced late dry major mergers; however, several of our objects have ionized gas that is misaligned with respect to their stars, suggesting some kind of past interaction. We extract Lick index measurements of the commonly used H β, Fe5015, Mg b, Fe5270 and Fe5335 absorption features, and we find most galaxies to have flat H β gradients and negative Mg b gradients. We measure gradients of age, metallicity and abundance ratio for our galaxies using spectral fitting, and for the majority of our galaxies find negative age and metallicity gradients. We also find the stellar mass-to-light ratios to decrease with radius for most of the galaxies in our sample. Our results are consistent with a view in which intermediate-mass ETGs experience mostly quiet evolutionary histories, but in which many have experienced some kind of gaseous interaction in recent times.

  1. Rotation curves of galaxies and the stellar mass-to-light ratio

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel

    2018-03-01

    Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c - Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration and virial mass. Although accounting for a NFW dark halo profile can explain rotation curve observations, the implied c - Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L -color correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L - ratios of 51 galaxies (30% of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark halos of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disk galaxies.

  2. Evidence of a significant rotational non-LTE effect in the CO2 4.3 µm PFS-MEX limb spectra

    NASA Astrophysics Data System (ADS)

    Kutepov, Alexander A.; Rezac, Ladislav; Feofilov, Artem G.

    2017-01-01

    Since January 2004, the planetary Fourier spectrometer (PFS) on board the Mars Express satellite has been recording near-infrared limb spectra of high quality up to the tangent altitudes ≈ 150 km, with potential information on density and thermal structure of the upper Martian atmosphere. We present first results of our modeling of the PFS short wavelength channel (SWC) daytime limb spectra for the altitude region above 90 km. We applied a ro-vibrational non-LTE model based on the stellar astrophysics technique of accelerated lambda iteration (ALI) to solve the multi-species and multi-level CO2 problem in the Martian atmosphere. We show that the long-standing discrepancy between observed and calculated spectra in the cores and wings of 4.3 µm region is explained by the non-thermal rotational distribution of molecules in the upper vibrational states 10011 and 10012 of the CO2 main isotope second hot (SH) bands above 90 km altitude. The redistribution of SH band intensities from band branch cores into their wings is caused (a) by intensive production of the CO2 molecules in rotational states with j > 30 due to the absorption of solar radiation in optically thin wings of 2.7 µm bands and (b) by a short radiative lifetime of excited molecules, which is insufficient at altitudes above 90 km for collisions to maintain rotation of excited molecules thermalized. Implications for developing operational algorithms for massive processing of PFS and other instrument limb observations are discussed.

  3. VizieR Online Data Catalog: NuGrid stellar data set I. Yields from H to Bi (Pignatari+, 2016)

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F. X.; Ritter, C.; Heger, A.; Jones, S.; Battino, U.; Dotter, A.; Trappitsch, R.; Diehl, S.; Frischknecht, U.; Hungerford, A.; Magkotsios, G.; Travaglio, C.; Young, P.

    2016-10-01

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z=0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the 13C pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced. (12 data files).

  4. Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; van den Bosch, Remco C. E.; Barentine, John C.; Bender, Ralf; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A.; Thomas, Jens; van de Ven, Glenn

    2014-07-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these three trends for feedback models. Determining the importance of these correlations will require further model developments and larger observational samples. This paper includes data obtained at The McDonald Observatory of The University of Texas at Austin.

  5. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.

    2014-07-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the sevenmore » galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these three trends for feedback models. Determining the importance of these correlations will require further model developments and larger observational samples.« less

  6. AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Andrew A.; Weisenburger, Kolby L.; Irwin, Jonathan

    Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one tomore » longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.« less

  7. KEPLER RAPIDLY ROTATING GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surfacemore » rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.« less

  8. Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Couch, Sean M.; Thielemann, Friedrich-Karl

    2018-04-01

    We investigate axisymmetric black hole (BH) formation and its gravitational wave (GW) and neutrino signals with self-consistent core-collapse supernova simulations of a non-rotating 40 M ⊙ progenitor star using the isotropic diffusion source approximation for the neutrino transport and a modified gravitational potential for general relativistic effects. We consider four different neutron star (NS) equations of state (EoS): LS220, SFHo, BHBΛϕ, and DD2, and study the impact of the EoS on BH formation dynamics and GW emission. We find that the BH formation time is sensitive to the EoS from 460 to >1300 ms and is delayed in multiple dimensions for ∼100–250 ms due to the finite entropy effects. Depending on the EoS, our simulations show the possibility that shock revival can occur along with the collapse of the proto-neutron star (PNS) to a BH. The gravitational waveforms contain four major features that are similar to previous studies but show extreme values: (1) a low-frequency signal (∼300–500 Hz) from core-bounce and prompt convection, (2) a strong signal from the PNS g-mode oscillation among other features, (3) a high-frequency signal from the PNS inner-core convection, and (4) signals from the standing accretion shock instability and convection. The peak frequency at the onset of BH formation reaches to ∼2.3 kHz. The characteristic amplitude of a 10 kpc object at peak frequency is detectable but close to the noise threshold of the Advanced LIGO and KAGRA, suggesting that the next-generation GW detector will need to improve the sensitivity at the kHz domain to better observe stellar-mass BH formation from core-collapse supernovae or failed supernovae.

  9. The rotational velocity of low-mass stars in the Pleiades cluster

    NASA Astrophysics Data System (ADS)

    Queloz, D.; Allain, S.; Mermilliod, J.-C.; Bouvier, J.; Mayor, M.

    1998-07-01

    We present new {vsin i} measurements for 235 low-mass stars in the Pleiades. The differential rotational broadening has been resolved for all the stars in our sample. These results, combined with previously published measurements, provide a complete and unbiased rotation data set for stars in the mass range from 0.6 to 1.2{Msun}. Applying a numerical inversion technique on the {vsin i} distributions, we derive the distributions of equatorial velocities for low-mass Pleiades members. We find that half of the Pleiades dwarfs with a mass between 0.6 to 1 {Msun} have rotation rates lower than 10{ km s(-1) }. Comparison of the rotational distributions of low-mass members between IC 2602/2391 (~ 35 Myr) and the Pleiades (~ 100 Myr) suggests that G dwarfs behave like solid-bodies and follow Skumanich's law during this time span. However, comparison between Pleiades and older clusters -M34 (~ 200 Myr) and Hyades (~ 600 Myr)- indicates that the braking of slow rotators on the early main sequence is weaker than predicted by an asymptotical Skumanich's law. This strongly supports the view that angular momentum tapped in the radiative core of slow rotators on the zero age main sequence (ZAMS) resurfaces into the convective envelope between Pleiades and Hyades age. For the G-dwarfs, we derive a characteristic coupling time scale between the core and the envelope of about 100-200 Myr, which accounts for the observed evolution of surface rotation from the ZAMS to the Hyades. The relationship between rotation and coronal activity in the Pleiades is in agreement with previous observations in other clusters and field stars. We show that the Rossby diagram provides an excellent description of the X-ray activity for all stars in the mass domain studied. The Pleiades data for slow and moderate rotators fills the gap between the X-ray-rotation correlation found for slow rotators and the X-ray ``saturation plateau'' observed for young fast rotators. The transition between increasing X-ray flux with rotation and X-ray saturation is observed at log (P/tau )=0.8+/-0.1. These results strengthen the hypothesis that the ``saturation'' of the angular momentum loss process depends on the stellar mass. Based on observations collected at the Observatoire de Haute-Provence with ELODIE at the 193cm telescope and with CORAVEL at the 1m-swiss telescope

  10. Globular cluster chemistry in fast-rotating dwarf stars belonging to intermediate-age open clusters

    NASA Astrophysics Data System (ADS)

    Pancino, Elena

    2018-06-01

    The peculiar chemistry observed in multiple populations of Galactic globular clusters is not generally found in other systems such as dwarf galaxies and open clusters, and no model can currently fully explain it. Exploring the boundaries of the multiple-population phenomenon and the variation of its extent in the space of cluster mass, age, metallicity, and compactness has proven to be a fruitful line of investigation. In the framework of a larger project to search for multiple populations in open clusters that is based on literature and survey data, I found peculiar chemical abundance patterns in a sample of intermediate-age open clusters with publicly available data. More specifically, fast-rotating dwarf stars (v sin i ≥ 50 km s-1) that belong to four clusters (Pleiades, Ursa Major, Come Berenices, and Hyades) display a bimodality in either [Na/Fe] or [O/Fe], or both, with the low-Na and high-O peak more populated than the high-Na and low-O peak. Additionally, two clusters show a Na-O anti-correlation in the fast-rotating stars, and one cluster shows a large [Mg/Fe] variation in stars with high [Na/Fe], reaching the extreme Mg depletion observed in NGC 2808. Even considering that the sample sizes are small, these patterns call for attention in the light of a possible connection with the multiple population phenomenon of globular clusters. The specific chemistry observed in these fast-rotating dwarf stars is thought to be produced by a complex interplay of different diffusion and mixing mechanisms, such as rotational mixing and mass loss, which in turn are influenced by metallicity, binarity, mass, age, variability, and so on. However, with the sample in hand, it was not possible to identify which stellar parameters cause the observed Na and O bimodality and Na-O anti-correlation. This suggests that other stellar properties might be important in addition to stellar rotation. Stellar binarity might influence the rotational properties and enhance rotational mixing and mass loss of stars in a dense environment like that of clusters (especially globulars). In conclusion, rotation and binarity appear as a promising research avenue for better understanding multiple stellar populations in globular clusters; this is certainly worth exploring further.

  11. Dynamic collapses of relativistic degenerate stellar cores and radiation pressure dominated stellar interiors

    NASA Astrophysics Data System (ADS)

    Shi, Chun-Hui; Lou, Yu-Qing

    2018-04-01

    We investigate and explore self-similar dynamic radial collapses of relativistic degenerate stellar cores (RDSCs) and radiation pressure dominated stellar interiors (RPDSIs) of spherical symmetry by invoking a conventional polytropic (CP) equation of state (EoS) with a constant polytropic index γ = 4 / 3 and by allowing free-fall non-zero RDSC or RPDSI surface mass density and pressure due to their sustained physical contact with the outer surrounding stellar envelopes also in contraction. Irrespective of the physical triggering mechanisms (including, e.g., photodissociation, electron-positron pair instability, general relativistic instability etc.) for initiating such a self-similar dynamically collapsing RDSC or RPDSI embedded within a massive star, a very massive star (VMS) or a supermassive star (SMS) in contraction and by comparing with the Schwarzschild radii associated with their corresponding RDSC/RPDSI masses, the emergence of central black holes in a wide mass range appears inevitable during such RDSC/RPDSI dynamic collapses inside massive stars, VMSs, and SMSs, respectively. Radial pulsations of progenitor cores or during a stellar core collapse may well leave imprints onto collapsing RDSCs/RPDSIs towards their self-similar dynamic evolution. Massive neutron stars may form during dynamic collapses of RDSC inside massive stars in contraction under proper conditions.

  12. Cosmological simulations of dwarf galaxies with cosmic ray feedback

    NASA Astrophysics Data System (ADS)

    Chen, Jingjing; Bryan, Greg L.; Salem, Munier

    2016-08-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  13. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  14. Stellar Flares Observed in Long-cadence Data from the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Van Doorsselaere, Tom; Shariati, Hoda; Debosscher, Jonas

    2017-10-01

    We aim to perform a statistical study of stellar flares observed by Kepler. We want to study the flare amplitude, duration, energy, and occurrence rates, and how they are related to the spectral type and rotation period. To that end, we have developed an automated flare detection and characterization algorithm. We have harvested the stellar parameters from the Kepler input catalog and the rotation periods from McQuillan et al. We find several new candidate A stars showing flaring activity. Moreover, we find 653 giants with flares. From the statistical distribution of flare properties, we find that the flare amplitude distribution has a similar behavior between F+G types and K+M types. The flare duration and flare energy seem to be grouped between G+K+M types versus F types and giants. We also detect a tail of stars with high flare occurrence rates across all spectral types (but most prominent in the late spectral types), and this is compatible with the existence of “flare stars.” Finally, we have found a strong correlation of the flare occurrence rate and the flare amplitude with the stellar rotation period: a quickly rotating star is more likely to flare often and has a higher chance of generating large flares.

  15. Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S. (Editor); Golub, L. (Editor)

    1981-01-01

    Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.

  16. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  17. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  18. Influence of Non-spherical Initial Stellar Structure on the Core-Collapse Supernova Mechanism

    NASA Astrophysics Data System (ADS)

    Couch, Sean M.

    I review the state of investigation into the impact that nonspherical stellar progenitor structure has on the core-collapse supernova mechanism. Although modeling stellar evolution relies on 1D spherically symmetric calculations, massive stars are not truly spherical. In the stellar evolution codes, this fact is accounted for by "fixes" such as mixing length theory and attendant modifications. Of particular relevance to the supernova mechanism, the Si- and O-burning shells surrounding the iron core at the point of collapse can be violently convective, with convective speeds of hundreds of km s-1. It has recently been shown by a number of groups that the presence of nonspherical perturbations in the layers surrounding the collapsing iron core can have a favorable impact on the likelihood for shock revival and explosion via the neutrino heating mechanism. This is due in large part to the strengthening of turbulence behind the stalled shock due to the presence of finite amplitude seed perturbations to speed the growth of convection which drives the post-shock turbulence. Efforts are now underway to simulate the final minutes of stellar evolution to core-collapse in 3D with the aim to generate realistic multidimensional initial conditions for use in simulations of the supernova mechanism.

  19. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  20. The Hα Emission of Nearby M Dwarfs and its Relation to Stellar Rotation

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry; Calkins, Michael L.; Mink, Jessica

    2017-01-01

    The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of Hα emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M⊙ are well-represented in our sample, with fast and slow rotators of all masses. We observe a threshold in the mass-period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that Hα activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between LHα/Lbol and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of LHα/Lbol. Our data also show a clear power-law decay in LHα/Lbol with Rossby number for slow rotators, with an index of -1.7 ± 0.1.

  1. THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Se-Heon; De Blok, W. J. G.; Brook, Chris

    2011-07-15

    We make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming a {Lambda}CDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope {alpha} of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating, and most importantly, physically motivated gas outflows driven by supernovae, form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to thatmore » inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called cusp/core problem in the {Lambda}CDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than cold dark matter rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes {alpha} of the simulated galaxies' DM density profiles is {approx}-0.4 {+-} 0.1, which shows good agreement with {alpha} = -0.29 {+-} 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with {alpha} {approx}-1.0 to -1.5 predicted by DM-only simulations shallower and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhiyun; Krasnopolsky, Ruben; Shang Hsien

    Dense, star-forming cores of molecular clouds are observed to be significantly magnetized. A realistic magnetic field of moderate strength has been shown to suppress, through catastrophic magnetic braking, the formation of a rotationally supported disk (RSD) during the protostellar accretion phase of low-mass star formation in the ideal MHD limit. We address, through two-dimensional (axisymmetric) simulations, the question of whether realistic levels of non-ideal effects, computed with a simplified chemical network including dust grains, can weaken the magnetic braking enough to enable an RSD to form. We find that ambipolar diffusion (AD), the dominant non-ideal MHD effect over most ofmore » the density range relevant to disk formation, does not enable disk formation, at least in two dimensions. The reason is that AD allows the magnetic flux that would be dragged into the central stellar object in the ideal MHD limit to pile up instead in a small circumstellar region, where the magnetic field strength (and thus the braking efficiency) is greatly enhanced. We also find that, on the scale of tens of AU or more, a realistic level of Ohmic dissipation does not weaken the magnetic braking enough for an RSD to form, either by itself or in combination with AD. The Hall effect, the least explored of these three non-ideal MHD effects, can spin up the material close to the central object to a significant, supersonic rotation speed, even when the core is initially non-rotating, although the spun-up material remains too sub-Keplerian to form an RSD. The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved. Possible resolutions of this problem are discussed.« less

  3. Limits on radial differential rotation in Sun-like stars from parametric fits to oscillation power spectra

    NASA Astrophysics Data System (ADS)

    Nielsen, M. B.; Schunker, H.; Gizon, L.; Schou, J.; Ball, W. H.

    2017-06-01

    Context. Rotational shear in Sun-like stars is thought to be an important ingredient in models of stellar dynamos. Thanks to helioseismology, rotation in the Sun is characterized well, but the interior rotation profiles of other Sun-like stars are not so well constrained. Until recently, measurements of rotation in Sun-like stars have focused on the mean rotation, but little progress has been made on measuring or even placing limits on differential rotation. Aims: Using asteroseismic measurements of rotation we aim to constrain the radial shear in five Sun-like stars observed by the NASA Kepler mission: KIC 004914923, KIC 005184732, KIC 006116048, KIC 006933899, and KIC 010963065. Methods: We used stellar structure models for these five stars from previous works. These models provide the mass density, mode eigenfunctions, and the convection zone depth, which we used to compute the sensitivity kernels for the rotational frequency splitting of the modes. We used these kernels as weights in a parametric model of the stellar rotation profile of each star, where we allowed different rotation rates for the radiative interior and the convective envelope. This parametric model was incorporated into a fit to the oscillation power spectrum of each of the five Kepler stars. This fit included a prior on the rotation of the envelope, estimated from the rotation of surface magnetic activity measured from the photometric variability. Results: The asteroseismic measurements without the application of priors are unable to place meaningful limits on the radial shear. Using a prior on the envelope rotation enables us to constrain the interior rotation rate and thus the radial shear. In the five cases that we studied, the interior rotation rate does not differ from the envelope by more than approximately ± 30%. Uncertainties in the rotational splittings are too large to unambiguously determine the sign of the radial shear.

  4. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf.

    PubMed

    Giammichele, N; Charpinet, S; Fontaine, G; Brassard, P; Green, E M; Van Grootel, V; Bergeron, P; Zong, W; Dupret, M-A

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars-in particular their oxygen content and the stratification of their cores-is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  5. Rapid rotators revisited: absolute dimensions of KOI-13

    NASA Astrophysics Data System (ADS)

    Howarth, Ian D.; Morello, Giuseppe

    2017-09-01

    We analyse Kepler light-curves of the exoplanet Kepler Object of Interest no. 13b (KOI-13b) transiting its moderately rapidly rotating (gravity-darkened) parent star. A physical model, with minimal ad hoc free parameters, reproduces the time-averaged light-curve at the ˜10 parts per million level. We demonstrate that this Roche-model solution allows the absolute dimensions of the system to be determined from the star's projected equatorial rotation speed, ve sin I*, without any additional assumptions; we find a planetary radius RP = (1.33 ± 0.05) R♃, stellar polar radius Rp★ = (1.55 ± 0.06) R⊙, combined mass M* + MP( ≃ M*) = (1.47 ± 0.17) M⊙ and distance d ≃ (370 ± 25) pc, where the errors are dominated by uncertainties in relative flux contribution of the visual-binary companion KOI-13B. The implied stellar rotation period is within ˜5 per cent of the non-orbital, 25.43-hr signal found in the Kepler photometry. We show that the model accurately reproduces independent tomographic observations, and yields an offset between orbital and stellar-rotation angular-momentum vectors of 60.25° ± 0.05°.

  6. The stellar wind as a key to the understanding of the spectral activity of IN Com

    NASA Astrophysics Data System (ADS)

    Kozlova, O. V.; Alekseev, I. Yu.

    2014-06-01

    We present long-term spectral observations ( R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.

  7. Evidence for photometric activity cycles in 3203 Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Cameron, Robert H.; Gizon, Laurent

    2017-07-01

    Context. In recent years it has been claimed that the length of stellar activity cycles is determined by the stellar rotation rate. It has been observed that the cycle period increases with rotation period along two distinct sequences, known as the active and inactive sequences. In this picture the Sun occupies a solitary position between the two sequences. Whether the Sun might undergo a transitional evolutionary stage is currently under debate. Aims: Our goal is to measure cyclic variations of the stellar light curve amplitude and the rotation period using four years of Kepler data. Periodic changes in the light curve amplitude or the stellar rotation period are associated with an underlying activity cycle. Methods: Using a recent sample of active stars we compute the rotation period and the variability amplitude for each individual Kepler quarter and search for periodic variations of both time series. To test for periodicity in each stellar time series we consider Lomb-Scargle periodograms and use a selection based on a false alarm probability (FAP). Results: We detect amplitude periodicities in 3203 stars between 0.5 < Pcyc < 6 yr covering rotation periods between 1 < Prot < 40 days. Given our sample size of 23 601 stars and our selection criteria that the FAP is less than 5%, this number is almost three times higher than that expected from pure noise. We do not detect periodicities in the rotation period beyond those expected from noise. Our measurements reveal that the cycle period shows a weak dependence on rotation rate, slightly increasing for longer rotation periods. We further show that the shape of the variability deviates from a pure sine curve, consistent with observations of the solar cycle. The cycle shape does not show a statistically significant dependence on effective temperature. Conclusions: We detect activity cycles in more than 13% of our final sample with a FAP of 5% (calculated by randomly shuffling the measured 90-day variability measurements for each star). Our measurements do not support the existence of distinct sequences in the Prot-Pcyc plane, although there is some evidence for the inactive sequence for rotation periods between 5-25 days. Unfortunately, the total observing time is too short to draw sound conclusions on activity cycles with similar lengths to that of the solar cycle. A table containing all cycle periods and time series is only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/603/A52

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Simon; Winn, Joshua N.; Hirano, Teruyuki

    We measure a tilt of 86 Degree-Sign {+-} 6 Degree-Sign between the sky projections of the rotation axis of the WASP-7 star and the orbital axis of its close-in giant planet. This measurement is based on observations of the Rossiter-McLaughlin (RM) effect with the Planet Finder Spectrograph on the Magellan II telescope. The result conforms with the previously noted pattern among hot-Jupiter hosts, namely, that the hosts lacking thick convective envelopes have high obliquities. Because the planet's trajectory crosses a wide range of stellar latitudes, observations of the RM effect can in principle reveal the stellar differential rotation profile; however,more » with the present data the signal of differential rotation could not be detected. The host star is found to exhibit radial-velocity noise ({sup s}tellar jitter{sup )} with an amplitude of Almost-Equal-To 30 m s{sup -1} over a timescale of days.« less

  9. GRAVITY-DARKENED SEASONS: INSOLATION AROUND RAPID ROTATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlers, John P.

    2016-11-20

    I model the effect of rapid stellar rotation on a planet’s insolation. Fast-rotating stars have induced pole-to-equator temperature gradients (known as gravity darkening) of up to several thousand Kelvin that affect the star’s luminosity and peak emission wavelength as a function of latitude. When orbiting such a star, a planet’s annual insolation can strongly vary depending on its orbital inclination. Specifically, inclined orbits result in temporary exposure to the star’s hotter poles. I find that gravity darkening can drive changes in a planet’s equilibrium temperature of up to ∼15% due to increased irradiance near the stellar poles. This effect canmore » also vary a planet’s exposure to UV radiation by up to ∼80% throughout its orbit as it is exposed to an irradiance spectrum corresponding to different stellar effective temperatures over time.« less

  10. Constraining the near-core rotation of the γ Doradus star 43 Cygni using BRITE-Constellation data

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Van Reeth, T.; Tkachenko, A.; Gössl, S.; Pigulski, A.; Kuschnig, R.; Handler, G.; Moffat, A. F. J.; Popowicz, A.; Wade, G.; Weiss, W. W.

    2017-12-01

    Context. Photometric time series of the γ Doradus star 43 Cyg obtained with the BRITE-Constellation nano-satellites allow us to study its pulsational properties in detail and to constrain its interior structure. Aims: We aim to find a g-mode period-spacing pattern that allows us to determine the near-core rotation rate of 43 Cyg and redetermine the star's fundamental atmospheric parameters and chemical composition. Methods: We conducted a frequency analysis using the 156-day long data set obtained with the BRITE-Toronto satellite and employed a suite of MESA/GYRE models to derive the mode identification, asymptotic period-spacing, and near-core rotation rate. We also used high-resolution spectroscopic data with high signal-to-noise ratio obtained at the 1.2 m Mercator telescope with the HERMES spectrograph to redetermine the fundamental atmospheric parameters and chemical composition of 43 Cyg using the software Spectroscopy Made Easy (SME). Results: We detected 43 intrinsic pulsation frequencies and identified 18 of them to be part of a period-spacing pattern consisting of prograde dipole modes with an asymptotic period-spacing ΔΠl = 1 of 2970-570+700 s. The near-core rotation rate was determined to be frot = 0.56-0.14+0.12 d-1. The atmosphere of 43 Cyg shows solar chemical composition at an effective temperature, Teff, of 7150 ± 150 K, a log g of 4.2 ± 0.6 dex, and a projected rotational velocity, υsini, of 44 ± 4 km s-1. Conclusions: The morphology of the observed period-spacing patterns shows indications of a significant chemical gradient in the stellar interior. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and National Science Centre (NCN).The light curves (in tabular form) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A103

  11. Central Stellar Mass Deficits in the Bulges of Local Lenticular Galaxies, and the Connection with Compact z ~ 1.5 Galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.

    2013-05-01

    We have used the full radial extent of images from the Hubble Space Telescope's Advanced Camera for Surveys and Wide Field Planetary Camera 2 to extract surface brightness profiles from a sample of six, local lenticular galaxy candidates. We have modeled these profiles using a core-Sérsic bulge plus an exponential disk model. Our fast rotating lenticular disk galaxies with bulge magnitudes MV <~ -21.30 mag have central stellar deficits, suggesting that these bulges may have formed from "dry" merger events involving supermassive black holes (BHs) while their surrounding disk was subsequently built up, perhaps via cold gas accretion scenarios. The central stellar mass deficits M def are roughly 0.5-2 M BH (BH mass), rather than ~10-20 M BH as claimed from some past studies, which is in accord with core-Sérsic model mass deficit measurements in elliptical galaxies. Furthermore, these bulges have Sérsic indices n ~3, half-light radii Re < 2 kpc and masses >1011 M ⊙, and therefore appear to be descendants of the compact galaxies reported at z ~ 1.5-2. Past studies which have searched for these local counterparts by using single-component galaxy models to provide the z ~ 0 size comparisons have overlooked these dense, compact, and massive bulges in today's early-type disk galaxies. This evolutionary scenario not only accounts for what are today generally old bulges—which must be present in z ~ 1.5 images—residing in what are generally young disks, but it eliminates the uncomfortable suggestion of a factor of three to five growth in size for the compact, z ~ 1.5 galaxies that are known to possess infant disks.

  12. Rotational Synchronization May Enhance Habitability for Circumbinary Planets: Kepler Binary Case Studies

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Clark, Joni M.; Cuartas-Restrepo, Pablo A.

    2013-09-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Suto, Yasushi; Taruya, Atsushi

    We obtain analytical expressions for the velocity anomaly due to the Rossiter-McLaughlin (RM) effect, for the case when the anomalous radial velocity is obtained by cross-correlation with a stellar template spectrum. In the limit of vanishing width of the stellar absorption lines, our result reduces to the formula derived by Ohta et al., which is based on the first moment of distorted stellar lines. Our new formula contains a term dependent on the stellar line width, which becomes important when rotational line broadening is appreciable. We generate mock transit spectra for four existing exoplanetary systems (HD 17156, TrES-2, TrES-4, andmore » HD 209458) following the procedure of Winn et al., and find that the new formula is in better agreement with the velocity anomaly extracted from the mock data. Thus, our result provides a more reliable analytical description of the velocity anomaly due to the RM effect, and explains the previously observed dependence of the velocity anomaly on the stellar rotation velocity.« less

  14. Long-Term Spectral Variability of the Spotted Star IN Com

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.; Kozlova, O. V.; Gorda, S. Yu.; Avvakumova, E. A.; Kozhevnikova, A. V.

    2017-06-01

    We present long-term (2004-2016) spectral observations (R = 20000) of IN Com in the regions of Hα, Hβ and He I 5876 Å lines. The unique feature of the stellar spectrum is the presence of the extended two-component emission with limits up to ± 400 km s-1 in the Hα line. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emission is also observed in Hβ and He I 5876 Å lines. Our results allow us to conclude that observational emission profiles are formed in optically thin hot gas. It is a result of presence of a circumstellar gas disk around IN Com. Its size is not exceed several stellar radii. The matter for the disk is supported by stellar wind. Detected variability of Hα emission parameters shows evident relation with UBVRI photometric activity of the star. This fact allowed us to link the long-term spectral variability with cycles of stellar activity of IN Com.

  15. Non-radial pulsations and large-scale structure in stellar winds

    NASA Astrophysics Data System (ADS)

    Blomme, R.

    2009-07-01

    Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by ``spots" on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD~64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.

  16. VizieR Online Data Catalog: 3.6um S4G Galactic bars characterization (Diaz-Garcia+, 2016)

    NASA Astrophysics Data System (ADS)

    Diaz-Garcia, S.; Salo, H.; Laurikainen, E.; Herrera-Endoqui, M.

    2015-11-01

    Here, we provide the bar strength measurements of a sample of ~600 barred galaxies drawn from the Spitzer Survey of Stellar Structure in Galaxies (Sheth et al., 2010, Cat. J/PASP/122/1397). Bars were identified based on the morphological classifications by Buta et al. (2015, Cat. J/ApJS/217/32). Besides, we provide a parameterization of the stellar contribution to the rotation curve and an estimate to the stellar-to-halo mass ratio within the optical radius for a sample of 1345 non-highly inclined galaxies (i<65°). The radial force profiles and rotation curve decomposition models of each of these galaxies are also given. Table A1 contains fundamental parameters of the galaxies such as the total stellar mass and distances (values for all the S4G sample are calculated in Munoz-Mateos et al., 2015ApJS..219....3M). Besides, we provide an estimate of the scale-heights and optical radii. We also list the inclination-corrected HI maximum velocities, the parameters of the stellar and halo components of the rotation curves, and the estimates of the halo-to-stellar mass ratios within the optical disk. In Table A2 it is given the gravitational torque parameters and radii, with and without spiral arms and halo correction. In Table A3 it is provided the maximum normalized Fourier amplitudes and radii (for the m = 2, 4, 6 and 8 components) and the bar ellipticities (from Herrera-Endoqui et al., 2015A&A...582A..86H) deprojected to the disk plane using the orientation parameters from S4G Pipeline 4 (Salo et al., 2015, Cat. J/ApJS/219/4). The evaluation of the gravitational torques and m=2 Fourier amplitude at the bar radius is also listed in both tables. In the directory "rfp" we provide the gravitational torque radial profiles, with and without spiral arms and halo correction, even Fourier amplitudes and m=2 phase of 1345 non-highly inclined disk S4G galaxies ("radialforce_profiles.dat"). Likewise, for the same sample, in the directory "rcdm" we tabulate the rotation curve decomposition model ("rotationcurve_decomposition.dat"), with the stellar component inferred from the 3.6~μm imaging and the halo component estimated using the universal rotation curve models). (5 data files).

  17. Spectro-Interferometry Studies of Velocity-Related Phenomena at the Surface of Stars: Pulsation and Rotation

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine; Patru, Fabien; Aufdenberg, Jason

    We illustrate here two applications of spectro-interferometry to the study of velocity fields at the surface of stars: pulsation and rotation. Stellar pulsation has been resolved spectroscopically for a long time, and interferometry has resolved stellar diameters variations due to pulsation. Combining the two provides unique insights to the study of Cepheids, in particular regarding the structure of the photosphere or investigating the infamous projection factor which biases distances measured by the Baade-Wesselink method. On the other hand, resolving the surface velocity field of rotating stars offers a unique opportunity to potentially study differential rotation in other cases than for the Sun. We also present the model we have implemented recently, as well as two applications to VLTI/AMBER Data: the pulsation of Cepheids and the rotation of intermediate mass main sequence stars.

  18. Activity Cycles in Stars

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.

  19. The magnetically controlled stellar wind of HD 21699

    NASA Technical Reports Server (NTRS)

    Brown, D. N.; Shore, S. N.; Sonneborn, G.

    1985-01-01

    The discovery of a magnetically controlled stellar mass outflow in the helium-weak sn star HD 21699 = HR 1063 is reported. IUE observations show that the C IV resonance doublet is variable on the rotational time scale of about 2.5 days, and that there are no other observable spectrum variations in the UV. The magnetic field reverses sign on the rotational time scale. An interpretation of the observations in terms of magnetically structured jets is presented.

  20. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cargile, P. A.; Pepper, J.; Siverd, R.

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age ofmore » 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.« less

  1. Disruption of circumstellar discs by large-scale stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan

    2018-05-01

    Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.

  2. THE H α EMISSION OF NEARBY M DWARFS AND ITS RELATION TO STELLAR ROTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David

    The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of H α emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M {sub ⊙} are well-represented in our sample,more » with fast and slow rotators of all masses. We observe a threshold in the mass–period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that H α activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between L{sub Hα} / L{sub bol} and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of L{sub Hα} / L {sub bol}. Our data also show a clear power-law decay in L{sub Hα} / L{sub bol} with Rossby number for slow rotators, with an index of −1.7 ± 0.1.« less

  3. Two regimes of galaxy dynamics: mass models of NGC 5055 and DDO 154

    NASA Astrophysics Data System (ADS)

    Jovanović, Milena

    2017-08-01

    We derive detailed dynamical models for two galaxies, the massive spiral galaxy NGC 5055 and the dwarf irregular DDO 154. We used Navarro, Frenk & White (NFW) and isothermal halo models for the dark matter (DM) distribution, along with the most recent and reliable radio observations of H I to determine the rotation curves of these galaxies. Contributions from the neutral gas and the luminous matter were accounted for. For NGC 5055, the latest stellar population synthesis (SPS) models, combining metallicity and age as indicators of the stellar mass-to-light ratio (M/L) were used to better constrain both the DM model and the contribution to the total mass from all components. The isothermal dark halo model successfully fitted both observed rotation curves with realistic values for stellar M/L, while the NFW model needed further constraints for M/L to fit the rotation curve of DDO 154. In the case of NGC 5055, we found the best-fitting M/L in the 3.6 μm band (M/L3.6) for stellar disc to be 0.57 ± 0.04 for isothermal, and 0.50 ± 0.05 for NFW DM model. The most probable value for M/L3.6 from SPS models is 0.46, which is in agreement within uncertainties with our best-fitting NFW model. In the case of DDO 154, we obtained the stellar disc M/L3.6 of 0.25 ± 0.20 for the isothermal DM model. The stellar disc M/L3.6 for the NFW model was fixed to 0.26, as best reasonable value. For NGC 5055, we derived radial profiles of stellar M/L for our best estimate for a particular DM model.

  4. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, O.; Drake, J. J.

    2014-03-01

    Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the successmore » of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.« less

  5. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    NASA Technical Reports Server (NTRS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; hide

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  6. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A120Appendices are available in electronic form at http://www.aanda.org

  7. Retired A Stars Revisited: An Updated Giant Planet Occurrence Rate as a Function of Stellar Metallicity and Mass

    NASA Astrophysics Data System (ADS)

    Ghezzi, Luan; Montet, Benjamin T.; Johnson, John Asher

    2018-06-01

    Exoplanet surveys of evolved stars have provided increasing evidence that the formation of giant planets depends not only on stellar metallicity ([Fe/H]) but also on the mass ({M}\\star ). However, measuring accurate masses for subgiants and giants is far more challenging than it is for their main-sequence counterparts, which has led to recent concerns regarding the veracity of the correlation between stellar mass and planet occurrence. In order to address these concerns, we use HIRES spectra to perform a spectroscopic analysis on a sample of 245 subgiants and derive new atmospheric and physical parameters. We also calculate the space velocities of this sample in a homogeneous manner for the first time. When reddening corrections are considered in the calculations of stellar masses and a ‑0.12 {M}ȯ offset is applied to the results, the masses of the subgiants are consistent with their space velocity distributions, contrary to claims in the literature. Similarly, our measurements of their rotational velocities provide additional confirmation that the masses of subgiants with {M}\\star ≥slant 1.6 M ⊙ (the “retired A stars”) have not been overestimated in previous analyses. Using these new results for our sample of evolved stars, together with an updated sample of FGKM dwarfs, we confirm that giant planet occurrence increases with both stellar mass and metallicity up to 2.0 M ⊙. We show that the probability of formation of a giant planet is approximately a one-to-one function of the total amount of metals in the protoplanetary disk {M}\\star {10}[{Fe/{{H}}]}. This correlation provides additional support for the core accretion mechanism of planet formation.

  8. A massive galaxy in its core formation phase three billion years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-01

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 +/- 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ~ 2 (refs 8, 9, 10, 11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  9. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  10. Dense Cores in Galaxies Out to z = 2.5 in SDSS, UltraVISTA, and the Five 3D-HST/CANDELS Fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.; Bezanson, Rachel; van der Wel, Arjen; Nelson, Erica June; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Förster Schreiber, Natascha M.; Fumagalli, Mattia; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Marchesini, Danilo; Muzzin, Adam; Oesch, Pascal; Wuyts, Stijn

    2014-08-01

    The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M ⊙ inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z = 2.5 to ~15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ⊙ make up ~0.1% of the stellar mass density of the universe today but 10%-20% at z ~ 2, depending on their initial mass function. The formation of these cores required the conversion of ~1011 M ⊙ of gas into stars within ~1 kpc, while preventing significant star formation at larger radii.

  11. M DWARF ACTIVITY IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY: FIRST CATALOG AND ROTATION PERIODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kado-Fong, E.; Williams, P. K. G.; Berger, E.

    2016-12-20

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ∼4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, andmore » bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of ≲1–130 days in stars with estimated effective temperatures of ∼2700–4000 K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler -based searches have not been sensitive to very slowly rotating stars ( P {sub rot} ≳ 70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10–40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.« less

  12. M Dwarf Activity in the Pan-STARRS1 Medium-Deep Survey: First Catalog and Rotation Periods

    NASA Astrophysics Data System (ADS)

    Kado-Fong, E.; Williams, P. K. G.; Mann, A. W.; Berger, E.; Burgett, W. S.; Chambers, K. C.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Rest, A.; Wainscoat, R. J.; Waters, C.

    2016-12-01

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ˜4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, and bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of ≲1-130 days in stars with estimated effective temperatures of ˜2700-4000 K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler-based searches have not been sensitive to very slowly rotating stars (P rot ≳ 70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10-40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.

  13. Recurring sets of recurring starspot occultations on exoplanet host Qatar-2

    NASA Astrophysics Data System (ADS)

    Močnik, T.; Southworth, J.; Hellier, C.

    2017-10-01

    We announce the detection of recurring sets of recurring starspot occultation events in the short-cadence K2 light curve of Qatar-2, a K dwarf star transited every 1.34 d by a hot Jupiter. In total, we detect 34 individual starspot occultation events, caused by five different starspots, occulted in up to five consecutive transits or after a full stellar rotation. The longest recurring set of recurring starspot occultations spans over three stellar rotations, setting a lower limit for the longest starspot lifetime of 58 d. Starspot analysis provided a robust stellar rotational period measurement of 18.0 ± 0.2 d and indicates that the system is aligned, having a sky-projected obliquity of 0° ± 8°. A pronounced rotational modulation in the light curve has a period of 18.2 ± 1.6 d, in agreement with the rotational period derived from the starspot occultations. We tentatively detect an ellipsoidal modulation in the phase curve, with a semi-amplitude of 18 ppm, but cannot exclude the possibility that this is the result of red noise or imperfect removal of the rotational modulation. We detect no transit-timing and transit-duration variations with upper limits of 15 s and 1 min, respectively. We also reject any additional transiting planets with transit depths above 280 ppm in the orbital period region 0.5-30 d.

  14. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    NASA Astrophysics Data System (ADS)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  15. Asymmetries in Core-Collapse Supernovae from Maps of Radioactiver 44Ti in Cassiopeia A

    NASA Technical Reports Server (NTRS)

    Grefenstette, B.W.; Harrison, F. A.; Boggs, S. E.; Reynolds, S. P.; Fryer, C. L.; Madsen, K. K.; Wik, Daniel R.; Zoglauer, A.; Ellinger, C. I.; Alexander, D. M.; hide

    2014-01-01

    Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surroundingmedium1, directly probes the explosion asymmetries. Cassiopeia A is a young2, nearby3, core-collapse4 remnant from which 44Ti emission has previously been detected5-8 but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission9, from optical light echoes10, and from jet-like features seen in the X-ray11 and optical12 ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.

  16. Stellar differential rotation and coronal time-scales

    NASA Astrophysics Data System (ADS)

    Gibb, G. P. S.; Jardine, M. M.; Mackay, D. H.

    2014-10-01

    We investigate the time-scales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this, we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the lap time and the surface diffusion time-scale through the relation τ_Form ∝ √{τ_Lapτ_Diff}. In contrast, the lifetimes of flux ropes are proportional to the lap time (τLife∝τLap). With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than 2 d. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae.

  17. Stellar Models of Rotating, PMS Stars with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Mendes, L. T. S.; Landin, N. R.; Vaz, L. P. R.

    2014-10-01

    We report our ongoing studies of the magnetic field effects on the structure and evolution of low-mass stars, using a method first proposed by Lydon & Sofia (1995, ApJS 101, 357) which treats the magnetic field as a perturbation on the stellar structure equations. The ATON 2.3 stellar evolution code (Ventura et al. 1998, A&A 334, 953) now includes, via this method, the effects of an imposed, parametric magnetic field whose surface strength scales throughout the stellar interior according to one of the three following laws: (a) the ratio between the magnetic and gas energy densities, β_{mg}, is kept at its surface value across the stellar interior, (b) β_{mg} has a shallower decrease in deeper layers, or (c) β_{mg} decays as [m(r)/M_{*}]^{2/3}. We then computed rotating stellar models, starting at the pre-main sequence phase, of 0.4, 0.6, 0.8 and 1.0 M_{odot} with solar chemical composition, mixing-length convection treatment with &alpha=λ/H_{P}=1.5 and surface magnetic field strength of 50 G. Summarizing our main findings: (1) we confirm that the magnetic field inhibits convection and so reduces the convective envelope; (2) the magnetic perturbation effect dominates over that of rotation for 0.8 and 1.0 M_{odot} masses, but their relative impact shows a reversal during the Hayashi tracks at lower masses (0.4 and 0.6 M_{odot}); in any case, the magnetic perturbation makes the tracks cooler; and (3) the magnetic field contributes to higher surface lithium abundances.

  18. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in somemore » cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.« less

  19. Star formation with disc accretion and rotation. I. Stars between 2 and 22 M⊙ at solar metallicity

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2013-09-01

    Context. The way angular momentum is built up in stars during their formation process may have an impact on their further evolution. Aims: In the framework of the cold disc accretion scenario, we study how angular momentum builds up inside the star during its formation for the first time and what the consequences are for its evolution on the main sequence (MS). Methods: Computation begins from a hydrostatic core on the Hayashi line of 0.7 M⊙ at solar metallicity (Z = 0.014) rotating as a solid body. Accretion rates depending on the luminosity of the accreting object are considered, which vary between 1.5 × 10-5 and 1.7 × 10-3 M⊙ yr-1. The accreted matter is assumed to have an angular velocity equal to that of the outer layer of the accreting star. Models are computed for a mass-range on the zero-age main sequence (ZAMS) between 2 and 22 M⊙. Results: We study how the internal and surface velocities vary as a function of time during the accretion phase and the evolution towards the ZAMS. Stellar models, whose evolution has been followed along the pre-MS phase, are found to exhibit a shallow gradient of angular velocity on the ZAMS. Typically, the 6 M⊙ model has a core that rotates 50% faster than the surface on the ZAMS. The degree of differential rotation on the ZAMS decreases when the mass increases (for a fixed value of vZAMS/vcrit). The MS evolution of our models with a pre-MS accreting phase show no significant differences with respect to those of corresponding models computed from the ZAMS with an initial solid-body rotation. Interestingly, there exists a maximum surface velocity that can be reached through the present scenario of formation for masses on the ZAMS larger than 8 M⊙. Typically, only stars with surface velocities on the ZAMS lower than about 45% of the critical velocity can be formed for 14 M⊙ models. Reaching higher velocities would require starting from cores that rotate above the critical limit. We find that this upper velocity limit is smaller for higher masses. In contrast, there is no restriction below 8 M⊙, and the whole domain of velocities to the critical point can be reached.

  20. The evolution of massive stars and their spectra. I. A non-rotating 60 M⊙ star from the zero-age main sequence to the pre-supernova stage

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Meynet, Georges; Ekström, Sylvia; Georgy, Cyril

    2014-04-01

    For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 M⊙ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: 3.22 × 106 yr for the O-type, 0.34 × 105 yr (BSG), 0.79 × 105 yr (BHG), 2.35 × 105 yr (LBV), 1.05 × 105 yr (WN), 2.57 × 105 yr (WC), and 3.80 × 104 yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter in optical filters at the end of the evolution, when it becomes a WO just a few 104 years before the SN explosion. We also discuss the origin of the different spectroscopic phases (i.e., O-type, LBV, WR) and how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning). Tables 1, 4 and 5 are available in electronic form at http://www.aanda.orgSynthetic spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A30

  1. Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg

    2018-06-01

    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 < M < 0.4 M Sun), the discrepancy is only about 6% and comparable to results from interferometry and eclipsing binaries. At the lowest masses (0.08 < M < 0.18 M Sun), we find that the discrepancy between observations and theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.

  2. Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2017-06-01

    Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.

  3. Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores

    NASA Astrophysics Data System (ADS)

    Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David

    2017-10-01

    Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.

  4. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  5. A Comprehensive Stellar Astrophysical Study of the Old Open Cluster M67 with Kepler

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Vanderburg, Andrew; K2 M67 Team

    2016-06-01

    M67 is among the best studied of all star clusters. Being at an age and metallicity very near solar, at an accessible distance of 850 pc with low reddening, and rich in content (over 1000 members including main-sequence dwarfs, a well populated subgiant branch and red giant branch, white dwarfs, blue stragglers, sub-subgiants, X-ray sources and CVs), M67 is a cornerstone of stellar astrophysics.The K2 mission (Campaign 5) has obtained long-cadence observations for 2373 stars, both within an optimized central superaperture and as specified targets outside the superaperture. 1,432 of these stars are likely cluster members based on kinematic and photometric criteria.We have extracted light curves and corrected for K2 roll systematics, producing light curves with noise characteristics qualitatively similar to Kepler light curves of stars of similar magnitudes. The data quality is slightly poorer than for field stars observed by K2 due to crowding near the cluster core, but the data are of sufficient quality to detect seismic oscillations, binary star eclipses, flares, and candidate transit events. We are in the process of uploading light curves and various diagnostic files to MAST; light curves and supporting data will also be made available on ExoFOP.Importantly, several investigators within the M67 K2 team are independently doing light curve extractions and analyses for confirmation of science results. We also are adding extensive ground-based supporting data, including APOGEE near-infrared spectra, TRES and WIYN optical spectra, LCOGT photometry, and more.Our science goals encompass asteroseismology and stellar evolution, alternative stellar evolution pathways in binary stars, stellar rotation and angular momentum evolution, stellar activity, eclipsing binaries and beaming, and exoplanets. We will present early science results as available by the time of the meeting, and certainly including asteroseismology, blue stragglers and sub-subgiants, and newly discovered eclipsing binaries.This work is supported by NASA grant NNX15AW24A to the University of Wisconsin - Madison.

  6. Scientific Staff | ast.noao.edu

    Science.gov Websites

    Emeritus Double stars; stellar rotation; stellar characteristics; publication practices in astronomy Thai formation; infrared astronomy and instrumentation NOAO Associate Director for Kitt Peak National Observatory clumpy media, software development, modeling & SED fitting, big data, HPC in astronomy, visualization

  7. Modelling the Surface Distribution of Magnetic Activity on Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Isik, Emre

    2018-04-01

    With the advent of high-precision space-borne stellar photometry and prospects for direct imaging, it is timely and essential to improve our understanding of stellar magnetic activity in rotational time scales. We present models for 'younger suns' with rotation and flux emergence rates between 1 and 16 times the solar rate. The models provide latitudinal distributions and tilt angles of bipolar magnetic regions, using flux tube rise simulations. Using these emergence patterns, we model the subsequent surface flux transport, to predict surface distributions of star-spots. Based on these models, we present preliminary results from our further modelling of the observed azimuthal magnetic fields, which strengthen for more rapidly rotating Sun-like stars.

  8. Butterfly Diagram and Activity Cycles in HR 1099

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Henry, Gregory W.

    2007-04-01

    We analyze photometric data of the active RS CVn-type star HR 1099 for the years 1975-2006 with an inversion technique and reveal the nature of two activity cycles of 15-16 yr and 5.3+/-0.1 yr duration. The 16 yr cycle is related to variations of the total spot area and is coupled with the differential rotation, while the 5.3 yr cycle is caused by the symmetric redistribution of the spotted area between the opposite stellar hemispheres (flip-flop cycle). We recover long-lived active regions comprising two active longitudes that migrate in the orbital reference frame with a variable rate because of the differential rotation along with changes in the mean spot latitudes. The migration pattern is periodic with the 16 yr cycle. Combining the longitudinal migration of the active regions with a previously measured differential rotation law, we recover the first stellar butterfly diagram without an assumption about spot shapes. We find that mean latitudes of active regions at opposite longitudes change antisymmetrically in the course of the 16 yr cycle: while one active region migrates to the pole, the other approaches the equator. This suggests a precession of the global magnetic field with respect to the stellar rotational axis.

  9. A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leone, Francesco; Scalia, Cesare; Gangi, Manuele

    Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transversemore » component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.« less

  10. SDSS-IV MaNGA: Uncovering the Angular Momentum Content of Central and Satellite Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Ge, J.; Aragón-Salamanca, A.; Greco, J.; Lin, Y.-T.; Mao, S.; Masters, K.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.; Yan, R.; van den Bosch, F.

    2018-01-01

    We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral-field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using the Yang et al. group catalog, we identify central and satellite galaxies in groups with halo masses in the range {10}12.5 {h}-1 {M}ȯ < {M}200b< {10}15 {h}-1 {M}ȯ . As in previous work, we see a sharp dependence on stellar mass, in the sense that ∼70% of galaxies with stellar mass {M}* > {10}11 {h}-2 {M}ȯ tend to have very little rotation, while nearly all galaxies at lower mass show some net rotation. The ∼30% of high-mass galaxies that have significant rotation do not stand out in other galaxy properties, except for a higher incidence of ionized gas emission. Our data are consistent with recent simulation results suggesting that major merging and gas accretion have more impact on the rotational support of lower-mass galaxies. When carefully matching the stellar mass distributions, we find no residual differences in angular momentum content between satellite and central galaxies at the 20% level. Similarly, at fixed mass, galaxies have consistent rotation properties across a wide range of halo mass. However, we find that errors in classification of central and satellite galaxies with group finders systematically lower differences between satellite and central galaxies at a level that is comparable to current measurement uncertainties. To improve constraints, the impact of group-finding methods will have to be forward-modeled via mock catalogs.

  11. Asteroseismology with FRESIP: A meter class space telescope

    NASA Technical Reports Server (NTRS)

    Milford, Peter

    1994-01-01

    The requirements for asteroseismology and searching for occulting inner planets are similar. The FRESIP mission will be suited to making asteroseismology measurements. Recommendation: Use 30-60 second integrations from one or more CCD's in the FRESIP mosaic, sampled continuously for the entire mission to measure stellar non-radial oscillations with amplitudes of parts per million and frequencies of 0.1 to 10 MHz. These measurements lead to determination of stellar interior helium abundances, rotation rates, depth of convection zones and measuring stellar cycle frequency changes for a variety of stellar types, enabling major advances in stellar structure and evolutionary theories.

  12. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is most reliable. Explaining the bimodality in the age distribution is challenging, and limits accurate stellar age predictions. The relation between activity and age is interesting, and requires further investigation. The existence of cool stars with almost constant rotation period over more than three years of observation might be explained by synchronization with stellar companions, or a dynamo mechanism keeping the spot configurations extremely stable. Full Tables 2 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A65

  13. Seismic constraints on rotation of Sun-like star and mass of exoplanet.

    PubMed

    Gizon, Laurent; Ballot, Jérome; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R

    2013-08-13

    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85(-0.42)(+0.52)M(Jupiter), which implies that it is a planet, not a brown dwarf.

  14. Seismic constraints on rotation of Sun-like star and mass of exoplanet

    PubMed Central

    Gizon, Laurent; Ballot, Jérome; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R.

    2013-01-01

    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of , which implies that it is a planet, not a brown dwarf. PMID:23898183

  15. The SLUGGS survey: globular cluster kinematics in a `double sigma' galaxy - NGC 4473

    NASA Astrophysics Data System (ADS)

    Alabi, Adebusola B.; Foster, Caroline; Forbes, Duncan A.; Romanowsky, Aaron J.; Pastorello, Nicola; Brodie, Jean P.; Spitler, Lee R.; Strader, Jay; Usher, Christopher

    2015-09-01

    NGC 4473 is a so-called double sigma (2σ) galaxy, i.e. a galaxy with rare, double peaks in its 2D stellar velocity dispersion. Here, we present the globular cluster (GC) kinematics in NGC 4473 out to ˜10Re (effective radii) using data from combined Hubble Space Telescope/Advanced Camera for Surveys and Subaru/Suprime-Cam imaging and Keck/Deep Imaging Multi-Object Spectrograph. We find that the 2σ nature of NGC 4473 persists up to 3Re, though it becomes misaligned to the photometric major axis. We also observe a significant offset between the stellar and GC rotation amplitudes. This offset can be understood as a co-addition of counter-rotating stars producing little net stellar rotation. We identify a sharp radial transition in the GC kinematics at ˜4Re suggesting a well defined kinematically distinct halo. In the inner region (<4Re), the blue GCs rotate along the photometric major axis, but in an opposite direction to the galaxy stars and red GCs. In the outer region (>4Re), the red GCs rotate in an opposite direction compared to the inner region red GCs, along the photometric major axis, while the blue GCs rotate along an axis intermediate between the major and minor photometric axes. We also find a kinematically distinct population of very red GCs in the inner region with elevated rotation amplitude and velocity dispersion. The multiple kinematic components in NGC 4473 highlight the complex formation and evolutionary history of this 2σ galaxy, as well as a distinct transition between the inner and outer components.

  16. Stability of metal-rich very massive stars

    NASA Astrophysics Data System (ADS)

    Goodman, J.; White, Christopher J.

    2016-02-01

    We revisit the stability of very massive non-rotating main-sequence stars at solar metallicity, with the goal of understanding whether radial pulsations set a physical upper limit to stellar mass. Models of up to 938 solar masses are constructed with the MESA code, and their linear stability in the fundamental mode, assumed to be the most dangerous, is analysed with a fully non-adiabatic method. Models above 100 M⊙ have extended tenuous atmospheres (`shelves') that affect the stability of the fundamental. Even when positive, this growth rate is small, in agreement with previous results. We argue that small growth rates lead to saturation at small amplitudes that are not dangerous to the star. A mechanism for saturation is demonstrated involving non-linear parametric coupling to short-wavelength g-modes and the damping of the latter by radiative diffusion. The shelves are subject to much more rapidly growing strange modes. This also agrees with previous results but is extended here to higher masses. The strange modes probably saturate via shocks rather than mode coupling but have very small amplitudes in the core, where almost all of the stellar mass resides. Although our stellar models are hydrostatic, the structure of their outer parts suggests that optically thick winds, driven by some combination of radiation pressure, transonic convection, and strange modes, are more likely than pulsation in the fundamental mode to limit the main-sequence lifetime.

  17. High resolution of fast-rotating stars across the H-R diagram: photosphere and circumstellar environment

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, Armando

    2014-12-01

    Rotation is a fundamental parameter that governs the physical structure and evolution of stars, for example by generating internal circulations of matter and angular momentum, which in turn change the stellar lifetime. Massive stars (spectral types OBA) are those presenting the highest rotation velocities and thus those for which the consequences of rotation are the strongest. On the external layers of the star, fast-rotation induces in particular (1) a flattening (equatorial radius higher than the polar radius) and (2) a gravity darkening (non-uniform distribution of flux, and thus effective temperature, between the poles and the equator). This important modification in the photospheric physical structure can also drive an anisotropic (axisymmetric) mass and angular momentum loss, originating for example the complex circumstellar environments around Be and supergiant B[e] stars. The techniques of high angular and high spectral resolution allow a detailed study of the effects of rotation on the stellar photosphere and circumstellar environment across the H-R diagram. Thanks to these techniques, and in particular to the optical/infrared long-baseline interferometry, our knowledge on the impact of rotation in stellar physics was highly deepened since the beginning of the XXI century. The results described in this Habilitation Thesis are placed in this context and are the fruit a double approach combining both (1) observation, mainly with the ESO-VLT(I) instruments (e.g. NACO, VISIR, MIDI, AMBER, PIONIER) and (2) astrophysical modeling with different codes, including also radiation transfer (CHARRON, HDUST, FRACS). I present, in particular, the results obtained on three fast-rotating stars: Altair (A7V; delta Scuti), Achernar (B6Ve; Be star), and CPD-57° 2874 (supergiant B[e] star).

  18. Rotation curves of galaxies and the stellar mass-to-light ratio

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel

    2018-07-01

    Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c-Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration, and virial mass. Although accounting for a NFW dark halo profile can explain RC observations, the implied c-Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L-colour correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L ratios of 51 galaxies (30 per cent of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark haloes of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disc galaxies.

  19. The Evolution of Low-Metallicity Massive Stars

    NASA Astrophysics Data System (ADS)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear burning products in the same ratio as observed today in globular clusters stars. Further elaborating the fast rotating TWUIN star models, we predict that some of them will become Wolf-Rayet stars near the end of their lives. From this we show that our models can self-consistently explain both the high ionizing flux and the number of Wolf-Rayet stars in I Zwicky 18. Moreover, some of our models are predicted to explode as long-duration gamma-ray bursts. Thus, we speculate that the high ionizing flux observed can be a signpost for upcoming gamma-ray bursts in dwarf galaxies. Although our models have been applied to interpret observations of globular clusters and dwarf galaxies, we point out that they could also be used in the context of other low-metallicity environments as well. Understanding the early Universe, for example, requires to have a solid knowledge of how massive stars at low-metallicity live and interact with their environments. Thus, we expect that the models and results presented in this thesis will be beneficial for not only the massive star community, but for the broader astronomy and cosmology community as well.

  20. The connection between mass, environment, and slow rotation in simulated galaxies

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Schaye, Joop; Bahé, Yannick; Van de Sande, Jesse; Kay, Scott T.; Barnes, David; Davis, Timothy A.; Dalla Vecchia, Claudio

    2018-06-01

    Recent observations from integral field spectroscopy (IFS) indicate that the fraction of galaxies that are slow rotators (SRs), FSR, depends primarily on stellar mass, with no significant dependence on environment. We investigate these trends and the formation paths of SRs using the EAGLE and HYDRANGEA hydrodynamical simulations. EAGLE consists of several cosmological boxes of volumes up to (100 Mpc)^3, while HYDRANGEA consists of 24 cosmological simulations of galaxy clusters and their environment. Together they provide a statistically significant sample in the stellar mass range 10^{9.5}-10^{12.3} M_{⊙}, of 16 358 galaxies. We construct IFS-like cubes and measure stellar spin parameters, λR, and ellipticities, allowing us to classify galaxies into slow/fast rotators as in observations. The simulations display a primary dependence of FSR on stellar mass, with a weak dependence on environment. At fixed stellar mass, satellite galaxies are more likely to be SRs than centrals. FSR shows a dependence on halo mass at fixed stellar mass for central galaxies, while no such trend is seen for satellites. We find that ≈70 per cent of SRs at z = 0 have experienced at least one merger with mass ratio ≥0.1, with dry mergers being at least twice more common than wet mergers. Individual dry mergers tend to decrease λR, while wet mergers mostly increase it. However, 30 per cent of SRs at z = 0 have not experienced mergers, and those inhabit haloes with median spins twice smaller than the haloes hosting the rest of the SRs. Thus, although the formation paths of SRs can be varied, dry mergers and/or haloes with small spins dominate.

  1. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024more » cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.« less

  2. Implications of Stellar Feedback for Dynamical Modeling of the Milky Way and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Wetzel, Andrew

    2018-04-01

    I will present recent results on dynamical modeling of stellar populations from the FIRE cosmological zoom-in baryonic simulations of Milky Way-like and dwarf galaxies. First, I will discuss the dynamical formation of the Milky Way, including the origin of thin+thick stellar disk morphology. I also will discuss the curious origin of metal-rich stars on halo-like orbits near the Sun, as recently measured by Gaia, with new insights from FIRE simulations on stellar radial migration/heating. Next, I will discuss role of stellar feedback in generating non-equilibrium fluctuations of the gravitational potential in low-mass 'dwarf' galaxies, which can explain the origin of cores in their dark-matter density profiles. In particular, we predict significant observable effects on stellar dynamics, including radial migration, size fluctuations, and population gradients, which can provide observational tests of feedback-driven core formation. Finally, this scenario can explain the formation of newly discovered 'ultra-diffuse' galaxies.

  3. The β Pictoris association low-mass members: Membership assessment, rotation period distribution, and dependence on multiplicity

    NASA Astrophysics Data System (ADS)

    Messina, S.; Lanzafame, A. C.; Malo, L.; Desidera, S.; Buccino, A.; Zhang, L.; Artemenko, S.; Millward, M.; Hambsch, F.-J.

    2017-10-01

    Context. Low-mass members of young loose stellar associations and open clusters exhibit a wide spread of rotation periods. Such a spread originates from the distributions of masses and initial rotation periods. However, multiplicity can also play a significant role. Aims: We aim to investigate the role played by physical companions in multiple systems in shortening the primordial disk lifetime, anticipating the rotation spin up with respect to single stars. Methods: We have compiled the most extensive list to date of low-mass bona fide and candidate members of the young 25-Myr β Pictoris association. We have measured from our own photometric time series or from archival time series the rotation periods of almost all members. In a few cases the rotation periods were retrieved from the literature. We used updated UVWXYZ components to assess the membership of the whole stellar sample. Thanks to the known basic properties of most members we built the rotation period distribution distinguishing between bona fide members and candidate members and according to their multiplicity status. Results: We find that single stars and components of multiple systems in wide orbits (>80 AU) have rotation periods that exhibit a well defined sequence arising from mass distribution with some level of spread likely arising from initial rotation period distribution. All components of multiple systems in close orbits (<80 AU) have rotation periods that are significantly shorter than their equal-mass single counterparts. For these close components of multiple systems a linear dependence of rotation rate on separation is only barely detected. A comparison with the younger 13 Myr h Per cluster and with the older 40-Myr open clusters and stellar associations NGC 2547, IC 2391, Argus, and IC 2602 and the 130-Myr Pleiades shows that whereas the evolution of F-G stars is well reproduced by angular momentum evolution models, this is not the case for the slow K and early-M stars. Finally, we find that the amplitude of their light curves is correlated neither with rotation nor with mass. Conclusions: Once single stars and wide components of multiple systems are separated from close components of multiple systems, the rotation period distributions exhibit a well defined dependence on mass that allows us to make a meaningful comparison with similar distributions of either younger or older associations and clusters. Such cleaned distributions allow us to use the stellar rotation period meaningfully as an age indicator for F and G type stars. Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A3

  4. Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars.

    PubMed

    van Saders, Jennifer L; Ceillier, Tugdual; Metcalfe, Travis S; Aguirre, Victor Silva; Pinsonneault, Marc H; García, Rafael A; Mathur, Savita; Davies, Guy R

    2016-01-14

    A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of 'gyrochronology' uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period-age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can--unlike existing models--reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.

  5. Exploring Algorithms for Stellar Light Curves With TESS

    NASA Astrophysics Data System (ADS)

    Buzasi, Derek

    2018-01-01

    The Kepler and K2 missions have produced tens of thousands of stellar light curves, which have been used to measure rotation periods, characterize photometric activity levels, and explore phenomena such as differential rotation. The quasi-periodic nature of rotational light curves, combined with the potential presence of additional periodicities not due to rotation, complicates the analysis of these time series and makes characterization of uncertainties difficult. A variety of algorithms have been used for the extraction of rotational signals, including autocorrelation functions, discrete Fourier transforms, Lomb-Scargle periodograms, wavelet transforms, and the Hilbert-Huang transform. In addition, in the case of K2 a number of different pipelines have been used to produce initial detrended light curves from the raw image frames.In the near future, TESS photometry, particularly that deriving from the full-frame images, will dramatically further expand the number of such light curves, but details of the pipeline to be used to produce photometry from the FFIs remain under development. K2 data offers us an opportunity to explore the utility of different reduction and analysis tool combinations applied to these astrophysically important tasks. In this work, we apply a wide range of algorithms to light curves produced by a number of popular K2 pipeline products to better understand the advantages and limitations of each approach and provide guidance for the most reliable and most efficient analysis of TESS stellar data.

  6. Rotations and Abundances of Blue Horizontal-Branch Stars in Globular Cluster M15.

    PubMed

    Behr; Cohen; McCarthy

    2000-03-01

    High-resolution optical spectra of 18 blue horizontal-branch stars in the globular cluster M15 indicate that their stellar rotation rates and photospheric compositions vary strongly as a function of effective temperature. Among the cooler stars in the sample, at Teff approximately 8500 K, metal abundances are in rough agreement with the canonical cluster metallicity, and the vsini rotations appear to have a bimodal distribution, with eight stars at vsini<15 km s-1 and two stars at vsini approximately 35 km s-1. Most of the stars at Teff>/=10,000 K, however, are slowly rotating, vsini<7 km s-1, and their iron and titanium are enhanced by a factor of 300 to solar abundance levels. Magnesium maintains a nearly constant abundance over the entire range of Teff, and helium is depleted by factors of 10-30 in three of the hotter stars. Diffusion effects in the stellar atmospheres are the most likely explanation for these large differences in composition. Our results are qualitatively very similar to those previously reported for M13 and NGC 6752, but with even larger enhancement amplitudes, presumably due to the increased efficiency of radiative levitation at lower intrinsic [Fe/H]. We also see evidence for faster stellar rotation explicitly preventing the onset of the diffusion mechanisms among a subset of the hotter stars.

  7. Why I-Love-Q: Explaining why universality emerges in compact objects

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Stein, Leo C.; Pappas, George; Yunes, Nicolás; Apostolatos, Theocharis A.

    2014-09-01

    Black holes are said to have no hair because all of their multipole moments can be expressed in terms of just their mass, charge and spin angular momentum. The recent discovery of approximately equation-of-state-independent relations among certain multipole moments in neutron stars suggests that they are also approximately bald. We here explore the yet unknown origin for this universality. First, we investigate which region of the neutron star's interior and of the equation of state is most responsible for the universality. We find that the universal relation between the moment of inertia and the quadrupole moment is dominated by the star's outer core, a shell of width 50%-95% of the total radius, which corresponds to the density range 1014-1015 g/cm3. In this range, realistic neutron star equations of state are not sufficiently similar to each other to explain the universality observed. Second, we study the impact on the universality of approximating stellar isodensity contours as self-similar ellipsoids. An analytical calculation in the nonrelativistic limit reveals that the shape of the ellipsoids per se does not affect the universal relations much, but relaxing the self-similarity assumption can completely destroy it. Third, we investigate the eccentricity profiles of rotating relativistic stars and find that the stellar eccentricity is roughly constant, with variations of roughly 20%-30% in the region that matters to the universal relations. Fourth, we repeat the above analysis for differentially rotating, noncompact, regular stars and find that this time the eccentricity is not constant, with variations that easily exceed 100%, and moreover universality is lost. These findings suggest that universality arises as an emergent approximate symmetry: as one flows in the stellar-structure phase space from noncompact star region to the relativistic star region, the eccentricity variation inside stars decreases, leading to approximate self-similarity in their isodensity contours, which then leads to the universal behavior observed in their exterior multipole moments.

  8. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E. M.; Van Grootel, V.; Bergeron, P.; Zong, W.; Dupret, M.-A.

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars—in particular their oxygen content and the stratification of their cores—is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  9. The growth of discs and bulges during hierarchical galaxy formation - II. Metallicity, stellar populations and dynamical evolution

    NASA Astrophysics Data System (ADS)

    Tonini, C.; Mutch, S. J.; Wyithe, J. S. B.; Croton, D. J.

    2017-03-01

    We investigate the properties of the stellar populations of model galaxies as a function of galaxy evolutionary history and angular momentum content. We use the new semi-analytic model presented in Tonini et al. This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass-stellar metallicity relation for galaxies above 1010 solar masses, including Brightest Cluster Galaxies. Model discs, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass-size relation, which we find to be in accord with the ATLAS 3D classification of disc galaxies, fast rotators and slow rotators. We find that the stellar populations' properties depend on the galaxy evolutionary type, with more evolved stellar populations being part of systems that have lost or dissipated more angular momentum during their assembly history.

  10. Wavelet analysis of stellar differential rotation. III. The Sun in white light

    NASA Astrophysics Data System (ADS)

    Hempelmann, A.

    2003-02-01

    Future space projects like KEPLER will deliver a vast quantity of high precision light curves of stars. This paper describes a test concerning the observability of rotation and even differential rotation of slowly rotating stars from such data. Two published light curves of solar total irradiance measures are investigated: the Nimbus-7 Earth Radiation Budget (ERB) observations between 1978 and 1993 and the Active Cavity Radiometer Irradiance Monitor I (ACRIM I) measurements between 1980 and 1989. Light curve analysis show that oscillations on time-scales comparable to solar rotation but of a complex pattern are visible. Neither Fourier analysis nor time-frequency Wavelet analysis yield the true rotation period during the more active phases of the solar cycle. The true rotation period dominates only for a short time during solar minimum. In the light of this study even space-born broad band photometry may turn out an inappropriate instrument to study stellar butterfly diagrams of stars rotating as slow as the Sun. However, it was shown in Papers I and II of this series that chromospheric tracers like Lyman alpha , Mg II h+k and CaII H+K are appropriate instruments to perform this task.

  11. Spectrally resolved interferometric observations of α Cephei and physical modeling of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Delaa, O.; Zorec, J.; Domiciano de Souza, A.; Mourard, D.; Perraut, K.; Stee, Ph.; Frémat, Y.; Monnier, J.; Kraus, S.; Che, X.; Bério, Ph.; Bonneau, D.; Clausse, J. M.; Challouf, M.; Ligi, R.; Meilland, A.; Nardetto, N.; Spang, A.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2013-07-01

    Context. When a given observational quantity depends on several stellar physical parameters, it is generally very difficult to obtain observational constraints for each of them individually. Therefore, we studied under which conditions constraints for some individual parameters can be achieved for fast rotators, knowing that their geometry is modified by the rapid rotation which causes a non-uniform surface brightness distribution. Aims: We aim to study the sensitivity of interferometric observables on the position angle of the rotation axis (PA) of a rapidly rotating star, and whether other physical parameters can influence the determination of PA, and also the influence of the surface differential rotation on the determination of the β exponent in the gravity darkening law that enters the interpretation of interferometric observations, using α Cep as a test star. Methods: We used differential phases obtained from observations carried out in the Hα absorption line of α Cep with the VEGA/CHARA interferometer at high spectral resolution, R = 30 000 to study the kinematics in the atmosphere of the star. Results: We studied the influence of the gravity darkening effect (GDE) on the determination of the PA of the rotation axis of α Cep and determined its value, PA = -157-10°+17°. We conclude that the GDE has a weak influence on the dispersed phases. We showed that the surface differential rotation can have a rather strong influence on the determination of the gravity darkening exponent. A new method of determining the inclination angle of the stellar rotational axis is suggested. We conclude that differential phases obtained with spectro-interferometry carried out on the Hα line can in principle lead to an estimate of the stellar inclination angle i. However, to determine both i and the differential rotation parameter α, lines free from the Stark effect and that have collision-dominated source functions are to be preferred.

  12. Spatially Resolved Stellar Kinematics from LEGA-C: Increased Rotational Support in z ∼ 0.8 Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; van der Wel, Arjen; Pacifici, Camilla; Noeske, Kai; Barišić, Ivana; Bell, Eric F.; Brammer, Gabriel B.; Calhau, Joao; Chauke, Priscilla; van Dokkum, Pieter; Franx, Marijn; Gallazzi, Anna; van Houdt, Josha; Labbé, Ivo; Maseda, Michael V.; Muños-Mateos, Juan Carlos; Muzzin, Adam; van de Sande, Jesse; Sobral, David; Straatman, Caroline; Wu, Po-Feng

    2018-05-01

    We present stellar rotation curves and velocity dispersion profiles for 104 quiescent galaxies at z = 0.6–1 from the Large Early Galaxy Astrophysics Census (LEGA-C) spectroscopic survey. Rotation is typically probed across 10–20 kpc, or to an average of 2.7Re. Combined with central stellar velocity dispersions (σ0) this provides the first determination of the dynamical state of a sample selected by a lack of star formation activity at large lookback time. The most massive galaxies (M⋆ > 2 × 1011 M⊙) generally show no or little rotation measured at 5 kpc (| {V}5| /{σ }0< 0.2 in eight of ten cases), while ∼64% of less massive galaxies show significant rotation. This is reminiscent of local fast- and slow-rotating ellipticals and implies that low- and high-redshift quiescent galaxies have qualitatively similar dynamical structures. We compare | {V}5| /{σ }0 distributions at z ∼ 0.8 and the present day by re-binning and smoothing the kinematic maps of 91 low-redshift quiescent galaxies from the Calar Alto Legacy Integral Field Area (CALIFA) survey and find evidence for a decrease in rotational support since z ∼ 1. This result is especially strong when galaxies are compared at fixed velocity dispersion; if velocity dispersion does not evolve for individual galaxies then the rotational velocity at 5 kpc was an average of 94 ± 22% higher in z ∼ 0.8 quiescent galaxies than today. Considering that the number of quiescent galaxies grows with time and that new additions to the population descend from rotationally supported star-forming galaxies, our results imply that quiescent galaxies must lose angular momentum between z ∼ 1 and the present, presumably through dissipationless merging, and/or that the mechanism that transforms star-forming galaxies also reduces their rotational support.

  13. Stellar Properties of Embedded Protostars: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Greene, Thomas

    2006-01-01

    Until now, high extinctions have prevented direct observation of the central objects of self-embedded, accreting protostars. However, sensitive high dispersion spectrographs on large aperture telescopes have allowed us to begin studying the stellar astrophysical properties of dozens of embedded low mass protostars in the nearest regions of star formation. These high dispersion spectra allow, for the first time, direct measurements of their stellar effective temperatures, surface gravities, rotation velocities, radial velocities (and spectroscopic binarity), mass accretion properties, and mass outflow indicators. Comparisons of the stellar properties with evolutionary models also allow us to estimate masses and constrain ages. We find that these objects have masses similar to those of older, more evolved T Tauri stars, but protostars have higher mean rotation velocities and angular momenta. Most protostars indicate high mass accretion or outflow, but some in Taurus-Auriga appear to be relatively quiescent. These new results are testing, expanding, and refining the standard star formation paradigm, and we explore how to expand this work further.

  14. Core radial electric field and transport in Wendelstein 7-X plasmas

    NASA Astrophysics Data System (ADS)

    Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team

    2018-02-01

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.

  15. DIRECTED SEARCHES FOR BROADBAND EXTENDED GRAVITATIONAL WAVE EMISSION IN NEARBY ENERGETIC CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Putten, Maurice H. P. M., E-mail: mvp@sejong.ac.kr

    2016-03-10

    Core-collapse supernovae (CC-SNe) are factories of neutron stars and stellar-mass black holes. SNe Ib/c stand out as potentially originating in relatively compact stellar binaries and they have a branching ratio of about 1% into long gamma-ray bursts. The most energetic events probably derive from central engines harboring rapidly rotating black holes, wherein the accretion of fall-back matter down to the innermost stable circular orbit (ISCO) offers a window into broadband extended gravitational wave emission (BEGE). To search for BEGE, we introduce a butterfly filter in time–frequency space by time-sliced matched filtering. To analyze long epochs of data, we propose usingmore » coarse-grained searches followed by high-resolution searches on events of interest. We illustrate our proposed coarse-grained search on two weeks of LIGO S6 data prior to SN 2010br (z = 0.002339) using a bank of up to 64,000 templates of one-second duration covering a broad range in chirp frequencies and bandwidth. Correlating events with signal-to-noise ratios > 6 from the LIGO L1 and H1 detectors reduces the total to a few events of interest. Lacking any further properties reflecting a common excitation by broadband gravitational radiation, we disregarded these as spurious. This new pipeline may be used to systematically search for long-duration chirps in nearby CC-SNe from robotic optical transient surveys using embarrassingly parallel computing.« less

  16. Steady Flow Generated by a Core Oscillating in a Rotating Spherical Cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Subbotin, S. V.

    2018-01-01

    Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).

  17. Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas

    NASA Astrophysics Data System (ADS)

    Pablant, Novimir

    2016-10-01

    Results from the investigation of core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Neoclassical particle fluxes are not intrinsically ambipolar, which leads to the formation of a radial electric field that enforces ambipolarity. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity from the x-ray imaging crystal spectrometer (XICS) and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥ 5km /s (ΔEr 12kV / m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW . These experiments are examined in detail to explore the relationship between, heating power, response of the temperature and density profiles and the response of the radial electric field. Estimations of the core transport are based on power balance and utilize electron temperature (Te) profiles from the ECE and Thomson scattering, electron density profiles (ne) from interferometry and Thomson scattering, ion temperature (Ti) profiles from XICS, along with measurements of the total stored energy and radiated power. Also described are a set core impurity confinement experiments and results. Impurity confinement has been investigated through the injection of trace amount of argon impurity gas at the plasma edge in conjunction with measurements of the density of various ionization states of argon from the XICS and High Efficiency eXtreme-UV Overview Spectrometer (HEXOS) diagnostics. Finally the inferred Er and heat flux profiles are compared to initial neoclassical calculations using measured plasma profiles. On behalf of the W7-X Team.

  18. Evolution and fate of very massive stars

    NASA Astrophysics Data System (ADS)

    Yusof, Norhasliza; Hirschi, Raphael; Meynet, Georges; Crowther, Paul A.; Ekström, Sylvia; Frischknecht, Urs; Georgy, Cyril; Abu Kassim, Hasan; Schnurr, Olivier

    2013-08-01

    There is observational evidence that supports the existence of very massive stars (VMS) in the local universe. First, VMS (Mini ≲ 320 M⊙) have been observed in the Large Magellanic Clouds (LMC). Secondly, there are observed supernovae (SNe) that bear the characteristics of pair creation supernovae (PCSNe, also referred to as pair instability SN) which have VMS as progenitors. The most promising candidate to date is SN 2007bi. In order to investigate the evolution and fate of nearby VMS, we calculated a new grid of models for such objects, for solar, LMC and Small Magellanic Clouds (SMC) metallicities, which covers the initial mass range from 120 to 500 M⊙. Both rotating and non-rotating models were calculated using the GENEVA stellar evolution code and evolved until at least the end of helium burning and for most models until oxygen burning. Since VMS have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All the VMS, at all the metallicities studied here, end their life as WC(WO)-type Wolf-Rayet stars. Because of very important mass losses through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M⊙. A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses would be the enhanced abundances of Ne and Mg at the surface of WC stars. This feature is however not always apparent depending on the history of mass loss. At solar metallicity, none of our models is expected to explode as a PCSN. At the metallicity of the LMC, only stars more massive than 300 M⊙ are expected to explode as PCSNe. At the SMC metallicity, the mass range for the PCSN progenitors is much larger and comprises stars with initial masses between about 100 and 290 M⊙. All VMS in the metallicity range studied here produce either a Type Ib SN or a Type Ic SN but not a Type II SN. We estimate that the progenitor of SN 2007bi, assuming a SMC metallicity, had an initial mass between 160 and 175 M⊙. None of models presented in this grid produces gamma-ray bursts or magnetars. They lose too much angular momentum by mass loss or avoid the formation of a black hole by producing a completely disruptive PCSN.

  19. Exploring the optical contrast effect in strong atomic lines for exoplanets transiting active stars

    NASA Astrophysics Data System (ADS)

    Cauley, Paul W.; Redfield, Seth

    2017-01-01

    Transmission spectroscopy is a powerful tool for detecting and characterizing planetary atmospheres. Non-photospheric features on the stellar disk, however, can contaminate the planetary signal: during transit the observed spectrum is weighted towards the features not currently being occulted by the planet. This contrast effect can mimic absorption in the planetary atmosphere for strong atomic lines such as Na I, Ca II, and the hydrogen Balmer lines. While the contrast effect is negligible for quiet stars, contributions to the transmission signal from active stellar surfaces can produce ~1% changes in the line core. It is therefore critical that these contrast signals be differentiated from true absorption features in the planetary atmosphere. Here we present our work on simulating the contrast effect for an active stellar surface. We discuss the particular case of HD 189733 b, a well-studied hot Jupiter orbiting an active K-dwarf, due to the plethora of atomic absorption signals reported in its atmosphere.Specifically, we focus on Hα to address recent suggestions that the measured in-transit signals are a result of stellar activity. In the contrast model we include center-to-limb variations and calculate limb darkening parameters as a function of wavelength across the line of interest. The model includes contributions to the spectrum from spots, faculae and plages, filaments, and the bare stellar photosphere. Stellar rotation is also included. We find that it is very difficult to reproduce the measured in-transit Hα signals for reasonable active region parameters. In addition, it is difficult to create an in-transit contrast signature that lasts for the duration of the transit unless the planet is crossing an active latitudinal belt and is always obscuring active regions. This suggests that the Hα measurements arise predominantly in the planetary atmosphere. However, the contrast effect likely contributes to these signals. Furthermore, our results could be modified if the active regions of HD 189733 b have drastically different characteristics than solar active regions. Further observations of transits across active stars will aid in disentangling the planetary signals from the stellar.

  20. Structure and Formation of Elliptical and Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf

    2009-05-01

    New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT <= -21.66 have cuspy cores—"missing light"—at small radii. Cores are well known and naturally scoured by binary black holes (BHs) formed in dissipationless ("dry") mergers. All 17 ellipticals with -21.54 <= MVT <= -15.53 do not have cores. We find a new distinct component in these galaxies: all coreless ellipticals in our sample have extra light at the center above the inward extrapolation of the outer Sérsic profile. In large ellipticals, the excess light is spatially resolved and resembles the central components predicted in numerical simulations of mergers of galaxies that contain gas. In the simulations, the gas dissipates, falls toward the center, undergoes a starburst, and builds a compact stellar component that, as in our observations, is distinct from the Sérsic-function main body of the elliptical. But ellipticals with extra light also contain supermassive BHs. We suggest that the starburst has swamped core scouring by binary BHs. That is, we interpret extra light components as a signature of formation in dissipative ("wet") mergers. Besides extra light, we find three new aspects to the ("E-E") dichotomy into two types of elliptical galaxies. Core galaxies are known to be slowly rotating, to have relatively anisotropic velocity distributions, and to have boxy isophotes. We show that they have Sérsic indices n > 4 uncorrelated with MVT . They also are α-element enhanced, implying short star-formation timescales. And their stellar populations have a variety of ages but mostly are very old. Extra light ellipticals generally rotate rapidly, are more isotropic than core Es, and have disky isophotes. We show that they have n sime 3 ± 1 almost uncorrelated with MVT and younger and less α-enhanced stellar populations. These are new clues to galaxy formation. We suggest that extra light ellipticals got their low Sérsic indices by forming in relatively few binary mergers, whereas giant ellipticals have n > 4 because they formed in larger numbers of mergers of more galaxies at once plus later heating during hierarchical clustering. We confirm that core Es contain X-ray-emitting gas whereas extra light Es generally do not. This leads us to suggest why the E-E dichotomy arose. If energy feedback from active galactic nuclei (AGNs) requires a "working surface" of hot gas, then this is present in core galaxies but absent in extra light galaxies. We suggest that AGN energy feedback is a strong function of galaxy mass: it is weak enough in small Es not to prevent merger starbursts but strong enough in giant Es and their progenitors to make dry mergers dry and to protect old stellar populations from late star formation. Finally, we verify that there is a strong dichotomy between elliptical and spheroidal galaxies. Their properties are consistent with our understanding of their different formation processes: mergers for ellipticals and conversion of late-type galaxies into spheroidals by environmental effects and by energy feedback from supernovae. In an appendix, we develop machinery to get realistic error estimates for Sérsic parameters even when they are strongly coupled. And we discuss photometric dynamic ranges necessary to get robust results from Sérsic fits. Based in part on observations obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  1. Some aspects of cool main sequence star ages derived from stellar rotation (gyrochronology)

    NASA Astrophysics Data System (ADS)

    Barnes, S. A.; Spada, F.; Weingrill, J.

    2016-09-01

    Rotation periods for cool stars can be measured with good precision by monitoring starspot light modulation. Observations have shown that the rotation periods of dwarf stars of roughly solar metallicity have such systematic dependencies on stellar age and mass that they can be used to derive reliable ages, a procedure called gyrochronology. We review the method and show illustrative cases, including recent ground- and space-based data. The age uncertainties approach 10 % in the best cases, making them a valuable complement to, and constraint on, asteroseismic or other ages. Edited, updated, and refereed version of a presentation at the WE-Heraeus-Seminar in Bad Honnef, Germany: Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models

  2. On the stellar rotation-activity connection

    NASA Technical Reports Server (NTRS)

    Rosner, R.

    1983-01-01

    The relationship between rotation rates and surface activity in late-type dwarf stars is explored in a survey of recent theoretical and observational studies. Current theoretical models of stellar-magnetic-field production and coronal activity are examined, including linear kinematic dynamo theory, nonlinear dynamos using approximations, and full numerical simulations of the MHD equations; and some typical results are presented graphically. The limitations of the modeling procedures and the constraints imposed by the physics are indicated. The statistical techniques used in establishing correlations between various observational parameters are analyzed critically, and the methods developed for quasar luminosity functions by Avni et al. (1980) are used to evaluate the effects of upper detection bounds, incomplete samples, and missing data for the case of rotation and X-ray flux data.

  3. Directivity of the radio emission from the K1 dwarf star AB Doradus

    NASA Technical Reports Server (NTRS)

    Lim, Jeremy; White, Stephen M.; Nelson, Graam J.; Benz, Arnold O.

    1994-01-01

    We present measurements of the spectrum and polarization of the flaring radio emission from the K1 dwarf star AB Doradus, together with previously reported single frequency measurements (with no polarization information) on 3 other days. On all 4 days spanning a 6 month period, the emission was strong and, when folded with the stellar rotation period, showed similar time variations with two prominant peaks at phase 0.35 and 0.75. These peaks coincide in longitude with two large starspots identified from the stellar optical light curve and have half-powe widths as small as 0.1 rotations and no larger than 0.2 rotations. The modulated emission shows no measurable circular polarization, and its two peaks have different turnover frequencies.

  4. Two-dimensional models of fast rotating early-type stars

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel

    2015-08-01

    Rotation has now become an unavoidable parameter of stellar models, but for most massive or intermediate-mass stars rotation is fast, at least of a significant fraction of the critical angular velocity. Current spherically symmetric models try to cope with this feature of the stars using various approximations, like for instance the so-called shellular rotation usually accompanied with a diffusion that is meant to represent the mixing induced by rotationally generated flows. Such approximations may be justified in the limit of slow rotation where anisotropies and associated flows are weak. However, when rotation is fast, say larger than 50% of the critical velocities the use of a spherically symmetric 1D-model is doubtful. This is not only because of the centrifugal flattening of the star, but also because of the flows that are induced by the baroclinic torque that naturally appears in the radiative envelope of an early-type (rotating) star. These flows face the cylindrical symmetry of the Coriolis force and the spheroidal symmetry of the effective gravity.In this talk I shall present the latest results of the ESTER project that has taken up the challenge of making two-dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I will focus on main sequence massive and intermediate-mass stars. I'll show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangential cylinder of the core. I'll also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I shall finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I'll also discuss how 2D models can help to recover the fundamental parameters of a star.

  5. Modelling the dynamo in fully convective M-stars

    NASA Astrophysics Data System (ADS)

    Yadav, Rakesh Kumar; Christensen, Ulrich; Morin, Julien; Wolk, Scott; Poppenhaeger, Katja; Reiners, Ansgar; gastine, Thomas

    2017-05-01

    M-stars are among the most active and numerous stars in our galaxy. Their activity plays a fundamentally important role in shaping the exoplanetary biosphere since the habitable zones are very close to these stars. Therefore, modeling M-star activity has become a focal point in habitability studies. The fully convective members of the M-star population demand more immediate attention due to the discovery of Earth-like exoplanets around our stellar neighbors Proxima Centauri and TRAPPIST-1 which are both fully convective. The activity of these stars is driven by their convective dynamo, which may be fundamentally different from the solar dynamo due the absence of radiative cores. We model this dynamo mechanism using high-resolution 3D anelastic MHD simulations. To understand the evolution of the dynamo mechanism we simulate two cases, one with a fast enough rotation period to model a star in the `saturated' regime of the rotation-activity realtionship and the other with a slower period to represent cases in the `unsaturated' regime. We find the rotation period fundamentally controls the behavior of the dynamo solution: faster rotation promotes strong magnetic fields (of order kG) on both small and large length scales and the dipolar component of the magnetic field is dominant and stable, however, slower rotation leads to weaker magnetic fields which exhibit cyclic behavior. In this talk, I will present the simulation results and discuss how we can use them to interpret several observed features of the M-star activity.

  6. Mg II Spectral Atlas and Flux Catalog for Late-Type Stars in the Hyades Cluster

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2001-01-01

    In the course of a long-running IUE Guest Observer program, UV spectral images were obtained for more than 60 late-type members of the Hyades Cluster in order to investigate their chromospheric emissions. The emission line fluxes extracted from those observations were used to study the dependence of stellar dynamo activity upon age and rotation (IUE Observations of Rapidly Rotating Low-Mass Stars in Young Clusters: The Relation between Chromospheric Activity and Rotation). However, the details of those measurements, including a tabulation of the line fluxes, were never published. The purpose of the investigation summarized here was to extract all of the existing Hyades long-wavelength Mg II spectra in the IUE public archives in order to survey UV chromospheric emission in the cluster, thereby providing a consistent dataset for statistical and correlative studies of the relationship between stellar dynamo activity, rotation, and age over a broad range in mass.

  7. Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State

    NASA Astrophysics Data System (ADS)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi

    Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.

    We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ∼2-4 R {sub e} (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in intrinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (σ{sub inst} ∼ 25 km s{sup –1}) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, σ, h {sub 3}, and h {sub 4}) for each galaxy. Combining withmore » literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R {sub e} often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS{sup 3D} survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.« less

  9. Mass Distributions Implying Flat Galactic Rotation Curves

    ERIC Educational Resources Information Center

    Keeports, David

    2010-01-01

    The rotational speeds of stars in the disc of a spiral galaxy are virtually independent of the distances of the stars from the centre of the galaxy. In common parlance, the stellar speed versus distance plot known as a galactic rotation curve is by observation typically nearly flat. This observation provides strong evidence that most galactic…

  10. Stellar Yields of Rotating First Stars. II. Pair-instability Supernovae and Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Takahashi, Koh; Yoshida, Takashi; Umeda, Hideyuki

    2018-04-01

    Recent theory predicts that first stars are born with a massive initial mass of ≳100 M ⊙. Pair-instability supernova (PISN) is a common fate for such massive stars. Our final goal is to prove the existence of PISNe and thus the high-mass nature of the initial mass function in the early universe by conducting abundance profiling, in which properties of a hypothetical first star is constrained by metal-poor star abundances. In order to determine reliable and useful abundances, we investigate the PISN nucleosynthesis taking both rotating and nonrotating progenitors for the first time. We show that the initial and CO core mass ranges for PISNe depend on the envelope structures: nonmagnetic rotating models developing inflated envelopes have a lower shifted CO mass range of ∼70–125 M ⊙, while nonrotating and magnetic rotating models with deflated envelopes have a range of ∼80–135 M ⊙. However, we find no significant difference in explosive yields from rotating and nonrotating progenitors, except for large nitrogen production in nonmagnetic rotating models. Furthermore, we conduct the first systematic comparison between theoretical yields and a large sample of metal-poor star abundances. We find that the predicted low [Na/Mg] ∼ ‑1.5 and high [Ca/Mg] ∼0.5–1.3 abundance ratios are the most important to discriminate PISN signatures from normal metal-poor star abundances, and confirm that no currently observed metal-poor star matches with the PISN abundance. An extensive discussion on the nondetection is presented.

  11. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW Vir systems from eclipse timings. The high incidence of circumbinary substellar objects suggests that most of the planets are formed from the remaining CE material (second generation planets). Several types of pulsating star have been discovered among hot subdwarf stars, the most common are the gravity-mode sdB pulsators (V1093 Her) and their hotter siblings, the p-mode pulsating V361 Hya stars. Another class of multi-periodic pulsating hot subdwarfs has been found in the globular cluster ω Cen that is unmatched by any field star. Asteroseismology has advanced enormously thanks to the high-precision Kepler photometry and allowed stellar rotation rates to be determined, the interior structure of gravity-mode pulsators to be probed and stellar ages to be estimated. Rotation rates turned out to be unexpectedly slow calling for very efficient angular momentum loss on the red giant branch or during the helium core flash. The convective cores were found to be larger than predicted by standard stellar evolution models requiring very efficient angular momentum transport on the red giant branch. The masses of hot subdwarf stars, both single or in binaries, are the key to understand the stars’ evolution. A few pulsating sdB stars in eclipsing binaries have been found that allow both techniques to be applied for mass determination. The results, though few, are in good agreement with predictions from binary population synthesis calculations. New classes of binaries, hosting so-called extremely low mass (ELM) white dwarfs (M < 0.3 M ⊙), have recently been discovered, filling a gap in the mosaic of binary stellar evolution. Like most sdB stars the ELM white dwarfs are the stripped cores of red giants, the known companions are either white dwarfs, neutron stars (pulsars) or F- or A-type main sequence stars (“EL CVn” stars). In the near future, the Gaia mission will provide high-precision astrometry for a large sample of subdwarf stars to disentangle the different stellar populations in the field and to compare the field subdwarf population with the globular clusters’ hot subdwarfs. New fast-moving subdwarfs will allow the mass of the Galactic dark matter halo to be constrained and additional unbound hyper-velocity stars may be discovered. Subdwarf O/B stars and extremely low mass white dwarfs: atmospheric parameters and abundances, formation and evolution, binaries, planetary companions, pulsation, and kinematics.

  12. Asymmetries in Core Collapse Supernovae Revealed by Maps of Radioactive Titanium

    NASA Technical Reports Server (NTRS)

    Grefenstette, B. W.; Harrison, F. A.; Boggs, S. E.; Reynolds, S. P.; Fryer, C. L.; Madsen, K. K.; Wik, D. R.; Zoglauer, A.; Ellinger, C. I.; Alexander, D. M.; hide

    2014-01-01

    Asymmetry is required by most numerical simulations of stellar core collapse explosions, however the nature differs significantly among models. The spatial distribution of radioactive Ti-44, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion1asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which Ti-44 emission has previously been detected, but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed Ti-44 emission to that estimated from (56)Ni9, from optical light echoes, and by jet-like features seen in the X-ray and optical ejecta. Here we report on the spatial maps and spectral properties of Ti-44 in Cassiopeia A. We find the Ti-44 to be distributed non-uniformly in the un-shocked interior of the remnant. This may explain the unexpected lack of correlation between the Ti-44 and iron X-ray emission, the latter only being visible in shock heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.

  13. Nonlinear calculation of the m=1 internal kink instability in current carrying stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakatani, M.

    1978-02-01

    Nonlinear properties of the m=1 internal kink mode are shown in a low beta current carrying stellarator. The effects of the external helical magnetic fields are considered through a rotational transform and the magnetic surface is assumed to be circular. Magnetic surfaces inside the iota sub eta + iota sub sigma = 1 surface shift and deform non-circularly, while magnetic surfaces outside the iota sub eta + iota sub sigma = 1 are not disturbed, where iota sub eta is a rotational transform due to helical magnetic fields and iota sub sigma is due to a plasma current. Many highermore » harmonics are excited after the fundamental mode saturates. When the external helical magnetic fields are lowered, the m=1 tearing mode similar to that in a low beta Tokamak grows and magnetic islands appear near the iota sub eta + iota sub sigma = 1 surface. For adequate helical magnetic fields, the current carrying stellarator becomes stable against both the m=1 internal kink mode and the m=1 internal kink mode and the m=1 tearing mode, without lowering the rotational transform.« less

  14. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  15. Overview of TJ-II experiments

    NASA Astrophysics Data System (ADS)

    Sánchez, J.; Acedo, M.; Alonso, A.; Alonso, J.; Alvarez, P.; de Aragón, F.; Ascasíbar, E.; Baciero, A.; Balbín, R.; Barrera, L.; Blanco, E.; Botija, J.; Brañas, B.; de la Cal, E.; Calderón, E.; Calvo, I.; Cappa, A.; Carmona, J. A.; Carreras, B. A.; Carrasco, R.; Castejón, F.; Catalán, G.; Chmyga, A. A.; Dreval, N. B.; Chamorro, M.; Eguilior, S.; Encabo, J.; Eliseev, L.; Estrada, T.; Fernández, A.; Fernández, R.; Ferreira, J. A.; Fontdecaba, J. M.; Fuentes, C.; de la Gama, J.; García, A.; García, L.; García-Cortés, I.; García-Regaña, J. M.; Gonçalves, B.; Guasp, J.; Herranz, J.; Hidalgo, A.; Hidalgo, C.; Jiménez-Gómez, R.; Jiménez, J. A.; Jiménez, D.; Kirpitchev, I.; Komarov, A. D.; Kozachok, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; López-Bruna, D.; López-Fraguas, A.; López-Rázola, J.; López-Sánchez, A.; de la Luna, E.; Marcon, G.; Martín, F.; Martínez-Fresno, L.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melnikov, A. V.; Méndez, P.; Mirones, E.; van Milligen, B.; Nedzelskiy, I. S.; Ochando, M.; Olivares, J.; Orozco, R.; Ortiz, P.; de Pablos, J. L.; Pacios, L.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Pérez-Risco, D.; Petrov, A.; Petrov, S.; Portas, A.; Rapisarda, D.; Ríos, L.; Rodríguez, C.; Rodríguez-Rodrigo, L.; Rodríguez-Solano, E.; Romero, J.; Ros, A.; Salas, A.; Sánchez, E.; Sánchez, M.; Sánchez-Sarabia, E.; Sarasola, X.; Sarksian, K.; Silva, C.; Schchepetov, S.; Skvortsova, N.; Soleto, A.; Tabarés, F.; Tafalla, D.; Tera, J.; Tolkachev, A.; Tribaldos, V.; Vargas, V. I.; Vega, J.; Velasco, G.; Weber, M.; Wolfers, G.; Zweben, S. J.; Zurro, B.

    2007-10-01

    This paper presents an overview of experimental results and progress made in investigating the link between magnetic topology, electric fields and transport in the TJ-II stellarator. The smooth change from positive to negative electric field observed in the core region as the density is raised is correlated with global and local transport data. A statistical description of transport is emerging as a new way to describe the coupling between profiles, plasma flows and turbulence. TJ-II experiments show that the location of rational surfaces inside the plasma can, in some circumstances, provide a trigger for the development of core transitions, providing a critical test for the various models that have been proposed to explain the appearance of transport barriers in relation to magnetic topology. In the plasma core, perpendicular rotation is strongly coupled to plasma density, showing a reversal consistent with neoclassical expectations. In contrast, spontaneous sheared flows in the plasma edge appear to be coupled strongly to plasma turbulence, consistent with the expectation for turbulent driven flows. The local injection of hydrocarbons through a mobile limiter and the erosion produced by plasmas with well-known edge parameters opens the possibility of performing carbon transport studies, relevant for understanding co-deposit formation in fusion devices.

  16. A stellar census in globular clusters with MUSE: The contribution of rotation to cluster dynamics studied with 200 000 stars

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Husser, T.-O.; Dreizler, S.; Emsellem, E.; Weilbacher, P. M.; Martens, S.; Bacon, R.; den Brok, M.; Giesers, B.; Krajnović, D.; Roth, M. M.; Wendt, M.; Wisotzki, L.

    2018-02-01

    This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data, we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (>3σ) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation.

  17. Rotation-Activity Correlations in K and M Dwarfs. I. Stellar Parameters and Compilations of v sin I and P/sin I for a Large Sample of Late-K and M Dwarfs

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.; Mullan, D. J.; Paletou, F.; Gebran, M.

    2016-05-01

    The reliable determination of rotation-activity correlations (RACs) depends on precise measurements of the following stellar parameters: T eff, parallax, radius, metallicity, and rotational speed v sin I. In this paper, our goal is to focus on the determination of these parameters for a sample of K and M dwarfs. In a future paper (Paper II), we will combine our rotational data with activity data in order to construct RACs. Here, we report on a determination of effective temperatures based on the (R-I) C color from the calibrations of Mann et al. and Kenyon & Hartmann for four samples of late-K, dM2, dM3, and dM4 stars. We also determine stellar parameters (T eff, log(g), and [M/H]) using the principal component analysis-based inversion technique for a sample of 105 late-K dwarfs. We compile all effective temperatures from the literature for this sample. We determine empirical radius-[M/H] correlations in our stellar samples. This allows us to propose new effective temperatures, stellar radii, and metallicities for a large sample of 612 late-K and M dwarfs. Our mean radii agree well with those of Boyajian et al. We analyze HARPS and SOPHIE spectra of 105 late-K dwarfs, and we have detected v sin I in 92 stars. In combination with our previous v sin I measurements in M and K dwarfs, we now derive P/sin I measures for a sample of 418 K and M dwarfs. We investigate the distributions of P/sin I, and we show that they are different from one spectral subtype to another at a 99.9% confidence level. Based on observations available at Observatoire de Haute Provence and the European Southern Observatory databases and on Hipparcos parallax measurements.

  18. Testing stellar proper motions of TGAS stars using data from the HSOY, UCAC5 and PMA catalogues

    NASA Astrophysics Data System (ADS)

    Fedorov, P. N.; Akhmetov, V. S.; Velichko, A. B.

    2018-05-01

    We analyse the stellar proper motions from the Tycho-Gaia Astrometric Solution (TGAS) and those from the ground-based HSOY, UCAC5 and PMA catalogues derived by combining them with Gaia DR1 space data. Assuming that systematic differences in stellar proper motions of the two catalogues are caused by a mutual rigid-body rotation of the reference catalogue systems, we analyse components of the rotation vector between the systems. We found that the ωy component of the rotation vector is ˜1.5 mas yr-1 and it depends non-linearly on stellar magnitude for the objects of 9.5-11.5 mag used in all three comparisons of the catalogues HSOY, UCAC5 and PMA with respect to TGAS. We found that the Tycho-2 stars in TGAS appeared to have an inexplicable dependence of proper motion on stellar magnitude. We showed that the proper motions of the TGAS stars derived using AGIS differ from those obtained by the conventional (classical) method. Moreover, the application of both methods has not revealed such a difference between the proper motions of the Hipparcos and TGAS stars. An analysis of the systematic differences between the proper motions of the TGAS stars derived by the classical method and the proper motions of the HSOY, UCAC5 and PMA stars shows that the ωy component here does not depend on the magnitude. This indicates unambiguously that there is a magnitude error in the proper motions of the Tycho-2 stars derived with the AGIS.

  19. Gradient of the stellar magnetic field in measurements of hydrogen line cores

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Dimitry O.; Romanyuk, Iosif I.

    2009-04-01

    We report the observed systematic differences in longitudinal magnetic field values, obtained from measurements of metal lines and the core of the Hβ line for a number of Ap stars, having strong global magnetic fields. In overwhelming majority of cases the magnetic field values, obtained from measurements of hydrogen lines cores, is smaller then the ones obtained from metal lines. We discuss some possible explanations of this effect, the most probable of which is the existence of the gradient of the magnetic field in stellar atmospheres.

  20. Dancing to CHANGA: a self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers

    NASA Astrophysics Data System (ADS)

    Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.

    2018-04-01

    We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.

  1. Stellar Magnetism, Winds and their Effects on Planetary Environments

    NASA Astrophysics Data System (ADS)

    Vidotto, A. A.

    2016-08-01

    Here, I review some recent works on magnetism of cool, main-sequence stars, their winds and potential impact on surrounding exoplanets. The winds of these stars are very tenuous and persist during their lifetime. Although carrying just a small fraction of the stellar mass, these magnetic winds carry away angular momentum, thus regulating the rotation of the star. Since cool stars are likely to be surrounded by planets, understanding the host star winds and magnetism is a key step towards characterisation of exoplanetary environments. As rotation and activity are intimately related, the spin down of stars leads to a decrease in stellar activity with age. As a consequence, as stars age, a decrease in high-energy (X-ray, extreme ultraviolet) irradiation is observed, which can a ect the evaporation of exoplanetary atmospheres and, thus, also altering exoplanetary evolution.

  2. Is LambdaCDM consistent with the Tully-Fisher relation?

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Gunn, J. E.; Mandelbaum, R.

    2013-07-01

    We consider the question of the origin of the Tully-Fisher relation in LambdaCDM cosmology. Reproducing the observed tight relation between stellar masses and rotation velocities of disk galaxies presents a challenge for semi-analytical models and hydrodynamic simulations of galaxy formation. Here, our goal is to construct a suite of galaxy mass models that is fully consistent with observations, and that also reproduces the observed Tully-Fisher relation. We take advantage of a well-defined sample of disk galaxies in SDSS with measured rotation velocities (from long-slit spectroscopy of H-alpha), stellar bulge and disk profiles (from fits to SDSS images), and average dark matter halo masses (from stacked weak lensing of a larger, similarly-selected sample). The primary remaining freedom in the mass models come from the final dark matter halo profile (after contraction from baryon infall and, possibly, feedback) and the stellar IMF. We find that the observed velocities are reproduced by models with Kroupa IMF and NFW (i.e., unmodified) dark matter haloes for galaxies with stellar masses 10^9-10^10 M_sun. For higher stellar masses, models with contracted NFW haloes are favored. A scenario in which the amount of halo contraction varies with stellar mass is able to reproduce the observed Tully-Fisher relation over the full stellar mass range of our sample from 10^9 to 10^11 M_sun. We present this as a proof-of-concept for consistency between LambdaCDM and the Tully-Fisher relation.

  3. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less

  4. Evolution of massive stars in very young clusters and associations

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1985-01-01

    Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.

  5. Structure, Dynamics, and Deuterium Fractionation of Massive Pre-stellar Cores

    NASA Astrophysics Data System (ADS)

    Goodson, Matthew D.; Kong, Shuo; Tan, Jonathan C.; Heitsch, Fabian; Caselli, Paola

    2016-12-01

    High levels of deuterium fraction in N2H+ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ({D}{frac}{{{N}}2{{{H}}}+}\\equiv {{{N}}}2{{{D}}}+/{{{N}}}2{{{H}}}+≳ 0.1) is longer than the free-fall time, possibly 10 times longer. Here, we explore the deuteration of turbulent, magnetized cores with 3D magnetohydrodynamics simulations. We use an approximate chemical model to follow the growth in abundances of N2H+ and N2D+. We then examine the dynamics of the core using each tracer for comparison to observations. We find that the velocity dispersion of the core as traced by N2D+ appears slightly sub-virial compared to predictions of the Turbulent Core Model of McKee & Tan, except at late times just before the onset of protostar formation. By varying the initial mass surface density, the magnetic energy, the chemical age, and the ortho-to-para ratio of H2, we also determine the physical and temporal properties required for high deuteration. We find that low initial ortho-to-para ratios (≲ 0.01) and/or multiple free-fall times (≳ 3) of prior chemical evolution are necessary to reach the observed values of deuterium fraction in pre-stellar cores.

  6. Extension of the XGC code for global gyrokinetic simulations in stellarator geometry

    NASA Astrophysics Data System (ADS)

    Cole, Michael; Moritaka, Toseo; White, Roscoe; Hager, Robert; Ku, Seung-Hoe; Chang, Choong-Seock

    2017-10-01

    In this work, the total-f, gyrokinetic particle-in-cell code XGC is extended to treat stellarator geometries. Improvements to meshing tools and the code itself have enabled the first physics studies, including single particle tracing and flux surface mapping in the magnetic geometry of the heliotron LHD and quasi-isodynamic stellarator Wendelstein 7-X. These have provided the first successful test cases for our approach. XGC is uniquely placed to model the complex edge physics of stellarators. A roadmap to such a global confinement modeling capability will be presented. Single particle studies will include the physics of energetic particles' global stochastic motions and their effect on confinement. Good confinement of energetic particles is vital for a successful stellarator reactor design. These results can be compared in the core region with those of other codes, such as ORBIT3d. In subsequent work, neoclassical transport and turbulence can then be considered and compared to results from codes such as EUTERPE and GENE. After sufficient verification in the core region, XGC will move into the stellarator edge region including the material wall and neutral particle recycling.

  7. Collapse of differentially rotating neutron stars and cosmic censorship

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-07-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M2, where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M2<1, i.e. “sub-Kerr” models, we were able to find models that are dynamically unstable and that collapse promptly to a rotating black hole. Both the dynamics of the collapse and the consequent emission of gravitational waves resemble those seen for uniformly rotating stars, although with an overall decrease in the efficiency of gravitational-wave emission. For stellar models with J/M2>1, i.e. “supra-Kerr” models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  8. V471 Tauri, ballerina of the Hyades

    NASA Astrophysics Data System (ADS)

    Skillman, David R.; Patterson, Joseph

    1988-09-01

    Orbital light curves for V471 Tauri, the red dwarf-white dwarf binary in the Hyades, were obtained for the 1980-1983 observing seasons based on photometric and spectroscopic data. The results reveal the effects of tidal distortion of the secondary and a slow, transient wave which may originate from darker areas on the star's surface. A consistent ephemeris is derived. A Ca II line emission similar to that of rapidly rotating late-type stars and an additional component arising from the stellar region bathed in the white dwarf's UV-radiation field are found. An overall orbital-period decrease is noted which may be due to the strong braking of the K star's rotation by its own stellar wind, coupled with the enforcement of synchronous rotation by the tidal interaction with the white dwarf.

  9. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.

  10. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris

    2017-09-01

    High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a≳ 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 {M}⊙ pre-SN star in a close binary with a 12 {M}⊙ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter a≳ 0.8 even when the expected spin parameter from direct collapse is a≲ 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.

  11. The ALI-ARMS Code for Modeling Atmospheric non-LTE Molecular Band Emissions: Current Status and Applications

    NASA Technical Reports Server (NTRS)

    Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.

    2008-01-01

    The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.

  12. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky

    2018-06-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5–9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude ~12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun’s are rare in stars of approximately the solar mass, and that the proper conditions may be restricted to a relatively narrow range of rotation rates.

  13. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky

    2017-04-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5-9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude 12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun's are rare in stars of approximately the solar mass, and that the proper conditions may be restricted to a relatively narrow range of rotation rates.

  14. The Evolution of Massive Stars: a Selection of Facts and Questions

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  15. The Dark Matter Halo Profile Of NGC 2976 Via Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Gebhardt, K.; Hill, G. J.; van den Bosch, R. C. E.; Blanc, G. A.

    2011-01-01

    The observations of kinematics in low surface brightness (LSB) and dwarf late type galaxies have stubbornly resisted giving clear evidence for the cuspy Navarro-Frenk-White (NFW) dark matter (DM) halo profiles that simulations with ΛCDM inputs predict. Instead, most LSBs and late type dwarfs suggest cored DM halos or the observations are not yet constraining enough to rule out cusps. One viable theory to explain cored DM halos relies on the gravitational perturbation of a growing baryonic disk that is then rapidly removed causing the halo to expand to a cored equilibrium. Weakly self-interacting dark matter has also been invoked to explain cored DM halos. This problem may loom large over small galaxy formation and growth. However, different measurements can be taken to further test the apparent problem. Most previous data have relied on HI or Hα as kinematic tracers. A small number of works have studied the problem with longslit stellar kinematics. Ideally, the advantages of 2D spectroscopic coverage and a collisionless kinematic tracer would be combined. So far, NGC 2976 has made one of the cleanest cases for a cored DM halo via integral field spectroscopy in Hα. We here report on observations of NGC 2976 with the large field-of-view fiber-fed Visible Integral field Replicable Unit Spectrograph Prototype (VIRUS-P) at R=3200 to concurrently measure the gaseous and stellar kinematics and probe the DM halo. We find that the gas and stellar kinematics disagree both in the magnitude of their second velocity moments and their detailed profiles. We unexpectedly find emission features in one of NGC 2976's two large star-forming regions which may be indicative of carbon-rich Wolf-Rayet stars. A putative bar further complicates the use of gaseous tracers. We solve the Jeans equations with stellar kinematics to reevaluate the DM profile in this exemplar galaxy of the core-cusp problem.

  16. A non-local mixing-length theory able to compute core overshooting

    NASA Astrophysics Data System (ADS)

    Gabriel, M.; Belkacem, K.

    2018-04-01

    Turbulent convection is certainly one of the most important and thorny issues in stellar physics. Our deficient knowledge of this crucial physical process introduces a fairly large uncertainty concerning the internal structure and evolution of stars. A striking example is overshoot at the edge of convective cores. Indeed, nearly all stellar evolutionary codes treat the overshooting zones in a very approximative way that considers both its extent and the profile of the temperature gradient as free parameters. There are only a few sophisticated theories of stellar convection such as Reynolds stress approaches, but they also require the adjustment of a non-negligible number of free parameters. We present here a theory, based on the plume theory as well as on the mean-field equations, but without relying on the usual Taylor's closure hypothesis. It leads us to a set of eight differential equations plus a few algebraic ones. Our theory is essentially a non-mixing length theory. It enables us to compute the temperature gradient in a shrinking convective core and its overshooting zone. The case of an expanding convective core is also discussed, though more briefly. Numerical simulations have quickly improved during recent years and enabling us to foresee that they will probably soon provide a model of convection adapted to the computation of 1D stellar models.

  17. Program Package for the Analysis of High Resolution High Signal-To-Noise Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Piskunov, N.; Ryabchikova, T.; Pakhomov, Yu.; Sitnova, T.; Alekseeva, S.; Mashonkina, L.; Nordlander, T.

    2017-06-01

    The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE calculations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.

  18. Angular momentum transfer in primordial discs and the rotation of the first stars

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Bromm, Volker

    2018-05-01

    We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.

  19. Nuclear reactor apparatus

    DOEpatents

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  20. Searching for frequency multiplets in the pulsating subdwarf B star PG 1219+534

    NASA Astrophysics Data System (ADS)

    Crooke, John; Roessler, Ryan; Reed, Michael

    2017-01-01

    Subdwarf B (sdB) stars represent the stripped cores of horizontal branch stars. Pulsating sdB stars allow us to probe this important stage in evolution. Thanks to Kepler data, we now know that sdB star rotation periods are long; on the order of tens of days. This explains why they were not measured using ground-based follow-up data, which typically only spanned a week or two. Azimuthal pulsation degeneracies are removed by rotation, and so by detected pulsation frequency multiplets, we can determine pulsation modes and apply constraints to models, which tell us stellar structure. We need the ground-based observations as Kepler did not detect many p-mode pulsators, but rather almost exclusively g-mode pulsators. The shorter-period p-modes occur in hotter sdB stars, and so we need these to measure the pulsation dependence across the horizontal branch. During 2015, we observed PG 1219+534 (hereafter PG1219) over several months using our local 16 inch robotic telescope. Here we report preliminary results of processing those data to search for pulsation multiplets.

  1. Hot subdwarfs formed from the merger of two He white dwarfs

    NASA Astrophysics Data System (ADS)

    Schwab, Josiah

    2018-06-01

    We perform stellar evolution calculations of the remnant of the merger of two He white dwarfs (WDs). Our initial conditions are taken from hydrodynamic simulations of double WD mergers and the viscous disc phase that follows. We evolve these objects from shortly after the merger into their core He-burning phase, when they appear as hot subdwarf stars. We use our models to quantify the amount of H that survives the merger, finding that it is difficult for ≳ 10^{-4} M_{⊙} of H to survive, with even less being concentrated in the surface layers of the object. We also study the rotational evolution of these merger remnants. We find that mass-loss over the {˜ } 10^4 yr following the merger can significantly reduce the angular momentum of these objects. As hot subdwarfs, our models have moderate surface rotation velocities of 30-100 km s-1. The properties of our models are not representative of many apparently isolated hot subdwarfs, suggesting that those objects may form via other channels or that our modelling is incomplete. However, a sub-population of hot subdwarfs are moderate-to-rapid rotators and/or have He-rich atmospheres. Our models help to connect the observed properties of these objects to their progenitor systems.

  2. Fundamental Properties of O-Type Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry; Hubeny, Ivan

    2006-01-01

    We present a comprehensive analysis of high-resolution, far-ultraviolet HST STIS, FUSE, and optical spectra of 18 O stars in the Small Magellanic Cloud. Our analysis is based on the OSTAR2002 grid of NLTE metal-line-blanketed model atmospheres calculated with our code TLUSTY. We systematically explore and present the sensitivity of various UV and optical lines to different stellar parameters. We have obtained consistent fits of the UV and the optical spectrum to derive the effective temperature, surface gravity, surface composition, and microturbulent velocity of each star. Stellar radii, masses, and luminosities follow directly. For stars of the same spectral subtype, we find a general good agreement between effective temperature determinations obtained with TLUSTY, CMFGEN, and FASTWIND models, which are all lower than the standard T(sub eff) calibration of O stars. We propose a new calibration between the spectral type and effective temperature based on our results from UV metal lines, as well as optical hydrogen and helium lines. The lower effective temperatures translate into ionizing luminosities that are smaller by a factor of 3 compared to luminosities inferred from previous standard calibrations. The chemical composition analysis reveals that the surface of about 80% of the program stars is moderately to strongly enriched in nitrogen, while showing the original helium, carbon, and oxygen abundances. Our results support the new stellar evolution models that predict that the surface of fast rotating stars becomes nitrogen-rich during the main-sequence phase because of rotationally induced mixing. Enrichment factors are, however, larger than predicted by stellar evolution models. Most stars exhibit the "mass discrepancy" problem, which we interpret as a result of fast rotation that lowers the measured effective gravity. Nitrogen enrichment and low spectroscopic masses are therefore two manifestations of fast rotation. Our study thus emphasizes the importance of rotation in our understanding of the properties of massive stars and provides a framework for investigating populations of low-metallicity massive stars at low and high redshifts.

  3. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  4. Gas kinematics, morphology and angular momentum in the FIRE simulations

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew; Hopkins, Philip F.; Weisz, Daniel R.; Chan, T. K.; Fitts, Alex; Boylan-Kolchin, Michael; Kereš, Dušan; Faucher-Giguère, Claude-André; Garrison-Kimmel, Shea

    2018-01-01

    We study the z = 0 gas kinematics, morphology and angular momentum content of isolated galaxies in a suite of cosmological zoom-in simulations from the FIRE project spanning Mstar = 106-11 M⊙. Gas becomes increasingly rotationally supported with increasing galaxy mass. In the lowest mass galaxies (Mstar < 108 M⊙), gas fails to form a morphological disc and is primarily dispersion and pressure supported. At intermediate masses (Mstar = 108-10 M⊙), galaxies display a wide range of gas kinematics and morphologies, from thin, rotating discs to irregular spheroids with negligible net rotation. All the high-mass (Mstar = 1010-11 M⊙) galaxies form rotationally supported gas discs. Many of the haloes whose galaxies fail to form discs harbour high angular momentum gas in their circumgalactic medium. The ratio of the specific angular momentum of gas in the central galaxy to that of the dark matter halo increases significantly with galaxy mass, from 〈jgas〉/〈jDM〉 ∼ 0.1 at M_star=10^{6-7} M_{⊙} to 〈jgas〉/〈jDM〉 ∼ 2 at Mstar = 1010-11 M⊙. The reduced rotational support in the lowest mass galaxies owes to (a) stellar feedback and the UV background suppressing the accretion of high angular momentum gas at late times, and (b) stellar feedback driving large non-circular gas motions. We broadly reproduce the observed scaling relations between galaxy mass, gas rotation velocity, size and angular momentum, but may somewhat underpredict the incidence of disky, high angular momentum galaxies at the lowest observed masses (Mstar = (106-2 × 107) M⊙). Stars form preferentially from low angular momentum gas near the galactic centre and are less rotationally supported than gas. The common assumption that stars follow the same rotation curve as gas thus substantially overestimates the simulated galaxies' stellar angular momentum, particularly at low masses.

  5. Triple system HD 201433 with a SPB star component seen by BRITE - Constellation: Pulsation, differential rotation, and angular momentum transfer

    NASA Astrophysics Data System (ADS)

    Kallinger, T.; Weiss, W. W.; Beck, P. G.; Pigulski, A.; Kuschnig, R.; Tkachenko, A.; Pakhomov, Y.; Ryabchikova, T.; Lüftinger, T.; Palle, , P. L.; Semenko, E.; Handler, G.; Koudelka, O.; Matthews, J. M.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Rucinski, S.; Wade, G. A.; Zwintz, K.

    2017-07-01

    Context. Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during stellar evolution, which is still not fully understood. This is especially true for massive OB-type stars, which are important for the chemical enrichment of the Universe. It is therefore important to constrain the physical parameters and internal angular momentum distribution of massive OB-type stars to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through asteroseismic studies of rotationally split non radial oscillations but such results are still quite rare, especially for stars more massive than the Sun. The slowly pulsating B9V star HD 201433 is known to be part of a single-lined spectroscopic triple system, with two low-mass companions orbiting with periods of about 3.3 and 154 days. Aims: Our goal is to measure the internal rotation profile of HD 201433 and investigate the tidal interaction with the close companion. Methods: We used probabilistic methods to analyse the BRITE - Constellation photometry and radial velocity measurements, to identify a representative stellar model, and to determine the internal rotation profile of the star. Results: Our results are based on photometric observations made by BRITE - Constellation and the Solar Mass Ejection Imager on board the Coriolis satellite, high-resolution spectroscopy, and more than 96 yr of radial velocity measurements. We identify a sequence of nine frequency doublets in the photometric time series, consistent with rotationally split dipole modes with a period spacing of about 5030 s. We establish that HD 201433 is in principle a solid-body rotator with a very slow rotation period of 297 ± 76 days. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor of approximately one hundred. The angular momentum transfer onto the surface of HD 201433 is also reflected by the statistically significant decrease of the orbital period of about 0.9 s during the last 96 yr. Conclusions: Combining the asteroseismic inferences with the spectroscopic measurements and the orbital analysis of the inner binary system, we conclude that tidal interactions between the central SPB star and its inner companion have almost circularised the orbit. They have, however, not yet aligned all spins of the system and have just begun to synchronise rotation. Based on data collected by the BRITE - Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency and the University of Vienna, the Canadian Space Agency (CSA), and the Foundation for Polish Science & Technology (FNiTP MNiSW) and National Science Centre (NCN), the Hermes spectrograph mounted on the 1.2 m Mercator Telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and the Solar Mass Ejection Imager, which is a joint project of the University of California San Diego, Boston College, the University of Birmingham (UK), and the Air Force Research Laboratory.

  6. Kinematic fingerprint of core-collapsed globular clusters

    NASA Astrophysics Data System (ADS)

    Bianchini, P.; Webb, J. J.; Sills, A.; Vesperini, E.

    2018-03-01

    Dynamical evolution drives globular clusters towards core collapse, which strongly shapes their internal properties. Diagnostics of core collapse have so far been based on photometry only, namely on the study of the concentration of the density profiles. Here, we present a new method to robustly identify core-collapsed clusters based on the study of their stellar kinematics. We introduce the kinematic concentration parameter, ck, the ratio between the global and local degree of energy equipartition reached by a cluster, and show through extensive direct N-body simulations that clusters approaching core collapse and in the post-core collapse phase are strictly characterized by ck > 1. The kinematic concentration provides a suitable diagnostic to identify core-collapsed clusters, independent from any other previous methods based on photometry. We also explore the effects of incomplete radial and stellar mass coverage on the calculation of ck and find that our method can be applied to state-of-art kinematic data sets.

  7. The treatment of mixing in core helium-burning models - III. Suppressing core breathing pulses with a new constraint on overshoot

    NASA Astrophysics Data System (ADS)

    Constantino, Thomas; Campbell, Simon W.; Lattanzio, John C.

    2017-12-01

    Theoretical predictions for the core helium burning phase of stellar evolution are highly sensitive to the uncertain treatment of mixing at convective boundaries. In the last few years, interest in constraining the uncertain structure of their deep interiors has been renewed by insights from asteroseismology. Recently, Spruit proposed a limit for the rate of growth of helium-burning convective cores based on the higher buoyancy of material ingested from outside the convective core. In this paper we test the implications of such a limit for stellar models with a range of initial mass and metallicity. We find that the constraint on mixing beyond the Schwarzschild boundary has a significant effect on the evolution late in core helium burning, when core breathing pulses occur and the ingestion rate of helium is fastest. Ordinarily, core breathing pulses prolong the core helium burning lifetime to such an extent that models are at odds with observations of globular cluster populations. Across a wide range of initial stellar masses (0.83 ≤ M/M⊙ ≤ 5), applying the Spruit constraint reduces the core helium burning lifetime because core breathing pulses are either avoided or their number and severity reduced. The constraint suggested by Spruit therefore helps to resolve significant discrepancies between observations and theoretical predictions. Specifically, we find improved agreement for R2 (the observed ratio of asymptotic giant branch to horizontal branch stars in globular clusters), the luminosity difference between these two groups, and in asteroseismology, the mixed-mode period spacing detected in red clump stars in the Kepler field.

  8. Solar and stellar flares and their impact on planets

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari

    Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is 1029 - 1032 erg, while that of a superflare is 1033 - 1038 erg. Recently, it was found that superflares (with 1034 - 1035 erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.

  9. Multiple stellar populations in Magellanic Cloud clusters - III. The first evidence of an extended main sequence turn-off in a young cluster: NGC 1856

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Bedin, L. R.; Piotto, G.; Marino, A. F.; Cassisi, S.; Bellini, A.; Jerjen, H.; Pietrinferni, A.; Aparicio, A.; Rich, R. M.

    2015-07-01

    Recent studies have shown that the extended main-sequence turn-off (eMSTO) is a common feature of intermediate-age star clusters in the Magellanic Clouds (MCs). The most simple explanation is that these stellar systems harbour multiple generations of stars with an age difference of a few hundred million years. However, while an eMSTO has been detected in a large number of clusters with ages between ˜1-2 Gyr, several studies of young clusters in both MCs and in nearby galaxies do not find any evidence for a prolonged star formation history, i. e. for multiple stellar generations. These results have suggested alternative interpretation of the eMSTOs observed in intermediate-age star clusters. The eMSTO could be due to stellar rotation mimicking an age spread or to interacting binaries. In these scenarios, intermediate-age MC clusters would be simple stellar populations, in close analogy with younger clusters. Here, we provide the first evidence for an eMSTO in a young stellar cluster. We exploit multiband Hubble Space Telescope photometry to study the ˜300-Myr old star cluster NGC 1856 in the Large Magellanic Cloud and detected a broadened MSTO that is consistent with a prolonged star formation which had a duration of about 150 Myr. Below the turn-off, the main sequence (MS) of NGC 1856 is split into a red and blue component, hosting 33 ± 5 and 67 ± 5 per cent of the total number of MS stars, respectively. We discuss these findings in the context of multiple-stellar-generation, stellar-rotation, and interacting-binary hypotheses.

  10. SDSS-IV MaNGA: stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew A.; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-07-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the Mapping Nearby Galaxies at Apache Point Observatory survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90° in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011 M⊙ where a significant number of high-mass fast rotators also exist.

  11. SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-03-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90○ in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011M⊙ where a significant number of high-mass fast rotators also exist.

  12. Looking for Photometric Signatures of Fast Rotation in Intermediate-Age Star Clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    2017-08-01

    Recently, deep color-magnitude diagrams from HST data revealed that several massive intermediate-age star clusters in the Magellanic Clouds exhibit extended main-sequence turn-offs (eMSTOs). This discovery posed serious questions regarding the mechanisms responsible for the formation of massive globular clusters and their well-known multiple stellar populations. The nature of eMSTOs is a hotly debated topic of study. Several studies argued that the eMSTOs are caused by an age range of up to a few hundred Myr, while other studies indicate that eMSTOs can instead be caused by a coeval population in which the stars span a range of rotation velocities. Formal evidence to (dis-)prove either scenario still remains at large, in part because stellar tracks that incorporate the effects of rotation have so far only been available for masses > 1.7 Msun whereas the stars in the known eMSTOs of intermediate-age star clusters are less massive. In this proposal we aim to look for photometric signatures of fast rotators in eMSTO clusters that have been observed by HST in three passbands including (at least) F336W and F814W. We will study spreads in different stellar colors, testing against those predicted with the aid of von Zeipel's geometric study for a population of rotating stars with a significant spread in their inclination. Importantly, this spread due to the presence of rotation is predicted to occur along well-defined lines in color-color diagrams, in directions that are distinct from those in color-magnitude diagrams and distinct from the spread predicted for the age range scenario.

  13. Imaging Stellar Surface with The CHARA Array

    NASA Astrophysics Data System (ADS)

    Schaefer, Gail

    2018-04-01

    I will provide an overview of results on imaging stellar surfaces with the CHARA Array. These include imaging gravity darkening on rapid rotators, starspots on magnetically active stars, convective cells on red supergiants, and stellar winds from massive stars. In binary systems, the CHARA Array has been used to observe tidal distortions from Roche lobe filling in interactive binaries, transiting companions as they move through eclipse, and the angular expansion of novae explosions. I will discuss the impact of these results in an astrophysical context.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Sanchis-Ojeda, Roberto; Winn, Joshua N.

    We present a test for spin-orbit alignment for the host stars of 25 candidate planetary systems detected by the Kepler spacecraft. The inclination angle of each star's rotation axis was estimated from its rotation period, rotational line broadening, and radius. The rotation periods were determined using the Kepler photometric time series. The rotational line broadening was determined from high-resolution optical spectra with the Subaru High Dispersion Spectrograph. Those same spectra were used to determine the star's photospheric parameters (effective temperature, surface gravity, metallicity), which were then interpreted with stellar-evolutionary models to determine stellar radii. We combine the new sample withmore » the seven stars from our previous work on this subject, finding that the stars show a statistical tendency to have inclinations near 90°, in alignment with the planetary orbits. Possible spin-orbit misalignments are seen in several systems, including three multiple-planet systems (KOI-304, 988, 2261). Ideally, these systems should be scrutinized with complementary techniques, such as the Rossiter-McLaughlin effect, starspot-crossing anomalies, or asteroseismology, but the measurements will be difficult owing to the relatively faint apparent magnitudes and small transit signals in these systems.« less

  15. Rotating stellar populations in the Fornax dSph galaxy

    NASA Astrophysics Data System (ADS)

    del Pino, Andrés; Aparicio, Antonio; Hidalgo, Sebastian L.; Łokas, Ewa L.

    2017-03-01

    We present a novel analysis of the internal kinematics of the Fornax dwarf spheroidal galaxy. Our results are based on the largest sample of spectroscopic data for Fornax stars presently available (>2500 stars), for which we have chemical and kinematic information. We introduce new software, BEACON, designed to detect chemo-kinematic patterns among stars of different stellar populations using their metallicity and velocity along the line of sight. Applying BEACON to Fornax, we have detected non-negligible rotation signals around main optical axes of the galaxy, characteristic for a triaxial system partially supported by rotation. The dominant rotation pattern is relatively strong (∼12 km s-1), but the galaxy also shows additional weaker albeit complex rotation patterns. Using the information available from the star formation history of Fornax, we have also derived the average age of the different chemo-kinematic components found by BEACON, which has allowed us to obtain its kinematic history. Our results point to a possible major merger suffered by Fornax at redshift z ∼ 1, in agreement with the previous works.

  16. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less

  17. Constraining convective regions with asteroseismic linear structural inversions

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.

    2018-01-01

    Context. Convective regions in stellar models are always associated with uncertainties, for example, due to extra-mixing or the possible inaccurate position of the transition from convective to radiative transport of energy. Such inaccuracies have a strong impact on stellar models and the fundamental parameters we derive from them. The most promising method to reduce these uncertainties is to use asteroseismology to derive appropriate diagnostics probing the structural characteristics of these regions. Aims: We wish to use custom-made integrated quantities to improve the capabilities of seismology to probe convective regions in stellar interiors. By doing so, we hope to increase the number of indicators obtained with structural seismic inversions to provide additional constraints on stellar models and the fundamental parameters we determine from theoretical modeling. Methods: First, we present new kernels associated with a proxy of the entropy in stellar interiors. We then show how these kernels can be used to build custom-made integrated quantities probing convective regions inside stellar models. We present two indicators suited to probe convective cores and envelopes, respectively, and test them on artificial data. Results: We show that it is possible to probe both convective cores and envelopes using appropriate indicators obtained with structural inversion techniques. These indicators provide direct constraints on a proxy of the entropy of the stellar plasma, sensitive to the characteristics of convective regions. These constraints can then be used to improve the modeling of solar-like stars by providing an additional degree of selection of models obtained from classical forward modeling approaches. We also show that in order to obtain very accurate indicators, we need ℓ = 3 modes for the envelope but that the core-conditions indicator is more flexible in terms of the seismic data required for its use.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Jason W., E-mail: jwbarnes@uidaho.ed

    Main-sequence stars earlier than spectral-type approxF6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbitmore » alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbit aligned, and some are not. Since Rossiter-McLaughlin measurements are difficult around rapid rotators, lightcurve photometry may be the best way to determine the spin-orbit alignment of planets around massive stars. The Kepler mission will monitor approx10{sup 4} of these stars within its sample. The lightcurves of any detected planets will allow us to probe the planet formation process around high-mass stars for the first time.« less

  19. THE EFFECT OF WARM DARK MATTER ON GALAXY PROPERTIES: CONSTRAINTS FROM THE STELLAR MASS FUNCTION AND THE TULLY-FISHER RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Xi; Maccio, Andrea V.; Dutton, Aaron A.

    2013-04-10

    In this paper, we combine high-resolution N-body simulations with a semi-analytical model of galaxy formation to study the effects of a possible warm dark matter (WDM) component on the observable properties of galaxies. We compare three WDM models with a dark matter (DM) mass of 0.5, 0.75, and 2.0 keV with the standard cold dark matter case. For a fixed set of parameters describing the baryonic physics, the WDM models predict fewer galaxies at low (stellar) masses, as expected due to the suppression of power on small scales, while no substantial difference is found at the high-mass end. However, thesemore » differences in the stellar mass function vanish when a different set of parameters is used to describe the (largely unknown) galaxy formation processes. We show that it is possible to break this degeneracy between DM properties and the parameterization of baryonic physics by combining observations on the stellar mass function with the Tully-Fisher relation (the relation between stellar mass and the rotation velocity at large galactic radii as probed by resolved H I rotation curves). WDM models with a too warm candidate (m{sub {nu}} < 0.75 keV) cannot simultaneously reproduce the stellar mass function and the Tully-Fisher relation. We conclude that accurate measurements of the galaxy stellar mass function and the link between galaxies and DM halos down to the very low mass end can give very tight constraints on the nature of DM candidates.« less

  20. The VLT-FLAMES survey of massive stars: mass loss and rotation of early-type stars in the SMC

    NASA Astrophysics Data System (ADS)

    Mokiem, M. R.; de Koter, A.; Evans, C. J.; Puls, J.; Smartt, S. J.; Crowther, P. A.; Herrero, A.; Langer, N.; Lennon, D. J.; Najarro, F.; Villamariz, M. R.; Yoon, S.-C.

    2006-09-01

    We have studied the optical spectra of a sample of 31 O-and early B-type stars in the Small Magellanic Cloud, 21 of which are associated with the young massive cluster NGC 346. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005, A&A, 441, 711), which combines the stellar atmosphere code FASTWIND (Puls et al. 2005, A&A, 435, 669) with the genetic algorithm based optimisation routine PIKAIA (Charbonneau 1995, ApJS, 101, 309). Comparison with predictions of stellar evolution that account for stellar rotation does not result in a unique age, though most stars are best represented by an age of 1-3 Myr. The automated method allows for a detailed determination of the projected rotational velocities. The present day v_r sin i distribution of the 21 dwarf stars in our sample is consistent with an underlying rotational velocity (v_r) distribution that can be characterised by a mean velocity of about 160 - 190 km s-1 and an effective half width of 100 - 150 km s-1. The vr distribution must include a small percentage of slowly rotating stars. If predictions of the time evolution of the equatorial velocity for massive stars within the environment of the SMC are correct (Maeder & Meynet 2001, A&A, 373, 555), the young age of the cluster implies that this underlying distribution is representative for the initial rotational velocity distribution. The location in the Hertzsprung-Russell diagram of the stars showing helium enrichment is in qualitative agreement with evolutionary tracks accounting for rotation, but not for those ignoring v_r. The mass loss rates of the SMC objects having luminosities of log L*/L⊙ ≳ 5.4 are in excellent agreement with predictions by Vink et al. (2001, A&A, 369, 574). However, for lower luminosity stars the winds are too weak to determine dot{M} accurately from the optical spectrum. Three targets were classifiedas Vz stars, two of which are located close to the theoretical zero-age main sequence. Three lower luminosity targets that were not classified as Vz stars are also found to lie near the ZAMS. We argue that this is related to a temperature effect inhibiting cooler from displaying the spectral features required for the Vz luminosity class.

  1. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.

    PubMed

    Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva

    2016-01-21

    Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.

  2. Constraints on the Progenitor System of SN 2016gkg from a Comprehensive Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Sravan, Niharika; Marchant, Pablo; Kalogera, Vassiliki; Margutti, Raffaella

    2018-01-01

    Type IIb supernovae (SNe) present a unique opportunity for understanding the progenitors of stripped-envelope SNe because the stellar progenitor of several SNe IIb have been identified in pre-explosion images. In this paper, we use Bayesian inference and a large grid of non-rotating solar-metallicity single and binary stellar models to derive the associated probability distributions of single and binary progenitors of the SN IIb 2016gkg using existing observational constraints. We find that potential binary star progenitors have smaller pre-SN hydrogen-envelope and helium-core masses than potential single-star progenitors typically by 0.1 M ⊙ and 2 M ⊙, respectively. We find that, a binary companion, if present, is a main-sequence or red-giant star. Apart from this, we do not find strong constraints on the nature of the companion star. We demonstrate that the range of progenitor helium-core mass inferred from observations could help improve constraints on the progenitor. We find that the probability that the progenitor of SN 2016gkg was a binary is 22% when we use constraints only on the progenitor luminosity and effective temperature. Imposing the range of pre-SN progenitor hydrogen-envelope mass and radius inferred from SN light curves, the probability that the progenitor is a binary increases to 44%. However, there is no clear preference for a binary progenitor. This is in contrast to binaries being the currently favored formation channel for SNe IIb. Our analysis demonstrates the importance of statistical inference methods to constrain progenitor channels.

  3. Core radial electric field and transport in Wendelstein 7-X plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pablant, N. A.; Langenberg, A.; Alonso, A.

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less

  4. Radio Measurements of the Stellar Proper Motions in the Core of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Dzib, Sergio A.; Loinard, Laurent; Rodríguez, Luis F.; Gómez, Laura; Forbrich, Jan; Menten, Karl M.; Kounkel, Marina A.; Mioduszewski, Amy J.; Hartmann, Lee; Tobin, John J.; Rivera, Juana L.

    2017-01-01

    Using multi-epoch Very Large Array observations, covering a time baseline of 29.1 years, we have measured the proper motions of 88 young stars with compact radio emission in the core of the Orion Nebula Cluster (ONC) and the neighboring BN/KL region. Our work increases the number of young stars with measured proper motion at radio frequencies by a factor of 2.5 and enables us to perform a better statistical analysis of the kinematics of the region than was previously possible. Most stars (79 out of 88) have proper motions consistent with a Gaussian distribution centered on \\overline{{μ }α \\cos δ }=1.07+/- 0.09 mas yr-1, and \\overline{{μ }δ }=-0.84+/- 0.16 mas yr-1, with velocity dispersions of {σ }α =1.08+/- 0.07 mas yr-1, {σ }δ =1.27+/- 0.15 mas yr-1. We looked for organized movements of these stars but found no clear indication of radial expansion/contraction or rotation. The remaining nine stars in our sample show peculiar proper motions that differ from the mean proper motions of the ONC by more than 3σ. One of these stars, V 1326 Ori, could have been expelled from the Orion Trapezium 7000 years ago. Two could be related to the multi-stellar disintegration in the BN/KL region, in addition to the previously known sources BN, I and n. The others either have high uncertainties (so their anomalous proper motions are not firmly established) or could be foreground objects.

  5. GHASP: an Hα kinematical survey of spiral galaxies - XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry.

    NASA Astrophysics Data System (ADS)

    Korsaga, M.; Carignan, C.; Amram, P.; Epinat, B.; Jarrett, T. H.

    2018-04-01

    We present the mass distribution of a sample of 121 nearby galaxies with high quality optical velocity fields and available infra-red WISE 3.4 μm data. Contrary to previous studies, this sample covers all morphological types and is not biased toward late-type galaxies. These galaxies are part of the Fabry-Perot kinematical GHASP survey of spirals and irregular nearby galaxies. Combining the kinematical data to the WISE surface brightness data probing the emission from the old stellar population, we derive mass models allowing us to compare the luminous to the dark matter halo mass distribution in the optical regions of those galaxies. Dark matter (DM) models are constructed using the isothermal core profile and the Navarro-Frenk-White cuspy profile. We allow the M/L of the baryonic disc to vary or we keep it fixed, constrained by stellar evolutionary models (WISE W1-W2 color) and we carry out best fit (BFM) and pseudo-isothermal maximum disc (MDM) models. We found that the MDM provides M/L values four times higher than the BFM, suggesting that disc components, on average, tend to be maximal. The main results are: (i) the rotation curves of most galaxies are better fitted with core rather than cuspy profiles; (ii) the relation between the parameters of the DM and of the luminous matter components mostly depends on morphological types. More precisely, the distribution of the DM inside galaxies depends on whether or not the galaxy has a bulge.

  6. Core radial electric field and transport in Wendelstein 7-X plasmas

    DOE PAGES

    Pablant, N. A.; Langenberg, A.; Alonso, A.; ...

    2018-02-12

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less

  7. The WIYN Open Cluster Study: A 15-Year Report

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; WOCS Collaboration

    2013-06-01

    The WIYN 3.5m telescope combines large aperture, wide field of view and superb image quality. The WIYN consortium includes investigators in numerous areas of open cluster research. The combination spawned the WIYN Open Cluster Study (WOCS) over a decade ago, with the goals of producing 1) comprehensive photometric, astrometric and spectroscopic data for new fundamental open clusters and 2) addressing key astrophysical problems with these data. The set of core WOCS open clusters spans age and metallicity. Low reddening, solar proximity and richness were also desirable features in selecting core open clusters. More than 50 WIYN Open Cluster Study papers have been published in refereed journals. Highlights include: deep and wide-field photometry of NGC 188, NGC 2168 (M35), and NGC 6819 (WOCS I, II, XI and LII); deep and wide-field proper-motion studies of the old open clusters NGC 188, NGC 2682 (M67) and NGC 6791 (WOCS XVII, XXXIII and XLVI); comprehensive radial-velocity surveys of NGC 188, NGC 2168 and NGC 6819 (WOCS XXXII, XXIV, and XXXVIII); metallicity and lithium abundances in NGC 2168 (WOCS V); comprehensive definition of the hard-binary populations of NGC 188 and NGC 2168 (WOCS XXII and XLVIII); rotation period distributions in NGC 1039 (M34) and NGC 2168 (WOCS XXXV, XLIII, and XLV); study of chromospheric activity in NGC 2682 (WOCS XVIII); photometric variability surveys in NGC 188 and NGC 2682 (IX and XV); new Bayesian techniques for determination of cluster parameters (WOCS XXIII); a new infrared age-diagnostic for open clusters (WOCS XL); theoretical studies of stellar rotation (WOCS XIII and XIV); sophisticated N-body simulations of NGC 188 (WOCS LI); and the discovery of a high binary frequency and white dwarf companions among NGC 188 blue stragglers. While the WIYN 3.5m telescope remains at its heart, today the WIYN Open Cluster Study collaboration extends beyond both the WIYN observatory and consortium, and continues as a vital and productive exploration into these fundamental stellar systems. Publication list can be found at http://www.astro.ufl.edu ata/wocs/pubs.html. The WIYN Open Cluster Study has been continuously supported by grants from the National Science Foundation.

  8. Differential rotation of stars with multiple transiting planets

    NASA Astrophysics Data System (ADS)

    Netto, Yuri; Valio, Adriana

    2017-10-01

    If a star hosts a planet in an orbit such that it eclipses the star periodically, can be estimated the rotation profile of this star. If planets in multiplanetary system occult different stellar areas, spots in more than one latitude of the stellar disc can be detected. The monitored study of theses starspots in different latitudes allow us to infer the rotation profile of the star. We use the model described in Silva (2003) to characterize the starspots of Kepler-210, an active star with two planets. Kepler-210 is a late K star with an estimated age of 350 +/- 50 Myrs, average rotation period of 12.33 days, mass of 0.63 M⊙ and radius of 0.69 R⊙. The planets that eclipses this star have radii of 0.0498 R s and 0.0635 R s with orbital periods of 2.4532 +/- 0.0007 days and 7.9725 +/- 0.0014 days, respectively, where R s is the star radius.

  9. FIRST OPTICAL AND NEAR-INFRARED POLARIMETRY OF A MOLECULAR CLOUD FORMING A PROTO-BROWN DWARF CANDIDATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soam, A.; Maheswar, G.; Kwon, Jugmi

    2015-04-20

    LDN 328 is cited as an example of a fairly isolated clump contracting to form multiple sub-cores, possibly through gravitational fragmentation. In one of these sub-cores, a proto-brown dwarf (L328-IRS) candidate is in the process of formation through the self-gravitating contraction, similar to the formation scenario of a low-mass star. We present results of our optical and near-infrared polarization observations of regions toward LDN 328. This is the first observational attempt to map the magnetic field geometry of a cloud harboring a proto-brown dwarf candidate associated with a sub-parsec-scale molecular outflow. On a parsec scale, the magnetic field is foundmore » to follow the curved structure of the cloud showing a head–tail morphology. The magnetic field is found to be well ordered over a 0.02–0.2 pc scale around L328-IRS. Taking into account the uncertainties in the determination of position angles, the projected angular offset between the magnetic field direction and the outflow axis is found to be in the range of 0°–70°. Considering outflow to be the proxy for the rotation axis, the result obtained in this study implies that the rotation axis in L328 is preferably parallel to the local magnetic field. The magnetic field strength estimated in the close vicinity of L328-IRS is ∼20 μG. Results from the present study suggest that the magnetic field may be playing a vital role even in the cores that are forming sub-stellar sources.« less

  10. Theoretical gravity darkening as a function of optical depth. A first approach to fast rotating stars

    NASA Astrophysics Data System (ADS)

    Claret, A.

    2016-04-01

    Aims: Recent observations of very fast rotating stars show systematic deviations from the von Zeipel theorem and pose a challenge to the theory of gravity-darkening exponents (β1). In this paper, we present a new insight into the problem of temperature distribution over distorted stellar surfaces to try to reduce these discrepancies. Methods: We use a variant of the numerical method based on the triangles strategy, which we previously introduced, to evaluate the gravity-darkening exponents. The novelty of the present method is that the theoretical β1 is now computed as a function of the optical depth, that is, β1 ≡ β1(τ). The stellar evolutionary models, which are necessary to obtain the physical conditions of the stellar envelopes/atmospheres inherent to the numerical method, are computed via the code GRANADA. Results: When the resulting theoretical β1(τ) are compared with the best accurate data of very fast rotators, a good agreement for the six systems is simultaneously achieved. In addition, we derive an equation that relates the locus of constant convective efficiency in the Hertzsprung-Russell (HR) diagram with gravity-darkening exponents.

  11. The effects of rotation on the surface composition and yields of low mass AGB stars.

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Piersanti, L.; Straniero, O.

    Over the past 20 years, stellar evolutionary models have been strongly improved in order to reproduce with reasonable accuracy both photometric and spectroscopic observations. Notwithstanding, the majority of these models do not take into account macroscopic phenomena, like rotation and/or magnetic fields. Their explicit treatment could modify stellar physical and chemical properties. One of the most interesting problems related to stellar nucleosynthesis is the behavior of the s-process spectroscopic indexes ([hs/ls] and [Pb/hs]) in Asymptotic Giant Branch (AGB) stars. In this contribution we show that, for a fixed metallicity, rotation can lead to a spread in the [hs/ls] and [Pb/hs] in low-mass AGB stars. In particular, we demonstrate that the Eddington-Sweet and the Goldreich-Schubert-Fricke instabilities may have enough time to smear the 13C-pocket (the major neutron source) and the 14N-pocket (the major neutron poison). In fact, a different overlap between these pockets leads to a different neutrons-to-seeds ratio, with important consequences on the corresponding s-process distributions. Possible consequences on the chemical evolution of Galactic globular clusters are discussed.

  12. Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.

    2002-12-01

    Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.

  13. Are the gyro-ages of field stars underestimated?

    NASA Astrophysics Data System (ADS)

    Kovács, Géza

    2015-09-01

    By using the current photometric rotational data on eight galactic open clusters, we show that the evolutionary stellar model (isochrone) ages of these clusters are tightly correlated with the period shifts applied to the (B - V)0-Prot ridges that optimally align these ridges to the one defined by Praesepe and the Hyades. On the other hand, when the traditional Skumanich-type multiplicative transformation is used, the ridges become far less aligned due to the age-dependent slope change introduced by the period multiplication. Therefore, we employ our simple additive gyro-age calibration on various datasets of Galactic field stars to test its applicability. We show that, in the overall sense, the gyro-ages are systematically greater than the isochrone ages. The difference could exceed several giga years, depending on the stellar parameters. Although the age overlap between the open clusters used in the calibration and the field star samples is only partial, the systematic difference indicates the limitation of the currently available gyro-age methods and suggests that the rotation of field stars slows down with a considerably lower speed than we would expect from the simple extrapolation of the stellar rotation rates in open clusters.

  14. MUSE observations of the counter-rotating nuclear ring in NGC 7742

    NASA Astrophysics Data System (ADS)

    Martinsson, Thomas P. K.; Sarzi, Marc; Knapen, Johan H.; Coccato, Lodovico; Falcón-Barroso, Jesús; Elmegreen, Bruce G.; de Zeeuw, Tim

    2018-04-01

    Aims: We present results from MUSE observations of the nearly face-on disk galaxy NGC 7742. This galaxy hosts a spectacular nuclear ring of enhanced star formation, which is unusual in that it is hosted by a non-barred galaxy, and because this star formation is most likely fuelled by externally accreted gas that counter-rotates with respect to its main stellar body. Methods: We used the MUSE data to derive the star-formation history (SFH) and accurately measure the stellar and ionized-gas kinematics of NGC 7742 in its nuclear, bulge, ring, and disk regions. Results: We have mapped the previously known gas counter-rotation well outside the ring region and deduce the presence of a slightly warped inner disk, which is inclined at approximately 6° compared to the outer disk. The gas-disk inclination is well constrained from the kinematics; the derived inclination 13.7° ± 0.4° agrees well with that derived from photometry and from what one expects using the inverse Tully-Fisher relation. We find a prolonged SFH in the ring with stellar populations as old as 2-3 Gyr and an indication that the star formation triggered by the minor merger event was delayed in the disk compared to the ring. There are two separate stellar components: an old population that counter-rotates with the gas, and a young one, concentrated to the ring, that co-rotates with the gas. We recover the kinematics of the old stars from a two-component fit, and show that combining the old and young stellar populations results in the erroneous average velocity of nearly zero found from a one-component fit. Conclusions: The spatial resolution and field of view of MUSE allow us to establish the kinematics and SFH of the nuclear ring in NGC 7742. We show further evidence that this ring has its origin in a minor merger event, possibly 2-3 Gyr ago. Data used for the flux and kinematic maps (Figs. 1 and 3-5) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A66

  15. Zodiacal Exoplanets in Time (ZEIT). IV. Seven Transiting Planets in the Praesepe Cluster

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Gaidos, Eric; Vanderburg, Andrew; Rizzuto, Aaron C.; Ansdell, Megan; Medina, Jennifer Vanessa; Mace, Gregory N.; Kraus, Adam L.; Sokal, Kimberly R.

    2017-02-01

    Open clusters and young stellar associations are attractive sites to search for planets and to test theories of planet formation, migration, and evolution. We present our search for, and characterization of, transiting planets in the 800 Myr old Praesepe (Beehive, M44) Cluster from K2 light curves. We identify seven planet candidates, six of which we statistically validate to be real planets, the last of which requires more data. For each host star, we obtain high-resolution NIR spectra to measure its projected rotational broadening and radial velocity, the latter of which we use to confirm cluster membership. We combine low-resolution spectra with the known cluster distance and metallicity to provide precise temperatures, masses, radii, and luminosities for the host stars. Combining our measurements of rotational broadening, rotation periods, and our derived stellar radii, we show that all planetary orbits are consistent with alignment to their host star’s rotation. We fit the K2 light curves, including priors on stellar density to put constraints on the planetary eccentricities, all of which are consistent with zero. The difference between the number of planets found in Praesepe and Hyades (8 planets, ≃ 800 Myr) and a similar data set for Pleiades (0 planets, ≃125 Myr) suggests a trend with age, but may be due to incompleteness of current search pipelines for younger, faster-rotating stars. We see increasing evidence that some planets continue to lose atmosphere past 800 Myr, as now two planets at this age have radii significantly larger than their older counterparts from Kepler.

  16. Characterizing exo-ring systems around fast-rotating stars using the Rossiter-McLaughlin effect

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst J. W.; Watson, Christopher A.; Kenworthy, Matthew A.

    2017-12-01

    Planetary rings produce a distinct shape distortion in transit light curves. However, to accurately model such light curves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky-projected angle of the ring system. For slow-rotating stars, this mainly impacts the amplitude of the induced velocity shift; however, for fast-rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modelling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ) relative to the stellar rotation velocity (v sini, i.e. δW/R* ≳ vsini/γ). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.

  17. Theoretical Near-IR Spectra for Surface Abundance Studies of Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J.

    2011-01-01

    We present initial results of a study of abundance and mass loss properties of O-type stars based on theoretical near-IR spectra computed with state-of-the-art stellar atmosphere models. The James Webb Space Telescope (JWST) will be a powerful tool to obtain high signal-to-noise ratio near-IR (1-5 micron) spectra of massive stars in different environments of local galaxies. Our goal is to analyze model near-IR spectra corresponding to those expected from NIRspec on JWST in order to map the wind properties and surface composition across the parameter range of 0 stars and to determine projected rotational velocities. As a massive star evolves, internal coupling, related mixing, and mass loss impact its intrinsic rotation rate. These three parameters form an intricate loop, where enhanced rotation leads to more mixing which in turn changes the mass loss rate, the latter thus affecting the rotation rate. Since the effects of rotation are expected to be much more pronounced at low metallicity, we pay special attention to models for massive stars in the the Small Magellanic Cloud. This galaxy provides a unique opportunity to probe stellar evolution, and the feedback of massive stars on galactic evol.ution in conditions similar to the epoch of maximal star formation. Plain-Language Abstract: We present initial results of a study of abundance and mass loss properties of massive stars based on theoretical near-infrared (1-5 micron) spectra computed with state-of-the-art stellar atmosphere models. This study is to prepare for observations by the James Webb Space Telescope.

  18. The JCMT Gould Belt Survey: A First Look at SCUBA-2 Observations of the Lupus I Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Mowat, C.; Hatchell, J.; Rumble, D.; Kirk, H.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Pattle, K.; Tisi, S.; Di Francesco, J.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coudé, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fich, M.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Rawlings, J.; Retter, B.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2017-05-01

    This paper presents observations of the Lupus I molecular cloud at 450 and 850 μm with Submillimetre Common User Bolometer Array (SCUBA-2) as part of the James Clerk Maxwell Telescope Gould Belt Survey (JCMT GBS). Nine compact sources, assumed to be the discs of young stellar objects (YSOs), 12 extended protostellar, pre-stellar and starless cores, and one isolated, low-luminosity protostar, are detected in the region. Spectral energy distributions, including submillimetre fluxes, are produced for 15 YSOs, and each is fitted with the models of Robitaille et al. The proportion of Class 0/I protostars is higher than that seen in other Gould Belt regions such as Ophiuchus and Serpens. Circumstellar disc masses are calculated for more evolved sources, while protostellar envelope masses are calculated for protostars. Up to four very low luminosity objects are found; a large fraction when compared to other Spitzer c2d regions. One YSO has a disc mass greater than the minimum mass solar nebula. 12 starless/protostellar cores are detected by SCUBA-2 and their masses are calculated. The stability of these cores is examined using both the thermal Jeans mass and a turbulent virial mass when possible. Two cores in Lupus I are super-Jeans and contain no known YSOs. One of these cores has a virial parameter of 1.1 ± 0.4, and could therefore be pre-stellar. The high ratio of Class 0/I to Class III YSOs (1:1), and the presence of a pre-stellar core candidate, provides support for the hypothesis that a shock recently triggered star formation in Lupus I.

  19. Stellar Ro

    NASA Astrophysics Data System (ADS)

    Featherstone, Nicholas

    2017-05-01

    Our understanding of the interior dynamics that give rise to a stellar dynamo draws heavily from investigations of similar dynamics in the solar context. Unfortunately, an outstanding gap persists in solar dynamo theory. Convection, an indispensable component of the dynamo, occurs in the midst of rotation, and yet we know little about how the influence of that rotation manifests across the broad range of convective scales present in the Sun. We are nevertheless well aware that the interaction of rotation and convection profoundly impacts many aspects of the dynamo, including the meridional circulation, the differential rotation, and the helicity of turbulent EMF. The rotational constraint felt by solar convection ultimately hinges on the characteristic amplitude of deep convective flow speeds, and such flows are difficult to measure helioseismically. Those measurements of deep convective power which do exist disagree by orders of magnitude, and until this disagreement is resolved, we are left with the results of models and those less ambiguous measurements derived from surface observations of solar convection. I will present numerical results from a series of nonrotating and rotating convection simulations conducted in full 3-D spherical geometry. This presentation will focus on how convective spectra differ between the rotating and non-rotating models and how that behavior changes as simulations are pushed toward more turbulent and/or more rotationally-constrained regimes. I will discuss how the surface signature of rotationally-constrained interior convection might naturally lead to observable signatures in the surface convective pattern, such as supergranulation and a dearth of giant cells.

  20. Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region

    NASA Technical Reports Server (NTRS)

    Nordon, R.; Behar, E.; Drake, S. A.

    2013-01-01

    Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.

  1. A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.

    2018-04-01

    We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.

  2. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, Courtney R.; Pinsonneault, Marc H., E-mail: epstein@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with amore » range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.« less

  3. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE PAGES

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; ...

    2015-01-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  4. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  5. High spectral resolution observations of HNC3 and HCCNC in the L1544 pre-stellar core

    NASA Astrophysics Data System (ADS)

    Vastel, C.; Kawaguchi, K.; Quénard, D.; Ohishi, M.; Lefloch, B.; Bachiller, R.; Müller, H. S. P.

    2018-02-01

    HCCNC and HNC3 are less commonly found isomers of cyanoacetylene, HC3N, a molecule that is widely found in diverse astronomical sources. We want to know if HNC3 is present in sources other than the dark cloud TMC-1 and how its abundance is relative to that of related molecules. We used the Astrochemical Studies At IRAM unbiased spectral survey at IRAM 30 m towards the prototypical pre-stellar core L1544 to search for HNC3 and HCCNC which are by-product of the HC3NH+ recombination, previously detected in this source. We performed a combined analysis of published HNC3 microwave rest frequencies with thus far unpublished millimetre data because of issues with available rest frequency predictions. We determined new spectroscopic parameters for HNC3, produced new predictions and detected it towards L1544. We used a gas-grain chemical modelling to predict the abundances of N-species and compare with the observations. The modelled abundances are consistent with the observations, considering a late stage of the evolution of the pre-stellar core. However, the calculated abundance of HNC3 was found 5-10 times higher than the observed one. The HC3N, HNC3, and HCCNC versus HC3NH+ ratios are compared in the TMC-1 dark cloud and the L1544 pre-stellar core.

  6. Wolf-Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution

    NASA Astrophysics Data System (ADS)

    Schootemeijer, A.; Langer, N.

    2018-03-01

    Context. The majority of the Wolf-Rayet (WR) stars represent the stripped cores of evolved massive stars who lost most of their hydrogen envelope. Wind stripping in single stars is expected to be inefficient in producing WR stars in metal-poor environments such as the Small Magellanic Cloud (SMC). While binary interaction can also produce WR stars at low metallicity, it is puzzling that the fraction of WR binaries appears to be about 40%, independent of the metallicity. Aim. We aim to use the recently determined physical properties of the twelve known SMC WR stars to explore their possible formation channels through comparisons with stellar models. Methods: We used the MESA stellar evolution code to construct two grids of stellar models with SMC metallicity. One of these consists of models of rapidly rotating single stars, which evolve in part or completely chemically homogeneously. In a second grid, we analyzed core helium burning stellar models assuming constant hydrogen and helium gradients in their envelopes. Results: We find that chemically homogeneous evolution is not able to account for the majority of the WR stars in the SMC. However, in particular the apparently single WR star SMC AB12, and the double WR system SMC AB5 (HD 5980) appear consistent with this channel. We further find a dichotomy in the envelope hydrogen gradients required to explain the observed temperatures of the SMC WR stars. Shallow gradients are found for the WR stars with O star companions, while much steeper hydrogen gradients are required to understand the group of hot apparently single WR stars. Conclusions: The derived shallow hydrogen gradients in the WR component of the WR+O star binaries are consistent with predictions from binary models where mass transfer occurs early, in agreement with their binary properties. Since the hydrogen profiles in evolutionary models of massive stars become steeper with time after the main sequence, we conclude that most of the hot (Teff > 60 kK ) apparently single WR stars lost their envelope after a phase of strong expansion, e.g., as the result of common envelope evolution with a lower mass companion. The so far undetected companions, either main sequence stars or compact objects, are then expected to still be present. A corresponding search might identify the first immediate double black hole binary progenitor with masses as high as those detected in GW150914.

  7. Detection of the HC3NH+ and HCNH+ ions in the L1544 pre-stellar core

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Vastel, C.; Ceccarelli, C.; Hily-Blant, P.; Lefloch, B.; Bachiller, R.

    2017-09-01

    The L1544 pre-stellar core was observed as part of the ASAI (Astrochemical Surveys At IRAM) Large Program. We report the first detection in a pre-stellar core of the HCNH+ and HC3NH+ ions. The high spectral resolution of the observations allows us to resolve the hyperfine structure of HCNH+. Local thermodynamic equilibrium (LTE) analysis leads to derive a column density equal to (2.0 ± 0.2) × 1013 cm-2 for HCNH+ and (1.5 ± 0.5) × 1011 cm-2 for HC3NH+. We also present non-LTE analysis of five transitions of HC3N, three transitions of H13CN and one transition of HN13C, all of them linked to the chemistry of HCNH+ and HC3NH+. We computed for HC3N, HCN and HNC a column density of (2.0 ± 0.4) × 1013 cm-2, (3.6 ± 0.9) × 1014 cm-2 and (3.0 ± 1.0) × 1014 cm-2, respectively. We used the gas-grain chemical code nautilus to predict the abundances of all these species across the pre-stellar core. Comparison of the observations with the model predictions suggests that the emission from HCNH+ and HC3NH+ originates in the external layer where non-thermal desorption of other species was previously observed. The observed abundance of both ionic species ([HCNH+] ≃ 3 × 10-10 and [HC3NH+] ≃ [1.5 - 3.0] × 10-12, with respect to H2) cannot be reproduced at the same time by the chemical modelling within the error bars of the observations only. We discuss the possible reasons for the discrepancy and suggest that the current chemical models are not fully accurate or complete. However, the modelled abundances are within a factor of 3, consistent with the observations, considering a late stage of the evolution of the pre-stellar core, compatible with previous observations.

  8. Rotation, activity, and stellar obliquities in a large uniform sample of Kepler solar analogs

    NASA Astrophysics Data System (ADS)

    Buzasi, Derek; Lezcano, Andy; Preston, Heather L.

    2016-10-01

    In this study, we undertook a deep photometric examination of a narrowly-defined sample of solar analogs in the Kepler field, with the goals of producing a uniform and statistically meaningful sample of such stars, comparing the properties of planet hosts to those of the general stellar population, and examining the behavior of rotation and photometric activity among stars with similar overall physical parameters. We successfully derived photometric activity indicators and rotation periods for 95 planet hosts (Kepler objects of interest [KOIs]) and 954 solar analogs without detected planets; 573 of these rotation periods are reported here for the first time. Rotation periods average roughly 20 d, but the distribution has a wide dispersion, with a tail extending to P > 35 d which appears to be inconsistent with published gyrochronological relations. We observed a weak rotation-activity relation for stars with rotation periods less than about 12 d; for slower rotators, the relation is dominated by scatter. However, we are able to state that the solar activity level derived from Virgo data is consistent with the majority of stars with similar rotation periods in our sample. Finally, our KOI sample is consistently approximately 0.3 dex more variable than our non-KOIs; we ascribe the difference to a selection effect due to low orbital obliquity in the planet-hosting stars and derive a mean obliquity for our sample of χ = 6+5°-6, similar to that seen in the solar system.

  9. Imaging the cool stars in the interacting binaries AE Aqr, BV Cen and V426 Oph

    NASA Astrophysics Data System (ADS)

    Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Shahbaz, T.

    2007-10-01

    It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.

  10. VizieR Online Data Catalog: Stellar models. 0.85

    NASA Astrophysics Data System (ADS)

    Charbonnel, C.; Decressin, T.; Lagarde, N.; Gallet, F.; Palacios, A.; Auriere, M.; Konstantinova-Antova, R.; Mathis, S.; Anderson, R. I.; Dintrans, B.

    2018-02-01

    Grid of stellar models and convective turnover timescale for four metallicities (Z= 0.0001, 0.002, 0.004, and 0.014) in the mass range from 0.85 to 6.0Mȯ. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid, we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the turnover timescale estimated a different heights in the convective envelope and their corresponding Rossby number. (4 data files).

  11. On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge; McConnachie, Alan; Babul, Arif

    2006-10-01

    We explore the possibility that extended disks, such as that recently discovered in M31, are the result of a single dwarf (109-1010 Msolar) satellite merger. We conduct N-body simulations of dwarf NFW halos with embedded spheroidal stellar components on coplanar, prograde orbits in an M31-like host galaxy. As the orbit decays due to dynamical friction and the system is disrupted, the stellar particles relax to form an extended, exponential-disk-like structure that spans the radial range 30-200 kpc. The disk scale length Rd correlates with the initial extent of the stellar component within the satellite halo: the more embedded the stars, the smaller the resulting disk scale length. If the progenitors start on circular orbits, the kinematics of the stars that make up the extended disk have an average rotational motion that is 30-50 km s-1 lower than the host's circular velocity. For dwarf galaxies moving on highly eccentric orbits (e~=0.7), the stellar debris exhibits a much lower rotational velocity. Our results imply that extended galactic disks might be a generic feature of the hierarchical formation of spiral galaxies such as M31 and the Milky Way.

  12. SOAP: A Tool for the Fast Computation of Photometry and Radial Velocity Induced by Stellar Spots

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Bonfils, X.; Santos, N. C.; Figueira, P.

    2013-04-01

    Dark spots and bright plages are present on the surface of dwarf stars from spectral types F to M, even in their low-active phase (like the Sun). Their appearance and disappearance on the stellar photosphere, combined with the stellar rotation, may lead to errors and uncertainties in the characterization of planets both in radial velocity (RV) and photometry. Spot Oscillation and Planet (SOAP) is a tool offered to the community that enables to simulate spots and plages on rotating stars and computes their impact on RV and photometric measurements. This tool will help to understand the challenges related to the knowledge of stellar activity for the next decade: detect telluric planets in the habitable zone of their stars (from G to M dwarfs), understand the activity in the low-mass end of M dwarf (on which future projects, like SPIRou or CARMENES, will focus), limitation to the characterization of the exoplanetary atmosphere (from the ground or with Spitzer, JWST), search for planets around young stars. These can be simulated with SOAP in order to search for indices and corrections to the effect of activity.

  13. WASP-167b/KELT-13b: joint discovery of a hot Jupiter transiting a rapidly rotating F1V star

    NASA Astrophysics Data System (ADS)

    Temple, L. Y.; Hellier, C.; Albrow, M. D.; Anderson, D. R.; Bayliss, D.; Beatty, T. G.; Bieryla, A.; Brown, D. J. A.; Cargile, P. A.; Collier Cameron, A.; Collins, K. A.; Colón, K. D.; Curtis, I. A.; D'Ago, G.; Delrez, L.; Eastman, J.; Gaudi, B. S.; Gillon, M.; Gregorio, J.; James, D.; Jehin, E.; Joner, M. D.; Kielkopf, J. F.; Kuhn, R. B.; Labadie-Bartz, J.; Latham, D. W.; Lendl, M.; Lund, M. B.; Malpas, A. L.; Maxted, P. F. L.; Myers, G.; Oberst, T. E.; Pepe, F.; Pepper, J.; Pollacco, D.; Queloz, D.; Rodriguez, J. E.; Ségransan, D.; Siverd, R. J.; Smalley, B.; Stassun, K. G.; Stevens, D. J.; Stockdale, C.; Tan, T. G.; Triaud, A. H. M. J.; Udry, S.; Villanueva, S.; West, R. G.; Zhou, G.

    2017-11-01

    We report the joint WASP/KELT discovery of WASP-167b/KELT-13b, a transiting hot Jupiter with a 2.02-d orbit around a V = 10.5, F1V star with [Fe/H] = 0.1 ± 0.1. The 1.5 RJup planet was confirmed by Doppler tomography of the stellar line profiles during transit. We place a limit of <8 MJup on its mass. The planet is in a retrograde orbit with a sky-projected spin-orbit angle of λ = -165° ± 5°. This is in agreement with the known tendency for orbits around hotter stars to be more likely to be misaligned. WASP-167/KELT-13 is one of the few systems where the stellar rotation period is less than the planetary orbital period. We find evidence of non-radial stellar pulsations in the host star, making it a δ-Scuti or γ-Dor variable. The similarity to WASP-33, a previously known hot-Jupiter host with pulsations, adds to the suggestion that close-in planets might be able to excite stellar pulsations.

  14. The Impact of Nuclear Reaction Rate Uncertainties on the Evolution of Core-collapse Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Fields, C. E.; Timmes, F. X.; Farmer, R.; Petermann, I.; Wolf, William M.; Couch, S. M.

    2018-02-01

    We explore properties of core-collapse supernova progenitors with respect to the composite uncertainties in the thermonuclear reaction rates by coupling the probability density functions of the reaction rates provided by the STARLIB reaction rate library with MESA stellar models. We evolve 1000 models of 15{M}ȯ from the pre-main sequence to core O-depletion at solar and subsolar metallicities for a total of 2000 Monte Carlo stellar models. For each stellar model, we independently and simultaneously sample 665 thermonuclear reaction rates and use them in a MESA in situ reaction network that follows 127 isotopes from 1H to 64Zn. With this framework we survey the core mass, burning lifetime, composition, and structural properties at five different evolutionary epochs. At each epoch we measure the probability distribution function of the variations of each property and calculate Spearman rank-order correlation coefficients for each sampled reaction rate to identify which reaction rate has the largest impact on the variations on each property. We find that uncertainties in the reaction rates of {}14{{N}}{({{p}},γ )}15{{O}}, triple-α, {}12{{C}}{(α ,γ )}16{{O}}, 12C(12C,p)23Na, 12C(16O, p)27Al, 16O(16O,n)31S, 16O(16O, p)31P, and 16O(16O,α)28Si dominate the variations of the properties surveyed. We find that variations induced by uncertainties in nuclear reaction rates grow with each passing phase of evolution, and at core H-, He-depletion they are of comparable magnitude to the variations induced by choices of mass resolution and network resolution. However, at core C-, Ne-, and O-depletion, the reaction rate uncertainties can dominate the variation, causing uncertainty in various properties of the stellar model in the evolution toward iron core-collapse.

  15. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P., E-mail: jcortes@alma.cl, E-mail: ehardy@nrao.cl, E-mail: jeff.kenney@yale.edu

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between themore » optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.« less

  16. A Multiwavelength Study of the Segue 3 Cluster

    NASA Astrophysics Data System (ADS)

    Hughes, Joanne; Lacy, Brianna; Sakari, Charli; Wallerstein, George; Davis, Christoper Evan; Schiefelbein, Spencer; Corrin, Olivia; Joudi, Hanah; Le, Donna; Haynes, Rose Marie

    2017-08-01

    We present new SDSS and Washington photometry of the young outer-halo stellar system Segue 3. Combined with archival VI-observations, our most consistent results yield Z=0.006+/- 0.001, {log}({Age})=9.42+/- 0.08, {(m-M)}0=17.35+/- 0.08, and E(B-V)=0.09+/- 0.01, with a high binary fraction of 0.39 ± 0.05 derived using the Padova models. We confirm that mass-segregation has occurred, supporting the hypothesis that this cluster is being tidally disrupted. A three-parameter King model yields a cluster radius of {r}{cl}=0\\mathop{.}\\limits^\\circ 017+/- 0\\mathop{.}\\limits^\\circ 007, a core radius of {r}{{c}}=0\\mathop{.}\\limits^\\circ 003+/- 0\\mathop{.}\\limits^\\circ 001, and a tidal radius of {r}{{t}}=0\\mathop{.}\\limits^\\circ 04+/- 0\\mathop{.}\\limits^\\circ 02. A comparison of Padova and Dartmouth model-grids indicates that the cluster is not significantly α-enhanced, with a mean [{Fe}/{{H}}]=-{0.55}-0.12+0.15 dex, and a population age of only 2.6 ± 0.4 Gyr. We rule out a statistically significant age spread at the main-sequence turnoff because of a narrow subgiant branch, and discuss the role of stellar rotation and cluster age, using Dartmouth and Geneva models: approximately 70% of the Seg 3 stars at or below the main-sequence turnoff have enhanced rotation. Our results for Segue 3 indicate that it is younger and more metal-rich than all previous studies have reported to date. From colors involving Washington C and SDSS-u filters, we identify several giants and a possible blue straggler for future follow-up spectroscopic studies, and we produce spectral energy distributions of previously known members and potential Segue 3 sources with Washington (CT 1), Sloan (ugri), and VI-filters. Segue 3 shares the characteristics of unusual stellar systems that have likely been stripped from external dwarf galaxies as they are being accreted by the Milky Way, or that have been formed during such an event. Its youth, metallicity, and location are all inconsistent with Segue 3 being a cluster native to the Milky Way.

  17. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less

  18. The sn stars - Magnetically controlled stellar winds among the helium-weak stars

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Brown, Douglas N.; Sonneborn, George

    1987-01-01

    The paper reports observations of magnetically controlled stellar mass outflows in three helium-weak sn stars: HD 21699 = HR 1063; HD 5737 = Alpha Scl; and HD 79158 = 36 Lyn. IUE observations show that the C IV resonance doublet is variable on the rotational timescale but that there are no other strong-spectrum variations in the UV. Magnetic fields, which reverse sign on the rotational timescale, are present in all three stars. This phenomenology is interpreted in terms of jetlike mass loss above the magnetic poles, and these objects are discussed in the context of a general survey of the C IV and Si IV profiles of other more typical helium-weak stars.

  19. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.

    2018-03-01

    Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.

  20. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster.

    PubMed

    Meibom, Søren; Barnes, Sydney A; Platais, Imants; Gilliland, Ronald L; Latham, David W; Mathieu, Robert D

    2015-01-29

    The ages of the most common stars--low-mass (cool) stars like the Sun, and smaller--are difficult to derive because traditional dating methods use stellar properties that either change little as the stars age or are hard to measure. The rotation rates of all cool stars decrease substantially with time as the stars steadily lose their angular momenta. If properly calibrated, rotation therefore can act as a reliable determinant of their ages based on the method of gyrochronology. To calibrate gyrochronology, the relationship between rotation period and age must be determined for cool stars of different masses, which is best accomplished with rotation period measurements for stars in clusters with well-known ages. Hitherto, such measurements have been possible only in clusters with ages of less than about one billion years, and gyrochronology ages for older stars have been inferred from model predictions. Here we report rotation period measurements for 30 cool stars in the 2.5-billion-year-old cluster NGC 6819. The periods reveal a well-defined relationship between rotation period and stellar mass at the cluster age, suggesting that ages with a precision of order 10 per cent can be derived for large numbers of cool Galactic field stars.

  1. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    NASA Astrophysics Data System (ADS)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  2. The Nonlinear Evolution of Massive Stellar Core Collapses That ``Fizzle''

    NASA Astrophysics Data System (ADS)

    Imamura, James N.; Pickett, Brian K.; Durisen, Richard H.

    2003-04-01

    Core collapse in a massive rotating star may pause before nuclear density is reached, if the core contains total angular momentum J>~1049 g cm2 s-1. In such aborted or ``fizzled'' collapses, temporary equilibrium objects form that, although rapidly rotating, are secularly and dynamically stable because of the high electron fraction per baryon Ye>0.3 and the high entropy per baryon Sb/k~1-2 of the core material at neutrino trapping. These fizzled collapses are called ``fizzlers.'' In the absence of prolonged infall from the surrounding star, the evolution of fizzlers is driven by deleptonization, which causes them to contract and spin up until they either become stable neutron stars or reach the dynamic instability point for barlike modes. The barlike instability case is of current interest because the bars would be sources of gravitational wave (GW) radiation. In this paper, we use linear and nonlinear techniques, including three-dimensional hydrodynamic simulations, to study the behavior of fizzlers that have deleptonized to the point of reaching dynamic bar instability. The simulations show that the GW emission produced by bar-unstable fizzlers has rms strain amplitude r15h=10-23 to 10-22 for an observer on the rotation axis, with wave frequency of roughly 60-600 Hz. Here h is the strain and r15= (r/15 Mpc) is the distance to the fizzler in units of 15 Mpc. If the bars that form by dynamic instability can maintain GW emission at this level for 100 periods or more, they may be detectable by the Laser Interferometer Gravitational-Wave Observatory at the distance of the Virgo Cluster. They would be detectable as burst sources, defined as sources that persist for ~10 cycles or less, if they occurred in the Local Group of galaxies. The long-term behavior of the bars is the crucial issue for the detection of fizzler events. The bars present at the end of our simulations are dynamically stable but will evolve on longer timescales because of a variety of effects, such as shock heating, infall, deleptonization, and cooling, as well as gravitational radiation and Newtonian gravitational coupling to surrounding material. Long-term simulations including these effects will be necessary to determine the ultimate fate and GW production of fizzlers with certainty.

  3. Asteroseismology can reveal strong internal magnetic fields in red giant stars.

    PubMed

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael A; Bildsten, Lars

    2015-10-23

    Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~10(5) gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈10(7) gauss. Copyright © 2015, American Association for the Advancement of Science.

  4. The ATLAS3D project - X. On the origin of the molecular and ionized gas in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Davis, Timothy A.; Alatalo, Katherine; Sarzi, Marc; Bureau, Martin; Young, Lisa M.; Blitz, Leo; Serra, Paolo; Crocker, Alison F.; Krajnović, Davor; McDermid, Richard M.; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L.; Duc, Pierre-Alain; de Zeeuw, P. Tim; Emsellem, Eric; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Weijmans, Anne-Marie

    2011-10-01

    We make use of interferometric CO and H I observations, and optical integral-field spectroscopy from the ATLAS3D survey, to probe the origin of the molecular and ionized interstellar medium (ISM) in local early-type galaxies. We find that 36 ± 5 per cent of our sample of fast-rotating early-type galaxies have their ionized gas kinematically misaligned with respect to the stars, setting a strong lower limit on the importance of externally acquired gas (e.g. from mergers and cold accretion). Slow rotators have a flat distribution of misalignments, indicating that the dominant source of gas is external. The molecular, ionized and atomic gas in all the detected galaxies are always kinematically aligned, even when they are misaligned from the stars, suggesting that all these three phases of the ISM share a common origin. In addition, we find that the origin of the cold and warm gas in fast-rotating early-type galaxies is strongly affected by environment, despite the molecular gas detection rate and mass fractions being fairly independent of group/cluster membership. Galaxies in dense groups and the Virgo cluster nearly always have their molecular gas kinematically aligned with the stellar kinematics, consistent with a purely internal origin (presumably stellar mass loss). In the field, however, kinematic misalignments between the stellar and gaseous components indicate that at least 42 ± 5 per cent of local fast-rotating early-type galaxies have their gas supplied from external sources. When one also considers evidence of accretion present in the galaxies' atomic gas distributions, ≳46 per cent of fast-rotating field ETGs are likely to have acquired a detectable amount of ISM from accretion and mergers. We discuss several scenarios which could explain the environmental dichotomy, including preprocessing in galaxy groups/cluster outskirts and the morphological transformation of spiral galaxies, but we find it difficult to simultaneously explain the kinematic misalignment difference and the constant detection rate. Furthermore, our results suggest that galaxy mass may be an important independent factor associated with the origin of the gas, with the most massive fast-rotating galaxies in our sample (MK≲-24 mag; stellar mass of ≈8 × 1010 M⊙) always having kinematically aligned gas. This mass dependence appears to be independent of environment, suggesting it is caused by a separate physical mechanism.

  5. Einstein Observations of X-ray emission from A stars

    NASA Astrophysics Data System (ADS)

    Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Rosner, R.; Vaiana, G. S.; Cash, W., Jr.; Snow, T. P., Jr.

    1983-08-01

    Results are reported from the combined CfA Stellar Survey of selected bright A stars and an Einstein Guest Observer program for Ap and Am stars. In an initial report of results from the CfA Stellar Surveys by Vaiana et al. (1981) it was noted that the spread in observed X-ray luminosities among the few A stars observed was quite large. The reasons for this large spread was studied by Pallavicini et al. (1981). It was found that the X-ray emission from normal stars is related very strongly to bolometric luminosity for early-type stars and to rotation rate for late-type stars. However, an exception to this rule has been the apparently anomalous behavior of A star X-ray emission, for which the large spread in luminosity showed no apparent correlation with either bolometric luminosity or stellar rotation rate. In the present study, it is shown that the level of emission from normal A stars agrees with the correlation observed for O and B stars.

  6. The DiskMass Survey. VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy

    NASA Astrophysics Data System (ADS)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Schechtman-Rook, Andrew; Andersen, David R.; Swaters, Rob A.

    2013-09-01

    We present ionized-gas ([Oiii]λ5007 Å) and stellar kinematics (velocities and velocity dispersions) for 30 nearly face-on spiral galaxies out to as many as three K-band disk scale lengths (hR). These data have been derived from PPak integral-field-unit spectroscopy from 4980-5370 Å observed at a mean resolution of λ/Δλ = 7700 (σinst = 17 km s-1). These data are a fundamental product of our survey and will be used in companion papers to, e.g., derive the detailed (baryonic+dark) mass budget of each galaxy in our sample. Our presentation provides a comprehensive description of the observing strategy and data reduction, including a robust measurement and removal of shift, scale, and rotation effects in the data due to instrumental flexure. Using an in-plane coordinate system determined by fitting circular-speed curves to our velocity fields, we derive azimuthally averaged rotation curves and line-of-sight velocity dispersion (σLOS) and luminosity profiles for both the stars and [Oiii]-emitting gas. Along with a clear presentation of the data, we demonstrate: (1) The [Oiii] and stellar rotation curves exhibit a clear signature of asymmetric drift with a rotation difference that is 11% of the maximum rotation speed of the galaxy disk, comparable to measurements in the solar neighborhood in the Milky Way. (2) The e-folding length of the stellar velocity dispersion (hσ) is 2hR on average, as expected for a disk with a constant scale height and mass-to-light ratio, with a scatter that is notably smaller for massive, high-surface-brightness disks in the most luminous galaxies. (3) At radii larger than 1.5hR, σLOS tends to decline slower than the best-fitting exponential function, which may be due to an increase in the disk mass-to-light ratio, disk flaring, or disk heating by the dark-matter halo. (4) A strong correlation exists between the central vertical stellar velocity dispersion of the disks (σz,0) and their circular rotational speed at 2.2hR (V2.2hROiii), with a zero point indicating that galaxy disks are submaximal. Moreover, weak but consistent correlations exist between σz,0/V2.2hROiii and global galaxy properties such that disks with a fainter central surface brightness in bluer and less luminous galaxies of later morphological types are kinematically colder with respect to their rotational velocities. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Table 2 and Appendices are available in electronic form at http://www.aanda.org

  7. Spin-orbit coupling and tidal dissipation in hot Jupiter systems

    NASA Astrophysics Data System (ADS)

    Shabaltas, Natalia Igorevna

    Hot Jupiters are giant planets located extremely close to their host stars, with orbital periods less than 5 days. Many aspects of hot Jupiter (HJ) formation remain unclear, but several clues, such as the observed misalignment between their orbital axes and their hosts' spin axes, point to a dynamical origin. In the first portion of this work we explore the stellar spin-orbit dynamics of one such dynamical formation channel, the Lidov-Kozai mechanism. We show that the coupling between the stellar spin and the planet orbit can lead to complex, and sometimes chaotic, behavior of the stellar spin vector. Many features of this behavior arise due to a set of resonances between the stellar spin axis precession timescale and the Lidov-Kozai timescale. Under the assumption that the stellar quadrupole does not induce precession in the planet's orbit, given a system with a set of initial parameters, we show that it is possible to predict whether the system can attain high spin-orbit misalignments. In the second portion of this work, we discuss tidal dissipation in giant planets, another aspect that is crucial to dynamical HJ formation theories. We show that tidal dissipation in the cores of giant planets can be significant, and can help reconcile inconsistencies in the tidal dissipation efficiencies inferred from observations of Jupiter's moons and from high-eccentricity HJ migration theories. Finally, we improve upon existing core tidal dissipation theories by presenting semi-analytical formulae for dissipation in a core surrounded by a polytropic n = 1 envelope.

  8. Rotating magnetic shallow water waves and instabilities in a sphere

    NASA Astrophysics Data System (ADS)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  9. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    DOE PAGES

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris Lee

    2017-09-01

    In this paper, high-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parametersmore » $$a\\gtrsim 0.84$$. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an $$8\\,{M}_{\\odot }$$ pre-SN star in a close binary with a $$12\\,{M}_{\\odot }$$ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter $$a\\gtrsim 0.8$$ even when the expected spin parameter from direct collapse is $$a\\lesssim 0.3$$. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.« less

  10. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris Lee

    In this paper, high-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parametersmore » $$a\\gtrsim 0.84$$. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an $$8\\,{M}_{\\odot }$$ pre-SN star in a close binary with a $$12\\,{M}_{\\odot }$$ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter $$a\\gtrsim 0.8$$ even when the expected spin parameter from direct collapse is $$a\\lesssim 0.3$$. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.« less

  11. Finding the first cosmic explosions. IV. 90–140 $$\\;{{M}_{\\odot }}$$ pair-stability supernovae

    DOE PAGES

    Smidt, Joseph; Whalen, Daniel J.; Chatzopoulos, E.; ...

    2015-05-19

    Population III stars that die as pair-instability supernovae are usually thought to fall in the mass range of 140 - 260 M ⊙. However, several lines of work have now shown that rotation can build up the He cores needed to encounter the pair instability at stellar masses as low as 90 M ⊙. Depending on the slope of the initial mass function of Population III stars, there could be 4 - 5 times as many stars from 90 - 140 M ⊙ in the primordial universe than in the usually accepted range. We present numerical simulations of the pair-instabilitymore » explosions of such stars performed with the MESA, FLASH and RAGE codes. We find that they will be visible to supernova factories such as Pan-STARRS and LSST in the optical out to z ~ 1-2 and JWST and the 30 m-class telescopes in the NIR out to z ~ 7-10. Such explosions will thus probe the stellar populations of the first galaxies and cosmic star formation rates in the era of cosmological reionization. These supernovae are also easily distinguished from more massive pair-instability explosions, underscoring the fact that there is far greater variety to the light curves of these events than previously understood.« less

  12. Mass ejection in failed supernovae: variation with stellar progenitor

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  13. The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral; Pace, Andrew B.; Bullock, James S.; Boylan-Kolchin, Michael; Oñorbe, Jose; Elbert, Oliver D.; Fitts, Alex; Hopkins, Philip F.; Kereš, Dušan

    2017-02-01

    We perform a systematic Bayesian analysis of rotation versus dispersion support (vrot/σ) in 40 dwarf galaxies throughout the local volume (LV) over a stellar mass range of 10^{3.5} M_{⊙}< M_{star }< 108 M_{⊙}. We find that the stars in ˜80 per cent of the LV dwarf galaxies studied - both satellites and isolated systems - are dispersion-supported. In particular, we show that 6/10 isolated dwarfs in our sample have vrot/σ ≲ 1.0, while all have vrot/σ ≲ 2.0. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally supported stellar discs, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion-supported stars. We see no clear trend between vrot/σ and distance to the closest L⋆ galaxy, nor between vrot/σ and M⋆ within our mass range. We apply the same Bayesian analysis to four FIRE hydrodynamic zoom-in simulations of isolated dwarf galaxies (10^9 M_{⊙}< M_{vir}< 10^{10} M_{⊙}) and show that the simulated isolated dIrr galaxies have stellar ellipticities and stellar vrot/σ ratios that are consistent with the observed population of dIrrs and dSphs without the need to subject these dwarfs to any external perturbations or tidal forces. We posit that most dwarf galaxies form as puffy, dispersion-dominated systems, rather than cold, angular-momentum-supported discs. If this is the case, then transforming a dIrr into a dSph may require little more than removing its gas.

  14. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - I. Stellar kinematics

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.; Storchi-Bergmann, Thaisa; Riffel, Rogerio; Dahmer-Hahn, Luis G.; Diniz, Marlon R.; Schönell, Astor J.; Dametto, Natacha Z.

    2017-09-01

    We use the Gemini Near-Infrared Integral Field Spectrograph (NIFS) to map the stellar kinematics of the inner few hundred parsecs of a sample of 16 nearby Seyfert galaxies, at a spatial resolution of tens of parsecs and spectral resolution of 40 km s- 1. We find that the line-of-sight (LOS) velocity fields for most galaxies are well reproduced by rotating disc models. The kinematic position angle (PA) derived for the LOS velocity field is consistent with the large-scale photometric PA. The residual velocities are correlated with the hard X-ray luminosity, suggesting that more luminous active galactic nuclei have a larger impact in the surrounding stellar dynamics. The central velocity dispersion values are usually higher than the rotation velocity amplitude, what we attribute to the strong contribution of bulge kinematics in these inner regions. For 50 per cent of the galaxies, we find an inverse correlation between the velocities and the h3 Gauss-Hermitte moment, implying red wings in the blueshifted side and blue wings in the redshifted side of the velocity field, attributed to the movement of the bulge stars lagging the rotation. Two of the 16 galaxies (NGC 5899 and Mrk 1066) show an S-shape zero velocity line, attributed to the gravitational potential of a nuclear bar. Velocity dispersion (σ) maps show rings of low-σ values (˜50-80 km s- 1) for four objects and 'patches' of low σ for six galaxies at 150-250 pc from the nucleus, attributed to young/ intermediate age stellar populations.

  15. THE DYNAMICS OF SPIRAL ARMS IN PURE STELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, M. S.; Baba, J.; Saitoh, T. R.

    2011-04-01

    It has been believed that spiral arms in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here, we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional N-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., 3 x 10{sup 6}, multi-armmore » spirals developed in an isolated disk can survive for more than 10 Gyr. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomre's Q of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by Q, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms and that the self-regulating mechanism in pure stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., 3 x 10{sup 5}, spiral arms grow faster in the beginning of the simulation (while Q is small) and they cause a rapid increase of Q. As a result, the spiral arms become faint in several Gyr.« less

  16. FITspec: A New Algorithm for the Automated Fit of Synthetic Stellar Spectra for OB Stars

    NASA Astrophysics Data System (ADS)

    Fierro-Santillán, Celia R.; Zsargó, Janos; Klapp, Jaime; Díaz-Azuara, Santiago A.; Arrieta, Anabel; Arias, Lorena; Sigalotti, Leonardo Di G.

    2018-06-01

    In this paper we describe the FITspec code, a data mining tool for the automatic fitting of synthetic stellar spectra. The program uses a database of 27,000 CMFGEN models of stellar atmospheres arranged in a six-dimensional (6D) space, where each dimension corresponds to one model parameter. From these models a library of 2,835,000 synthetic spectra were generated covering the ultraviolet, optical, and infrared regions of the electromagnetic spectrum. Using FITspec we adjust the effective temperature and the surface gravity. From the 6D array we also get the luminosity, the metallicity, and three parameters for the stellar wind: the terminal velocity ({v}∞ ), the β exponent of the velocity law, and the clumping filling factor (F cl). Finally, the projected rotational velocity (v\\cdot \\sin i) can be obtained from the library of stellar spectra. Validation of the algorithm was performed by analyzing the spectra of a sample of eight O-type stars taken from the IACOB spectroscopic survey of Northern Galactic OB stars. The spectral lines used for the adjustment of the analyzed stars are reproduced with good accuracy. In particular, the effective temperatures calculated with the FITspec are in good agreement with those derived from spectral type and other calibrations for the same stars. The stellar luminosities and projected rotational velocities are also in good agreement with previous quantitative spectroscopic analyses in the literature. An important advantage of FITspec over traditional codes is that the time required for spectral analyses is reduced from months to a few hours.

  17. Galaxy simulations: Kinematics and mock observations

    NASA Astrophysics Data System (ADS)

    Moody, Christopher E.

    2013-08-01

    There are six topics to my thesis, which are: (1) slow rotator production in varied simulation schemes and kinematically decoupled cores and twists in those simulations, (2) the change in number of clumps in radiation pressure and no-radiation pressure simulations, (3) Sunrise experiments and failures including UVJ color-color dust experiments and UVbeta slopes, (4) the Sunrise image pipeline and algorithms. Cosmological simulations of have typically produced too many stars at early times. We find that the additional radiation pressure (RP) feedback suppresses star formation globally by a factor of ~ 3. Despite this reduction, the simulation still overproduces stars by a factor of ~ 2 with respect to the predictions provided by abundance matching methods. In simulations with RP the number of clumps falls dramatically. However, only clumps with masses Mclump/Mdisk ≤ 8% are impacted by the inclusion of RP, and clump counts above this range are comparable. Above this mass, the difference between and RP and no-RP contrast ratios diminishes. If we restrict our selection to galaxies hosting at least a single clump above this mass range then clump numbers, contrast ratios, survival fractions and total clump masses show little discrepancy between RP and no-RP simulations. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps. New kinematic observations from ATLAS3D have highlighted the need to understand the evolutionary mechanism leading to a spectrum of fast-rotator and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamic simulations sampling idealized galaxy merger formation scenarios constructed from model spiral galaxies. We recreate minor and major binary mergers, binary merger trees with multiple progenitors, and multiple sequential mergers. Within each of these categories of formation history, we correlate progenitor gas fraction, mass ratio, orbital pericenter, orbital ellipticity, spin, and kinematically decoupled cores with remnant kinematic properties. We find that binary mergers nearly always form fast rotators, but slow rotators can be formed from zero initial angular momentum configurations and gas-poor mergers. Remnants of binary merger trees are triaxial slow rotators. Sequential mergers form round slow rotators that most resemble the ATLAS3D rotators. We investigate the failure of ART and Sunrise simulation to reproduce the observed distribution of galaxies in the UVJ color-color diagram. No simulated galaxies achieve a color with V-J >1.0 while still being in the blue sequence. I systematically study the underlying sub grid models present in Sunrise to diagnose the source of the discrepancy. The experiments were largely unsuccessful in directly isolating the root of the J-band excess attenuation; however, they are instructive and can guide the intuition in terms of understanding the interplay of stellar emission and dust. These experiments were aimed at understanding the role of the underlying sub grid dust and radiation models, varying the dust geometry, and performing numerical studies of the radiation transfer calculation. Finally, I detail the data pipeline responsible for the creation of galaxy mock observations. The pipeline can be broken into the ART simulation raw data, the dark matter merger tree backbone, the format translation using yt, simulation the radiation transfer in Sunrise, and post-processed image treatments resulting. At every step, I detail the execution of the algorithms, the format of the data, and useful scripts for straightforward analysis.

  18. HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Quan; Yu, Yun-Wei, E-mail: yuyw@mail.ccnu.edu.cn

    2014-05-10

    In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (∼10{sup 11} G) to generate an ultra-high (∼10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ∼10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ∼10{sup 15} G. Accompanying the field amplification, the star could spinmore » down to a period of ∼5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.« less

  19. Convection and Overshoot in Models of Doradus and Scuti Stars

    DOE PAGES

    Lovekin, Catherine C.; Guzik, Joyce Ann

    2017-10-27

    We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. Here we have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. Wemore » also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. Finally, as a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.« less

  20. On the oblateness and rotation rate of Neptune's atmosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1986-01-01

    Recent observations of a stellar occultation by Neptune give an oblateness of 0.022 + or - 0.004 for Neptune's atmosphere at the 1-microbar pressure level. This results is consistent with hydrostatic equilibrium at a uniform atmospheric rotation period of 15 hours, although the error bars on quantities used in the calculation are such that an 18-hour period is not excluded. The oblateness of a planetary atmosphere is determined from stellar occultations by measuring the times at which a specified point on immersion or emersion occultation profiles is reached. Whether this standard procedure for deriving the shape of the atmosphere is consistent with what is known about vertical and horizontal temperature gradients in Neptune's atmosphere is evaluated. The nature of the constraint placed on the interior mass distribution by an oblateness determined in this manner is consided, as is the effects of possible differential rotation. A 15-hour Neptune internal mass distribution is approximately homologous to Uranus', but an 18-hour period is not. The implications for Neptune's interior structure if its body rotation period is actually 18 hours are discussed.

  1. Convection and Overshoot in Models of Doradus and Scuti Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovekin, Catherine C.; Guzik, Joyce Ann

    We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. Here we have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. Wemore » also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. Finally, as a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.« less

  2. Convection and Overshoot in Models of γ Doradus and δ Scuti Stars

    NASA Astrophysics Data System (ADS)

    Lovekin, C. C.; Guzik, J. A.

    2017-11-01

    We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. We have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. We also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. As a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.

  3. STELLAR BORON ABUNDANCES NEAR THE MAIN-SEQUENCE TURNOFF OF THE OPEN CLUSTER NGC 3293 AND IMPLICATIONS FOR THE EFFICIENCY OF ROTATIONALLY DRIVEN MIXING IN STELLAR ENVELOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffitt, Charles R.; Lennon, Daniel J.; Langer, Norbert

    2016-06-10

    Spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and the Space Telescope Imaging Spectrograph covering the B iii resonance line have been obtained for 10 early-B stars near the turnoff of the young Galactic open cluster NGC 3293. This is the first sample of boron abundance determinations in a single, clearly defined population of early-B stars that also covers a substantial range of projected rotational velocities. In most of these stars we detect partial depletion of boron at a level consistent with that expected for rotational mixing in single stars, but inconsistent with expectations for depletion from close binarymore » evolution. However, our results do suggest that the efficiency of rotational mixing is at or slightly below the low end of the range predicted by the available theoretical calculations. The two most luminous targets observed have a very large boron depletion and may be the products of either binary interactions or post-main-sequence evolution.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Winn, Joshua N.; Albrecht, Simon

    We present an improved formula for the anomalous radial velocity of the star during planetary transits due to the Rossiter-McLaughlin (RM) effect. The improvement comes from a more realistic description of the stellar absorption line profiles, taking into account stellar rotation, macroturbulence, thermal broadening, pressure broadening, and instrumental broadening. Although the formula is derived for the case in which radial velocities are measured by cross-correlation, we show through numerical simulations that the formula accurately describes the cases where the radial velocities are measured with the iodine absorption-cell technique. The formula relies on prior knowledge of the parameters describing macroturbulence, instrumentalmore » broadening, and other broadening mechanisms, but even 30% errors in those parameters do not significantly change the results in typical circumstances. We show that the new analytic formula agrees with previous ones that had been computed on a case-by-case basis via numerical simulations. Finally, as one application of the new formula, we reassess the impact of the differential rotation on the RM velocity anomaly. We show that differential rotation of a rapidly rotating star may have a significant impact on future RM observations.« less

  5. Seismology of rapidly rotating and solar-like stars

    NASA Astrophysics Data System (ADS)

    Reese, Daniel Roy

    2018-05-01

    A great deal of progress has been made in stellar physics thanks to asteroseismology, the study of pulsating stars. Indeed, asteroseismology is currently the only way to probe the internal structure of stars. The work presented here focuses on some of the theoretical aspects of this domain and addresses two broad categories of stars, namely solar-like pulsators (including red giants), and rapidly rotating pulsating stars. The work on solar-like pulsators focuses on setting up methods for efficiently characterising a large number of stars, in preparation for space missions like TESS and PLATO 2.0. In particular, the AIMS code applies an MCMC algorithm to find stellar properties and a sample of stellar models which fit a set of seismic and classic observational constraints. In order to reduce computation time, this code interpolates within a precalculated grid of models, using a Delaunay tessellation which allows a greater flexibility on the construction of the grid. Using interpolated models based on the outputs from this code or models from other forward modelling codes, it is possible to obtain refined estimates of various stellar properties such as the mean density thanks to inversion methods put together by me and G. Buldgen, my former PhD student. Finally, I show how inversion-type methods can also be used to test more qualitative information such as whether a decreasing rotation profile is compatible with a set of observed rotational splittings and a given reference model. In contrast to solar-like pulsators, the pulsation modes of rapidly rotating stars remain much more difficult to interpret due to the complexity of the numerical calculations needed to calculate such modes, the lack of simple frequency patterns, and the fact that it is difficult to predict mode amplitudes. The work described here therefore focuses on addressing the above difficulties one at a time in the hopes that it will one day be possible to carry out detailed asteroseismology in these stars. First of all, the non-adiabatic pulsation equations and their numerical implementation are described. The variational principle and work integrals are addressed. This is followed by a brief classification of the pulsation modes one can expect in rapidly rotating stars. I then address the frequencies patterns resulting from acoustic island modes and the interpretations of observed pulsation spectra based on these. This is then followed by a description of mode identification techniques and the ongoing efforts to adapt them to rapid rotation. Finally, the last part briefly deals with mode excitation.

  6. Core-powered mass-loss and the radius distribution of small exoplanets

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Schlichting, Hilke E.; Sari, Re'em

    2018-05-01

    Recent observations identify a valley in the radius distribution of small exoplanets, with planets in the range 1.5-2.0 R⊕ significantly less common than somewhat smaller or larger planets. This valley may suggest a bimodal population of rocky planets that are either engulfed by massive gas envelopes that significantly enlarge their radius, or do not have detectable atmospheres at all. One explanation of such a bimodal distribution is atmospheric erosion by high-energy stellar photons. We investigate an alternative mechanism: the luminosity of the cooling rocky core, which can completely erode light envelopes while preserving heavy ones, produces a deficit of intermediate sized planets. We evolve planetary populations that are derived from observations using a simple analytical prescription, accounting self-consistently for envelope accretion, cooling and mass-loss, and demonstrate that core-powered mass-loss naturally reproduces the observed radius distribution, regardless of the high-energy incident flux. Observations of planets around different stellar types may distinguish between photoevaporation, which is powered by the high-energy tail of the stellar radiation, and core-powered mass-loss, which depends on the bolometric flux through the planet's equilibrium temperature that sets both its cooling and mass-loss rates.

  7. Photometrically-derived properties of massive-star clusters obtained with different massive-star evolution tracks and deterministic models

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Charlot, Stéphane; Eldridge, John

    2015-08-01

    We compute libraries of stellar + nebular spectra of populations of coeval stars with ages of <100 Myr and metallicities of Z=0.001 to 0.040, using different sets of massive-star evolution tracks, i.e., new Padova tracks for single non-rotating stars, the Geneva tracks for single non-rotating and rotating stars, and the Auckland tracks for single non-rotating and binary stars. For the stellar component, we use population synthesis codes galaxev, starburst99, and BPASS, depending on the set of tracks. For the nebular component we use photoionization code cloudy. From these spectra, we obtain magnitudes in filters F275W, F336W, F438W, F547M, F555W, F657N, and F814W of the Hubble Space Telescope (HST) Wide Field Camera Three. We use i) our computed magnitudes, ii) new multi-band photometry of massive-star clusters in nearby (<11 Mpc) galaxies spanning the metallicity range 12+log(O/H)=7.2-9.2, observed as part of HST programs 13364 (PI Calzetti) and 13773 (PI Chandar), and iii) Bayesian inference to a) establish how well the different models are able to constrain the metallicities, extinctions, ages, and masses of the star clusters, b) quantify differences in the cluster properties obtained with the different models, and c) assess how properties of lower-mass clusters are affected by the stochastic sampling of the IMF. In our models, the stellar evolution tracks, stellar atmospheres, and nebulae have similar chemical compositions. Different metallicities are available with different sets of tracks and we compare results from models of similar metallicities. Our results have implications for studies of the formation and evolution of star clusters, the cluster age and mass functions, and the star formation histories of galaxies.

  8. On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    2000-01-01

    This grant was awarded by NASA to The University of Alabama in Huntsville (UAH) to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. In our proposal, we suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical wind models, and used these models to investigate the origin of "dividing lines" in the H-R diagram. In the following, we describe our completed work. We have accomplished the first main goal of our proposal by constructing first purely theoretical, time-dependent and two-component models of stellar chromospheres.1 The models require specifying only three basic stellar parameters, namely, the effective temperature, gravity and rotation rate, and they take into account non-magnetic and magnetic regions in stellar chromospheres. The non-magnetic regions are heated by acoustic waves generated by the turbulent convection in the stellar subphotospheric layers. The magnetic regions are identified with magnetic flux tubes uniformly distributed over the entire stellar surface and they are heated by longitudinal tube waves generated by turbulent motions in the subphotospheric and photospheric layers. The coverage of stellar surface by magnetic regions (the so-called filling factor) is estimated for a given rotation rate from an observational relationship. The constructed models are time-dependent and are based on the energy balance between the amount of mechanical energy supplied by waves and radiative losses in strong Ca II and Mg II emission lines. To calculate the amount of wave energy in the non-magnetic regions, we have used the Lighthill-Stein theory for sound generation.

  9. COSMIC-LAB: Double BSS sequences as signatures of the Core Collapse phenomenon in star clusters.

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2011-10-01

    Globular Clusters {GCs} are old stellar systems tracing key stages of the star formation and chemical enrichment history of the early Universe and the galaxy assembly phase. As part of a project {COSMIC-LAB} aimed at using GCs as natural laboratories to study the complex interplay between dynamics and stellar evolution, here we present a proposal dealing with the role of Blue Straggler Stars {BSS}.BSS are core-hydrogen burning stars more massive than the main-sequence turnoff population. The canonical scenarios for BSS formation are either the mass transfer between binary companions, or stellar mergers induced by collisions. We have recently discovered two distinct and parallel sequences of BSS in the core of M30 {Ferraro et al. 2009, Nature 462, 1082}. We suggested that each of the two sequences is populated by BSS formed by one of the two processes, both triggered by the cluster core collapse, that, based on the observed BSS properties, must have occurred 1-2 Gyr ago. Following this scenario, we have identified a powerful "clock" to date the occurrence of this key event in the GC history.Here we propose to secure WFC3 images of 4 post-core collapse GCs, reaching S/N=200 at the BSS magnitude level, in order to determine the ubiquity of the BSS double sequence and calibrate the "dynamical clock". This requires very high spatial resolution and very high precision photometry capabilities that are unique to the HST. The modest amount of requested time will have a deep impact on the current and future generations of dynamical evolutionary models of collisional stellar systems.

  10. The Spatial Distribution of Complex Organic Molecules in the L1544 Pre-stellar Core.

    PubMed

    Jiménez-Serra, Izaskun; Vasyunin, Anton I; Caselli, Paola; Marcelino, Nuria; Billot, Nicolas; Viti, Serena; Testi, Leonardo; Vastel, Charlotte; Lefloch, Bertrand; Bachiller, Rafael

    2016-10-10

    The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with A V ≥30 mag within the inner 2700 au; and a low-density shell with average A V ~7.5-8 mag located at 4000 au from the core's center and bright in CH 3 OH. Our observations show that CH 3 O, CH 3 OCH 3 and CH 3 CHO are more abundant (by factors ~2-10) toward the low-density shell than toward the continuum peak. Other COMs such as CH 3 OCHO, c-C 3 H 2 O, HCCCHO, CH 2 CHCN and HCCNC show slight enhancements (by factors ≤3) but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modelling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because i) CO starts freezing out onto dust grains driving an active surface chemistry; ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and iii) the density is still moderate to prevent severe depletion of COMs onto grains.

  11. Deviations from a uniform period spacing of gravity modes in a massive star.

    PubMed

    Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric

    2010-03-11

    The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.

  12. A laboratory model of planetary and stellar convection

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Toomre, J.; Deane, A. E.; Hurlburt, N. E.; Glatzmaier, G. A.; Fichtl, G. H.; Leslie, F.; Fowlis, W. W.; Gilman, P. A.

    1987-01-01

    Experiments on thermal convection in a rotating, differentially-heated spherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are in agreement with numerical simulations that can be conducted at modest parameter values, and suggest possible regimes of motion in rotating planets and stars.

  13. GHASP: an H α kinematical survey of spiral galaxies - XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry

    NASA Astrophysics Data System (ADS)

    Korsaga, M.; Carignan, C.; Amram, P.; Epinat, B.; Jarrett, T. H.

    2018-07-01

    We present the mass distribution of a sample of 121 nearby galaxies with high-quality optical velocity fields and available infrared Wide-field Infrared Survey Explorer(WISE) 3.4 μm data. Contrary to previous studies, this sample covers all morphological types and is not biased towards late-type galaxies. These galaxies are part of the Fabry-Perot kinematical Gassendi HAlpha survey of SPirals survey of spirals and irregular nearby galaxies. Combining the kinematical data to the WISE surface brightness data probing the emission from the old stellar population, we derive mass models allowing us to compare the luminous to the dark matter (DM) halo mass distribution in the optical regions of those galaxies. DM models are constructed using the isothermal core profile and the Navarro-Frenk-White cuspy profile. We allow the mass-to-light ratio (M/L) of the baryonic disc to vary or we keep it fixed, constrained by stellar evolutionary models (WISE W1-W2 colour) and we carry out best fit (BFM) and pseudo-isothermal maximum disc (MDM) models. We found that the MDM provides M/L values four times higher than the BFM, suggesting that disc components, on average, tend to be maximal. The main results are: (i) the rotation curves of most galaxies are better fitted with core rather than cuspy profiles; and (ii) the relation between the parameters of the DM and of the luminous matter components mostly depends on morphological types. More precisely, the distribution of the DM inside galaxies depends on whether or not the galaxy has a bulge.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dullo, Bililign T.; Graham, Alister W., E-mail: Bdullo@astro.swin.edu.au

    We have used the full radial extent of images from the Hubble Space Telescope's Advanced Camera for Surveys and Wide Field Planetary Camera 2 to extract surface brightness profiles from a sample of six, local lenticular galaxy candidates. We have modeled these profiles using a core-Sersic bulge plus an exponential disk model. Our fast rotating lenticular disk galaxies with bulge magnitudes M{sub V} {approx}< -21.30 mag have central stellar deficits, suggesting that these bulges may have formed from ''dry'' merger events involving supermassive black holes (BHs) while their surrounding disk was subsequently built up, perhaps via cold gas accretion scenarios.more » The central stellar mass deficits M{sub def} are roughly 0.5-2 M{sub BH} (BH mass), rather than {approx}10-20 M{sub BH} as claimed from some past studies, which is in accord with core-Sersic model mass deficit measurements in elliptical galaxies. Furthermore, these bulges have Sersic indices n {approx}3, half-light radii R{sub e} < 2 kpc and masses >10{sup 11} M{sub Sun }, and therefore appear to be descendants of the compact galaxies reported at z {approx} 1.5-2. Past studies which have searched for these local counterparts by using single-component galaxy models to provide the z {approx} 0 size comparisons have overlooked these dense, compact, and massive bulges in today's early-type disk galaxies. This evolutionary scenario not only accounts for what are today generally old bulges-which must be present in z {approx} 1.5 images-residing in what are generally young disks, but it eliminates the uncomfortable suggestion of a factor of three to five growth in size for the compact, z {approx} 1.5 galaxies that are known to possess infant disks.« less

  15. A Decade of H α Transits for HD 189733 b: Stellar Activity versus Absorption in the Extended Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G., E-mail: pcauley@wesleyan.edu

    HD 189733 b is one of the most well studied exoplanets due to its large transit depth and host star brightness. The focus on this object has produced a number of high-cadence transit observations using high-resolution optical spectrographs. Here we present an analysis of seven full H α transits of HD 189733 b using HARPS on the 3.6 meter La Silla telescope and HIRES on Keck I, taken over the course of nine years from 2006 to 2015. H α transmission signals are analyzed as a function of the stellar activity level, as measured using the normalized core flux ofmore » the Ca ii H and K lines. We find strong variations in the strength of the H α transmission spectrum from epoch to epoch. However, there is no clear trend between the Ca ii core emission and the strength of the in-transit H α signal, although the transit showing the largest absorption value also occurs when the star is the most active. We present simulations of the in-transit contrast effect and find that the planet must consistently transit active latitudes with very strong facular and plage emission regions in order to reproduce the observed line strengths. We also investigate the measured velocity centroids with models of planetary rotation and show that the small line profile velocities could be due to large velocities in the upper atmosphere of the planet. Overall, we find it more likely that the measured H α signals arise in the extended planetary atmosphere, although a better understanding of active region emission for active stars such as HD 189733 is needed.« less

  16. The Stellar Kinematics of E+A Galaxies in SDSS IV-MaNGA

    NASA Astrophysics Data System (ADS)

    Johnson, Amalya; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Kerrison, Nicole; Marinelli, Mariarosa; Melchert, Nancy; Ojanen, Winonah; Liu, Charles; SDSS-IV MaNGA

    2018-01-01

    E+A galaxies, hypothesized to be “transition” galaxies between the blue cloud and the red sequence, are valuable sources for studying the evolution of galaxies. Using data from the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, a large scale integral field spectroscopic survey of nearby galaxies from 3600 to 10300 Å, we identifed galaxies that exhibitted E+A characteristics within their optical spectra. We analyzed the 2,812 galaxies thus far observed by MaNGA to identify those that showed evidence of a starburst about 1 billion years ago, followed by cessation of star formation and quenching of the galaxy. Through this process we identifed 39 E+A galaxies by directly looking at the optical spectra and ensuring they exhibited the necessary properties of an E+A spectra, including a strong break at the 4000 Å mark, little to no Hα emission and absorption through the Balmer series, and a blue slope of the continuum past ~5000 Å as the flux decreases. We analyzed the stellar kinematics of these galaxies to determine whether or not they were fast or slow rotators, a proposed indicator of a major merger in their recent past. Using Voronoi binned graphs from the MaNGA Marvin database, we measured their stellar rotation curves in order to more clearly show the range of velocities within the galaxies. Among our 39 E+A candidates, all but two exhibited significant, orderly rotation across the galaxy, and 29 out of 39 of our galaxies show rotation faster than 30 km/s. With the caveat that our selection process was biased toward galaxies with orderly rotation, this prevalence of rotation challenges the belief that all E+A galaxies are created from major mergers. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  17. Waldmeier's Rules in the Solar and Stellar Dynamos

    NASA Astrophysics Data System (ADS)

    Pipin, Valery; Kosovichev, Alexander

    2015-08-01

    The Waldmeier's rules [1] establish important empirical relations between the general parameters of magnetic cycles (such as the amplitude, period, growth rate and time profile) on the Sun and solar-type stars [2]. Variations of the magnetic cycle parameters depend on properties of the global dynamo processes operating in the stellar convection zones. We employ nonlinear mean-field axisymmetric dynamo models [3] and calculate of the magnetic cycle parameters, such as the dynamo cycle period, total magnetic and Poynting fluxes for the Sun and solar-type stars with rotational periods from 15 to 30 days. We consider two types of the dynamo models: 1) distributed (D-type) models employing the standard α - effect distributed in the whole convection zone, and 2) Babcock-Leighton (BL-type) models with a non-local α - effect. The dynamo models take into account the principal mechanisms of the nonlinear dynamo generation and saturation, including the magnetic helicity conservation, magnetic buoyancy effects, and the feedback on the angular momentum balance inside the convection zones. Both types of models show that the dynamo generated magnetic flux increases with the increase of the rotation rate. This corresponds to stronger brightness variations. The distributed dynamo model reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs better than the BL-type model. For the solar-type stars rotating more rapidly than the Sun we find dynamo regimes with multiple periods. Such stars with multiple cycles form a separate branch in the variability-rotation diagram.1. Waldmeier, M., Prognose für das nächste Sonnenfleckenmaximum, 1936, Astron. Nachrichten, 259,262. Soon,W.H., Baliunas,S.L., Zhang,Q.,An interpretation of cycle periods of stellar chromospheric activity, 1993, ApJ, 414,333. Pipin,V.V., Dependence of magnetic cycle parameters on period of rotation in nonlinear solar-type dynamos, 2015, astro-ph: 14125284

  18. Observation and modelling of main-sequence stellar chromospheres - VII. Rotation and metallicity of dM1 stars

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2008-11-01

    We have measured v sini and metallicity from high-resolution spectroscopic observations of a selected sample of dM1-type stars. To measure v sini, we first selected three template stars known for their slow rotation or their very low activity levels and then cross-correlated their spectra with those of our target stars. The excess broadening of the cross-correlation peaks gives v sini. For metallicity, we compiled all available measurements from the literature and correlated them with the stellar radius. Provided the parallax is known, this new method allows us to derive metallicities for all our target stars. We measured v sini to an accuracy of 2 kms-1. These values were combined with other measurements taken from the literature. We have detected rotation in seven dM1e stars and 11 dM1 stars and upper limits for 20 other dM1 stars. Our results show that the distribution of the rotation period may be bimodal for dM1 stars, i.e. there are two groups of stars: the fast rotators with Prot ~ 6 d and the slow rotators with Prot ~ 24 d. There is a gap between these two groups. We obtained a correlation between metallicity and stellar radius which allows us to derive metallicities for all stars in our sample and more generally for all dM1 stars with [M/H] in the range -1.5 to 0.5 dex, with a reasonable accuracy. We compare this correlation to models and find a significant disagreement in radii. However, the observed shape of the correlation is globally reproduced by the models. We derive the metallicity for 87 M1 dwarfs and subdwarfs. Based on observations collected at Observatoire de Haute Provence and the European Southern Observatory and on Hipparcos parallax measurements. E-mail: eric_houdebine@yahoo.fr

  19. Weak magnetic field, solid-envelope rotation, and wave-induced N-enrichment in the SPB star ζ Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Briquet, M.; Neiner, C.; Petit, P.; Leroy, B.; de Batz, B.

    2016-03-01

    Aims: The main-sequence B-type star ζ Cassiopeiae is known as a N-rich star with a magnetic field discovered with the Musicos spectropolarimeter. We model the magnetic field of the star by means of 82 new spectropolarimetric observations of higher precision to investigate the field strength, topology, and effect. Methods: We gathered data with the Narval spectropolarimeter installed at Télescope Bernard Lyot (TBL; Pic du Midi, France) and applied the least-squares deconvolution technique to measure the circular polarisation of the light emitted from ζ Cas. We used a dipole oblique rotator model to determine the field configuration by fitting the longitudinal field measurements and by synthesizing the measured Stokes V profiles. We also made use of the Zeeman-Doppler imaging technique to map the stellar surface and to deduce the difference in rotation rate between the pole and equator. Results: ζ Cas exhibits a polar field strength Bpol of 100-150 G, which is the weakest polar field observed so far in a massive main-sequence star. Surface differential rotation is ruled out by our observations and the field of ζ Cas is strong enough to enforce rigid internal rotation in the radiative zone according to theory. Thus, the star rotates as a solid body in the envelope. Conclusions: We therefore exclude rotationally induced mixing as the cause of the surface N-enrichment. We discuss that the transport of chemicals from the core to the surface by internal gravity waves is the most plausible explanation for the nitrogen overabundance at the surface of ζ Cas. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique (CNRS) of France.

  20. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelli, Federico; McGaugh, Stacy S.; Schombert, James M., E-mail: federico.lelli@case.edu

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailedmore » mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.« less

  1. O-star parameters from line profiles of wind-blanketed model atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voels, S.A.

    1989-01-01

    The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less

  2. Colliding Stellar Wind Models with Orbital Motion

    NASA Astrophysics Data System (ADS)

    Wilkin, Francis P.; O'Connor, Brendan

    2018-01-01

    We present thin-shell models for the collision between two ballistic stellar winds, including orbital motion.The stellar orbits are assumed circular, so that steady-state solutions exist in the rotating frame, where we include centrifugal and Coriolis forces. Exact solutions for the pre-shock winds are incorporated. Here we discuss 2-D model results for equal wind momentum-loss rates, although we allow for the winds to have distinct speeds and mass loss rates. For these unequal wind conditions, we obtain a clear violation of skew-symmetry, despite equal momentum loss rates, due to the Coriolis force.

  3. Rotational stellar structures based on the Lagrangian variational principle

    NASA Astrophysics Data System (ADS)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Yamada, Shoichi

    2017-06-01

    A new method for multi-dimensional stellar structures is proposed in this study. As for stellar evolution calculations, the Heney method is the defacto standard now, but basically assumed to be spherical symmetric. It is one of the difficulties for deformed stellar-evolution calculations to trace the potentially complex movements of each fluid element. On the other hand, our new method is very suitable to follow such movements, since it is based on the Lagrange coordinate. This scheme is also based on the variational principle, which is adopted to the studies for the pasta structures inside of neutron stars. Our scheme could be a major break through for evolution calculations of any types of deformed stars: proto-planets, proto-stars, and proto-neutron stars, etc.

  4. A MODEL OF WHITE DWARF PULSAR AR SCORPII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Jin-Jun; Huang, Yong-Feng; Zhang, Bing, E-mail: gengjinjun@gmail.com, E-mail: hyf@nju.edu.cn, E-mail: zhang@physics.unlv.edu

    2016-11-01

    A 3.56 hr white dwarf (WD)–M dwarf (MD) close binary system, AR Scorpii, was recently reported to show pulsating emission in radio, IR, optical, and UV, with a 1.97 minute period, which suggests the existence of a WD with a rotation period of 1.95 minutes. We propose a model to explain the temporal and spectral characteristics of the system. The WD is a nearly perpendicular rotator, with both open field line beams sweeping the MD stellar wind periodically. A bow shock propagating into the stellar wind accelerates electrons in the wind. Synchrotron radiation of these shocked electrons can naturally accountmore » for the broadband (from radio to X-rays) spectral energy distribution of the system.« less

  5. IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayar, Jamie; Pinsonneault, Marc H., E-mail: tayar.1@osu.edu

    2013-09-20

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In themore » case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.« less

  6. Revolution evolution: tracing angular momentum during star and planetary system formation

    NASA Astrophysics Data System (ADS)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the disc to expand. I used spatially resolved submillimetre detections of the dust and gas components of protoplanetary discs, gathered from the literature, to measure the radial extent of discs around low-mass pre-main sequence stars of ∼ 1-10 Myr and probe their viscous evolution. I find no clear observational evidence for the radial expansion of the dust component. However, I find tentative evidence for the expansion ofthe gas component. This suggests that the evolution of the gas and dust components of protoplanetary discs are likely governed by different astrophysical processes. Observations of jets and outflows emanating from protostars and pre-main sequence stars highlight that it may also be possible to remove angular momentum from the circumstellar material. Using the sample of spatially resolved protoplanetary discs, I find no evidence for angular momentum removal during disc evolution. I also use the spatially resolved debris discs from the Submillimetre Common-User Bolometer Array-2 Observations of Nearby Stars survey to constrain the amount of angular momentum retained within planetary systems. This sample is compared to the protoplanetary disc angular momenta and to the angular momentum contained within pre-stellar cores. I find that significant quantities of angular momentum must be removed during disc formation and disc dispersal. This likely occurs via magnetic braking during the formation of the disc, via the launching of a disc or photo-evaporative wind, and/or via ejection of planetary material following dynamical interactions.

  7. The Betelgeuse Project II: Asteroseismology

    NASA Astrophysics Data System (ADS)

    Nance, S.; Sullivan, J. M.; Diaz, M.; Wheeler, J. Craig

    2018-06-01

    We explore the question of whether the interior state of massive red supergiant supernova progenitors can be effectively probed with asteroseismology. We have computed a suite of ten models with ZAMS masses from 15 to 25 M⊙ in intervals of 1 M⊙ including the effects of rotation, with the stellar evolutionary code MESA. We estimate characteristic frequencies and convective luminosities of convective zones at two illustrative stages, core helium burning and off-center convective carbon burning. We also estimate the power that might be delivered to the surface to modulate the luminous output considering various efficiencies and dissipation mechanisms. The inner convective regions should generate waves with characteristic periods of ˜ 20 days in core helium burning, ˜10 days in helium shell burning, and 0.1 to 1 day in shell carbon burning. Acoustic waves may avoid both shock and diffusive dissipation relatively early in core helium burning throughout most of the structure. In shell carbon burning, years before explosion, the signal generated in the helium shell might in some circumstances be weak enough to avoid shock dissipation, but is subject to strong thermal dissipation in the hydrogen envelope. Signals from a convective carbon-burning shell are very likely to be even more severely damped by within the envelope. In the most optimistic case, early in core helium burning, waves arriving close to the surface could represent luminosity fluctuations of a few millimagnitudes, but the conditions in the very outer reaches of the envelope suggest severe thermal damping there.

  8. Magnetic fields driven by tidal mixing in radiative stars

    NASA Astrophysics Data System (ADS)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  9. Stellar Rotation on the Main Sequence

    NASA Astrophysics Data System (ADS)

    Soderblom, D.; Murdin, P.

    2000-11-01

    The conservation of ANGULAR MOMENTUM is the one effective counterbalance to the inexorable pull of gravity in the universe, and so everything rotates. Stars acquire their angular momentum when they form, and, indeed, the manner in which nearly all this initial angular momentum is dissipated remains poorly understood, but without substantial angular momentum loss an interstellar cloud could never ...

  10. The IUE Mega Campaign. Modulated Structure in the Wind of HD 64760 (B0.5 Ib)

    NASA Technical Reports Server (NTRS)

    Prinja, Raman K.; Massa, Derck; Fullerton, Alexander W.

    1995-01-01

    We highlight systematic variability in the stellar wind of the early B type supergiant, HD 64760, whose UV line profiles were monitored for almost 16 days in 1995 January as part of the IUE 'MEGA Campaign.' The extensive coverage reveals a pattern of rapidly evolving discrete optical depth changes which typically migrate from approx. - 200 km/s to approx. -1500 km/s in less than 12 hr. These features coexist with more slowly evolving structures lasting several days. Time-series analysis of the Si(IV), Si(III), and N(V) profile variations presents a clear 1.2 day periodicity, which is a quarter of the estimated maximum rotation period of HD 64760. The line profile changes are consistent with an interpretation in terms of a set of corotating wind features which occult the stellar disk at least 3 times during the observing run. These data are combined with UV observations collected in 1993 March to argue in favor of rotationally modulated wind variations in HD 64760. The basic result of very regular, large-scale optical depth variations points to a 'clock' whose origin is on the stellar surface, rather than a mechanism that is entirely intrinsic to the stellar wind.

  11. The doubling of stellar black hole nuclei

    NASA Astrophysics Data System (ADS)

    Kazandjian, Mher V.; Touma, J. R.

    2013-04-01

    It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.

  12. The new semi-analytic code GalICS 2.0 - reproducing the galaxy stellar mass function and the Tully-Fisher relation simultaneously

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Blaizot, J.; Devriendt, J. E. G.; Mamon, G. A.; Tollet, E.; Dekel, A.; Guiderdoni, B.; Kucukbas, M.; Thob, A. C. R.

    2017-10-01

    GalICS 2.0 is a new semi-analytic code to model the formation and evolution of galaxies in a cosmological context. N-body simulations based on a Planck cosmology are used to construct halo merger trees, track subhaloes, compute spins and measure concentrations. The accretion of gas on to galaxies and the morphological evolution of galaxies are modelled with prescriptions derived from hydrodynamic simulations. Star formation and stellar feedback are described with phenomenological models (as in other semi-analytic codes). GalICS 2.0 computes rotation speeds from the gravitational potential of the dark matter, the disc and the central bulge. As the rotation speed depends not only on the virial velocity but also on the ratio of baryons to dark matter within a galaxy, our calculation predicts a different Tully-Fisher relation from models in which vrot ∝ vvir. This is why, GalICS 2.0 is able to reproduce the galaxy stellar mass function and the Tully-Fisher relation simultaneously. Our results are also in agreement with halo masses from weak lensing and satellite kinematics, gas fractions, the relation between star formation rate (SFR) and stellar mass, the evolution of the cosmic SFR density, bulge-to-disc ratios, disc sizes and the Faber-Jackson relation.

  13. Gaseous spiral structure and mass drift in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Yonghwi; Kim, Woong-Tae

    2014-05-01

    We use hydrodynamic simulations to investigate non-linear gas responses to an imposed stellar spiral potential in disc galaxies. The gaseous medium is assumed to be infinitesimally thin, isothermal, and unmagnetized. We consider various spiral-arm models with differing strength and pattern speed. We find that the extent and shapes of gaseous arms as well as the related mass drift rate depend rather sensitively on the arm pattern speed. In models where the arm pattern is rotating slow, the gaseous arms extend across the corotation resonance (CR) all the way to the outer boundary, with a pitch angle slightly smaller than that of the stellar counterpart. In models with a fast rotating pattern, on the other hand, spiral shocks are much more tightly wound than the stellar arms, and cease to exist in the regions near and outside the CR where mathcal {M}_perp /sin p_* gtrsim 25-40, with mathcal {M}_perp denoting the perpendicular Mach number of a rotating gas relative to the arms with pitch angle p*. Inside the CR, the arms drive mass inflows at a rate of ˜0.05-3.0 M⊙ yr-1 to the central region, with larger values corresponding to stronger and slower arms. The contribution of the shock dissipation, external torque, and self-gravitational torque to the mass inflow is roughly 50, 40, and 10 per cent, respectively. We demonstrate that the distributions of line-of-sight velocities and spiral-arm densities can be a useful diagnostic tool to distinguish if the spiral pattern is rotating fast or slow.

  14. Implications for the Origin of Early-type Dwarf Galaxies: A Detailed Look at the Isolated Rotating Early-type Dwarf Galaxy LEDA 2108986 (CG 611), Ramifications for the Fundamental Plane’s {S}_{K}^{2} Kinematic Scaling, and the Spin-Ellipticity Diagram

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Janz, Joachim; Penny, Samantha J.; Chilingarian, Igor V.; Ciambur, Bogdan C.; Forbes, Duncan A.; Davies, Roger L.

    2017-05-01

    Selected from a sample of nine, isolated, dwarf early-type galaxies (ETGs) with the same range of kinematic properties as dwarf ETGs in clusters, we use LEDA 2108986 (CG 611) to address the nature versus nurture debate regarding the formation of dwarf ETGs. The presence of faint disk structures and rotation within some cluster dwarf ETGs has often been heralded as evidence that they were once late-type spiral or dwarf irregular galaxies prior to experiencing a cluster-induced transformation into an ETG. However, CG 611 also contains significant stellar rotation (≈20 km s-1) over its inner half-light radius ({R}{{e},{maj}}=0.71 kpc), and its stellar structure and kinematics resemble those of cluster ETGs. In addition to hosting a faint young nuclear spiral within a possible intermediate-scale stellar disk, CG 611 has accreted an intermediate-scale, counter-rotating gas disk. It is therefore apparent that dwarf ETGs can be built by accretion events, as opposed to disk-stripping scenarios. We go on to discuss how both dwarf and ordinary ETGs with intermediate-scale disks, whether under (de)construction or not, are not fully represented by the kinematic scaling {S}0.5=\\sqrt{0.5 {V}{rot}2+{σ }2}, and we also introduce a modified spin-ellipticity diagram λ (R)-ɛ (R) with the potential to track galaxies with such disks.

  15. K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S. T.; Agüeros, M. A.; Covey, K. R.

    2016-05-01

    As the closest open cluster to the Sun, the Hyades is an important benchmark for many stellar properties, but its members are also scattered widely over the sky. Previous studies of stellar rotation in the Hyades relied on targeted observations of single stars or data from shallower all-sky variability surveys. The re-purposed Kepler mission, K2 , is the first opportunity to measure rotation periods ( P {sub rot}) for many Hyads simultaneously while also being sensitive to fully convective M dwarf members. We analyze K2 data for 65 Hyads and present P {sub rot} values for 48. Thirty-seven of thesemore » are new measurements, including the first P {sub rot} measurements for fully convective Hyads. For 9 of the 11 stars with P {sub rot} in the literature and this work, the measurements are consistent; we attribute the two discrepant cases to spot evolution. Nearly all stars with masses ≲0.3 M {sub ⊙} are rapidly rotating, indicating a change in rotation properties at the boundary to full convection. When confirmed and candidate binaries are removed from the mass–period plane, only three rapid rotators with masses ≳0.3 M {sub ⊙} remain. This is in contrast to previous results showing that the single-valued mass–period sequence for ≈600 Myr old stars ends at ≈0.65 M {sub ⊙} when binaries are included. We also find that models of rotational evolution predict faster rotation than is actually observed at ≈600 Myr for stars ≲0.9 M {sub ⊙}. The dearth of single rapid rotators more massive than ≈0.3 M {sub ⊙} indicates that magnetic braking is more efficient than previously thought, and that age–rotation studies must account for multiplicity.« less

  16. Critical study of the distribution of rotational velocities of Be stars. II: Differential rotation and some hidden effects interfering with the interpretation of the V sin I parameter

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Frémat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2017-06-01

    Aims: We assume that stars may undergo surface differential rotation to study its impact on the interpretation of Vsini and on the observed distribution Φ(u) of ratios of true rotational velocities u = V/Vc (Vc is the equatorial critical velocity). We discuss some phenomena affecting the formation of spectral lines and their broadening, which can obliterate the information carried by Vsini concerning the actual stellar rotation. Methods: We studied the line broadening produced by several differential rotational laws, but adopted Maunder's expression Ω(θ) = Ω0(1 + αcos2θ) as an attempt to account for all of these laws with the lowest possible number of free parameters. We studied the effect of the differential rotation parameter α on the measured Vsini parameter and on the distribution Φ(u) of ratios u = V/Vc. Results: We conclude that the inferred Vsini is smaller than implied by the actual equatorial linear rotation velocity Veq if the stars rotate with α < 0, but is larger if the stars have α > 0. For a given | α | the deviations of Vsini are larger when α < 0. If the studied Be stars have on average α < 0, the number of rotators with Veq ≃ 0.9Vc is larger than expected from the observed distribution Φ(u); if these stars have on average α > 0, this number is lower than expected. We discuss seven phenomena that contribute either to narrow or broaden spectral lines, which blur the information on the rotation carried by Vsini and, in particular, to decide whether the Be phenomenon mostly rely on the critical rotation. We show that two-dimensional radiation transfer calculations are needed in rapid rotators to diagnose the stellar rotation more reliably.

  17. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  18. Rotation of Low-mass Stars in Upper Scorpius and ρ Ophiuchus with K2

    NASA Astrophysics Data System (ADS)

    Rebull, L. M.; Stauffer, J. R.; Cody, A. M.; Hillenbrand, L. A.; David, T. J.; Pinsonneault, M.

    2018-05-01

    We present an analysis of K2 light curves (LCs) for candidate members of the young Upper Sco (USco) association (∼8 Myr) and the neighboring ρ Oph embedded cluster (∼1 Myr). We establish ∼1300 stars as probable members, ∼80% of which are periodic. The phased LCs have a variety of shapes which can be attributed to physical causes ranging from stellar pulsation and stellar rotation to disk-related phenomena. We identify and discuss a number of observed behaviors. The periods are ∼0.2–30 days with a peak near 2 days and the rapid period end nearing breakup velocity. M stars in the young USco region rotate systematically faster than GK stars, a pattern also present in K2 data for the older Pleiades and Praesepe systems. At higher masses (types FGK), the well-defined period–color relationship for slowly rotating stars seen in the Pleiades and Praesepe systems is not yet present in USco. Circumstellar disks are present predominantly among the more slowly rotating M stars in USco, with few disks in the subday rotators. However, M dwarfs with disks rotate faster on average than FGK systems with disks. For four of these disked M dwarfs, we provide direct evidence for disk locking based on the K2 LC morphologies. Our preliminary analysis shows a relatively mass-independent spin-up by a factor of ∼3.5 between USco and the Pleiades, then mass-dependent spin-down between Pleiades and Praesepe.

  19. A Fourier transform method for Vsin i estimations under nonlinear Limb-Darkening laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levenhagen, R. S., E-mail: ronaldo.levenhagen@gmail.com

    Star rotation offers us a large horizon for the study of many important physical issues pertaining to stellar evolution. Currently, four methods are widely used to infer rotation velocities, namely those related to line width calibrations, on the fitting of synthetic spectra, interferometry, and on Fourier transforms (FTs) of line profiles. Almost all of the estimations of stellar projected rotation velocities using the Fourier method in the literature have been addressed with the use of linear limb-darkening (LD) approximations during the evaluation of rotation profiles and their cosine FTs, which in certain cases, lead to discrepant velocity estimates. In thismore » work, we introduce new mathematical expressions of rotation profiles and their Fourier cosine transforms assuming three nonlinear LD laws—quadratic, square-root, and logarithmic—and study their applications with and without gravity-darkening (GD) and geometrical flattening (GF) effects. Through an analysis of He I models in the visible range accounting for both limb and GD, we find out that, for classical models without rotationally driven effects, all the Vsin i values are too close to each other. On the other hand, taking into account GD and GF, the Vsin i obtained with the linear law result in Vsin i values that are systematically smaller than those obtained with the other laws. As a rule of thumb, we apply these expressions to the FT method to evaluate the projected rotation velocity of the emission B-type star Achernar (α Eri).« less

  20. Polarization due to rotational distortion in the bright star Regulus

    NASA Astrophysics Data System (ADS)

    Cotton, Daniel V.; Bailey, Jeremy; Howarth, Ian D.; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Lucas, P. W.; Hough, J. H.

    2017-10-01

    Polarization in stars was first predicted by Chandrasekhar1, who calculated a substantial linear polarization at the stellar limb for a pure electron-scattering atmosphere. This polarization will average to zero when integrated over a spherical star but could be detected if the symmetry was broken, for example, by the eclipse of a binary companion. Nearly 50 years ago, Harrington and Collins2 modelled another way of breaking the symmetry and producing net polarization—the distortion of a rapidly rotating hot star. Here we report the first detection of this effect. Observations of the linear polarization of Regulus, with two different high-precision polarimeters, range from +42 ppm at a wavelength of 741 nm to -22 ppm at 395 nm. The reversal from red to blue is a distinctive feature of rotation-induced polarization. Using a new set of models for the polarization of rapidly rotating stars, we find that Regulus is rotating at 96.5-0.8+0.6% of its critical angular velocity for break-up, and has an inclination greater than 76.5°. The rotation axis of the star is at a position angle of 79.5 ± 0.7°. The conclusions are independent of, but in good agreement with, the results of previously published interferometric observations of Regulus3. The accurate measurement of rotation in early-type stars is important for understanding their stellar environments4 and the course of their evolution5.

  1. Not-so-simple stellar populations in nearby, resolved massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.

  2. Using Close White Dwarf + M Dwarf Stellar Pairs to Constrain the Flare Rates in Close Stellar Binaries

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Becker, Andrew C.

    2016-05-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations <1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing Hα in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz-bands. We find an increase in the overall flaring fraction in the close WD+dM pairs (0.09 ± 0.03%) compared to the field dMs (0.0108 ± 0.0007%) and a lower flaring fraction for active WD+dMs (0.05 ± 0.03%) compared to active dMs (0.28 ± 0.05%). We discuss how our results constrain both the single and binary dM flare rates. Our results also constrain dM multiplicity, our knowledge of the Galactic transient background, and may be important for the habitability of attending planets around dMs with close companions.

  3. The effect of oblateness and gravity darkening on the radiation driving in winds from rapidly rotating B stars

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Owocki, Stanley P.

    1995-01-01

    We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.

  4. The Keck OSIRIS Nearby AGN Survey: Tracing Inflow within the Central 200 pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    2016-08-01

    In an effort to identify the fundamental processes driving feeding and feedback in AGN we turn to local Seyfert galaxies and rely on a multi-wavelength approach. With the integral field unit OSIRIS and adaptive optics we characterize the nuclear stars and gas down to scales of 5-30 parsecs in a sample of 40 Seyfert galaxies with the Keck OSIRIS Nearby AGN (KONA) survey. The complex gas kinematics in these near-IR data are interpreted using an integrative approach through comparison with data available at a range of wavelengths. We present first results from the survey with a focus on work aimed at constraining the mechanism(s) driving inflow of material within the central 200 pc. Particularly useful in the identification of inflow mechanisms (e.g. nuclear spiral, external accretion) is spatial correlation of the molecular gas distribution and kinematics with dust features revealed in HST imaging (optical and near-IR). Also informative is comparison with X-ray emission to identify locations likely influenced by interactions with outflows. The stellar kinematics in the sample galaxies (traced by CO bandheads at 2.3 microns) indicate a stellar population within the central few 100 parsecs in circular rotation, and in the majority of the galaxies the molecular gas (traced by H2 emission at 2.1218 microns) is found to have a rotating component co-spatial with the stellar disk. A significant fraction of the galaxies also exhibit kinematic signatures of inflow superimposed on this disk rotation, with inflow driven by secular and non-secular processes identified. We explore statistical trends of the nuclear stellar and molecular gas properties, including primary fueling mechanism, with Seyfert type, AGN luminosity, and host environment with the goal of disentangling which properties are fundamental to the nature of the AGN.

  5. Optical, UV, and X-ray evidence for a 7-yr stellar cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Wargelin, B. J.; Saar, S. H.; Pojmański, G.; Drake, J. J.; Kashyap, V. L.

    2017-01-01

    Stars of stellar type later than about M3.5 are believed to be fully convective and therefore unable to support magnetic dynamos like the one that produces the 11-yr solar cycle. Because of their intrinsic faintness, very few late M stars have undergone long-term monitoring to test this prediction, which is critical to our understanding of magnetic field generation in such stars. Magnetic activity is also of interest as the driver of UV and X-ray radiation, as well as energetic particles and stellar winds, that affects the atmospheres of close-in planets that lie within habitable zones, such as the recently discovered Proxima b. We report here on several years of optical, UV, and X-ray observations of Proxima Centauri (GJ 551; dM5.5e): 15 yr of All Sky Automated Survey photometry in the V band (1085 nights) and 3 yr in the I band (196 nights), 4 yr of Swift X-Ray Telescope and UV/Optical Telescope observations (more than 120 exposures), and nine sets of X-ray observations from other X-ray missions (ASCA, XMM-Newton, and three Chandra instruments) spanning 22 yr. We confirm previous reports of an 83-d rotational period and find strong evidence for a 7-yr stellar cycle, along with indications of differential rotation at about the solar level. X-ray/UV intensity is anticorrelated with optical V-band brightness for both rotational and cyclical variations. From comparison with other stars observed to have X-ray cycles, we deduce a simple empirical relationship between X-ray cyclic modulation and Rossby number, and we also present Swift UV grism spectra covering 2300-6000 Å.

  6. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1998-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.

  7. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  8. Depleted cores, multicomponent fits, and structural parameter relations for luminous early-type galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.

    2014-11-01

    New surface brightness profiles from 26 early-type galaxies with suspected partially depleted cores have been extracted from the full radial extent of Hubble Space Telescope images. We have carefully quantified the radial stellar distributions of the elliptical galaxies using the core-Sérsic model whereas for the lenticular galaxies a core-Sérsic bulge plus an exponential disc model gives the best representation. We additionally caution about the use of excessive multiple Sérsic functions for decomposing galaxies and compare with past fits in the literature. The structural parameters obtained from our fitted models are, in general, in good agreement with our initial study using radially limited (R ≲ 10 arcsec) profiles, and are used here to update several `central' as well as `global' galaxy scaling relations. We find near-linear relations between the break radius Rb and the spheroid luminosity L such that Rb ∝ L1.13±0.13, and with the supermassive black hole mass MBH such that R_b∝ M_BH^{0.83 ± 0.21}. This is internally consistent with the notion that major, dry mergers add the stellar and black hole mass in equal proportion, i.e. MBH ∝ L. In addition, we observe a linear relation R_b∝ R_e^{0.98 ± 0.15} for the core-Sérsic elliptical galaxies - where Re is the galaxies' effective half-light radii - which is collectively consistent with the approximately linear, bright-end of the curved L-Re relation. Finally, we measure accurate stellar mass deficits Mdef that are in general 0.5-4 MBH, and we identify two galaxies (NGC 1399, NGC 5061) that, due to their high Mdef/MBH ratio, may have experienced oscillatory core-passage by a (gravitational radiation)-kicked black hole. The galaxy scaling relations and stellar mass deficits favour core-Sérsic galaxy formation through a few `dry' major merger events involving supermassive black holes such that M_def ∝ M_BH^{3.70 ± 0.76}, for MBH ≳ 2 × 108 M⊙.

  9. Role of nuclear reactions on stellar evolution of intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Möller, H.; Jones, S.; Fischer, T.; Martínez-Pinedo, G.

    2018-01-01

    The evolution of intermediate-mass stars (8 - 12 solar masses) represents one of the most challenging subjects in nuclear astrophysics. Their final fate is highly uncertain and strongly model dependent. They can become white dwarfs, they can undergo electron-capture or core-collapse supernovae or they might even proceed towards explosive oxygen burning and a subsequent thermonuclear explosion. We believe that an accurate description of nuclear reactions is crucial for the determination of the pre-supernova structure of these stars. We argue that due to the possible development of an oxygen-deflagration, a hydrodynamic description has to be used. We implement a nuclear reaction network with ∼200 nuclear species into the implicit hydrodynamic code AGILE. The reaction network considers all relevant nuclear electron captures and beta-decays. For selected relevant nuclear species, we include a set of updated reaction rates, for which we discuss the role for the evolution of the stellar core, at the example of selected stellar models. We find that the final fate of these intermediate-mass stars depends sensitively on the density threshold for weak processes that deleptonize the core.

  10. THE DETECTION OF A HOT MOLECULAR CORE IN THE LARGE MAGELLANIC CLOUD WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimonishi, Takashi; Onaka, Takashi; Kawamura, Akiko

    We report the first detection of a hot molecular core outside our Galaxy based on radio observations with ALMA toward a high-mass young stellar object (YSO) in a nearby low metallicity galaxy, the Large Magellanic Cloud (LMC). Molecular emission lines of CO, C{sup 17}O, HCO{sup +}, H{sup 13}CO{sup +}, H{sub 2}CO, NO, SiO, H{sub 2}CS, {sup 33}SO, {sup 32}SO{sub 2}, {sup 34}SO{sub 2}, and {sup 33}SO{sub 2} are detected from a compact region (∼0.1 pc) associated with a high-mass YSO, ST11. The temperature of molecular gas is estimated to be higher than 100 K based on rotation diagram analysis ofmore » SO{sub 2} and {sup 34}SO{sub 2} lines. The compact source size, warm gas temperature, high density, and rich molecular lines around a high-mass protostar suggest that ST11 is associated with a hot molecular core. We find that the molecular abundances of the LMC hot core are significantly different from those of Galactic hot cores. The abundances of CH{sub 3}OH, H{sub 2}CO, and HNCO are remarkably lower compared to Galactic hot cores by at least 1–3 orders of magnitude. We suggest that these abundances are characterized by the deficiency of molecules whose formation requires the hydrogenation of CO on grain surfaces. In contrast, NO shows a high abundance in ST11 despite the notably low abundance of nitrogen in the LMC. A multitude of SO{sub 2} and its isotopologue line detections in ST11 imply that SO{sub 2} can be a key molecular tracer of hot core chemistry in metal-poor environments. Furthermore, we find molecular outflows around the hot core, which is the second detection of an extragalactic protostellar outflow. In this paper, we discuss the physical and chemical characteristics of a hot molecular core in the low metallicity environment.« less

  11. Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Llama, J.; Ceillier, T.; Chagas, M. L. das; Davenport, J. R. A.; García, R. A.; Hay, K. L.; Lanza, A. F.; McQuillan, A.; Mazeh, T.; de Medeiros, J. R.; Nielsen, M. B.; Reinhold, T.

    2015-07-01

    We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 d and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar-like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-d segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, autocorrelation function and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall' period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10 per cent of the true value in 70 per cent of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disc light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.

  12. Monitoring and modelling of white dwarfs with extremely weak magnetic fields. WD 2047+372 and WD 2359-434

    NASA Astrophysics Data System (ADS)

    Landstreet, J. D.; Bagnulo, S.; Valyavin, G.; Valeev, A. F.

    2017-11-01

    Magnetic fields are detected in a few percent of white dwarfs. The number of such magnetic white dwarfs known is now some hundreds. Fields range in strength from a few kG to several hundred MG. Almost all the known magnetic white dwarfs have a mean field modulus ≥1 MG. We are trying to fill a major gap in observational knowledge at the low field limit (≤200 kG) using circular spectro-polarimetry. In this paper we report the discovery and monitoring of strong, periodic magnetic variability in two previously discovered "super-weak field" magnetic white dwarfs, WD 2047+372 and WD 2359-434. WD 2047+372 has a mean longitudinal field that reverses between about -12 and + 15 kG, with a period of 0.243 d, while its mean field modulus appears nearly constant at 60 kG. The observations can be interpreted in terms of a dipolar field tilted with respect to the stellar rotation axis. WD 2359-434 always shows a weak positive longitudinal field with values between about 0 and + 12 kG, varying only weakly with stellar rotation, while the mean field modulus varies between about 50 and 100 kG. The rotation period is found to be 0.112 d using the variable shape of the Hα line core, consistent with available photometry. The field of this star appears to be much more complex than a dipole, and is probably not axisymmetric. Available photometry shows that WD 2359-434 is a light variable with an amplitude of only 0.005 mag; our own photometry shows that if WD 2047+372 is photometrically variable, the amplitude is below about 0.01 mag. These are the first models for magnetic white dwarfs with fields below about 100 kG based on magnetic measurements through the full stellar rotation. They reveal two very different magnetic surface configurations, and that, contrary to simple ohmic decay theory, WD 2359-434 has a much more complex surface field than the much younger WD 2047+372. Based, in part, on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under observing programmes 095.D-0264 and 097.D-0264, and obtained from the ESO/ST-ECF Science Archive Facility; in part, on observations made with the William Herschel Telescope, operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias; and in part on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  13. Accurate sub-millimetre rest frequencies for HOCO+ and DOCO+ ions

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Lattanzi, V.; Laas, J.; Spezzano, S.; Giuliano, B. M.; Prudenzano, D.; Endres, C.; Sipilä, O.; Caselli, P.

    2017-06-01

    Context. HOCO+ is a polar molecule that represents a useful proxy for its parent molecule CO2, which is not directly observable in the cold interstellar medium. This cation has been detected towards several lines of sight, including massive star forming regions, protostars, and cold cores. Despite the obvious astrochemical relevance, protonated CO2 and its deuterated variant, DOCO+, still lack an accurate spectroscopic characterisation. Aims: The aim of this work is to extend the study of the ground-state pure rotational spectra of HOCO+ and DOCO+ well into the sub-millimetre region. Methods: Ground-state transitions have been recorded in the laboratory using a frequency-modulation absorption spectrometer equipped with a free-space glow-discharge cell. The ions were produced in a low-density, magnetically confined plasma generated in a suitable gas mixture. The ground-state spectra of HOCO+ and DOCO+ have been investigated in the 213-967 GHz frequency range; 94 new rotational transitions have been detected. Additionally, 46 line positions taken from the literature have been accurately remeasured. Results: The newly measured lines have significantly enlarged the available data sets for HOCO+ and DOCO+, thus enabling the determination of highly accurate rotational and centrifugal distortion parameters. Our analysis shows that all HOCO+ lines with Ka ≥ 3 are perturbed by a ro-vibrational interaction that couples the ground state with the v5 = 1 vibrationally excited state. This resonance has been explicitly treated in the analysis in order to obtain molecular constants with clear physical meaning. Conclusions: The improved sets of spectroscopic parameters provide enhanced lists of very accurate sub-millimetre rest frequencies of HOCO+ and DOCO+ for astrophysical applications. These new data challenge a recent tentative identification of DOCO+ towards a pre-stellar core. Supplementary tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A34

  14. The Dynamics of Massive Starless Cores with ALMA

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.; Kong, Shuo; Butler, Michael J.; Caselli, Paola; Fontani, Francesco

    2013-12-01

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (~100 M ⊙) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N2H+ in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N2D+ (3-2) line at 2.''3 resolution. We find six N2D+ cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number mA ~ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ~60 M ⊙, our results suggest that moderately enhanced magnetic fields (so that mA ~= 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  15. Rotation of low-mass stars - A new probe of stellar evolution

    NASA Technical Reports Server (NTRS)

    Pinsonneault, M. H.; Kawaler, Steven D.; Demarque, P.

    1990-01-01

    Models of stars of various masses and rotational parameters were developed and compared with observations of stars in open clusters of various ages in order to analyze the evolution of rotating stars from the early premain sequence to an age of 1.7 x 10 to the 9th yrs. It is shown that, for stars older than 10 to the 8th yrs and less massive than 1.1 solar mass, the surface rotation rates depend most strongly on the properties of the angular momentum loss. The trends of the currently available observations suggest that the rotation periods are a good indicator of the field-star ages.

  16. The pulsation-rotation interaction: Greatest hits and the B-side

    NASA Astrophysics Data System (ADS)

    Townsend, Rich

    2014-02-01

    It has long been known that rotation can have an appreciable impact on stellar pulsation - by modifying the usual p and g modes found in the non-rotating case, and by introducing new classes of modes. However, it's only relatively recently that advances in numerical simulations and complementary theoretical treatments have enabled us to model these phenomena in any great detail. In this talk I'll review highlights in this area (the `Greatest Hits'), before considering the flip side (or the `B-side', for those of us old enough to remember vinyl records) of the pulsation-rotation interaction: how pulsation can itself influence internal rotation profiles.

  17. Distinguishing the albedo of exoplanets from stellar activity

    NASA Astrophysics Data System (ADS)

    Serrano, L. M.; Barros, S. C. C.; Oshagh, M.; Santos, N. C.; Faria, J. P.; Demangeon, O.; Sousa, S. G.; Lendl, M.

    2018-03-01

    Context. Light curves show the flux variation from the target star and its orbiting planets as a function of time. In addition to the transit features created by the planets, the flux also includes the reflected light component of each planet, which depends on the planetary albedo. This signal is typically referred to as phase curve and could be easily identified if there were no additional noise. As well as instrumental noise, stellar activity, such as spots, can create a modulation in the data, which may be very difficult to distinguish from the planetary signal. Aims: We analyze the limitations imposed by the stellar activity on the detection of the planetary albedo, considering the limitations imposed by the predicted level of instrumental noise and the short duration of the obervations planned in the context of the CHEOPS mission. Methods: As initial condition, we have assumed that each star is characterized by just one orbiting planet. We built mock light curves that included a realistic stellar activity pattern, the reflected light component of the planet and an instrumental noise level, which we have chosen to be at the same level as predicted for CHEOPS. We then fit these light curves to try to recover the reflected light component, assuming the activity patterns can be modeled with a Gaussian process. Results: We estimate that at least one full stellar rotation is necessary to obtain a reliable detection of the planetary albedo. This result is independent of the level of noise, but it depends on the limitation of the Gaussian process to describe the stellar activity when the light curve time-span is shorter than the stellar rotation. As an additional result, we found that with a 6.5 magnitude star and the noise level of CHEOPS, it is possible to detect the planetary albedo up to a lower limit of Rp = 0.03 R*. Finally, in presence of typical CHEOPS gaps in the simulations, we confirm that it is still possible to obtain a reliable albedo.

  18. Stellar and Gas Kinematics in the Tully-Fisher Deviant Virgo Cluster Galaxy NGC 4424

    NASA Astrophysics Data System (ADS)

    Cortes, J. R.; Kenney, J. D. P.

    2000-05-01

    NGC 4424 is a peculiar, gas-deficient, Virgo Cluster Sa galaxy which is probably the result of a merger. This galaxy seems to deviate from the Tully-Fisher relationship, as shown by Kenney et al (1996) and Rubin et al (1999). We present stellar and gas kinematics of NGC 4424 measured with Integral Field Spectroscopy using the Densepak fiber array on the WIYN telescope. Using a cross-correlation technique, we derive velocities and velocity dispersions of the stars thoughout the central region of the galaxy. We find that the mean line-of-sight velocities for both gas and stars are approximately a factor of 2 smaller than would be expected for the rotational motions of a galaxy of its luminosity and apparent inclination. Preliminary estimates of the stellar velocity dispersion are also lower than would be expected for the Faber-Jackson relationship. We discuss possible explanations for this behaviour, including the possibility that this disturbed galaxy is rotating in a plane different than the plane of the apparent disk, and is a tumbling object.

  19. A spectroscopic search for colliding stellar winds in O-type close binary systems. I - AO Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.; Wiggs, Michael S.

    1991-01-01

    AO Cas, a short-period, double-lined spectroscopic binary, is studied as part of a search for spectroscopic evidence of colliding stellar winds in binary systems of O-type stars. High S/N ratio spectra of the H-alpha and He I 6678-A line profiles are presented, and their orbital-phase-related variations are examined in order to derive the location and motions of high-density circumstellar gas in the system. These profile variations are compared with those observed in the UV stellar wind lines in IUE archival spectra. IUE spectra are also used to derive a system mass ratio by constructing cross-correlation functions of a single-lined phase spectrum with each of the other spectra. The resulting mass ratio is consistent with the rotational line broadening of the primary star, if the primary is rotating synchronously with the binary system. The best-fit models were found to have an inclination of 61.1 deg + or - 3.0 deg and have a primary which is close to filling its critical Roche lobe.

  20. The Kepler Catalog of Stellar Flares

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.

    2016-09-01

    A homogeneous search for stellar flares has been performed using every available Kepler light curve. An iterative light curve de-trending approach was used to filter out both astrophysical and systematic variability to detect flares. The flare recovery completeness has also been computed throughout each light curve using artificial flare injection tests, and the tools for this work have been made publicly available. The final sample contains 851,168 candidate flare events recovered above the 68% completeness threshold, which were detected from 4041 stars, or 1.9% of the stars in the Kepler database. The average flare energy detected is ˜1035 erg. The net fraction of flare stars increases with g - I color, or decreasing stellar mass. For stars in this sample with previously measured rotation periods, the total relative flare luminosity is compared to the Rossby number. A tentative detection of flare activity saturation for low-mass stars with rapid rotation below a Rossby number of ˜0.03 is found. A power-law decay in flare activity with Rossby number is found with a slope of -1, shallower than typical measurements for X-ray activity decay with Rossby number.

  1. BinMag: Widget for comparing stellar observed with theoretical spectra

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.

    2018-05-01

    BinMag examines theoretical stellar spectra computed with Synth/SynthMag/Synmast/Synth3/SME spectrum synthesis codes and compare them to observations. An IDL widget program, BinMag applies radial velocity shift and broadening to the theoretical spectra to account for the effects of stellar rotation, radial-tangential macroturbulence, instrumental smearing. The code can also simulate spectra of spectroscopic binary stars by appropriate coaddition of two synthetic spectra. Additionally, BinMag can be used to measure equivalent width, fit line profile shapes with analytical functions, and to automatically determine radial velocity and broadening parameters. BinMag interfaces with the Synth3 (ascl:1212.010) and SME (ascl:1202.013) codes, allowing the user to determine chemical abundances and stellar atmospheric parameters from the observed spectra.

  2. Dynamical Models of Elliptical Galaxies in z = 0.5 Clusters. I. Data-Model Comparison and Evolution of Galaxy Rotation

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland P.; van Dokkum, Pieter G.

    2007-10-01

    We present spatially resolved stellar rotation velocity and velocity dispersion profiles from Keck/LRIS absorption-line spectra for 25 galaxies, mostly visually classified ellipticals, in three clusters at z~0.5. We interpret the kinematical data and HST photometry using oblate axisymmetric two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields good fits, provided that the seeing and observational characteristics are carefully modeled. The fits yield for each galaxy the dynamical mass-to-light ratio (M/L) and a measure of the galaxy rotation rate. Paper II addresses the implied M/L evolution. Here we study the rotation-rate evolution by comparison to a sample of local elliptical galaxies of similar present-day luminosity. The brightest galaxies in the sample all rotate too slowly to account for their flattening, as is also observed at z=0. But the average rotation rate is higher at z~0.5 than locally. This may be due to a higher fraction of misclassified S0 galaxies (although this effect is insufficient to explain the observed strong evolution of the cluster S0 fraction with redshift). Alternatively, dry mergers between early-type galaxies may have decreased the average rotation rate over time. It is unclear whether such mergers are numerous enough in clusters to explain the observed trend quantitatively. Disk-disk mergers may affect the comparison through the so-called ``progenitor bias,'' but this cannot explain the direction of the observed rotation-rate evolution. Additional samples are needed to constrain possible environmental dependencies and cosmic variance in galaxy rotation rates. Either way, studies of the internal stellar dynamics of distant galaxies provide a valuable new approach for exploring galaxy evolution.

  3. The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel

    2014-02-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ⊙. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ⊙. Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ⊙. At larger masses, the core-mass growth decreases steadily to ~10% at M initial = 3.4 M ⊙, after which there is a small hint of a upturn out to M initial = 3.8 M ⊙. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ~ 3 Myr and E = 1.2 × 1010 L ⊙ yr for M initial ~ 2 M ⊙ (t ~ 2 Myr for luminosities brighter than the red giant branch tip at log (L/L ⊙) > 3.4), decreasing to t = 0.4 Myr and E = 6.1 × 109 L ⊙ yr for stars with M initial ~ 3.5 M ⊙. The implications of these results are discussed, especially with respect to general studies aimed at characterizing the integrated light output of TP-AGB stars in population synthesis models.

  4. Response of plasma rotation to resonant magnetic perturbations in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Yan, W.; Chen, Z. Y.; Huang, D. W.; Hu, Q. M.; Shi, Y. J.; Ding, Y. H.; Cheng, Z. F.; Yang, Z. J.; Pan, X. M.; Lee, S. G.; Tong, R. H.; Wei, Y. N.; Dong, Y. B.; J-TEXT Team

    2018-03-01

    The response of plasma toroidal rotation to the external resonant magnetic perturbations (RMP) has been investigated in Joint Texas Experimental Tokamak (J-TEXT) ohmic heating plasmas. For the J-TEXT’s plasmas without the application of RMP, the core toroidal rotation is in the counter-current direction while the edge rotation is near zero or slightly in the co-current direction. Both static RMP experiments and rotating RMP experiments have been applied to investigate the plasma toroidal rotation. The core toroidal rotation decreases to lower level with static RMP. At the same time, the edge rotation can spin to more than 20 km s-1 in co-current direction. On the other hand, the core plasma rotation can be slowed down or be accelerated with the rotating RMP. When the rotating RMP frequency is higher than mode frequency, the plasma rotation can be accelerated to the rotating RMP frequency. The plasma confinement is improved with high frequency rotating RMP. The plasma rotation is decelerated to the rotating RMP frequency when the rotating RMP frequency is lower than the mode frequency. The plasma confinement also degrades with low frequency rotating RMP.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroz, P.E.

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantagesmore » for fusion applications.« less

  6. The diagnosed mobile limiters of the TJ-II stellarator for plasma boundary studies

    NASA Astrophysics Data System (ADS)

    de la Cal, E.; Tabarés, F. L.; Tafalla, D.; Cortés, I. García.; Hidalgo, C.; López-Fraguas, A.

    TJ-II is a medium size (major radius R=1.5 m, average plasma radius a <0.25 m, on axis magnetic field B=1 T) helical axis stellarator. The main characteristic is its magnetic configuration flexibility, due to the separate control of the different magnetic field coils. The two diagnosed mobile limiters are installed to reduce thermal loads on the thin protection plates of the contacting plasma-chamber regions and to study the plasma edge. First diagnostics are a set of thermocouples, Langmuir probes, H α-detectors and a CCD video camera with different filters (atomic lines of HeI, H α and near IR) looking at the limiter. A method of passive spectroscopy is proposed to map the electron temperature and density over the whole limiter surface by analysing the emission of helium recycling neutrals. It is expected from previous results of other stellarators, that the boundary magnetic topology will have a strong influence on the plasma-wall interaction. The mobile limiters can control the last closed magnetic surface and diagnose the plasma boundary. A qualitative different plasma edge scenario is foreseen between the limiter and the natural island divertor configuration (rational rotational transform inside the limiter radius). Plasma-wall interaction in TJ-II shows very specific features and the optimisation of the plasma edge topology can influence strongly the core plasma parameters. In particular, impurity screening will be a challenge due to the large power density which will be available in future (up to 2 MW NBI for 0.5 s). A safe operation for future high β-plasmas is also required and the mobile limiters should help to remove a fraction of the conductive/convective power.

  7. Dwarf galaxy mass estimators versus cosmological simulations

    NASA Astrophysics Data System (ADS)

    González-Samaniego, Alejandro; Bullock, James S.; Boylan-Kolchin, Michael; Fitts, Alex; Elbert, Oliver D.; Hopkins, Philip F.; Kereš, Dušan; Faucher-Giguère, Claude-André

    2017-12-01

    We use a suite of high-resolution cosmological dwarf galaxy simulations to test the accuracy of commonly used mass estimators from Walker et al. (2009) and Wolf et al. (2010), both of which depend on the observed line-of-sight velocity dispersion and the 2D half-light radius of the galaxy, Re. The simulations are part of the Feedback in Realistic Environments (FIRE) project and include 12 systems with stellar masses spanning 105-107 M⊙ that have structural and kinematic properties similar to those of observed dispersion-supported dwarfs. Both estimators are found to be quite accurate: M_Wolf/M_true = 0.98^{+0.19}_{-0.12} and M_Walker/M_true =1.07^{+0.21}_{-0.15}, with errors reflecting the 68 per cent range over all simulations. The excellent performance of these estimators is remarkable given that they each assume spherical symmetry, a supposition that is broken in our simulated galaxies. Though our dwarfs have negligible rotation support, their 3D stellar distributions are flattened, with short-to-long axis ratios c/a ≃ 0.4-0.7. The median accuracy of the estimators shows no trend with asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D that follow a nearly universal form, one that transitions from a core at small radius to a steep fall-off ∝r-4.2 at large r; they are well fit by Sérsic profiles in projection. We find that the most important empirical quantity affecting mass estimator accuracy is Re. Determining Re by an analytic fit to the surface density profile produces a better estimated mass than if the half-light radius is determined via direct summation.

  8. New clues to the cause of extended main-sequence turnoffs in intermediate-age star clusters in the Magellanic Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correnti, Matteo; Goudfrooij, Paul; Kalirai, Jason S.

    2014-10-01

    We use the Wide Field Camera 3 on board the Hubble Space Telescope (HST) to obtain deep, high-resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass (≈10{sup 4} M {sub ☉}) and significantly different core radii, namely NGC 2209 and NGC 2249. For comparison purposes, we also reanalyzed archival HST images of NGC 1795 and IC 2146, two other relatively low-mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main-sequence turnoff (MSTO) regions in NGC 2209 and NGC 2249 are significantly wider thanmore » that derived from simulations of simple stellar populations, while those in NGC 1795 and IC 2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC 2209 and IC 2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC 2249 and NGC 1795). Under this assumption, we find that NGC 2209 and NGC 2249 have estimated escape velocities, V {sub esc} ≳ 15 km s{sup –1} at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have V {sub esc} ≲ 12 km s{sup –1} at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.« less

  9. The HST Large Programme on ω Centauri. II. Internal Kinematics

    NASA Astrophysics Data System (ADS)

    Bellini, Andrea; Libralato, Mattia; Bedin, Luigi R.; Milone, Antonino P.; van der Marel, Roeland P.; Anderson, Jay; Apai, Dániel; Burgasser, Adam J.; Marino, Anna F.; Rees, Jon M.

    2018-01-01

    In this second installment of the series, we look at the internal kinematics of the multiple stellar populations of the globular cluster ω Centauri in one of the parallel Hubble Space Telescope (HST) fields, located at about 3.5 half-light radii from the center of the cluster. Thanks to the over 15 yr long baseline and the exquisite astrometric precision of the HST cameras, well-measured stars in our proper-motion catalog have errors as low as ∼10 μas yr‑1, and the catalog itself extends to near the hydrogen-burning limit of the cluster. We show that second-generation (2G) stars are significantly more radially anisotropic than first-generation (1G) stars. The latter are instead consistent with an isotropic velocity distribution. In addition, 1G stars have excess systemic rotation in the plane of the sky with respect to 2G stars. We show that the six populations below the main-sequence (MS) knee identified in our first paper are associated with the five main population groups recently isolated on the upper MS in the core of cluster. Furthermore, we find both 1G and 2G stars in the field to be far from being in energy equipartition, with {η }1{{G}}=-0.007+/- 0.026 for the former and {η }2{{G}}=0.074+/- 0.029 for the latter, where η is defined so that the velocity dispersion {σ }μ scales with stellar mass as {σ }μ \\propto {m}-η . The kinematical differences reported here can help constrain the formation mechanisms for the multiple stellar populations in ω Centauri and other globular clusters. We make our astro-photometric catalog publicly available.

  10. Gravitational Waves from Binary Black Hole Mergers inside Stars.

    PubMed

    Fedrow, Joseph M; Ott, Christian D; Sperhake, Ulrich; Blackman, Jonathan; Haas, Roland; Reisswig, Christian; De Felice, Antonio

    2017-10-27

    We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed stellar core fragmentation scenario for BBH formation and the associated possibility of an electromagnetic counterpart to a BBH GW event. We employ full numerical relativity coupled with general-relativistic hydrodynamics and set up a 30+30  M_{⊙} BBH (motivated by GW150914) inside gas with realistic stellar densities. Our results show that at densities ρ≳10^{6}-10^{7}  g cm^{-3} dynamical friction between the BHs and gas changes the coalescence dynamics and the GW signal in an unmistakable way. We show that for GW150914, LIGO observations appear to rule out BBH coalescence inside stellar gas of ρ≳10^{7}  g cm^{-3}. Typical densities in the collapsing cores of massive stars are in excess of this density. This excludes the fragmentation scenario for the formation of GW150914.

  11. Analysis techniques for momentum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.D.

    1991-08-01

    This report discusses the following topics on momentum analysis in tokamaks and stellarators: the momentum balance equation; deposition of torque by neutral beams; effects of toroidal rotation; and experimental observations. (LSP)

  12. Detection of lithium in the cool halo dwarfs Groombridge 1830 and HD 134439: Implications for internal stellar mixing and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Ryan, Sean G.; Beers, Timothy C.; Thorburn, Julie A.

    1994-01-01

    Lithium abundances in halo stars, when interpreted correctly, hold the key to uncovering the primordial Li abundance Li(sub p). However, whereas standard stellar evolutionary models imply consistency in standard big bang nucleosynthesis (BBN), models with rotationally induced mixing imply a higher Li(sub p), possibly implying an inconsistency in standard BBN. We report here Li detections in two cool halo dwarfs, Gmb 1830 and HD 134439. These are the coolest and lowest Li detections in halo dwarfs to date, and are consistent with the metallicity dependence of Li depletion in published models. If the recent report of a beryllium deficiency in Gmb 1830 represents a real Be depletion, then the rotational models would be favored. We propose tests to reduce critical uncertainties.

  13. Spectroscopic mode identification of γ Doradus stars: frequencies, modes, rotation and wave leakage

    NASA Astrophysics Data System (ADS)

    Pollard, Karen R.; Brunsden, E.; Davie, M.; Greenwood, A.; Cottrell, P. L.

    The gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. The MUSICIAN programme at the University of Canterbury has been successfully identifying frequencies and pulsation modes in many γ Doradus stars using hundreds of precise, high resolution spectroscopic observations obtained with the 1.0 m telescope and HERCULES spectrograph at the Mt John Observatory in New Zealand. In this paper we present a summary of our spectroscopic frequency and mode identifications. Of particular interest from our spectroscopic analyses are: the prevalence of (l, m) = 1, 1 modes in many γ Dor stars; the importance of stellar rotation in the interpretation of the frequency and mode identification; and finally, possible evidence of wave leakage in one of these stars.

  14. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  15. A Study of THT Cold Cores Population in the Star-Forming Region in Serpens

    NASA Astrophysics Data System (ADS)

    Fiorellino, Eleonora

    2017-11-01

    The purpose of this work is to produce the Core Mass Function (CMF) of the Serpens star-forming region and confront it with the Initial Mass Function (IMF), the statistical distribution of initial star mass. As Testi & Sergent (1998) discovered, the power-law index of the slope of the CMF is very close to the one of the Salpeter's IMF (Salpeter, 1955): dN/dM / M2.35. This strongly suggests that the stellar IMF results from the fragmentation process in turbulent cloud cores rather than from stellar accretion mechanisms and gives a huge contribute to undestanding the star formation. For this work, we started from the data delivered by the European satellite Herschel and produced the maps of the Serpens with Unimap code (Piazzo et al, 2015). Hence we obtained a core catalogue with two different softwares getsources (Men'shchikov et al, 2012) and CuTEx (Molinari et al, 2011) and we eliminated from it any source that is not a core. A full discussion of the cores physical propreties as well as the whole region is under preparation.

  16. The Aquila prestellar core population revealed by Herschel

    NASA Astrophysics Data System (ADS)

    Könyves, V.; André, Ph.; Men'shchikov, A.; Schneider, N.; Arzoumanian, D.; Bontemps, S.; Attard, M.; Motte, F.; Didelon, P.; Maury, A.; Abergel, A.; Ali, B.; Baluteau, J.-P.; Bernard, J.-Ph.; Cambrésy, L.; Cox, P.; di Francesco, J.; di Giorgio, A. M.; Griffin, M. J.; Hargrave, P.; Huang, M.; Kirk, J.; Li, J. Z.; Martin, P.; Minier, V.; Molinari, S.; Olofsson, G.; Pezzuto, S.; Russeil, D.; Roussel, H.; Saraceno, P.; Sauvage, M.; Sibthorpe, B.; Spinoglio, L.; Testi, L.; Ward-Thompson, D.; White, G.; Wilson, C. D.; Woodcraft, A.; Zavagno, A.

    2010-07-01

    The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg2 area of the field imaged at 70-500 μm with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from ASA.Figures 3-6 are only available in electronic format at http://www.aanda.org

  17. A Unified tool to estimate Distances, Ages, and Masses (UniDAM) from spectrophotometric data

    NASA Astrophysics Data System (ADS)

    Mints, Alexey; Hekker, Saskia

    2017-08-01

    Context. Galactic archaeology, the study of the formation and evolution of the Milky Way by reconstructing its past from its current constituents, requires precise and accurate knowledge of stellar parameters for as many stars as possible. To achieve this, a number of large spectroscopic surveys have been undertaken and are still ongoing. Aims: So far consortia carrying out the different spectroscopic surveys have used different tools to determine stellar parameters of stars from their derived effective temperatures (Teff), surface gravities (log g), and metallicities ([Fe/H]); the parameters can be combined with photometric, astrometric, interferometric, or asteroseismic information. Here we aim to homogenise the stellar characterisation by applying a unified tool to a large set of publicly available spectrophotometric data. Methods: We used spectroscopic data from a variety of large surveys combined with infrared photometry from 2MASS and AllWISE and compared these in a Bayesian manner with PARSEC isochrones to derive probability density functions (PDFs) for stellar masses, ages, and distances. We treated PDFs of pre-helium-core burning, helium-core burning, and post helium-core burning solutions as well as different peaks in multimodal PDFs (I.e. each unimodal sub-PDF) of the different evolutionary phases separately. Results: For over 2.5 million stars we report mass, age, and distance estimates for each evolutionary phase and unimodal sub-PDF. We report Gaussian, skewed, Gaussian, truncated Gaussian, modified truncated exponential distribution or truncated Student's t-distribution functions to represent each sub-PDF, allowing us to reconstruct detailed PDFs. Comparisons with stellar parameter estimates from the literature show good agreement within uncertainties. Conclusions: We present UniDAM, the unified tool applicable to spectrophotometric data of different surveys, to obtain a homogenised set of stellar parameters. The unified tool and the tables with results are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A108

  18. Planet population synthesis driven by pebble accretion in cluster environments

    NASA Astrophysics Data System (ADS)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp < 0.1 au) preferably form in the inner disc. We find that the formation of gas giants via pebble accretion is in agreement with the metallicity correlation, meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  19. The VLT-FLAMES Tarantula Survey . XXIV. Stellar properties of the O-type giants and supergiants in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Ramírez-Agudelo, O. H.; Sana, H.; de Koter, A.; Tramper, F.; Grin, N. J.; Schneider, F. R. N.; Langer, N.; Puls, J.; Markova, N.; Bestenlehner, J. M.; Castro, N.; Crowther, P. A.; Evans, C. J.; García, M.; Gräfener, G.; Herrero, A.; van Kempen, B.; Lennon, D. J.; Maíz Apellániz, J.; Najarro, F.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Taylor, W. D.; Vink, J. S.

    2017-04-01

    Context. The Tarantula region in the Large Magellanic Cloud (LMC) contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Aims: Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. Methods: We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model fastwind with the genetic fitting algorithm pikaia to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening. Results: We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60 M⊙, the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not systematically positioned between giants and supergiants at Minit ≳ 25 M⊙. At masses below 60 M⊙, the dwarf phase clearly precedes the giant and supergiant phases; however this behavior seems to break down at Minit ≲ 18 M⊙. Here, stars classified as late O III and II stars occupy the region where O9.5-9.7 V stars are expected, but where few such late O V stars are actually seen. Though we can not exclude that these stars represent a physically distinct group, this behavior may reflect an intricacy in the luminosity classification at late O spectral subtype. Indeed, on the basis of a secondary classification criterion, the relative strength of Si iv to He I absorption lines, these stars would have been assigned a luminosity class IV or V. Except for five stars, the helium abundance of our sample stars is in agreement with the initial LMC composition. This outcome is independent of their projected spin rates. The aforementioned five stars present moderate projected rotational velocities (I.e., νesini < 200kms-1) and hence do not agree with current predictions of rotational mixing in main-sequence stars. They may potentially reveal other physics not included in the models such as binary-interaction effects. Adopting theoretical results for the wind velocity law, we find modified wind momenta for LMC stars that are 0.3 dex higher than earlier results. For stars brighter than 105 L⊙, that is, in the regime of strong stellar winds, the measured (unclumped) mass-loss rates could be considered to be in agreement with line-driven wind predictions if the clump volume filling factors were fV 1/8 to 1/6. Based on observations collected at the European Southern Observatory under program ID 182.D-0222.Tables C.1-C.5 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A81

  20. Seismological Modeling of the Delta Scuti Star: CD-24 7599

    NASA Astrophysics Data System (ADS)

    Bradley, Paul A.; Guzik, Joyce A.

    1996-01-01

    A major goal of asteroseismology is a better understanding of stellar evolution via ''snapshots'' of many stars of different masses in different evolutionary states. For stars of about 2M(circle dot) near the sequence, b Scuti stars are the usual suspects. There is an ongoing renaissance in theoretical modeling of 6 Scuti stars brought on by improvements in constitutive physics and by a dramatic increase in the number of modes observed. FG Virginis and CD-24' 7599 are two of the best studied objects, and they have 19 and 13 known frequencies, respectively. . We create models using an updated and modified version of the Iben code described by Guzik & Cox that includes either of the two versions of the OPAL opacities . We use the star's observed location on the H-R diagram as a starting point for our seismological modeling. Because there is no evidence for observed t = 3 modes, we only consider l = 0, 1, and 2 modes in our analysis. We take into account rotational splitting (about 5 - 10 (mu)Hz) in our frequency matching. Several observed modes must be rotationally split members of a given mode. CD-24' 7599 is less than halfway through core hydrogen burning, and the modes appear to be a set of consecutive 3rd through 5th overtones of (ital l) = 0 through 2 modes. With only 13 modes, we find satisfactory fits with models between 1.9 and 2.0 M(circle dot) that fall within the observed luminosity and effective temperature range. By contrast, Guzik & Bradley suggest that FG Virginis is over halfway through core hydrogen burning and the best fitting models lie near 1.80 or 2.00 M(circle dot). We see persistent discrepancies in some low frequency modes, which suggests we may need a small amount of core overshoot or a slight change in metallicity to duplicate FG Virginis.

  1. Generation and Characterization of States of Matter at Solar Core Conditions

    NASA Astrophysics Data System (ADS)

    Bachmann, Benjamin

    2016-10-01

    The equation-of-state (EOS) of matter at solar core conditions is important to stellar evolution models and understanding the origin of high Z elements. Temperatures, densities and pressures of stellar cores are, however, orders of magnitude greater than those obtained in state-of-the-art laboratory EOS experiments and therefore such conditions have been limited to observational astronomy and theoretical models. Here we present a method to generate and diagnose these conditions in the laboratory, which is the first step towards characterizing the EOS of such extreme states of matter. By launching a converging shock wave into a deuterated plastic sphere (CD2) we produce solar core conditions (R /RSun < 0.2) which are initiated when the shock reaches the center of the CD2 sphere and extends during transit of the reflected wave until the temperature drops to a level where the neutron production and x-ray self emission drop below threshold levels of the detectors. These conditions are diagnosed by both, the neutron spectral data from D-D nuclear reactions, and temporal, spatial, and spectral x-ray emission data. We will discuss how these observables can be measured and used to help our understanding of dense plasma states that reach well into the thermonuclear regime of stellar cores. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by Laboratory Directed Research and Development Grant No. 13-ERD-073.

  2. Starspot variability as an X-ray radiation proxy

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-05-01

    Stellar X-ray emission plays an important role in the study of exoplanets as a proxy for stellar winds and as a basis for the prediction of extreme ultraviolet (EUV) flux, unavailable for direct measurements, which in their turn are important factors for the mass-loss of planetary atmospheres. Unfortunately, the detection thresholds limit the number of stars with the directly measured X-ray fluxes. At the same time, the known connection between the sunspots and X-ray sources allows using of the starspot variability as an accessible proxy for the stellar X-ray emission. To realize this approach, we analysed the light curves of 1729 main-sequence stars with rotation periods 0.5 < P < 30 d and effective temperatures 3236 < Teff < 7166 K observed by the Kepler mission. It was found that the squared amplitude of the first rotational harmonic of a stellar light curve may be used as a kind of activity index. This averaged index revealed practically the same relation with the Rossby number as that in the case of the X-ray to bolometric luminosity ratio Rx. As a result, the regressions for stellar X-ray luminosity Lx(P, Teff) and its related EUV analogue LEUV were obtained for the main-sequence stars. It was shown that these regressions allow prediction of average (over the considered stars) values of log (Lx) and log (LEUV) with typical errors of 0.26 and 0.22 dex, respectively. This, however, does not include the activity variations in particular stars related to their individual magnetic activity cycles.

  3. Reliability of stellar inclination estimated from asteroseismology: analytical criteria, mock simulations and Kepler data analysis

    NASA Astrophysics Data System (ADS)

    Kamiaka, Shoya; Benomar, Othman; Suto, Yasushi

    2018-05-01

    Advances in asteroseismology of solar-like stars, now provide a unique method to estimate the stellar inclination i⋆. This enables to evaluate the spin-orbit angle of transiting planetary systems, in a complementary fashion to the Rossiter-McLaughlineffect, a well-established method to estimate the projected spin-orbit angle λ. Although the asteroseismic method has been broadly applied to the Kepler data, its reliability has yet to be assessed intensively. In this work, we evaluate the accuracy of i⋆ from asteroseismology of solar-like stars using 3000 simulated power spectra. We find that the low signal-to-noise ratio of the power spectra induces a systematic under-estimate (over-estimate) bias for stars with high (low) inclinations. We derive analytical criteria for the reliable asteroseismic estimate, which indicates that reliable measurements are possible in the range of 20° ≲ i⋆ ≲ 80° only for stars with high signal-to-noise ratio. We also analyse and measure the stellar inclination of 94 Kepler main-sequence solar-like stars, among which 33 are planetary hosts. According to our reliability criteria, a third of them (9 with planets, 22 without) have accurate stellar inclination. Comparison of our asteroseismic estimate of vsin i⋆ against spectroscopic measurements indicates that the latter suffers from a large uncertainty possibly due to the modeling of macro-turbulence, especially for stars with projected rotation speed vsin i⋆ ≲ 5km/s. This reinforces earlier claims, and the stellar inclination estimated from the combination of measurements from spectroscopy and photometric variation for slowly rotating stars needs to be interpreted with caution.

  4. The Coupling between Earth's Inertial and Rotational Eigenmodes

    NASA Astrophysics Data System (ADS)

    Triana, S. A.; Rekier, J.; Trinh, A.; Laguerre, R.; Zhu, P.; Dehant, V. M. A.

    2017-12-01

    Wave motions in the Earth's fluid core, supported by the restoring action of both buoyancy (within the stably stratified top layer) and the Coriolis force, lead to the existence of global oscillation modes, the so-called gravito-inertial modes. These fluid modes can couple with the rotational modes of the Earth by exerting torques on the mantle and the inner core. Viscous shear stresses at the fluid boundaries, along with pressure and gravitation, contribute to the overall torque balance. Previous research by Rogister & Valette (2009) suggests that indeed rotational and gravito-inertial modes are coupled, thus shifting the frequencies of the Chandler Wobble (CW), the Free Core Nutation (FCN) and the Free Inner Core Nutation (FICN). Here we present the first results from a numerical model of the Earth's fluid core and its interaction with the rotational eigenmodes. In this first step we consider a fluid core without a solid inner core and we restrict to ellipticities of the same order as the Ekman number. We formulate the problem as a generalised eigenvalue problem that solves simultaneously the Liouville equation for the rotational modes (the torque balance), and the Navier-Stokes equation for the inertial modes.

  5. A time-dependent radiative model of HD 209458b

    NASA Astrophysics Data System (ADS)

    Iro, N.; Bézard, B.; Guillot, T.

    2005-06-01

    We present a time-dependent radiative model of the atmosphere of HD 209458b and investigate its thermal structure and chemical composition. In a first step, the stellar heating profile and radiative timescales were calculated under planet-averaged insolation conditions. We find that 99.99% of the incoming stellar flux has been absorbed before reaching the 7 bar level. Stellar photons cannot therefore penetrate deeply enough to explain the large radius of the planet. We derive a radiative time constant which increases with depth and reaches about 8 h at 0.1 bar and 2.3 days at 1 bar. Time-dependent temperature profiles were also calculated, in the limit of a zonal wind that is independent of height (i.e. solid-body rotation) and constant absorption coefficients. We predict day-night variations of the effective temperature of ~600 K, for an equatorial rotation rate of 1 km s-1, in good agreement with the predictions by Showmann & Guillot (2002). This rotation rate yields day-to-night temperature variations in excess of 600 K above the 0.1-bar level. These variations rapidly decrease with depth below the 1-bar level and become negligible below the ~5-bar level for rotation rates of at least 0.5 km s-1. At high altitudes (mbar pressures or less), the night temperatures are low enough to allow sodium to condense into Na2S. Synthetic transit spectra of the visible Na doublet show a much weaker sodium absorption on the morning limb than on the evening limb. The calculated dimming of the sodium feature during planetary transites agrees with the value reported by Charbonneau et al. (2002).

  6. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  7. A remarkably large depleted core in the Abell 2029 BCG IC 1101

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.; Knapen, Johan H.

    2017-10-01

    We report the discovery of an extremely large (Rb ˜2.77 arcsec ≈ 4.2 kpc) core in the brightest cluster galaxy, IC 1101, of the rich galaxy cluster Abell 2029. Luminous core-Sérsic galaxies contain depleted cores - with sizes (Rb) typically 20-500 pc - that are thought to be formed by coalescing black hole binaries. We fit a (double nucleus) + (spheroid) + (intermediate-scale component) + (stellar halo) model to the Hubble Space Telescope surface brightness profile of IC 1101, finding the largest core size measured in any galaxy to date. This core is an order of magnitude larger than those typically measured for core-Sérsic galaxies. We find that the spheroid's V-band absolute magnitude (MV) of -23.8 mag (˜25 per cent of the total galaxy light, I.e. including the stellar halo) is faint for the large Rb, such that the observed core is 1.02 dex ≈ 3.4σs (rms scatter) larger than that estimated from the Rb-MV relation. The suspected scouring process has produced a large stellar mass deficit (Mdef) ˜4.9 × 1011 M⊙, I.e. a luminosity deficit ≈28 per cent of the spheroid's luminosity prior to the depletion. Using IC 1101's black hole mass (MBH) estimated from the MBH-σ, MBH-L and MBH-M* relations, we measure an excessive and unrealistically high number of 'dry' major mergers for IC 1101 (I.e. N ≳ 76) as traced by the large Mdef/MBH ratios of 38-101. The large core, high mass deficit and oversized Mdef/MBH ratio of IC 1101 suggest that the depleted core was scoured by overmassive SMBH binaries with a final coalesced mass MBH ˜ (4-10) × 1010 M⊙, I.e. ˜ (1.7-3.2) × σs larger than the black hole masses estimated using the spheroid's σ, L and M*. The large core might be partly due to oscillatory core passages by a gravitational radiation-recoiled black hole.

  8. Which of Kepler's Stars Flare?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a function of Rossby number, which traces stellar rotation. Higher rotation rates correspond to lower Rossby numbers, so these data indicate that more rapidly rotating stars are more likely to exhibit flares. [Van Doorsselaere et al. 2017]Roughly 3.5% of Kepler stars in this sample are flaring stars.24 new A stars are found to show flaring activity. This is interesting because A stars arent thought to have an outer convective zone, which should prevent a magnetic dynamo from operating. Yet these flaring-star detections add to the body of evidence that at least some A stars do show magnetic activity.Most flaring stars in the sample are main-sequence stars, but 653 giants were found to have flaring activity. As with A stars, its unexpected that giant stars would have strong magnetic fields their increase in size and gradual spin-down over time should result in weakening of the surface fields. Nevertheless, it seems that the flare incidence of giant stars is similar to that of F or G main-sequence stars.All stellar types appear to have a small fraction of flare stars stars with an especially high rate of flare occurrence.Rapidly rotating stars are more likely to flare, tend to flare more often, and tend to have stronger flares than slowly rotating stars.As a next step, the authors plan to apply their flare detection algorithm to the larger sample of all Kepler data. In the meantime, this study has both deepened a few mysteries and moved us a step closer in our understanding of which stars flare and why.CitationTom Van Doorsselaere et al 2017 ApJS 232 26. doi:10.3847/1538-4365/aa8f9a

  9. The Spatial Distribution of Complex Organic Molecules in the L1544 Pre-stellar Core

    PubMed Central

    Jiménez-Serra, Izaskun; Vasyunin, Anton I.; Caselli, Paola; Marcelino, Nuria; Billot, Nicolas; Viti, Serena; Testi, Leonardo; Vastel, Charlotte; Lefloch, Bertrand; Bachiller, Rafael

    2016-01-01

    The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with AV ≥30 mag within the inner 2700 au; and a low-density shell with average AV ~7.5-8 mag located at 4000 au from the core’s center and bright in CH3OH. Our observations show that CH3O, CH3OCH3 and CH3CHO are more abundant (by factors ~2-10) toward the low-density shell than toward the continuum peak. Other COMs such as CH3OCHO, c-C3H2O, HCCCHO, CH2CHCN and HCCNC show slight enhancements (by factors ≤3) but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modelling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because i) CO starts freezing out onto dust grains driving an active surface chemistry; ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and iii) the density is still moderate to prevent severe depletion of COMs onto grains. PMID:27733899

  10. Transiting exoplanets from the CoRoT space mission. IV. CoRoT-Exo-4b: a transiting planet in a 9.2 day synchronous orbit

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Collier Cameron, A.; Ollivier, M.; Pont, F.; Jorda, L.; Almenara, J. M.; Alonso, R.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Gillon, M.; Guillot, T.; Hatzes, A.; Lammer, H.; Lanza, A. F.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Paetzold, M.; Pinte, C.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.

    2008-09-01

    CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this Letter, we report the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability about each transit, the transit light curve was analysed to determine the transit parameters. A discrete autocorrelation function method was used to derive the rotation period of the star from the out-of-transit light curve. We determine the periods of the planetary orbit and star's rotation of 9.20205 ± 0.00037 and 8.87 ± 1.12 days respectively, which is consistent with this being a synchronised system. We also derive the inclination, i = 90.00_-0.085+0.000 in degrees, the ratio of the orbital distance to the stellar radius, a/Rs = 17.36-0.25+0.05, and the planet-to-star radius ratio R_p/R_s=0.1047-0.0022+0.0041. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the system's migration and star-planet interaction history. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Figures 1, 4 and 5 are only available in electronic form at http://www.aanda.org

  11. High surface magnetic field in red giants as a new signature of planet engulfment?

    NASA Astrophysics Data System (ADS)

    Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Georgy, Cyril; Ekström, Sylvia; Vidotto, Aline A.; Bianda, Michele; Villaver, Eva; ud-Doula, Asif

    2016-09-01

    Context. Red giant stars may engulf planets. This may increase the rotation rate of their convective envelope, which could lead to strong dynamo-triggered magnetic fields. Aims: We explore the possibility of generating magnetic fields in red giants that have gone through the process of a planet engulfment. We compare them with similar models that evolve without any planets. We discuss the impact of magnetic braking through stellar wind on the evolution of the surface velocity of the parent star. Methods: By studying rotating stellar models with and without planets and an empirical relation between the Rossby number and the surface magnetic field, we deduced the evolution of the surface magnetic field along the red giant branch. The effects of stellar wind magnetic braking were explored using a relation deduced from magnetohydrodynamics simulations. Results: The stellar evolution model of a red giant with 1.7 M⊙ without planet engulfment and with a time-averaged rotation velocity during the main sequence equal to 100 km s-1 shows a surface magnetic field triggered by convection that is stronger than 10 G only at the base of the red giant branch, that is, for gravities log g> 3. When a planet engulfment occurs, this magnetic field can also appear at much lower gravities, that is, at much higher luminosities along the red giant branch. The engulfment of a 15 MJ planet typically produces a dynamo-triggered magnetic field stronger than 10 G for gravities between 2.5 and 1.9. We show that for reasonable magnetic braking laws for the wind, the high surface velocity reached after a planet engulfment may be maintained sufficiently long to be observable. Conclusions: High surface magnetic fields for red giants in the upper part of the red giant branch are a strong indication of a planet engulfment or of an interaction with a companion. Our theory can be tested by observing fast-rotating red giants such as HD 31994, Tyc 0347-00762-1, Tyc 5904-00513-1, and Tyc 6054-01204-1 and by determining whether they show magnetic fields.

  12. Method and apparatus for maintaining equilibrium in a helical axis stellarator

    DOEpatents

    Reiman, A.; Boozer, A.

    1984-10-31

    Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellarator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.

  13. Physics of rotation: problems and challenges

    NASA Astrophysics Data System (ADS)

    Maeder, Andre; Meynet, Georges

    2015-01-01

    We examine some debated points in current discussions about rotating stars: the shape, the gravity darkening, the critical velocities, the mass loss rates, the hydrodynamical instabilities, the internal mixing and N-enrichments. The study of rotational mixing requires high quality data and careful analysis. From recent studies where such conditions are fulfilled, rotational mixing is well confirmed. Magnetic coupling with stellar winds may produce an apparent contradiction, i.e. stars with a low rotation and a high N-enrichment. We point out that it rather confirms the large role of shears in differentially rotating stars for the transport processes. New models of interacting binaries also show how shears and mixing may be enhanced in close binaries which are either spun up or down by tidal interactions.

  14. Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects

    NASA Astrophysics Data System (ADS)

    Obergaulinger, M.; Aloy, M. A.; Dimmelmeier, H.; Müller, E.

    2006-10-01

    We continue our investigations of the magnetorotational collapse of stellar cores by discussing simulations performed with a modified Newtonian gravitational potential that mimics general relativistic effects. The approximate TOV gravitational potential used in our simulations captures several basic features of fully relativistic simulations quite well. In particular, it is able to correctly reproduce the behavior of models that show a qualitative change both of the dynamics and the gravitational wave signal when switching from Newtonian to fully relativistic simulations. For models where the dynamics and gravitational wave signals are already captured qualitatively correctly by a Newtonian potential, the results of the Newtonian and the approximate TOV models differ quantitatively. The collapse proceeds to higher densities with the approximate TOV potential, allowing for a more efficient amplification of the magnetic field by differential rotation. The strength of the saturation fields (˜ 1015 ~ G at the surface of the inner core) is a factor of two to three higher than in Newtonian gravity. Due to the more efficient field amplification, the influence of magnetic fields is considerably more pronounced than in the Newtonian case for some of the models. As in the Newtonian case, sufficiently strong magnetic fields slow down the core's rotation and trigger a secular contraction phase to higher densities. More clearly than in Newtonian models, the collapsed cores of these models exhibit two different kinds of shock generation. Due to magnetic braking, a first shock wave created during the initial centrifugal bounce at subnuclear densities does not suffice for ejecting any mass, and the temporarily stabilized core continues to collapse to supranuclear densities. Another stronger shock wave is generated during the second bounce as the core exceeds nuclear matter density. The gravitational wave signal of these models does not fit into the standard classification. Therefore, in the first paper of this series we introduced a new type of gravitational wave signal, which we call type IV or “magnetic type”. This signal type is more frequent for the approximate relativistic potential than for the Newtonian one. Most of our weak-field models are marginally detectable with the current LIGO interferometer for a source located at a distance of 10 kpc. Strongly magnetized models emit a substantial fraction of their GW power at very low frequencies. A flat spectrum between 10 Hz and ⪉ 100 kHz denotes the generation of a jet-like hydromagnetic outflow.

  15. Investigating the Magnetospheres of Rapidly Rotating B-type Stars

    NASA Astrophysics Data System (ADS)

    Fletcher, C. L.; Petit, V.; Nazé, Y.; Wade, G. A.; Townsend, R. H.; Owocki, S. P.; Cohen, D. H.; David-Uraz, A.; Shultz, M.

    2017-11-01

    Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.

  16. The MASSIVE Survey - X. Misalignment between Kinematic and Photometric Axes and Intrinsic Shapes of Massive Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Ene, Irina; Ma, Chung-Pei; Veale, Melanie; Greene, Jenny E.; Thomas, Jens; Blakeslee, John P.; Foster, Caroline; Walsh, Jonelle L.; Ito, Jennifer; Goulding, Andy D.

    2018-06-01

    We use spatially resolved two-dimensional stellar velocity maps over a 107″ × 107″ field of view to investigate the kinematic features of 90 early-type galaxies above stellar mass 1011.5M⊙ in the MASSIVE survey. We measure the misalignment angle Ψ between the kinematic and photometric axes and identify local features such as velocity twists and kinematically distinct components. We find 46% of the sample to be well aligned (Ψ < 15°), 33% misaligned, and 21% without detectable rotation (non-rotators). Only 24% of the sample are fast rotators, the majority of which (91%) are aligned, whereas 57% of the slow rotators are misaligned with a nearly flat distribution of Ψ from 15° to 90°. 11 galaxies have Ψ ≳ 60° and thus exhibit minor-axis ("prolate") rotation in which the rotation is preferentially around the photometric major axis. Kinematic misalignments occur more frequently for lower galaxy spin or denser galaxy environments. Using the observed misalignment and ellipticity distributions, we infer the intrinsic shape distribution of our sample and find that MASSIVE slow rotators are consistent with being mildly triaxial, with mean axis ratios of b/a = 0.88 and c/a = 0.65. In terms of local kinematic features, 51% of the sample exhibit kinematic twists of larger than 20°, and 2 galaxies have kinematically distinct components. The frequency of misalignment and the broad distribution of Ψ reported here suggest that the most massive early-type galaxies are mildly triaxial, and that formation processes resulting in kinematically misaligned slow rotators such as gas-poor mergers occur frequently in this mass range.

  17. Galaxy kinematics in the XMMU J2235-2557 cluster field at z 1.4

    NASA Astrophysics Data System (ADS)

    Pérez-Martínez, J. M.; Ziegler, B.; Verdugo, M.; Böhm, A.; Tanaka, M.

    2017-09-01

    Aims: The relationship between baryonic and dark components in galaxies varies with the environment and cosmic time. Galaxy scaling relations describe strong trends between important physical properties. A very important quantitative tool in case of spiral galaxies is the Tully-Fisher relation (TFR), which combines the luminosity of the stellar population with the characteristic rotational velocity (Vmax) taken as proxy for the total mass. In order to constrain galaxy evolution in clusters, we need measurements of the kinematic status of cluster galaxies at the starting point of the hierarchical assembly of clusters and the epoch when cosmic star formation peaks. Methods: We took spatially resolved slit FORS2 spectra of 19 cluster galaxies at z 1.4, and 8 additional field galaxies at 1 < z < 1.2 using the ESO Very Large Telescope. The targets were selected from previous spectroscopic and photometric campaigns as [OII] and Hα emitters. Our spectroscopy was complemented with HST/ACS imaging in the F775W and F850LP filters, which is mandatory to derive the galaxy structural parameters accurately. We analyzed the ionized gas kinematics by extracting rotation curves from the two-dimensional spectra. Taking into account all geometrical, observational, and instrumental effects, we used these rotation curves to derive the intrinsic maximum rotation velocity. Results: Vmax was robustly determined for six cluster galaxies and three field galaxies. Galaxies with sky contamination or insufficient spatial rotation curve extent were not included in our analysis. We compared our sample to the local B-band TFR and the local velocity-size relation (VSR), finding that cluster galaxies are on average 1.6 mag brighter and a factor 2-3 smaller. We tentatively divided our cluster galaxies by total mass (I.e., Vmax) to investigate a possible mass dependency in the environmental evolution of galaxies. The averaged deviation from the local TFR is ⟨ ΔMB ⟩ = -0.7 for the high-mass subsample (Vmax > 200 km s-1). This mild evolution may be driven by younger stellar populations (SP) of distant galaxies with respect to their local counterparts, and thus, an increasing luminosity is expected toward higher redshifts. However, the low-mass subsample (Vmax < 200 km s-1) is made of highly overluminous galaxies that show ⟨ ΔMB ⟩ = -2.4 mag. When we repeated a similar analysis with the stellar mass TFR, we did not find significant offsets in our subsamples with respect to recent results at similar redshift. While the B-band TFR is sensitive to recent episodes of star formation, the stellar mass TFR tracks the overall evolution of the underlying stellar population. In order to understand the discrepancies between these two incarnations of the TFR, the reported B-band offsets can no longer be explained only by the gradual evolution of stellar populations with lookback time. We suspect that we instead see compact galaxies whose star formation was enhanced during their infall toward the dense regions of the cluster through interactions with the intracluster medium. Based on observations with the European Southern Observatory Very Large Telescope (ESO-VLT), observing run ID 091.B-0778(B).

  18. Hubble's Role in Studies of Venus' Clouds, Climate and Habitability

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis-Lea; Marcq, Emmanuel; Mills, Franklin; Bertaux, Jean-Loup; Lee, Yeon Joo; Limaye, Sanjay; Roman, Anthony; Yung, Yuk

    2018-06-01

    Venus’ slow rotation fosters thick cloud formation, via long solar days, low Coriolis forces and strong subsolar convection. Thus, Venus and other slow rotators may maintain an Earth-like climate at ~ 2x the stellar flux as rapid rotators – if the cloud albedo is high, buffering climate change (Yang et al. 2014). However, Venus’ dense H2SO4 clouds host an absorbing source that drives solar heating, fostering rather than buffering climate change. As such, the response of an atmosphere to the available stellar flux and its impact on habitability will be quite different for a slow rotator planet with Venus-like vs. Earth-like buffering clouds.2010/2011 HST/STIS observations of Venus have provided data relevant for studying several of the mechanisms that determine Venus’ climate. These observations showed unambiguously that SO2 photolysis is not the sole process balancing the growth and loss of the cloud top SO (and SO2). As the parent species of Venus’ H2SO4 clouds, these results indicated that additional sulfur chemistry must be considered when defining the mechanisms controlling Venus’ H2SO4 formation process (Jessup et al. 2015). The STIS observations also showed decisively that vertical transport of Venus’ key UV absorbers: SO2, SO and the unnamed absorber are sensitive to the underlying surface elevation (Jessup et al. 2018). This implies that observations made over varying terrain types can be used to parameterize a) the energy and momentum released during surface-atmosphere interactions, which is essential for understanding Venus’ slow body and fast cloud rotation; and b) the sensitivity of the vertical profiles of the species having the greatest impact on Venus’ energy balance and climate to the underlying terrain. Cross-calibration of STIS and Venus Express data also enabled definitive identification of a 6 year decline in the cloud albedo resulting in a nearly 40% increase in the solar heating rate, suggesting dramatic climate change unparalleled in the solar system (Lee et al. 2018). Studies of the links between these phenomena, the super-rotation speed and the solar cycle will be revelatory for inter-stellar habitability studies.

  19. Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Anderson, J. P.; Galbany, L.; Maeda, K.; Hamuy, M.; Aldering, G.; Arimoto, N.; Doi, M.; Morokuma, T.; Usuda, T.

    2018-05-01

    Context. Observationally, supernovae (SNe) are divided into subclasses according to their distinct characteristics. This diversity naturally reflects the diversity in the progenitor stars. It is not entirely clear, however, how different evolutionary paths leading massive stars to become an SN are governed by fundamental parameters such as progenitor initial mass and metallicity. Aims: This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses through a study of the parent stellar populations at the explosion sites. Methods: Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites. Results: No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN type Ic, followed by type Ib, then types IIb and II. Type IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimates lower than 25 M⊙ are found; they are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channels only, and both single and binary channels are at play in the production of core-collapse SNe. Near-infrared IFS suggests that multiple stellar populations with different ages may be present in some of the SN sites. As a consequence, there could be a non-negligible amount of contamination from old populations, and therefore the individual age estimates are effectively lower limits. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 089.D-0367, 091.D-0482, 093.D-0318, 094.D-0290, and 095.D-0172

  20. THE COLOR-PERIOD DIAGRAM AND STELLAR ROTATIONAL EVOLUTION-NEW ROTATION PERIOD MEASUREMENTS IN THE OPEN CLUSTER M34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meibom, Soeren; Saar, Steven H.; Mathieu, Robert D.

    2011-06-01

    We present the results of a 5 month photometric time-series survey for stellar rotation periods combined with a 4 year radial-velocity survey for membership and binarity in the 220 Myr open cluster M34. We report surface rotation periods for 120 stars, 83 of which are kinematic and photometric late-type cluster members. A comparison to previous work serves to illustrate the importance of high-cadence long baseline photometric observations and membership information. The new M34 periods are less biased against slow rotation and cleaned for non-members. The rotation periods of the cluster members span over more than an order of magnitude frommore » 0.5 days up to 11.5 days, and trace two distinct rotational sequences-fast (C) and moderate-to-slow (I)-in the color-period diagram. The sequences represent two different states (fast and slow) in the rotational evolution of the late-type cluster members. We use the color-period diagrams for M34 and for younger and older clusters to estimate the timescale for the transition from the C to the I sequence and find {approx}<150 Myr, {approx}150-300 Myr, and {approx}300-600 Myr for G, early-mid K, and late K dwarfs, respectively. The small number of stars in the gap between C and I suggests a quick transition. We estimate a lower limit on the maximum spin-down rate (dP/dt) during this transition to be {approx}0.06 days Myr{sup -1} and {approx}0.08 days Myr{sup -1} for early and late K dwarfs, respectively. We compare the I sequence rotation periods in M34 and the Hyades for G and K dwarfs and find that K dwarfs spin down slower than the Skumanich {radical}t rate. We determine a gyrochronology age of 240 Myr for M34. The gyro-age has a small formal uncertainty of 2% which reflects the tight I sequence in the M34 color-period diagram. We measure the effect of cluster age uncertainties on the gyrochronology age for M34 and find the resulting error on the gyro-age to be consistent with the {approx}15% error estimate for the technique in general. We use the M34 I sequence to redetermine the coefficients in the expression for rotational dependence on color used in gyrochronology. Finally, we propose that stability in the phase, shape, and amplitude of the photometric variability for the 120 rotators over the {approx}5 month duration of our survey is due to spot generation at active stellar longitudes.« less

Top