Sample records for rotating threaded pin

  1. Effect of Pin Tool Shape on Metal Flow During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Coronado, E.; Aloor, S.; Nowak, B.; Murr, L. M.; Nunes, Arthur C., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    It has been shown that metal moves behind the rotating Friction Stir Pin Tool in two separate currents or streams. One current, mostly on the advancing side, enters a zone of material that rotates with the pin tool for one or more revolutions and eventually is abandoned behind the pin tool in crescent-shaped pieces. The other current, largely on the retreating side of the pin tool is moved by a wiping process to the back of the pin tool and fills in between the pieces of the rotational zone that have been shed by the rotational zone. This process was studied by using a faying surface copper trace to clarify the metal flow. Welds were made with pin tools having various thread pitches. Decreasing the thread pitch causes the large scale top-to-bottorn flow to break up into multiple vortices along the pin and an unthreaded pin tool provides insufficient vertical motion for there to be a stable rotational zone and flow of material via the rotational zone is not possible leading to porosity on the advancing side of the weld.

  2. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  3. Gimballed Shoulders for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  4. End-threaded intramedullary positive profile screw ended self-tapping pin (Admit pin) - A cost-effective novel implant for fixing canine long bone fractures.

    PubMed

    Chanana, Mitin; Kumar, Adarsh; Tyagi, Som Prakash; Singla, Amit Kumar; Sharma, Arvind; Farooq, Uiase Bin

    2018-02-01

    The current study was undertaken to evaluate the clinical efficacy of end-threaded intramedullary pinning for management of various long bone fractures in canines. This study was conducted in two phases, managing 25 client-owned dogs presented with different fractures. The technique of application of end-threaded intramedullary pinning in long bone fractures was initially standardized in 6 clinical patients presented with long bone fractures. In this phase, end-threaded pins of different profiles, i.e., positive and negative, were used as the internal fixation technique. On the basis of results obtained from standardization phase, 19 client-owned dogs clinically presented with different fractures were implanted with end-threaded intramedullary positive profile screw ended self-tapping pin in the clinical application phase. The patients, allocated randomly in two groups, when evaluated postoperatively revealed slight pin migration in Group-I (negative profile), which resulted in disruption of callus site causing delayed union in one case and large callus formation in other two cases whereas no pin migration was observed in Group-II (positive profile). Other observations in Group-I was reduced muscle girth and delayed healing time as compared to Group-II. In clinical application, phase 21 st and 42 nd day post-operative radiographic follow-up revealed no pin migration in any of the cases, and there was no bone shortening or fragment collapse in end-threaded intramedullary positive profile screw ended self-tapping pin. The end-threaded intramedullary positive profile screw ended self-tapping pin used for fixation of long bone fractures in canines can resist pin migration, pin breakage, and all loads acting on the bone, i.e., compression, tension, bending, rotation, and shearing to an extent with no post-operative complications.

  5. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE PAGES

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  6. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  7. Characterization of the Micro Textures in a Friction Stir Weld

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2004-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. The Dynamically-Recrystallized-Zone (DXZ) of a polished and etched FSW cross-section exhibits contrasting bands (the "onion-ring" structure), the origins of which are unclear. An orientation image mapping (OIM) study suggests that the corresponding bands may correspond respectively to a "straight-through" current of metal bypassing the pin tool in a single rotation or less and a "maelstrom" current rotating a number of times around the pin tool.

  8. Tool for Two Types of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A tool that would be useable in both conventional and self-reacting friction stir welding (FSW) has been proposed. The tool would embody both a prior tooling concept for self-reacting FSW and an auto-adjustable pin-tool (APT) capability developed previously as an augmentation for conventional FSW. Some definitions of terms are prerequisite to a meaningful description of the proposed tool. In conventional FSW, depicted in Figure 1, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a rotating pin that protrudes from the shoulder into the depth of the workpiece. The main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional FSW is augmented with an APT capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or force-control system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding (SR-FSW), there are two rotating shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft, back into the FSW machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. A tool for SRFSW embodying this concept was reported in "Mechanism for Self-Reacted Friction Stir Welding" (MFS-31914), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 53. In its outward appearance, the proposed tool (see Figure 2) would fit the above description of an SR-FSW tool. In this case, the FSW machine would have an APT capability and the pin would be modified to accept a bottom shoulder. The APT capability could be used to vary the distance between the front and back shoulders in real time to accommodate process and workpiece-thickness variations. The tool could readily be converted to a conventional FSW tool, with or without APT capability, by simply replacing the modified pin with a conventional FSW pin.

  9. Self-locking double retention redundant pull pin release

    NASA Technical Reports Server (NTRS)

    Killgrove, Thomas O. (Inventor)

    1987-01-01

    A double-retention redundant pull pin release system is disclosed. The system responds to a single pull during an intentional release operation. A spiral-threaded main pin is seated in a mating bore in a housing, which main pin has a flange fastened thereon at the part of the main pin which is exterior to the housing. Accidental release tends to rotate the main pin. A secondary pin passes through a slightly oversized opening in the flange and is seated in a second bore in the housing. The pins counteract against one another to prevent accidental release. A frictional lock is shared between the main and secondary pins to enhance further locking of the system. The secondary pin, in response to a first pull, is fully retracted from its bore and flange hole. Thereafter the pull causes the main pin to rotate free of the housing to release, for example, a parachute mechanism.

  10. Control of Structure in Conventional Friction Stir Welds through a Kinematic Theory of Metal Flow

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.A.; Schneider, J.A.; Nunes, A.C.

    2009-01-01

    In friction stir welding (FSW), a rotating pin is translated along a weld seam so as to stir the sides of the seam together. Metal is prevented from flowing up the pin, which would result in plowing/cutting instead of welding, by a shoulder on the pin. In conventional FSW, the weld metal rests on an "anvil", which supports the heavy "plunge" load on the tool. In this study, both embedded tungsten wires along and copper plating on the faying surfaces were used to trace the flow of AA2219 weld metal around the C-FSW tool. The effect of tool rotational speed, travel speed, plunge load, and pin thread pitch on the resulting weld metal flow was evaluated. Plan, longitudinal, and transverse section x-ray radiographs were examined to trace the metal flow paths. The results are interpreted in terms of a kinematic theory of metal flow in FSW.

  11. Tensile Shear Properties of the Friction Stir Lap Welded Joints and Material Flow Mechanism Under Pulsatile Revolutions

    NASA Astrophysics Data System (ADS)

    Hu, Yanying; Liu, Huijie; Du, Shuaishuai

    2018-06-01

    The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.

  12. Effects of thread interruptions on tool pins in friction stir welding of AA6061

    DOE PAGES

    Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.

    2017-06-21

    In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less

  13. Effects of thread interruptions on tool pins in friction stir welding of AA6061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.

    In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less

  14. Improved Screw-Thread Lock

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1995-01-01

    Improved screw-thread lock engaged after screw tightened in nut or other mating threaded part. Device does not release contaminating material during tightening of screw. Includes pellet of soft material encased in screw and retained by pin. Hammer blow on pin extrudes pellet into slot, engaging threads in threaded hole or in nut.

  15. Downhole Data Transmission System

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe

    2004-04-06

    A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.

  16. Effect of Pin Geometry on the Mechanical Strength of Friction-Stir-Welded Polypropylene Composite Plates

    NASA Astrophysics Data System (ADS)

    Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.

    2017-09-01

    Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.

  17. Method for forming precision clockplate with pivot pins

    DOEpatents

    Wild, Ronald L [Albuquerque, NM

    2010-06-01

    Methods are disclosed for producing a precision clockplate with rotational bearing surfaces (e.g. pivot pins). The methods comprise providing an electrically conductive blank, conventionally machining oversize features comprising bearing surfaces into the blank, optionally machining of a relief on non-bearing surfaces, providing wire accesses adjacent to bearing surfaces, threading the wire of an electrical discharge machine through the accesses and finishing the bearing surfaces by wire electrical discharge machining. The methods have been shown to produce bearing surfaces of comparable dimension and tolerances as those produced by micro-machining methods such as LIGA, at reduced cost and complexity.

  18. Flow Patterns During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Friction Stir Welding is a relatively new technique for welding that uses a cylindrical pin or nib inserted along the weld seam. The nib (usually threaded) and the shoulder in which it is mounted are rapidly rotated and advanced along the seam. Extreme deformation takes place leaving a fine equiaxed structure in the weld region., The flow of metal during Friction Stir Welding is investigated using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a zone of material that rotates and advances with the nib. The material undergoes a helical motion within the rotational zone that both rotates and advances and descends in the wash of the threads on the nib and rises on the outer part of the rotational zone. After one or more rotations, this material is sloughed off in its wake of the nib, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side.

  19. Design of New Muzzle for 80mm Diamter Single-Stage Gas Gun

    NASA Astrophysics Data System (ADS)

    Russell, R. T.; Starks, K. S.; Grote, D. L., II; Vandersall, K. S.; Zhou, M.; Thadhani, N. N.

    1999-06-01

    In this paper, we describe the design of a new muzzle for the Georgia Institute of Technology's 80mm diameter single-stage gas gun. The muzzle is designed to accommodate both normal and inclined impact experiments. Modular target-holding assemblies are mounted on a hardened tool steel annular plate 3 inches in thickness and 15 inches in diameter. This plate is threaded on to the gun barrel and locked into place by an anti-backlash assembly to prevent loss of alignment. The target mount for normal impact experiments consists of two 4.5 inch diameter semi-cylindrical ring sections with surfaces lapped perpendicular to the major bore axis. The inclined target mount includes a pair of concentric cylinder sections with an inner diameter of 8 inches. Tilt adjustment is achieved around two mutually perpendicular and intersecting axis of rotation, as in a gimbals assembly. Coarse alignment allows for angles between -10 and +30 degrees. Fine alignment is achieved using 3/8 inch machine screws with 40 threads per inch. This mechanism yields a precision of 0.025 inches per revolution, the same precision found in a micrometer. The linear distance between the adjustment mechanisms and the axes of rotation geometrically enhances fine alignment. Velocity measurement assemblies using shear pins, time of arrival pins, and laser/photo-diode circuits are designed as bolt-on modules.

  20. Adjustable-Torque Truss-Joint Mechanism

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Wallsom, Richard E.

    1993-01-01

    Threaded pin tightened or loosened; tedious trial-and-error procedure shortened. Mechanism joining strut and node in truss structure preloaded to desired stress to ensure tight, compressive fit preventing motion of strut during loading or vibration. Preload stress on stack of Belleville spring washers adjusted by tightening or loosening threaded Belleville-washer-alignment pin. Pin turned, by use of allen wrench, to adjust compression preload on Belleville washers and adjusts joint-operating torque.

  1. Unraveling the Processing Parameters in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.

  2. Pausing and activating thread state upon pin assertion by external logic monitoring polling loop exit time condition

    DOEpatents

    Chen, Dong; Giampapa, Mark; Heidelberger, Philip; Ohmacht, Martin; Satterfield, David L; Steinmacher-Burow, Burkhard; Sugavanam, Krishnan

    2013-05-21

    A system and method for enhancing performance of a computer which includes a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program are executed by a processer. The processor processes instructions from the program. A wait state in the processor waits for receiving specified data. A thread in the processor has a pause state wherein the processor waits for specified data. A pin in the processor initiates a return to an active state from the pause state for the thread. A logic circuit is external to the processor, and the logic circuit is configured to detect a specified condition. The pin initiates a return to the active state of the thread when the specified condition is detected using the logic circuit.

  3. Mechanical properties of friction stir welded butt joint of steel/aluminium alloys: effect of tool geometry

    NASA Astrophysics Data System (ADS)

    Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.

    2017-10-01

    This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.

  4. Remote vacuum or pressure sealing device and method for critical isolated systems

    DOEpatents

    Brock, James David [Newport News, VA; Keith, Christopher D [Newport News, VA

    2012-07-10

    A remote vacuum or pressure sealing apparatus and method for making a radiation tolerant, remotely prepared seal that maintains a vacuum or pressure tight seal throughout a wide temperature range. The remote sealing apparatus includes a fixed threaded sealing surface on an isolated system, a gasket, and an insert consisting of a plug with a protruding sample holder. An insert coupling device, provided for inserting samples within the isolated system, includes a threaded fastener for cooperating with the fixed threaded sealing surface on the isolated system. The insert coupling device includes a locating pin for azimuthal orientation, coupling pins, a tooted coaxial socket wrench, and an insert coupling actuator for actuating the coupling pins. The remote aspect of the sealing apparatus maintains the isolation of the system from the user's environment, safely preserving the user and the system from detrimental effect from each respectively.

  5. Alignment Pins for Assembling and Disassembling Structures

    NASA Technical Reports Server (NTRS)

    Campbell, Oliver C.

    2008-01-01

    Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw bolt is inserted through the cup and threaded into the pin, then the draw bolt is tightened to pull the pin out of the hole.

  6. [The VB system: a new modular osteosynthesis material involving both screws and wires].

    PubMed

    Dubert, T; Valenti, P; Dinh, A; Osman, N

    2002-01-01

    VB is an osteosynthesis system for the stabilisation of small fragments, which combines the benefits of both wires and screws. It is a modular system comprising a threaded pin and a ring. The threaded pin is first positioned. Then a ring is grasped and opened by the progressive angulation of a screwdriver. Still anchored on the screwdriver, the ring slides easily on the pin. It is clamped on the pin by simply removing the screwdriver and the pin is then cut. This modular system includes 1.8 and 1.1 mm pins and different types of rings (threaded or non threaded, with or without collars). The system is easy to handle and can be introduced using an open or percutaneous technique, allowing compression or distraction. Our preliminary series, performed in accordance with National clinical trial protocol (Huriet) consisted of 50 cases in 24 patients (five women and 19 men) with an average age of 48 years, and a follow-up of more than six months. Fourteen cases of fractures (28 implants) were treated as emergencies (two radial heads, one capitellum, one trochlea of the humerus, seven distal radius fractures, one trapezium, two metacarpals) and 12 cases (22 implants) were elective cases: arthrodesis (one trapezo-metacarpal, one intermetacarpal, two interphalangeal, two carpal), non-union (six scaphoids, one phalangeal) and one phalangeal malunion. Hardware removal was performed in 16 cases. No implant failure has been detected. One case, a DIP arthrodesis, had a suspicion of sepsis which led to the removal of the implants at six weeks. The results of this study have convinced us of the merits of the system, which combines the advantages of both wires and screws. The system allows the user to perform either distraction or compression, and to adjust the force by hand. Compared to the fixed amount of compression produced by lag screws, this feature seems to be a real step forward.

  7. Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system

    DOEpatents

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.

  8. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  9. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  10. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  11. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  12. Apparatus for accurately preloading auger attachment means for frangible protective material

    NASA Technical Reports Server (NTRS)

    Wood, K. E.

    1983-01-01

    Apparatus for preloading a spring loaded threaded member is described. The apparatus is formed of three telescoping tubes. The innermost tube has means to prevent rotation of the threaded member. The middle tube is threadedly engaged with the threaded member and by axial movement applies a preload thereto. The outer tube engages a nut which may be rotated to retain the threaded member in axial position to maintain the preload.

  13. Low backlash direct drive actuator

    DOEpatents

    Kuklo, Thomas C.

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  14. Counterrotating-Shoulder Mechanism for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2007-01-01

    A counterrotating-shoulder mechanism has been proposed as an alternative to the mechanism and fixtures used in conventional friction stir welding. The mechanism would internally react most or all of the forces and torques exerted on the workpiece, making it unnecessary to react the forces and torques through massive external fixtures. In conventional friction stir welding, a rotating pin tool is inserted into, and moved along, a weld seam. As the pin tool moves, it stirs together material from the opposite sides of the seam to form the weld. A large axial plunge force must be exerted upon the workpiece through and by the pin tool and a shoulder attached above the pin tool in order to maintain the pressure necessary for the process. The workpiece is secured on top of an anvil, which supports the workpiece against the axial plunge force and against the torque exerted by the pin tool and shoulder. The anvil and associated fixtures must be made heavy (and, therefore, are expensive) to keep the workpiece stationary. In addition, workpiece geometries must be limited to those that can be accommodated by the fixtures. The predecessor of the proposed counterrotating-shoulder mechanism is a second-generation, self-reacting tool, resembling a bobbin, that makes it possible to dispense with the heavy anvil. This tool consists essentially of a rotating pin tool with opposing shoulders. Although the opposing shoulders maintain the necessary pressure without need to externally apply or react a large plunge force, the torque exerted on the workpiece remains unreacted in the absence of a substantial external fixture. Depending on the RPM and the thickness of the workpiece, the torque can be large. The proposed mechanism (see figure) would include a spindle attached to a pin tool with a lower shoulder. The spindle would be coupled via splines to the upper one of three bevel gears in a differential drive. The middle bevel gear would be the power-input gear and would be coupled to the upper and lower bevel gears. The lower bevel gear would be attached to the upper shoulder and would slide and rotate freely over the spindle. The spindle would be fastened by its threaded upper end to an external submechanism that would exert axial tension on the spindle to load the workpiece in compression between the shoulders. By reducing or eliminating (relative to the use of a self reacting tool) the torque that must be reacted externally, the use of the proposed tool would reduce the tendency toward distortion or slippage of the workpiece. To begin a weld, the spindle would be inserted through a hole in the workpiece or run-on tab at the beginning of the seam and fastened to the loading submechanism. Rotation and axial loading would be increased gradually from zero and, after a time to be determined by trial and error, translation along the weld seam would be increased gradually from zero to a steady weld speed. The weld would be ended by running the mechanism off the workpiece or, if the lower shoulder were detachable, by detaching the lower shoulder from the spindle and pulling the pin tool out.

  15. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe (no toxic smoke or shielding gas, liquid metal splatter, arcing, dangerous voltage, or radiation), and environmentally sound (no consumables, fumes, or noise) than fusion welding. Under computer control, an automated FSW machine can create welds with high reproducibility, improving efficiency and overall quality of manufactured materials. The process also allows for welding dissimilar metals as well as those metals considered to be "unweldable" such as the 7xxx series aluminum alloys. Its effectiveness and versatility makes FSW useful for aerospace, rail, automotive, marine, and military applications. A downside to FSW, however, is the keyhole opening left in the weld when the FSW pin tool exits the weld joint. This is a significant problem when using the FSW process to join circumferential structures such as pipes and storage containers. Furthermore, weld joints that taper in material thickness also present problems when using the conventional FSW pin tool, because the threaded pin rotating within the weld joint material is a fixed length. There must be capability for the rotating pin to both increase and decrease in length in real time while welding the tapered material. (Both circumferential and tapered thickness weldments are found in the space shuttle external tank.) Marshall engineers addressed both the keyhole and tapered material thickness problems by developing the auto-adjustable pin tool. This unique piece of equipment automatically withdraws the pin into the tool s shoulder for keyhole closeout. In addition, the auto-adjustable pin tool retracts, or shortens, the rotating pin while welding a weld joint that tapers from one thickness to a thinner thickness. This year, the impact of the Marshall innovation was recognized with an "Excellence in Technology Transfer Award" from the Federal Laboratory Consortium.

  16. Study of Measurement Strategies of Geometric Deviation of the Position of the Threaded Holes

    NASA Astrophysics Data System (ADS)

    Drbul, Mário; Martikan, Pavol; Sajgalik, Michal; Czan, Andrej; Broncek, Jozef; Babik, Ondrej

    2017-12-01

    Verification of product and quality control is an integral part of current production process. In terms of functional requirements and product interoperability, it is necessary to analyze their dimensional and also geometric specifications. Threaded holes are verified elements too, which are a substantial part of detachable screw connections and have a broad presence in engineering products. This paper deals with on the analysing of measurement strategies of verification geometric deviation of the position of the threaded holes, which are the indirect method of measuring threaded pins when applying different measurement strategies which can affect the result of the verification of the product..

  17. Low backlash direct drive actuator

    DOEpatents

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  18. Stemless ball valve

    NASA Technical Reports Server (NTRS)

    Burgess, Kevin (Inventor); Yakos, David (Inventor); Walthall, Bryan (Inventor)

    2011-01-01

    A stemless ball valve comprising two flanges and a ball with a channel, two axis pins and two travel pins. One end of each axis and travel pin is fixedly attached to the ball, and the other end of each axis pin is lodged into a notch in the first or second flange such that the axis pin is allowed to rotate in the notch. The guide sleeve comprises two channels, and one end of each travel pin is situated within one of the two channels in the guide sleeve. An outer magnetic cartridge causes the inner magnetic cartridge and guide sleeve to rotate, and when the guide sleeve rotates, the travel pins move up and down within the channels in the guide sleeve. The movement of the travel pins within the channels in the guide sleeve causes the ball to rotate, thereby opening and closing the ball valve.

  19. Downhole tool

    DOEpatents

    Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.

    2007-03-20

    A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.

  20. Effect of pin tool design on the material flow of dissimilar AA7075-AA6061 friction stir welds

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed M.; Ishak, M.; Rejab, M. R. M.

    2017-10-01

    Tool design is the most influential aspect in the friction stir welding (FSW) technology. Influence of pin tool geometry on material flow pattern are studied in this work during the FSW of dissimilar AA7075 and AA6061 aluminium alloys. Three truncated pin tool profiles (threaded, threaded with single flat, and unthreaded with single flat) were used to prepare the weldments. The workpieces were joined using a custom-made clamping system under 1100 rpm of spindle speed, 300 mm/min of traverse rate and 3° of tilt angle. The metallographic analysis showed that defect-free welds can be produced using the three pin tools with significant changes in the mixing stir zone structure. The results declared that the introducing of the flat on the cone of the probe deviates the pattern of the onion rings without changing the chemical composition of the created layers. This in turn improves the hardness distribution and tensile strength of the welded joint. It was also noted that both heat affected zone (HAZ) and thermal-mechanical affected zone (TMAZ) are similar in composition to their corresponding base materials (BM).

  1. Precise Measurement of Velocity Dependent Friction in Rotational Motion

    ERIC Educational Resources Information Center

    Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh

    2011-01-01

    Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the…

  2. Nuclear fuel pin scanner

    DOEpatents

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  3. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  4. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  5. Pressure Roller For Tape-Lift Tests

    NASA Technical Reports Server (NTRS)

    Abrams, Eve

    1991-01-01

    Rolling device applies nearly constant, uniform pressure to surface. Simple tool exerts nearly constant pressure via compression of sheath by fixed amount. Pins hold wheels on cylinder and cylinder on tangs of handle. Cylinder and handle made of metal or plastic. Sheath press-fit or glued to cylinder. End pins attached to cylinder by adhesive or screw threads. Device intended for use in taking tape-lift samples of particulate contamination on surface.

  6. Quick connect fastener

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A quick connect fastener and method of use is presented wherein the quick connect fastener is suitable for replacing available bolts and screws, the quick connect fastener being capable of installation by simply pushing a threaded portion of the connector into a member receptacle hole, the inventive apparatus being comprised of an externally threaded fastener having a threaded portion slidably mounted upon a stud or bolt shaft, wherein the externally threaded fastener portion is expandable by a preloaded spring member. The fastener, upon contact with the member receptacle hole, has the capacity of presenting cylindrical threads of a reduced diameter for insertion purposes and once inserted into the receiving threads of the receptacle member hole, are expandable for engagement of the receptacle hole threads forming a quick connect of the fastener and the member to be fastened, the quick connect fastener can be further secured by rotation after insertion, even to the point of locking engagement, the quick connect fastener being disengagable only by reverse rotation of the mated thread engagement.

  7. Repeatable reference for positioning sensors and transducers in drill pipe

    DOEpatents

    Hall, David R.; Fox, Joe; Pixton, David S.; Hall, Jr., H. Tracy

    2005-05-03

    A drill pipe having a box end having a tapered thread, and an internal shoulder and an external face for engagement with a drill pipe pin end having a tapered mating thread, and an external shoulder and an external face adapted for data acquisition or transmission. The relative dimensions of the box and pin ends are precisely controlled so that when the tool joint is made up, a repeatable reference plane is established for transmitting power and tuning downhole sensors, transducers, and means for sending and receiving data along the drill string. When the power or data acquisition and transmission means are located in the tool joint, the dimensions of the tool joint are further proportioned to compensate for the loss of cross-sectional area in order maintain the joints ability to sustain nominal makeup torque.

  8. Spline screw multiple rotations mechanism

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.

  9. Self-cleaning threaded rod spinneret for high-efficiency needleless electrospinning

    NASA Astrophysics Data System (ADS)

    Zheng, Gaofeng; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Zhong, Weizheng; Guo, Shumin

    2018-07-01

    High-efficiency production of nanofibers is the key to the application of electrospinning technology. This work focuses on multi-jet electrospinning, in which a threaded rod electrode is utilized as the needless spinneret to achieve high-efficiency production of nanofibers. A slipper block, which fits into and moves through the threaded rod, is designed to transfer polymer solution evenly to the surface of the rod spinneret. The relative motion between the slipper block and the threaded rod electrode promotes the instable fluctuation of the solution surface, thus the rotation of threaded rod electrode decreases the critical voltage for the initial multi-jet ejection and the diameter of nanofibers. The residual solution on the surface of threaded rod is cleaned up by the moving slipper block, showing a great self-cleaning ability, which ensures the stable multi-jet ejection and increases the productivity of nanofibers. Each thread of the threaded rod electrode serves as an independent spinneret, which enhances the electric field strength and constrains the position of the Taylor cone, resulting in high productivity of uniform nanofibers. The diameter of nanofibers decreases with the increase of threaded rod rotation speed, and the productivity increases with the solution flow rate. The rotation of electrode provides an excess force for the ejection of charged jets, which also contributes to the high-efficiency production of nanofibers. The maximum productivity of nanofibers from the threaded rod spinneret is 5-6 g/h, about 250-300 times as high as that from the single-needle spinneret. The self-cleaning threaded rod spinneret is an effective way to realize continuous multi-jet electrospinning, which promotes industrial applications of uniform nanofibrous membrane.

  10. Telescoping columns. [parabolic antenna support

    NASA Technical Reports Server (NTRS)

    Mazur, J. T. (Inventor)

    1980-01-01

    An extendable column is described which consists of several axially elongated rigid structural sections nested within one another. Each section includes a number of rotatably attached screws running along its length. The next inner section includes threaded lugs oriented to threadingly engage the screws. The column is extended or retracted upon rotation of the screws. The screws of each section are selectively rotated by a motor and an engagement mechanism.

  11. Seal assembly with anti-rotation pin for high pressure supercritical fluids

    DOEpatents

    Wright, Steven A.; Fuller, Robert L.

    2014-08-05

    A seal assembly for sealing a machine with a first chamber and a second chamber is provided. A rotating shaft extends through the first and second chambers, and rotates therein. The seal assembly has a seal housing, a seal ring and a seal pin. The seal housing is positionable in the machine housing. The seal housing has a seal pocket extending into a fluid side thereof, and a housing receptacle extending into an inner diameter thereof at the seal pocket. The seal ring is positionable in the seal pocket of the seal housing for forming a seal therewith. The seal ring has a ring receptacle extending into an outer diameter thereof. The ring receptacle is positionable adjacent to the housing receptacle for defining a pin hole therebetween. The seal pin is loosely positionable in the pin hole whereby movement about the seal ring is accommodated while preventing rotation thereof.

  12. Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters

    NASA Astrophysics Data System (ADS)

    Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit

    2018-06-01

    Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

  13. An experimental in vivo analysis of the resorption to ultrasound activated pins (Sonic weld) and standard biodegradable screws (ResorbX) in sheep.

    PubMed

    Pilling, E; Mai, R; Theissig, F; Stadlinger, B; Loukota, R; Eckelt, U

    2007-09-01

    We compared the healing and reaction in the mandibles of 11 sheep of a conventional bioresorbable screw osteosynthesis with the newly developed ultrasound-activated pin osteosynthesis. The thermal stress caused by insertion of the ultrasound-aided pins leads to no cellular reaction around the pin. There is neither clinical nor histological evidence of any initial inflammation that could have been induced by the insertion. Adequate attachment of fibrous tissue to the pin head and the absence of any inflammation are important preconditions for the introduction of this new method of osteosynthesis into clinical practice. Further advantageous characteristics are easy intraoperative handling and a reduction in operating time, because cutting the thread is not required. There must be sufficient interlinkage of the polymer and the trabecular structures to ensure stability.

  14. Screw-locking wrench

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2007-01-01

    A tool comprises a first handle and a second handle, each handle extending from a gripping end portion to a working end portion, the first handle having first screw threads disposed circumferentially about an inner portion of a first through-hole at the working end portion thereof, the second handle having second screw threads disposed circumferentially about an inner portion of a second through-hole at the working end portion thereof, the first and second respective through-holes being disposed concentrically about a common axis of the working end portions. First and second screw locks preferably are disposed concentrically with the first and second respective through-holes, the first screw lock having a plurality of locking/unlocking screw threads for engaging the first screw threads of the first handle, the second screw lock having a plurality of locking/unlocking screw threads for engaging the second screw threads of the second handle. A locking clutch drive, disposed concentrically with the first and second respective through-holes, engages the first screw lock and the second screw lock. The first handle and the second handle are selectively operable at their gripping end portions by a user using a single hand to activate the first and second screw locks to lock the locking clutch drive for either clockwise rotation about the common axis, or counter-clockwise rotation about the common axis, or to release the locking clutch drive so that the handles can be rotated together about the common axis either the clockwise or counter-clockwise direction without rotation of the locking clutch drive.

  15. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  16. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, A.L.

    1985-11-19

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

  17. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, Albert L.

    1985-01-01

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.

  18. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  19. Plastic Clamp Retains Clevis Pin

    NASA Technical Reports Server (NTRS)

    Cortes, R. G.

    1983-01-01

    Plastic clamp requires no special installation or removal tools. Clamp slips easily over end of pin. Once engaged in groove, holds pin securely. Installed and removed easily without special tools - screwdriver or putty knife adequate for prying out of groove. Used to retain bearings, rollers pulleys, other parts that rotate. Applications include slowly and intermittently rotating parts in appliances.

  20. INDEXING MECHANISM

    DOEpatents

    Kock, L.J.

    1959-09-22

    A device is presented for loading and unloading fuel elements containing material fissionable by neutrons of thermal energy. The device comprises a combination of mechanical features Including a base, a lever pivotally attached to the base, an Indexing plate on the base parallel to the plane of lever rotation and having a plurality of apertures, the apertures being disposed In rows, each aperture having a keyway, an Index pin movably disposed to the plane of lever rotation and having a plurality of apertures, the apertures being disposed in rows, each aperture having a keyway, an index pin movably disposed on the lever normal to the plane rotation, a key on the pin, a sleeve on the lever spaced from and parallel to the index pin, a pair of pulleys and a cable disposed between them, an open collar rotatably attached to the sleeve and linked to one of the pulleys, a pin extending from the collar, and a bearing movably mounted in the sleeve and having at least two longitudinal grooves in the outside surface.

  1. Performance of an adjustable, threaded inertance tube

    NASA Astrophysics Data System (ADS)

    Zhou, W. J.; Pfotenhauer, J. M.; Nellis, G. F.; Liu, S. Y.

    2015-12-01

    The performance of the Stirling type pulse tube cryocooler depends strongly on the design of the inertance tube. The phase angle produced by the inertance tube is very sensitive to its diameter and length. Recent developments are reported here regarding an adjustable inertance device that can be adjusted in real time. The inertance passage is formed by the root of a concentric cylindrical threaded device. The depth of the threads installed on the outer screw varies. In this device, the outer screw can be rotated four and half turns. At the zero turn position the length of the passage is 1.74 m and the hydraulic diameter is 7 mm. By rotating the outer screw, the inner threaded rod engages with additional, larger depth threads. Therefore, at its upper limit of rotation, the inertance passage includes both the original 1.74 m length with 7mm hydraulic diameter plus an additional 1.86 m length with a 10 mm hydraulic diameter. A phase shift change of 24° has been experimentally measured by changing the position of outer screw while operating the device at a frequency of 60 Hz. This phase angle shift is less than the theoretically predicted value due to the presence of a relatively large leak through the thread clearance. Therefore, the distributed component model of the inertance tube was modified to account for the leak path causing the data to agree with the model. Further, the application of vacuum grease to the threads causes the performance of the device to improve substantially.

  2. HELICAL MOTIONS OF FINE-STRUCTURE PROMINENCE THREADS OBSERVED BY HINODE AND IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Takenori J.; Liu, Wei; Tsuneta, Saku, E-mail: joten.okamoto@nao.ac.jp

    Fine-structure dynamics in solar prominences holds critical clues to understanding their physical nature of significant space-weather implications. We report evidence of rotational motions of horizontal helical threads in two active-region prominences observed by the Hinode and/or Interface Region Imaging Spectrograph satellites at high resolution. In the first event, we found transverse motions of brightening threads at speeds up to 55 km s{sup -1} seen in the plane of the sky. Such motions appeared as sinusoidal space–time trajectories with a typical period of ∼390 s, which is consistent with plane-of-sky projections of rotational motions. Phase delays at different locations suggest themore » propagation of twists along the threads at phase speeds of 90–270 km s{sup -1}. At least 15 episodes of such motions occurred in two days, none associated with an eruption. For these episodes, the plane-of-sky speed is linearly correlated with the vertical travel distance, suggestive of a constant angular speed. In the second event, we found Doppler velocities of 30–40 km s{sup -1} in opposite directions in the top and bottom portions of the prominence, comparable to the plane-of-sky speed. The moving threads have about twice broader line widths than stationary threads. These observations, when taken together, provide strong evidence for rotations of helical prominence threads, which were likely driven by unwinding twists triggered by magnetic reconnection between twisted prominence magnetic fields and ambient coronal fields.« less

  3. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOEpatents

    Williams, R.R.

    1980-09-03

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.

  4. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOEpatents

    Williams, Richard R.

    1982-01-01

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrifical pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational aixs of the workpiece a distance equal to the radius of the cylinder.

  5. Quick-connect threaded attachment joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.; Messick, W. R.; Vasquez, P.

    1979-01-01

    Joint is self-aligning and tightens with only sixty-five degrees of rotation for quick connects and disconnects. Made of injection-molded plastics or cast or machined aluminum, joint can carry wires, tubes, liquids, or gases. When two parts of joint are brought together, their shapes align them. Small projections on male section and slots on female section further aid alignment; slight rotation of male form engages projections in slots. At this point, threads engage and male section is rotated until joint is fully engaged.

  6. Stemless ball valve

    NASA Technical Reports Server (NTRS)

    Burgess, Kevin (Inventor); Yakos, David (Inventor); Walthall, Bryan (Inventor)

    2012-01-01

    A stemless ball valve comprising: a right flange; left flange; ball with an axis pin and two travel pins; ball seal on either side of the ball; guide sleeve with inner walls comprising two channels; cartridge guide holder; inner magnetic cartridge; and outer magnetic cartridge. The ball is situated inside of the guide sleeve, and a travel pin is located in each of the two channels. The guide sleeve is situated inside of the cartridge guide holder, which is located adjacent to and outside of the inner magnetic cartridge and secured to the inner magnetic cartridge such that when the inner magnetic cartridge rotates, the cartridge guide holder also rotates. The cartridge guide holder is secured to the guide sleeve such that when the cartridge guide holder rotates, the travel pins move within the channels in the inner walls of the guide sleeve, thereby causing the ball to rotate.

  7. Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.

    2015-06-01

    The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.

  8. Effects of various tool pin profiles on mechanical and metallurgical properties of friction stir welded joints of cryorolled AA2219 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kamal Babu, Karupannan; Panneerselvam, Kavan; Sathiya, Paulraj; Noorul Haq, Abdul Haq; Sundarrajan, Srinivasan; Mastanaiah, Potta; Srinivasa Murthy, Chunduri Venkata

    2018-02-01

    Friction stir welding (FSW) process was conducted on cryorolled (CR) AA2219 plate using different tool pin profiles such as cylindrical pin, threaded cylindrical pin, square pin and hexagonal pin profiles. The FSW was carried out with pairs of 6 mm thick CR aluminium plates with different tool pin profiles. The different tool pin profile weld portions' behaviors like mechanical (tensile strength, impact and hardness) and metallurgical characteristics were analyzed. The results of the mechanical analysis revealed that the joint made by the hexagonal pin tool had good strength compared to other pin profiles. This was due to the pulsating action and material flow of the tool resulting in dynamic recrystallization in the weld zone. This was confirmed by the ultra fine grain structure formation in Weld Nugget (WN) of hexagonal pin tool joint with a higher percentage of precipitate dissolution. The fractograph of the hexagonal tool pin weld portion confirmed the finer dimple structure morphology without having any interior defect compared to other tool pin profiles. The lowest weld joint strength was obtained from cylindrical pin profile weld joint due to insufficient material flow during welding. The Transmission Electron Microscope and EDX analysis showed the dissolution of the metastable θ″, θ' (Al2Cu) partial precipitates in the WN and proved the influence of metastable precipitates on enhancement of mechanical behavior of weld. The XRD results also confirmed the Al2Cu precipitation dissolution in the weld zone.

  9. Liberation of a pinned spiral wave by a rotating electric pulse

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Peng, Liang; Ma, Jun; Ying, He-Ping

    2014-08-01

    Spiral waves may be pinned to anatomical heterogeneities in the cardiac tissue, which leads to monomorphic ventricular tachycardia. Wave emission from heterogeneities (WEH) induced by electric pulses in one direction (EP) is a promising method for liberating such waves by using heterogeneities as internal virtual pacing sites. Here, based on the WEH effect, a new mechanism of liberation by means of a rotating electric pulse (REP) is proposed in a generic model of excitable media. Compared with the EP, the REP has the advantage of opening wider time window to liberate pinned spiral. The influences of rotating direction and frequency of the REP, and the radius of the obstacles on this new mechanism are studied. We believe this strategy may improve manipulations with pinned spiral waves in heart experiments.

  10. A discrete geometric approach for simulating the dynamics of thin viscous threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audoly, B., E-mail: audoly@lmm.jussieu.fr; Clauvelin, N.; Brun, P.-T.

    We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematic constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistencymore » of the discrete model with the classical, smooth equations for thin threads is established formally. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous threads in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension.« less

  11. Manual adjustable probe tool for friction stir welding

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter A. (Inventor); Ding, Jeff (Inventor)

    2000-01-01

    A friction stir welding tool is provided generally comprising three parts: a rotatable welding tool body (22) that has an outer threaded surface (32) and a probe (24) extending from a distal end of the body, a shoulder (26), which has a threaded inner surface (40) and a bore (36) at a distal end of the shoulder, and a jam nut (28), which has a threaded inner surface (42). The shoulder is threaded onto the tool body such that the probe extends from the shoulder through the bore by a preferred length. The jam nut is then threaded onto the tool body to secure the shoulder. The tool is operatively connected to a drive motor for rotating the tool body. The shoulder may include a knife edge projecting from the distal end (38) thereof adjacent the bore. The knife edge inhibits the weld material from migrating along the probe to intrude inside the shoulder, where it may prevent separation of the tool body and the shoulder when readjustment of the tool is necessary.

  12. An automated tool-joint inspection device for the drillstring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, M.C.; Dale, B.A.; Kusenberger, F.N.

    1984-06-01

    This paper discusses the development of an automated tool joint inspection device-i.e., the fatigue crack detector (FCD), which can detect defects in the threaded region of drillpipe and drill collars. Inspection tests conducted at a research test facility and at drilling rig sites indicate that this device can detect both simulated defects (saw slots and drilled holes) and service-induced defects, such as fatigue cracks, pin stretch (plastic deformation), mashed threads, and corrosion pitting. The system operates on an electromagnetic-flux leakage principle and has several advantages over the conventional method of magnetic particle inspection.

  13. Influence of tool geometry and processing parameters on welding defects and mechanical properties for friction stir welding of 6061 Aluminium alloy

    NASA Astrophysics Data System (ADS)

    Daneji, A.; Ali, M.; Pervaiz, S.

    2018-04-01

    Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.

  14. A Biomechanical Comparison Of Pin Configurations Used For Percutaneous Pinning Of Distal Tibia Fractures In Children.

    PubMed

    Brantley, Justin; Majumdar, Aditi; Jobe, J Taylor; Kallur, Antony; Salas, Christina

    2016-01-01

    Percutaneous pin fixation is often used in conjunction with closed-reduction and cast immobilization to treat pediatric distal tibia fractures. The goal of this procedure is to maintain reduction and provide improved stabilization, in effort to facilitate a more anatomic union. We conducted a biomechanical study of the torsional and bending stability of three commonly used pin configurations in distal tibia fracture fixation. A transverse fracture was simulated at the metaphyseal/diaphyseal junction in 15 synthetic tibias. Each fracture was reduced and fixed with two Kirschner wires, arranged in one of three pin configurations: parallel, retrograde, medial to lateral pins entering at the medial malleolus distal to the fracture (group A); parallel, antegrade, medial to lateral pins entering at the medial diaphysis proximal to the fracture (group B); or a cross-pin configuration with one retrograde, medial to lateral pin entering the medial malleolus distal to the fracture and the second an antegrade, medial to lateral pin entering at the medial diaphysis proximal to the fracture (group C). Stability of each construct was assessed by resistance to torsion and bending. Resistance to external rotation stress was significantly higher in group A than group B (P = 0.044). Resistance to internal rotation stress was significantly higher in group C than group B (P = 0.003). There was no significant difference in torsional stiffness when comparing group A with group C. Under a medial-directed load, group B and C specimens were significantly stiffer than those in group A (28 N/mm and 24 N/mm vs. 14 N/mm for A; P = 0.001 and P = 0.009, respectively). None of the three pin configurations produced superior results with respect to all variables studied. Group A configuration provided the highest resistance to external rotation forces, which is the most clinically relevant variable under short-cast immobilization. Parallel, retrograde, medial to lateral pins entering at the medial malleolus provide the greatest resistance to external rotation of the foot while minimizing the potential for iatrogenic injury to soft tissue structures.

  15. Use of an extracapsular stabilization technique to repair cruciate ligament ruptures in two avian species.

    PubMed

    Chinnadurai, Sathya K; Spodnick, Gary; Degernes, Laurel; DeVoe, Ryan S; Marcellin-Little, Denis J

    2009-12-01

    An extracapsular stabilization technique was used to repair cruciate ligament ruptures in a trumpeter hornbill (Bycanistes bucinator) and an African grey parrot (Psittacus erithacus). The hornbill demonstrated cranial drawer motion and severe rotational instability of the stifle from ruptures of the cranial and caudal cruciate ligaments and stifle joint capsule. The luxation was reduced, and the fibula was cranially transposed, in relation to the tibiotarsus, and anchored with 2 positive profile threaded acrylic pins. A lateral extracapsular stabilization was then performed. The African grey parrot had a traumatic stifle luxation, and an open reduction and a lateral extracapsular stabilization were performed. Both birds regained function of the affected leg by 1 month after surgery. Extracapsular stabilization allows motion of the stifle joint to be maintained during the postoperative recovery period, an advantage over rigid stabilization. Maintaining motion in the stifle joint facilitates physical therapy and can aid in full recovery after avian stifle injuries.

  16. Macrostructure of Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Aloor, S.; Nowak, B.; Vargas, R.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This paper will discuss two of the well know large scale features of friction stir welds: the "onion rings" seen in transverse sections, and the striations on the surface of the work piece. It will be shown that the surface features (sometimes called "tool marks") are the result of irregularities on the rotating shoulder of the pin tool and disappear when the shoulder is polished. The "onion ring" structure seen in transverse cross sections is formed by parts of the "carousel", the zone of material adjacent to and rotating with the pin tool, that are shed off in each rotation. The relation between the carousel and the "ring vortex", a rotational flow extending both in and out of the carousel and resembling a smoke-ring with the hole centered on the pin tool, will be discussed.

  17. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-07-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  18. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-04-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  19. Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2017-08-01

    Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.

  20. PEO Ammunition Systems Portfolio Book 2012-2013

    DTIC Science & Technology

    2011-02-02

    assembly. Aluminum ogive contains firing pin, a rubber anti-creep spring and M550 fuze escapement assembly and is threaded to projectile body...51 The Mortar Weapons and Fire Control Family M95/M96 Mortar Fire Control System (MFCS) – Mounted...52 M150/M151 Mortar Fire Control System Dismounted (MFCS-D

  1. An automated tool joint inspection device for the drill string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, M.C.; Dale, B.A.; Kusenberger, F.N.

    1983-02-01

    This paper discusses the development of an automated tool joint inspection device (i.e., the Fatigue Crack Detector), which is capable of detecting defects in the threaded region of drill pipe and drill collars. On the basis of inspection tests conducted at a research test facility and at drilling rig sites, this device is capable of detecting both simulated defects (saw slots and drilled holes) and service-induced defects, such as fatigue cracks, pin stretch (plastic deformation), mashed threads, and corrosion pitting. The system employs an electromagnetic flux-leakage principle and has several advantages over the conventional method of magnetic particle inspection.

  2. The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Bernstein, E. L.; Nunes, A. C., Jr.

    2000-01-01

    The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.

  3. Results of Performance Tests Performed on the John Watts WW Casing Connection on 7" Pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Watts

    2000-02-01

    Stress Engineering Services (SES) was contracted by Mr. John Watts to test his ''WW'' threaded connection developed for oilfield oil and gas service. This work was a continuation of testing performed by SES as reported in August of 1999. The connection design tested was identified as ''WW''. The samples were all integral (no coupled connections) and contained a wedge thread form with 90{sup o} flank angles relative to the pipe centerline. The wedge thread form is a variable width thread that primarily engages on the flanks. This thread form provides very high torque capacity and good stabbing ability and makeup.more » The test procedure selected for one of the samples was the newly written ISO 13679 procedure for full scale testing of casing and tubing connections, which is currently going through the ISO acceptance process. The ISO procedure requires a variety of tests that includes makeup/breakout testing, internal gas sealability/external water sealability testing with axial tension, axial compression, bending, internal gas thermal cycle tests and limit load (failure) tests. This test procedure was performed with one sample. Four samples were tested to failure. Table 1 contains a summary of the tasks performed by SES. The project started with the delivery of test samples by Mr. Watts. Pipe from the previous round of tests was used for the new samples. Figure 1 shows the structural and sealing results relative to the pipe body. Sample 1 was used to determine the torque capacity of the connection. Torque was applied to the capacity of SES's equipment which was 28,424 ft-lbs. From this, an initial recommended torque range of 7,200 to 8,800 ft-lbs. was selected. The sample was disassembled and while there was no galling observed in the threads, the end of the pin had collapsed inward. Sample 2 received three makeups. Breakouts 1 and 2 also had collapsing of the pin end, with no thread galling. From these make/breaks, it was decided to reduce the amount of lubricant applied to the connection by applying it to the box or pin only and reducing the amount applied. Samples 3 and 4 received one makeup only. Sample 5 initially received two make/breaks to test for galling resistance before final makeup, No galling was observed. Later, three additional make/breaks were performed with no pin end collapse and galling over 1/2 a thread occurring on one of the breakouts. During the make/break tests, the stabbing and hand tight makeup of the WW connection was found to be very easy and trouble free. There was no tendency to crossthread, even when stabbed at an angle, and it screwed together very smoothly up to hand tight. During power tight makeup, there was no heat generated in the box (as checked by hand contact) and no jerkiness associated with any of the makeups or breakouts. Sample 2 was tested in pure compression. The maximum load obtained was 1,051 kips and the connection was beginning to significantly deform as the sample buckled. Actual pipe yield was 1,226 kips. Sample 3 was capped-end pressure tested to failure. The capped-end yield pressure of the pipe was 16,572 psi and the sample began to leak at 12,000 psi. Sample 4 was tested in pure tension. The maximum load obtained was 978 kips and the connection failed by fracture at the pin critical section. Actual pipe yield was 1,226 kips. Sample 5 was tested in combined tension/compression and internal gas pressure. The sample was assembled, setup and tested four times. The first time was with a torque of 7,298 ft-lbs and the connection leaked halfway to ISO Load Point 2 with loads of 693 kips and 4,312 psi. The second time the torque was increased to 14,488 ft-lbs and a leak occurred at 849 kips and 9,400 psi, which was ISO Load Point 2. The third time the makeup torque was again increased, to 20,456 ft-lbs, and a leak occurred at 716 kips and 11,342 psi, ISO Load Point 4. The fourth test was with the same torque as before, 20,617 ft-lbs, and the connection successfully tested up to load step 56, ISO Load Point 6 (second round) before leaking at 354 kips and 11,876 psi. At this point, time and funds prevented additional testing to be performed.« less

  4. Tubing crimping pliers

    DOEpatents

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  5. 7 CFR 1728.97 - Incorporation by reference of electric standards and specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Brackets (5-53) Bulletin 50-56 (T-3), RUS Specifications for Steel Plate Anchors for Transmission Lines (12-53) Bulletin 50-60 (T-9), RUS Specification—Single Pole Steel Structures, Complete with Arms (12-71... Pole Top Pins with 1″ Diameter Lead Threads (2-79) Bulletin 50-32 (D-4), RUS Specifications for Steel...

  6. Study of Damped Set-Back Pins for S and A Mechanisms.

    DTIC Science & Technology

    1976-11-01

    arm device for artillery munitions. This damped set-back pin assembly is one of two safety features on a S and A device used in the M739 PD/XM587 ET...The damped set-back pin study program was for the design, testing, fabrication, and delivery and damped set-back pin assemblies for use in a safe and...fuzes for a rotating projectile. A pin, porous disc, return spring, floating O-ring, and sleeve comprise the selected damped set-back pin assembly

  7. Apparatus for connecting aligned abutted tubes

    DOEpatents

    Williams, R.E.

    1984-11-29

    An apparatus for connecting abutted tubes and for maintaining their rotary alignment during connection. The apparatus comprises first and second tubes, a rotation prevention element, a collar and a retainer. Each tube has inside and outside walls, and first and second ends, each end having an inside and outside edge. The first tube has portions defining a first plurality of cavities located at the outside edge of its first end. An external threaded portion is on the outside wall of the first tube and next to the first plurality of cavities. The second tube has portions defining a second plurality of cavities located at the outside edge of its first end. The first plurality has a different number than the second plurality. The first ends of the first and second tubes have substantially the same outside diameter and are abutted during connection so that an orifice is formed whenever first and second tube cavities substantially overlap. A rotation prevension element is placed in the orifice to prevent rotation of the first and second tubes. A collar with an internal threaded portion is slidably disposed about the second tube. The internal threaded portion engages the external threaded portion of the first tube to connect the tubes. A lip connected to the collar prevents separation of the collar from the second tube.

  8. Orienting members in a preselected rotary alignment

    DOEpatents

    Williams, Ray E.

    1987-01-01

    An apparatus for orienting members and for maintaining their rotary alignment during orienting members. The apparatus comprises first and second cylindrical elements, a rotation prevention element, a collar and a retainer. Each element has an outside wall, and first and second ends, each end having an outside edge. The first element has portions defining a first plurality of notches located at the outside edge of its first end. An external threaded portion is on the outside wall of the first element and next to the first plurality of notches. The second element has portions defining a second plurality of notches located at the outside edge of its first end. The first plurality has a different number than the second plurality. The first ends of the first and second tubes have substantially the same outside diameter and are abutted during connection so that a cavity is formed whenever first and second tube notches substantially overlap. A rotation prevention element is placed in the cavity to prevent rotation of the first and second elements. A collar with an internal threaded portion is slidably disposed about the second element. The internal threaded portion engages the external threaded portion of the first element to connect the elements. A lip connected to the collar prevents separation of the collar from the second element.

  9. Increasing FSW join strength by optimizing feed rate, rotating speed and pin angle

    NASA Astrophysics Data System (ADS)

    Darmadi, Djarot B.; Purnowidodo, Anindito; Siswanto, Eko

    2017-10-01

    Principally the join in Friction Stir Welding (FSW) is formed due to mechanical bonding. At least there are two factors determines the quality of this join, first is the temperature in the area around the interface and secondly the intense of mixing forces in nugget zone to create the mechanical bonding. The adequate temperature creates good flowability of the nugget zone and an intensive mixing force produces homogeneous strong bonding. Based on those two factors in this research the effects of feed rate, rotating speed and pin angle of the FSW process to the tensile strength of resulted join are studied. The true experimental method was used. Feed rate was varied at 24, 42, 55 and 74 mm/minutes and from the experimental results, it can be concluded that the higher feed rate decreases the tensile strength of weld join and it is believed due to the lower heat embedded in the material. Inversely, the higher rotating speed increases the join’s tensile strength as a result of higher heat embedded in base metal and higher mixing force in the nugget zone. The rotating speed were 1842, 2257 and 2904 RPMs. The pin angle determines the direction of mixing force. With variation of pin angle: 0°, 4°, 8° and 12° the higher pin angle generally increases the tensile strength because of more intensive mixing force. For 12° pin angle the lower tensile strength is found since the force tends to push out the nugget area from the joint gap.

  10. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    NASA Astrophysics Data System (ADS)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-10-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  11. Scroll wave filaments self-wrap around unexcitable heterogeneities.

    PubMed

    Jiménez, Zulma A; Steinbock, Oliver

    2012-09-01

    Scroll waves are three-dimensional excitation vortices rotating around one-dimensional phase singularities called filaments. In experiments with a chemical reaction-diffusion system and in numerical simulations, we study the pinning of closed filament loops to inert cylindrical heterogeneities. We show that the filament wraps itself around the heterogeneity and thus avoids contraction and annihilation. This entwining steadily increases the total length of the pinned filament and reshapes the entire rotation backbone of the vortex. Self-pinning is fastest for thin cylinders with radii not much larger than the core of the unpinned rotor. The process ends when the filament is attached to the entire length of the cylinder. The possible importance of self-pinning in cardiac systems is discussed.

  12. Gimbaled-shoulder friction stir welding tool

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  13. Miniature Release Mechanism or Diminutive Assembly for Nanosatellite Deployables (DANY)

    NASA Technical Reports Server (NTRS)

    Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Hudeck, John D. (Inventor)

    2017-01-01

    Miniature release mechanisms constrain objects, such as deployables during the launch of space vehicles, such as small satellites and nanosatellites, and enable the release of the objects once a desired destination is reached by the space vehicle. Constraint and release of the objects are achieved by providing a secure threaded interface that may be released by the release mechanisms. The release mechanisms include a housing structure; a release block can include a threaded interface; one or more retracting pins; one or more release springs; a breakable link, such as a plastic link; a cable harness clamp; and a circuit board. The release mechanism can be 0.1875 inches (approximately 4.8 mm) thick.

  14. Pivoting-Head Wrench

    NASA Technical Reports Server (NTRS)

    Bradley, Glen L.

    1993-01-01

    Wrench ends pivot so it can be used to loosen or tighten nuts or bolts in confined spaces. One end equipped with open-end socket; other end, with double-hexagon socket. Heads pivot on pins. Pins fit tightly so heads do not flop; friction on pins sufficient to hold heads in positions until rotated intentionally.

  15. Computational study on the influence of number of threads on the performance of single screw pump at high angular velocities

    NASA Astrophysics Data System (ADS)

    Philip, Jaison; Suryan, Abhilash; Sanand, T. V.; Unnikrishnan Nair, P.; Sivakumar, S.

    2017-02-01

    Fluid flow in a screw pump which rotates at very high angular velocity is numerically analyzed. In the present study, fluid flow in screw pumps under high Reynolds number, of the order of 105, is considered. Screw pump has two major elements, a plain shroud which is a stationary element and a rotating hub with helical grooves contained within the shroud. In this paper, three variants of hubs with different number of thread starts numbering six, eight and twelve in combination with a plain shroud is studied. Each of the three possible combinations are analyzed on the basis of pressure rise developed, efficiency and shaft power. It was seen that pressure rise, efficiency and shaft power increases as the number of threads increases in the range of mass flow rates studied.

  16. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  17. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haiyan

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electronmore » backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.« less

  18. Influence of abutment design on the success of immediately loaded dental implants: experimental and numerical studies.

    PubMed

    Hasan, I; Röger, B; Heinemann, F; Keilig, L; Bourauel, C

    2012-09-01

    The aim of the present study was to investigate experimentally and numerically the influence of a fine threaded- against a roughened-cervical region of immediately loaded dental implants in combination with straight and 20°-angled abutments on the implant primary stability. A total of 30 implants were inserted in bovine rib-segments, 14 cervically roughened implants and 16 implants with fine cervical threads. Each implant system received two abutments, straight and 20°-angled. Implant displacements and rotations were measured using a biomechanical measurement system. Subsequently, eight samples were selected for geometrical reconstruction and numerical investigation of stress and strain distributions in the bone by means of the finite element method. Experimentally, both implant systems showed similar behaviour with the straight abutments concerning displacements and rotations. However, fine threaded implants showed much less displacement and rotation against roughened implants when angled abutments were considered. Numerically, stresses were within 35-45 MPa in the cortical bone for both implant systems. The strains showed highest values within the spongious bone with the roughened implants connected to angled abutments. The results indicate that implants with fine cervical threads could be recommended in particular with angled abutments. The outcomes of this study are currently confirmed by long-term clinical investigations. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Improved Quick-Release Pin Mechanism

    NASA Technical Reports Server (NTRS)

    Wright, Jay M.

    2007-01-01

    An improved quick-release pin mechanism supplants a prior such mechanism in which the pin bears a shear load to hold two objects together. The prior mechanism, of a ball-locking design, can fail when vibrations cause balls to fall out. The load-bearing pin is an outer tube with a handle at one end (hereafter denoted the near end). Within the outer tube is a spring-loaded inner tube that includes a handle at its near end and a pivoting tab at its far end. The pin is inserted through holes in the objects to be retained and the inner tube is pushed against an offset pivot inside the outer tube to make the tab rotate outward so that it protrudes past the outer diameter of the outer tube, and the spring load maintains this configuration so that the pin cannot be withdrawn through the holes. Pushing the handles together against the spring load moves the locking tab out far enough that the tab becomes free to rotate inward. Then releasing the inner-tube handle causes the tab to be pulled into a resting position inside the outer tube. The pin can then be pulled out through the holes.

  20. THREADED ADAPTOR FOR LUGGED PIPE ENDS

    DOEpatents

    Robb, J.E.

    1962-06-01

    An adaptor is designed for enabling a threaded part to be connected to a member at a region having lugs normally receiving bayonet slots of another part for attachment of the latter. It has been found desirable to replace a closure cap connected in a bayonet joint to the end of a coolant tube containing nuclear- reactor fuel elements, with a threaded valve. An adaptor is used which has J- slots receiving lugs on the end of the reactor tube, a thread for connection with the valve, and gear-tooth section enabling a gear-type of tool to rotate the adaptor to seal the valve to the end of the reactor tube. (AEC)

  1. Local heterogeneities in cardiac systems suppress turbulence by generating multi-armed rotors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Steinbock, Oliver

    2016-05-01

    Ventricular fibrillation is an extremely dangerous cardiac arrhythmia that is linked to rotating waves of electric activity and chaotically moving vortex lines. These filaments can pin to insulating, cylindrical heterogeneities which swiftly become the new rotation backbone of the local wave field. For thin cylinders, the stabilized rotation is sufficiently fast to repel the free segments of the turbulent filament tangle and annihilate them at the system boundaries. The resulting global wave pattern is periodic and highly ordered. Our cardiac simulations show that also thicker cylinders can establish analogous forms of tachycardia. This process occurs through the spontaneous formation of pinned multi-armed vortices. The observed number of wave arms N depends on the cylinder radius and is associated to stability windows that for N = 2, 3 partially overlap. For N = 1, 2, we find a small gap in which the turbulence is removed but the pinned rotor shows complex temporal dynamics. The relevance of our findings to human cardiology are discussed in the context of vortex pinning to more complex-shaped anatomical features and remodeled myocardium.

  2. Investigation of the material flow and texture evolution in friction-stir welded aluminum alloy

    NASA Astrophysics Data System (ADS)

    Kang, Suk Hoon; Han, Heung Nam; Oh, Kyu Hwan; Cho, Jae-Hyung; Lee, Chang Gil; Kim, Sung-Joon

    2009-12-01

    The material flow and crystallographic orientation in aluminum alloy sheets joined by friction stir welding (FSW) were investigated by electron back scattered diffraction (EBSD). The microstructure and microtexture of the material near the stir zone was found to be influenced by the rotational behavior of the tool pin. It was found that, during FSW, the forward movement of the tool pin resulted in loose contact between the tool pin and the receding material at the advancing side. This material behavior inside the joined aluminum plates was also observed by an X-ray micrograph by inlaying a gold marker into the plates. As the advancing speed of the tool increases at a given rotation speed, the loose contact region widens. As the microtexture of the material near the stir zone is very close to the simple shear texture on the basis of the frame of the tool pin in the normal and tangent directions, the amount of incompletely rotated material due to the loose contact could be estimated from the tilt angle of the shear texture in the pole figure around the key hole.

  3. Mechanism for Self-Reacted Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  4. The Lifferth Dome for Small Telescopes

    NASA Astrophysics Data System (ADS)

    Wilson, B. L.; Olsen, C. S.; Iverson, E. P.; Paget, A.; Lifferth, W.; Brown, P. J.; Moody, J. W.

    2004-12-01

    The Lifferth Dome is a pull-off roof designed for small telescopes and other observational equipment. It was specifically designed for the needs of the ROVOR project. The roof itself is completely removed from the observatory housing walls and cranked off to the side below the optical horizon. This is done using two swing arms on either side of the observatory that work in unison to lift the roof off the structure and rotate down and away into a cleared location. The torque is provided by a threaded rod connected to an electric motor at the back of the building. As the motor rotates, the threads turn through a threaded sleeve connected directly to the support arms. Advantages to this design are no lost horizon, no roller surfaces to keep clean, low power and simple limit switches. Operation is by computer control using by National Instruments LabVIEW via the internet. We present its design and construction.

  5. Remote Coupling of Electrical Connectors

    NASA Technical Reports Server (NTRS)

    Barbour, R. T.

    1985-01-01

    Device alines plug and receptacle axially and radially. Standard multiple-pin plug and socket mounted in mechanism. As threaded shaft moves out from its mounting bracket, two sets of petals engage each other and correct misalinement. Misalinement absorbed by spring-mounted swivels. Designed for umbilical cables between Space Shuttle and payload, mechanism adaptable to other remote or hazardous situations in which human not available to connect mating parts by hand.

  6. CONTROL ROD ROTATING MECHANISM

    DOEpatents

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  7. A new method to precisely control the depth of percutaneous screws into the pedicle by counting the rotation number of the screw with low radiation exposure: technical note.

    PubMed

    Li, Xu; Zhang, Feng; Zhang, Wenzhi; Shang, Xifu; Han, Jintao; Liu, Pengfei

    2017-03-01

    Technique note. To report a new method for precisely controlling the depth of percutaneous pedicle screws (PPS)-without radiation exposure to surgeons and less fluoroscopy exposure to patients than with conventional methods. PPS is widely used in minimal invasive spine surgery; the advantages include reduced muscle damage, pain, and hospital stays. However, placement of PPS demands repeated checking with fluoroscopy. Thus, radiation exposure is considerable for both surgeons and patients. The PPS depth was determined by counting rotations of the screws. The distance between screw threads can be measured for particular screws; thus, full rotations of the PPS results in the screw advancing in the pedicle the distance between screw threads. To fully insert screws into the pedicle, the number of full rotations is equal to the number of threads in the PPS. We applied this technique in 58 patients with thoracolumbar fracture. The position and depth of the screws was checked during the operation with the C-arm and after operation by anteroposterior X-ray film or computed tomography. No additional procedures were required to correct the screws; we observed no neurological deficits or malpositioning of the screws. In the screw placement procedure, the radiation exposure for surgeons is zero, and the patient is well protected from extensive radiation exposure. This method of counting rotation of screws is a safe way to precisely determine the depth of PPS in the placement procedure. IV.

  8. Corrosion Properties of Cryorolled AA2219 Friction Stir Welded Joints Using Different Tool Pin Profiles

    NASA Astrophysics Data System (ADS)

    Kamal Babu, K.; Panneerselvam, K.; Sathiya, P.; Noorul Haq, A.; Sundarrajan, S.; Mastanaiah, P.; Srinivasa Murthy, C. V.

    The purpose of this paper is to present the corrosion behavior of the Cryorolled (CR) material and its Friction Stir Welded joints. Due to the thermal cycles of Friction Stir Welding (FSW) process, the corrosion behavior of the material gets affected. Here, the cryorolling process was carried out on AA2219 alloy and CR material was joined by FSW process using four different pin tool profiles such as cylindrical, threaded cylindrical, square and hexagonal pin. The FSW joints were analyzed by corrosion resistance with the help of potentiodynamic polarization test with 3.5% NaCl solution. From the analysis, it is found that CR AA2219 material exhibits good corrosion resistance compared to the base AA2219 material, and also a hexagonal pin profile FSW joint exhibits high corrosion resistance. Among the weld joints created by four different tools, the lowest corrosion resistance was found in the cylindrical pin tool FSW welds. Further, the corroded samples were investigated through metallurgical investigations like OM, Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDX) and X-Ray Diffraction (XRD). It was found that the amount of dissolution of Al2Cu precipitate was present in the weld nugget. The amount of dissolution of Al2Cu precipitate is higher in the weld nugget produced by hexagonal pin tool. This is due to the enhancement of the corrosion resistance.

  9. Benefit from NASA

    NASA Image and Video Library

    1998-12-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, "stir" together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a "keyhole," something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  10. IMp: The customizable LEGO(®) Pinned Insect Manipulator.

    PubMed

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  11. Mechanics of advancing pin-loaded contacts with friction

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.

    2010-11-01

    This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.

  12. Retractable Pin Tools for the Friction Stir Welding Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  13. The Evolution of Friction Stir Welding Theory at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C.

    2012-01-01

    From 1995 to the present the friction stir welding (FSW) process has been under study at Marshall Space Flight Center (MSFC). This is an account of the progressive emergence of a set of conceptual tools beginning with the discovery of the shear surface, wiping metal transfer, and the invention of a kinematic model and making possible a treatment of both metallurgical structure formation and process dynamics in friction stir welding from a unified point of view. It is generally observed that the bulk of the deformation of weld metal around the FSW pin takes place in a very narrow, almost discontinuous zone with high deformation rates characteristic of metal cutting. By 1999 it was realized that this zone could be treated as a shear surface like that in simple metal cutting models. At the shear surface the seam is drawn out and compressed and pressure and flow conditions determine whether or not a sound weld is produced. The discovery of the shear surface was followed by the synthesis of a simple 3- flow kinematic model of the FSW process. Relative to the tool the flow components are: (1) an approaching translational flow at weld speed V, (2) a rotating cylindrical plug flow with the angular velocity of the tool , and (3) a relatively slow ring vortex flow (like a smoke ring) encircling the tool and driven by shoulder scrolls and pin threads. The rotating plug flow picks up an element of weld metal, rotates it around with the tool, and deposits it behind the tool ( wiping metal transfer ); it forms plan section loops in tracers cut through by the tool. Radially inward flow from the ring vortex component retains metal longer in the rotating plug and outward flow expels metal earlier; this interaction forms the looping weld seam trace and the tongue and groove bimetallic weld contour. The radial components of the translational and ring vortex flows introduce parent metal intrusions into the small grained nugget material close to the tool shoulder; if this feature is pronounced, nugget collapse may result. Certain weld features, in particular internal banding seen in transverse section as onion rings and associated surface ridges called tool marks , have long implied an oscillation flow component, but have only recently been attributed in the literature to tool eccentricity. Rotating plug shape, typically a hollow cylinder flared at the end where it sticks to the shoulder, varies as pressure distribution on the tool determines where sticking occurs. Simplified power input estimates balanced against heat loss estimates give reasonable temperature estimates, explain why the power requirement changes hardly at all over a wide range of RPM s, and yield isotherms that seem to fall along boundaries of parameter windows of operation.

  14. Linear Back-Drive Differentials

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.

  15. IMp: The customizable LEGO® Pinned Insect Manipulator

    PubMed Central

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    Abstract We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble. PMID:25685035

  16. Quick application/release nut with engagement indicator

    NASA Technical Reports Server (NTRS)

    Wright, Jay M. (Inventor)

    1992-01-01

    A composite nut is shown which permits a fastener to be inserted or removed from either side with an indicator of fastener engagement. The nut has a plurality of segments, preferably at least three segments, which are internally threaded, spring loaded apart by an internal spring, and has detents on opposite sides which force the nut segments into operative engagements with a threaded member when pushed in and release the segments for quick insertion or removal of the nut when moved out. When the nut is installed, end pressure on one of the detents presses the nut segments into operative engagement with a threaded member where continued rotation locks the structure together with the detents depressed to indicate positive locking engagement of the nut. On removal, counterclockwise rotation of the nut relieves the endwise pressure on the detents, permitting internal springs to force the detents outward and allowing the nut segments to move outward and separate to permit quick removal of the fastener.

  17. Method and apparatus for subsurface exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2002-01-01

    A subsurface explorer (SSX) for exploring beneath the terrestrial surface of planetary bodies such as the Earth, Mars, or comets. This exploration activity utilizes appropriate sensors and instrument to evaluate the composition, structure, mineralogy and possibly biology of the subsurface medium, as well as perhaps the ability to return samples of that medium back to the surface. The vehicle comprises an elongated skin or body having a front end and a rear end, with a nose piece at the front end for imparting force to composition material of the planetary body. Force is provided by a hammer mechanism to the back side of a nose piece from within the body of the vehicle. In the preferred embodiment, a motor spins an intermediate shaft having two non-uniform threads along with a hammer which engages these threads with two conical rollers. A brake assembly halts the rotation of the intermediate shaft, causing the conical roller to spin down the non-uniform thread to rapidly and efficiently convert the rotational kinetic energy of the hammer into translational energy.

  18. Quick application/release nut with engagement indicator (commercial application of an innovative nut design)

    NASA Technical Reports Server (NTRS)

    Wright, Jay M.

    1991-01-01

    This is an assembly which permits a fastener to be inserted or removed from either side with an indicator of fastener engagement. The nut has a plurality of segments, preferably at least three segments, which are internally threaded, spring loaded apart by an internal spring, and has detents on opposite sides which force the nut segments into operative engagement with a threaded member when pushed in and release the segments for quick insertion or removal of the fastener when moved out. When the nut is installed, end pressure on the detents presses the nut segments into operative engagement with a threaded member where continued rotation locks the structure together with the detents depressed to indicate positive locking engagement of the nut. On removal, counterclockwise rotation relieves the endwise pressure on the detents, permitting internal springs to force the detents outward, allowing the nut segments to move outward and separate to permit quick removal of the fastener.

  19. Automated fuel pin loading system

    DOEpatents

    Christiansen, David W.; Brown, William F.; Steffen, Jim M.

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  20. Automated fuel pin loading system

    DOEpatents

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  1. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  2. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  3. Cantilever clamp fitting

    NASA Technical Reports Server (NTRS)

    Melton, Patrick B. (Inventor)

    1989-01-01

    A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.

  4. Apparatus and methods for installing, removing and adjusting an inner turbine shell section relative to an outer turbine shell section

    DOEpatents

    Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim

    2001-01-01

    A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.

  5. Vortex Flux Pinning in Type-Ii Superconductors

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad-Khair A. M.

    1995-01-01

    Rotational magnetization vector measurements on polycrystalline samples of rm YBa_2Cu _3O_7 (YBCO) and (Ba, K)BiO _3 at various fixed fields (H) and temperatures (T) reveal that the vortex flux density (B) in a rotational state consists of a component B_{rm R}, which rotates rigidly with sample rotation, and a B_{rm F} component, which stays at a fixed frictional angle (theta _{rm F}) relative to H. Also, B_{rm R} decreases and ultimately vanishes with increasing H, while B _{rm F} grows monotonically, implying that the vortex pinning strength have a broad distribution. This has been confirmed by the measurements on YBCO of the remanent flux density B^ {rm rm} which can be decomposed analogously into B_{R} ^{} and B_ {F}^{} at angle theta_{F}^{} relative to H. The quantity Hsin theta_{rm F},, which at equilibrium equals tau_{rm p}/mu (the average pinning torque per vortex of moment mu) decreases with increasing high H. This result and the distribution in the strength of the pinning are shown to be consistent with the collective pinning process of vortex bundling. At fixed H, tau_{rm p} decreases rapidly with increasing T, varying approximately as T^{-0.8} for both samples. For polycrystalline YBCO at 4.2 K, B_ {rm R} and B_{ rm F} are found to relax differently with time. The negative creep sign of B_ {rm R} indicates that the number of rotational vortices decreases with time, whereas B _{rm F} shows a positive creep with a negative change in theta_ {rm F}, which indicates that more frictional vortices enter the sample with a tendency of alignment in the direction of H. For grain-oriented YBCO at 4.2 K, the vortex creep measurements of B along the c-axis at different fields showed that: whenever the hysteretic changes of H are reversed in sign, the vortex flux creep (dB/dlogt) decreases very rapidly to zero, where it lingers before changing sign. At the same turning values of H, (dB/dH) also goes to zero. These properties are attributable to the reversals of the vortex motion which occur at the turning values of H and cause a reversal of frictional pinning forces.

  6. Illustrating Thermodynamic Concepts Using a Hero's Engine

    NASA Astrophysics Data System (ADS)

    Muiño, Pedro L.; Hodgson, James R.

    2000-05-01

    A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. The engine is a boiler made of Pyrex with two off-center nozzles. Upon boiling, the vapor exits the nozzles, creating two opposite, off-center forces that result in a circular motion by the engine around the vertical axis. The engine is suspended from a horizontal bar by means of two parallel threads. The rotation of the engine results in the twisting of the threads, with two important effects: the engine is raised vertically, and potential energy is stored in the coiling of the threads. When the engine is raised, it is removed from the heating source. This stops the boiling. The stored potential energy is then released into kinetic energy; that is, the threads uncoil, and the engine rotates in the opposite direction. This lowers the engine into the flame, so the water resumes boiling and the engine can be raised again. This cycle continues until all the liquid water is vaporized. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion (Joule-Thompson experiment), conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.

  7. Quantification of the Effect of Cross-shear on the Wear of Conventional and Highly Cross-linked UHMWPE

    PubMed Central

    Kang, Lu; Galvin, Alison L.; Brown, Thomas D.; Jin, Zhongmin; Fisher, John

    2008-01-01

    A computational model has been developed to quantify the degree of cross-shear of a polyethylene pin articulating against a metallic plate, based on the direct simulation of a multidirectional pin-on-plate wear machine. The principal molecular orientation (PMO) was determined for each polymer site. The frictional work in the direction perpendicular to the PMO was assumed to produce the greatest orientation softening (Wang et al., 1997). The cross-shear ratio (CS) was defined as the frictional work perpendicular to the PMO direction, divided by the total frictional work. Cross-shear on the pin contact surface was location-specific, and of continuously changing magnitude because the direction of frictional force continuously changed due to pin rotation. The polymer pin motion was varied from a purely linear track (CS=0) up to a maximum rotation of ±55° (CS=0.254). The relationship between wear factors (K) measured experimentally and theoretically predicted CS was defined using logarithmic functions for both conventional and highly cross-linked UHMWPE. Cross-shear increased the apparent wear factor for both polyethylenes by more than 5-fold compared to unidirectional wear. PMID:17936763

  8. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies.

    PubMed

    Aikawa, Takeshi; Kanazono, Shinichi; Yoshigae, Yuki; Sharp, Nicholas J H; Muñana, Karen R

    2007-07-01

    To describe diagnostic findings, surgical technique, and outcome in dogs with thoracic spinal canal stenosis and vertebral instability secondary to congenital vertebral anomalies. Retrospective clinical study. Dogs (n=9) with thoracic spinal canal stenosis. Medical records (1995-1996; 2000-2006) of 9 dogs with a myelographic diagnosis of spinal canal stenosis and/or vertebral instability secondary to congenital vertebral anomaly that were surgically managed by vertebral stabilization with or without laminectomy were reviewed. Data on pre- and postoperative neurologic status, diagnostic findings, surgical techniques, and outcomes were retrieved. Follow-up evaluations were performed at 1, 2, and 6 months. Long-term outcome was assessed by means of clinical examination or owner telephone interviews. Spinal cord compression was confirmed by myelography, and in 2 dogs, dynamic compression by stress myelography. Eight dogs regained the ability to ambulate postoperatively. One dog with a partial recovery regained voluntary movement but did not become ambulatory. Spinal cord injury secondary to congenital vertebral anomaly may have a good outcome when treated by vertebral stabilization with or without laminectomy. Adequate stabilization of the vertebrae and improved neurologic outcome were achieved in most dogs. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate with or without laminectomy is an effective treatment for spinal canal stenosis and vertebral instability secondary to congenital thoracic vertebral anomalies.

  9. Flow in the Proximity of the Pin-Tool in Friction Stir Welding and Its Relation to Weld Homogeneity

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2000-01-01

    In the Friction Stir Welding (FSW) process a rotating pin inserted into a seam literally stirs the metal from each side of the seam together. It is proposed that the flow in the vicinity of the pin-tool comprises a primary rapid shear over a cylindrical envelope covering the pin-tool and a relatively slow secondary flow taking the form of a ring vortex about the tool circumference. This model is consistent with a plastic characterization of metal flow, where discontinuities in shear flow are allowed but not viscous effects. It is consistent with experiments employing several different kinds of tracer: atomic markers, shot, and wire. If a rotating disc with angular velocity w is superposed on a translating continuum with linear velocity omega, the trajectories of tracer points become circular arcs centered upon a point displaced laterally a distance v/omega from the center of rotation of the disc in the direction of the advancing side of the disc. In the present model a stream of metal approaching the tool (taken as the coordinate system of observation) is sheared at the slip surface, rapidly rotated around the tool, sheared again on the opposite side of the tool, and deposited in the wake of the tool. Local shearing rates are high, comparable to metal cutting in this model. The flow patterns in the vicinity of the pin-tool determine the level of homogenization and dispersal of contaminants that occurs in the FSW process. The approaching metal streams enfold one another as they are rotated around the tool. Neglecting mixing they return to the same lateral position in the wake of the tool preserving lateral tracer positions as if the metal had flowed past the tool like an extrusion instead of being rotated around it. (The seam is, however, obliterated.) The metal stream of thickness approximately that of the tool diameter D is wiped past the tool at elevated temperatures drawn out to a thickness of v/2(omega) in the wiping zone. Mixing distances in the wiping zone are multiplied in the unfolded metal. Inhomogeneities on a smaller scale than the mixing length are obliterated, but structure on a larger scale may be transmitted to the wake of a FSW weld.

  10. Tube coupling device

    NASA Technical Reports Server (NTRS)

    Myers, William N. (Inventor); Hein, Leopold A. (Inventor)

    1987-01-01

    A first annular ring of a tube coupling device has a keyed opening sized to fit around the nut region of a male coupling, and a second annular ring has a keyed opening sized to fit around the nut of a female coupling. Each ring has mating ratchet teeth and these rings are biased together, thereby engaging these teeth and preventing rotation of these rings. This in turn prevents the rotation of the male nut region with respect to the female nut. For tube-to-bulkhead locking, one facet of one ring is notched, and a pin is pressed into an opening in the bulkhead. This pin is sized to fit within one of the notches in the ring, thereby preventing rotation of this ring with respect to the bulkhead.

  11. Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation

    NASA Astrophysics Data System (ADS)

    Junginger, T.; Abidi, S. H.; Maffett, R. D.; Buck, T.; Dehn, M. H.; Gheidi, S.; Kiefl, R.; Kolb, P.; Storey, D.; Thoeng, E.; Wasserman, W.; Laxdal, R. E.

    2018-03-01

    The performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry Hentry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μ SR ) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing at 1400 °C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure Hentry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.

  12. Tribology approach to the engineering and study of articular cartilage.

    PubMed

    Wimmer, Markus A; Grad, Sibylle; Kaup, Thomas; Hänni, Markus; Schneider, Erich; Gogolewski, Sylwester; Alini, Mauro

    2004-01-01

    This study has been based on the assumption that articular motion is an important aspect of mechanotransduction in synovial joints. For this reason a new bioreactor concept, able to reproduce joint kinematics more closely, has been designed. The prototype consists of a rotating scaffold and/or cartilage pin, which is pressed onto an orthogonally rotating ball. By oscillating pin and ball in phase difference, elliptical displacement trajectories are generated that are similar to the motion paths occurring in vivo. Simultaneously, dynamic compression may be applied with a linear actuator, while two-step-motors generate the rotation of pin and ball. The whole apparatus is placed in an incubator. The control station is located outside. Preliminary investigations at the gene expression level demonstrated promising results. Compared with free-swelling control and/or simply compression-loaded samples, chondrocyte-seeded scaffolds as well as nasal cartilage explants exposed to interface motion both showed elevated levels of cartilage oligomeric matrix protein mRNA. The final design of the bioreactor will include four individual stations in line, which will facilitate the investigation of motion-initiated effects at the contacting surfaces in more detail.

  13. Carbon Nanotube Fiber Ionization Mass Spectrometry: A Fundamental Study of a Multi-Walled Carbon Nanotube Functionalized Corona Discharge Pin for Polycyclic Aromatic Hydrocarbons Analysis.

    PubMed

    Nahan, Keaton S; Alvarez, Noe; Shanov, Vesselin; Vonderheide, Anne

    2017-11-01

    Mass spectrometry continues to tackle many complicated tasks, and ongoing research seeks to simplify its instrumentation as well as sampling. The desorption electrospray ionization (DESI) source was the first ambient ionization source to function without extensive gas requirements and chromatography. Electrospray techniques generally have low efficiency for ionization of nonpolar analytes and some researchers have resorted to methods such as direct analysis in real time (DART) or desorption atmospheric pressure chemical ionization (DAPCI) for their analysis. In this work, a carbon nanotube fiber ionization (nanoCFI) source was developed and was found to be capable of solid phase microextraction (SPME) of nonpolar analytes as well as ionization and sampling similar to that of direct probe atmospheric pressure chemical ionization (DP-APCI). Conductivity and adsorption were maintained by utilizing a corona pin functionalized with a multi-walled carbon nanotube (MWCNT) thread. Quantitative work with the nanoCFI source with a designed corona discharge pin insert demonstrated linearity up to 0.97 (R 2 ) of three target PAHs with phenanthrene internal standard. Graphical Abstract ᅟ.

  14. Carbon Nanotube Fiber Ionization Mass Spectrometry: A Fundamental Study of a Multi-Walled Carbon Nanotube Functionalized Corona Discharge Pin for Polycyclic Aromatic Hydrocarbons Analysis

    NASA Astrophysics Data System (ADS)

    Nahan, Keaton S.; Alvarez, Noe; Shanov, Vesselin; Vonderheide, Anne

    2017-09-01

    Mass spectrometry continues to tackle many complicated tasks, and ongoing research seeks to simplify its instrumentation as well as sampling. The desorption electrospray ionization (DESI) source was the first ambient ionization source to function without extensive gas requirements and chromatography. Electrospray techniques generally have low efficiency for ionization of nonpolar analytes and some researchers have resorted to methods such as direct analysis in real time (DART) or desorption atmospheric pressure chemical ionization (DAPCI) for their analysis. In this work, a carbon nanotube fiber ionization (nanoCFI) source was developed and was found to be capable of solid phase microextraction (SPME) of nonpolar analytes as well as ionization and sampling similar to that of direct probe atmospheric pressure chemical ionization (DP-APCI). Conductivity and adsorption were maintained by utilizing a corona pin functionalized with a multi-walled carbon nanotube (MWCNT) thread. Quantitative work with the nanoCFI source with a designed corona discharge pin insert demonstrated linearity up to 0.97 (R2) of three target PAHs with phenanthrene internal standard. [Figure not available: see fulltext.

  15. Evaluation of Friction Stir Processing of HY-80 Steel Under Wet and Dry Conditions

    DTIC Science & Technology

    2012-03-01

    MS80. The tool design included a convex scroll shoulder with a step-spiral protruding pin (CS4). Figure 4. PCBN FSW/P threaded tool. 12 For...and cooling water was pumped through during the FSW/P process, Figure 7. Sea salt was added to distilled water to create a 3.5% salt content. 14... Vacuum hot extraction was used to determine the hydrogen concentration as specified by ASTM E 146–83. In addition, combustion infrared detection

  16. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    DTIC Science & Technology

    2010-07-01

    a rigid material. Its density and thermal properties are set to that of AISI- H13 , the hot-worked tool steel which is often used as a FSW- tool ...joining process (Ref 1-3). Within FSW, a (typically) cylindrical tool - pin (threaded at the bottom and terminated with a circular-plate shape shoulder...applied to the shoulder and owing to frictional sliding and plastic deforma- tion, substantial amount of heat is generated at the tool /work- piece

  17. System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)

    2002-01-01

    A control is provided for a friction stir welding apparatus comprising a pin tool which includes a shoulder and a rotating pin extending outwardly from the shoulder of the pin tool and which, in use, is plunged into a workpiece formed contacting workpiece members to stir weld the members together. The control system controls the penetration of the pin tool into the workpiece members which are mounted on a support anvil. The control system includes a pin length controller for controlling pin length relative to the shoulder and for producing a corresponding pin length signal. A pin force sensor senses the force being exerted on the pin during welding and produces a corresponding actual pin force signal. A probe controller controls a probe extending outwardly from the pin, senses a parameter related to the distance between the probe and the supporting anvil and produces a corresponding probe signal. A workpiece standoff sensor senses the standoff distance between the workpiece and the standoff sensor and produces a corresponding standoff signal. A control unit receives the various signals, together with a weld schedule, and, based on these signals and the weld schedule, controls the pin length controller so as to control pin penetration into the workpiece.

  18. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue

    PubMed Central

    Boccia, E.; Luther, S.

    2017-01-01

    In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507234

  19. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Boccia, E.; Luther, S.; Parlitz, U.

    2017-05-01

    In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  20. Vane segment support and alignment device

    DOEpatents

    McLaurin, L.D.; Sizemore, J.D.

    1999-07-13

    A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position. 5 figs.

  1. Vane segment support and alignment device

    DOEpatents

    McLaurin, Leroy Dixon; Sizemore, John Derek

    1999-01-01

    A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position.

  2. Wear studies of all UHMWPE couples under various bio-tribological conditions.

    PubMed

    Joyce, T J; Unsworth, A

    2004-01-01

    Wear tests were undertaken in which ultra high molecular weight polyethylene (UHMWPE) was rubbed against itself. Tests primarily employed a pin-on-plate wear test machine, with distilled water, Ringer solution and dilute bovine serum being used as the lubricants. Loads of 10N and 40N were employed, and some test pins had a rotational motion added. In all cases wear was high, with mean wear factors of up to 91 10 -6 mm3/Nm being measured, but the addition of rotation reduced the amount of material worn from the test plates. In the presence of bovine serum and under reciprocation only, pin wear was relatively low. With bovine serum as the lubricant, total mean wear factors for the UHMWPE couples were calculated to be in the range of 35 to 58 10-6mm3/Nm. Therefore the pin-on-plate tests showed that the choice of lubricant as well as the motion applied to the test pin had a significant influence on the wear volumes measured. A two-piece UHMWPE 'prosthesis' with matching hemispherical faces was fabricated and tested on a finger simulator. Distilled water was used as the lubricant and wear factors were found to be greater for the metacarpal component, 21 10 -6mm3/Nm, than the phalangeal component, 3 10-6mm3/Nm, after ten million cycles of testing. This result paralleled the greater wear seen by the plate than by the pin in the pin-on-plate tests under reciprocating motion. (Journal of Applied Biomaterials & Biomechanics 2004; 2: 29-34).

  3. Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.

    2009-01-01

    Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.

  4. Locking Nut and Bolt

    NASA Technical Reports Server (NTRS)

    Bishop, R.

    1983-01-01

    Threaded fastener locks parts securely together despite together large loosening torques, even under conditions of high temperature and vibration. Positive locking action is suitable for use where conventional fasteners tend to work loose--for example, on high-speed rotating machinery. Bolt, nut and key are joined together so key occupies alined slots in bolt and nut and prevents nut from rotating off bolt.

  5. Adapter plate assembly for adjustable mounting of objects

    DOEpatents

    Blackburn, R.S.

    1986-05-02

    An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.

  6. Adapter plate assembly for adjustable mounting of objects

    DOEpatents

    Blackburn, Robert S.

    1987-01-01

    An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.

  7. Mounting Systems for Structural Members, Fastening Assemblies Thereof, and Vibration Isolation Systems Including the Same

    NASA Technical Reports Server (NTRS)

    Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)

    2016-01-01

    Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.

  8. Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation

    DOE PAGES

    Junginger, Tobias; Abidi, S. H.; Maffett, R. D.; ...

    2018-03-16

    Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less

  9. Simulated Radioscapholunate Fusion Alters Carpal Kinematics While Preserving Dart-Thrower's Motion

    PubMed Central

    Calfee, Ryan P.; Leventhal, Evan L.; Wilkerson, Jim; Moore, Douglas C.; Akelman, Edward; Crisco, Joseph J.

    2014-01-01

    Purpose Midcarpal degeneration is well documented after radioscapholunate fusion. This study tested the hypothesis that radioscapholunate fusion alters the kinematic behavior of the remaining lunotriquetral and midcarpal joints, with specific focus on the dart-thrower's motion. Methods Simulated radioscapholunate fusions were performed on 6 cadaveric wrists in an anatomically neutral posture. Two 0.060-in. carbon fiber pins were placed from proximal to distal across the radiolunate and radioscaphoid joints, respectively. The wrists were passively positioned in a custom jig toward a full range of motion along the orthogonal axes as well as oblique motions, with additional intermediate positions along the dart-thrower's path. Using a computed tomography– based markerless bone registration technique, each carpal bone's three-dimensional rotation was defined as a function of wrist flexion/extension from the pinned neutral position. Kinematic data was analyzed against data collected on the same wrist prior to fixation using hierarchical linear regression analysis and paired Student's t-tests. Results After simulated fusion, wrist motion was restricted to an average flexion-extension arc of 48°, reduced from 77°, and radial-ulnar deviation arc of 19°, reduced from 33°. The remaining motion was maximally preserved along the dart-thrower's path from radial-extension toward ulnar-flexion. The simulated fusion significantly increased rotation through the scaphotrapezial joint, scaphocapitate joint, triquetrohamate joint, and lunotriquetral joint. For example, in the pinned wrist, the rotation of the hamate relative to the triquetrum increased 85%. Therefore, during every 10° of total wrist motion, the hamate rotated an average of nearly 8° relative to the triquetrum after pinning versus 4° in the normal state. Conclusions Simulated radioscapholunate fusion altered midcarpal and lunotriquetral kinematics. The increased rotations across these remaining joints provide one potential explanation for midcarpal degeneration after radioscapholunate fusion. Additionally, this fusion model confirms the dart-thrower's hypothesis, as wrist motion after simulated radioscapholunate fusion was primarily preserved from radial-extension toward ulnar-flexion. PMID:18406953

  10. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  11. High-sensitive computed tomography system using a silicon-PIN x-ray diode

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of 1.91 mA was developed using a silicon-PIN X-ray diode (Si-PIN-XD). The Si-PIN-XD is a selected high-sensitive Si-PIN photodiode (PD) for detecting X-ray photons. X-ray photons are detected directly using the Si-PIN-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to differentiator with a time constant of 1 μs to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 1.91 mA and 100 kV, respectively, and gadolinium K-edge CT was carried out using filtered X-ray spectra with a peak energy of 52 keV.

  12. [An expedient semi-automatic procedure for the preparation of large quantities of bioindicators especially for use in gas sterilization processes].

    PubMed

    Spicher, G; Borchers, U

    1985-06-01

    Bioindicators serve to test the efficacy of disinfection and sterilization procedures. Such indicators mostly consist of a support (filter paper, as a rule) to which micro-organisms have been fixed by drying. The authors have used a thread as support and a special apparatus for semi-automatic preparation of the bioindicators. The components of the device are either commercially available or may be prepared from commercially available material without difficulty. The principle of the method is as follows: The thread serving as the support is drawn slowly, at constant speed, through the suspension of test organisms and dried in an air stream immediately afterwards. The apparatus consists of a cylindrical glass tube of a few centimeters in diameter, an electric motor slowly rotating the cylinder, a fan, a magnetic stirrer, and an ice-water bath. A small vial containing the germ suspension is immersed in the ice-water bath. The vial is sealed by a screw cap with two glass tubes of about 3 mm inner diameter passing through it. One of the glass tubes being bent in its upper part reaches far down into the vial to leave just enough play for free rotation of a magnetic stirring rod. This tube serves to introduce the thread into the germ suspension. The second straight tube does not reach as far down as the first one. Its lower opening should not be immersed in the germ suspension. This tube serves as a guide for the returning thread. Preparation begins by winding the thread to be soaked with the suspension around the cylinder.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Fatal hemorrhage following sacroiliac joint fusion surgery: A case report.

    PubMed

    Palmiere, Cristian; Augsburger, Marc; Del Mar Lesta, Maria; Grabherr, Silke; Borens, Olivier

    2017-05-01

    Threaded pins and wires are commonly used in orthopedic practice and their migration intra- or post-operatively may be responsible for potentially serious complications. Vascular and visceral injury from intra-pelvic pin or guide-wire migration during or following hip surgery has been reported frequently in the literature and may result in progression through soft tissues with subsequent perforation of organs and vessels. In this report, we describe an autopsy case involving a 40-year old man suffering from chronic low back pain due to sacroiliac joint disruption. The patient underwent minimally invasive sacroiliac joint arthrodesis. Some intra-operative bleeding was noticed when a drill was retrieved, though the patient died postoperatively. Postmortem investigations allowed the source of bleeding to be identified (a perforation of a branch of the right internal iliac artery) and a potentially toxic tramadol concentration in peripheral blood to be measured. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Space probe/satellite ejection apparatus for spacecraft

    NASA Technical Reports Server (NTRS)

    Smyly, H. M.; Miller, C. D.; Cloyd, R. A.; Heller, C. (Inventor)

    1984-01-01

    An ejection apparatus for spinning and propelling objects for ejection from a spacecraft at a desired velocity and rotational speed is discussed. The apparatus includes a launch cradle on which the space object to be ejected rests. The cradle is rotatably supported by a central hub secured to the upper end of the pneumatic cylinder piston shaft. Release mechanisms consisting of a retractable pin and locking lug is utilized to hold the cradle and object to be ejected. The release mechanism has a fixed barrier member which holds the retractable pin in engagement with the locking lug until release by upward movement of the launch cradle beyond the barrier height.

  15. Heat Control via Torque Control in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  16. Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube

    DOEpatents

    Obermeyer, F.D.

    1993-11-16

    Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube, so that the threaded ends of the instrumentation tube do not unthread when subjected to vibration, such an instrumentation tube being suitable for use in a nuclear reactor pressure vessel. The instrumentation tube has a first member having a threaded end portion that has a plurality of first holes circumferentially around the outside surface thereof. The instrumentation tube also has a second member having a threaded end portion that has a plurality of second holes circumferentially around the outside surface thereof. The threads of the second member are caused to threadably engage the threads of the first member for defining a threaded joint there between. A sleeve having an inside surface surrounds the end portion of the first member and the end portion of the second member and thus surrounds the threaded joint. The sleeve includes a plurality of first projections and second projections that outwardly extend from the inside surface to engage the first holes and the second holes, respectively. The outside surface of the sleeve is crimped or swaged at the locations of the first projections and second projections such that the first projections and the second projections engage their respective holes. In this manner, independent rotation of the first member with respect to the second member is prevented, so that the instrumentation tube will not unthread at its threaded joint. 10 figures.

  17. Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube

    DOEpatents

    Obermeyer, Franklin D.

    1993-01-01

    Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube, so that the threaded ends of the instrumentation tube do not unthread when subjected to vibration, such an instrumentation tube being suitable for use in a nuclear reactor pressure vessel. The instrumentation tube has a first member having a threaded end portion that has a plurality of first holes circumferentially around the outside surface thereof. The instrumentation tube also has a second member having a threaded end portion that has a plurality of second holes circumferentially around the outside surface thereof. The threads of the second member are caused to threadably engage the threads of the first member for defining a threaded joint therebetween. A sleeve having an inside surface surrounds the end portion of the first member and the end portion of the second member and thus surrounds the threaded joint. The sleeve includes a plurality of first projections and second projections that outwardly extend from the inside surface to engage the first holes and the second holes, respectively. The outside surface of the sleeve is crimped or swaged at the locations of the first projections and second projections such that the first projections and the second projections engage their respective holes. In this manner, independent rotation of the first member with respect to the second member is prevented, so that the instrumentation tube will not unthread at its threaded joint.

  18. Fundamental Study of Material Flow in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Reynolds, Anthony P.

    1999-01-01

    The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied to fit experimental data such as temperature profiles, torque and tool forces. General aspects of the experimentally visualized material flow pattern are confirmed by the 3-D model.

  19. Rotary pin-in-maze discriminator

    DOEpatents

    Benavides, Gilbert L.

    1997-01-01

    A discriminator apparatus and method that discriminates between a unique signal and any other (incorrect) signal. The unique signal is a sequence of events; each event can assume one of two possible event states. Given the unique signal, a maze wheel is allowed to rotate fully in one direction. Given an incorrect signal, both the maze wheel and a pin wheel lock in position.

  20. The Plunge Phase of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur; McClure, John; Avila, Ricardo

    2005-01-01

    Torque and plunge force during the initial plunge phase in Friction Stir Welding were measured for a 0.5 inch diameter pin entering a 2219 aluminum alloy plate. Weld structures were preserved for metallographic observation by making emergency stops at various plunge depths. The plunging pin tool is seen to be surrounded by a very fine grained layer of recrystallized metal extending substantially below the bottom of the pin, implying a shear interface in the metal below and not at the tool-metal interface. Torque and plunge force during the initial plunge phase in Friction Stir Welding are calculated from a straight forward model based on a concept to plastic flow in the vicinity of the plunging tool compatible with structural observations. The concept: a disk of weld metal seized to and rotating with the bottom of the pin is squeezed out laterally by the plunge force and extruded upwards in a hollow cylinder around the tool. As the shear surface separating rotating disk from stationary weld metal engulfs fresh metal, the fresh metal is subjected to severe shear deformation, which results in its recrystallization. Encouraging agreement between computations and measured torque and plunge force is obtained.

  1. Flow and heat transfer in an L-shaped cooling passage with ribs and pin fins for the trailing edge of a gas-turbine vane and blade

    NASA Astrophysics Data System (ADS)

    Pardeshi, Irsha

    Efficient and effective cooling of the trailing edges of gas-turbine vanes and blades is challenging because there is very little space to work with. In this study, CFD simulations based on steady RANS closed by the shear-stress transport turbulence model were performed to study the flow and heat transfer in an L-shaped duct for the trailing edge under two operating conditions. One operating condition, referred to as the laboratory condition, where experimental measurements were made, has a Reynolds number at the duct inlet of ReD = 15,000, coolant inlet temperature of Tinlet = 300 K, wall temperature of Twall = 335 K, a back pressure of Pb = 1 atm. When rotating, the angular speed was O = 1,000 rpm. The other condition, referred to as the engine-relevant condition, has Re D = 150,000 at the duct inlet, Tinlet = 673 K, Twall = 1,173 K, and Pb = 25 atm. When rotating, O was 3,600 rpm. The objective is to understand the nature of the flow and heat transfer in an L-shaped cooling passage for the trailing edge that has a combination of ribs and pin fins under rotating and non-rotating conditions with focus on how pin fins and ribs distribute the flow throughout the passage and to understand what features of the flow and heat transfer can or cannot be extrapolated from the laboratory to the engine-relevant operating conditions. When there is no rotation, results obtained show that for both operating conditions, the pin fins minimized the size of the separation bubble when the flow exits the inlet duct into the expanded portion of the L-shaped duct. The size of the separation bubble at the tip of the L-shaped duct created by the adverse pressure gradient is quite large for the laboratory condition and relatively small for the engine condition. Each rib was found to create two sets of recirculating flows, one just upstream of the rib because of the adverse pressure gradient induced by the rib and one just downstream of the rib because of flow separation from a sharp edge. These recirculating flows spiral from the ribs towards the exit of the L-shaped duct, and the spiraling brings cool fluid from the middle of the passage to the walls. Each pin fin was found to induce a pair of counter-rotating separated regions behind it and has horse-shoe vortices that wrap around it next to the top and bottom walls. The heat transfer is highest just upstream of the each rib, around the pin fins, and when the cooling fluid impinges on walls, and very low in the separated region next to the tip. When there is rotation, Coriolis force creates a pair of counter-rotating vortices that bring the cooler fluid to the trailing wall in the inlet duct. Thus, the trailing wall has higher heat transfer than the leading wall. In the inlet duct, centrifugal buoyancy causes a massive flow separation on the leading wall. In the expanded portion of the L-shaped duct, the centrifugal-buoyancy-induced separation on the leading wall is limited to the region with the ribs, and the separation degenerates into a series of smaller spiraling separation bubbles, one between every set of consecutive ribs. On the leading and trailing walls, the ribs and the pin fins induce the same kind of flows as they did under non-rotating conditions. Because of centrifugal-buoyancy-induced flow separation on the leading face, the heat transfer on the leading wall is 10-15% lower than that on the trailing wall, which is not significant. The adverse effects of centrifugal buoyancy were mitigated because the separation bubbles between the ribs are spiraling from the side wall to the trailing-edge exit and are constantly supplied by new coolant. The heat transfer on the side and back walls is higher near the trailing wall because centrifugal buoyancy directed most of the coolant flow towards the trailing wall. The size of the separation bubble at the tip of the L-shaped duct essentially disappeared when there is rotation for both the lab and engine-relevant conditions.

  2. TWO-SPEED DEVICE

    DOEpatents

    Brunson, G.S. Jr.

    1961-04-01

    A two-speed device is described comprising a two-part stop engageable with a follower. The two-pant stop comprises first and second members in threaded engagement with each other. The first member is restrained against rotation but is free to move longitudinally, and the second member is free to move arially and rotatively. Means are provided to impart rotation to the second member. The follower is engageable first with an end of one member and then with the corresponding end of the other member after some relative longitudinal movement of the members with respect to one another due to the rotation of the second member and the holding of the first member against rotation.

  3. AXAF SIM focus mechanism study

    NASA Technical Reports Server (NTRS)

    Tananbaum, H. D.; Whitbeck, E.

    1994-01-01

    The design requirements and initial design concept for the AXAF-I Science Instrument Module (SIM) were reviewed at Ball on September 29, 1993. The concept design SIM focus mechanism utilizes a planetary gearset, with redundant motors, to drive a large ring (called 'main housing bearing') via a spur gearset. This large drive ring actuates three tangent bar links (called 'push rods'), which in turn actuate three levers (called 'pin levers'). Each of the three pin levers rotates an 'eccentric pin,' which in turn moves the base of a bipod flexure in both the radial (normal to optical axis) and axial (focus along optical axis) directions. Three bipod flexures are employed, equally spaced at 120 degrees apart, the base of each being translated in the two directions as described above. A focus adjustment is made by rotating the drive ring, which drives the push rods and therefore the pin levers, which in turn rotate the eccentric pins, finally imparting the two motions to the base of each of the bipod flexures. The axial translation (focus adjustment) of the focused structure is the sum of the direct axial motion plus axial motion which comes from uniformly squeezing the three bipod bases radially inward. SAO documented the following concerns regarding the focus mechanism in memo WAP-FY94-001, dated October 7, 1993: (1) The focus adjustment depends, in large part, on the structural properties (stiffnesses and end fixities) of the bipod flexures, push rods, pin levers and eccentric pins. If these properties are not matched very well, then lateral translations as well as unwanted rotations of the focussed structure will accompany focus motion. In addition, the stackup of linkage tolerances and any nonuniform wear in the linkages will result in the same unwanted motions. Thermal gradients will also affect these motions. At the review Ball did not present supporting analyses to support their choice of this design concept. (2) The proposed 'primary' method of measuring focus is by counting motor steps. The 'backup' method is by a pot mounted on the drive ring. Neither method provides for a direct measurement of the quantity desired (focus position). This is of concern because of the long and indirect relationship between focus and the sensed quantity (drive ring rotation). There are three sinusoidal relationships and structural stiffness in the path, and the resulting calibration is likely to be highly nonlinear. These methods would require an accurate ground calibration. (3) Ground calibration (and verification) of focus vs. drive position must be done in 1-g on the ground. This calibration will be complicated by both the structural characteristics of the bipods and the fact that the CG of the translating portion of the SIM is not on the optical axis (thereby causing unwated rotations and changing the focus position vs. motor step and pot readout relationships). The SIM translating weight could be offloaded, but the calibration then becomes sensitive to any errors in offloading (both magnitude and direction). There are concerns as to whether a calibration to the required accuracy can be accomplished on the ground. (4) The choice of a potentiometer as the focus position sensor is questionable in terms of reliability for a five year mission. The results of SAO's study of items 1, 2 and 3 described above are presented in this report.

  4. Low-noise nozzle valve

    NASA Technical Reports Server (NTRS)

    Gwin, Hal S. (Inventor); Aaron, James (Inventor)

    1990-01-01

    A low noise, variable discharage area, valve is constructed having opposed recesses within which a pair of gates are slidably disposed. Each of the gates is provided with upstream edges having a radius thereon, the radius enabling smooth, accelerated, low noise flow therebetween. The gates are further provided with tracks along each side, which in turn slide along splines set in the side walls of the valve. A threaded rod which rotates in a threaded insert in a rear wall of each of the gates, serves to move the gates within their respective recesses.

  5. Analytical approximations for spiral waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald

    2013-12-15

    We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +}more » with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.« less

  6. Turbine blade and non-integral platform with pin attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian X; Eng, Darryl; Marra, John J

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less

  7. Turbine blade and non-integral platform with pin attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian Xavier; Eng, Darryl; Marra, John J.

    2016-08-02

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less

  8. Rotary pin-in-maze discriminator

    DOEpatents

    Benavides, G.L.

    1997-05-06

    A discriminator apparatus and method that discriminates between a unique signal and any other (incorrect) signal are disclosed. The unique signal is a sequence of events; each event can assume one of two possible event states. Given the unique signal, a maze wheel is allowed to rotate fully in one direction. Given an incorrect signal, both the maze wheel and a pin wheel lock in position. 4 figs.

  9. Superfluid Friction and Late-Time Thermal Evolution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Larson, Michelle B.; Link, Bennett

    1999-08-01

    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×106 and 2×107 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ω¯~0.6 rad s-1 for PSR 1929+10 and ~0.02 rad s-1 for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by the pinning of superfluid vortices to the inner crust lattice with strengths of ~1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (~30 rad s-1), a feedback instability could occur in stars younger than ~105 yr causing oscillations of the temperature and spin-down rate over a period of ~0.3tage. For stars older than ~106 yr, however, vortex creep occurs through quantum tunneling and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.

  10. THE KINEMATICS OF PRIMATE MIDFOOT FLEXIBILITY

    PubMed Central

    Greiner, Thomas M.; Ball, Kevin A.

    2015-01-01

    This study describes a unique assessment of primate intrinsic foot joint kinematics based upon bone pin rigid cluster tracking. It challenges the assumption that human evolution resulted in a reduction of midfoot flexibility, which has been identified in other primates as the “midtarsal break.” Rigid cluster pins were inserted into the foot bones of human, chimpanzee, baboon and macaque cadavers. The positions of these bone pins were monitored during a plantarflexion-dorsiflexion movement cycle. Analysis resolved flexion-extension movement patterns and the associated orientation of rotational axes for the talonavicular, calcaneocuboid and lateral cubometatarsal joints. Results show that midfoot flexibility occurs primarily at the talonavicular and cubometatarsal joints. The rotational magnitudes are roughly similar between humans and chimps. There is also a similarity among evaluated primates in the observed rotations of the lateral cubometatarsal joint, but there was much greater rotation observed for the talonavicular joint, which may serve to differentiate monkeys from the hominines. It appears that the capability for a midtarsal break is present within the human foot. A consideration of the joint axes shows that the medial and lateral joints have opposing orientations, which has been associated with a rigid locking mechanism in the human foot. However, the potential for this same mechanism also appears in the chimpanzee foot. These findings demonstrate a functional similarity within the midfoot of the hominines. Therefore, the kinematic capabilities and restrictions for the skeletal linkages of the human foot may not be as unique as has been previously suggested. PMID:25234343

  11. A prospective, randomized evaluation of the effects of epidural needle rotation on the distribution of epidural block.

    PubMed

    Borghi, Battista; Agnoletti, Vanni; Ricci, Alessandro; van Oven, Hanna; Montone, Nicoletta; Casati, Andrea

    2004-05-01

    We evaluated the effects of turning the tip of the Tuohy needle 45 degrees toward the operative side before threading the epidural catheter (45 degrees -rotation group, n = 24) as compared to a conventional insertion technique with the tip of the Tuohy needle oriented at 90 degrees cephalad (control group, n = 24) on the distribution of 10 mL of 0.75% ropivacaine with 10 microg sufentanil in 48 patients undergoing total hip replacement. The catheter was introduced 3 to 4 cm beyond the tip of the Tuohy needle. A blinded observer recorded sensory and motor blocks on both sides, quality of analgesia, and volumes of local anesthetic used during the first 48 h of patient-controlled epidural analgesia. Readiness to surgery required 21 +/- 6 min in the control group and 17 +/- 7 min in the 45 degree-rotation group (P > 0.50). The maximum sensory level reached on the operative side was T10 (T10-7) in the control group and T9 (T10-6) in the 45 degree-rotation group (P > 0.50); whereas the maximum sensory level reached on the nonoperative side was T10 (T12-9) in the control group and L3 (L5-T12) in the 45 degree-rotation group (P = 0.0005). Complete motor blockade of the operative limb was achieved earlier in the 45 degree-rotation than in the control group, and motor block of the nonoperative side was more intense in patients in the control group. Two-segment regression of sensory level on the surgical side was similar in the two groups, but occurred earlier on the nonoperative side in the 45 degree-rotation group (94 +/- 70 min) than in the control group (178 +/- 40 min) (P = 0.0005). Postoperative analgesia was similar in the 2 groups, but the 45 degree-rotation group consumed less local anesthetic (242 +/- 35 mL) than the control group (297 +/- 60 mL) (P = 0.0005). We conclude that the rotation of the Tuohy introducer needle 45 degrees toward the operative side before threading the epidural catheter provides a preferential distribution of sensory and motor block toward the operative side, reducing the volume of local anesthetic solution required to maintain postoperative analgesia. Turning the Tuohy introducer needle 45 degrees toward the operative side before threading the epidural catheter is a simple maneuver that produces a preferential distribution of epidural anesthesia and analgesia toward the operative side, minimizing the volume of local anesthetic required to provide adequate pain relief after total hip arthroplasty.

  12. Impact micro-positioning actuator

    NASA Technical Reports Server (NTRS)

    Cuerden, Brian (Inventor); Angel, J. Roger P. (Inventor); Burge, James H. (Inventor); DeRigne, Scott T. (Inventor)

    2006-01-01

    An impact micro-positioning actuator. In one aspect of the invention, a threaded shaft is threadably received in a nut and the nut is impacted by an impacting device, causing the nut first to rotate relative to the shaft by slipping as a result of shaft inertia and subsequently to stick to the shaft as a result of the frictional force therebetween. The nut is returned to its initial position by a return force provided by a return mechanism after impact. The micro-positioning actuator is further improved by controlling at least one and preferably all of the following: the friction, the impact provided by the impacting device, the return force provided by the return mechanism, and the inertia of the shaft. In another aspect of the invention, a threaded shaft is threadably received in a nut and the shaft is impacted by an impacting device, causing the shaft to rotate relative to the nut.

  13. Design of Friction Stir Welding Tool for Avoiding Root Flaws

    PubMed Central

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-01-01

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool. PMID:28788426

  14. Design of Friction Stir Welding Tool for Avoiding Root Flaws.

    PubMed

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-12-12

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.

  15. Device for lengthening of a musculotendinous unit by direct continuous traction in the sheep

    PubMed Central

    2012-01-01

    Background Retraction, atrophy and fatty infiltration are signs subsequent to chronic rotator cuff tendon tears. They are associated with an increased pennation angle and a shortening of the muscle fibers in series. These deleterious changes of the muscular architecture are not reversible with current repair techniques and are the main factors for failed rotator cuff tendon repair. Whereas fast stretching of the retracted musculotendinous unit results in proliferation of non-contractile fibrous tissue, slow stretching may lead to muscle regeneration in terms of sarcomerogenesis. To slowly stretch the retracted musculotendinous unit in a sheep model, two here described tensioning devices have been developed and mounted on the scapular spine of the sheep using an expandable threaded rod, which has been interposed between the retracted tendon end and the original insertion site at the humeral head. Traction is transmitted in line with the musculotendinous unit by sutures knotted on the expandable threaded rod. The threaded rod of the tensioner is driven within the body through a rotating axis, which enters the body on the opposite side. The tendon end, which was previously released (16 weeks prior) from its insertion site with a bone chip, was elongated with a velocity of 1 mm/day. Results After several steps of technical improvements, the tensioner proved to be capable of actively stretching the retracted and degenerated muscle back to the original length and to withstand the external forces acting on it. Conclusion This technical report describes the experimental technique for continuous elongation of the musculotendinous unit and reversion of the length of chronically shortened muscle. PMID:22551079

  16. Check valve

    DOEpatents

    Upton, Hubert Allen; Garcia, Pablo

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.

  17. Check valve

    DOEpatents

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  18. Anti-Rotation Device Releasable by Insertion of a Tool

    NASA Technical Reports Server (NTRS)

    Warden, Harry K.; Jenkins, Terro J.

    2011-01-01

    A drive mechanism enables a socket-type wrench to rotate a shaft and prevents accidental rotation of the shaft when the wrench is not coupled to the shaft. In the original intended application, the shaft would be part of an attachment mechanism on a spacecraft, and the purpose to be served by the drive is to prevent back-driving of the shaft by launch vibrations while enabling an astronaut equipped with the appropriate wrench to actuate the shaft while in orbit. The design could also be adapted to terrestrial applications in which it is necessary to prevent rotational back-driving. The mechanism includes a gear near the tip of the shaft, and a drive nut that constitutes the tip of the shaft. The gear and drive nut are positioned in a recess in a housing. The recess is sized to receive the wrench socket that mates with the drive nut. Also contained in the housing are four linkages that include pins that are spring-loaded into engagement with the gear to prevent rotation of the shaft. When the wrench socket is inserted in the recess, it pushes on the linkages in such a manner as to disengage the pins from the gear.

  19. The Formation of a Small-Scale Filament After Flux Emergence on the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Chen, Hechao; Yang, Jiayan; Yang, Bo; Ji, Kaifan; Bi, Yi

    2018-06-01

    We present observations of the formation process of a small-scale filament on the quiet Sun during 5 - 6 February 2016 and investigate its formation cause. Initially, a small dipole emerged, and its associated arch filament system was found to reconnect with overlying coronal fields accompanied by numerous extreme ultraviolet bright points. When the bright points faded, many elongated dark threads formed and bridged the positive magnetic element of the dipole and the external negative network fields. Interestingly, an anticlockwise photospheric rotational motion (PRM) set in within the positive endpoint region of the newborn dark threads following the flux emergence and lasted for more than 10 hours. Under the drive of the PRM, these dispersive dark threads gradually aligned along the north-south direction and finally coalesced into an inverse S-shaped filament. Consistent with the dextral chirality of the filament, magnetic helicity calculations show that an amount of negative helicity was persistently injected from the rotational positive magnetic element and accumulated during the formation of the filament. These observations suggest that twisted emerging fields may lead to the formation of the filament via reconnection with pre-existing fields and release of its inner magnetic twist. The persistent PRM might trace a covert twist relaxation from below the photosphere to the low corona.

  20. In-situ roundness measurement and correction for pin journals in oscillating grinding machines

    NASA Astrophysics Data System (ADS)

    Yu, Hongxiang; Xu, Mengchen; Zhao, Jie

    2015-01-01

    In the mass production of vehicle-engine crankshafts, pin chasing grinding using oscillating grinding machines is a widely accepted method to achieve flexible and efficient performance. However, the eccentric movement of pin journals makes it difficult to develop an in-process roundness measurement scheme for the improvement of contour precision. Here, a new in-situ roundness measurement strategy is proposed with high scanning speed. The measuring mechanism is composed of a V-block and an adaptive telescopic support. The swing pattern of the telescopic support and the V-block is analysed for an equal angle-interval signal sampling. Hence roundness error signal is extracted in frequency domain using a small-signal model of the V-block roundness measurement method and the Fast Fourier Transformation. To implement the roundness data in the CNC coordinate system of an oscillating grinding machine, a transformation function is derived according to the motion model of pin chasing grinding methodology. Computer simulation reveals the relationship between the rotational position of the crankshaft component and the scanning angle of the displacement probe on the V-block, as well as the influence introduced by the rotation centre drift. Prototype investigation indicates the validity of the theoretical analysis and the feasibility of the new strategy.

  1. Effect of rotation on the elastic moduli of solid 4He

    NASA Astrophysics Data System (ADS)

    Tsuiki, T.; Takahashi, D.; Murakawa, S.; Okuda, Y.; Kono, K.; Shirahama, K.

    2018-02-01

    We report measurements of elastic moduli of hcp solid 4He down to 15 mK when the samples are rotated unidirectionally. Recent investigations have revealed that the elastic behavior of solid 4He is dominated by gliding of dislocations and pinning of them by 3He impurities, which move in the solidlike Bloch waves (impuritons). Motivated by the recent controversy of torsional oscillator studies, we have performed direct measurements of shear and Young's moduli of annular solid 4He using pairs of quarter-circle-shape piezoelectric transducers (PZTs) while the whole apparatus is rotated with angular velocity Ω up to 4 rad/s. We have found that shear modulus μ is suppressed by rotation below 80 mK, when shear strain applied by PZT exceeds a critical value, above which μ decreases because the shear strain unbinds dislocations from 3He impurities. The rotation-induced decrement of μ at Ω =4 rad/s is about 14.7(12.3)% of the total change of temperature dependent μ for solid samples of pressure 3.6(5.4) MPa. The decrements indicate that the probability of pinning of 3He on dislocation segment G decreases by several orders of magnitude. We propose that the motion of 3He impuritons under rotation becomes strongly anisotropic by the Coriolis force, resulting a decrease in G for dislocation lines aligning parallel to the rotation axis.

  2. Inducement of semitendinosus tendon regeneration to the pes anserinus after its harvest for anterior cruciate ligament reconstruction-A new inducer grafting technique

    PubMed Central

    2012-01-01

    Purpose To investigate the usefulness of the “inducer grafting” technique for regeneration of the semitendinosus (ST) tendon after its harvest for anterior cruciate ligament (ACL) reconstruction. Methods Twenty knees of 20 patients (mean age at the time of surgery, 23.1 years) underwent ACL reconstruction with a double bundle autograft using the ST tendon (7 patients) and the ST + the gracilis (G) tendons (13 patients). “Inducer grafting” technique After harvesting the ST tendon, a passing pin with a loop thread is inserted along with the tendon stripper. The passing pin is pulled out from the medial thigh and the loop thread retained. As an inducer graft, the ST tendon branch is used. After the ACL graft has been secured, the inducer graft is sutured to the pes anserinus and the proximal end passed through by pulling the thread out. Then the inducer graft is placed within the tendon canal. The mean follow-up period was 15 months. The presence and morphology of the regenerated ST tendon were examined by MRI. And the isometric hamstring strength was examined at 45°, 90° and 120° of knee flexion. Results One month after the operation in all the patients, MRI demonstrated a low-intensity structure at the anatomical location of the ST, at the level of the superior pole of the patella and the joint line, apparently representing the regenerated ST tendon. Four months after the operation, the distal portion of the regenerated ST tendon had reached the pes anserinus in all patients. Twelve months after the operation, the regenerated ST tendon was hypertrophic in 19 of the 20 patients (95%). The isometric knee flexion torque of the ACL-reconstructed limb was significantly lower at 90° and 120° compared with the contralateral limb. Conclusion These results suggest that the “inducer grafting” technique is able to improve the regeneration rate of the harvested ST tendon and promote hypertrophy of the regenerated ST tendon, extending all the way to the pes anserinus. However, this technique couldn’t improve the deficits in knee flexion torque after ACL reconstruction. PMID:22607724

  3. Vane segment support and alignment device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaurin, L.D.; Sizemore, J.D.

    1999-07-13

    A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pinmore » is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position. 5 figs.« less

  4. Motor-driven screwing and transporting tool for reactor pressure vessel head retaining fastenings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, M.

    1977-09-13

    The invention concerns a motor-driven screwing and transporting tool for tightening or loosening the threaded studs and associated tightening nuts of the head bolting of pressure vessels. After the tightening nuts are loosened or before they are tightened, the weight of the studs is taken over by rotating bearings that can be lifted, so that the studs with their tightening nuts can be screwed in or out, the screw threads of the studs being thus weight-relieved. The invention is intended primarily for nuclear reactor pressure vessels. 21 claims, 6 figures.

  5. Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2018-04-01

    The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.

  6. ERUPTION OF A SOLAR FILAMENT CONSISTING OF TWO THREADS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi Yi; Jiang Yunchun; Li Haidong

    The trigger and driving mechanism for the eruption of a filament consisting of two dark threads was studied with unprecedented high cadence and resolution of He II 304 A observations made by the Atmospheric Imagining Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the observations made by the Solar Magnetic Activity Research Telescope and the Extreme Ultraviolet Imager (EUVI) telescope on board the Solar Terrestrial Relations Observatory Ahead (STEREO-A). The filament was located at the periphery of the active region NOAA 11228 and erupted on 2011 June 6. At the onset of the eruption, a turbulent filament threadmore » was found to be heated and to elongate in stride over a second one. After it rose slowly, most interestingly, the elongating thread was driven to contact and interact with the second one, and it then erupted with its southern leg being wrapped by a newly formed thread produced by the magnetic reconnection between fields carried by the two threads. Combining the observations from STEREO-A/EUVI and SDO/AIA 304 A images, the three-dimensional shape of the axis of the filament was obtained and it was found that only the southern leg of the eruptive filament underwent rotation. We suggest that the eruption was triggered by the reconnection of the turbulent filament thread and the surrounding magnetic field, and that it was mainly driven by the kink instability of the southern leg of the eruptive filament that possessed a more twisted field introduced by the reconnection-produced thread.« less

  7. Collective orientational dynamics of pinned chemically-propelled nanorotors

    NASA Astrophysics Data System (ADS)

    Robertson, Bryan; Stark, Holger; Kapral, Raymond

    2018-04-01

    Collections of chemically propelled nanomotors free to move in solution can form dynamic clusters with diverse properties as a result of interactions through hydrodynamic flow and concentration fields, as well as direct intermolecular interactions between motors. Here, we study the collective rotational behavior of pinned sphere-dimer motors where direct motor-motor interactions play no role. Since the centers of mass of the motors are pinned, they cannot execute directed translational motion, but they can pump fluid and rotate; thus, the rotors remain coupled through hydrodynamic and chemical fields. Using a microscopic simulation method that accounts for coupling through both these fields, we show that different rotor configurations with a high degree of correlation exist and their forms depend on the nature of the fluid-rotor interactions. The correlations are greatly reduced or completely destroyed when the chemical interactions are removed, indicating that hydrodynamic coupling, while present, plays a lesser role in determining the collective rotor dynamics. These conclusions are supported by Langevin dynamics simulations that neglect hydrodynamics and include an approximate form of coupling through chemical fields.

  8. Mesoscopic modeling for nucleic acid chain dynamics

    PubMed Central

    Sales-Pardo, M.; Guimerà, R.; Moreira, A. A.; Widom, J.; Amaral, L. A. N.

    2007-01-01

    To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present here a mesoscopic-level computational model that provides a new window into nucleic acid dynamics. We model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin motion. By performing a number of tests, we first show that our model is physically sound. We then focus on a study of the kinetics of a DNA hairpin—a single-stranded molecule comprising two complementary segments joined by a noncomplementary loop—studied experimentally. We find that results from our simulations agree with experimental observations, demonstrating that our model is a suitable tool for the investigation of the hybridization of single strands. PMID:16089566

  9. Microstructural Evolution in Friction Stir Welding of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.; Querin, J.; Magee, D.; Schneider, J.

    2008-01-01

    Friction stir welding (FSW) is a thermo-mechanical process that utilizes a nonconsumable rotating pin tool to consolidate a weld joint. In the conventional FSW process, the pin tool is responsible for generating both the heat required to soften the material and the forces necessary to deform and combine the weld seam. As such, the geometry of the pin tool is important to the quality of the weld and the process parameters required to produce the weld. Because the geometry of the pin tool is limitless, a reduced set of pin tools was formed to systematically study their effect on the weldment with respect to mechanical properties and resultant microstructure. In this study 0deg, 15deg, 30deg, 45deg, and 60deg tapered, microwave sintered, tungsten carbide (WC) pin tools were used to FSW Ti-6Al-4V. Transverse sections of the weld were used to test for mechanical properties and to document the microstructure using optical microscopy. X-ray diffraction (XRD) was also used to characterize the microstructure in the welds. FSW results for the 45deg and 60deg pin tools are reported in this paper.

  10. Manufactured Textile Fibers

    NASA Astrophysics Data System (ADS)

    Gupta, Bhupender S.

    The first conversion of naturally occurring fibers into threads strong enough to be looped into snares, knit to form nets, or woven into fabrics is lost in prehistory. Unlike stone weapons, such threads, cords, and fabrics—being organic in nature—have in most part disappeared, although in some dry caves traces remain. There is ample evidence to indicate that spindles used to assist in the twisting of fibers together had been developed long before the dawn of recorded history. In that spinning process, fibers such as wool were drawn out of a loose mass, perhaps held in a distaff, and made parallel by human fingers. (A maidservant so spins in Giotto's The Annunciation to Anne, ca. A.D. 1306, Arena Chapel, Padua, Italy.1) A rod (spindle), hooked to the lengthening thread, was rotated so that the fibers while so held were twisted together to form additional thread. The finished length then was wound by hand around the spindle, which, in becoming the core on which the finished product was accumulated, served the dual role of twisting and storing, and, in so doing, established a principle still in use today.

  11. The wear properties of CFR-PEEK-OPTIMA articulating against ceramic assessed on a multidirectional pin-on-plate machine.

    PubMed

    Scholes, S C; Unsworth, A

    2007-04-01

    In an attempt to prolong the lives of rubbing implantable devices, several 'new' materials have been examined to determine their suitability as joint couplings. Tests were performed on a multidirectional pin-on-plate machine to determine the wear of both pitch and PAN (polyacrylonitrile)-based carbon fibre reinforced-polyetheretherketone (CFR-PEEK-OPTIMA) pins articulating against both BioLox Delta and BioLox Forte plates (ceramic materials). Both reciprocation and rotational motion were applied to the samples. The tests were conducted using 24.5 per cent bovine serum as the lubricant (protein concentration 15 g/l). Although all four material combinations gave similar low wear with no statistically significant difference (p > 0.25), the lowest average total wear of these pin-on-plate tests was provided by CFR-PEEK-OPTIMA pitch pins versus BioLox Forte plates. This was much lower than the wear produced by conventional joint materials (metal-on-polyethylene) and metal-on-metal combinations when tested on the pin-on-plate machine. This therefore indicates optimism that these PEEK-OPTIMA-based material combinations may perform well in joint applications.

  12. Density of bunched threading dislocations in epitaxial GaN layers as determined using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Holý, V.; Rafaja, D.

    2018-04-01

    X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.

  13. Lunar drill footplate and casing

    NASA Technical Reports Server (NTRS)

    Maassen, Erik C.; Hendrix, Thomas H.; Morrison, Eddie W.; Phillips, Rodrick B.; Le, Vu Quang; Works, Bruce A.

    1989-01-01

    To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg.

  14. Temperature dependent pinning landscapes in REBCO thin films

    NASA Astrophysics Data System (ADS)

    Jaroszynski, Jan; Constantinescu, Anca-Monia; Hu, Xinbo Paul

    2015-03-01

    The pinning landscapes of REBCO (RE=rare earth elements) thin films have been a topic of study in recent years due to, among other reasons, their high ability to introduce various phases and defects. Pinning mechanisms studies in high temperature superconductors often require detailed knowledge of critical current density as a function of magnetic field orientation as well as field strength and temperature. Since the films can achieve remarkably high critical current, challenges exist in evaluating these low temperature (down to 4.2 K) properties in high magnetic fields up to 30 T. Therefore both conventional transport, and magnetization measurements in a vibrating coil magnetometer equipped with rotating sample platform were used to complement the study. Our results clearly show an evolution of pinning from strongly correlated effects seen at high temperatures to significant contributions from dense but weak pins that thermal fluctuations render ineffective at high temperatures but which become strong at lower temperatures Support for this work is provided by the NHMFL via NSF DRM 1157490

  15. Wave Phenomena in Reaction-Diffusion Systems

    NASA Astrophysics Data System (ADS)

    Steinbock, Oliver; Engel, Harald

    2013-12-01

    Pattern formation in excitable and oscillatory reaction-diffusion systems provides intriguing examples for the emergence of macroscopic order from molecular reaction events and Brownian motion. Here we review recent results on several aspects of excitation waves including anomalous dispersion, vortex pinning, and three-dimensional scroll waves. Anomalies in the speed-wavelength dependence of pulse trains include nonmonotonic behavior, bistability, and velocity gaps. We further report on the hysteresis effects during the pinning-depinning transition of twodimensional spiral waves. The pinning of three-dimensional scroll waves shows even richer dynamic complexity, partly due to the possibility of geometric and topological mismatches between the unexcitable, pinning heterogeneities and the one-dimensional rotation backbone of the vortex. As examples we present results on the pinning of scroll rings to spherical, C-shaped, and genus-2-type heterogeneities. We also review the main results of several experimental studies employing the Belousov-Zhabotinsky reaction and briefly discuss the biomedical relevance of this research especially in the context of cardiology.

  16. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    NASA Astrophysics Data System (ADS)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  17. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications.

    PubMed

    He, Chuang-Long; Huang, Zheng-Ming; Han, Xiao-Jian

    2009-04-01

    In this work, drug-loaded fibers and threads were successfully fabricated by combining electrospinning with aligned fibers collection. Two different electrospinning processes, that is, blend and coaxial electrospinning, to incorporate a model drug tetracycline hydrochloride (TCH) into poly(L-lactic acid) (PLLA) fibers have been used and compared with each other. The resulting composite ultrafine fibers and threads were characterized through scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and tensile testing. It has been shown that average diameters of the fibers made from the same polymer concentration depended on the processing method. The blend TCH/PLLA fibers showed the smallest fiber diameter, whereas neat PLLA fibers and core-shell TCH-PLLA fibers showed a larger proximal average diameter. Higher rotating speed of a wheel collector is helpful for obtaining better-aligned fibers. Both the polymer and the drug in the electrospun fibers have poor crystalline property. In vitro release study indicated that threads made from the core-shell fibers could suppress the initial burst release and provide a sustained drug release useful for the release of growth factor or other therapeutic drugs. On the other hand, the threads from the blend fibers produced a large initial burst release that may be used to prevent bacteria infection. A combination of these results suggests that electrospinning technique provides a novel way to fabricate medical agents-loaded fibrous threads for tissue suturing and tissue regeneration applications. Copyright 2008 Wiley Periodicals, Inc.

  18. An Argument for Weakly Magnetized, Slowly Rotating Progenitors of Long Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Moreno Méndez, Enrique

    2014-01-01

    Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BH formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B <~ 102 G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.

  19. Heat Transfer Measurements of Internally Finned Rotating Heat Pipes.

    DTIC Science & Technology

    1983-12-01

    42 C. RESULTS OF STRAIGHT 22 FIN CONDENSER o . o . 51 D. RESULTS OF HELICAL 14 AND 16 FIN CONDENSER o 51 E. RESULTS OF HELICAL 36 FIN...88 C.6 RESULTS OF STRAIGHT 22 FIN CONDENSER AT 2800 RPM . . . . . . . . . . . . . . . . . . . . 89 C.7 RESULTS OF HELICAL 16 FIN CONDENSER ...AT 700 RPM . 90 C.8 RESULTS OF HELICAL 16 PIN CONDENSER AT 1600 RPM . 91 C.9 RESULTS OF HELICAL 16 PIN CONDENSER AT 2800 RPM . 92 C. 10 RESULTS OF

  20. Thrust Vector Control of an Overexpanded Supersonic Nozzle Using Pin Insertion and Rotating Airfoils

    DTIC Science & Technology

    1991-12-01

    12 THRUST VECTOR CONTROL OP AN OVEREXPANDED 3UPfRSONIC NOZZLE USING PIN INSERTION AND ROTATINO AIRFOILS THESIS Presented to the Faculty of the School...gather data that would aid in the evaluation of thrust vector control mechanisms for nozzle applications. I would like to thank my thesis advisor, Dr... Control Nozzle. MS Thesis . Air Force Institute of Technology (AU), Wright- Patterson AFB OH, December 1988. 4. Herup, Eric J. Confined Jet Thrust Vector

  1. Study on Joint Interface and Mechanical Properties of Cu/Pb-Sn/Cu Lap Joint Produced by Friction Stir Soldering Process

    NASA Astrophysics Data System (ADS)

    Sarkari Khorrami, Mahmoud; Kokabi, Amir Hossein; Movahedi, Mojtaba

    2015-05-01

    In this work, friction stir soldering (FSS) as a new approach for fabrication of copper/copper lap joints was introduced. This process is principally based on the friction stir processing (FSP) that can be performed using FSP tools with and without pin on the top sheet. In the present study, Pb-Sn foil was used as a solder which would be melted and then extruded in the area between the copper sheets during FSS process. This process was carried out using tools with and without pin at various rotation speeds of 1200, 1400, and 1600 rpm and traverse speed of 32 mm/min. Also, the same joint was fabricated using furnace soldering to compare the mechanical properties obtained with FSS and furnace soldering processes. It was observed that FSS possesses some advantages over the conventional furnace soldering process including the formation of more bond area at the interface corresponding to the higher fracture load of FSS joints compared with furnace soldering one. Moreover, it was concluded that the thickness of intermetallic compounds (IMCs) and the formation of voids at the joint interface were the predominant factor determining the mechanical properties of the FSS joints produced by FSS tool with and without pin, respectively. The microstructural examinations revealed that Cu-Sn IMCs of Cu3Sn and Cu6Sn5 were formed at the joint interface. It was observed that the FSS joint produced by tool with pin experienced the more peak temperature in comparison with that produced by pin-free tool. This may lead to the formation of thicker IMCs at the interface. Of course, the thickness of IMCs can be controlled by choosing proper FSS parameters, especially the rotation speed of the tool.

  2. Generation of plate tectonics with two-phase grain-damage and pinning: Source-sink model and toroidal flow

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2013-03-01

    The grain-damage and pinning mechanism of Bercovici and Ricard (2012) for lithospheric shear-localization is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion and influence plate evolution. This mechanism posits that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces, which then constrain mineral grains to ever smaller sizes, regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreover, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields retain memory of the original configuration for extensive periods, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction, and highly localized, weak and long lived acute plate-boundary junctions such as at what is observed at the Aleutian-Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets.

  3. On the Performance of an Algebraic MultigridSolver on Multicore Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A H; Schulz, M; Yang, U M

    2010-04-29

    Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.

  4. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE PAGES

    Fishman, Randy S.

    2018-01-03

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  5. Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

    NASA Astrophysics Data System (ADS)

    Fishman, Randy S.

    2018-01-01

    Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.

  6. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, Randy S.

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  7. Effect of shoulder to pin ratio on magnesium alloy Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Othman, N. H.; Ishak, M.; Shah, L. H.

    2017-09-01

    This study focuses on the effect of shoulder to pin diameter ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 2 mm were friction stir welded by using conventional milling machine. The shoulder to pin diameter ratio used in this experiment are 2.25, 2.5, 2.75, 3, 3.33, 3.66, 4.5, 5 and 5.5. The rotational speed and welding speed used in this study are 1000 rpm and 100 mm/min, respectively. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. The grain size of stir zone increased with decreasing shoulder to pin ratio from ratio 3.33 to 5.5 due to higher heat input. It is observed that, surface galling and faying surface defect is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Shoulder to pin ratio 5.5 shows lowest tensile strength while shoulder to pin diameter ratio 3.33 shows highest tensile strength with weld efficiency 91 % from based metal.

  8. Meandering instability of a viscous thread

    NASA Astrophysics Data System (ADS)

    Morris, Stephen W.; Dawes, Jonathan H. P.; Ribe, Neil M.; Lister, John R.

    2008-06-01

    A viscous thread falling from a nozzle onto a surface exhibits the famous rope-coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving with speed U , the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed [see S. Chiu-Webster and J. R. Lister, J. Fluid Mech. 569, 89 (2006)]. We experimentally studied this “fluid-mechanical sewing machine” in a more precise apparatus. As U is reduced, the steady catenary thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitude and frequency ω of the meandering close to the bifurcation. For smaller U , single-frequency meandering bifurcates to a two-frequency “figure-8” state, which contains a significant 2ω component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at still smaller U . More complex, highly hysteretic states with additional frequencies are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between two oscillatory modes with frequencies ω and 2ω . The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.

  9. Thread amplitudes and frequencies in a fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Morris, Stephen W.; Dawes, J. H. P.; Lister, John; Dalziel, Stuart

    2006-11-01

    A viscous thread falling on a surface exhibits the famous rope- coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving at speed U, the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed (1). We experimentally studied this fluid mechanical `sewing machine' in a new, more precise apparatus. As U is reduced, the stretched thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitudes A and frequency φ of the meandering close to the bifurcation. For small U, single- frequency meandering bifurcates to a two-frequency `figure 8' state, which contains a significant 2φ component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at smaller U. More complex, highly hysteretic states with additional harmonics are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between three oscillatory modes with frequencies φ, 2φ and 3φ. The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.(1) Chiu-Webster and Lister, J. Fluid Mech., in press.

  10. Meandering instability of a viscous thread.

    PubMed

    Morris, Stephen W; Dawes, Jonathan H P; Ribe, Neil M; Lister, John R

    2008-06-01

    A viscous thread falling from a nozzle onto a surface exhibits the famous rope-coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving with speed U , the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed [see S. Chiu-Webster and J. R. Lister, J. Fluid Mech. 569, 89 (2006)]. We experimentally studied this "fluid-mechanical sewing machine" in a more precise apparatus. As U is reduced, the steady catenary thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitude and frequency omega of the meandering close to the bifurcation. For smaller U , single-frequency meandering bifurcates to a two-frequency "figure-8" state, which contains a significant 2omega component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at still smaller U . More complex, highly hysteretic states with additional frequencies are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between two oscillatory modes with frequencies omega and 2omega . The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.

  11. Connect-disconnect coupling for preadjusted rigid shafts

    NASA Technical Reports Server (NTRS)

    Bajkowski, F. W.; Holmberg, A.

    1969-01-01

    Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.

  12. Chassis unit insert tightening-extract device

    NASA Technical Reports Server (NTRS)

    Haerther, L. W.; Zimmerman, P. A. (Inventor)

    1964-01-01

    The invention relates to the insertion and extraction of rack mounted electronic units and in particular to a screw thread insert tightening and extract device, for chassis units having a collar which may be rotatably positioned manually for the insert tightening or extraction of various associated chassis units, as desired.

  13. Transverse pinning versus intramedullary pinning in fifth metacarpal's neck fractures: A randomized controlled study with patient-reported outcome.

    PubMed

    Galal, Sherif; Safwat, Wael

    2017-01-01

    The 5th metacarpal fractures accounts for 38% of all hand fractures given that the neck is the weakest point in metacarpals, so neck fracture is the most common metacarpal fracture. Surgical fixation is also advocated for such fractures to prevent mal-rotation of the little finger which will lead to fingers overlap in a clenched fist. Various methods are available for fixation of such fractures, like intramedullary & transverse pinning. There are very few reports in the literature comparing both techniques. Authors wanted to compare outcomes and complications of transverse pinning versus intramedullary pinning in fifth metacarpal's neck fractures. A single-center, parallel group, prospective, randomized study was conducted at an academic Level 1 Trauma Center from October 2014 to December 2016. A total of 80 patients with 5th metacarpal's neck fractures were randomized to pinning using either transverse pinning (group A) or intramedullary pinning (group B). Patients were assessed clinically on range of motion, patient-reported outcome using the Quick-DASH (Disabilities of the Arm, Shoulder, and Hand) questionnaire & radiographically. Two blinded observers assessed outcomes. At final follow up for each patient (12 months) the statistically significant differences were observed in operative time, the transverse pinning group showed shorter operative time, as well as complication rate as complications were observed only in intramedullary pinning group. No differences were found in range of motion or the Quick -DASH score. Both techniques are equally safe and effective treatment option for 5th metacarpal's neck fractures. The only difference was shorter operative time & less incidence of complications in transverse pinning group. Level II, Therapeutic study.

  14. Generation of plate tectonics via grain-damage and pinning

    NASA Astrophysics Data System (ADS)

    Bercovici, D.; Ricard, Y. R.

    2012-12-01

    Weakening and shear localization in the lithosphere are essential ingredients for understanding how and whether plate tectonics is generated from mantle convection on terrestrial planets. The grain-damage and pinning mechanism of Bercovici & Ricard (2012) for lithospheric shear--localization proposes that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces that constrain mineral grains to ever smaller sizes regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreoever, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. This mechanism is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion from convective type flow and to influence plate evolution. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields are found to never recover or lose memory of the original configuration, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction and highly localized, weak and long lived acute plate-boundary junctions such as at the Aleution-Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets. References: Bercovici, D., Ricard, Y., 2012. Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning. Phys. Earth Planet. Int. 202-203, 27--55.

  15. Open Reduction With K-Wire Stabilization of Fracture Dislocations of the Mandibular Condyle: A Retrospective Review.

    PubMed

    Haghighi, Kayvon; Manolakakis, Manolis G; Balog, Connor

    2017-06-01

    The aim of this study was to determine the feasibility of direct transcortical stabilization of fracture dislocations of the mandibular condyle (FDMCs) using narrow-diameter non-threaded Kirschner wire (K-wire). This retrospective review reports on the treatment outcomes for 12 patients (15 fractures) with FDMCs treated with open reduction using transcortical 0.027-inch K-wire stabilization. Postoperative parameters of relevance included infection, facial nerve function, hardware removal, mandibular range of motion, and radiographic determination of fracture union. Three patients had bilateral FDMCs and 9 had unilateral FDMCs (age range at time of injury, 14 to 72 yr; mean age, 32 yr). Postoperative follow-up ranged from 6 weeks to 2 years. Four patients required removal of K-wire hardware for different reasons. K-wires were removed because of infection in 1 patient. Another patient required removal because of migration of the pin into the joint space. One pin was removed electively and another was removed for nonspecific postoperative symptoms that resolved after pin removal. Persistent facial nerve deficit was observed in 1 patient. Open reduction with transcortical K-wire stabilization can achieve satisfactory outcomes for the treatment of FDMC. Further investigation is needed in determining the efficacy of this fixation technique in the management of FDMC. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Influences of periodic mechanical deformation on pinned spiral waves

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Peng, Liang; Zheng, Qiang; Zhao, Ye-Hua; Ying, He-Ping

    2014-09-01

    In a generic model of excitable media, we study the behavior of spiral waves interacting with obstacles and their dynamics under the influences of simple periodic mechanical deformation (PMD). Depending on the characteristics of the obstacles, i.e., size and excitability, the rotation of a pinned spiral wave shows different scenarios, e.g., embedding into or anchoring on an obstacle. Three different drift phenomena induced by PMD are observed: scattering on small partial-excitable obstacles, meander-induced unpinning on big partial-excitable obstacles, and drifting around small unexcitable obstacles. Their underlying mechanisms are discussed. The dependence of the threshold amplitude of PMD on the characteristics of the obstacles to successfully remove pinned spiral waves on big partial-excitable obstacles is studied.

  17. Rotational Stiffness of Precast Beam-Column Connection using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Hashim, N.; Agarwal, J.

    2018-04-01

    Current design practice in structural analysis is to assume the connection as pinned or rigid, however this cannot be relied upon for safety against collapse because during services the actual connection reacts differently where the connection has rotated in relevance. This situation may lead to different reactions and consequently affect design results and other frame responses. In precast concrete structures, connections play an important part in ensuring the safety of the whole structure. Thus, investigates on the actual connection behavior by construct the moment-rotation relationship is significant. Finite element (FE) method is chosen for modeling a 3-dimensional beam-column connection. The model is built in symmetry to reduce analysis time. Results demonstrate that precast billet connection is categorized as semi-rigid connection with Sini of 23,138kNm/rad. This is definitely different from the assumption of pinned or rigid connection used in design practice. Validation were made by comparing with mathematical equation and small differences were achieved that led to the conclusion where precast billet connection using FE method is acceptable.

  18. Investigation of Friction Stir Welding of Al Metal Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    2003-01-01

    The innovative process of Friction Stir Welding (FSW) has generated tremendous interest since its inception about a decade or so ago since the first patent in 1991 by TWI of Cambridge, England. This interest has been seen in many recent international conferences and publications on the subject and relevant published literature. Still the process needs both intensive basic study of deformation mechanisms during this FSW process and analysis and feasibility study to evaluate production methods that will yield high quality strong welds from the stirring action of the appropriate pin tool into the weld plate materials. Development of production processes is a complex task that involves effects of material thickness, materials weldability, pin tool design, pin height, and pin shoulder diameter and related control conditions. The frictional heating with rotational speeds of the pin tool as it plunges into the material and the ensuing plastic flow arising during the traverse of the welding faying surfaces provide the known special advantages of the FSW process in the area of this new advanced joining technology.

  19. Cargo-Positioning System for Next-Generation Spacecraft

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Colton, Jonathan

    2006-01-01

    A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54-cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position- adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three - one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple-threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.

  20. Pine Ridge Indian Health Service Primary Care Resident Rotation: a summary.

    PubMed

    Jerde, O M; Vogt, H B

    1996-10-01

    The Pine Ridge Indian Health Service Primary Care Resident Rotation was officially established in January 1992 and operated through May 1996. Sponsored by an Indian Health Service grant, the rotation was conceived in an effort to help address the problem of recruitment and retention of physicians at Pin Ridge in the long term, while offering a unique educational experience for residents. Fifty-eight residents from 40 Family Practice, General Internal Medicine and General Pediatric Residency Programs in 18 states completed the rotation. Four of the rotation "graduates" are currently employed by the IHS at Pine Ridge and two other sites. A fifth physician provided short term service to a fourth site.

  1. Fixture for holding testing transducer

    DOEpatents

    Wagner, T.A.; Engel, H.P.

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  2. Fixture for holding testing transducer

    DOEpatents

    Wagner, Thomas A.; Engel, Herbert P.

    1984-01-01

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  3. Auto-adjustable pin tool for friction stir welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Oelgoetz, Peter A. (Inventor)

    1999-01-01

    An auto-adjusting pin tool for friction stir welding is presented wherein the pin tool automatically adjusts for welding materials of varying thicknesses, and the pin can be incrementally withdrawn from the workpieces thus eliminating any crater or keyhole in the weld. The inventive apparatus is comprised of a welding head housing a motor connected to a controller instrument package and an arbor supported by bearings. The arbor forms an interior cylinder and is encircled by a stationary slip ring though which are ported hydraulic passageways into the interior cylinder of the arbor such that a piston housed therein may be moved axially. Coupled to the piston is a pin tool which is treaded on its lower end and which is moveably seated in, and extending through, a shoulder housing having concave lower face. When welding, the rotating treaded end of the pin enters and stirs the workpieces while the lower face of the shoulder housing compacts the workpieces. As the welding head traverses the shoulder housing the controller senses any rising pressure on the lower face of the shoulder housing and withdraws the arbor to keep the pressure constant. At the same time, the piston moves towards the workpieces thus extending the pin further from the shoulder. This keeps the pin at a proper depth in the workpieces regardless of their thicknesses. As the weld terminates this same operation can be used to incrementally withdraw the pin during the final part of the traverse, thus eliminating any keyhole or crater that would otherwise be created.

  4. Reciprocating piston pump system with screw drive

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor); Moore, Nicholas R. (Inventor)

    1981-01-01

    A pump system of the reciprocating piston type is described, which facilitates direct motor drive and cylinder sealing. A threaded middle potion of the piston is engaged by a nut connected to rotate with the rotor of an electric motor, in a manner that minimizes loading on the rotor by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded piston portion, with an oil-carrying groove in the nut being interrupted. A fluid emitting seal located at the entrance to each cylinder, can serve to center the piston within the cylinder, wash the piston, and to aid in sealing. The piston can have a long stroke to diameter ratio to minimize reciprocations and wear on valves at high pressures. The voltage applied to the motor can be reversed prior to the piston reaching the end of its stroke, to permit pressure on the piston to aid in reversing the motor.

  5. External Tank (ET) Bipod Fitting Bolted Attachment Locking Insert Performance

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Wilson, Tim R.; Elliott, Kenny B.; Raju, Ivatury S.; McManamen, John

    2008-01-01

    Following STS-107, the External Tank (ET) Project implemented corrective actions and configuration changes at the ET bipod fitting. Among the corrective actions, the existing bolt lock wire which provided resistance to potential bolt rotation was removed. The lock wire removal was because of concerns with creating voids during foam application and potential for lock wire to become debris. The bolts had been previously lubricated to facilitate assembly but, because of elimination of the lock wire, the ET Project wanted to enable the locking feature of the insert. Thus, the lubrication was removed from bolt threads and instead applied to the washer under the bolt head. Lubrication is necessary to maximize joint pre-load while remaining within the bolt torque specification. The locking feature is implemented by thread crimping in at four places in the insert. As the bolt is torqued into the insert the bolt threads its way past the crimped parts of the insert. This provides the locking of the bolt, as torque is required to loosen the joint after clamping.

  6. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  7. Torsional stiffness after subtalar arthrodesis using second generation headless compression screws: Biomechanical comparison of 2-screw and 3-screw fixation.

    PubMed

    Riedl, Markus; Glisson, Richard R; Matsumoto, Takumi; Hofstaetter, Stefan G; Easley, Mark E

    2017-06-01

    Subtalar joint arthrodesis is a common operative treatment for symptomatic subtalar arthrosis. Because excessive relative motion between the talus and calcaneus can delay or prohibit fusion, fixation should be optimized, particularly in patients at risk for subtalar arthrodesis nonunion. Tapered, fully-threaded, variable pitch screws are gaining popularity for this application, but the mechanical properties of joints fixed with these screws have not been characterized completely. We quantified the torsion resistance of 2-screw and 3-screw subtalar joint fixation using this type of screw. Ten pairs of cadaveric subtalar joints were prepared for arthrodesis and fixed using Acutrak 2-7.5 screws. One specimen from each pair was fixed with two diverging posterior screws, and the contralateral joint was fixed using two posterior screws and a third screw directed through the anterior calcaneus into the talar neck. Internal and external torsional loads were applied and joint rotation and torsional stiffness were measured at two torque levels. Internal rotation was significantly less in specimens fixed with three screws. No difference was detectable between 2-screw and 3-screw fixation in external rotation or torsional stiffness in either rotation direction. Both 2-screw and 3-screw fixation exhibited torsion resistance surpassing that reported previously for subtalar joints fixed with two diverging conventional lag screws. Performance of the tapered, fully threaded, variable pitch screws exceeded that of conventional lag screws regardless of whether two or three screws were used. Additional resistance to internal rotation afforded by a third screw placed anteriorly may offer some advantage in patients at risk for nonunion. Copyright © 2017. Published by Elsevier Ltd.

  8. An argument for weakly magnetized, slowly rotating progenitors of long gamma-ray bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno Méndez, Enrique, E-mail: enriquemm@astro.unam.mx

    2014-01-20

    Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BHmore » formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B ≲ 10{sup 2} G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.« less

  9. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon

    2009-07-01

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  10. Connector acts as quick coupling in coaxial cable application

    NASA Technical Reports Server (NTRS)

    Brejcha, A. G., Jr.

    1966-01-01

    Quick-coupling connector whose inner shells are threaded to the cable ends and whose outer shells have tracks that register in channels machined in the inner shells are rotated 45 deg to effect a locking of the coupling. This connector faithfully reproduces excellent electrical characteristics no matter how frequently assembled and disassembled.

  11. Vortex creep and the internal temperature of neutron stars. I - General theory

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.

    1984-01-01

    The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.

  12. STEADY GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC INFLOW/OUTFLOW SOLUTION ALONG LARGE-SCALE MAGNETIC FIELDS THAT THREAD A ROTATING BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Nakamura, Masanori; Hirotani, Kouichi

    2015-03-01

    General relativistic magnetohydrodynamic (GRMHD) flows along magnetic fields threading a black hole can be divided into inflow and outflow parts, according to the result of the competition between the black hole gravity and magneto-centrifugal forces along the field line. Here we present the first self-consistent, semi-analytical solution for a cold, Poynting flux–dominated (PFD) GRMHD flow, which passes all four critical (inner and outer, Alfvén, and fast magnetosonic) points along a parabolic streamline. By assuming that the dominating (electromagnetic) component of the energy flux per flux tube is conserved at the surface where the inflow and outflow are separated, the outflowmore » part of the solution can be constrained by the inflow part. The semi-analytical method can provide fiducial and complementary solutions for GRMHD simulations around the rotating black hole, given that the black hole spin, global streamline, and magnetizaion (i.e., a mass loading at the inflow/outflow separation) are prescribed. For reference, we demonstrate a self-consistent result with the work by McKinney in a quantitative level.« less

  13. Russ Donnelly's research at the University of Oregon

    NASA Astrophysics Data System (ADS)

    Niemela, Joseph

    2015-11-01

    Coming to the University of Oregon in 1966, Russ Donnelly built up a strong research activity having two threads within hydrodynamics: the flow of ordinary fluids and that of superfluids. Vortices-quantized and classical-were at the heart of his research. His 1991 book ``Quantized Vortices in Helium II,'' by now a standard reference for researchers and students, elucidated some of it. To produce vortices Russ brought from Chicago two enormous rotating tables, based on 1-m diameter industrial lathe chucks obtained from General Motors. They were also used for classical systems such as Taylor-Couette flow (to generate strong Coriolis forces) and thermal convection, where the properties of rotation-including early experimental investigations of the Kuppers-Lortz instability-were studied. Another common thread in his research was the modulation of control parameters leading to Stokes layer effects, both thermal and viscous. In the early `90s, Russ and his group turned their attention to cryogenic turbulence in normal and superfluid systems, creating what has now become a small industry and a well-established sub-field within low temperature physics.

  14. Stud hardware with self-contained stud anti-rotation feature and method of installing studs

    DOEpatents

    Kartik, John S.; Richardson, William M.

    1986-03-04

    Disclosed herein is a method and apparatus for preventing the rotation of a stud member during preloading. The apparatus comprises a stud member having a shaft portion extending into the member to be clamped and a hex or double hex portion carrying a locking nut. Extending outward from the hex or double hex portion of the stud there is a threaded portion carrying a nut which is torqued to preload the stud. Between the locking nut and the member to be clamped is a locking ring which engages the locking nut to prevent the stud from rotating during preloading. Also disclosed is a method of preloading a stud without the use of an external restraint to prevent the stud from rotating when a torque is applied.

  15. Bellows sealed plug valve

    DOEpatents

    Dukas, Jr., Stephen J.

    1990-01-01

    A bellows sealed plug valve includes a valve body having an inlet passage and an outlet passage, a valve chamber between the inlet and outlet passages. A valve plug has substantially the same shape as the valve chamber and is rotatably disposed therein. A shaft is movable linearly in response to a signal from a valve actuator. A bellows is sealingly disposed between the valve chamber and the valve actuator and means are located between the bellows and the valve plug for converting linear movement of the shaft connected to the valve actuator to rotational movement of the plug. Various means are disclosed including helical thread mechanism, clevis mechanism and rack and pinion mechanism, all for converting linear motion to rotational motion.

  16. Development of robots and application to industrial processes

    NASA Technical Reports Server (NTRS)

    Palm, W. J.; Liscano, R.

    1984-01-01

    An algorithm is presented for using a robot system with a single camera to position in three-dimensional space a slender object for insertion into a hole; for example, an electrical pin-type termination into a connector hole. The algorithm relies on a control-configured end effector to achieve the required horizontal translations and rotational motion, and it does not require camera calibration. A force sensor in each fingertip is integrated with the vision system to allow the robot to teach itself new reference points when different connectors and pins are used. Variability in the grasped orientation and position of the pin can be accomodated with the sensor system. Performance tests show that the system is feasible. More work is needed to determine more precisely the effects of lighting levels and lighting direction.

  17. Ultrasonic stir welding process and apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  18. Composite drill pipe

    DOEpatents

    Leslie, James C [Fountain Valley, CA; Leslie, II, James C.; Heard, James [Huntington Beach, CA; Truong, Liem , Josephson; Marvin, Neubert [Huntington Beach, CA; Hans, [Anaheim, CA

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  19. Threaded Fastener Positive Anti-Rotation Locking Device

    NASA Technical Reports Server (NTRS)

    Hartman, Timm E. (Inventor); Hanlon, Casey (Inventor); Laidlaw, Mitchell (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An apparatus includes a shaft, a device, a fastener, and an anti-rotation clip. The shaft is configured for rotation. The device is mounted on, and surrounds at least a portion of, the shaft, and has first and second protrusions that are formed on one side and are spaced apart to define a tab space. The fastener is rotationally mounted relative to the shaft, and includes a tab slot formed in its outer surface that extends radially inwardly and is disposed radially inwardly of the tab space. The anti-rotation clip includes a main body portion and a head portion that has a first tab portion and a second tab portion. At least a portion the main body portion is disposed between the device and the fastener, the first tab is disposed in the tab space, and the second tab is disposed in the tab slot.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, C.B.

    This patent describes a double nut setting tool and liner hanger assembly. It comprises a tool which is releasably coupled to the liner hanger by a nut means threadedly connected to the liner hanger: upon reaching a desired setting location, hanging the liner hanger in the well to support the weight of the liner and to permit rotation of the liner: manipulating the string of pipe to simultaneously rotate the nut means to a released condition relative to the liner hanger while rotating a lock nut in a clutch housing into a locking position in the clutch housing to engagemore » the clutch housing with the liner; and applying weight to the string of pipe to engage the clutch housing with the liner when the coupling nut is released and the lock nut is in a locking position so that the liner can be rotated by rotation of the string of pipe after the coupling nut is released.« less

  1. X-ray Photon Counting Using 100 MHz Ready-Made Silicon P-Intrinsic-N X-ray Diode and Its Application to Energy-Dispersive Computed Tomography

    NASA Astrophysics Data System (ADS)

    Kodama, Hajime; Watanabe, Manabu; Sato, Eiichi; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-07-01

    X-ray photons are directly detected using a 100 MHz ready-made silicon P-intrinsic-N X-ray diode (Si-PIN-XD). The Si-PIN-XD is shielded using an aluminum case with a 25-µm-thick aluminum window and a BNC connector. The photocurrent from the Si-PIN-XD is amplified by charge sensitive and shaping amplifiers, and the event pulses are sent to a multichannel analyzer (MCA) to measure X-ray spectra. At a tube voltage of 90 kV, we observe K-series characteristic X-rays of tungsten. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by linear scanning at a tube current of 2.0 mA. The exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. At a tube voltage of 90 kV, the maximum count rate is 150 kcps. We carry out PC-CT using gadolinium media and confirm the energy-dispersive effect with changes in the lower level voltage of the event pulse using a comparator.

  2. Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets

    NASA Astrophysics Data System (ADS)

    Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar

    2013-01-01

    Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.

  3. PREDICTING MINESOIL EROSION POTENTIAL

    EPA Science Inventory

    Two experimental plots were instrumented with erosion pins to study the correspondence between point erosion and erosion over an area on strip mine soil. Using a rotating boom rainfall simulator, data were collected by sampling the runoff every five minutes for the duration of th...

  4. Tool for Guiding An Auger

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.

    1983-01-01

    Auger and Ram have same pitch, which minimizes damage to workpiece and load carried by auger. Auger firmly fastened onto ram shaft by screw and kept from rotating on shaft by slot machined into end of stem and male driving lug that engages slot. Used to install threaded studs in plastic or rubber where impractical to mold them in.

  5. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading the way for future circumferential weld implementation.

  6. Altitude-Limiting Airbrake System for Small to Medium Scale Rockets

    NASA Technical Reports Server (NTRS)

    Aaron, Robert F., III

    2013-01-01

    The goal of the overall internship opportunity this semester was to learn and practice the elements of engineering design through direct exposure to real engineering problems. The primary exposure was to design and manufacture an airbrake device for use with small-medium scale rocket applications. The idea was to take the presented concept of a solution and transform said concept into a reliable fully-functioning and reusable mechanism. The mechanism was to be designed as an insurance feature so that the overall altitude of a rocket with relatively undetermined engine capabilities does not unexpectedly exceed the imposed 10,000 foot ceiling, per range requirements. The airbrake concept was introduced to the Prototype Development Lab as a rotation-driven four tiered offset track pin mechanism, i.e. the airbrake was deployed by rotating a central shaft attached directly to the bottom plate. The individual airbrake fins were subsequently deployed using multiple plates with tracks of offset curvature. The fins were created with guide pins to follow the tracks in each of the offset plates, thus allowing the simultaneous rotational deployment of all fins by only rotating one plate. The concept of this solution was great; though it did not function in application. The rotating plates alone brought up problems like the entire back half of the rocket rotating according to the motion of the aforementioned base plate. Subsequently, the solution currently under development became a static linear actuator-driven spring-loaded fin release system. This solution is almost instantaneously triggered electronically when the avionics detect that the rocket has reached the calculated altitude of deceleration. This altitude will allow enough time remaining to the overall ceiling to adequately decelerate the rocket prior to reaching the ceiling.

  7. Shotgun cartridge rock breaker

    DOEpatents

    Ruzzi, Peter L.; Morrell, Roger J.

    1995-01-01

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  8. Germanium photodetectors fabricated on 300 mm silicon wafers for near-infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Sood, Ashok K.

    2017-09-01

    SiGe p-i-n photodetectors have been fabricated on 300 mm (12") diameter silicon (Si) wafers utilizing high throughput, large-area complementary metal-oxide semiconductor (CMOS) technologies. These Ge photodetectors are designed to operate in room temperature environments without cooling, and thus have potential size and cost advantages over conventional cooled infrared detectors. The two-step fabrication process for the p-i-n photodetector devices, designed to minimize the formation of defects and threading dislocations, involves low temperature epitaxial growth of a thin p+ (boron) Ge seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated uniform layer compositions with well defined layer interfaces and reduced dislocation density. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) was likewise employed to analyze the doping levels of the p+ and n+ layers. Current-voltage (I-V) measurements demonstrated that these SiGe photodetectors, when exposed to incident visible-NIR radiation, exhibited dark currents down below 1 μA and significant enhancement in photocurrent at -1 V. The zero-bias photocurrent was also relatively high, showing a minimal drop compared to that at -1 V bias.

  9. Actuator assembly including a single axis of rotation locking member

    DOEpatents

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  10. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  11. Magnetic fields threading black holes: restrictions from general relativity and implications for astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David

    2017-07-01

    The idea that black hole spin is instrumental in the generation of powerful jets in active galactic nuclei and X-ray binaries is arguably the most contentious claim in black hole astrophysics. Because jets are thought to originate in the context of electromagnetism, and the modeling of Maxwell fields in curved spacetime around black holes is challenging, various approximations are made in numerical simulations that fall under the guise of `ideal magnetohydrodynamics'. But the simplifications of this framework may struggle to capture relevant details of real astrophysical environments near black holes. In this work, we highlight tension between analytic and numerical results, specifically between the analytically derived conserved Noether currents for rotating black hole spacetimes and the results of general relativistic numerical simulations (GRMHD). While we cannot definitively attribute the issue to any specific approximation used in the numerical schemes, there seem to be natural candidates, which we explore. GRMHD notwithstanding, if electromagnetic fields around rotating black holes are brought to the hole by accretion, we show from first principles that prograde accreting disks likely experience weaker large-scale black hole-threading fields, implying weaker jets than in retrograde configurations.

  12. a Numerical Method for Stability Analysis of Pinned Flexible Mechanisms

    NASA Astrophysics Data System (ADS)

    Beale, D. G.; Lee, S. W.

    1996-05-01

    A technique is presented to investigate the stability of mechanisms with pin-jointed flexible members. The method relies on a special floating frame from which elastic link co-ordinates are defined. Energies are easily developed for use in a Lagrange equation formulation, leading to a set of non-linear and mixed ordinary differential-algebraic equations of motion with constraints. Stability and bifurcation analysis is handled using a numerical procedure (generalized co-ordinate partitioning) that avoids the tedious and difficult task of analytically reducing the system of equations to a number equalling the system degrees of freedom. The proposed method was then applied to (1) a slider-crank mechanism with a flexible connecting rod and crank of constant rotational speed, and (2) a four-bar linkage with a flexible coupler with a constant speed crank. In both cases, a single pinned-pinned beam bending mode is employed to develop resonance curves and stability boundaries in the crank length-crank speed parameter plane. Flip and fold bifurcations are common occurrences in both mechanisms. The accuracy of the proposed method was also verified by comparison with previous experimental results [1].

  13. Double acting bit holder

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1994-01-01

    A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.

  14. Domain wall remote pinning in magnetic nano wires

    NASA Astrophysics Data System (ADS)

    Read, Dan; Miguel, Jorge; Maccherozzi, Francesco; Cavill, Stuart; Dhesi, Sarnjeet; Cardiff University Collaboration; Diamond Light Source Collaboration

    2013-03-01

    In the current race for information storage media with ever increasing density the position of magnetic domain walls, the region in a magnetic system where the local magnetization continually rotates its direction between adjacent magnetic domains, is one of the most promising routes for future storage media devices. Information storage requires ultrafast read-out and writing operations, but domain walls need to be pinned so that the information is safely stored in the long term. Here we investigate the use of remote magnetostatic charges to trap domain walls. By using X-ray photoelectron emission microscopy we have followed the position of domain walls of opposite charge being pinned or repelled by pinning potentials of increasing strength. Micromagnetic simulations show an excellent agreement with the experimental results. We demonstrate the attractive or repulsive character of the interaction between domain wall and trap depending upon the sign of their magnetic charges. These quasi-static experiments are the antecedent to ultrafast time-resolved XMCD-PEEM experiments where the spin-transfer torque effect will be studied dynamically by applying picosecond-long current pulses across the magnetic nanowire.

  15. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  16. Influence of excitability on unpinning and termination of spiral waves.

    PubMed

    Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2014-11-01

    Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not.

  17. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  18. Debris protection cover assembly for cable connectors

    NASA Technical Reports Server (NTRS)

    Yovan, Roger D. (Inventor)

    1999-01-01

    A protective cover assembly for an end of a cable connector having a cable housing that encloses a plurality of connective pins or sockets and that satisfies all requirements for space applications. A connector body flange is formed at the extremity of a cable and is positioned so that it may register with a corresponding connector body flange on the end of a companion cable to which a connection is to be made, one cable end having cable lead pins and the companion cable end having lead sockets with which the pins register. A latch mechanism having a latch housing is received in the connector body flange and a crank connected to a manually rotatable cap actuates a spring-loaded latch element that is engageable with a connector body flange to secure or to release the cover assembly with the simple twisting motion of the cap, thereby simplifying the task of effecting coupling and decoupling of the cable ends.

  19. Dynamics of spiral waves rotating around an obstacle and the existence of a minimal obstacle

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Feng, Xia; Li, Teng-Chao; Qu, Shixian; Wang, Xingang; Zhang, Hong

    2017-05-01

    Pinning of vortices by obstacles plays an important role in various systems. In the heart, anatomical reentry is created when a vortex, also known as the spiral wave, is pinned to an anatomical obstacle, leading to a class of physiologically very important arrhythmias. Previous analyses of its dynamics and instability provide fine estimates in some special circumstances, such as large obstacles or weak excitabilities. Here, to expand theoretical analyses to all circumstances, we propose a general theory whose results quantitatively agree with direct numerical simulations. In particular, when obstacles are small and pinned spiral waves are destabilized, an accurate explanation of the instability in two-dimensional media is provided by the usage of a mapping rule and dimension reduction. The implications of our results are to better understand the mechanism of arrhythmia and thus improve its early prevention.

  20. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  1. MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard

    The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that amore » portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast nuts at a constant input torque and resulting clamp loads were recorded continuously. The clamp load data was used to determine the range of clamp loads to be expected. The bolts were driven to failure. The clamp load corresponding to the target input of 18.5 Nm was recorded for each fastener. In a like fashion, a second set of experiments were run with cast magnesium nuts and ALtracs thread forming fasteners, (a widely used thread forming fastener suitable for magnesium applications). Again all clamp loads were recorded and analyzed similarly to the Taptites in aluminum cast nuts. Results from previous work performed on the same test cell for a Battelle project using standard M8 bolts into standard M8 nuts were included as a comparator for a standard bolt and nut application. The results for the thread forming fasteners in aluminum cast holes were well within industry expectations of +/- 30% for out of the box and robustness range testing. The results for the dry and lubed extreme conditions were only slightly higher than industry expectations at +/- 35.6%. However, when compared to the actual Battelle results (+/- 40%) for a standard bolt and nut the tread forming fasteners performed slightly better. The results for the thread forming fasteners in magnesium cast holes were all well within industry expectations of +/- 30% for all three conditions. The robustness range (.05mm larger and smaller holes than the expected wear pattern of a die casting die at full life cycle) results also fell within the industry expectations for standard threaded fasteners. These results were very encouraging. It was concluded that this work showed that clamp load variation with thread forming fasteners is consistent with industry expectations for standard steel bolts and nuts at +/- 30%. There does not appear to be any significant increase in clamp load variation due to the application of thread forming fasteners in as-cast holes of aluminum or magnesium over the effective life of a die casting mold. The fully implemented potential benefit of thread forming fasteners in as-cast holes of aluminum and magnesium is estimated to be 6 trillion Btu per year for North America. Economic benefit is estimated to be nearly $800 million per year. Environmental benefits and quality improvements will also result from full implementation of this technology.« less

  2. Process Model for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Adams, Glynn

    1996-01-01

    Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the forging affect of the shoulder. The energy balance at the boundary of the plastic region with the environment required that energy flow away from the boundary in both radial directions. One resolution to this problem may be to introduce a time dependency into the process model, allowing the energy flow to oscillate across this boundary. Finally, experimental measurements are needed to verify the concepts used here and to aid in improving the model.

  3. A tale of two velocities: Threading versus slicing

    NASA Astrophysics Data System (ADS)

    Gharechahi, Razieh; Nouri-Zonoz, Mohammad; Tavanfar, Alireza

    One of the important quantities in cosmology and astrophysics is the 3-velocity of an object. Specifically, when the gravitational fields are strong, one should require the employment of general relativity both in its definition and measurement. Looking into the literature for GR-based definitions of 3-velocity, one usually finds different ad hoc definitions applied according to the case under consideration. Here, we introduce and analyze systematically the two principal definitions of 3-velocity assigned to a test particle following the timelike trajectories in stationary spacetimes. These definitions are based on the 1 + 3 (threading) and 3 + 1 (slicing) spacetime decomposition formalisms and defined relative to two different sets of observers. After showing that Synge’s definition of spatial distance and 3-velocity is equivalent to those defined in the 1 + 3 (threading) formalism, we exemplify the differences between these two definitions by calculating them for particles in circular orbits in axially symmetric stationary spacetimes. Illustrating its geometric nature, the relative linear velocity between the corresponding observers is obtained in terms of the spacetime metric components. Circular particle orbits in the Kerr spacetime, as the prototype and the most well known of stationary spacetimes, are examined with respect to these definitions to highlight their observer-dependent nature. We also examine the Kerr-NUT spacetime in which the NUT parameter, contributing to the off-diagonal terms in the metric, is mainly interpreted not as a rotation parameter but as a gravitomagnetic monopole charge. Finally, in a specific astrophysical setup which includes rotating black holes, it is shown how the local velocity of an orbiting star could be related to its spectral line shifts measured by distant observers.

  4. A double-superconducting axial bearing system for an energy storage flywheel model

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  5. Stripping the Sheath From Stranded Cables

    NASA Technical Reports Server (NTRS)

    Prisk, A. L.; Rotta, J. W.

    1985-01-01

    Device similar to tubing cutter removes tough plastic cover. Insulation stripper is 3 in. (7.6 cm) long and 1.5 (3.8 cm) in diameter. Two rollers are small-diameter bearings. Cutter blade journaled for rotation between pair of similar bearings. Bearings either pin or ball types of suitable dimensions.

  6. Development of stiffer and ductile glulam portal frame

    NASA Astrophysics Data System (ADS)

    Komatsu, Kohei

    2017-11-01

    Portal frame structures, which are constituted of straight glulam beams and columns connected semi-rigidly by steel insert gusset plate with a lot of drift pins, were the first successful glulam structures widely used in Japan. In addition to this connection system, the author invented also a new type of jointing devise for glulam structures named as "Lagscrewbolt" which had a full threaded portion at inner part to grip wooden member as well as another thread part at the end of shank to connect with other member. The initial type of "Lagscrewbolt" was successfully applied to a various types of glulam buildings which could be rapidly built-up on construction site. Its strength performance, however, was rather brittle therefore the improvement of the ductility was a crucial research subject. In order to give a sufficient ductility on the "Lagscrewbolted joint system", so-called "Slotted Bolted Connection" concept was adopted for making use of large energy dissipation characteristics due to high-tension bolted steel connection with slotted bolt holes. Static & dynamic performance of glulam portal frame specimens was evaluated by static cyclic loading test as well as shaking table test. Current latest form of the jointing system can show very high ductility as well as stable hysteretic cyclic loops by inserting brass-shim between steel-to-steel friction interfaces

  7. Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity

    DTIC Science & Technology

    2013-01-01

    response for V polarization is 70 times greater than for H. The DR for X0 shows anisotropic exchange splitting23, but the polarization anisotropy in the...rotation pulse power and is indicative of damped Rabi oscillations of the electron spin. The peaks at 3 mW and 11 mW correspond to rotation pulses with...system in a p-i-n junction. Opt. Express 17, 18651–18658 (2009). 9. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic

  8. Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates

    NASA Astrophysics Data System (ADS)

    Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.

    2015-11-01

    Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.

  9. Repair of Tibiotarsal Rotation in 7 Chukar Partridges (Alectoris chukar) and 12 Domestic Pigeons (Columba livia domestica) with Type-2 External Skeletal Fixator Intramedullary Pin Tie-in.

    PubMed

    Kaya, Didar Aydin; Özsoy, Serhat

    2017-09-01

    Rotational deformities of the long bones affect various avian species. Tibiotarsal rotation may cause the leg to deviate up to 180° from the dorsoplantar axis in a matter of days, thus preventing the birds from walking freely and leading to the inability to stand. In this study, tibiotarsal rotation observed in pigeons and partridges was managed by creating a closed fracture in the tibiotarsus and then, following reduction, stabilizing it with an intramedullary tie-in Type 2 external skeletal fixation system. Functional healing was achieved in 12 pigeons (Columba livia domestica; mean healing time, 38 days) and 7 partridges (Alectoris chukar; mean healing time, 40 days). This treatment was successful. In small bird species (<1 kg), this simple and inexpensive surgical intervention may provide a highly effective method for the treatment of rotational deformities.

  10. Hatch cover

    NASA Technical Reports Server (NTRS)

    Allton, Charles S. (Inventor); Okane, James H. (Inventor)

    1989-01-01

    This invention relates to a hatch and more particularly to a hatch for a space vehicle where the hatch has a low volume sweep and can be easily manipulated from either side of the hatch. The hatch system includes an elliptical opening in a bulkhead and an elliptical hatch member. The hatch cover system includes an elliptical port opening in a housing and an elliptical cover member supported centrally by a rotational bearing for rotation about a rotational axis normal to the cover member and by pivot pins in a gimbal member for pivotal movement about axes perpendicular to the rotational axis. Arm members support the gimbal member pivotally by pivot members so that upon rotation and manipulation the cover member can be articulatedly moved from a closed position to the port opening to an out of the way position with a minimum of volume sweep by the cover member.

  11. New Tool Creates a Big Stir

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new self-adjusting, retractable pin tool for friction stir welding is now used in the manufacturing of components for NASA Space Shuttles. Friction stir welding is a process that makes straight-line welds without bringing the parent material to a liquid state. This is accomplished through high-speed rotation, which generates frictional heat between the welding tool and the piece being welded. This heat causes the material to soften to the point of plasticity without allowing it to melt. The plasticized material is then transferred from the front edge of the welding tool to the trail edge, where it joins the pieces being welded. However, a major flaw of this method is its reliance on a single-piece pin tool. The weld is left unfinished and a hole remains where the pin was inserted. The hole must be covered with a rivet in order to preserve the integrity of the weld. The NASA-developed pin tool, however, eliminates the need for this finishing step, as its retraction allows continuous rewelding at lesser depths, until the hole is completely closed. With this NASA technology, welding of higher strength alloys, as well as non-planer and variable thickness structures can be achieved.

  12. Thermo-Mechanical Processing in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy

    2003-01-01

    Friction stir welding is a solid-phase joining, or welding process that was invented in 1991 at The Welding Institute (TWI). The process is potentially capable of joining a wide variety of aluminum alloys that are traditionally difficult to fusion weld. The friction stir welding (FSW) process produces welds by moving a non-consumable rotating pin tool along a seam between work pieces that are firmly clamped to an anvil. At the start of the process, the rotating pin is plunged into the material to a pre-determined load. The required heat is produced by a combination of frictional and deformation heating. The shape of the tool shoulder and supporting anvil promotes a high hydrostatic pressure along the joint line as the tool shears and literally stirs the metal together. To produce a defect free weld, process variables (RPM, transverse speed, and downward force) and tool pin design must be chosen carefully. An accurate model of the material flow during the process is necessary to guide process variable selection. At MSFC a plastic slip line model of the process has been synthesized based on macroscopic images of the resulting weld material. Although this model appears to have captured the main features of the process, material specific interactions are not understood. The objective of the present research was to develop a basic understanding of the evolution of the microstructure to be able to relate it to the deformation process variables of strain, strain rate, and temperature.

  13. Composite drill pipe and method for forming same

    DOEpatents

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

    2012-10-16

    A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

  14. Sealing Assembly for Sealing a Port and the Like

    NASA Technical Reports Server (NTRS)

    Haas, Jon W. (Inventor); Haupt, Charles W. (Inventor)

    2000-01-01

    The sealing assembly for a port of a valve or the like is disclosed. In detail, the sealing assembly includes the port having a circular shaped end with a circular shaped knife-edge thereon. The sealing assembly further includes a hollow cap having a closed first end with an aperture therethrough and an open second end. The cap further includes internal threads adapted to mate with the external threads of the port. A gasket is mounted within the cap having flat first and second principle sides and made of a deformable metal, the first principle side of the gasket for mounting against the circular shaped knife edge of the port. A plunger having a circular shaped disc portion is adapted to fit within the hollow cap and is engagable with the first principle surface of the gasket and includes a shaft portion extending out of the aperture. The cap and shaft of the plunger include external wrenching flats. Thus when the cap is screwed onto the port and the plunger is prevented from rotating by a wrench mounted on the wrenching flats of the shaft portion of the plunger, the gasket is forced into engagement with the knife edge in pure compression and no rotation of the gasket occurs causing the knife edge to locally deform the gasket sealing of the port.

  15. Stuck threaded member extractor tool and extraction methods

    DOEpatents

    Roscosky, James M.; Essay, Shane M.

    2016-02-02

    Disclosed is a tool having a tapered first portion configured to translate a rotational force to the stuck member, a second portion connecting with the first portion and configured to translate the rotational force to the tapered first portion, a planar tip at an end of the first portion and perpendicular to a central axis passing through the first portion and the second portion, a plurality of left-handed splines extending helically around the central axis from the tip toward the second portion, a driver engaged with the second portion and configured to receive a third rotational force from a mechanical manipulator, and a leak seal connected to the driver and configured to form a seal around the stuck member and at least a portion of the driver and prevent gases opposite the stuck member from escaping.

  16. Wiping Metal Transfer in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Much evidence suggests that as the friction stir pin-tool moves along a weld seam the displacement of metal takes place by a wiping action at the surface of a plug of metal that rotates with the tool. The wiping model is explained and some consequences for the friction stir welding process are drawn.

  17. Interaction between spiral and paced waves in cardiac tissue

    PubMed Central

    Agladze, Konstantin; Kay, Matthew W.; Krinsky, Valentin; Sarvazyan, Narine

    2010-01-01

    For prevention of lethal arrhythmias, patients at risk receive implantable cardioverter-defibrillators, which use high-frequency antitachycardia pacing (ATP) to convert tachycardias to a normal rhythm. One of the suggested ATP mechanisms involves paced-induced drift of rotating waves followed by their collision with the boundary of excitable tissue. This study provides direct experimental evidence of this mechanism. In monolayers of neonatal rat cardiomyocytes in which rotating waves of activity were initiated by premature stimuli, we used the Ca2+-sensitive indicator fluo 4 to observe propagating wave patterns. The interaction of the spiral tip with a paced wave was then monitored at a high spatial resolution. In the course of the experiments, we observed spiral wave pinning to local heterogeneities within the myocyte layer. High-frequency pacing led, in a majority of cases, to successful termination of spiral activity. Our data show that 1) stable spiral waves in cardiac monolayers tend to be pinned to local heterogeneities or areas of altered conduction, 2) overdrive pacing can shift a rotating wave from its original site, and 3) the wave break, formed as a result of interaction between the spiral tip and a paced wave front, moves by a paced-induced drift mechanism to an area where it may become unstable or collide with a boundary. The data were complemented by numerical simulations, which was used to further analyze experimentally observed behavior. PMID:17384124

  18. Three point lead screw positioning apparatus for a cavity tuning plate

    NASA Technical Reports Server (NTRS)

    Calco, Frank S. (Inventor)

    1993-01-01

    Three lead screws are provided for adjusting the position of a traversing plate. Each of the three lead screws is threaded through a collar that is press fitted through the center of one of three pinion gears. A sun gear meshes with all three pinion gears and transversely moves the three lead screws upon actuation of a drive gear. The drive gear meshes with the sun gear and is driven by a handle or servomotor. When the handle or servomotor rotates the drive gear, the sun gear rotates causing the three pinion gears to rotate, thus, causing transverse movement of the three lead screws and, accordingly, transverse movement of the transversing plate. When the drive gear rotates, the traversing plate is driven in and out of a microwave cavity. Thus, the length or size of the cavity can be tuned while maintaining the traversing plate in an exact parallel relationship with an opposing plate on another end of the cavity.

  19. [Open double-row rotator cuff repair using the LASA-DR screw].

    PubMed

    Schoch, C; Geyer, S; Geyer, M

    2016-02-01

    Safe and cost-effective rotator-cuff repair. All types of rotator cuff lesions. Frozen shoulder, rotator cuff mass defect, defect arthropathy. Extensive four-point fixation on the bony footprint is performed using the double-row lateral augmentation screw anchor (LASA-DR) with high biomechanical stability. Following mobilization of the tendons, these are refixed in the desired configuration first medially and then laterally. To this end, two drilling channels (footprint and lateral tubercle) are created for each screw. Using the shuttle technique, a suture anchor screw is reinforced with up to four pairs of threads. The medial row is then pierced and tied, and the sutures that have been left long are tied laterally around the screw heads (double row). 4 Weeks abduction pillow, resulting in passive physiotherapy, followed by initiation of active assisted physiotherapy. Full weight-bearing after 4-6 months. Prospective analysis of 35 consecutive Bateman-III lesions with excellent results and low rerupture rate (6%).

  20. Three point lead screw positioning apparatus for a cavity tuning plate

    NASA Astrophysics Data System (ADS)

    Calco, Frank S.

    1993-09-01

    Three lead screws are provided for adjusting the position of a traversing plate. Each of the three lead screws is threaded through a collar that is press fitted through the center of one of three pinion gears. A sun gear meshes with all three pinion gears and transversely moves the three lead screws upon actuation of a drive gear. The drive gear meshes with the sun gear and is driven by a handle or servomotor. When the handle or servomotor rotates the drive gear, the sun gear rotates causing the three pinion gears to rotate, thus, causing transverse movement of the three lead screws and, accordingly, transverse movement of the transversing plate. When the drive gear rotates, the traversing plate is driven in and out of a microwave cavity. Thus, the length or size of the cavity can be tuned while maintaining the traversing plate in an exact parallel relationship with an opposing plate on another end of the cavity.

  1. Light's Darkness

    ScienceCinema

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2017-12-09

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  2. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    PubMed

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Hollow fiber clinostat for simulating microgravity in cell culture

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Miller, Teresa Y. (Inventor); Snyder, Robert S. (Inventor)

    1992-01-01

    A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation.

  4. Roller unlocking sprags

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1999-01-01

    A roller type sprag member consisting of three main elements, an outer roller half section, an inner roller half section, and an assembly-location pin. The sprag locks using roller locking techniques in a manner well known in the case of a three-dimensional (3-D) locking sprag. It unlocks, however, using a roll technique in which the inner and outer roller halves rotate in mutually opposite directions, one clockwise and the other counterclockwise. In the process of rotation, the roller is foreshortened between the distance across the sprag contact surfaces, whereupon it loses its ability to act as a locking sprag and releases.

  5. ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu

    2013-02-10

    A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motionmore » (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.« less

  6. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    PubMed

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-08-17

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.

  7. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod

    PubMed Central

    Schwing, Patrick T.; Romero, Isabel C.; Larson, Rebekka A.; O'Malley, Bryan J.; Fridrik, Erika E.; Goddard, Ethan A.; Brooks, Gregg R.; Hastings, David W.; Rosenheim, Brad E.; Hollander, David J.; Grant, Guy; Mulhollan, Jim

    2016-01-01

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments. PMID:27585268

  8. Effect of process parameters on microstructure and electrical conductivity during FSW of Al-6101 and Pure Copper

    NASA Astrophysics Data System (ADS)

    Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd

    2018-04-01

    Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.

  9. Effect of entrainment on stress and pulsar glitches in stratified neutron star crust

    NASA Astrophysics Data System (ADS)

    Chamel, N.; Carter, B.

    2006-05-01

    The buildup of the stress whose relaxation is presumed to account for pulsar frequency glitches can be attributed to various mechanisms, of which the most efficient involve differential rotation of the neutron superfluid in the inner layers of the (magnetically braked) solid crust of a rotating neutron star. In such a case it is usually supposed that the stress is attributable to pinning of superfluid vortices to crust nuclei, but it has been suggested that, even if the pinning effect is too weak, a comparably large stress might still arise just from the deficit of centrifugal buoyancy in the slowed down crust. The present work is a re-examination that investigates the way such processes may be affected by considerations that were overlooked in the previous work - notably uncertainties about the `effective' masses that have to be attributed to the `free' superfluid neutrons to allow for their entrainment by the ionic crust material. Though restricted to a Newtonian formulation, this analysis distinguishes more carefully than has been usual between true velocities, which are contravariantly vectorial, and so called `superfluid velocities' that are proportional to momenta, which are essentially covectorial, a technicality that is important when more than one independent current is involved. The results include a Proudman-type theorem to the effect that the superfluid angular velocity must be constant on slightly deformed Taylor cylinders in the force free case, and it is shown how to construct a pair of integral constants of the motion that determine the solution for the pinned case assuming beta equilibrium.

  10. Zeeman Tuning Rate for Q Branch Transitions in the v3 Band of NO2

    NASA Technical Reports Server (NTRS)

    Mahon, C. R.; Chackerian, C., Jr.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    Zeeman tuning rates have bee a measured for Q branch transitions in the v3 band of NO2(approx.1610/cm) for magnetic fields of up to 564 Gauss. The average measured tuning rate is 0.1815(53) x 10(exp -3)/cm/Gauss with no dependence on Ka within the approx. equal to 3% standard deviation. Despite significant ,pin-rotation interaction between several of the observed levels the result agrees with the simple linear model for Honda case (be molecules (tuning rate = 2muogs = 0.18696 x 10(exp -3)/cm/Gauss) which neglects the spin-rotation interaction between different J states. The Zeeman effect is analyzed in a full treatment of the Hamiltonian, including spin-rotation interaction, in order to account for the agreement with 2muogs and to explore the onset of spin-rotation effects in the spectra as the magnetic field is increased.

  11. Stump sprouting of northern pin oak on nutrient-poor sandy soils in central Wisconsin

    Treesearch

    Kevin M. Schwartz; Michael C. Demchik

    2013-01-01

    Coppice with two to three reserve trees per acre is the generally accepted practice (GAP) for rotating oak stands on nutrient-poor, sandy sites (colloquially called "scrub oak sites") in Wisconsin. The future stocking of the stand is therefore dependent predominantly on stump sprouts with varying levels of contribution from advance regeneration. Two groups of...

  12. Thermo-Mechanical Processing in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.; Nunes, A. C., Jr.

    2002-01-01

    In Friction Stir Welding (FSW) a rotating pin-tool inserted into a weld seam literally stirs the edges of the seam together. In this study, two flow paths are proposed that define the FWS zone. Studies using a longitudinal tungsten wire (0.0025 dia.) were used to visualize and document the material flow. The material flow path is described using a mathematical model.

  13. Constraints on pulsar masses from the maximum observed glitch

    NASA Astrophysics Data System (ADS)

    Pizzochero, P. M.; Antonelli, M.; Haskell, B.; Seveso, S.

    2017-07-01

    Neutron stars are unique cosmic laboratories in which fundamental physics can be probed in extreme conditions not accessible to terrestrial experiments. In particular, the precise timing of rotating magnetized neutron stars (pulsars) reveals sudden jumps in rotational frequency in these otherwise steadily spinning-down objects. These 'glitches' are thought to be due to the presence of a superfluid component in the star, and offer a unique glimpse into the interior physics of neutron stars. In this paper we propose an innovative method to constrain the mass of glitching pulsars, using observations of the maximum glitch observed in a star, together with state-of-the-art microphysical models of the pinning interaction between superfluid vortices and ions in the crust. We study the properties of a physically consistent angular momentum reservoir of pinned vorticity, and we find a general inverse relation between the size of the maximum glitch and the pulsar mass. We are then able to estimate the mass of all the observed glitchers that have displayed at least two large events. Our procedure will allow current and future observations of glitching pulsars to constrain not only the physics of glitch models but also the superfluid properties of dense hadronic matter in neutron star interiors.

  14. Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García, C.

    Mixtures of AISI M2 high speed steel and vanadium carbide (3, 6 or 10 wt.%) were prepared by powder metallurgy and sintered by concentrated solar energy (CSE). Two different powerful solar furnaces were employed to sinter the parts and the results were compared with those obtained by conventional powder metallurgy using a tubular electric furnace. CSE allowed significant reduction of processing times and high heating rates. The wear resistance of compacts was studied by using rotating pin-on-disk and linearly reciprocating ball-on-flat methods. Wear mechanisms were investigated by means of scanning electron microscopy (SEM) observations and chemical inspections of the microstructuresmore » of the samples. Better wear properties than those obtained by conventional powder metallurgy were achieved. The refinement of the microstructure and the formation of carbonitrides were the reasons for this. - Highlights: •Powder metallurgy of mixtures of M2 high speed steel and VC are studied. •Some sintering is done by concentrated solar energy. •Rotating pin-on-disk and linearly reciprocating ball-on-flat methods are used. •The tribological properties and wear mechanisms, under dry sliding, are studied.« less

  15. Enhancing Friction Stir Weldability of 6061-T6 Al and AZ31B Mg Alloys Assisted by External Non-rotational Shoulder

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Huang, Ruofei; Meng, Xiangchen; Zhang, Liguo; Huang, Yongxian

    2017-05-01

    In order to increase cooling rate and then reduce the amounts of intermetallic compounds, external non-rotational shoulder tool system derived from traditional tool in friction stir welding was used to join dissimilar Al and Mg alloys. In this study, based on the external non-rotational shoulder, the weldability of Al and Mg alloys was significantly improved. The non-rotational shoulder tool is propitious to make more materials into weld, increase cooling rate and then reduce material adhesion of rotational pin, obtaining sound joint with smaller flashes and smooth surface. Importantly, the thickness of intermetallic compounds layer is reduced compared with traditional tool. Meanwhile, hardness values of dissimilar joint present uneven distribution, resulting from complex intercalated structures in nugget zone (NZ) featured by intermetallic compound layers and fine recrystallized Mg and Al grains. Compared with traditional tool, non-rotational shoulder is beneficial to higher tensile properties of joint. Due to the intermetallic compound layer formed in the interface of Al-Mg, the welding joint easily fractures at the NZ, presenting the typical brittle fracture mode.

  16. Quantification of equine sacral and iliac motion during gait: a comparison between motion capture with skin-mounted and bone-fixated sensors.

    PubMed

    Goff, L; Van Weeren, P R; Jeffcott, L; Condie, P; McGowan, C

    2010-11-01

    Information regarding movement at the ilium and sacrum in nonlame horses during normal gait may assist in understanding the biomechanics of the equine sacroiliac joint. To determine the amount and direction of motion at the ilium and sacrum using 3D orientation sensors during walk and trot in sound Thoroughbreds. To compare results from sensors fixed to the skin with results from sensors fixed to bone-implanted pins. Three 3D wireless orientation sensors were mounted to the skin over the tuber sacrale (TS) and sacrum of 6 horses and motion at the ilium and sacrum was recorded for lateral bending (LB) flexion-extension (F-E) and axial rotation (AR) during walk and trot. This process was repeated with the orientation sensors mounted to the same pelvic landmarks via Steinmann pins. Mean walk values were greater than trot values using pin-mounted sensors for all planes of movement (P < 0.05). Walk had 1.64 ± 0.22° (mean ± s.e.) more LB than trot (pin-mounted) yet 0.68 ± 0.22° less than trot when skin-mounted; 3.45 ± 0.15° more F-E (pin- and skin-mounted), and 4.99 ± 0.4° more AR (pin-mounted), but trot had 3.4 ± 0.40° more AR than walk with skin mounting. Using pinned sensors for trot resulted in less LB (2.47 ± 0.22°), F-E (1.12 ± 0.15°) and AR (10.62 ± 0.40°); and for walk less F-E (1.12 ± 0.15°) and AR (2.15 ± 0.40°) compared to skin-mounted. Poor correlation existed between mean values for skin- and pin-mounted data for walk and trot, for all planes of motion. Movements were smaller at trot with bone-fixated sensors compared to walk, suggesting increased muscular control of movement at the trot. The apparent increase in skin motion at the trot and no clear correlation between skin- and bone-mounted sensors indicates inaccuracies when measuring sacral and iliac movement with skin mounting. © 2010 EVJ Ltd.

  17. Optimal Post-Operative Immobilisation for Supracondylar Humeral Fractures.

    PubMed

    Azzolin, Lucas; Angelliaume, Audrey; Harper, Luke; Lalioui, Abdelfettah; Delgove, Anaïs; Lefèvre, Yan

    2018-05-25

    Supracondylar humeral fractures (SCHFs) are very common in paediatric patients. In France, percutaneous fixation with two lateral-entry pins is widely used after successful closed reduction. Post-operative immobilisation is typically with a long arm cast combined with a tubular-bandage sling that immobilises the shoulder and holds the arm in adduction and internal rotation to prevent external rotation of the shoulder, which might cause secondary displacement. The objective of this study was to compare this standard immobilisation technique to a posterior plaster splint with a simple sling. Secondary displacement is not more common with a posterior plaster splint and sling than with a long arm cast. 100 patients with extension Gartland type III SCHFs managed by closed reduction and percutaneous fixation with two lateral-entry pins between December 2011 and December 2015 were assessed retrospectively. Post-operative immobilisation was with a posterior plaster splint and a simple sling worn for 4 weeks. Radiographs were obtained on days 1, 45, and 90. Secondary displacement occurred in 8% of patients. No patient required revision surgery. The secondary displacement rate was comparable to earlier reports. Of the 8 secondary displacements, 5 were ascribable to technical errors. The remaining 3 were not caused by rotation of the arm and would probably not have been prevented by using the tubular-bandage sling. A posterior plaster splint combined with a simple sling is a simple and effective immobilisation method for SCHFs provided internal fixation is technically optimal. IV, retrospective observational study. Copyright © 2018. Published by Elsevier Masson SAS.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junginger, Tobias; Abidi, S. H.; Maffett, R. D.

    Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less

  19. CAM controlled retractable door latch

    NASA Technical Reports Server (NTRS)

    Carsley, R. B. (Inventor)

    1982-01-01

    A latching mechanism in which there is linear movement and rotational movement is described. The umbilical doors of the space shuttle orbiter are required to be open during vehicle launch. After the external tank is released, the doors are closed. Presently, the device for maintaining the doors in an open position is mounted on the external tank and therefore has a single mission life. The latching mechanism of the invention is mounted in the orbiter and therefore is returned and has multimission capability. The latching mechanism is comprised of a pair of concentric nested, cylindrical cams and motors to actuate the cams, and latch pin all contained within a cover mounted on a support bracket carried by the substructure. A shaft having a latch pin is mounted inside the inner cylindrical cam.

  20. Patch-Augmented Latissimus Dorsi Transfer and Open Reduction–Internal Fixation of Unstable Os Acromiale for Irreparable Massive Posterosuperior Rotator Cuff Tear

    PubMed Central

    Petri, Maximilian; Greenspoon, Joshua A.; Bhatia, Sanjeev; Millett, Peter J.

    2015-01-01

    Latissimus dorsi transfer is a reasonable treatment option for massive posterosuperior rotator cuff tears that can substantially improve chronically painful and dysfunctional shoulders. This report and accompanying video describe the treatment of an active 43-year-old man with severe pain and weakness in the right shoulder after 3 failed rotator cuff repairs. Preoperative imaging showed a massive posterosuperior rotator cuff tear retracted to the glenoid as well as a hypermobile os acromiale likely causing dynamic impingement and recurrent rotator cuff tears. After diagnostic arthroscopy, the latissimus tendon is harvested and augmented with a 3-mm human acellular dermal patch (ArthroFlex; Arthrex, Naples, FL). The native rotator cuff tissue is repaired as much as possible, and the latissimus tendon is passed underneath the deltoid and posterior to the teres minor. The patch-augmented tendon is then integrated into a double-row SpeedBridge repair of eight 4.75-mm BioComposite SwiveLock anchors (Arthrex). The bony surface of the os acromiale is prepared and then fixed to the acromion with 2 cannulated partially threaded screws and additional tension-band wiring. Postoperative rehabilitation initially focuses on early passive range of motion, followed by active and active-assisted motion and a biofeedback program starting at 6 weeks postoperatively. PMID:26697309

  1. Pin-photodiode array for the measurement of fan-beam energy and air kerma distributions of X-ray CT scanners.

    PubMed

    Haba, Tomonobu; Koyama, Shuji; Aoyama, Takahiko; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao; Kameyama, Hiroshi; Tsutsumi, Yoshinori

    2016-07-01

    Patient dose estimation in X-ray computed tomography (CT) is generally performed by Monte Carlo simulation of photon interactions within anthropomorphic or cylindrical phantoms. An accurate Monte Carlo simulation requires an understanding of the effects of the bow-tie filter equipped in a CT scanner, i.e. the change of X-ray energy and air kerma along the fan-beam arc of the CT scanner. To measure the effective energy and air kerma distributions, we devised a pin-photodiode array utilizing eight channels of X-ray sensors arranged at regular intervals along the fan-beam arc of the CT scanner. Each X-ray sensor consisted of two plate type of pin silicon photodiodes in tandem - front and rear photodiodes - and of a lead collimator, which only allowed X-rays to impinge vertically to the silicon surface of the photodiodes. The effective energy of the X-rays was calculated from the ratio of the output voltages of the photodiodes and the dose was calculated from the output voltage of the front photodiode using the energy and dose calibration curves respectively. The pin-photodiode array allowed the calculation of X-ray effective energies and relative doses, at eight points simultaneously along the fan-beam arc of a CT scanner during a single rotation of the scanner. The fan-beam energy and air kerma distributions of CT scanners can be effectively measured using this pin-photodiode array. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    tool material (AISI H13 tool steel ) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process...threads/m; (b) tool 598 material = AISI H13 tool steel ; (c) workpiece material = 599 AA5059; (d) tool rotation speed = 500 rpm; (e) tool travel 600 speed...the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13

  3. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements

    PubMed Central

    Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761

  4. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.

    PubMed

    Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.

  5. Study of tapping process of carbon fiber reinforced plastic composites/AA7075 stacks

    NASA Astrophysics Data System (ADS)

    D'Orazio, Alessio; Mehtedi, Mohamad El; Forcellese, Archimede; Nardinocchi, Alessia; Simoncini, Michela

    2018-05-01

    The present investigation aims at studying the tapping process of a three-layer stack constituted by two CFRP layers and a core plate in AA7075 aluminum alloy. The CFRP laminates were obtained by a pre-impregnated woven sample made up of T700 carbon fibers and a thermoset epoxy matrix. Tapping experiments were performed on a 5-axis machining center instrumented with a dynamometer to measure thrust force generated during process. A high-speed steel tool, coated with nanocomposite TiAlN, was used. According to the tool manufacturer recommendations, rotational speed and feed rate were 800 rpm and 1000 mm/min, respectively. Similar thrust force time history responses were obtained by tapping different holes, even though the vertical force increases with number of threaded holes. Furthermore, a quantitative evaluation of delamination at the periphery of entry holes was carried out. The delamination at the entry hole strongly increases with number of threaded holes.

  6. A Water Droplet Pinning and Heat Transfer Characteristics on an Inclined Hydrophobic Surface.

    PubMed

    Al-Sharafi, Abdullah; Yilbas, Bekir Sami; Ali, Haider; AlAqeeli, N

    2018-02-15

    A water droplet pinning on inclined hydrophobic surface is considered and the droplet heat transfer characteristics are examined. Solution crystallization of polycarbonate is carried out to create hydrophobic characteristics on the surface. The pinning state of the water droplet on the extreme inclined hydrophobic surface (0° ≤ δ ≤ 180°, δ being the inclination angle) is assessed. Heat transfer from inclined hydrophobic surface to droplet is simulated for various droplet volumes and inclination angles in line with the experimental conditions. The findings revealed that the hydrophobic surface give rise to large amount of air being trapped within texture, which generates Magdeburg like forces between the droplet meniscus and the textured surface while contributing to droplet pinning at extreme inclination angles. Two counter rotating cells are developed for inclination angle in the range of 0° < δ < 20° and 135° < δ < 180°; however, a single circulation cell is formed inside the droplet for inclination angle of 25° ≤ δ ≤ 135°. The Nusselt number remains high for the range of inclination angle of 45° ≤ δ ≤ 135°. Convection and conduction heat transfer enhances when a single and large circulation cell is formed inside the droplet.

  7. Analysis of micro-failure behaviors in artificial muscles based on fishing line and sewing thread

    NASA Astrophysics Data System (ADS)

    Xu, J. B.; Cheng, K. F.; Tu, S. L.; He, X. M.; Ma, C.; Jin, Y. Z.; Kang, X. N.; Sun, T.; Zhang, Y.

    2017-06-01

    The aim of the present study was to discuss a new and effective method for testing artificial muscles based on micro-failure behaviors analysis. Thermo-mechanical actuators based on fishing line and sewing thread, also, the capability of responding to ambient temperature variations producing a large amount of shrinkage ratio of a resulting variation in longitudinal length. The minimum micro-failure value is 0.02μm and the maximum value is 1.72μm with nylon twist pattern. The discovery of an innovative effective testing of artificial muscles based on polymeric fibers specimens on micro-failure, rupture, slippage, etc. This research finds out a micro-failure behavior analysis of thermo-mechanical actuators based on fishing line and sewing thread. The specimens show large deformations when heated together with warping performance in terms of shrinkage of energy and densities. With the purpose of providing useful analysis data for the further technology applications, we attempt micrometre-sized artificial muscles which were also tested was readily accessible and also can be applied to other polymeric fibers. Effective use of this technique achievement relies on rotate speed, temperature and tensile direction. The results of the tensile testing experiments were outstanding with respect to some important issues related to the response of micro-structure, twisted polymeric fibers and shrinkage ratio.

  8. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.

  9. Posterior interosseous nerve localization within the proximal forearm - a patient normalized parameter.

    PubMed

    Kamineni, Srinath; Norgren, Crystal R; Davidson, Evan M; Kamineni, Ellora P; Deane, Andrew S

    2017-04-18

    To provide a "patient-normalized" parameter in the proximal forearm. Sixty-three cadaveric upper extremities from thirty-five cadavers were studied. A muscle splitting approach was utilized to locate the posterior interosseous nerve (PIN) at the point where it emerges from beneath the supinator. The supinator was carefully incised to expose the midpoint length of the nerve as it passes into the forearm while preserving the associated fascial connections, thereby preserving the relationship of the nerve with the muscle. We measured the transepicondylar distance (TED), PIN distance in the forearm's neutral rotation position, pronation position, supination position, and the nerve width. Two individuals performed measurements using a digital caliper with inter-observer and intra-observer blinding. The results were analyzed with the Wilcoxon-Mann-Whitney test for paired samples. In pronation, the PIN was within two confidence intervals of 1.0 TED in 95% of cases (range 0.7-1.3 TED); in neutral, within two confidence intervals of 0.84 TED in 95% of cases (range 0.5-1.1 TED); in supination, within two confidence intervals of 0.72 TED in 95% of cases (range 0.5-0.9 TED). The mean PIN distance from the lateral epicondyle was 100% of TED in a pronated forearm, 84% in neutral, and 72% in supination. Predictive accuracy was highest in supination; in all cases the majority of specimens (90.47%-95.23%) are within 2 cm of the forearm position-specific percentage of TED. When comparing right to left sides for TEDs with the signed Wilcoxon-Mann-Whitney test for paired samples as well as a significance test (with normal distribution), the P -value was 0.0357 (significance - 0.05) indicating a significant difference between the two sides. This "patient normalized" parameter localizes the PIN crossing a line drawn between the lateral epicondyle and the radial styloid. Accurate PIN localization will aid in diagnosis, injections, and surgical approaches.

  10. Posterior interosseous nerve localization within the proximal forearm - a patient normalized parameter

    PubMed Central

    Kamineni, Srinath; Norgren, Crystal R; Davidson, Evan M; Kamineni, Ellora P; Deane, Andrew S

    2017-01-01

    AIM To provide a “patient-normalized” parameter in the proximal forearm. METHODS Sixty-three cadaveric upper extremities from thirty-five cadavers were studied. A muscle splitting approach was utilized to locate the posterior interosseous nerve (PIN) at the point where it emerges from beneath the supinator. The supinator was carefully incised to expose the midpoint length of the nerve as it passes into the forearm while preserving the associated fascial connections, thereby preserving the relationship of the nerve with the muscle. We measured the transepicondylar distance (TED), PIN distance in the forearm’s neutral rotation position, pronation position, supination position, and the nerve width. Two individuals performed measurements using a digital caliper with inter-observer and intra-observer blinding. The results were analyzed with the Wilcoxon-Mann-Whitney test for paired samples. RESULTS In pronation, the PIN was within two confidence intervals of 1.0 TED in 95% of cases (range 0.7-1.3 TED); in neutral, within two confidence intervals of 0.84 TED in 95% of cases (range 0.5-1.1 TED); in supination, within two confidence intervals of 0.72 TED in 95% of cases (range 0.5-0.9 TED). The mean PIN distance from the lateral epicondyle was 100% of TED in a pronated forearm, 84% in neutral, and 72% in supination. Predictive accuracy was highest in supination; in all cases the majority of specimens (90.47%-95.23%) are within 2 cm of the forearm position-specific percentage of TED. When comparing right to left sides for TEDs with the signed Wilcoxon-Mann-Whitney test for paired samples as well as a significance test (with normal distribution), the P-value was 0.0357 (significance - 0.05) indicating a significant difference between the two sides. CONCLUSION This “patient normalized” parameter localizes the PIN crossing a line drawn between the lateral epicondyle and the radial styloid. Accurate PIN localization will aid in diagnosis, injections, and surgical approaches. PMID:28473958

  11. Impact of friction stir welding on the microstructure of ODS steel

    NASA Astrophysics Data System (ADS)

    Dawson, H.; Serrano, M.; Cater, S.; Iqbal, N.; Almásy, L.; Tian, Q.; Jimenez-Melero, E.

    2017-04-01

    We have assessed the impact of the welding parameters on the nano-sized oxide dispersion and the grain size in the matrix of an ODS steel after friction stir welding. Our results, based on combined small angle neutron scattering and electron microscopy, reveal a decrease in the volume fraction of the particles smaller than 80 nm in the welds, mainly due to particle agglomeration. The increase in tool rotation speed or decrease in transverse speed leads to a higher reduction in nano-sized particle fraction, and additionally to the occurrence of particle melting. The dependence of the average grain size in the matrix on the particle volume fraction follows a Zener pinning-type relationship. This result points to the principal role that the particles have in pinning grain boundary movement, and consequently in controlling the grain size during welding.

  12. Turbine blade platform seal

    DOEpatents

    Zagar, Thomas W.; Schiavo, Anthony L.

    2001-01-01

    A rotating blade group 90 for a turbo-machine having an improved device for sealing the gap 110 between the edges 112,114 of adjacent blade platforms 96,104. The gap 110 between adjacent blades 92,100 is sealed by a seal pin 20 its central portion 110 and by a seal plate 58,60 at each of the front 54 and rear 56 portions. The seal plates 58,60 are inserted into corresponding grooves 62,64 formed in the adjacent edges 112,114 of adjoining blades 92,100 and held in place by end plates 40,42. The end of the seal plates 58,60 may be chamfered 78,80 to improve the seal against the end plate 40,42. The seal pin 20 provides the required damping between the blades 92,100 and the seal plates 58,60 provide improved sealing effectiveness.

  13. Rotatable electric cable connecting system

    NASA Technical Reports Server (NTRS)

    Manges, D. R. (Inventor)

    1985-01-01

    A cable reel assembly is described which is particularly adapted for, but not limited to, a system for providing electrical connection of power and data signals between an orbiter vehicle, such as a space shuttle, and a recovered satellite. The assembly is comprised of two mutually opposing ring type structures having 180 deg relative rotation with one of the structures being held in fixed position while the other structure is rotatable. Motor controlled berthing latches and umbilical cable connectors for the satellite are located on the rim of the rotatable ring structure. The electrical cable assembly is fed in two sections from the orbiter vehicle into the outer rim portion of the fixed ring structure where they are directed inwardly and attached to two concentrically coiled metal bands whose respective ends are secured to inner and outer post members of circular sets of guide pins located on opposing circular plate members, one rotatable and one fixed. The cable sections are fed out as three output cable sections through openings in the central portion of the circular plate of the rotatable ring structure where they are directed to the latches and connectors located on its rim.

  14. Atom Interferometry on Atom Chips - A Novel Approach Towards Precision Inertial Navigation System - PINS

    DTIC Science & Technology

    2010-06-01

    Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles

  15. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan

    For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less

  16. Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable media

    PubMed Central

    Bittihn, Philip; Squires, Amgad; Luther, Gisa; Bodenschatz, Eberhard; Krinsky, Valentin; Parlitz, Ulrich; Luther, Stefan

    2010-01-01

    Life-threatening cardiac arrhythmias are associated with the existence of stable and unstable spiral waves. Termination of such complex spatio-temporal patterns by local control is substantially limited by anchoring of spiral waves at natural heterogeneities. Far-field pacing (FFP) is a new local control strategy that has been shown to be capable of unpinning waves from obstacles. In this article, we investigate in detail the FFP unpinning mechanism for a single rotating wave pinned to a heterogeneity. We identify qualitatively different phase regimes of the rotating wave showing that the concept of vulnerability is important but not sufficient to explain the failure of unpinning in all cases. Specifically, we find that a reduced excitation threshold can lead to the failure of unpinning, even inside the vulnerable window. The critical value of the excitation threshold (below which no unpinning is possible) decreases for higher electric field strengths and larger obstacles. In contrast, for a high excitation threshold, the success of unpinning is determined solely by vulnerability, allowing for a convenient estimation of the unpinning success rate. In some cases, we also observe phase resetting in discontinuous phase intervals of the spiral wave. This effect is important for the application of multiple stimuli in experiments. PMID:20368243

  17. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

    DOE PAGES

    Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; ...

    2016-07-11

    For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less

  18. Effects of general relativity on glitch amplitudes and pulsar mass upper bounds

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Montoli, A.; Pizzochero, P. M.

    2018-04-01

    Pinning of vortex lines in the inner crust of a spinning neutron star may be the mechanism that enhances the differential rotation of the internal neutron superfluid, making it possible to freeze some amount of angular momentum which eventually can be released, thus causing a pulsar glitch. We investigate the general relativistic corrections to pulsar glitch amplitudes in the slow-rotation approximation, consistently with the stratified structure of the star. We thus provide a relativistic generalization of a previous Newtonian model that was recently used to estimate upper bounds on the masses of glitching pulsars. We find that the effect of general relativity on the glitch amplitudes obtained by emptying the whole angular momentum reservoir is less than 30 per cent. Moreover, we show that the Newtonian upper bounds on the masses of large glitchers obtained from observations of their maximum recorded event differ by less than a few percent from those calculated within the relativistic framework. This work can also serve as a basis to construct more sophisticated models of angular momentum reservoir in a relativistic context: in particular, we present two alternative scenarios for macroscopically rigid and slack pinned vortex lines, and we generalize the Feynman-Onsager relation to the case when both entrainment coupling between the fluids and a strong axisymmetric gravitational field are present.

  19. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.

  20. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, R.W.; Silva, L.L.

    1988-05-10

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole. 6 figs.

  1. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole.

  2. Radial and tibial fracture repair with external skeletal fixation. Effects of fracture type, reduction, and complications on healing.

    PubMed

    Johnson, A L; Kneller, S K; Weigel, R M

    1989-01-01

    Twenty-eight consecutive fractures of the canine radius and tibia were treated with external skeletal fixation as the primary method of stabilization. The time of fixation removal (T1) and the time to unsupported weight-bearing (T2) were correlated with: (1) bone involved; (2) communication of the fracture with the external environment; (3) severity of the fracture; (4) proximity of the fracture to the nutrient artery; (5) method of reduction; (6) diaphyseal displacement after reduction; and (7) gap between cortical fragments after reduction. The Kruskal-Wallis one-way analysis of variance was used to test the correlation with p less than .05 set as the criterion for significance. The median T1 was 10 weeks and the median T2 was 11 weeks. None of the variables correlated significantly with either of the healing times; however, there was a strong trend toward longer healing times associated with open fractures and shorter healing times associated with closed reduction. Periosteal and endosteal callus uniting the fragments were observed radiographically in comminuted fractures, with primary bone union observed in six fractures in which anatomic reduction was achieved. Complications observed in the treatment of these fractures included: bone lysis around pins (27 fractures), pin track drainage (27 fractures), pin track hemorrhage (1 fracture), periosteal reaction around pins (27 fractures), radiographic signs consistent with osteomyelitis (12 fractures), degenerative joint disease (2 dogs), and nonunion (1 fracture). Valgus or rotational malalignment resulted in 16 malunions of fractures. One external fixation device was replaced and four loose pins were removed before the fractures healed. One dog was treated with antibiotics during the postoperative period because clinical signs of osteomyelitis appeared.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Mobile remote manipulator vehicle system

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor); Jensen, J. Kermit (Inventor)

    1987-01-01

    A mobile remote manipulator system is disclosed for assembly, repair and logistics transport on, around and about a space station square bay truss structure. The vehicle is supported by a square track arrangement supported by guide pins integral with the space station truss structure and located at each truss node. Propulsion is provided by a central push-pull drive mechanism that extends out from the vehicle one full structural bay over the truss and locks drive rods into the guide pins. The draw bar is now retracted and the mobile remote manipulator system is pulled onto the next adjacent structural bay. Thus, translation of the vehicle is inchworm style. The drive bar can be locked onto two guide pins while the extendable draw bar is within the vehicle and then push the vehicle away one bay providing bidirectional push-pull drive. The track switches allow the vehicle to travel in two orthogonal directions over the truss structure which coupled with the bidirectional drive, allow movement in four directions on one plane. The top layer of this trilayered vehicle is a logistics platform. This platform is capable of 369 degees of rotation and will have two astronaut foot restraint platforms and a space crane integral.

  4. Biodegradable implants for Pipkin fractures.

    PubMed

    Prokop, Axel; Helling, Hanns-Joachim; Hahn, Ulrich; Udomkaewkanjana, Chira; Rehm, Klaus Emil

    2005-03-01

    The current study was designed to clarify whether biodegradable poly-L/DL lactide pins provide an operative alternative for fixation of Pipkin fractures. Nine patients with Pipkin fractures (one with Pipkin Type I, one with Pipkin Type II, and seven with Pipkin Type IV fractures) were treated surgically between 1996 and 2002. In all patients, the femoral head fractures were fixed with biodegradable, 2.7-mm and 2.0-mm polylactide pins. Eight patients were followed up for an average of 54.2 months. One patient died before the final followup. Eight fractures healed uneventfully. In one patient, a persisting femoral head defect led to posttraumatic arthritis requiring insertion of a femoral endoprosthesis at 1 year. The average range of motion of the affected hips of all patients at followup was 109 degrees -0 degrees -0 degrees in flexion and extension. External and internal rotation averaged 37 degrees -0 degrees -29 degrees . One patient had Brooker Grade I heterotopic ossification develop, and another had a Grade II heterotopic develop. Merle d'Aubigne and Postel ratings showed two excellent and five satisfactory results (average score, 13.1). Adverse effects from the polylactide implants were not observed. Pipkin fractures can be fixed successfully with biodegradable polylactide pins.

  5. Constant time worker thread allocation via configuration caching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E; O'Brien, John K. P.

    Mechanisms are provided for allocating threads for execution of a parallel region of code. A request for allocation of worker threads to execute the parallel region of code is received from a master thread. Cached thread allocation information identifying prior thread allocations that have been performed for the master thread are accessed. Worker threads are allocated to the master thread based on the cached thread allocation information. The parallel region of code is executed using the allocated worker threads.

  6. Friction Stir Welding of SiC/Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1999-01-01

    Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.

  7. Screw-Thread Standards for Federal Services, 1957. Handbook H28 (1957), Part 3

    DTIC Science & Technology

    1957-09-01

    MOUNTING THREADS PHOTOGRAPHIC EQUIPMENT THREADS ISO METRIC THREADS; MISCELLANEOUS THREADS CLASS 5 INTERFERENCE-FIT THREADS, TRIAL STANDARD WRENCH...Bibliography on measurement of pitch diameter by means of wires 60 Appendix 14. Metric screw-thread standards 61 1. ISO thread profiles...61 2. Standard series for ISO metric threads 62 3. Designations for ISO metric threads 62 Tables Page Table XII. 1.—Basic

  8. Direct observation of the flux-line vortex glass phase in a type II superconductor.

    PubMed

    Divakar, U; Drew, A J; Lee, S L; Gilardi, R; Mesot, J; Ogrin, F Y; Charalambous, D; Forgan, E M; Menon, G I; Momono, N; Oda, M; Dewhurst, C D; Baines, C

    2004-06-11

    The order of the vortex state in La1.9Sr0.1CuO4 is probed using muon-spin rotation and small-angle neutron scattering. A transition from a Bragg glass to a vortex glass is observed, where the latter is composed of disordered vortex lines. In the vicinity of the transition the microscopic behavior reflects a delicate interplay of thermally induced and pinning-induced disorder.

  9. Dedicated memory structure holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, George L.; Eichenberger, Alexandre E.; O'Brien, John K. P.

    The present disclosure relates generally to a dedicated memory structure (that is, hardware device) holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute.

  10. Suppression of turbulence by heterogeneities in a cardiac model with fiber rotation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Steinbock, Oliver

    2017-09-01

    Electrical scroll wave turbulence in human ventricles is associated with ventricular fibrillation and sudden cardiac death. We perform three-dimensional simulations on the basis of the anisotropic Fenton-Karma model and show that macroscopic, insulating heterogeneities (e.g., blood vessels) can cause the spontaneous formation of pinned scroll waves. The wave field of these vortices is periodic, and their frequencies are sufficiently high to push the free, turbulent vortices into the system boundaries where they annihilate. Our study considers cylindrical heterogeneities with radii in the range of 0.1 to 2 cm that extend either in the transmural or a perpendicular direction. Thick cylinders cause the spontaneous formation of multi-armed rotors according to a radius-dependence that is explained in terms of two-dimensional dynamics. For long cylinders, local pinning contacts spread along the heterogeneity by fast and complex self-wrapping.

  11. Dielectrophoresis of Cells

    PubMed Central

    Pohl, Herbert A.; Crane, Joe S.

    1971-01-01

    Dielectrophoresis, the motion produced by the action of nonuniform electric field upon a neutral object, is shown to be a simple and useful technique for the study of cellular organisms. In the present study of yeast (Saccharomyces cerevisiae) using a simple pin-pin electrode system of platinum and high-frequency alternating fields, one observes that the collectability of cells at the electrode tip, i.e. at the region of highest field strength, depends upon physical parameters such as field strength, field uniformity, frequency, cell concentration, suspension conductivity, and time of collection. The yield of cells collected is also observed to depend upon biological factors such as colony age, thermal treatment of the cells, and chemical poisons, but not upon irradiation with ultraviolet light. Several interesting side effect phenomena coincident with nonuniform electric field conditions were observed, including stirring (related to “jet” effects at localized electrode sites), discontinuous repulsions, and cellular rotation which was found to be frequency dependent. ImagesFIGURE 2 PMID:5132497

  12. Conceptual design of a mobile remote manipulator system

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Mikulas, M. M., Jr.; Wallsom, R. E.; Jensen, J. K.

    1984-01-01

    A mobile remote manipulator system has been identified as a necessary device for space station. A conceptual design for an MRMS is presented which features (1) tracks on the MRMS and guide pins only on the truss structure, (2) a push/pull drive mechanism which rotates to permit movement in four directions, and (3) spacecrane and mobile foot restraint manipulators (or arms). Operational and design features of the MRMS elements are described and illustrated. Concepts are also presented which permit rotating the operational plane of the MRMS through 90 deg. Such a system has been found to have great utility for initial space station construction, maintenance and repair, and to provide a construction capability for future station growth or large spacecraft assembly and/or servicing.

  13. A method for determining the column curve from tests of columns with equal restraints against rotation on the ends

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Rossman, Carl A; Houbolt, John C

    1943-01-01

    The results are presented of a theoretical study for the determination of the column curve from tests of column specimens having ends equally restrained against rotation. The theory of this problem is studied and a curve is shown relating the fixity coefficient c to the critical load, the length of the column, and the magnitude of the elastic restraint. A method of using this curve for the determination of the column curve for columns with pin ends from tests of columns with elastically restrained ends is presented. The results of the method as applied to a series of tests on thin-strip columns of stainless steel are also given.

  14. Fixture for aligning motor assembly

    DOEpatents

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  15. [Evolution of the technique of arthroscopic reinsertion of the rotator cuff. Our experience from the years 1998 to 2008].

    PubMed

    Holibka, R; Neoral, P; Kalina, R; Radová, L; Gallo, J

    2012-01-01

    A rotator cuff tear is a relatively frequent cause of pain and restricted motion of the shoulder. Some orthopaedists believe that any attempt at rotator cuff reconstruction will fail. The aim of this paper is to present our experience with arthroscopic reconstruction of rotator cuff tears. Between January 1998 and December 2008, 319 patients with an early diagnosis of rotator cuff rupture were treated. The group included 67 women and 252 men, with an average age of 37 years (range, 24 to 71 years) at the time of surgery. The patients indicated for arthroscopic reconstruction had to show free motion of the shoulder, had a full thickness tear up to 3 cm in size in the sagittal plane and a Patte stage 2 tear in the frontal plane at the maximum. The outcome of surgery was evaluated at one year of follow-up and included the patient's self-assessment, modified UCLA score and incidence of complications. The probability of failure was calculated as an odds ratio of an implant failure to failure of the other implants and the probability of repeat surgery in a given implant was calculated as a relative risk in relation to the other implants. The average operative time was 52 minutes (range, 25 to 85); the average UCLA score increased from 10 to 31 points (p<0.00001). An excellent or a good result was achieved in 80% of the patients. Rotator cuff reconstruction failed in 32 patients (11%), of whom 22 (7.6%) underwent revision surgery. The failure was due to migration of rotator cuff anchors or thread failure in 14 patients (14/32; 44%). The GII anchors showed the highest risk of failure, with the odds ratio of 5.55 (95 % CI, 2.22 to 13.84) for mechanical failure of the method and a relative risk of revision surgery of 7.62 (95% CI, 2.86 to 20.27). For comparison, the RC anchors had the odds ratio for mechanical failure equal to 0.55 (95 % CI, 0.25 to 1.24) and the relative risk of repeat surgery equal to 0.41 (95% CI, 0.12 to 1.43). In addition, 18 complications were recorded. The frequency of deep wound infection was 0.7% (2/319). Six patients (2.1%) required repeat surgery for symptomatic bursitis and adhesive capsulitis. A recent meta-analysis has found no significant difference between the results of surgical rotator cuff reconstruction and its conservative treatment. We do not support this view but present here evidence that, when certain conditions are fulfilled, arthroscopic reconstruction can produce a very good clinical outcome. The arthroscopic reconstruction of a rotator cuff tears results in a marked relief of pain and improved joint function. An ideal candidate for this treatment should show passive free motion at the shoulder joint, no clinical signs of bursitis, and mobilisable tendon stumps of the torn rotator cuff. In addition, these patients should be highly motivated for post-operative rehabilitation. A suture device was most effective in rotator cuff repair. For good fixation into the bone it is recommended to use special implants that have a minimal risk of dislodgement or anchor thread failure.

  16. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  17. Criteria for retrograde rotation of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  18. Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung

    2018-04-01

    Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re < 10. At a range of Re > 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.

  19. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    NASA Astrophysics Data System (ADS)

    He, Shikun; Meng, Zhaoliang; Huang, Lisen; Yap, Lee Koon; Zhou, Tiejun; Panagopoulos, Christos

    2016-07-01

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0∘ to 90∘ and φ from 0∘ to 360∘. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. The operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.

  20. Spiral lead platen robotic end effector

    NASA Technical Reports Server (NTRS)

    Beals, David C. (Inventor)

    1990-01-01

    A robotic end effector is disclosed which makes use of a rotating platen with spiral leads used to impact lateral motion to gripping fingers. Actuation is provided by the contact of rolling pins with the walls of the leads. The use of the disclosed method of actuation avoids jamming and provides excellent mechanical advantage while remaining light in weight and durable. The entire end effector is compact and easily adapted for attachment to robotic arms currently in use.

  1. Compliant hydrodynamic fluid journal bearing

    NASA Technical Reports Server (NTRS)

    Warren, E. L. (Inventor)

    1985-01-01

    An air bearing structure is described that prevents destructive bending moments within the top foil. Welds are eliminated by mounting the top bearing foil in the bearing cartridge sleeve without using a space block. Tabs or pins at the end of the top bearing foil are restrained by slots or stops formed in the cartridge sleeve. These structural members are free to move in a direction normal to the shaft while being restrained from movement in the direction of shaft rotation.

  2. Field Artillery Cannon Weapons Systems and Ammunition Handbook.

    DTIC Science & Technology

    1983-02-01

    ground. I (2) When the weapon is emplaced on uneven terrain, the equalizing support rotates on the horizontal pivot pin, placing the tilting parts of the...intervisible. g. Direct fire-Fire from a weapon that is laid by sighting directly on the target. h. Cant-The tilting of the trunnions of the weapon...locking handle bends or breaks because excess mucle is applied. The screws vibrate loose and are lost because somebody forgets to check them for

  3. Innovative Design to Prevent Reversal of Roller Blood Pump Rotation in the Event of Electromechanical Failure: An Easy Solution to a Devastating Problem

    PubMed Central

    Skoletsky, Jennifer S.; White, Brian T.; Austin, Jon W.

    2007-01-01

    Abstract: Despite the advanced technologies of battery back-up for heart-lung consoles and the availability of system-wide generators, electromechanical failure is still occurring. Several heartlung machine manufacturers still provide unsafe handcranking devices to use in the case of an emergency while using a roller blood pump. A new design has been engineered to eliminate safety and quality issues for the perfusionist and the patient when the need for handcranking presents itself. A ratchet-style handcranking device was fabricated by means of a steel plate with adjustable pins. The adjustable pins allow for use with different models of the Cobe, Stockert, and Jostra heart-lung consoles, which contain roller pumps with 180° roller heads. Additional modifications such as a 1:2 transmission and fluorescent markers are also used in the design. This innovative design is an improvement in safety compared with the current handcrank provided by Cobe, Stockert, and Jostra. With this modified handcranking device, accidental reverse rotation of the roller pump head cannot occur. Fluorescent markers will improve visualization of the pump head in low-light situations. The ergonomic design improves efficiency by reducing fatigue. Most importantly, a “safe” safety device will replace the current design provided by these manufacturers, thus improving the quality of care by health care providers. PMID:17672191

  4. Thread selection according to power characteristics during context switching on compute nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Charles J.; Blocksome, Michael A.; Randles, Amanda E.

    Methods, apparatus, and products are disclosed for thread selection during context switching on a plurality of compute nodes that includes: executing, by a compute node, an application using a plurality of threads of execution, including executing one or more of the threads of execution; selecting, by the compute node from a plurality of available threads of execution for the application, a next thread of execution in dependence upon power characteristics for each of the available threads; determining, by the compute node, whether criteria for a thread context switch are satisfied; and performing, by the compute node, the thread context switchmore » if the criteria for a thread context switch are satisfied, including executing the next thread of execution.« less

  5. Thread selection according to predefined power characteristics during context switching on compute nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Methods, apparatus, and products are disclosed for thread selection during context switching on a plurality of compute nodes that includes: executing, by a compute node, an application using a plurality of threads of execution, including executing one or more of the threads of execution; selecting, by the compute node from a plurality of available threads of execution for the application, a next thread of execution in dependence upon power characteristics for each of the available threads; determining, by the compute node, whether criteria for a thread context switch are satisfied; and performing, by the compute node, the thread context switchmore » if the criteria for a thread context switch are satisfied, including executing the next thread of execution.« less

  6. Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Nathanail, A.; Sądowski, A.; Kazanas, D.; Narayan, R.

    2018-01-01

    We implement the KORAL code to perform two sets of very long general relativistic radiation magnetohydrodynamic simulations of an axisymmetric optically thin magnetized flow around a non-rotating black hole: one with a new term in the electromagnetic field tensor due to the radiation pressure felt by the plasma electrons on the comoving frame of the electron-proton plasma, and one without. The source of the radiation is the accretion flow itself. Without the new term, the system evolves to a standard accretion flow due to the development of the magneto-rotational instability. With the new term, however, the system eventually evolves to a magnetically arrested disc state in which a large-scale jet-like magnetic field threads the black hole horizon. Our results confirm the secular action of the Cosmic Battery in accretion flows around astrophysical black holes.

  7. Fluid sampling tool

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  8. Modified locking thread form for fastener

    NASA Technical Reports Server (NTRS)

    Roopnarine, (Inventor); Vranish, John D. (Inventor)

    1998-01-01

    A threaded fastener has a standard part with a standard thread form characterized by thread walls with a standard included angle, and a modified part complementary to the standard part having a modified thread form characterized by thread walls which are symmetrically inclined with a modified included angle that is different from the standard included angle of the standard part's thread walls, such that the threads of one part make pre-loaded edge contact with the thread walls of the other part. The thread form of the modified part can have an included angle that is greater, less, or compound as compared to the included angle of the standard part. The standard part may be a bolt and the modified part a nut, or vice versa. The modified thread form holds securely even under large vibrational forces, it permits bi-directional use of standard mating threads, is impervious to the build up of tolerances and can be manufactured with a wider range of tolerances without loss of functionality, and distributes loading stresses (per thread) in a manner that decreases the possibility of single thread failure.

  9. Continuous directional water transport on the peristome surface of Nepenthes alata

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Zhang, Pengfei; Zhang, Liwen; Liu, Hongliang; Jiang, Ying; Zhang, Deyuan; Han, Zhiwu; Jiang, Lei

    2016-04-01

    Numerous natural systems contain surfaces or threads that enable directional water transport. This behaviour is usually ascribed to hierarchical structural features at the microscale and nanoscale, with gradients in surface energy and gradients in Laplace pressure thought to be the main driving forces. Here we study the prey-trapping pitcher organs of the carnivorous plant Nepenthes alata. We find that continuous, directional water transport occurs on the surface of the ‘peristome’—the rim of the pitcher—because of its multiscale structure, which optimizes and enhances capillary rise in the transport direction, and prevents backflow by pinning in place any water front that is moving in the reverse direction. This results not only in unidirectional flow despite the absence of any surface-energy gradient, but also in a transport speed that is much higher than previously thought. We anticipate that the basic ‘design’ principles underlying this behaviour could be used to develop artificial fluid-transport systems with practical applications.

  10. Sectional device handling tool

    DOEpatents

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  11. Determination of calibration parameters of a VRX CT system using an “Amoeba” algorithm

    PubMed Central

    Jordan, Lawrence M.; DiBianca, Frank A.; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M. Waleed

    2008-01-01

    Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge “clouds” created by the detected x-ray photons, i.e., the “physics limit.” This paper focuses on implementing a technique called “projective compression.” which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm “variable-resolution x-ray” (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown. PMID:19430581

  12. Determination of calibration parameters of a VRX CT system using an "Amoeba" algorithm.

    PubMed

    Jordan, Lawrence M; Dibianca, Frank A; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M Waleed

    2004-01-01

    Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge "clouds" created by the detected x-ray photons, i.e., the "physics limit." This paper focuses on implementing a technique called "projective compression." which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm "variable-resolution x-ray" (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown.

  13. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    NASA Astrophysics Data System (ADS)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  14. Cutting thread at flexible endoscopy.

    PubMed

    Gong, F; Swain, P; Kadirkamanathan, S; Hepworth, C; Laufer, J; Shelton, J; Mills, T

    1996-12-01

    New thread-cutting techniques were developed for use at flexible endoscopy. A guillotine was designed to follow and cut thread at the endoscope tip. A new method was developed for guiding suture cutters. Efficacy of Nd: YAG laser cutting of threads was studied. Experimental and clinical experience with thread-cutting methods is presented. A 2.4 mm diameter flexible thread-cutting guillotine was constructed featuring two lateral holes with sharp edges through which sutures to be cut are passed. Standard suture cutters were guided by backloading thread through the cutters extracorporeally. A snare cutter was constructed to retrieve objects sewn to tissue. Efficacy and speed of Nd: YAG laser in cutting twelve different threads were studied. The guillotine cut thread faster (p < 0.05) than standard suture cutters. Backloading thread shortened time taken to cut thread (p < 0.001) compared with free-hand cutting. Nd: YAG laser was ineffective in cutting uncolored threads and slower than mechanical cutters. Results of thread cutting in clinical studies using sewing machine (n = 77 cutting episodes in 21 patients), in-vivo experiments (n = 156), and postsurgical cases (n = 15 over 15 years) are presented. New thread-cutting methods are described and their efficacy demonstrated in experimental and clinical studies.

  15. Tool Removes Coil-Spring Thread Inserts

    NASA Technical Reports Server (NTRS)

    Collins, Gerald J., Jr.; Swenson, Gary J.; Mcclellan, J. Scott

    1991-01-01

    Tool removes coil-spring thread inserts from threaded holes. Threads into hole, pries insert loose, grips insert, then pulls insert to thread it out of hole. Effects essentially reverse of insertion process to ease removal and avoid further damage to threaded inner surface of hole.

  16. Test-bed and Full-Scale Demonstration of Plasma Flow Control for Wind Turbines. Phase 1

    DTIC Science & Technology

    2013-07-15

    the actuators was prohibitive. This led to the decision to mount the step-up transformers on the hub of the turbine , reducing the slip ring voltage...facility as it is manufactured as one piece and must be installed during assembly of the turbine . Figure 73 shows the slip ring after installation on...the turbine . The anti- rotation pin can be seen extending up past the brake disc at the top of the ring . Navatek, Ltd. Plasma Flow Control for Wind

  17. Magnesium Based Composite via Friction Stir Processing

    DTIC Science & Technology

    2013-04-01

    study. FSP was carried out with a stepped spiral conical tool with a featureless shoulder and a pin length of 6.5 mm, which was made of H13 tool ...of a high strength rotating tool to locally heat the work piece and produce intense plastic deformation. The interplay between temperature and strain... steel . A set of holes with a depth of about 6 mm were drilled into the plate in the pattern shown in Fig.1 (a) and the B4C powder was then filled into

  18. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    PubMed

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  19. Effect of rotation speed and welding speed on Friction Stir Welding of AA1100 Aluminium alloy

    NASA Astrophysics Data System (ADS)

    Raja, P.; Bojanampati, S.; Karthikeyan, R.; Ganithi, R.

    2018-04-01

    Aluminum AA1100 is the most widely used grade of Aluminium due to its excellent corrosion resistance, high ductility and reflective finish, the selected material was welded with Friction Stir Welding (FSW) process on a CNC machine, using a combination of different tool rotation speed (1500 rpm, 2500 rpm, 3500 rpm) and welding speed (10 mm/min, 30 mm/min, 50 mm/min) as welding parameters. The effect of FSW using this welding parameter was studied by measuring the ultimate tensile strength of the welded joints. A high-speed steel tool was prepared for welding the Aluminium AA1100 alloy having an 8mm shoulder diameter and pin dimension of 4mm diameter and 2.8 mm length. The welded joints were tested using the universal testing machine. It was found that Ultimate Tensile Strength of FSW specimen was highest with a value of 98.08 MPa when the weld was performed at rotation speed of 1500 RPM and welding speed of 50 mm/min.

  20. Photospheric Magnetic Flux Transport - Supergranules Rule

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Rightmire-Upton, Lisa

    2012-01-01

    Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!

  1. 78 FR 76815 - Steel Threaded Rod From India: Preliminary Affirmative Countervailing Duty Determination and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-533-856] Steel Threaded Rod From... exporters of steel threaded rod from India. The period of investigation (``POI'') is January 1, 2012... this investigation is steel threaded rod. Steel threaded rod is certain threaded rod, bar, or studs, of...

  2. Online discussion groups for bulimia nervosa: an inductive approach to Internet-based communication between patients.

    PubMed

    Wesemann, Dorette; Grunwald, Martin

    2008-09-01

    Online discussion forums are often used by people with eating disorders. This study analyses 2,072 threads containing a total of 14,903 postings from an unmoderated German "prorecovery" forum for persons suffering from bulimia nervosa (www.ab-server.de) during the period from October 2004 to May 2006. The threads were inductively analyzed for underlying structural types, and the various types found were then analyzed for differences in temporal and quantitative parameters. Communication in the online discussion forum occurred in three types of thread: (1) problem-oriented threads (78.8% of threads), (2) communication-oriented threads (15.3% of threads), and (3) metacommunication threads (2.6% of threads). Metacommunication threads contained significantly more postings than problem-oriented and communication-oriented threads, and they were viewed significantly more often. Moreover, there are temporal differences between the structural types. Topics relating to active management of the disorder receive great attention in prorecovery forums. (c) 2008 by Wiley Periodicals, Inc.

  3. Two years' outcome of thread lifting with absorbable barbed PDO threads: Innovative score for objective and subjective assessment.

    PubMed

    Ali, Yasser Helmy

    2018-02-01

    Thread-lifting rejuvenation procedures have evolved again, with the development of absorbable threads. Although they have gained popularity among plastic surgeons and dermatologists, very few articles have been written in literature about absorbable threads. This study aims to evaluate two years' outcome of thread lifting using absorbable barbed threads for facial rejuvenation. Prospective comparative stud both objectively and subjectively and follow-up assessment for 24 months. Thread lifting for face rejuvenation has significant long-lasting effects that include skin lifting from 3-10 mm and high degree of patients' satisfaction with less incidence rate of complications, about 4.8%. Augmented results are obtained when thread lifting is combined with other lifting and rejuvenation modalities. Significant facial rejuvenation is achieved by thread lifting and highly augmented results are observed when they are combined with Botox, fillers, and/or platelet rich plasma (PRP) rejuvenations.

  4. Thread gauge for tapered threads

    DOEpatents

    Brewster, Albert L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads.

  5. Thread gauge for tapered threads

    DOEpatents

    Brewster, A.L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads. 13 figures.

  6. CNT coated thread micro-electro-mechanical system for finger proprioception sensing

    NASA Astrophysics Data System (ADS)

    Shafi, A. A.; Wicaksono, D. H. B.

    2017-04-01

    In this paper, we aim to fabricate cotton thread based sensor for proprioceptive application. Cotton threads are utilized as the structural component of flexible sensors. The thread is coated with multi-walled carbon nanotube (MWCNT) dispersion by using facile conventional dipping-drying method. The electrical characterization of the coated thread found that the resistance per meter of the coated thread decreased with increasing the number of dipping. The CNT coated thread sensor works based on piezoresistive theory in which the resistance of the coated thread changes when force is applied. This thread sensor is sewed on glove at the index finger between middle and proximal phalanx parts and the resistance change is measured upon grasping mechanism. The thread based microelectromechanical system (MEMS) enables the flexible sensor to easily fit perfectly on the finger joint and gives reliable response as proprioceptive sensing.

  7. Predicted osteotomy planes are accurate when using patient-specific instrumentation for total knee arthroplasty in cadavers: a descriptive analysis.

    PubMed

    Kievit, A J; Dobbe, J G G; Streekstra, G J; Blankevoort, L; Schafroth, M U

    2018-06-01

    Malalignment of implants is a major source of failure during total knee arthroplasty. To achieve more accurate 3D planning and execution of the osteotomy cuts during surgery, the Signature (Biomet, Warsaw) patient-specific instrumentation (PSI) was used to produce pin guides for the positioning of the osteotomy blocks by means of computer-aided manufacture based on CT scan images. The research question of this study is: what is the transfer accuracy of osteotomy planes predicted by the Signature PSI system for preoperative 3D planning and intraoperative block-guided pin placement to perform total knee arthroplasty procedures? The transfer accuracy achieved by using the Signature PSI system was evaluated by comparing the osteotomy planes predicted preoperatively with the osteotomy planes seen intraoperatively in human cadaveric legs. Outcomes were measured in terms of translational and rotational errors (varus, valgus, flexion, extension and axial rotation) for both tibia and femur osteotomies. Average translational errors between the osteotomy planes predicted using the Signature system and the actual osteotomy planes achieved was 0.8 mm (± 0.5 mm) for the tibia and 0.7 mm (± 4.0 mm) for the femur. Average rotational errors in relation to predicted and achieved osteotomy planes were 0.1° (± 1.2°) of varus and 0.4° (± 1.7°) of anterior slope (extension) for the tibia, and 2.8° (± 2.0°) of varus and 0.9° (± 2.7°) of flexion and 1.4° (± 2.2°) of external rotation for the femur. The similarity between osteotomy planes predicted using the Signature system and osteotomy planes actually achieved was excellent for the tibia although some discrepancies were seen for the femur. The use of 3D system techniques in TKA surgery can provide accurate intraoperative guidance, especially for patients with deformed bone, tailored to individual patients and ensure better placement of the implant.

  8. Design of internal screw thread measuring device based on the Three-Line method principle

    NASA Astrophysics Data System (ADS)

    Hu, Dachao; Chen, Jianguo

    2010-08-01

    In accordance with the principle of Three-Line, this paper analyze the correlation of every main parameter of internal screw thread, and then designed a device to measure the main parameters of internal screw thread. Internal thread parameters, such as the pitch diameter, thread angle and screw-pitch of common screw thread, terraced screw thread, zigzag screw thread were obtained through calculation and measurement. The practical applications have proved that this device is convenience to use, and the measurements have a high accuracy. Meanwhile, the application for the patent of invention has been accepted by the Patent Office (Filing number: 200710044081.5).

  9. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya

    2018-02-01

    In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.

  10. Design and study of deep laser acupuncture stimulator of modulation and multibeam

    NASA Astrophysics Data System (ADS)

    Mao, Haitao; Wang, Qingguo; Xing, Qian; Li, Fangzheng; Cheng, Dongan

    2002-04-01

    The laser acupuncture stimulation has been applied extensively to replace the acupuncture needles. But the laser is transmitted to the acupoint through the skin, so the curative effect of the laser irradiation on an acupoint from cuticle is limited. We have developed the deep laser acupuncture stimulator of modulation and multibeam. The laser beam (such as He-Ne, LD, etc.) is turned into the modulated waveform. The modulated laser beam can simulate the customary acupuncture way such as twirling and rotating, etc. The laser beam is split into 3-8 beams by the means of optical shunt. After that they enter into laser acupuncture pins separately through the optical fiber joiners. The laser beam and pins can give simultaneously the stimulation in the depths of 3-8 acupoints. It has been proved by the clinical practice that the deep laser acupuncture has the notable efficiency for the apoplexy and sequelae of apoplexy, sciatica, rheumatoid arthritis, etc.

  11. Engineered pinning landscapes for enhanced 2G coil wire

    DOE PAGES

    Rupich, Martin W.; Sathyamurthy, Srivatsan; Fleshler, Steven; ...

    2016-04-01

    We demonstrate a twofold increase in the in-field critical current of AMSC's standard 2G coil wire by irradiation with 18-MeV Au ions. The optimum pinning enhancement is achieved with a dose of 6 × 10 11 Au ions/cm 2. Although the 77 K, self-field critical current is reduced by about 35%, the in-field critical current (H//c) shows a significant enhancement between 4 and 50 K in fields > 1 T. The process was used for the roll-to-roll irradiation of AMSC's standard 46-mm-wide production coated conductor strips, which were further processed into standard copper laminated coil wire. The long-length wires showmore » the same enhancement as attained with short static irradiated samples. The roll-to-roll irradiation process can be incorporated in the standard 2G wire manufacturing, with no modifications to the current process. In conclusion, the enhanced performance of the wire will benefit rotating machine and magnet applications.« less

  12. 3D simulation of friction stir welding based on movable cellular automaton method

    NASA Astrophysics Data System (ADS)

    Eremina, Galina M.

    2017-12-01

    The paper is devoted to a 3D computer simulation of the peculiarities of material flow taking place in friction stir welding (FSW). The simulation was performed by the movable cellular automaton (MCA) method, which is a representative of particle methods in mechanics. Commonly, the flow of material in FSW is simulated based on computational fluid mechanics, assuming the material as continuum and ignoring its structure. The MCA method considers a material as an ensemble of bonded particles. The rupture of interparticle bonds and the formation of new bonds enable simulations of crack nucleation and healing as well as mas mixing and microwelding. The simulation results showed that using pins of simple shape (cylinder, cone, and pyramid) without a shoulder results in small displacements of plasticized material in workpiece thickness directions. Nevertheless, the optimal ratio of longitudinal velocity to rotational speed makes it possible to transport the welded material around the pin several times and to produce a joint of good quality.

  13. Remotely operable sample-taking appliance, especially for ascertaining radioactivity profiles in contaminated material surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanulik, J.

    1983-09-20

    A sample-taking appliance comprises several sensors arranged on a turntable like sensor carrier in such a manner that the application areas of the small sensor sponges decrease stepwise from the first to the last sensor. By simple rotation of the turntable the sensors can be brought successively into a working position. The sensor carrier is preferably accommodated in a housing which is open at the bottom and which is raisable and lowerable in the frame of the appliance by, for example, a threaded spindle. The threaded spindle is driven by an electric motor. For each sampling the sensor carrier ismore » lowered until the cell voltage corresponds to a predetermined desired value. This produces sufficiently precise and reproductible measured values of the electrolytic current for ascertaining the removed layer thickness. The appliance makes it possible to take material samples even from locations of high radiation loading. The material layers removed as samples lie concentrically above each other so that the graduation of the application areas comes into full effect and the material samples taken by the small sponges and the radioactivity contained therein are not falsified.« less

  14. One Approach to the Synthesis, Design and Manufacture of Hyperboloid Gear Sets With Face Mating Gears. Part 1: Basic Theoretical and Cad Experience

    NASA Astrophysics Data System (ADS)

    Abadjiev, Valentin; Abadjieva, Emilia

    2016-06-01

    Hyperboloid gear drives with face mating gears are used to transform rotations between shafts with non-parallel and non-intersecting axes. A special case of these transmissions are Spiroid and Helicon gear drives. The classical gear drives of this type are the Archimedean ones. The objective of this study are hyperboloid gear drives with face meshing, when the pinion possesses threads of conic convolute, Archimedean and involute types, or the pinion has threads of cylindrical convolute, Archimedean and involute types. For simplicity, all three types transmis- sions with face mating gears and a conic pinion are titled Spiroid and all three types transmissions with face mating gears and a cylindrical pinion are titled Helicon. Principles of the mathematical modelling of tooth contact synthesis are discussed in this study. The presented research shows that the synthesis is realized by application of two mathematical models: pitch contact point and mesh region models. Two approaches for synthesis of the gear drives in accordance with Olivier's principles are illustrated. The algorithms and computer programs for optimization synthesis and design of the studied hyperboloid gear drives are presented.

  15. Thread angle dependency on flame spread shape over kenaf/polyester combined fabric

    NASA Astrophysics Data System (ADS)

    Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.

  16. Molecular mechanisms responsible for interaction or differentiation between hydrotropism and gravitropism in roots

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Morohashi, Keita; Kobayashi, Akie; Miyazawa, Yutaka; Fujii, Nobuharu

    Roots display hydrotropism in response to moisture gradient, but it is often interfered by gravitropic response on Earth. We demonstrated that roots of cucumber seedlings showed positive hydrotropism when exposed to moisture gradient and rotated on a two-axis clinostat. Under stationary conditions, however, gravitropic response overcame hydrotropic response. Using this experimental system, we examined the role of auxin in hydrotropism. Cucumber roots showed severely reduced hydrotropic response when treated with inhibitors of auxin transport (efflux) or auxin action. mRNA accumulation of auxin-inducible gene, CsIAA1, became more abundant in the concave side of the hydrotropically responding roots, compared with that of the convex side. To understand the auxin dynamics in cucumber roots, we isolated cDNAs of auxin efflux carriers, CsPINs, and examined the localization of their mRNAs and proteins. Of these CsPINs, CsPIN5 was localized peripherally in the region between lateral root cap and elongation zone of cucumber roots. In hydrotropically responding roots, CsPIN5 proteins decreased in the convex side while it was maintained in the concave side. These results suggest that auxin dynamics and action play important roles in inducing hydrotropism, similarly to the case of gravitropism in roots. In cucumber roots, therefore, hydrotropism interacts with gravitropism, possibly by competitive manner in auxin dynamics. We are currently preparing spaceflight experiment for separating the hydrotropic response mechanism from that of gravitropism to understand the regulatory mechanisms of root growth orientation and determine whether hydrotropic response can be used for controlling growth orientation of roots in microgravity. On the other hand, we identified MIZ1 gene essential for hydrotropism but not gravitropism in Arabidopsis roots. Thus, there exist molecular mechanisms shared and differed in the two tropisms.

  17. Two Body Wear of Newly Introduced Nanocomposite Teeth and Cross Linked Four Layered Acrylic Teeth: a Comparitive In Vitro Study.

    PubMed

    Ilangkumaran, R; Srinivasan, J; Baburajan, K; Balaji, N

    2014-12-01

    Wear of complete denture teeth results in compromise in denture esthetics and functions. To counteract this problem, artificial teeth with increased wear resistance had been introduced in the market such as nanocomposite teeth. The purpose of this study was to compare the amount of wear between nanocomposite teeth and acrylic teeth. Fifteen specimens were chosen from each group namely the nanocomposite teeth (SR_-PHONARES) and the acrylic teeth (ACRY PLUS). Maxillary premolar was only chosen for testing and the samples were customized according to the specifications of the pin on disc machine. Pin on disc machine is a two body tribometer which quantifies the amount of wear under a specific load and time. Test samples were mounted on to the receptacle of the pin on disc machine and tested under a load of 0.3 kg for 1,000 cycles of rotation against a 600 grit emery paper. The amount of wear is displayed from the digital reading obtained from the pin on disc machine. After statistical analysis, it was found that, the amount of wear is more in four layered acrylic teeth. The p value obtained is 0.002 (<0.005) thus implies that the difference in wear between nanocomposite teeth and acrylic teeth is statistically significant. Though the nanocomposite teeth has less amount of wear than the four layered acrylic teeth, the difference is very less and adds only to a little clinical significance but the cost of the nanocomposite is four times that of the acrylic teeth. Further clinical studies must be performed to confirm our results.

  18. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shikun; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371; Meng, Zhaoliang

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0{sup ∘} to 90{sup ∘} and φ from 0{sup ∘} to 360{sup ∘}. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. Themore » operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.« less

  19. Spherical Joint Piston and Connecting Rod Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under an interagency agreement with the Department of Energy, the NASA Lewis Research Center manages a Heavy-Duty Diesel Engine Technology (HDET) research program. The overall program objectives are to reduce fuel consumption through increased engine efficiency, reduce engine exhaust emissions, and provide options for the use of alternative fuels. The program is administered with a balance of research contracts, university research grants, and focused in-house research. The Cummins Engine Company participates in the HDET program under a cost-sharing research contract. Cummins is researching and developing in-cylinder component technologies for heavy-duty diesel engines. An objective of the Cummins research is to develop technologies for a low-emissions, 55-percent thermal efficiency (LE-55) engine. The best current-production engines in this class achieve about 46-percent thermal efficiency. Federal emissions regulations are driving this technology. Regulations for heavy duty diesel engines were tightened in 1994, more demanding emissions regulations are scheduled for 1998, and another step is planned for 2002. The LE-55 engine emissions goal is set at half of the 1998 regulation level and is consistent with plans for 2002 emissions regulations. LE-55 engine design requirements to meet the efficiency target dictate a need to operate at higher peak cylinder pressures. A key technology being developed and evaluated under the Cummins Engine Company LE-55 engine concept is the spherical joint piston and connecting rod. Unlike conventional piston and connecting rod arrangements which are joined by a pin forming a hinged joint, the spherical joint piston and connecting rod use a ball-and-socket joint. The ball-and-socket arrangement enables the piston to have an axisymmetric design allowing rotation within the cylinder. The potential benefits of piston symmetry and rotation are reduced scuffing, improved piston ring sealing, improved lubrication, mechanical and thermal load symmetry, reduced bearing stresses, reduced running clearances, and reduced oil consumption. The spherical joint piston is a monolithic, squeeze-cast, fiber-reinforced aluminum piston. The connecting rod has a ball end that seats on a spherical saddle within the piston and is retained by a pair of aluminum bronze holder rings. The holder rings are secured by a threaded ring that mates with the piston. As part of the ongoing research and development activity, the Cummins Engine Company successfully completed a 100-hr test of the spherical joint piston and connecting rod at LE- 55 peak steady-state engine conditions. In addition, a 100-hr transient cycle test that varied engine conditions between LE-55 no-load and LE-55 full-load was successfully completed.

  20. The effect of thread pattern upon implant osseointegration.

    PubMed

    Abuhussein, Heba; Pagni, Giorgio; Rebaudi, Alberto; Wang, Hom-Lay

    2010-02-01

    Implant design features such as macro- and micro-design may influence overall implant success. Limited information is currently available. Therefore, it is the purpose of this paper to examine these factors such as thread pitch, thread geometry, helix angle, thread depth and width as well as implant crestal module may affect implant stability. A literature search was conducted using MEDLINE to identify studies, from simulated laboratory models, animal, to human, related to this topic using the keywords of implant thread, implant macrodesign, thread pitch, thread geometry, helix angle, thread depth, thread width and implant crestal module. The results showed how thread geometry affects the distribution of stress forces around the implant. A decreased thread pitch may positively influence implant stability. Excess helix angles in spite of a faster insertion may jeopardize the ability of implants to sustain axial load. Deeper threads seem to have an important effect on the stabilization in poorer bone quality situations. The addition of threads or microthreads up to the crestal module of an implant might provide a potential positive contribution on bone-to to-implant contact as well as on the preservation of marginal bone; nonetheless this remains to be determined. Appraising the current literature on this subject and combining existing data to verify the presence of any association between the selected characteristics may be critical in the achievement of overall implant success.

  1. Method for molding threads in graphite panels

    DOEpatents

    Short, W.W.; Spencer, C.

    1994-11-29

    A graphite panel with a hole having a damaged thread is repaired by drilling the hole to remove all of the thread and making a new hole of larger diameter. A bolt with a lubricated thread is placed in the new hole and the hole is packed with graphite cement to fill the hole and the thread on the bolt. The graphite cement is cured, and the bolt is unscrewed therefrom to leave a thread in the cement which is at least as strong as that of the original thread. 8 figures.

  2. The measure method of internal screw thread and the measure device design

    NASA Astrophysics Data System (ADS)

    Hu, Dachao; Chen, Jianguo

    2008-12-01

    In accordance with the principle of Three-Line, this paper analyzed the correlation of every main parameter of internal screw thread, and then designed a device to measure the main parameters of internal screw thread. Basis on the measured value and corresponding formula calculation, we can get the internal thread parameters, such as the pitch diameter, thread angle and screw-pitch of common screw thread, terraced screw thread, zigzag screw thread and some else. The practical application has proved that this operation of this device is convenience, and the measured dates have a high accuracy. Meanwhile, the application of this device's patent of invention is accepted by the Patent Office. (The filing number: 200710044081.5)

  3. Insertion tube methods and apparatus

    DOEpatents

    Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.

    2007-02-20

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  4. Subsurface drill string

    DOEpatents

    Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  5. CMS event processing multi-core efficiency status

    NASA Astrophysics Data System (ADS)

    Jones, C. D.; CMS Collaboration

    2017-10-01

    In 2015, CMS was the first LHC experiment to begin using a multi-threaded framework for doing event processing. This new framework utilizes Intel’s Thread Building Block library to manage concurrency via a task based processing model. During the 2015 LHC run period, CMS only ran reconstruction jobs using multiple threads because only those jobs were sufficiently thread efficient. Recent work now allows simulation and digitization to be thread efficient. In addition, during 2015 the multi-threaded framework could run events in parallel but could only use one thread per event. Work done in 2016 now allows multiple threads to be used while processing one event. In this presentation we will show how these recent changes have improved CMS’s overall threading and memory efficiency and we will discuss work to be done to further increase those efficiencies.

  6. Multi-threading: A new dimension to massively parallel scientific computation

    NASA Astrophysics Data System (ADS)

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2000-06-01

    Multi-threading is becoming widely available for Unix-like operating systems, and the application of multi-threading opens new ways for performing parallel computations with greater efficiency. We here briefly discuss the principles of multi-threading and illustrate the application of multi-threading for a massively parallel direct four-index transformation of electron repulsion integrals. Finally, other potential applications of multi-threading in scientific computing are outlined.

  7. Characterization of B4C-composite-reinforced aluminum alloy composites

    NASA Astrophysics Data System (ADS)

    Singh, Ram; Rai, R. N.

    2018-04-01

    Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.

  8. Modeling of the pliant surfaces of the thigh and leg during gait

    NASA Astrophysics Data System (ADS)

    Ball, Kevin A.; Pierrynowski, Michael R.

    1998-05-01

    Rigid Body Modeling, a 6 degree of freedom (DOF) method, provides state of the art human movement analysis, but with one critical limitation; it assumes segment rigidity. A non- rigid 12 DOF method, Pliant Surface Modeling (PSM) was developed to model the simultaneous pliant characteristics (scaling and shearing) of the human body's soft tissues. For validation, bone pins were surgically inserted into the tibia and femur of three volunteers. Infrared markers (44) were placed upon the thigh, leg, and bone pin surfaces. Two synchronized OPTOTRAK/3020TM cameras (Northern Digital Inc., Waterloo, ON) were used to record 120 seconds of treadmill gait per subject. In comparison to the 'gold standard' bone pin rotational results, PSM located the tibia, femur and tibiofemoral joint with root mean square (RMS) errors of 2.4 degrees, 4.0 degrees and 4.6 degrees, respectively. These performances met or exceeded (P less than .01) the current state of the art for surface data, Rigid Surface Modeling. The thigh's measured surface experienced uniform repeatable changes in scale: 40% mediolateral, 5% anterioposterior, 5% superioinferior, and planar shears of: 25 degrees transverse, 15 degrees sagittal, 5 degrees frontal. With the brief exception of push-off, the lower leg demonstrated much greater rigidity: less than 5% scaling and less than 5 degrees shearing. Thus, PSM offers superior 'rigid' estimates of knee motion with the ability to quantify 'pliant' surface changes.

  9. The effect of 45° grain boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 thin films

    NASA Astrophysics Data System (ADS)

    Hänisch, J.; Iida, K.; Kurth, F.; Thersleff, T.; Trommler, S.; Reich, E.; Hühne, R.; Schultz, L.; Holzapfel, B.

    2014-01-01

    The anisotropy of the critical current density Jc depends in general on both the properties of the flux lines (such as line tension, coherence length and penetration depth) and the properties of the defects (such as density, shape, orientation etc.). Whereas the Jc anisotropy in microstructurally clean films can be scaled to an effective magnetic field containing the Ginzburg-Landau anisotropy term, it is in general not possible (or only in a limited field range) for samples containing extended defects. Here, the Jc anisotropy of a Co-doped BaFe2As2 sample with 45° [001] tilt grain boundaries (GBs), i.e. grain boundaries created by 45° in-plane rotated grains, as well as extended Fe particles is investigated. This microstructure leads to c-axis correlated pinning, both due to the GBs and the Fe particles and manifests in a c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full Jc anisotropy is fitted successfully with the vortex path model. The results are compared to a sample without GBs and Fe particles. 45° GBs seem to be good pinning centers rather than detrimental to current flow.

  10. Astronomical chemistry.

    PubMed

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  11. Magnetic gripper device

    DOEpatents

    Meyer, Ross E.

    1993-01-01

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  12. Magnetic gripper device

    DOEpatents

    Meyer, R.E.

    1993-03-09

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  13. Deformation Mechanisms of Gum Metals Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Sankaran, Rohini Priya

    Gum Metal is a set of multi-component beta-Ti alloys designed and developed by Toyota Central R&D Labs in 2003 to have a nearly zero shear modulus in the direction. After significant amounts of cold-work (>90%), these alloys were found to have yield strengths at a significant fraction of the predicted ideal strengths and exhibited very little work hardening. It has been speculated that this mechanical behavior may be realized through an ideal shear mechanism as opposed to conventional plastic deformation mechanisms, such as slip, and that such a mechanism may be realized through a defect structure termed "nanodisturbance". It is furthermore theorized that for near ideal strength to be attained, dislocations need to be pinned at sufficiently high stresses. It is the search for these defects and pinning points that motivates the present study. However, the mechanism of plastic deformation and the true origin of specific defect structures unique to gum metals is still controversial, mainly due to the complexity of the beta-Ti alloy system and the heavily distorted lattice exhibited in cold worked gum metals, rendering interpretation of images difficult. Accordingly, the first aim of this study is to clarify the starting as-received microstructures of gum metal alloys through conventional transmission electron microscopy (TEM) and aberration-corrected high resolution scanning transmission electron microscopy with high-angle annular dark field detector (HAADF-HRSTEM) imaging. To elucidate the effects of beta-stability and starting microstructure on the deformation behavior of gum metals and thus to provide adequate context for potentially novel deformation structures, we investigate three alloy conditions: gum metal that has undergone solution heat treatment (STGM), gum metal that has been heavily cold worked (CWGM), and a solution treated alloy of nominal gum metal composition, but leaner in beta-stabilizing content (ST Ref-1). In order to directly relate observed defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the presence of dislocations in regions that have sustained large lattice rotations. Finally, we report on the nature of indirectly observed "pinning points" in STGM under nanoindentation that was reported in a previous study. We find through ADF/HAADF STEM that the "pinning points" which cause dislocation bowing in STGM under nanoindentation are actually other dislocations with the line direction normal to the TEM foil, and, in support of this finding, we also observe other in-plane dislocation-dislocation interactions that is responsible for resultant bowing. We observe no direct evidence of any secondary phases, twinning, or nanodisturbances in the STGM case, and the majority of deformation features can be explained by conventional slip mechanism. However, it remains a possibility that an ideal shear mechanism may be accompanying conventional slip in STGMs that may account for the truly continuous nature of the lattice rotations.

  14. Method for molding threads in graphite panels

    DOEpatents

    Short, William W.; Spencer, Cecil

    1994-01-01

    A graphite panel (10) with a hole (11) having a damaged thread (12) is repaired by drilling the hole (11) to remove all of the thread and make a new hole (13) of larger diameter. A bolt (14) with a lubricated thread (17) is placed in the new hole (13) and the hole (13) is packed with graphite cement (16) to fill the hole and the thread on the bolt. The graphite cement (16) is cured, and the bolt is unscrewed therefrom to leave a thread (20) in the cement (16) which is at least as strong as that of the original thread (12).

  15. Self-locking threaded fasteners

    DOEpatents

    Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.

    1996-01-01

    A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy.

  16. Method for Estimating Thread Strength Reduction of Damaged Parent Holes with Inserts

    NASA Technical Reports Server (NTRS)

    Johnson, David L.; Stratton, Troy C.

    2005-01-01

    During normal assembly and disassembly of bolted-joint components, thread damage and/or deformation may occur. If threads are overloaded, thread damage/deformation can also be anticipated. Typical inspection techniques (e.g. using GO-NO GO gages) may not provide adequate visibility of the extent of thread damage. More detailed inspection techniques have provided actual pitch-diameter profiles of damaged-hardware holes. A method to predict the reduction in thread shear-out capacity of damaged threaded holes has been developed. This method was based on testing and analytical modeling. Test samples were machined to simulate damaged holes in the hardware of interest. Test samples containing pristine parent-holes were also manufactured from the same bar-stock material to provide baseline results for comparison purposes. After the particular parent-hole thread profile was machined into each sample a helical insert was installed into the threaded hole. These samples were tested in a specially designed fixture to determine the maximum load required to shear out the parent threads. It was determined from the pristine-hole samples that, for the specific material tested, each individual thread could resist an average load of 3980 pounds. The shear-out loads of the holes having modified pitch diameters were compared to the ultimate loads of the specimens with pristine holes. An equivalent number of missing helical coil threads was then determined based on the ratio of shear-out loads for each thread configuration. These data were compared with the results from a finite element model (FEM). The model gave insights into the ability of the thread loads to redistribute for both pristine and simulated damage configurations. In this case, it was determined that the overall potential reduction in thread load-carrying capability in the hardware of interest was equal to having up to three fewer threads in the hole that bolt threads could engage. One- half of this potential reduction was due to local pitch-diameter variations and the other half was due to overall pitch-diameter enlargement beyond Class 2 fit. This result was important in that the thread shear capacity for this particular hardware design was the limiting structural capability. The details of the method development, including the supporting testing, data reduction and analytical model results comparison will be discussed hereafter.

  17. Quick-connect fasteners for assembling devices in space

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor); Evenson, Erik E. (Inventor); Ruiz, Steve L. (Inventor)

    1992-01-01

    A quick-connect fastener of a relatively-simple straightforward design is arranged with a tubular body adapted to be engaged against an attachment fitting in coincidental alignment with an opening in that fitting. A tubular collet having flexible finger projecting from its forward end is arranged in the fastener body to be shifted forwardly by an elongated expander member coaxially arranged within the tubular collet for advancing the collet fingers into the opening in the attachment fitting. Biasing means are arranged between the elongated expander member and a rotatable actuator which is threadedly mounted within the tubular collet so as to be rotated for urging the expander member into engagement with the collet fingers. A first coupling member is arranged on the rotatable actuator to be accessible from outside of the fastener so that a second coupling member on the distal end of a flexible shaft can be introduced into the fastener body and coupled to the first coupling member to enable a typical actuating tool coupled to the shaft outside of the fastener body to be operated for advancing the outwardly-enlarged ends of the collet fingers into the opening in the attachment fitting and thereafter rotating the actuator member to expand the fingers to that attachment fitting. Upon expansion of the collet fingers, the biasing means impose a biasing force on the expander to releasably retain the fingers in their latching positions.

  18. The research and development of the non-contact detection of the tubing internal thread with a line structured light

    NASA Astrophysics Data System (ADS)

    Hu, Yuanyuan; Xu, Yingying; Hao, Qun; Hu, Yao

    2013-12-01

    The tubing internal thread plays an irreplaceable role in the petroleum equipment. The unqualified tubing can directly lead to leakage, slippage and bring huge losses for oil industry. For the purpose of improving efficiency and precision of tubing internal thread detection, we develop a new non-contact tubing internal thread measurement system based on the laser triangulation principle. Firstly, considering that the tubing thread had a small diameter and relatively smooth surface, we built a set of optical system with a line structured light to irradiate the internal thread surface and obtain an image which contains the internal thread profile information through photoelectric sensor. Secondly, image processing techniques were used to do the edge detection of the internal thread from the obtained image. One key method was the sub-pixel technique which greatly improved the detection accuracy under the same hardware conditions. Finally, we restored the real internal thread contour information on the basis of laser triangulation method and calculated tubing thread parameters such as the pitch, taper and tooth type angle. In this system, the profile of several thread teeth can be obtained at the same time. Compared with other existing scanning methods using point light and stepper motor, this system greatly improves the detection efficiency. Experiment results indicate that this system can achieve the high precision and non-contact measurement of the tubing internal thread.

  19. Measurement of Sound Speed in Thread

    NASA Astrophysics Data System (ADS)

    Saito, Shigemi; Shibata, Yasuhiro; Ichiki, Akira; Miyazaki, Akiho

    2006-05-01

    By employing thin wires, human hairs and threads, the measurement of sound speed in a thread whose diameter is smaller than 0.2 mm has been attempted. Preparing two cylindrical ceramic transducers with a 300 kHz resonance frequency, a perforated glass bead to be knotted by a sample thread is bonded to the center of the end surface of each transducer. After connecting these transducers with a sample thread, a receiving transducer is attached at a ceiling so as to hang another transmitting transducer with the thread. A glass bead is bonded to another end surface of the transmitting transducer so that tension, varied with a hanged plumb, can be applied to the sample thread. The time delay of the received signal relative to the transmitting pulse is measured while gradually shortening the thread. Sound speed is determined by the proportionality of time delay with thread length. Although the measured values for metallic wires are somewhat different from the values derived from the density and Young’s modulus cited in references, they are reproducible. The sound speed for human hairs of over twenty samples, which varies between 2000 and 2500 m/s, seems to depend on hair quality. Sound speed in a cotton thread is found to approach a constant value under large tension. An advanced measurement system available for uncut threads is also presented, where semi cylindrical transducers pinch the thread.

  20. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  1. Effect of tool offsetting on microstructure and mechanical properties dissimilar friction stir welded Mg-Al alloys

    NASA Astrophysics Data System (ADS)

    Baghdadi, Amir Hossein; Fazilah Mohamad Selamat, Nor; Sajuri, Zainuddin

    2017-09-01

    Automotive and aerospace industries are attempting to produce lightweight structure by using materials with low density such as aluminum and magnesium alloys to increase the fuel efficiency and consequently reduce the environmental pollution. It can be beneficial to join Mg to Al to acquire ideal performance in special applications. Friction stir welding (FSW) is solid state welding processes and relatively lower temperature of the process compared to fusion welding processes. This makes FSW a potential joining technique for joining of the dissimilar materials. In this study, Mg-Al butt joints were performed by FSW under different tool offset conditions, rotation rates (500-600 rpm) and traverse speeds (20 mm/min) with tool axis offset 1 mm shifted into AZ31B or Al6061 (T6), and without offset. During the welding process AZ31B was positioned at the advancing side (AS) and Al6061 (T6) was located at the retreating side (RS). Defect free AZ31B-Al6061 (T6) dissimilar metal FSW joints with good mechanical properties were obtained with the combination of intermediate rotation rate and low traverse speed pin is in the middle. When tool positioned in -1 mm or +1 mm offsetting, some defects were found in SZ of dissimilar FSWed joints such as cavity, tunnel, and crack. Furthermore, a thin layer of intermetallic compounds was observed in the stir zone at the interface between Mg-Al plates. The strength of the joint was influenced by FSW parameters. Good mechanical properties obtained with the combination of intermediate rotational speed of 600 rpm and low travelling speed of 20 mm/min by locating Mg on advancing side when pin is in the middle. Also, Joint efficiency of the welds prepared in the present study was between 29% and 68% for the different welding parameters.

  2. 78 FR 79670 - Steel Threaded Rod From Thailand: Preliminary Determination of Sales at Less Than Fair Value and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-831] Steel Threaded Rod From... ``Department'') preliminarily determines that steel threaded rod from Thailand is being, or is likely to be... Investigation The merchandise covered by this investigation is steel threaded rod. Steel threaded rod is certain...

  3. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circular. (5) All openings must be threaded. Threads must comply with the following: (i) Each thread must be clean cut, even, without checks, and to gauge. (ii) Taper threads, when used, must conform to one of the following: (A) American Standard Pipe Thread (NPT) type, conforming to the requirements of NBS...

  4. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... circular. (5) All openings must be threaded. Threads must comply with the following: (i) Each thread must be clean cut, even, without checks, and to gauge. (ii) Taper threads, when used, must conform to one of the following: (A) American Standard Pipe Thread (NPT) type, conforming to the requirements of NBS...

  5. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... circular. (5) All openings must be threaded. Threads must comply with the following: (i) Each thread must be clean cut, even, without checks, and to gauge. (ii) Taper threads, when used, must conform to one of the following: (A) American Standard Pipe Thread (NPT) type, conforming to the requirements of NBS...

  6. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circular. (5) All openings must be threaded. Threads must comply with the following: (i) Each thread must be clean cut, even, without checks, and to gauge. (ii) Taper threads, when used, must conform to one of the following: (A) American Standard Pipe Thread (NPT) type, conforming to the requirements of NBS...

  7. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, A. W.; Cargill, P. J.; Tam, K. V.

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread andmore » this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.« less

  8. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerkens, A.; Frenck, H.J.; Ewert, S.

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  9. Chinese-English Electronics and Telecommunications Dictionary. Volume 2

    DTIC Science & Technology

    1976-11-01

    cA fS] i^ W ^- bearing pin 01 axial 02 axial symmetry; rotational 03 synmetry axle weight 0« shaft clip 05 collar; burr CM axial ...terminal strips 07 J<A# three-way Joint ; triple Joint 08 K#frtt three-wattmeter method. 09 *t*Ü«f*f* three-dimensional wave propagation 10...design load ; assumed load ; 29 load rating 1040 •hejl genju wttt mm •hejl gongahl sir«* •h«Ji jlauan Äjtrt» •hejl Jlsuanblao ■ it it * /< •h«Jl

  10. A Combined Experimental and Analytical Modeling Approach to Understanding Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Stewart, Michael B.; Adams, Glynn P.; Romine, Peter

    1998-01-01

    In the Friction Stir Welding (FSW) process a rotating pin tool joins the sides of a seam by stirring them together. This solid state welding process avoids problems with melting and hot-shortness presented by some difficult-to weld high-performance light alloys. The details of the plastic flow during the process are not well understood and are currently a subject of research. Two candidate models of the FSW process, the Mixed Zone (MZ) and the Single Slip Surface (S3) model are presented and their predictions compared to experimental data.

  11. Angular dependence of critical current density and magnetoresistance of sputtered high-T(sub c)-films

    NASA Technical Reports Server (NTRS)

    Geerkens, A.; Meven, M.; Frenck, H.-J.; Ewert, S.

    1995-01-01

    The angular dependence of the critical current density and the magnetoresistance of high-T(sub c)-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle Theta between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the Theta-rotation plane is discussed.

  12. Self-locking threaded fasteners

    DOEpatents

    Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.

    1996-01-16

    A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy. 13 figs.

  13. Cribellate thread production in spiders: Complex processing of nano-fibres into a functional capture thread.

    PubMed

    Joel, Anna-Christin; Kappel, Peter; Adamova, Hana; Baumgartner, Werner; Scholz, Ingo

    2015-11-01

    Spider silk production has been studied intensively in the last years. However, capture threads of cribellate spiders employ an until now often unnoticed alternative of thread production. This thread in general is highly interesting, as it not only involves a controlled arrangement of three types of threads with one being nano-scale fibres (cribellate fibres), but also a special comb-like structure on the metatarsus of the fourth leg (calamistrum) for its production. We found the cribellate fibres organized as a mat, enclosing two parallel larger fibres (axial fibres) and forming the typical puffy structure of cribellate threads. Mat and axial fibres are punctiform connected to each other between two puffs, presumably by the action of the median spinnerets. However, this connection alone does not lead to the typical puffy shape of a cribellate thread. Removing the calamistrum, we found a functional capture thread still being produced, but the puffy shape of the thread was lost. Therefore, the calamistrum is not necessary for the extraction or combination of fibres, but for further processing of the nano-scale cribellate fibres. Using data from Uloborus plumipes we were able to develop a model of the cribellate thread production, probably universally valid for cribellate spiders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution

    PubMed Central

    Ke, Yuwen; Huh, Jae-Wan; Warrington, Ross; Li, Bing; Wu, Nan; Leng, Mei; Zhang, Junmei; Ball, Haydn L; Li, Bing; Yu, Hongtao

    2011-01-01

    Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution. PMID:21743438

  15. Understanding thread properties for red blood cell antigen assays: weak ABO blood typing.

    PubMed

    Nilghaz, Azadeh; Zhang, Liyuan; Li, Miaosi; Ballerini, David R; Shen, Wei

    2014-12-24

    "Thread-based microfluidics" research has so far focused on utilizing and manipulating the wicking properties of threads to form controllable microfluidic channels. In this study we aim to understand the separation properties of threads, which are important to their microfluidic detection applications for blood analysis. Confocal microscopy was utilized to investigate the effect of the microscale surface morphologies of fibers on the thread's separation efficiency of red blood cells. We demonstrated the remarkably different separation properties of threads made using silk and cotton fibers. Thread separation properties dominate the clarity of blood typing assays of the ABO groups and some of their weak subgroups (Ax and A3). The microfluidic thread-based analytical devices (μTADs) designed in this work were used to accurately type different blood samples, including 89 normal ABO and 6 weak A subgroups. By selecting thread with the right surface morphology, we were able to build μTADs capable of providing rapid and accurate typing of the weak blood groups with high clarity.

  16. Remote drill bit loader

    DOEpatents

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  17. Structural Turnbuckle Bears Compressive or Tensile Loads

    NASA Technical Reports Server (NTRS)

    Bateman, W. A.; Lang, C. H.

    1985-01-01

    Column length adjuster based on turnbuckle principle. Device consists of internally and externally threaded bushing, threaded housing and threaded rod. Housing attached to one part and threaded rod attached to other part of structure. Turning double threaded bushing contracts or extends rod in relation to housing. Once adjusted, bushing secured with jamnuts. Device used for axially loaded members requiring length adjustment during installation.

  18. Do dual-thread orthodontic mini-implants improve bone/tissue mechanical retention?

    PubMed

    Lin, Yang-Sung; Chang, Yau-Zen; Yu, Jian-Hong; Lin, Chun-Li

    2014-12-01

    The aim of this study was to understand whether the pitch relationship between micro and macro thread designs with a parametrical relationship in a dual-thread mini-implant can improve primary stability. Three types of mini-implants consisting of single-thread (ST) (0.75 mm pitch in whole length), dual-thread A (DTA) with double-start 0.375 mm pitch, and dual-thread B (DTB) with single-start 0.2 mm pitch in upper 2-mm micro thread region for performing insertion and pull-out testing. Histomorphometric analysis was performed in these specimens in evaluating peri-implant bone defects using a non-contact vision measuring system. The maximum inserted torque (Tmax) in type DTA was found to be the smallest significantly, but corresponding values found no significant difference between ST and DTB. The largest pull-out strength (Fmax) in the DTA mini-implant was found significantly greater than that for the ST mini-implant regardless of implant insertion orientation. Mini-implant engaged the cortical bone well as observed in ST and DTA types. Dual-thread mini-implant with correct micro thread pitch (parametrical relationship with macro thread pitch) in the cortical bone region can improve primary stability and enhanced mechanical retention.

  19. Re-interpreting Prominences Classified as Tornadoes

    NASA Astrophysics Data System (ADS)

    Martin, Sara F.; Venkataramanasastry, Aparna

    2015-04-01

    Some papers in the recent literature identify tornado prominences with barbs of quiescent prominences while papers in the much older historic literature include a second category of tornado prominence that does not correspond to a barb of a quiescent prominence. The latter are described as prominence mass rotating around a nearly vertical axis prior to its eruption and the rotation was verified by spectral measurements. From H alpha Doppler-shifted mass motions recorded at Helio Research or the Dutch Open Telescope, we illustrate how the apparent tornado-like motions, identified with barbs, are illusions in our mind’s eye resulting from poorly resolved counterstreaming threads of mass in the barbs of quiescent prominences. In contrast, we confirm the second category of rotational motion in prominences shortly before and during eruption. In addition, we identify this second category as part of the late phase of a phenomenon called the roll effect in erupting prominences. In these cases, the eruption begins with the sideways rolling of the top of a prominence. As the eruption proceeds the rolling motion propagates down one leg or both legs of the prominence depending on whether the eruption is asymmetric or symmetric respectively. As an asymmetric eruption continues, the longer lasting leg becomes nearly vertical and its rotational motion also continues. If only this phase of the eruption was observed, as in some historic cases, it was called a tornado prominence. However, when we now observe entire eruptions in time-lapse sequences, the similarity to terrestrial tornadoes is lost. We conclude that neither prominence barbs, that give the illusion of rotation, nor the cases of true rotational motion, in the legs of erupting prominences, are usefully described as tornado prominences when the complete prominence structure or complete erupting event is observed.

  20. Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism

    PubMed Central

    Noji, Hiroyuki; Yengo, Christopher M.; Zhao, Zhengyi; Grainge, Ian

    2016-01-01

    SUMMARY The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (<2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (>3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA. PMID:26819321

  1. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis.

    PubMed

    Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi

    2018-04-01

    This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.

  2. Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints

    NASA Astrophysics Data System (ADS)

    Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent

    2016-10-01

    In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.

  3. SMT-Aware Instantaneous Footprint Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Probir; Liu, Xu; Song, Shuaiwen

    Modern architectures employ simultaneous multithreading (SMT) to increase thread-level parallelism. SMT threads share many functional units and the whole memory hierarchy of a physical core. Without a careful code design, SMT threads can easily contend with each other for these shared resources, causing severe performance degradation. Minimizing SMT thread contention for HPC applications running on dedicated platforms is very challenging, because they usually spawn threads within Single Program Multiple Data (SPMD) models. To address this important issue, we introduce a simple scheme for SMT-aware code optimization, which aims to reduce the memory contention across SMT threads.

  4. SEM and fractography analysis of screw thread loosening in dental implants.

    PubMed

    Scarano, A; Quaranta, M; Traini, T; Piattelli, M; Piattelli, A

    2007-01-01

    Biological and technical failures of implants have already been reported. Mechanical factors are certainly of importance in implant failures, even if their exact nature has not yet been established. The abutment screw fracture or loosening represents a rare, but quite unpleasant failure. The aim of the present research is an analysis and structural examination of screw thread or abutment loosening compared with screw threads or abutment without loosening. The loosening of screw threads was compared to screw thread without loosening of three different implant systems; Branemark (Nobel Biocare, Gothenburg, Sweden), T.B.R. implant systems (Benax, Ancona, Italy) and Restore (Lifecore Biomedical, Chaska, Minnesota, USA). In this study broken screws were excluded. A total of 16 screw thread loosenings were observed (Group I) (4 Branemark, 4 T.B.R and 5 Restore), 10 screw threads without loosening were removed (Group II), and 6 screw threads as received by the manufacturer (unused) (Group III) were used as control (2 Branemark, 2 T.B.R and 2 Restore). The loosened abutment screws were retrieved and analyzed under SEM. Many alterations and deformations were present in concavities and convexities of screw threads in group I. No macroscopic alterations or deformations were observed in groups II and III. A statistical difference of the presence of microcracks were observed between screw threads with an abutment loosening and screw threads without an abutment loosening.

  5. A Moiré Pattern-Based Thread Counter

    ERIC Educational Resources Information Center

    Reich, Gary

    2017-01-01

    Thread count is a term used in the textile industry as a measure of how closely woven a fabric is. It is usually defined as the sum of the number of warp threads per inch (or cm) and the number of weft threads per inch. (It is sometimes confusingly described as the number of threads per square inch.) In recent years it has also become a subject of…

  6. Does Simultaneous Liposuction Adversely Affect the Outcome of Thread Lifts? A Preliminary Result.

    PubMed

    Lee, Yong Woo; Park, Tae Hwan

    2018-04-11

    Along with advances in thread lift techniques and materials, ancillary procedures such as fat grafting, liposuction, or filler injections have been performed simultaneously. Some surgeons think that these ancillary procedures might affect the aesthetic outcomes of thread lifting possibly due to inadvertent injury to threads or loosening of soft tissue via passing the cannula in the surgical plane of the thread lifts. The purpose of the current study is to determine the effect of such ancillary procedures on the outcome of thread lifts in the human and cadaveric setting. We used human abdominal tissue after abdominoplasty and cadaveric faces. In the abdominal tissue, liposuction parallel to the parallel axis was performed in one area for 5 min. We counted 30 passes when liposuction was performed in one direction. This was repeated as we changed the direction of passages. The plane of thread lifts (dermal vs subcutaneous) and angle between liposuction and thread lifts (parallel vs perpendicular) were differentiated in this abdominal tissue study group. Then, we performed parallel or perpendicular thread lifts using a small slit incision. Using a tensiometer, the maximum holding strength was measured when pulling the thread out of the skin as much as possible. We also used faces of cadavers to prove whether the finding in human abdominal tissue is really valid with corresponding techniques. Our pilot study using abdominal tissue showed that liposuction after thread lifts adversely affects it regardless of the vector of thread lifts. In the cadaveric study, however, liposuction prior to thread lifting does not significantly affect the holding strength of thread lifts. Liposuction or fat grafting in the appropriate layer would not be a hurdle to safely performing simultaneous thread lifts if the target lift tissue is intra-SMAS or just above the SMAS layer. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  7. ARE GIANT TORNADOES THE LEGS OF SOLAR PROMINENCES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc

    Observations in the 171 A channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events aremore » present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional H{alpha} observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale.« less

  8. Are Giant Tornadoes the Legs of Solar Prominences?

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc; Bosnjak, Antonija; Antolin, Patrick

    2013-09-01

    Observations in the 171 Å channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events are present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional Hα observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale.

  9. On the utility of threads for data parallel programming

    NASA Technical Reports Server (NTRS)

    Fahringer, Thomas; Haines, Matthew; Mehrotra, Piyush

    1995-01-01

    Threads provide a useful programming model for asynchronous behavior because of their ability to encapsulate units of work that can then be scheduled for execution at runtime, based on the dynamic state of a system. Recently, the threaded model has been applied to the domain of data parallel scientific codes, and initial reports indicate that the threaded model can produce performance gains over non-threaded approaches, primarily through the use of overlapping useful computation with communication latency. However, overlapping computation with communication is possible without the benefit of threads if the communication system supports asynchronous primitives, and this comparison has not been made in previous papers. This paper provides a critical look at the utility of lightweight threads as applied to data parallel scientific programming.

  10. Ropes: Support for collective opertions among distributed threads

    NASA Technical Reports Server (NTRS)

    Haines, Matthew; Mehrotra, Piyush; Cronk, David

    1995-01-01

    Lightweight threads are becoming increasingly useful in supporting parallelism and asynchronous control structures in applications and language implementations. Recently, systems have been designed and implemented to support interprocessor communication between lightweight threads so that threads can be exploited in a distributed memory system. Their use, in this setting, has been largely restricted to supporting latency hiding techniques and functional parallelism within a single application. However, to execute data parallel codes independent of other threads in the system, collective operations and relative indexing among threads are required. This paper describes the design of ropes: a scoping mechanism for collective operations and relative indexing among threads. We present the design of ropes in the context of the Chant system, and provide performance results evaluating our initial design decisions.

  11. Lack of ubiquitin immunoreactivities at both ends of neuropil threads. Possible bidirectional growth of neuropil threads.

    PubMed

    Iwatsubo, T; Hasegawa, M; Esaki, Y; Ihara, Y

    1992-02-01

    Immunocytochemically, neuropil threads (curly fibers) were investigated in the Alzheimer's disease brain using a confocal laser scanning fluorescence microscope by double labeling with tau/ubiquitin antibodies. Ubiquitin immunoreactivities were found to be lacking at one or both ends in more than 40% of tau-positive threads. Immunoelectron microscopy showed that bundles of paired helical filaments, which constitute neuropil threads, were positive for ubiquitin around their midportions, but often negative at their ends. Since it is reasonable to postulate that tau deposition as paired helical filaments precedes ubiquitination, the aforementioned observation suggests that the ends of the threads are newly formed portions, and thus the threads are often growing bidirectionally in small neuronal processes.

  12. Magnetic modulation of inverse spin Hall effect in lateral spin-valves

    NASA Astrophysics Data System (ADS)

    Andrianov, T.; Vedyaev, A.; Dieny, B.

    2018-05-01

    We analytically investigated the spin-dependent transport properties in a lateral spin-valve device comprising pinned ferromagnetic electrodes allowing the injection of a spin current in a spin conducting channel where spin orbit scattering takes place. This produces an inverse spin Hall (ISHE) voltage across the thickness of the spin conducting channel. It is shown that by adding an extra soft ferromagnetic electrode with rotatable magnetization along the spin conducting channel, the ISHE generated voltage can be magnetically modulated by changing the magnetization orientation of this additional electrode. The dependence of the ISHE voltage on the direction of magnetization of the ferromagnetic electrode with rotatable magnetization was calculated in various configurations. Our results suggest that such structures could be considered as magnetic field sensors in situations where the total thickness of the sensor is constrained such as in hard disk drive readers.

  13. CFD Analysis of A Starved Four-Pad Tilting-Pad Journal Bearing with An Elastic Support of Pads

    NASA Astrophysics Data System (ADS)

    Parovay, E. F.; Falaleev, S. V.

    2018-01-01

    Tilting-pad journal bearings are widely used in technics. Oil starvation operation regime is not common for hydrodynamic bearings. However, correctly designed low-flow journal bearing have to operate efficiently and consistently on high rotor speeds. An elastic support of bearing pads is a set of elastic pins made of steel. Elastic support allows pads to self-align and achieve an optimal operational mode. The article presents the thermohydrodynamic performance of an axial journal bearing. The study deals with 60 mm diameter four-pad tilting-pad journal bearing, submitted to a static load varying from 1000 to 30000 N with a rotating speed varying from 1000 to 10000 rpm. The investigation focuses on numerical studying the characteristics of low-flow tilting-pad journal bearings under oil starvation conditions. Dependencies of the bearing performance on the load, rotational speed of the shaft, and the size of the radial clearance are presented.

  14. Using modern teaching strategies to teach upper abdominal sonography to medical students.

    PubMed

    Cheng, Wei-Chun; Lin, Xi-Zhang; Chen, Chiung-Yu

    2013-07-01

    Upper abdominal sonography can help physicians to confirm the diagnosis of various hepatobiliary diseases. Teaching sonography skills to medical students is important because it may enhance their level of knowledge and overall development during their gastroenterology section rotation. Sonographic imaging is abstract and students can be easily confused when scanning the abdominal structures from different sites and directions. We used several modern teaching strategies to facilitate the learning of sonography skills. The year five medical students beginning a gastroenterology section rotation for their first-year clerkship were taught abdominal sonography skills. Abstract sonographic images were related to concrete objects and the surrounding structures were further indicated. Each of the images was given a specific name and was sorted according to the scanning site. A mnemonics system was designed to help students to memorize the names of these images. A badge was created to recognize the achievement of being able to complete a basic upper abdominal sonography. Students were free (i.e., not obligated) to request a demonstration opportunity to show their skills within 2 weeks after receiving tutelage. We recorded the number of students who received training and were able to successfully complete the task; these individuals then received a badge to be pinned onto their white coats. Sixty-three of 68 students (92.6%) requested evaluation and all of them passed. We have greatly simplified the process of learning about upper abdominal sonography by using andragogy to enhance learning, mnemonics to help memory, and a pin-badge reward system to stimulate incentives. Copyright © 2013. Published by Elsevier B.V.

  15. Long-term results of forearm lengthening and deformity correction by the Ilizarov method.

    PubMed

    Orzechowski, Wiktor; Morasiewicz, Leszek; Krawczyk, Artur; Dragan, Szymon; Czapiński, Jacek

    2002-06-30

    Background. Shortening and deformity of the forearm is most frequently caused by congenital disorders or posttraumatic injury. Given its complex anatomy and biomechanics, the forearm is clearly the most difficult segment for lengthening and deformity correction.
    Material and methods. We analyzed 16 patients with shortening and deformity of the forearm, treated surgically, using the Ilizarov method in our Department from 1989 to 2001. in 9 cases 1-stage surgery was sufficient, while the remaining 7 patients underwent 2-5 stages of treatment. At total of 31 surgical operations were performed. The extent of forearm shortening ranged from 1,5 to 14,5 cm (5-70%). We development a new fixator based on Schanz half-pins.
    Results. The length of forearm lengthening per operative stage averaged 2,35 cm. the proportion of lengthening ranged from 6% to 48% with an average of 18,3%. The mean lengthening index was 48,15 days/cm. the per-patient rate of complications was 88% compared 45% per stage of treatment, mostly limited rotational mobility and abnormal consolidation of regenerated bone.
    Conclusions. Despite the high complication rate, the Ilizarov method is the method of choice for patients with forearm shortenings and deformities. Treatment is particularly indicated in patients with shortening caused by disproportionate length of the ulnar and forearm bones. Treatment should be managed so as cause the least possible damage to arm function, even at the cost of limited lengthening. Our new stabilizer based on Schanz half-pins makes it possible to preserve forearm rotation.

  16. Gold thread implantation promotes hair growth in human and mice

    PubMed Central

    Kim, Jong-Hwan; Cho, Eun-Young; Kwon, Euna; Kim, Woo-Ho; Park, Jin-Sung; Lee, Yong-Soon

    2017-01-01

    Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated dorsal skin of mice, gold thread or polyglycolic acid (PGA) thread, similarly to 5% minoxidil, significantly increased the number of hair follicles on day 14 after implantation. And, hair re-growth promotion in the gold threadimplanted mice were significantly higher than that in PGA thread group on day 11 after depilation. In particular, the skin tissue of gold thread-implanted mice showed stronger PCNA staining and higher collagen density compared with control mice. These results indicate that gold thread implantation can be an effective way to promote hair re-growth although further confirmatory study is needed for more information on therapeutic mechanisms and long-term safety. PMID:29399026

  17. Low-Friction, Low-Profile, High-Moment Two-Axis Joint

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Le, Thang; Carroll, Monty B.

    2010-01-01

    The two-axis joint is a mechanical device that provides two-degrees-of-freedom motion between connected components. A compact, moment-resistant, two-axis joint is used to connect an electromechanical actuator to its driven structural members. Due to the requirements of the overall mechanism, the joint has a low profile to fit within the allowable space, low friction, and high moment-reacting capability. The mechanical arrangement of this joint can withstand high moments when loads are applied. These features allow the joint to be used in tight spaces where a high load capability is required, as well as in applications where penetrating the mounting surface is not an option or where surface mounting is required. The joint consists of one base, one clevis, one cap, two needle bearings, and a circular shim. The base of the joint is the housing (the base and the cap together), and is connected to the grounding structure via fasteners and a bolt pattern. Captive within the housing, between the base and the cap, are the rotating clevis and the needle bearings. The clevis is attached to the mechanical system (linear actuator) via a pin. This pin, and the rotational movement of the clevis with respect to the housing, provides two rotational degrees of freedom. The larger diameter flange of the clevis is sandwiched between a pair of needle bearings, one on each side of the flange. During the assembly of the two-axis joint, the circular shims are used to adjust the amount of preload that is applied to the needle bearings. The above arrangement enables the joint to handle high moments with minimal friction. To achieve the high-moment capability within a low-profile joint, the use of depth of engagement (like that of a conventional rotating shaft) to react moment is replaced with planar engagement parallel to the mounting surface. The needle bearings with the clevis flange provide the surface area to react the clevis loads/moments into the joint housing while providing minimal friction during rotation. The diameter of the flange and the bearings can be increased to react higher loads and still maintain a compact surface mounting capability. This type of joint can be used in a wide variety of mechanisms and mechanical systems. It is especially effective where precise, smooth, continuous motion is required. For example, the joint can be used at the end of a linear actuator that is required to extend and rotate simultaneously. The current design application is for use in a spacecraft docking-system capture mechanism. Other applications might include industrial robotic or assembly line apparatuses, positioning systems, or in the motion-based simulator industry that employs complex, multi-axis manipulators for various types of motions.

  18. Scheduler for multiprocessor system switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael Karl; Salapura, Valentina

    2015-01-06

    System, method and computer program product for scheduling threads in a multiprocessing system with selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). The method configures the selective pairing facility to use checking provide one highly reliable thread for high-reliability and allocate threads to corresponding processor cores indicating need for hardware checking. The method configures the selective pairing facility to provide multiple independent cores and allocate threads to corresponding processor cores indicating inherent resilience.

  19. Threaded biliary inside stents are a safe and effective therapeutic option in cases of malignant hilar obstruction.

    PubMed

    Inatomi, Osamu; Bamba, Shigeki; Shioya, Makoto; Mochizuki, Yosuke; Ban, Hiromitsu; Tsujikawa, Tomoyuki; Saito, Yasuharu; Andoh, Akira; Fujiyama, Yoshihide

    2013-02-14

    Although endoscopic biliary stents have been accepted as part of palliative therapy for cases of malignant hilar obstruction, the optimal endoscopic management regime remains controversial. In this study, we evaluated the safety and efficacy of placing a threaded stent above the sphincter of Oddi (threaded inside plastic stents, threaded PS) and compared the results with those of other stent types. Patients with malignant hilar obstruction, including those requiring biliary drainage for stent occlusion, were selected. Patients received either one of the following endoscopic indwelling stents: threaded PS, conventional plastic stents (conventional PS), or metallic stents (MS). Duration of stent patency and the incident of complication were compared in these patients. Forty-two patients underwent placement of endoscopic indwelling stents (threaded PS = 12, conventional PS = 17, MS = 13). The median duration of threaded PS patency was significantly longer than that of conventional PS patency (142 vs. 32 days; P = 0.04, logrank test). The median duration of threaded PS and MS patency was not significantly different (142 vs. 150 days, P = 0.83). Stent migration did not occur in any group. Among patients who underwent threaded PS placement as a salvage therapy after MS obstruction due to tumor ingrowth, the median duration of MS patency was significantly shorter than that of threaded PS patency (123 vs. 240 days). Threaded PS are safe and effective in cases of malignant hilar obstruction; moreover, it is a suitable therapeutic option not only for initial drainage but also for salvage therapy.

  20. Exploration of microfluidic devices based on multi-filament threads and textiles: A review

    PubMed Central

    Nilghaz, A.; Ballerini, D. R.; Shen, W.

    2013-01-01

    In this paper, we review the recent progress in the development of low-cost microfluidic devices based on multifilament threads and textiles for semi-quantitative diagnostic and environmental assays. Hydrophilic multifilament threads are capable of transporting aqueous and non-aqueous fluids via capillary action and possess desirable properties for building fluid transport pathways in microfluidic devices. Thread can be sewn onto various support materials to form fluid transport channels without the need for the patterned hydrophobic barriers essential for paper-based microfluidic devices. Thread can also be used to manufacture fabrics which can be patterned to achieve suitable hydrophilic-hydrophobic contrast, creating hydrophilic channels which allow the control of fluids flow. Furthermore, well established textile patterning methods and combination of hydrophilic and hydrophobic threads can be applied to fabricate low-cost microfluidic devices that meet the low-cost and low-volume requirements. In this paper, we review the current limitations and shortcomings of multifilament thread and textile-based microfluidics, and the research efforts to date on the development of fluid flow control concepts and fabrication methods. We also present a summary of different methods for modelling the fluid capillary flow in microfluidic thread and textile-based systems. Finally, we summarized the published works of thread surface treatment methods and the potential of combining multifilament thread with other materials to construct devices with greater functionality. We believe these will be important research focuses of thread- and textile-based microfluidics in future. PMID:24086179

  1. Mathematical model of bone drilling for virtual surgery system

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    The bone drilling is an essential part of surgeries in ENT and Dentistry. A proper training of drilling machine handling skills is impossible without proper modelling of the drilling process. Utilization of high precision methods like FEM is limited due to the requirement of 1000 Hz update rate for haptic feedback. The study presents a mathematical model of the drilling process that accounts the properties of materials, the geometry and the rotation rate of a burr to compute the removed material volume. The simplicity of the model allows for integrating it in the high-frequency haptic thread. The precision of the model is enough for a virtual surgery system targeted on the training of the basic surgery skills.

  2. Concentric wrench for blind access opening in a turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurer, Kurt Neal; Drlik, Gary Joseph; Gibler, Edward Eugene

    The concentric wrench includes an outer tube having flats at one end and a gripping surface at an opposite end. An inner tube has interior flats at one end and a gripping surface at its opposite end. With the inner and outer tubes disposed about a pressure transmitting conduit, the tubes may be inserted into a blind access opening in the outer turbine casing to engage the flats of the tubes against hex nuts of an internal fitting. By relatively rotating the tubes using the externally exposed gripping surfaces, the threaded connection between the parts of the fitting bearing themore » respective hex nuts can be tightened or loosened.« less

  3. Small drill-hole, gas mini-permeameter probe

    DOEpatents

    Molz, III, Fred J.; Murdoch, Lawrence C.; Dinwiddie, Cynthia L.; Castle, James W.

    2002-12-03

    The distal end of a basic tube element including a stopper device with an expandable plug is positioned in a pre-drilled hole in a rock face. Rotating a force control wheel threaded on the tube element exerts force on a sleeve that in turn causes the plug component of the stopper means to expand and seal the distal end of the tube in the hole. Gas under known pressure is introduced through the tube element. A thin capillary tube positioned in the tube element connects the distal end of the tube element to means to detect and display pressure changes and data that allow the permeability of the rock to be determined.

  4. Small drill-hole, gas mini-permeameter probe

    DOEpatents

    Molz, III, Fred J.; Murdoch, Lawrence C.; Dinwiddie, Cynthia L.; Castle, James W.

    2002-01-01

    The distal end of a basic tube element including a stopper device with an expandable plug is positioned in a pre-drilled hole in a rock face. Rotating a force control wheel threaded on the tube element exerts force on a sleeve that in turn causes the plug component of the stopper means to expand and seal the distal end of the tube in the hole. Gas under known pressure is introduced through the tube element. A thin capillary tube positioned in the tube element connects the distal end of the tube element to means to detect and display pressure changes and data that allow the permeability of the rock to be determined.

  5. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  6. Lack of ubiquitin immunoreactivities at both ends of neuropil threads. Possible bidirectional growth of neuropil threads.

    PubMed Central

    Iwatsubo, T.; Hasegawa, M.; Esaki, Y.; Ihara, Y.

    1992-01-01

    Immunocytochemically, neuropil threads (curly fibers) were investigated in the Alzheimer's disease brain using a confocal laser scanning fluorescence microscope by double labeling with tau/ubiquitin antibodies. Ubiquitin immunoreactivities were found to be lacking at one or both ends in more than 40% of tau-positive threads. Immunoelectron microscopy showed that bundles of paired helical filaments, which constitute neuropil threads, were positive for ubiquitin around their midportions, but often negative at their ends. Since it is reasonable to postulate that tau deposition as paired helical filaments precedes ubiquitination, the aforementioned observation suggests that the ends of the threads are newly formed portions, and thus the threads are often growing bidirectionally in small neuronal processes. Images Figure 1 Figure 2 PMID:1310831

  7. Jacking mechanism for upper internals structure of a liquid metal nuclear reactor

    DOEpatents

    Gillett, James E.; Wineman, Arthur L.

    1984-01-01

    A jacking mechanism for raising the upper internals structure of a liquid metal nuclear reactor which jacking mechanism uses a system of gears and drive shafts to transmit force from a single motor to four mechanically synchronized ball jacks to raise and lower support columns which support the upper internals structure. The support columns have a pin structure which rides up and down in a slot in a housing fixed to the reactor head. The pin has two locking plates which can be rotated around the pin to bring bolt holes through the locking plates into alignment with a set of bolt holes in the housing, there being a set of such housing bolt holes corresponding to both a raised and a lowered position of the support column. When the locking plate is so aligned, a surface of the locking plate mates with a surface in the housing such that the support column is then supported by the locking plate and not by the ball jacks. Since the locking plates are to be installed and bolted to the housing during periods of reactor operation, the ball jacks need not be sized to react the large forces which occur or potentially could occur on the upper internals structure of the reactor during operation. The locking plates react these loads. The ball jacks, used only during refueling, can be smaller, which enable conventionally available equipment to fulfill the precision requirements for the task within available space.

  8. Valve actuator for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, T.

    1987-06-16

    A valve actuating mechanism is described for an overhead valve and overhead cam type internal combustion engine in which the camshaft is positioned above and between the valve and a cam follower seat member in a cylinder head of the engine. The cam follower seat member is threadedly mounted in the cylinder head and has a semi-spherical recess facing upwardly. A cam follower has an adjustable bolt threadedly received in one end of the cam follower. The adjustable bolt has a spherical fulcrum engaging the semispherical recess of the seat member. The cam follower also has a downwardly facing meansmore » on the other end for engaging the valve and an upwardly facing slipper face for sliding engagement with a cam on the camshaft. The cam is adapted to rotate across the slipper face in the direction of the valve. The slipper face has a surface shape for engaging the cam at the start of valve-lifting movement of the cam follower at a point through which a line tangent to the slipper face is substantially parallel to a line through contact points between the cam follower. The seat member and valve for minimizing the lateral forces are imposed on the cam follower by the cam at the start of the valve-lifting movement.« less

  9. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    PubMed Central

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection. PMID:28286351

  10. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    NASA Astrophysics Data System (ADS)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  11. Fatigue acceptance test limit criterion for larger diameter rolled thread fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, A.R.

    1997-05-01

    This document describes a fatigue lifetime acceptance test criterion by which studs having rolled threads, larger than 1.0 inches in diameter, can be assured to meet minimum quality attributes associated with a controlled rolling process. This criterion is derived from a stress dependent, room temperature air fatigue database for test studs having a 0.625 inch diameter threads of Alloys X-750 HTH and direct aged 625. Anticipated fatigue lives of larger threads are based on thread root elastic stress concentration factors which increase with increasing thread diameters. Over the thread size range of interest, a 30% increase in notch stress ismore » equivalent to a factor of five (5X) reduction in fatigue life. The resulting diameter dependent fatigue acceptance criterion is normalized to the aerospace rolled thread acceptance standards for a 1.0 inch diameter, 0.125 inch pitch, Unified National thread with a controlled Root radius (UNR). Testing was conducted at a stress of 50% of the minimum specified material ultimate strength, 80 Ksi, and at a stress ratio (R) of 0.10. Limited test data for fastener diameters of 1.00 to 2.25 inches are compared to the acceptance criterion. Sensitivity of fatigue life of threads to test nut geometry variables was also shown to be dependent on notch stress conditions. Bearing surface concavity of the compression nuts and thread flank contact mismatch conditions can significantly affect the fastener fatigue life. Without improved controls these conditions could potentially provide misleading acceptance data. Alternate test nut geometry features are described and implemented in the rolled thread stud specification, MIL-DTL-24789(SH), to mitigate the potential effects on fatigue acceptance data.« less

  12. Percussive arc welding apparatus

    DOEpatents

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  13. Vortex creep and the internal temperature of neutron stars - Linear and nonlinear response to a glitch

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Cheng, K. S.; Pines, D.

    1989-01-01

    The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.

  14. Wear Analysis of Thermal Spray Coatings on 3D Surfaces

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Luo, W.; Selvadurai, U.

    2014-01-01

    Even though the application of thermal spray coatings on complex geometries gained a greater interest in the last decade, the effect of different geometrical features on the wear behavior is still ill-defined. In this study, the wear resistance of FTC-FeCSiMn coated 3D surfaces was investigated. The wear test was carried out by means of two innovative testing procedures. The first test is a Pin-on-Tubes test where the rotating motion is realized by a lathe chuck. The specimens in the second test were fixed on the table and a robot arm operated the pin. This wear test was applied on specimens with concave or convex surfaces. The residual stresses, which were determined by means of an incremental hole-drilling method, show a dependency on the substrate geometry. The obtained stresses were put in relation to the different radii. After the wear test, a 3D-profilometer determined the wear volume and the sections of the coatings were characterized by a scanning electron microscope. The results indicate that the wear resistance is strongly influenced by the geometry of the substrate.

  15. Effect of thread shape on screw stress concentration by photoelastic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragoni, E.

    1994-11-01

    The screw stress concentration for six nut-bolt connections embodying three different thread profiles and two nut shapes is measured photoelastically. Buttress (nearly zero flank angle), trapezoidal (15-deg flank angle), and triangular (30-deg flank angle) thread forms are examined in combination with standard and lip-type nuts. The effect of the thread profile on the screw stress concentration appears to be dependent upon the kind of nut considered. If the fastening incorporates a standard nut, the buttress thread is stronger than the triangular one, which, in turn, behaves better than the trapezoidal contour. The improvement is roughly a 20% reduction in themore » stress concentration factor from the trapezoidal to the buttress thread. In the case of lip nut, conversely, this tendency is somewhat reversed, with the trapezoidal thread performing slightly (but not decidedly) better than the other two shapes. Finally, averaged over all three thread forms, the lip nut exhibits a stress concentration factor which is about 50% lower than that of the standard nut.« less

  16. Form and function of cnidarian spirocysts. III. Ultrastructure of the thread and the function of spirocysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariscal, R.N.; McLean, R.B.; Hand, C.

    1977-01-01

    Unlike most nematocysts, undischarged spirocyst threads bear hollow tubules rather than spines. The undischarged tubules are interconnected in hexagonal arrays and appear to be arranged in bundles along the length of the thread. Although the wall of the thread is folded in length and width, the tubules are not. Upon discharge and contact with sea water, the tubules solubilize and adhere to various substrates and prey. Traction between such objects and the everting thread causes the tubules to spin out into a web or meshwork of fine microfibrillae. Lack of contact of the everting thread with objects results in themore » tubules forming small droplets of partially solubilized material, some of which appear to be arranged in a helical pattern around the thread. The web or meshwork formed by the solubilized tubules in contact with various substrates probably serves to increase significantly the surface area and adhesive properties of the everted spirocyst thread.« less

  17. Thread bonds in molecules

    NASA Astrophysics Data System (ADS)

    Ivlev, B.

    2017-07-01

    Unusual chemical bonds are proposed. Each bond is characterized by the thread of a small radius, 10-11 cm, extended between two nuclei in a molecule. An analogue of a potential well, of the depth of MeV scale, is formed within the thread. This occurs due to the local reduction of zero point electromagnetic energy. This is similar to formation of the Casimir well. The electron-photon interaction only is not sufficient for formation of thread state. The mechanism of electron mass generation is involved in the close vicinity, 10-16 cm, of the thread. Thread bonds are stable and cannot be created or destructed in chemical or optical processes.

  18. Flare particle acceleration in the interaction of twisted coronal flux ropes

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Hood, A. W.; Browning, P. K.

    2018-03-01

    Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.

  19. Long-term effect of the insoluble thread-lifting technique.

    PubMed

    Fukaya, Mototsugu

    2017-01-01

    Although the thread-lifting technique for sagging faces has become more common and popular, medical literature evaluating its effects is scarce. Studies on its long-term prognosis are particularly uncommon. One hundred individuals who had previously undergone insoluble thread-lifting were retrospectively investigated. Photos in frontal and oblique views from the first and last visits were evaluated by six female individuals by guessing the patients' ages. The mean guessed age was defined as the apparent age, and the difference between the real and apparent ages was defined as the youth value. The difference between the youth values before and after the thread-lift was defined as the rejuvenation effect and analyzed in relation to the time since the operation, the number of threads used and the number of thread-lift operations performed. The rejuvenation effect decreased over the first year after the operation, but showed an increasing trend thereafter. The rejuvenation effect increased with the number of threads used and the number of thread-lift operations performed. The insoluble thread-lifting technique appears to be associated with both early and late effects. The rejuvenation effect appeared to decrease during the first year, but increased thereafter. A multicenter trial is necessary to confirm these findings.

  20. Thread Migration in the Presence of Pointers

    NASA Technical Reports Server (NTRS)

    Cronk, David; Haines, Matthew; Mehrotra, Piyush

    1996-01-01

    Dynamic migration of lightweight threads supports both data locality and load balancing. However, migrating threads that contain pointers referencing data in both the stack and heap remains an open problem. In this paper we describe a technique by which threads with pointers referencing both stack and non-shared heap data can be migrated such that the pointers remain valid after migration. As a result, threads containing pointers can now be migrated between processors in a homogeneous distributed memory environment.

  1. Real-time inextensible surgical thread simulation.

    PubMed

    Xu, Lang; Liu, Qian

    2018-03-27

    This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.

  2. High precision optomechanical assembly using threads as mechanical reference

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Bergeron, Guy; Cantin, Mario

    2016-09-01

    A convenient method to assemble optomechanical components is to use threaded interface. For example, lenses are often secured inside barrels using threaded rings. In other cases, multiple optical sub-assemblies such as lens barrels can be threaded to each other. Threads have the advantage to provide a simple assembly method, to be easy to manufacture, and to offer a compact mechanical design. On the other hand, threads are not considered to provide accurate centering between parts because of the assembly clearance between the inner and outer threads. For that reason, threads are often used in conjunction with precision cylindrical surfaces to limit the radial clearance between the parts to be centered. Therefore, tight manufacturing tolerances are needed on these pilot diameters, which affect the cost of the optical assembly. This paper presents a new optomechanical approach that uses threads as mechanical reference. This innovative method relies on geometric principles to auto-center parts to each other with a very low centering error that is usually less than 5 μm. The method allows to auto-center an optical group in a main barrel, to perform an axial adjustment of an optical group inside a main barrel, and to perform stacking of multiple barrels. In conjunction with the lens auto-centering method that also used threads as a mechanical reference, this novel solution opens new possibilities to realize a variety of different high precision optomechanical assemblies at lower cost.

  3. Threaded biliary inside stents are a safe and effective therapeutic option in cases of malignant hilar obstruction

    PubMed Central

    2013-01-01

    Background Although endoscopic biliary stents have been accepted as part of palliative therapy for cases of malignant hilar obstruction, the optimal endoscopic management regime remains controversial. In this study, we evaluated the safety and efficacy of placing a threaded stent above the sphincter of Oddi (threaded inside plastic stents, threaded PS) and compared the results with those of other stent types. Methods Patients with malignant hilar obstruction, including those requiring biliary drainage for stent occlusion, were selected. Patients received either one of the following endoscopic indwelling stents: threaded PS, conventional plastic stents (conventional PS), or metallic stents (MS). Duration of stent patency and the incident of complication were compared in these patients. Results Forty-two patients underwent placement of endoscopic indwelling stents (threaded PS = 12, conventional PS = 17, MS = 13). The median duration of threaded PS patency was significantly longer than that of conventional PS patency (142 vs. 32 days; P = 0.04, logrank test). The median duration of threaded PS and MS patency was not significantly different (142 vs. 150 days, P = 0.83). Stent migration did not occur in any group. Among patients who underwent threaded PS placement as a salvage therapy after MS obstruction due to tumor ingrowth, the median duration of MS patency was significantly shorter than that of threaded PS patency (123 vs. 240 days). Conclusions Threaded PS are safe and effective in cases of malignant hilar obstruction; moreover, it is a suitable therapeutic option not only for initial drainage but also for salvage therapy. PMID:23410217

  4. Parallel Implementation of 3-D Iterative Reconstruction With Intra-Thread Update for the jPET-D4

    NASA Astrophysics Data System (ADS)

    Lam, Chih Fung; Yamaya, Taiga; Obi, Takashi; Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Nishikido, Fumihiko; Murayama, Hideo

    2009-02-01

    One way to speed-up iterative image reconstruction is by parallel computing with a computer cluster. However, as the number of computing threads increases, parallel efficiency decreases due to network transfer delay. In this paper, we proposed a method to reduce data transfer between computing threads by introducing an intra-thread update. The update factor is collected from each slave thread and a global image is updated as usual in the first K sub-iteration. In the rest of the sub-iterations, the global image is only updated at an interval which is controlled by a parameter L. In between that interval, the intra-thread update is carried out whereby an image update is performed in each slave thread locally. We investigated combinations of K and L parameters based on parallel implementation of RAMLA for the jPET-D4 scanner. Our evaluation used four workstations with a total of 16 slave threads. Each slave thread calculated a different set of LORs which are divided according to ring difference numbers. We assessed image quality of the proposed method with a hotspot simulation phantom. The figure of merit was the full-width-half-maximum of hotspots and the background normalized standard deviation. At an optimum K and L setting, we did not find significant change in the output images. We also applied the proposed method to a Hoffman phantom experiment and found the difference due to intra-thread update was negligible. With the intra-thread update, computation time could be reduced by about 23%.

  5. Quick-connect fasteners for assembling devices in space

    NASA Technical Reports Server (NTRS)

    Evenson, Erik E. (Inventor); Wesselski, Clarence J. (Inventor); Ruiz, Steve C. (Inventor)

    1993-01-01

    A quick-connect fastener of a relatively-simple straightforward design is arranged with a tubular body adapted to be engaged against an attachment fitting in coincidental alignment with an opening in that fitting. A tubular collet having flexible fingers projecting from its forward end is arranged in the fastener body to be shifted forwardly by an elongated expander member coaxially arranged within the tubular collet for advancing the collet fingers into the opening in the attachment fitting. Biasing means are arranged between the elongated expander member and a rotatable actuator which is threadedly mounted within the tubular collet so as to be rotated for urging the expander member into engagement with the collet fingers. A first coupling member is arranged on the rotatable actuator to be accessible from outside of the fastener so that a second coupling member on the distal end of a flexible shaft can be introduced into the fastener body and coupled to the first coupling member to enable a typical actuating tool coupled to the shaft outside of the fastener body to be operated for advancing the outwardly-enlarged ends of the collet fingers into the opening in the attachment fitting and thereafter rotating the actuator member to expand the fingers within the opening for releasably latching the fastener to that attachment fitting. Upon expansion of the collet fingers, the biasing means impose a biasing force on the expander to releasably retain the fingers in their latching positions.

  6. 78 FR 12718 - Certain Steel Threaded Rod From the People's Republic of China: Affirmative Final Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-932] Certain Steel Threaded Rod... Preliminary Determination of the circumvention inquiry concerning the antidumping duty order on certain steel threaded rod (``steel threaded rod'') from the People's Republic of China (``PRC'').\\1\\ The period of...

  7. Review and status of heat-transfer technology for internal passages of air-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Yeh, F. C.; Stepka, F. S.

    1984-01-01

    Selected literature on heat-transfer and pressure losses for airflow through passages for several cooling methods generally applicable to gas turbine blades is reviewed. Some useful correlating equations are highlighted. The status of turbine-blade internal air-cooling technology for both nonrotating and rotating blades is discussed and the areas where further research is needed are indicated. The cooling methods considered include convection cooling in passages, impingement cooling at the leading edge and at the midchord, and convection cooling in passages, augmented by pin fins and the use of roughened internal walls.

  8. WE-DE-201-08: Multi-Source Rotating Shield Brachytherapy Apparatus for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadkhah, H; Wu, X; Kim, Y

    Purpose: To introduce a novel multi-source rotating shield brachytherapy (RSBT) apparatus for the precise simultaneous angular and linear positioning of all partially-shielded 153Gd radiation sources in interstitial needles for treating prostate cancer. The mechanism is designed to lower the detrimental dose to healthy tissues, the urethra in particular, relative to conventional high-dose-rate brachytherapy (HDR-BT) techniques. Methods: Following needle implantation, the delivery system is docked to the patient template. Each needle is coupled to a multi-source afterloader catheter by a connector passing through a shaft. The shafts are rotated by translating a moving template between two stationary templates. Shaft walls asmore » well as moving template holes are threaded such that the resistive friction produced between the two parts exerts enough force on the shafts to bring about the rotation. Rotation of the shaft is then transmitted to the shielded source via several keys. Thus, shaft angular position is fully correlated with the position of the moving template. The catheter angles are simultaneously incremented throughout treatment as needed, and only a single 360° rotation of all catheters is needed for a full treatment. For each rotation angle, source depth in each needle is controlled by a multi-source afterloader, which is proposed as an array of belt-driven linear actuators, each of which drives a source wire. Results: Optimized treatment plans based on Monte Carlo dose calculations demonstrated RSBT with the proposed apparatus reduced urethral D{sub 1cc} below that of conventional HDR-BT by 35% for urethral dose gradient volume within 3 mm of the urethra surface. Treatment time to deliver 20 Gy with multi-source RSBT apparatus using nineteen 62.4 GBq {sup 153}Gd sources is 117 min. Conclusions: The proposed RSBT delivery apparatus in conjunction with multiple nitinol catheter-mounted platinum-shielded {sup 153}Gd sources enables a mechanically feasible urethra-sparing treatment technique for prostate cancer in a clinically reasonable timeframe.« less

  9. Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, Christopher; Might, Matthew; Bagusetty, Abhishek

    This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.

  10. Three-dimensional imaging of threading dislocations in GaN crystals using two-photon excitation photoluminescence

    NASA Astrophysics Data System (ADS)

    Tanikawa, Tomoyuki; Ohnishi, Kazuki; Kanoh, Masaya; Mukai, Takashi; Matsuoka, Takashi

    2018-03-01

    The three-dimensional imaging of threading dislocations in GaN films was demonstrated using two-photon excitation photoluminescence. The threading dislocations were shown as dark lines. The spatial resolutions near the surface were about 0.32 and 3.2 µm for the in-plane and depth directions, respectively. The threading dislocations with a density less than 108 cm-2 were resolved, although the aberration induced by the refractive index mismatch was observed. The decrease in threading dislocation density was clearly observed by increasing the GaN film thickness. This can be considered a novel method for characterizing threading dislocations in GaN films without any destructive preparations.

  11. On Designing Lightweight Threads for Substrate Software

    NASA Technical Reports Server (NTRS)

    Haines, Matthew

    1997-01-01

    Existing user-level thread packages employ a 'black box' design approach, where the implementation of the threads is hidden from the user. While this approach is often sufficient for application-level programmers, it hides critical design decisions that system-level programmers must be able to change in order to provide efficient service for high-level systems. By applying the principles of Open Implementation Analysis and Design, we construct a new user-level threads package that supports common thread abstractions and a well-defined meta-interface for altering the behavior of these abstractions. As a result, system-level programmers will have the advantages of using high-level thread abstractions without having to sacrifice performance, flexibility or portability.

  12. Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial differential equations

    DOE PAGES

    Earl, Christopher; Might, Matthew; Bagusetty, Abhishek; ...

    2016-01-26

    This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.

  13. Common Mechanisms of DNA translocation motors in Bacteria and Viruses Using One-way Revolution Mechanism without Rotation

    PubMed Central

    Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Weitao, Tao

    2014-01-01

    Biomotors were once classified into two categories: linear motor and rotation motor. For decades, the viral DNA-packaging motor has been popularly believed to be a five-fold rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24 hours, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, T7 as well as bacterial DNA translocase FtsK and SpoIIIE as examples to elucidate the puzzles. These motors use a ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-parallel arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism avoids DNA coiling in translocating the lengthy genomic dsDNA helix could be advantage for cell replication such as bacterial binary fission and cell mitosis without the need for topoisomerase or helicase to consume additional energy. PMID:24913057

  14. Message passing with queues and channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dozsa, Gabor J; Heidelberger, Philip; Kumar, Sameer

    In an embodiment, a reception thread receives a source node identifier, a type, and a data pointer from an application and, in response, creates a receive request. If the source node identifier specifies a source node, the reception thread adds the receive request to a fast-post queue. If a message received from a network does not match a receive request on a posted queue, a polling thread adds a receive request that represents the message to an unexpected queue. If the fast-post queue contains the receive request, the polling thread removes the receive request from the fast-post queue. If themore » receive request that was removed from the fast-post queue does not match the receive request on the unexpected queue, the polling thread adds the receive request that was removed from the fast-post queue to the posted queue. The reception thread and the polling thread execute asynchronously from each other.« less

  15. A software bus for thread objects

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Li, Dehuai

    1995-01-01

    The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.

  16. Spline screw payload fastening system

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A system for coupling an orbital replacement unit (ORU) to a space station structure via the actions of a robot and/or astronaut is described. This system provides mechanical and electrical connections both between the ORU and the space station structure and between the ORU and the ORU and the robot/astronaut hand tool. Alignment and timing features ensure safe, sure handling and precision coupling. This includes a first female type spline connector selectively located on the space station structure, a male type spline connector positioned on the orbital replacement unit so as to mate with and connect to the first female type spline connector, and a second female type spline connector located on the orbital replacement unit. A compliant drive rod interconnects the second female type spline connector and the male type spline connector. A robotic special end effector is used for mating with and driving the second female type spline connector. Also included are alignment tabs exteriorally located on the orbital replacement unit for berthing with the space station structure. The first and second female type spline connectors each include a threaded bolt member having a captured nut member located thereon which can translate up and down the bolt but are constrained from rotation thereabout, the nut member having a mounting surface with at least one first type electrical connector located on the mounting surface for translating with the nut member. At least one complementary second type electrical connector on the orbital replacement unit mates with at least one first type electrical connector on the mounting surface of the nut member. When the driver on the robotic end effector mates with the second female type spline connector and rotates, the male type spline connector and the first female type spline connector lock together, the driver and the second female type spline connector lock together, and the nut members translate up the threaded bolt members carrying the first type electrical connector up to the complementary second type connector for interconnection therewith.

  17. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  18. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  19. Neuropil threads occur in dendrites of tangle-bearing nerve cells.

    PubMed

    Braak, H; Braak, E

    1988-01-01

    Transparent Golgi preparations counterstained for Alzheimer's neurofibrillary changes rendered possible the demonstration of neuropil threads in defined cellular processes. Only dendrites of tangle-bearing cortical nerve cells were found to contain neuropil threads. Processes of glial cells as well as axons present in the material were devoid of neuropil threads.

  20. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  1. Threaded Cognition: An Integrated Theory of Concurrent Multitasking

    ERIC Educational Resources Information Center

    Salvucci, Dario D.; Taatgen, Niels A.

    2008-01-01

    The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking--that is, performing 2 or more tasks at once. Threaded cognition posits that streams of thought can be represented as threads of processing coordinated by a serial procedural resource and executed across other available resources (e.g., perceptual…

  2. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  3. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  4. A Primer on the Effective Use of Threaded Discussion Forums.

    ERIC Educational Resources Information Center

    Kirk, James J.; Orr, Robert L.

    Threaded discussion forums are asynchronous, World Wide Web-based discussions occurring under a number of different topics called threads. By allowing students to post, read, and respond to messages independently of time or place, threaded discussion forums give students an opportunity for deeper reflection and more thoughtful replies than chat…

  5. 46 CFR 164.023-7 - Performance; non-standard thread.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Performance; non-standard thread. 164.023-7 Section 164... Performance; non-standard thread. (a) Use Codes 1, 2, 3, 4BC, 4RB, 5 (any). Each non-standard thread which...) testing machine. (2) Single strand breaking strength (after weathering). After exposure in a sunshine...

  6. 46 CFR 164.023-7 - Performance; non-standard thread.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Performance; non-standard thread. 164.023-7 Section 164... Performance; non-standard thread. (a) Use Codes 1, 2, 3, 4BC, 4RB, 5 (any). Each non-standard thread which...) testing machine. (2) Single strand breaking strength (after weathering). After exposure in a sunshine...

  7. Threaded average temperature thermocouple

    NASA Technical Reports Server (NTRS)

    Ward, Stanley W. (Inventor)

    1990-01-01

    A threaded average temperature thermocouple 11 is provided to measure the average temperature of a test situs of a test material 30. A ceramic insulator rod 15 with two parallel holes 17 and 18 through the length thereof is securely fitted in a cylinder 16, which is bored along the longitudinal axis of symmetry of threaded bolt 12. Threaded bolt 12 is composed of material having thermal properties similar to those of test material 30. Leads of a thermocouple wire 20 leading from a remotely situated temperature sensing device 35 are each fed through one of the holes 17 or 18, secured at head end 13 of ceramic insulator rod 15, and exit at tip end 14. Each lead of thermocouple wire 20 is bent into and secured in an opposite radial groove 25 in tip end 14 of threaded bolt 12. Resulting threaded average temperature thermocouple 11 is ready to be inserted into cylindrical receptacle 32. The tip end 14 of the threaded average temperature thermocouple 11 is in intimate contact with receptacle 32. A jam nut 36 secures the threaded average temperature thermocouple 11 to test material 30.

  8. A Moiré Pattern-Based Thread Counter

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2017-10-01

    Thread count is a term used in the textile industry as a measure of how closely woven a fabric is. It is usually defined as the sum of the number of warp threads per inch (or cm) and the number of weft threads per inch. (It is sometimes confusingly described as the number of threads per square inch.) In recent years it has also become a subject of considerable interest and some controversy among consumers. Many consumers consider thread count to be a key measure of the quality or fineness of a fabric, especially bed sheets, and they seek out fabrics that advertise high counts. Manufacturers in turn have responded to this interest by offering fabrics with ever higher claimed thread counts (sold at ever higher prices), sometime achieving the higher counts by distorting the definition of the term with some "creative math." In 2005 the Federal Trade Commission noted the growing use of thread count in advertising at the retail level and warned of the potential for consumers to be misled by distortions of the definition.

  9. Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis.

    PubMed

    Sagert, Jason; Waite, J Herbert

    2009-07-01

    The marine mussel Mytilus galloprovincialis is tethered to rocks in the intertidal zone by a holdfast known as the byssus. Functioning as a shock absorber, the byssus is composed of threads, the primary molecular components of which are collagen-containing proteins (preCOLs) that largely dictate the higher order self-assembly and mechanical properties of byssal threads. The threads contain additional matrix components that separate and perhaps lubricate the collagenous microfibrils during deformation in tension. In this study, the thread matrix proteins (TMPs), a glycine-, tyrosine- and asparagine-rich protein family, were shown to possess unique repeated sequence motifs, significant transcriptional heterogeneity and were distributed throughout the byssal thread. Deamidation was shown to occur at a significant rate in a recombinant TMP and in the byssal thread as a function of time. Furthermore, charge heterogeneity presumably due to deamidation was observed in TMPs extracted from threads. The TMPs were localized to the preCOL-containing secretory granules in the collagen gland of the foot and are assumed to provide a viscoelastic matrix around the collagenous fibers in byssal threads.

  10. Multi-threading performance of Geant4, MCNP6, and PHITS Monte Carlo codes for tetrahedral-mesh geometry.

    PubMed

    Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Shin, Bangho; Kim, Chan Hyeong; Furuta, Takuya

    2018-05-04

    In this study, the multi-threading performance of the Geant4, MCNP6, and PHITS codes was evaluated as a function of the number of threads (N) and the complexity of the tetrahedral-mesh phantom. For this, three tetrahedral-mesh phantoms of varying complexity (simple, moderately complex, and highly complex) were prepared and implemented in the three different Monte Carlo codes, in photon and neutron transport simulations. Subsequently, for each case, the initialization time, calculation time, and memory usage were measured as a function of the number of threads used in the simulation. It was found that for all codes, the initialization time significantly increased with the complexity of the phantom, but not with the number of threads. Geant4 exhibited much longer initialization time than the other codes, especially for the complex phantom (MRCP). The improvement of computation speed due to the use of a multi-threaded code was calculated as the speed-up factor, the ratio of the computation speed on a multi-threaded code to the computation speed on a single-threaded code. Geant4 showed the best multi-threading performance among the codes considered in this study, with the speed-up factor almost linearly increasing with the number of threads, reaching ~30 when N  =  40. PHITS and MCNP6 showed a much smaller increase of the speed-up factor with the number of threads. For PHITS, the speed-up factors were low when N  =  40. For MCNP6, the increase of the speed-up factors was better, but they were still less than ~10 when N  =  40. As for memory usage, Geant4 was found to use more memory than the other codes. In addition, compared to that of the other codes, the memory usage of Geant4 more rapidly increased with the number of threads, reaching as high as ~74 GB when N  =  40 for the complex phantom (MRCP). It is notable that compared to that of the other codes, the memory usage of PHITS was much lower, regardless of both the complexity of the phantom and the number of threads, hardly increasing with the number of threads for the MRCP.

  11. Exploring Elephant Seals in New Jersey: Preschoolers Use Collaborative Multimedia Albums

    ERIC Educational Resources Information Center

    Fantozzi, Victoria B.

    2012-01-01

    VoiceThread is a website that allows users to create multimedia slideshows, or "threads," and then open these threads to other users for commentary or collaboration. This article shares the experiences of one multiage (3- to 5-year-olds) preschool classroom's use of VoiceThread. The purpose of the article is to introduce early childhood educators…

  12. A C++ Thread Package for Concurrent and Parallel Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie Chen; William Watson

    1999-11-01

    Recently thread libraries have become a common entity on various operating systems such as Unix, Windows NT and VxWorks. Those thread libraries offer significant performance enhancement by allowing applications to use multiple threads running either concurrently or in parallel on multiprocessors. However, the incompatibilities between native libraries introduces challenges for those who wish to develop portable applications.

  13. A multi-threaded version of MCFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Ellis, R. Keith; Giele, Walter T.

    We report on our findings modifying MCFM using OpenMP to implement multi-threading. By using OpenMP, the modified MCFM will execute on any processor, automatically adjusting to the number of available threads. We then modified the integration routine VEGAS to distribute the event evaluation over the threads, while combining all events at the end of every iteration to optimize the numerical integration. Furthermore, we took special care so that the results of the Monte Carlo integration were independent of the number of threads used, to facilitate the validation of the OpenMP version of MCFM.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skochko, G.W.; Herrmann, T.P.

    Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low Alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling ofmore » threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.« less

  15. The correlation between the total magnetic flux and the total jet power

    NASA Astrophysics Data System (ADS)

    Nokhrina, Elena E.

    2017-12-01

    Magnetic field threading a black hole ergosphere is believed to play the key role in both driving the powerful relativistic jets observed in active galactic nuclei and extracting the rotational energy from a black hole via Blandford-Znajek process. The magnitude of magnetic field and the magnetic flux in the vicinity of a central black hole is predicted by theoretical models. On the other hand, the magnetic field in a jet can be estimated through measurements of either the core shift effect or the brightness temperature. In both cases the obtained magnetic field is in the radiating domain, so its direct application to the calculation of the magnetic flux needs some theoretical assumptions. In this paper we address the issue of estimating the magnetic flux contained in a jet using the measurements of a core shift effect and of a brightness temperature for the jets, directed almost at the observer. The accurate account for the jet transversal structure allow us to express the magnetic flux through the observed values and an unknown rotation rate of magnetic surfaces. If we assume the sources are in a magnetically arrested disk state, the lower limit for the rotation rate can be obtained. On the other hand, the flux estimate may be tested against the total jet power predicted by the electromagnetic energy extraction model. The resultant expression for power depends logarithmically weakly on an unknown rotation rate. We show that the total jet power estimated through the magnetic flux is in good agreement with the observed power. We also obtain the extremely slow rotation rates, which may be an indication that the majority of the sources considered are not in the magnetically arrested disk state.

  16. 3D Reconstruction of a Rotating Erupting Prominence

    NASA Technical Reports Server (NTRS)

    Thompson, W. T.; Kliem, B.; Torok, T.

    2011-01-01

    A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight as it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48 deg, it was possible to match some sharp features in the later part of the eruption as seen in the 304 Angstrom line in EUVI and in the H alpha-sensitive bandpass of COR1 by both STEREO Ahead and Behind. These features could then be traced out in three dimensional space, and reprojected into a view in which the eruption is directed towards the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of approximately equals 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115 deg. from the original filament orientation inferred from H alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation is reached within approximately equals 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component.

  17. The inherent dynamics of a molecular liquid: geodesic pathways through the potential energy landscape of a liquid of linear molecules.

    PubMed

    Jacobson, Daniel; Stratt, Richard M

    2014-05-07

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation-molecules largely thread their way through narrow channels available in the potential energy landscape.

  18. The inherent dynamics of a molecular liquid: Geodesic pathways through the potential energy landscape of a liquid of linear molecules

    NASA Astrophysics Data System (ADS)

    Jacobson, Daniel; Stratt, Richard M.

    2014-05-01

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.

  19. Computational algorithms dealing with the classical and statistical mechanics of celestial scale polymers in space elevator technology

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven; Golubovic, Leonardo

    Prospects to build Space Elevator (SE) systems have become realistic with ultra-strong materials such as carbon nano-tubes and diamond nano-threads. At cosmic length-scales, space elevators can be modeled as polymer like floppy strings of tethered mass beads. A new venue in SE science has emerged with the introduction of the Rotating Space Elevator (RSE) concept supported by novel algorithms discussed in this presentation. An RSE is a loopy string reaching into outer space. Unlike the classical geostationary SE concepts of Tsiolkovsky, Artsutanov, and Pearson, our RSE exhibits an internal rotation. Thanks to this, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth whereas the other one is in outer space. The RSE concept thus solves a major problem in SE technology which is how to supply energy to the climbers moving along space elevator strings. The investigation of the classical and statistical mechanics of a floppy string interacting with objects sliding along it required development of subtle computational algorithms described in this presentation

  20. Patterning of leaf vein networks by convergent auxin transport pathways.

    PubMed

    Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico

    2013-01-01

    The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.

Top