Sample records for rotating wave approximation

  1. Symmetric rotating-wave approximation for the generalized single-mode spin-boson system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Victor V.; Scholes, Gregory D.; Brumer, Paul

    2011-10-15

    The single-mode spin-boson model exhibits behavior not included in the rotating-wave approximation (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating-wave approximation that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating-wave approximation both off-resonance and at deep-strong coupling. The symmetric rotating-wave approximation allows for the treatment of certain ultra- and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak-coupling regime.more » Additionally, we symmetrize the generalized form of the rotating-wave approximation to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating-wave approximation. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.« less

  2. Proceedings of the International Conference "Quantum Optics IV" Jaszowiec, Poland, June 17-24, 1997. Volume 93, Number 1

    DTIC Science & Technology

    1998-01-01

    and creation operators of the radiation mode of frequency win. The interaction (in the rotating wave approximation ) is described by Am =• x10)(1llat...based on a series of approx- imations [such as the rotating wave approximation (RWA) and the "pole" approxi- mation (PA)] validity of which is...possibly, the oscillating dependencies ti(eo) and r(eo) arise when and because one does not use the rotating - wave and pole approximations inherently present

  3. Nonperturbative interpretation of the Bloch vector's path beyond the rotating-wave approximation

    NASA Astrophysics Data System (ADS)

    Benenti, Giuliano; Siccardi, Stefano; Strini, Giuliano

    2013-09-01

    The Bloch vector's path of a two-level system exposed to a monochromatic field exhibits, in the regime of strong coupling, complex corkscrew trajectories. By considering the infinitesimal evolution of the two-level system when the field is treated as a classical object, we show that the Bloch vector's rotation speed oscillates between zero and twice the rotation speed predicted by the rotating wave approximation. Cusps appear when the rotation speed vanishes. We prove analytically that in correspondence to cusps the curvature of the Bloch vector's path diverges. On the other hand, numerical data show that the curvature is very large even for a quantum field in the deep quantum regime with mean number of photons n¯≲1. We finally compute numerically the typical error size in a quantum gate when the terms beyond rotating wave approximation are neglected.

  4. Solitary waves in shallow water hydrodynamics and magnetohydrodynamics in rotating spherical coordinates

    NASA Astrophysics Data System (ADS)

    London, Steven D.

    2018-01-01

    In a recent paper (London, Geophys. Astrophys. Fluid Dyn. 2017, vol. 111, pp. 115-130, referred to as L1), we considered a perfect electrically conducting rotating fluid in the presence of an ambient toroidal magnetic field, governed by the shallow water magnetohydrodynamic (MHD) equations in a modified equatorial ?-plane approximation. In conjunction with a WKB type approximation, we used a multiple scale asymptotic scheme, previously developed by Boyd (J. Phys. Oceanogr. 1980, vol. 10, pp. 1699-1717) for equatorial solitary hydrodynamic waves, and found solitary MHD waves. In this paper, as in L1, we apply a WKB type approximation in order to extend the results of L1 from the modified ?-plane to the full spherical geometry. We have included differential rotation in the analysis in order to make the results more relevant to the solar case. In addition, we consider the case of hydrodynamic waves on the rotating sphere in the presence of a differential rotation intended to roughly model the varying large scale currents in the oceans and atmosphere. In the hydrodynamic case, we find the usual equatorial solitary waves as found by Boyd, as well as waves in bands away from the equator for sufficiently strong currents. In the MHD case, we find basically the same equatorial waves found in L1. L1 also found non-equatorial modes; no such modes are found in the full spherical geometry.

  5. The exact thermal rotational spectrum of a two-dimensional rigid rotor obtained using Gaussian wave packet dynamics

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Heller, E. J.

    1985-01-01

    The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.

  6. 3D MHD Simulations of Waves Excited in an Accretion Disk by a Rotating Magnetized Star

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2014-01-01

    We present results of global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star's magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zω|/r ~ 0.3) between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r,z = 0)] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.

  7. Analytical approximations for spiral waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald

    2013-12-15

    We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +}more » with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.« less

  8. Ladder operators and coherent states for the Jaynes-Cummings model in the rotating-wave approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussin, V.; Nieto, L.M.

    2005-12-15

    Using algebraic techniques, we realize a systematic search of different types of ladder operators for the Jaynes-Cummings model in the rotating-wave approximation. The link between our results and previous studies on the diagonalization of the associated Hamiltonian is established. Using some of the ladder operators obtained before, examples are given on the possibility of constructing a variety of interesting coherent states for this Hamiltonian.

  9. T sub 1-echo sequence: Protecting the State of a Qubit in the Presence of Coherent Interaction

    DTIC Science & Technology

    2012-09-25

    memory is at energy m, and they are coupled with a coupling strength v⊥. We write the coupling in the rotating - wave approximation , assuming q,m...important for the time evolution. In the validity range of the rotating - wave approximation , the above Hamiltonian preserves the total number of...excited state) in total is involved in the dynamics, the underlying Jaynes - Cummings Hamiltonian will lead to the same results as the ones presented here

  10. Cavity losses for the dissipative Jaynes Cummings Hamiltonian beyond rotating wave approximation

    NASA Astrophysics Data System (ADS)

    Scala, M.; Militello, B.; Messina, A.; Maniscalco, S.; Piilo, J.; Suominen, K.-A.

    2007-11-01

    A microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses is given, taking into account the terms in the dissipator which vary with frequencies of the order of the vacuum Rabi frequency. Our approach allows us to single out physical contexts wherein the usual phenomenological dissipator turns out to be fully justified and constitutes an extension of our previous analysis (Scala et al 2007 Phys. Rev. A 75 013811), where a microscopic derivation was given in the framework of the rotating wave approximation.

  11. Atmospheric thermal tides and planetary spin. I. The complex interplay between stratification and rotation

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Mathis, S.; Laskar, J.

    2018-02-01

    Context. Thermal atmospheric tides can torque telluric planets away from spin-orbit synchronous rotation, as observed in the case of Venus. They thus participate in determining the possible climates and general circulations of the atmospheres of these planets. Aims: The thermal tidal torque exerted on an atmosphere depends on its internal structure and rotation and on the tidal frequency. Particularly, it strongly varies with the convective stability of the entropy stratification. This dependence has to be characterized to constrain and predict the rotational properties of observed telluric exoplanets. Moreover, it is necessary to validate the approximations used in global modelings such as the traditional approximation, which is used to obtain separable solutions for tidal waves. Methods: We wrote the equations governing the dynamics of thermal tides in a local vertically stratified section of a rotating planetary atmosphere by taking into account the effects of the complete Coriolis acceleration on tidal waves. This allowed us to analytically derive the tidal torque and the tidally dissipated energy, which we used to discuss the possible regimes of tidal dissipation and to examine the key role played by stratification. Results: In agreement with early studies, we find that the frequency dependence of the thermal atmospheric tidal torque in the vicinity of synchronization can be approximated by a Maxwell model. This behavior corresponds to weakly stably stratified or convective fluid layers, as observed previously. A strong stable stratification allows gravity waves to propagate, and makes the tidal torque negligible. The transition is continuous between these two regimes. The traditional approximation appears to be valid in thin atmospheres and in regimes where the rotation frequency is dominated by the forcing or the buoyancy frequencies. Conclusions: Depending on the stability of their atmospheres with respect to convection, observed exoplanets can be tidally driven toward synchronous or asynchronous final rotation rates. The domain of applicability of the traditional approximation is rigorously constrained by calculations.

  12. Uniform analytic approximation of Wigner rotation matrices

    NASA Astrophysics Data System (ADS)

    Hoffmann, Scott E.

    2018-02-01

    We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.

  13. Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics

    ERIC Educational Resources Information Center

    Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei

    2013-01-01

    At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a…

  14. Future wave and wind projections for United States and United-States-affiliated Pacific Islands

    USGS Publications Warehouse

    Storlazzi, Curt D.; Shope, James B.; Erikson, Li H.; Hegermiller, Christine A.; Barnard, Patrick L.

    2015-01-01

    Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Spatially and temporally varying waves dominate coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact coastal infrastructure, natural and cultural resources, and coastal-related economic activities of the islands. Wave heights, periods, and directions were forecast through the year 2100 using wind parameter outputs from four atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5, for Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive a global WAVEWATCH-III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific for the years 1976–2005 (historical), 2026–2045 (mid-century projection), and 2085–2100 (end-of-century projection). Although the results show some spatial heterogeneity, overall the December-February extreme significant wave heights, defined as the mean of the top 5 percent of significant wave height time-series data modeled within a specific period, increase from present to mid-century and then decrease toward the end of the century; June-August extreme wave heights increase throughout the century within the Central region of the study area; and September-November wave heights decrease strongly throughout the 21st century, displaying the largest and most widespread decreases of any season. Peak wave periods increase east of the International Date Line during the December-February and June-August seasons under RCP4.5. Under the RCP8.5 scenario, wave periods decrease west of the International Date Line during December-February but increase in the eastern half of the study area. Otherwise, wave periods decrease throughout the study area during other seasons. Extreme wave directions in equatorial Micronesia during June-August undergo an approximate 30° clockwise rotation from primarily west to northwest. September-November RCP4.5 extreme mean wave directions rotate counterclockwise by approximately 30 to 45° in equatorial Micronesia; September-November RCP8.5 extreme mean wave directions within equatorial Micronesia rotate clockwise by approximately 20 to 30°. Extreme wind speeds decreased within both scenarios, with the largest decreases occurring in the September-November season. Extreme wind directions under RCP4.5 rotated clockwise by more than 60° in equatorial Micronesia during the September-November season and by approximately 30° during June-August. RCP8.5 extreme wind directions rotated counterclockwise during September-November within the same region by 30 to 50° and clockwise by 30 to 40° at one island. The spatial patterns and trends are similar between the two different greenhouse gas emission scenarios, with the magnitude and extent of the trends generally greater for the higher (RCP8.5) scenario.

  15. Rotational-vibrational coupling in the theory of electron-molecule scattering

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Sullivan, E. C.

    1974-01-01

    The adiabatic-nuclei approximation of vibrational-rotational excitation of homonuclear diatomic molecules can be simply augmented to describe the vibrational-rotational coupling by including the dependence of the vibrational wave function on j. Appropriate formulas are given, and the theory, is applied to e-H2 excitation, whereby it is shown that deviations from the simple Born-Oppenheimer approximation measured by Wong and Schultz can be explained. More important, it can be seen that the inclusion of the j-dependent centrifugal term is essential for transitions involving high-rotational quantum numbers.

  16. Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.

    PubMed

    Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  17. Gravitational-wave emission from rotating gravitational collapse in three dimensions.

    PubMed

    Baiotti, L; Hawke, I; Rezzolla, L; Schnetter, E

    2005-04-08

    We present the first three-dimensional (3D) calculations of the gravitational-wave emission in the collapse of uniformly rotating stars to black holes. The initial models are polytropes which are dynamically unstable and near the mass-shedding limit. The waveforms have been extracted using a gauge-invariant approach and reflect the properties of both the initial stellar models and of newly produced black holes, being in good qualitative agreement with those computed in previous 2D simulations. The wave amplitudes, however, are about 1 order of magnitude smaller, giving, for a source at 10 kpc, a signal-to-noise ratio S/N approximately 0.25 for LIGO-VIRGO and S/N less than or approximately equal 4 for LIGO II.

  18. Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)

    NASA Technical Reports Server (NTRS)

    Chandra, N.; Temkin, A.

    1975-01-01

    A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.

  19. Translation of waves along quantum vortex filaments in the low-temperature two-dimensional local induction approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorder, Robert A., E-mail: Robert.VanGorder@maths.ox.ac.uk

    2015-09-15

    In a recent paper, we give a study of the purely rotational motion of general stationary states in the two-dimensional local induction approximation (2D-LIA) governing superfluid turbulence in the low-temperature limit [B. Svistunov, “Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)]. Such results demonstrated that variety of stationary configurations are possible from vortex filaments exhibiting purely rotational motion in addition to commonly discussed configurations such as helical or planar states. However, the filaments (or, more properly, waves along these filaments) can also exhibit translational motion along the axis of orientation. In contrast to the study onmore » vortex configurations for purely rotational stationary states, the present paper considers non-stationary states which exhibit a combination of rotation and translational motions. These solutions can essentially be described as waves or disturbances which ride along straight vortex filament lines. As expected from our previous work, there are a number of types of structures that can be obtained under the 2D-LIA. We focus on non-stationary states, as stationary states exhibiting translation will essentially take the form of solutions studied in [R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014)], with the difference being translation along the reference axis, so that qualitative appearance of the solution geometry will be the same (even if there are quantitative differences). We discuss a wide variety of general properties of these non-stationary solutions and derive cases in which they reduce to known stationary states. We obtain various routes to Kelvin waves along vortex filaments and demonstrate that if the phase and amplitude of a disturbance both propagate with the same wave speed, then Kelvin waves will result. We also consider the self-similar solutions to the model and demonstrate that these types of solutions can model vortex kinks that gradually smooth and radiate Kelvin waves as time increases. Such solutions qualitatively agree with what one might expect from post-reconnection events.« less

  20. The exact eigenfunctions and eigenvalues of a two-dimensional rigid rotor obtained using Gaussian wave packet dynamics

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Heller, E. J.

    1985-01-01

    Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.

  1. Far-infrared rotational emission by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.

    1981-01-01

    Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines 10 to the 4th power/cu cm n(H2), 100 K T 2000 K, and J 50. An approximate analytic expression for the emissitivities which is valid over most of this region is obtained. Population inversions in the lower rotational levels occur for densities n(H2) approximately 10 (to the 3rd to 5th power)/cu cm and temperatures T approximately 50 K. Interstellar shocks observed edge on are a potential source of millimeter wave CO maser emission. The CO rotational cooling function suggested by Hollenbach and McKee (1979) is verified, and accurate numerical values given. Application of these results to other linear molecules should be straightforward.

  2. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    PubMed

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  3. Gravitational radiation from rapidly rotating nascent neutron stars

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Shapiro, Stuart L.

    1995-01-01

    We study the secular evolution and gravitational wave signature of a newly formed, rapidly rotating neutron star. The neutron star may arise from core collapse in a massive star or from the accretion-induced collapse of a white dwarf. After a brief dynamical phase, the nascent neutron star settles into an axisymmetric, secularly unstable state. Gravitational radiation drives the star to a nonaxisymmetric, stationary equilibrium configuration via the bar-mode instability. The emitted quasi-periodic gravitational waves have a unique signature: the wave frequency sweeps downward from a few hundred Hertz to zero, while the wave amplitude increase from zero to a maximum and then decays back to zero. Such a wave signal could detected by broadband gravitational wave interferometers currently being constructed. We also characterize two other types of gravitational wave signals that could arise in principle from a rapidly rotating, secularly unstable neutron star: a high-frequency (f greater than or approximately = 1000 Hz) wave which increases the pattern-speed of the star, and a wave that actually increases the angular momentum of the star.

  4. Helicons in uniform fields. II. Poynting vector and angular momenta

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.

    2018-03-01

    The orbital and spin angular momenta of helicon modes have been determined quantitatively from laboratory experiments. The current density is obtained unambiguously from three dimensional magnetic field measurements. The only approximation made is to obtain the electric field from Hall Ohm's law which is usually the case for low frequency whistler modes. This allows the evaluation of the Poynting vector from which the angular momentum is obtained. Comparing two helicon modes (m = 0 and m = 1), one can separate the contribution of angular momentum of a rotating and non-rotating wave field. The orbital angular momentum is important to assess the wave-particle interaction by the transverse Doppler shift of rotating waves which has not been considered so far.

  5. The role of axis embedding on rigid rotor decomposition analysis of variational rovibrational wave functions.

    PubMed

    Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2012-05-07

    Approximate rotational characterization of variational rovibrational wave functions via the rigid rotor decomposition (RRD) protocol is developed for Hamiltonians based on arbitrary sets of internal coordinates and axis embeddings. An efficient and general procedure is given that allows employing the Eckart embedding with arbitrary polyatomic Hamiltonians through a fully numerical approach. RRD tables formed by projecting rotational-vibrational wave functions into products of rigid-rotor basis functions and previously determined vibrational eigenstates yield rigid-rotor labels for rovibrational eigenstates by selecting the largest overlap. Embedding-dependent RRD analyses are performed, up to high energies and rotational excitations, for the H(2) (16)O isotopologue of the water molecule. Irrespective of the embedding chosen, the RRD procedure proves effective in providing unambiguous rotational assignments at low energies and J values. Rotational labeling of rovibrational states of H(2) (16)O proves to be increasingly difficult beyond about 10,000 cm(-1), close to the barrier to linearity of the water molecule. For medium energies and excitations the Eckart embedding yields the largest RRD coefficients, thus providing the largest number of unambiguous rotational labels.

  6. THE EFFECT OF GRAVITATION ON THE POLARIZATION STATE OF A LIGHT RAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tanay; Sen, A. K.

    In the present work, detailed calculations have been carried out on the rotation of the polarization vector of an electromagnetic wave due to the presence of a gravitational field of a rotating body. This has been done using the general expression of Maxwell’s equation in curved spacetime. Considering the far-field approximation (i.e., the impact parameter is greater than the Schwarzschild radius and rotation parameter), the amount of rotation of the polarization vector as a function of impact parameter has been obtained for a rotating body (considering Kerr geometry). The present work shows that the rotation of the polarization vector cannotmore » be observed in the case of Schwarzschild geometry. This work also calculates the rotational effect when considering prograde and retrograde orbits for the light ray. Although the present work demonstrates the effect of rotation of the polarization vector, it confirms that there would be no net polarization of an electromagnetic wave due to the curved spacetime geometry in a Kerr field.« less

  7. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Zhu, Hanjie

    2015-03-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.

  8. Analytical solution for the anisotropic Rabi model: effects of counter-rotating terms.

    PubMed

    Zhang, Guofeng; Zhu, Hanjie

    2015-03-04

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.

  9. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    PubMed Central

    Zhang, Guofeng; Zhu, Hanjie

    2015-01-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model. PMID:25736827

  10. Surface acoustic wave micromotor with arbitrary axis rotational capability

    NASA Astrophysics Data System (ADS)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  11. Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions

    NASA Technical Reports Server (NTRS)

    Sun, Y.; Judson, R. S.; Kouri, D. J.

    1989-01-01

    The close coupling wave packet (CCWP) method is formulated in a body-fixed representation for atom-rigid rotor inelastic scattering. For J greater than j-max (where J is the total angular momentum and j is the rotational quantum number), the computational cost of propagating the coupled channel wave packets in the body frame is shown to scale approximately as N exp 3/2, where N is the total number of channels. For large numbers of channels, this will be much more efficient than the space frame CCWP method previously developed which scales approximately as N-squared under the same conditions.

  12. Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; Begzjav, Tuguldur

    2016-04-01

    Recently a new class of single-photon timed Dicke (TD) subradiant states has been introduced with possible applications in single-photon-based quantum information storage and on demand ultrafast retrieval (Scully M. O., Phys. Rev. Lett., 115 (2015) 243602). However, the influence of any kind of virtual processes on the decay of these new kind of subradiant states has been left as an open question. In the present paper, we focus on this problem in detail. In particular, we investigate how pure Fano-Agarwal couplings and other virtual processes arising from non-rotating wave approximation impact the decay of otherwise sub- and superradiant states. In addition to the overall virtual couplings among all TD states, we also focus on the dominant role played by the couplings between specific TD states.

  13. Generalized squeezing rotating-wave approximation to the isotropic and anisotropic Rabi model in the ultrastrong-coupling regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yu

    2016-12-01

    Generalized squeezing rotating-wave approximation (GSRWA) is proposed by employing both the displacement and the squeezing transformations. A solvable Hamiltonian is reformulated in the same form as the ordinary RWA ones. For a qubit coupled to oscillators experiment, a well-defined Schrödinger-cat-like entangled state is given by the displaced-squeezed oscillator state instead of the original displaced state. For the isotropic Rabi case, the mean photon number and the ground-state energy are expressed analytically with additional squeezing terms, exhibiting a substantial improvement of the GSRWA. And the ground-state energy in the anisotropic Rabi model confirms the effectiveness of the GSRWA. Due to the squeezing effect, the GSRWA improves the previous methods only with the displacement transformation in a wide range of coupling strengths even for large atom frequency.

  14. Method to improve optical parametric oscillator beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.; Bowers, Mark S.

    2003-11-11

    A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  15. Optical parametric osicllators with improved beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.

    2003-11-11

    An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  16. Non-Markovian quantum Brownian motion in one dimension in electric fields

    NASA Astrophysics Data System (ADS)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  17. Wave Journal Bearing. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1995-01-01

    A wave journal bearing concept features a waved inner bearing diameter of the non-rotating bearing side and it is an alternative to the plain journal bearing. The wave journal bearing has a significantly increased load capacity in comparison to the plain journal bearing operating at the same eccentricity. It also offers greater stability than the plain circular bearing under all operating conditions. The wave bearing's design is relatively simple and allows the shaft to rotate in either direction. Three wave bearings are sensitive to the direction of an applied stationary side load. Increasing the number of waves reduces the wave bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the wave bearing design for a specific application. It is concluded that the stiffness of an air journal bearing, due to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  18. Effective suppression of stray light in rotational coherent anti-stokes Raman spectroscopy using an angle-tuned short-wave-pass filter.

    PubMed

    Bohlin, Alexis; Bengtsson, Per-Erik

    2010-08-01

    Stray light interference is a common problem in spontaneous rotational Raman spectroscopy and rotational coherent anti-Stokes Raman spectropscopy (CARS). The reason is that the detected spectrum appears in the spectral vicinity of the probe beam wavelength, and stray light at this wavelength from optics and surfaces is hard to suppress. In this Note, efficient suppression of stray light is demonstrated for rotational CARS measurements using a commercially available short-wave-pass filter. By angle-tuning this filter with a specified cut-off wavelength at 561 nm, the cut-off wavelength could be tuned to a desired spectral position so that more than 80% transmission is achieved as close as 15 cm(-1) (approximately 0.4 nm) from the probe beam wavelength of 532.0 nm, while the intensity at this wavelength is suppressed by two orders of magnitude.

  19. Analytical solution and applications of three qubits in three coupled modes without rotating wave approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Song; Zhang, Liu-Juan; Chen, Ai-Xi; Abdel-Aty, Mahmoud

    2018-06-01

    We study the dynamics of the three-qubit system interacting with multi-mode without rotating wave approximation (RWA). A physical realization of the system without direct qubits interactions with dephasing bath is proposed. It is shown that non-Markovian characters of the purity of the three qubits and the coupling strength of modes are stronger enough the RWA is no longer valid. The influences of the dephasing of qubits and interactions of modes on the dynamics of genuine multipartite entanglement and bipartite correlations of qubits are investigated. The multipartite and bipartite quantum correlations could be generated faster if we increase the coupling strength of modes and the RWA is not valid when the coupling strength is strong enough. The unitary transformations approach adopted here can be extended to other systems such as circuit or cavity quantum electrodynamic systems in the strong coupling regime.

  20. Absence of Vacuum Induced Berry Phases without the Rotating Wave Approximation in Cavity QED

    NASA Astrophysics Data System (ADS)

    Larson, Jonas

    2012-01-01

    We revisit earlier studies on Berry phases suggested to appear in certain cavity QED settings. It has been especially argued that a nontrivial geometric phase is achievable even in the situation of no cavity photons. We, however, show that such results hinge on imposing the rotating wave approximation (RWA), while without the RWA no Berry phases occur in these schemes. A geometrical interpretation of our results is obtained by introducing semiclassical energy surfaces which in a simple way brings out the phase-space dynamics. With the RWA, a conical intersection between the surfaces emerges and encircling it gives rise to the Berry phase. Without the RWA, the conical intersection is absent and therefore the Berry phase vanishes. It is believed that this is a first example showing how the application of the RWA in the Jaynes-Cummings model may lead to false conclusions, regardless of the mutual strengths between the system parameters.

  1. (p,q) deformations and (p,q)-vector coherent states of the Jaynes-Cummings model in the rotating wave approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Geloun, Joseph; Govaerts, Jan; Hounkonnou, M. Norbert

    2007-03-15

    Classes of (p,q) deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton state. These ladder operators allow for the construction of (p,q)-deformed vector coherent states. Using (p,q) arithmetics, explicit and exact solutions to the associated moment problem are displayed, providing new classes of coherent states for such models. Finally, in the limit of decoupled spin sectors, our analysis translatesmore » into (p,q) deformations of the supersymmetric harmonic oscillator, such that the two supersymmetric sectors get intertwined through the action of the ladder operators as well as in the associated coherent states.« less

  2. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon

    2010-11-20

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends onmore » the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.« less

  3. The KP Approximation Under a Weak Coriolis Forcing

    NASA Astrophysics Data System (ADS)

    Melinand, Benjamin

    2018-02-01

    In this paper, we study the asymptotic behavior of weakly transverse water-waves under a weak Coriolis forcing in the long wave regime. We derive the Boussinesq-Coriolis equations in this setting and we provide a rigorous justification of this model. Then, from these equations, we derive two other asymptotic models. When the Coriolis forcing is weak, we fully justify the rotation-modified Kadomtsev-Petviashvili equation (also called Grimshaw-Melville equation). When the Coriolis forcing is very weak, we rigorously justify the Kadomtsev-Petviashvili equation. This work provides the first mathematical justification of the KP approximation under a Coriolis forcing.

  4. Evolution and Survival of Quantum Entanglement

    DTIC Science & Technology

    2015-05-06

    Research Triangle Park, NC 27709-2211 quantum entanglement, decoherence, qubit, revival, survival, Jaynes-Cummings, Rabi , rotating wave approximation...measurements, PHYSICAL REVIEW A , (06 2013): 62331. doi: S Agarwal, , S M Hashemi Rafsanjani , J H Eberly. Dissipation of the Rabi Model Beyond the

  5. Global-scale equatorial Rossby waves as an essential component of solar internal dynamics

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Gizon, Laurent; Birch, Aaron C.; Schou, Jesper; Proxauf, Bastian; Duvall, Thomas L.; Bogart, Richard S.; Christensen, Ulrich R.

    2018-05-01

    The Sun’s complex dynamics is controlled by buoyancy and rotation in the convection zone. Large-scale flows are dominated by vortical motions1 and appear to be weaker than expected in the solar interior2. One possibility is that waves of vorticity due to the Coriolis force, known as Rossby waves3 or r modes4, remove energy from convection at the largest scales5. However, the presence of these waves in the Sun is still debated. Here, we unambiguously discover and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at azimuthal wavenumbers below 15, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below twice the solar rotational frequency, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We observe a transition from turbulence-like to wave-like dynamics around the Rhines scale6 of angular wavenumber of approximately 20. This transition might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.

  6. Rotating stars in relativity.

    PubMed

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  7. Axisymmetric modes of rotating relativistic stars in the Cowling approximation

    NASA Astrophysics Data System (ADS)

    Font, José A.; Dimmelmeier, Harald; Gupta, Anshu; Stergioulas, Nikolaos

    2001-08-01

    Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core collapse, crust- and core-quakes or binary mergers, and could become detectable in either gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations are appropriately perturbed and are numerically evolved using an axisymmetric, non-linear relativistic hydrodynamics code, assuming time-independence of the gravitational field (Cowling approximation). The simulations are performed using a high-resolution shock-capturing finite-difference scheme accurate enough to maintain the initial rotation law for a large number of rotational periods, even for stars at the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid variables, we compute the frequencies of quasi-radial and non-radial modes with spherical harmonic indices l=0, 1, 2 and 3, for a sequence of rotating stars from the non-rotating limit to the mass-shedding limit. The frequencies of the axisymmetric modes are affected significantly by rotation only when the rotation rate exceeds about 50 per cent of the maximum allowed. As expected, at large rotation rates, apparent mode crossings between different modes appear. In addition to the above modes, several axisymmetric inertial modes are also excited in our numerical evolutions.

  8. Translational Symmetry-Breaking for Spiral Waves

    NASA Astrophysics Data System (ADS)

    LeBlanc, V. G.; Wulff, C.

    2000-10-01

    Spiral waves are observed in numerous physical situations, ranging from Belousov-Zhabotinsky (BZ) chemical reactions, to cardiac tissue, to slime-mold aggregates. Mathematical models with Euclidean symmetry have recently been developed to describe the dynamic behavior (for example, meandering) of spiral waves in excitable media. However, no physical experiment is ever infinite in spatial extent, so the Euclidean symmetry is only approximate. Experiments on spiral waves show that inhomogeneities can anchor spirals and that boundary effects (for example, boundary drifting) become very important when the size of the spiral core is comparable to the size of the reacting medium. Spiral anchoring and boundary drifting cannot be explained by the Euclidean model alone. In this paper, we investigate the effects on spiral wave dynamics of breaking the translation symmetry while keeping the rotation symmetry. This is accomplished by introducing a small perturbation in the five-dimensional center bundle equations (describing Hopf bifurcation from one-armed spiral waves) which is SO(2)-equivariant but not equivariant under translations. We then study the effects of this perturbation on rigid spiral rotation, on quasi-periodic meandering and on drifting.

  9. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry.

    PubMed

    Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  10. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry

    NASA Astrophysics Data System (ADS)

    Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  11. Charge noise in quantum dot qubits: beyond the Markovian approximation.

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Chi; Friesen, Mark; Coppersmith, S. N.

    Charge noise is a limiting factor in the performance of semiconductor quantum dot qubits, including both spin and charge qubits. In this work, we develop an analytical formalism for treating semiclassical noise beyond the Markovian approximation, which allows us to investigate noise models relevant for quantum dots, such as 1 / f noise. We apply our methods to both charge qubits and quantum dot hybrid qubits, and study the effects of charge noise on single-qubit rotations in these systems. The formalism is also directly applicable to the case of strong microwave driving, for which the rotating wave approximation breaks down. This work was supported in part by ARO (W911NF-12-0607) and ONR (N00014-15-1-0029), and the University of Wisconsin-Madison.

  12. The study of coronal plasma structures and fluctuations with Faraday rotation measurements

    NASA Technical Reports Server (NTRS)

    Sakurai, Takayuki; Sprangler, Steven R.

    1994-01-01

    We report dual-frequency, polarimetric measurements of Faraday rotation of extragalactic radio sources viewed through the solar corona. The observations were made at the Very Large Array in 1990 during solar maximum. Of the nine observed, an excess rotation measure of -12.6 rad/sq m was detected for one source (0010+005), which was observed at an elongation of about 9 solar radii. This measurement is in fair agreement with an a priori model rotation measure of -8.6 rad/sq m estimated from coronal potential field models and the electron density model of Paetzold et al. (1992). Our measurement provides a value for the coronal magnetic field strength at 9 solar radii given a knowledge of the magnetic field sector structure, of 12.5 +/- 2.3 mG. Rotation measurements of 0010+005 were made approximately once per hour over an 11 hr period. During this interval, a slow change of about 1 rad/sq m/hr in rotation measure was detected. Although we are not absolutely certain that this drift is not unremoved ionospheric Faraday rotation, extensive analysis of data from the other sources suggests that this is not the case (Sakurai & Spangler 1994). The very long timescale for this variation argues against the agency of magnetohydrodynamics (MHD) waves, and we suggest occultation of 0010+005 by relatively static plasma structures in the corona. We filtered our rotation measure time series to search for variations on an hourly timescale, such as those reported by Hollweg et al. (1992), which could be attributed to coronal MHD waves. We were unable to detect such fluctuations and can report only an upper limit to the rms variation of 1.6 rad/sq m. This upper limit is of the same order, but slightly larger than the values typically reported by Hollweg et al. (1982). This upper limit to the rotation measure fluctuations limits the dimensionless wave amplitude (delta B)/B in the corona to be less than 0.7. Using the number, we estimate the MHD wave flux at the coronal base to be less than 1.6 x 10(exp 5) ergs/sq cm/s. This is less than the amount of wave energy flux required by wave-driven models of the solar wind. Finally, we discuss a number of ways in which such observations could be improved in the future.

  13. Entanglement dynamics of two independent Jaynes-Cummings atoms without the rotating-wave approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Qinghu; Department of Physics, Zhejiang University, Hangzhou 310027; Yang Yuan

    2010-11-15

    Entanglement evolution of two independent Jaynes-Cummings atoms without the rotating-wave approximation (RWA) is studied by a numerically exact approach. Previous results based on the RWA are essentially modified in the strong-coupling regime (g{>=}0.1), which has been reached in the recent experiments on the flux qubit coupled to the LC resonator. For the initial Bell state with anticorrelated spins, entanglement sudden death (ESD) is absent in the RWA but does appear in the present numerical calculation without the RWA. Aperiodic entanglement evolution in the strong-coupling regime is observed. The strong atom-cavity coupling facilitates the ESD. The sign of the detuning playsmore » an essential role in the entanglement evolution for strong coupling, which is irrelevant in the RWA. Analytical results based on an unitary transformation are also given, which could not modify the RWA picture essentially. It is suggested that the activation of the photons may be the origin of ESD in this system.« less

  14. Cooling and Trapping of Neutral Atoms

    DTIC Science & Technology

    2009-04-30

    Schrodinger equation in which the absence of the rotating wave approximation accounts for the two frequencies [18]. This result can be described in...depict this energy conservation process is the Jaynes - Cummings view, where the light field can be described as a number state. Then it becomes clear...of the problem under consideration. Find a suitable approximation for the normal modes; the simpler, the better. Decide how to model the light

  15. High-resolution submillimeter-wave radiometry of supersonic flow

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Weiss, J. A.; Fitzgerald, J. F.; Fetterman, H. R.; Litvak, M. M.

    1983-01-01

    The recent development of a high-resolution submillimeter-wave heterodyne radiometer has made possible the first measurements of H2O molecule rotational line excitation temperatures and detailed profiles in supersonic flow. Absorption signals were measured across the flow for the 2/11/ from 2//02/ (752 GHz) para-H2O rotational transition against a hot background. These signals decrease downstream owing to the volume expansion of the gas away from the sonic nozle exit in the high-vacuum chamber. Radiative transfer calculations based on the large-velocity-gradient approximation and multilevel statistical equilibrium agree with these results and with the measured spectral line shapes. The data reveal nearly isentropic gas expansion and cooling. These studies have shown that submillimeter-wave heterodyne radiometry can be useful for remote sensing of supersonic flow with low mass flux, provided the signal transmission is through a dry or thin atmosphere.

  16. Results of a zonally truncated three-dimensional model of the Venus middle atmosphere

    NASA Technical Reports Server (NTRS)

    Newman, M.

    1992-01-01

    Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole.

  17. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.

    1994-01-01

    An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.

  18. Ultrafast Terahertz Nonlinear Optics of Landau Level Transitions in a Monolayer Graphene

    NASA Astrophysics Data System (ADS)

    Yumoto, Go; Matsunaga, Ryusuke; Hibino, Hiroki; Shimano, Ryo

    2018-03-01

    We investigated the ultrafast terahertz (THz) nonlinearity in a monolayer graphene under the strong magnetic field using THz pump-THz probe spectroscopy. An ultrafast suppression of the Faraday rotation associated with inter-Landau level (LL) transitions is observed, reflecting the Dirac electron character of nonequidistant LLs with large transition dipole moments. A drastic modulation of electron distribution in LLs is induced by far off-resonant THz pulse excitation in the transparent region. Numerical simulation based on the density matrix formalism without rotating-wave approximation reproduces the experimental results. Our results indicate that the strong light-matter coupling regime is realized in graphene, with the Rabi frequency exceeding the carrier wave frequency and even the relevant energy scale of the inter-LL transition.

  19. Supersymmetry in the Jaynes-Cummings model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castanos, Octavio

    2013-06-12

    A review is presented of the Darboux method and its relation to the supersymmetric quantum mechanics, together with the embedding of a n-dimensional scalar Hamiltonian into a supersymmetric matrix. It is also shown that the Jaynes-Cummings model, with or without rotating wave approximation, admit a supersymmetric quantum mechanics description.

  20. Inverse cascades and resonant triads in rotating and stratified turbulence

    NASA Astrophysics Data System (ADS)

    Oks, D.; Mininni, P. D.; Marino, R.; Pouquet, A.

    2017-11-01

    Kraichnan's seminal ideas on inverse cascades yielded new tools to study common phenomena in geophysical turbulent flows. In the atmosphere and the oceans, rotation and stratification result in a flow that can be approximated as two-dimensional at very large scales but which requires considering three-dimensional effects to fully describe turbulent transport processes and non-linear phenomena. Motions can thus be classified into two classes: fast modes consisting of inertia-gravity waves and slow quasi-geostrophic modes for which the Coriolis force and horizontal pressure gradients are close to balance. In this paper, we review previous results on the strength of the inverse cascade in rotating and stratified flows and then present new results on the effect of varying the strength of rotation and stratification (measured by the inverse Prandtl ratio N/f, of the Coriolis frequency to the Brunt-Väisäla frequency) on the amplitude of the waves and on the flow quasi-geostrophic behavior. We show that the inverse cascade is more efficient in the range of N/f for which resonant triads do not exist, 1 /2 ≤N /f ≤2 . We then use the spatio-temporal spectrum to show that in this range slow modes dominate the dynamics, while the strength of the waves (and their relevance in the flow dynamics) is weaker.

  1. Gravitational waves and core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Moiseenko, S. G.

    2017-11-01

    A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation results on core-collapse supernova explosions are presented for the neutrino and magneto-rotational models. These results are used to estimate the dimensionless amplitude of the gravitational wave with a frequency ν ~ 1300 Hz, radiated during the collapse of the rotating core of a pre-supernova with a mass of 1.2 M⊙ (calculated by the authors in 2D). This estimate agrees well with many other calculations (presented in this paper) that have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large-scale structure of the Universe in the Zel’dovich pancake model involves the emission of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that a gravitational wave radiated during a core-collapse supernova explosion in our Galaxy has a sufficient amplitude to be detected by existing gravitational wave telescopes.

  2. Communication: Creation of molecular vibrational motions via the rotation-vibration coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Chuan-Cun; School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600; Henriksen, Niels E., E-mail: neh@kemi.dtu.dk

    2015-06-14

    Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length whereas a fast rotational excitation leads to amore » non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds to a laser-induced breakdown of the adiabatic approximation for rotation-vibration coupling.« less

  3. Regular and chaotic dynamics of non-spherical bodies. Zeldovich's pancakes and emission of very long gravitational waves

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-10-01

    > In this paper we review a recently developed approximate method for investigation of dynamics of compressible ellipsoidal figures. Collapse and subsequent behaviour are described by a system of ordinary differential equations for time evolution of semi-axes of a uniformly rotating, three-axis, uniform-density ellipsoid. First, we apply this approach to investigate dynamic stability of non-spherical bodies. We solve the equations that describe, in a simplified way, the Newtonian dynamics of a self-gravitating non-rotating spheroidal body. We find that, after loss of stability, a contraction to a singularity occurs only in a pure spherical collapse, and deviations from spherical symmetry prevent the contraction to the singularity through a stabilizing action of nonlinear non-spherical oscillations. The development of instability leads to the formation of a regularly or chaotically oscillating body, in which dynamical motion prevents the formation of the singularity. We find regions of chaotic and regular pulsations by constructing a Poincaré diagram. A real collapse occurs after damping of the oscillations because of energy losses, shock wave formation or viscosity. We use our approach to investigate approximately the first stages of collapse during the large scale structure formation. The theory of this process started from ideas of Ya. B. Zeldovich, concerning the formation of strongly non-spherical structures during nonlinear stages of the development of gravitational instability, known as `Zeldovich's pancakes'. In this paper the collapse of non-collisional dark matter and the formation of pancake structures are investigated approximately. Violent relaxation, mass and angular momentum losses are taken into account phenomenologically. We estimate an emission of very long gravitational waves during the collapse, and discuss the possibility of gravitational lensing and polarization of the cosmic microwave background by these waves.

  4. Seismic shear waves as Foucault pendulum

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko

    2016-03-01

    Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.

  5. Effects of reactant rotation on the dynamics of the OH + CH4 → H2O + CH3 reaction: a six-dimensional study.

    PubMed

    Song, Hongwei; Li, Jun; Jiang, Bin; Yang, Minghui; Lu, Yunpeng; Guo, Hua

    2014-02-28

    The dynamics of the hydrogen abstraction reaction between methane and hydroxyl radical is investigated using an initial state selected time-dependent wave packet method within a six-dimensional model. The ab initio calibrated global potential energy surface of Espinosa-García and Corchado was used. Integral cross sections from several low-lying rotational states of both reactants have been obtained using the centrifugal sudden and J-shifting approximations. On the empirical potential energy surface, the rotational excitation of methane has little effect on the reaction cross section, but excited rotational states of OH inhibit the reactivity slightly. These results are rationalized with the newly proposed sudden vector projection model.

  6. Infrasonic Influences of Tornados and Cyclonic Weather Systems

    NASA Astrophysics Data System (ADS)

    Cook, Tessa

    2014-03-01

    Infrasound waves travel through the air at approximately 340 m/s at sea level, while experiencing low levels of friction, allowing the waves to travel over larger distances. When seismic waves travel through unconsolidated soil, the waves slow down to approximately 340 m/s. Because the speeds of waves in the air and ground are similar, a more effective transfer of energy from the atmosphere to the ground can occur. Large ring lasers can be utilized for detecting sources of infrasound traveling through the ground by measuring anomalies in the frequency difference between their two counter-rotating beams. Sources of infrasound include tornados and other cyclonic weather systems. The way systems create waves that transfer to the ground is unknown and will be continued in further research; this research has focused on attempting to isolate the time that the ring laser detected anomalies in order to investigate if these anomalies may be contributed to isolatable weather systems. Furthermore, this research analyzed the frequencies detected in each of the anomalies and compared the frequencies with various characteristics of each weather system, such as tornado width, wind speeds, and system development. This research may be beneficial for monitoring gravity waves and weather systems.

  7. Film stability in a vertical rotating tube with a core-gas flow.

    NASA Technical Reports Server (NTRS)

    Sarma, G. S. R.; Lu, P. C.; Ostrach, S.

    1971-01-01

    The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.

  8. Composite fermion basis for two-component Bose gases

    NASA Astrophysics Data System (ADS)

    Meyer, Marius; Liabotro, Ola

    The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.

  9. Effects of reagent rotational excitation on the H + CHD₃ → H₂ + CD₃ reaction: a seven dimensional time-dependent wave packet study.

    PubMed

    Zhang, Zhaojun; Zhang, Dong H

    2014-10-14

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD3 in J0 = 1, 2 rotationally excited initial states with k0 = 0 - J0 (the projection of CHD3 rotational angular momentum on its C3 axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K0) equal to k0 are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD3 with respect to the relative velocity between the reagents H and CHD3. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K0 specified cross sections for the K0 = k0 initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K0 averaging for the J0 = 1, 2 initial states with all different k0 are essentially identical to the corresponding CS and CC results for the J0 = 0 initial state, meaning that the initial rotational excitation of CHD3 up to J0 = 2, regardless of its initial k0, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J0 = 1, 2 initial states are the same as those for the J0 = 0 initial state.

  10. Saturation amplitude of the f-mode instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastaun, Wolfgang; Willburger, Beatrix; Kokkotas, Kostas D.

    2010-11-15

    We investigate strong nonlinear damping effects which occur during high amplitude oscillations of neutron stars, and the gravitational waves they produce. For this, we use a general relativistic nonlinear hydrodynamics code in conjunction with a fixed spacetime (Cowling approximation) and a polytropic equation of state (EOS). Gravitational waves are estimated using the quadrupole formula. Our main interest are l=m=2 f modes subject to the CFS (Chandrasekhar, Friedman, Schutz) instability, but we also investigate axisymmetric and quasiradial modes. We study various models to determine the influence of rotation rate and EOS. We find that axisymmetric oscillations at high amplitudes are predominantlymore » damped by shock formation, while the nonaxisymmetric f modes are mainly damped by wave breaking and, for rapidly rotating models, coupling to nonaxisymmetric inertial modes. From the observed nonlinear damping, we derive upper limits for the saturation amplitude of CFS-unstable f modes. Finally, we estimate that the corresponding gravitational waves for an oscillation amplitude at the upper limit should be detectable with the advanced LIGO (Laser Interferometer Gravitational Wave Observatory) and VIRGO interferometers at distances above 10 Mpc. This strongly depends on the stellar model, in particular, on the mode frequency.« less

  11. Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel

    2010-09-01

    A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.

  12. Uniform high order spectral methods for one and two dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Shu, Chi-Wang

    1991-01-01

    Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.

  13. Far-infrared rotational emission by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.

    1982-01-01

    Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines for an H2 molecule content of at least 10,000/cu cm, temperature in the range 100-3000 K, and J not more than 60 under the assumption that the lines are optically thin. An approximate analytic expression for the emissivities which is valid in this region is obtained. Population inversions in the lower rotational levels occur for densities of molecular H2 around 1000-100,000/cu cm and temperatures T not more than about 50 K provided photon trapping is unimportant. Interstellar shocks observed edge-on are a potential source of weak millimeter-wave CO maser emission.

  14. Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter-metallic-nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Nikos; Thanopulos, Ioannis; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-03-01

    We study the spontaneous emission of a two-level quantum emitter next to a plasmonic nanoparticle beyond the Markovian approximation and the rotating-wave approximation (RWA) by combining quantum dynamics and classical electromagnetic calculations. For emitters with decay times in the picosecond to nanosecond time regime, as well as located at distances from the nanoparticle up to its radius, the dynamics with and without the RWA and the transition from the non-Markovian to the Markovian regime are investigated. For emitters with longer decay times, the Markov approximation proves to be adequate for distances larger than half the nanoparticle radius. However, the RWA is correct for all distances of the emitter from the nanoparticle. For short decay time emitters, the Markov approximation and RWA are both inadequate, with only the RWA becoming valid again at a distance larger than half the nanoparticle radius. We also show that the entanglement dynamics of two initially entangled qubits interacting independently with the nanoparticle may have a strong non-Markovian character when counter-rotating effects are included. Interesting effects such as entanglement sudden death, periodic entanglement revival, entanglement oscillations, and entanglement trapping are further observed when different initial two-qubit states and different distances between the qubit and the nanoparticle are considered.

  15. Three-dimensional modelling of thin liquid films over spinning disks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2016-11-01

    In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.

  16. Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects

    NASA Astrophysics Data System (ADS)

    Obergaulinger, M.; Aloy, M. A.; Dimmelmeier, H.; Müller, E.

    2006-10-01

    We continue our investigations of the magnetorotational collapse of stellar cores by discussing simulations performed with a modified Newtonian gravitational potential that mimics general relativistic effects. The approximate TOV gravitational potential used in our simulations captures several basic features of fully relativistic simulations quite well. In particular, it is able to correctly reproduce the behavior of models that show a qualitative change both of the dynamics and the gravitational wave signal when switching from Newtonian to fully relativistic simulations. For models where the dynamics and gravitational wave signals are already captured qualitatively correctly by a Newtonian potential, the results of the Newtonian and the approximate TOV models differ quantitatively. The collapse proceeds to higher densities with the approximate TOV potential, allowing for a more efficient amplification of the magnetic field by differential rotation. The strength of the saturation fields (˜ 1015 ~ G at the surface of the inner core) is a factor of two to three higher than in Newtonian gravity. Due to the more efficient field amplification, the influence of magnetic fields is considerably more pronounced than in the Newtonian case for some of the models. As in the Newtonian case, sufficiently strong magnetic fields slow down the core's rotation and trigger a secular contraction phase to higher densities. More clearly than in Newtonian models, the collapsed cores of these models exhibit two different kinds of shock generation. Due to magnetic braking, a first shock wave created during the initial centrifugal bounce at subnuclear densities does not suffice for ejecting any mass, and the temporarily stabilized core continues to collapse to supranuclear densities. Another stronger shock wave is generated during the second bounce as the core exceeds nuclear matter density. The gravitational wave signal of these models does not fit into the standard classification. Therefore, in the first paper of this series we introduced a new type of gravitational wave signal, which we call type IV or “magnetic type”. This signal type is more frequent for the approximate relativistic potential than for the Newtonian one. Most of our weak-field models are marginally detectable with the current LIGO interferometer for a source located at a distance of 10 kpc. Strongly magnetized models emit a substantial fraction of their GW power at very low frequencies. A flat spectrum between 10 Hz and ⪉ 100 kHz denotes the generation of a jet-like hydromagnetic outflow.

  17. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity

    NASA Astrophysics Data System (ADS)

    Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro

    2018-06-01

    A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.

  18. Effect of Floquet engineering on the p-wave superconductor with second-neighbor couplings

    NASA Astrophysics Data System (ADS)

    Li, X. P.; Li, C. F.; Wang, L. C.; Zhou, L.

    2018-06-01

    The influence of the Floquet engineering on a particular one-dimensional p-wave superconductor, Kitaev model, with second-neighbor couplings is investigated in this paper. The effective Hamiltonians in the rotated reference frames have been obtained, and the convergent regions of the approximated Hamiltonian as well as the topological phase diagrams have been analyzed and discussed. We show that by modulating the external driving field amplitude, frequency as well as the second-neighbor hopping amplitude, the rich phase diagrams and transitions between different topological phases can be obtained.

  19. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Simonelli, A.; Igel, H.; Wassermann, J.; Belfi, J.; Di Virgilio, A.; Beverini, N.; De Luca, G.; Saccorotti, G.

    2018-05-01

    We present the analysis of rotational and translational ground motions from earthquakes recorded during October/November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozens of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 30 km and 70 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. Under the plane wave approximation we process the data set in order to get an experimental estimation of the events back azimuth. Peak values of rotation rate (PRR) and horizontal acceleration (PGA) are markedly correlated, according to a scaling constant which is consistent with previous measurements from different earthquake sequences. We used a prediction model in use for Italy to calculate the expected PGA at the recording site, obtaining consequently predictions for PRR. Within the modeling uncertainties, predicted rotations are consistent with the observed ones, suggesting the possibility of establishing specific attenuation models for ground rotations, like the scaling of peak velocity and peak acceleration in empirical ground-motion prediction relationships. In a second step, after identifying the direction of the incoming wave-field, we extract phase velocity data using the spectral ratio of the translational and rotational components.. This analysis is performed over time windows associated with the P-coda, S-coda and Lg phase. Results are consistent with independent estimates of shear-wave velocities in the shallow crust of the Central Apennines.

  20. Lagrangian particle drift and surface deformation in a rotating wave on a free liquid surface

    NASA Astrophysics Data System (ADS)

    Fontana, Paul W.; Francois, Nicolas; Xia, Hua; Punzmann, Horst; Shats, Michael

    2017-11-01

    A nonlinear model of a rotating wave on the free surface of a liquid is presented. The flow is assumed to be inviscid and irrotational. The wave is constructed as a superposition of two perpendicular, monochromatic standing Stokes waves and is standing-wave-like, but with ``antinodes'' or cells consisting of rotating surface gradients of alternating polarity. Lagrangian fluid particle trajectories show a rotational drift about each cell in the direction of wave rotation, corresponding to a rotating Stokes drift. Each cell therefore has a circulating flow and localized angular momentum even though the Eulerian flow is irrotational. Meanwhile, the wave sets up a static displacement of the free surface, making a trough in each cell. This static surface gradient provides a centripetal force that may account for additional rotation seen in experiments.

  1. Quantum versus classical dynamics in the optical centrifuge

    NASA Astrophysics Data System (ADS)

    Armon, Tsafrir; Friedland, Lazar

    2017-09-01

    The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.

  2. Freely-tunable broadband polarization rotator for terahertz waves

    NASA Astrophysics Data System (ADS)

    Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.

  3. Rotationally and vibrationally inelastic scattering in the rotational IOS approximation. Ultrasimple calculation of total (differential, integral, and transport) cross sections for nonspherical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, G.A.; Pack, R.T

    1978-02-15

    A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less

  4. RFSQUID-Mediated Coherent Tunable Coupling Between a Superconducting Phase Qubit and a Lumped Element Resonator

    DTIC Science & Technology

    2010-02-02

    b). We approximate the Hamiltonian of our system using the Jaynes - Cummings model in the rotating - wave approxima- tion, Ĥ = Ĥq + Ĥr + ĤI(Φx) + Ĥ...when the coupler circulating cur- rent is at the critical current. It is also worth noting that in the limit that c → 1, (Meff )max increases without ...probability is approximately 10%, we can deter- mine the circulating current in the coupler as a function of Φx. Figure 2(a) shows the measured coupler

  5. Three-dimensional structures of equatorial waves and the resulting super-rotation in the atmosphere of a tidally locked hot Jupiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Shang-Min; Gu, Pin-Gao; Dobbs-Dixon, Ian

    Three-dimensional (3D) equatorial trapped waves excited by stellar isolation and the resulting equatorial super-rotating jet in a vertical stratified atmosphere of a tidally locked hot Jupiter are investigated. Taking the hot Jupiter HD 189733b as a fiducial example, we analytically solve linear equations subject to stationary stellar heating with a uniform zonal-mean flow included. We also extract wave information in the final equilibrium state of the atmosphere from our radiative hydrodynamical simulation for HD 189733b. Our analytic wave solutions are able to qualitatively explain the 3D simulation results. Apart from previous wave studies, investigating the vertical structure of waves allowsmore » us to explore new wave features such as the wavefronts tilts related to the Rossby-wave resonance as well as dispersive equatorial waves. We also attempt to apply our linear wave analysis to explain some numerical features associated with the equatorial jet development seen in the general circulation model by Showman and Polvani. During the spin-up phase of the equatorial jet, the acceleration of the jet can be in principle boosted by the Rossby-wave resonance. However, we also find that as the jet speed increases, the Rossby-wave structure shifts eastward, while the Kelvin-wave structure remains approximately stationary, leading to the decline of the acceleration rate. Our analytic model of jet evolution implies that there exists only one stable equilibrium state of the atmosphere, possibly implying that the final state of the atmosphere is independent of initial conditions in the linear regime. Limitations of our linear model and future improvements are also discussed.« less

  6. Generation and maintenance of bisymmetric spiral magnetic fields in disk galaxies in differential rotation

    NASA Astrophysics Data System (ADS)

    Sawa, Takeyasu; Fujimoto, M.

    1993-05-01

    The approximate dynamo equation, which yields asymptotic solutions for the large scale bisymmetric spiral (BSS) magnetic fields rotating rigidly over a large area of the galactic disk, is derived. The vertical thickness and the dynamo strength of the gaseous disk which are necessary to generate and sustain the BSS magnetic fields is determined. The globally BSS magnetic fields which propagate over the disk as a wave without being twisted more tightly are reproduced. A poloidal field configuration is theoretically predicted in the halo around the disk, and is observed in the edge-on galaxy NGC4631. Mathematical methods for the galactic dynamo are shown to be equivalent. Those methods give different growth rates between the BSS and the axisymmetric spiral (ASS) magnetic fields in the disk. Magnetohydrodynamical excitation is discussed between the BSS magnetic fields and the two armed spiral density waves.

  7. Propagating wave in active region-loops, located over the solar disk observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Hou, Y. J.; Zhang, J.

    2018-03-01

    Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://https://www.aanda.org

  8. The Inhomogeneous Waves in a Rotating Piezoelectric Body

    PubMed Central

    Chen, Si

    2013-01-01

    This paper presents the analysis and numerical results of rotation, propagation angle, and attenuation angle upon the waves propagating in the piezoelectric body. Via considering the centripetal and Coriolis accelerations in the piezoelectric equations with respect to a rotating frame of reference, wave velocities and attenuations are derived and plotted graphically. It is demonstrated that rotation speed vector can affect wave velocities and make the piezoelectric body behaves as if it was damping. Besides, the effects of propagation angle and attenuation angle are presented. Critical point is found when rotation speed is equal to wave frequency, around which wave characteristics change drastically. PMID:24298219

  9. A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America

    NASA Astrophysics Data System (ADS)

    Seminack, Christopher T.; McBride, Randolph A.

    2018-03-01

    A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt). Rotating wave-dominated tidal inlets follow a six-stage evolutionary model; whereas wave-dominated tidal inlets that exhibit little-to-no rotation follow a five-stage evolutionary model.

  10. Propagation effects in the generation process of high-order vortex harmonics.

    PubMed

    Zhang, Chaojin; Wu, Erheng; Gu, Mingliang; Liu, Chengpu

    2017-09-04

    We numerically study the propagation of a Laguerre-Gaussian beam through polar molecular media via the exact solution of full-wave Maxwell-Bloch equations where the rotating-wave and slowly-varying-envelope approximations are not included. It is found that beyond the coexistence of odd-order and even-order vortex harmonics due to inversion asymmetry of the system, the light propagation effect results in the intensity enhancement of a high-order vortex harmonics. Moreover, the orbital momentum successfully transfers from the fundamental laser driver to the vortex harmonics which topological charger number is directly proportional to its order.

  11. Multi-scale phenomena of rotation-modified mode-2 internal waves

    NASA Astrophysics Data System (ADS)

    Deepwell, David; Stastna, Marek; Coutino, Aaron

    2018-03-01

    We present high-resolution, three-dimensional simulations of rotation-modified mode-2 internal solitary waves at various rotation rates and Schmidt numbers. Rotation is seen to change the internal solitary-like waves observed in the absence of rotation into a leading Kelvin wave followed by Poincaré waves. Mass and energy is found to be advected towards the right-most side wall (for a Northern Hemisphere rotation), leading to increased amplitude of the leading Kelvin wave and the formation of Kelvin-Helmholtz (K-H) instabilities on the upper and lower edges of the deformed pycnocline. These fundamentally three-dimensional instabilities are localized within a region near the side wall and intensify in vigour with increasing rotation rate. Secondary Kelvin waves form further behind the wave from either resonance with radiating Poincaré waves or the remnants of the K-H instability. The first of these mechanisms is in accord with published work on mode-1 Kelvin waves; the second is, to the best of our knowledge, novel to the present study. Both types of secondary Kelvin waves form on the same side of the channel as the leading Kelvin wave. Comparisons of equivalent cases with different Schmidt numbers indicate that while adopting a numerically advantageous low Schmidt number results in the correct general characteristics of the Kelvin waves, excessive diffusion of the pycnocline and various density features precludes accurate representation of both the trailing Poincaré wave field and the intensity and duration of the Kelvin-Helmholtz instabilities.

  12. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    PubMed

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.

  13. Center for Opto-Electronic Systems Research.

    DTIC Science & Technology

    1988-02-01

    Stroud, Jr. The Institute of Optics, University of Rochester Rochester, New York 14627 USA Abstract The Jaynes - Cummings model of a single two-level...surfaces, possibly to include certain classes of surfaces without rotational symmetry. An initial investigation was made of the surface roughness...number density of approximately 1018 - and the forward-going pump wave both enter the nonlinear -.molecules/cm3 . The intensities of the interacting

  14. I-Love-Q anisotropically: Universal relations for compact stars with scalar pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2015-06-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum, and quadrupole moment) have recently been found to be interrelated in a manner that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis and model selection for future radio, x-ray, and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to magnetic fields or phase transitions in their interior. We investigate here whether pressure anisotropy affects the approximate universal relations and, if so, whether it prevents their use in future astrophysical observations. We achieve this by numerically constructing slowly rotating and tidally deformed, anisotropic, compact stars in general relativity to third order in stellar rotation relative to the mass shedding limit. We adopt simple models for pressure anisotropy where the matter stress-energy tensor is diagonal for a spherically symmetric spacetime but the tangential pressure differs from the radial one. We find that the equation-of-state variation increases as one increases the amount of anisotropy, but within the anisotropy range studied in this paper (motivated from anisotropy due to crystallization of the core and pion condensation), anisotropy affects the universal relations only weakly. The relations become less universal by a factor of 1.5-3 relative to the isotropic case when anisotropy is maximal, but even then they remain approximately universal to 10%. We find evidence that this increase in variability is strongly correlated to an increase in the eccentricity variation of isodensity contours, which provides further support for the emergent approximate symmetry explanation of universality. Whether one can use universal relations in actual observations ultimately depends on the currently unknown amount of anisotropy inside stars, but within the range studied in this paper, anisotropy does not prevent the use of universal relations in gravitational wave astrophysics or in experimental relativity. We provide an explicit example of the latter by simulating a binary pulsar/gravitational wave test of dynamical Chern-Simons gravity with anisotropic neutron stars. The increase in variability of the universal relations due to pressure anisotropy could affect their use in future x-ray observations of hot spots on rotating compact stars. Given expected observational uncertainties, however, the relations remain sufficiently universal for use in such observations if the anisotropic modifications to the moment of inertia and the quadrupole moment are less than 10% of their isotropic values.

  15. Vibrational-rotational deexcitation of HF in collision with He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniek, R.J.

    State-to-state cross sections are reported for vibrational-rotational transitions for HF in collisions with He, at collisional energies of 0.5 and 1.0 eV. These were computed within the infinite-order sudden (IOS) approximation using adiabatic, distorted-wave techniques. Values are tabulated for the vibrational-rotational deexcitation sequences (v, j) ..-->.. (v--1, 0), with v = 1, 2, 3, 4 and j = 0 -- 40. These quenching cross sections can be used in conjunction with IOS factorization formulas to compute VRT cross sections for final rotational states other than j/sub f/ = 0. In addition to IOS results, vibrational quenching cross sections were computedmore » using the much more simple breathing-sphere technique. The breathing-sphere results compare favorably to the more accurate IOS results, particularly as to energy dependence. This suggests a simple method of utilizing known quenching cross sections to predict values for different vibrational levels and/or collisional energies.« less

  16. Effects of reagent rotational excitation on the H + CHD{sub 3} → H{sub 2} + CD{sub 3} reaction: A seven dimensional time-dependent wave packet study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhaojun; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD{sub 3} in J{sub 0} = 1, 2 rotationally excited initial states with k{sub 0} = 0 − J{sub 0} (the projection of CHD{sub 3} rotational angular momentum on its C{sub 3} axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K{sub 0}) equal to k{sub 0} are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagentmore » CHD{sub 3} with respect to the relative velocity between the reagents H and CHD{sub 3}. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K{sub 0} specified cross sections for the K{sub 0} = k{sub 0} initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K{sub 0} averaging for the J{sub 0} = 1, 2 initial states with all different k{sub 0} are essentially identical to the corresponding CS and CC results for the J{sub 0} = 0 initial state, meaning that the initial rotational excitation of CHD{sub 3} up to J{sub 0} = 2, regardless of its initial k{sub 0}, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J{sub 0} = 1, 2 initial states are the same as those for the J{sub 0} = 0 initial state.« less

  17. The effects of the Asselin time filter on numerical solutions to the linearized shallow-water wave equations

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.; Johnson, D. R.; Uccellini, L. W.

    1983-01-01

    In the present investigation, a one-dimensional linearized analysis is used to determine the effect of Asselin's (1972) time filter on both the computational stability and phase error of numerical solutions for the shallow water wave equations, in cases with diffusion but without rotation. An attempt has been made to establish the approximate optimal values of the filtering parameter nu for each of the 'lagged', Dufort-Frankel, and Crank-Nicholson diffusion schemes, suppressing the computational wave mode without materially altering the physical wave mode. It is determined that in the presence of diffusion, the optimum filter length depends on whether waves are undergoing significant propagation. When moderate propagation is present, with or without diffusion, the Asselin filter has little effect on the spatial phase lag of the physical mode for the leapfrog advection scheme of the three diffusion schemes considered.

  18. Gigahertz dynamics of a strongly driven single quantum spin.

    PubMed

    Fuchs, G D; Dobrovitski, V V; Toyli, D M; Heremans, F J; Awschalom, D D

    2009-12-11

    Two-level systems are at the core of numerous real-world technologies such as magnetic resonance imaging and atomic clocks. Coherent control of the state is achieved with an oscillating field that drives dynamics at a rate determined by its amplitude. As the strength of the field is increased, a different regime emerges where linear scaling of the manipulation rate breaks down and complex dynamics are expected. By calibrating the spin rotation with an adiabatic passage, we have measured the room-temperature "strong-driving" dynamics of a single nitrogen vacancy center in diamond. With an adiabatic passage to calibrate the spin rotation, we observed dynamics on sub-nanosecond time scales. Contrary to conventional thinking, this breakdown of the rotating wave approximation provides opportunities for time-optimal quantum control of a single spin.

  19. Coherent control of ultrafast optical four-wave mixing with two-color {omega}-3{omega} laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrat, Carles

    2005-08-15

    A theoretical investigation on the coherent control of optical transient four-wave mixing interactions in two-level systems with two intense few-cycle propagating laser pulses of central angular frequencies {omega} and 3{omega} is reported. By numerically solving the full Maxwell-Bloch equations beyond the slowly varying envelope and rotating-wave approximations in the time domain, the nonlinear coupling to the optical field at frequency 5{omega} is found to depend critically on the initial relative phase {phi} of the propagating pulses: the coupling is enhanced when the pulses interfere constructively in the center ({phi}=0), while it is nearly suppressed when they are out of phasemore » ({phi}={pi})« less

  20. Dark state with counter-rotating dissipative channels.

    PubMed

    Zhou, Zheng-Yang; Chen, Mi; Wu, Lian-Ao; Yu, Ting; You, J Q

    2017-07-24

    Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the Λ-type three-level system, this dark state is generally regarded as being dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a Λ-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.

  1. Theory of inertial waves in rotating fluids

    NASA Astrophysics Data System (ADS)

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

    2017-04-01

    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V., & Dauxois, T., Internal wave attractors examined using laboratory experiments and 3D numerical simulations. Journal of Fluid Mechanics, 793, 109-131, 2016. [4] Gelash A. A., L'vov V. S., Zakharov V. E. Dynamics of inertial waves in rotating fluids, arXiv preprint arXiv:1604.07136. - 2016. [5] Galtier S. Weak inertial-wave turbulence theory, Physical Review E 68.1: 015301, 2003.

  2. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasskazov, Alexander; Merritt, David

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less

  3. Tidal dissipation in rotating fluid bodies: the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Lin, Yufeng; Ogilvie, Gordon I.

    2018-02-01

    We investigate effects of the presence of a magnetic field on tidal dissipation in rotating fluid bodies. We consider a simplified model consisting of a rigid core and a fluid envelope, permeated by a background magnetic field (either a dipolar field or a uniform axial field). The wave-like tidal responses in the fluid layer are in the form of magnetic Coriolis waves, which are restored by both the Coriolis force and the Lorentz force. Energy dissipation occurs through viscous damping and Ohmic damping of these waves. Our numerical results show that the tidal dissipation can be dominated by Ohmic damping even with a weak magnetic field. The presence of a magnetic field smooths out the complicated frequency dependence of the dissipation rate, and broadens the frequency spectrum of the dissipation rate, depending on the strength of the background magnetic field. However, the frequency-averaged dissipation is independent of the strength and structure of the magnetic field, and of the dissipative parameters in the approximation that the wave-like response is driven only by the Coriolis force acting on the non-wavelike tidal flow. Indeed, the frequency-averaged dissipation quantity is in good agreement with previous analytical results in the absence of magnetic fields. Our results suggest that the frequency-averaged tidal dissipation of the wave-like perturbations is insensitive to detailed damping mechanisms and dissipative properties.

  4. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.

    PubMed

    Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V

    2017-10-03

    The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.

  5. Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.; Movshovich, Roman

    Unconventional superconductor CeCoIn5 orders magnetically in a spin-density-wave (SDW) in the low-temperature and high-field corner of the superconducting phase. Recent neutron scattering experiment revealed that the single-domain SDW's ordering vector Q depends strongly on the direction of the magnetic field, switching sharply as the field is rotated through the anti-nodal direction. This switching may be manifestation of a pair-density-wave (PDW) p-wave order parameter, which develops in addition to the well-established d-wave order parameter due to the SDW formation. We have investigated the hypersensitivity of the magnetic domain with a thermal conductivity measurement. The heat current (J) was applied along the [110] direction such that the Q vector is either perpendicular or parallel to J, depending on the magnetic field direction. A discontinuous change of the thermal conductivity was observed when the magnetic field is rotated around the [100] direction within 0 . 2° . The thermal conductivity with the Q parallel to the heat current (J ∥Q) is approximately 15% lager than that with the Q perpendicular to the heat current (J ⊥Q). This result is consistent with additional gapping of the nodal quasiparticle by the p-wave PDW coupled to SDW. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  6. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less

  7. Simulation of 2D Waves in Circular Membrane Using Excel Spreadsheet with Visual Basic for Teaching Activity

    NASA Astrophysics Data System (ADS)

    Eso, R.; Safiuddin, L. O.; Agusu, L.; Arfa, L. M. R. F.

    2018-04-01

    We propose a teaching instrument demonstrating the circular membrane waves using the excel interactive spreadsheets with the Visual Basic for Application (VBA) programming. It is based on the analytic solution of circular membrane waves involving Bessel function. The vibration modes and frequencies are determined by using Bessel approximation and initial conditions. The 3D perspective based on the spreadsheets functions and facilities has been explored to show the 3D moving objects in transitional or rotational processes. This instrument is very useful both in teaching activity and learning process of wave physics. Visualizing of the vibration of waves in the circular membrane which is showing a very clear manner of m and n vibration modes of the wave in a certain frequency has been compared and matched to the experimental result using resonance method. The peak of deflection varies in time if the initial condition was working and have the same pattern with matlab simulation in zero initial velocity

  8. Transverse low frequency wave in a two fluid solar wind. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Solodyna, G. V.

    1973-01-01

    Investigation is made of the properties of low frequency transverse waves in a two-fluid solar wind having a radial magnetic field and radial streaming velocity. In order to examine what effects this streaming medium has on the waves, linearly polarized waves are decomposed into left and right circularly polarized waves. Computation is made of analytic expressions valid to first order for the radial amplitude and phase dependence of these constituent waves. It is shown that after travelling a given distance r, these waves have different amplitudes and phases. The former result causes their superposition to become elliptical rather than linear. The latter causes the axis of the ellipse of polarization to rotate through a well-defined angle. Analytic expressions are obtained for the eccentricity of the ellipse and for the angle of rotation. In analogy with regular Faraday rotation, in which the plane of polarization of a linear polarized wave rotates, the effect is denoted as generalized Faraday rotation.

  9. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation.

    PubMed Central

    Qu, Z; Kil, J; Xie, F; Garfinkel, A; Weiss, J N

    2000-01-01

    Scroll wave (vortex) breakup is hypothesized to underlie ventricular fibrillation, the leading cause of sudden cardiac death. We simulated scroll wave behaviors in a three-dimensional cardiac tissue model, using phase I of the Luo-Rudy (LR1) action potential model. The effects of action potential duration (APD) restitution, tissue thickness, filament twist, and fiber rotation were studied. We found that APD restitution is the major determinant of scroll wave behavior and that instabilities arising from APD restitution are the main determinants of scroll wave breakup in this cardiac model. We did not see a "thickness-induced instability" in the LR1 model, but a minimum thickness is required for scroll breakup in the presence of fiber rotation. The major effect of fiber rotation is to maintain twist in a scroll wave, promoting filament bending and thus scroll breakup. In addition, fiber rotation induces curvature in the scroll wave, which weakens conduction and further facilitates wave break. PMID:10827961

  10. Wave-particle interactions in rotating mirrorsa)

    NASA Astrophysics Data System (ADS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-05-01

    Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  11. Freely Tunable Broadband Polarization Rotator for Terahertz Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping

    2014-12-28

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.

  12. Modeled changes in extreme wave climates of the tropical Pacific over the 21st century: Implications for U.S. and U.S.-Affiliated atoll islands

    USGS Publications Warehouse

    Shope, J.B.; Storlazzi, Curt; Erikson, Li H.; Hegermiller, C.A.

    2015-01-01

    Wave heights, periods, and directions were forecast for 2081–2100 using output from four coupled atmosphere–ocean global climate models for representative concentration pathway scenarios RCP4.5 and RCP8.5. Global climate model wind fields were used to drive the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. December–February 95th percentile extreme significant wave heights under both climate scenarios decreased by 2100 compared to 1976–2010 historical values. Trends under both scenarios were similar, with the higher-emission RCP8.5 scenario displaying a greater decrease in extreme significant wave heights than where emissions are reduced in the RCP4.5 scenario. Central equatorial Pacific Islands displayed the greatest departure from historical values; significant wave heights decreased there by as much as 0.32 m during December–February and associated wave directions rotated approximately 30° clockwise during June–August compared to hindcast data.

  13. Wave theory in rotating systems: Schrödinger equations bridge the gaps between the equatorial β-plane and the spherical earth

    NASA Astrophysics Data System (ADS)

    Paldor, N.

    2017-12-01

    The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular everywhere) and that Kelvin waves do not exist as a separate mode (but the eastward propagating n=0 Inertia-Gravity is nearly non-dispersive). References Longuet-Higgins, M. S. Phil. Trans. Roy. Soc. London; 262, 511-607; 1968 Matsuno, T.; J. Met. Soc. Japan. 44(1), 25-43; 1966

  14. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.

  15. Advances in wave turbulence: rapidly rotating flows

    NASA Astrophysics Data System (ADS)

    Cambon, C.; Rubinstein, R.; Godeferd, F. S.

    2004-07-01

    At asymptotically high rotation rates, rotating turbulence can be described as a field of interacting dispersive waves by the general theory of weak wave turbulence. However, rotating turbulence has some complicating features, including the anisotropy of the wave dispersion relation and the vanishing of the wave frequency on a non-vanishing set of 'slow' modes. These features prevent straightforward application of existing theories and lead to some interesting properties, including the transfer of energy towards the slow modes. This transfer competes with, and might even replace, the transfer to small scales envisioned in standard turbulence theories. In this paper, anisotropic spectra for rotating turbulence are proposed based on weak turbulence theory; some evidence for their existence is given based on numerical calculations of the wave turbulence equations. Previous arguments based on the properties of resonant wave interactions suggest that the slow modes decouple from the others. Here, an extended wave turbulence theory with non-resonant interactions is proposed in which all modes are coupled; these interactions are possible only because of the anisotropy of the dispersion relation. Finally, the vanishing of the wave frequency on the slow modes implies that these modes cannot be described by weak turbulence theory. A more comprehensive approach to rotating turbulence is proposed to overcome this limitation.

  16. On the Vortex Waves in Nonadiabatic Flows

    NASA Astrophysics Data System (ADS)

    Ibáñez S., Miguel H.; Núñez, Luis A.

    2018-03-01

    Linear disturbances superposed on steady flows in nonadiabatic plasmas are analyzed. In addition to the potential modes resulting (two sound waves and a thermal mode) that are Doppler shifted, a rotational mode appears identified as an entropy-vortex wave (evw) which is carried along by the gas flow. In adiabatic flows, as well as in nonadiabatic flows, the evw always shows a null pressure disturbance. But in the second case, the wave number of the evw disturbance is fixed for the particular thermal conditions of the gas. The above holds for optically thin gases, as well as for radiating flows, if the dynamical effects of the radiation field are neglected in a first approximation. The above results allow us to calculate the dimensions of the vortex elements that are expected to be formed in nonadiabatic gas flows, particularly in hot ionized plasmas of interest in astrophysics.

  17. Frequency band of the f-mode Chandrasekhar-Friedman-Schutz instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zink, Burkhard; Korobkin, Oleg; Schnetter, Erik

    2010-04-15

    Rapidly rotating neutron stars can be unstable to the gravitational-wave-driven Chandrasekhar-Friedman-Schutz (CFS) mechanism if they have a neutral point in the spectrum of nonaxisymmetric f-modes. We investigate the frequencies of these modes in two sequences of uniformly rotating polytropes using nonlinear simulations in full general relativity, determine the approximate locations of the neutral points, and derive limits on the observable frequency band available to the instability in these sequences. We find that general relativity enhances the detectability of a CFS-unstable neutron star substantially, both by widening the instability window and enlarging the band into the optimal range for interferometric detectorsmore » like LIGO, VIRGO, and GEO-600.« less

  18. A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haut, T. S.; Babb, T.; Martinsson, P. G.

    2015-06-16

    Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less

  19. Experimental Preparation and Measurement of Quantum States of Motion of a Trapped Atom

    DTIC Science & Technology

    1997-01-01

    trapped atom are quantum harmonic oscillators, their couplings to internal atomic levels (described by the Jaynes - Cummings model (JCM) [ l , 21) are... wave approximation in a frame rotating with WO, where hwo is the energy difference of the two internal levels, the interaction of the classical laser... Jaynes - Cummings model , the system is suited to realizing many proposals originally introduced in the realm of quantum optics and cavity quantum

  20. Rotational motions for teleseismic surface waves

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Jen; Huang, Han-Pang; Pham, Nguyen Dinh; Liu, Chun-Chi; Chi, Wu-Cheng; Lee, William H. K.

    2011-08-01

    We report the findings for the first teleseismic six degree-of-freedom (6-DOF) measurements including three components of rotational motions recorded by a sensitive rotation-rate sensor (model R-1, made by eentec) and three components of translational motions recorded by a traditional seismometer (STS-2) at the NACB station in Taiwan. The consistent observations in waveforms of rotational motions and translational motions in sections of Rayleigh and Love waves are presented in reference to the analytical solution for these waves in a half space of Poisson solid. We show that additional information (e.g., Rayleigh wave phase velocity, shear wave velocity of the surface layer) might be exploited from six degree-of-freedom recordings of teleseismic events at only one station. We also find significant errors in the translational records of these teleseismic surface waves due to the sensitivity of inertial translation sensors (seismometers) to rotational motions. The result suggests that the effects of such errors need to be counted in surface wave inversions commonly used to derive earthquake source parameters and Earth structure.

  1. Origin choice and petal loss in the flower garden of spiral wave tip trajectories

    PubMed Central

    Gray, Richard A.; Wikswo, John P.; Otani, Niels F.

    2009-01-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh–Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system’s state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave. PMID:19791998

  2. Origin choice and petal loss in the flower garden of spiral wave tip trajectories.

    PubMed

    Gray, Richard A; Wikswo, John P; Otani, Niels F

    2009-09-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.

  3. A Time-Dependent Quantum Dynamics Study of the H2 + CH3 yields H + CH4 Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a time-dependent wave-packet propagation calculation for the H2 + CH3 yields H + CH4 reaction in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probability for different initial rotational-vibrational states are presented in this study. The cumulative reaction probability (CRP) is obtained by summing over initial-state-selected reaction probability. The energy-shift approximation to account for the contribution of degrees of freedom missing in the 6D calculation is employed to obtain an approximate full-dimensional CRP. Thermal rate constant is compared with different experiment results.

  4. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  5. Rotation-induced nonlinear wavepackets in internal waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less

  6. Interpretation of ES, CS, and IOS approximations within a translational-internal coupling scheme. II. Application to atom--diatom kinetic cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coombe, D.A.; Snider, R.F.

    1980-02-15

    ES, CS, and IOS approximations to atom--diatom kinetic cross sections are derived. In doing so, reduced S-matrices in a translational-internal coupling scheme are stressed. This entails the insertion of recently obtained approximate reduced S-matrices in the translational-internal coupling scheme into previously derived general expressions for the kinetic cross sections. Of special interest is the structure (rotational j quantum number dependence) of the kinetic cross sections associated with the Senftleben Beenakker effects and of pure internal state relaxation phenomena. The viscomagnetic effect is used as an illustrative example. It is found in particular that there is a great similarity of structuremore » between the energy sudden (and IOS) approximation and the previously derived distorted wave Born results.« less

  7. Automatic software correction of residual aberrations in reconstructed HRTEM exit waves of crystalline samples

    DOE PAGES

    Ophus, Colin; Rasool, Haider I.; Linck, Martin; ...

    2016-11-30

    We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less

  8. Automatic software correction of residual aberrations in reconstructed HRTEM exit waves of crystalline samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ophus, Colin; Rasool, Haider I.; Linck, Martin

    We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less

  9. Generation and Propagation of Nonlinear Internal Waves in Sheared Currents Over the Washington Continental Shelf

    NASA Astrophysics Data System (ADS)

    Hamann, Madeleine M.; Alford, Matthew H.; Mickett, John B.

    2018-04-01

    The generation, propagation, and dissipation of nonlinear internal waves (NLIW) in sheared background currents is examined using 7 days of shipboard microstructure surveys and two moorings on the continental shelf offshore of Washington state. Surveys near the hypothesized generation region show semi-diurnal (D2) energy flux is onshore and that the ratio of energy flux to group speed times energy (F/cgE) increases sharply at the shelf break, suggesting that the incident D2 internal tide is partially reflected and partially transmitted. NLIW appear at an inshore mooring at the leading edge of the onshore phase of the baroclinic tide, consistent with nonlinear transformation of the shoaling internal tide as their generation mechanism. Of the D2 energy flux observed at the eastern extent of the generation region (133 ± 18 Wm-1), approximately 30% goes into the NLIW observed inshore (36 ± 11 Wm-1). Inshore of the moorings, 7 waves are tracked into shallow (30-40 m) water, where a vertically sheared, southward current becomes strong. As train-like waves propagate onshore, wave amplitudes of 25-30 m and energies of 5 MJ decrease to 12 m and 10 kJ, respectively. The observed direction of propagation rotates from 30° N of E to ˜30° S of E in the strongly sheared region. Linear ray tracing using the Taylor-Goldstein equation to incorporate parallel shear effects accounts for only a small portion of the observed rotation, suggesting that three-dimensionality of the wave crests and the background currents is important here.

  10. The effect of rotation on shoaling of large amplitude internal solitary waves in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Guo, C.; Vlasenko, V.

    2012-12-01

    The propagation of large amplitude internal solitary waves (ISWs) in the northern South China Sea (SCS) is simulated using the fully nonlinear, nonhydrostatic MIT general circulation model (MITgcm). Special attention is paid to the effects of rotation and the shoaling three-dimensional topography. It is found that for the conditions of the northern SCS, a propagating ISW continuously loses its energy under the action of rotation by shedding inertia-gravity waves backwards, which further become steepened and form a new ISW. Such a decay-reemergence process repeats itself in a similar way as discussed by Helfrich (2007) with the only difference that, instead of the formation of a final localized wave packet, the frontal waves constantly attenuate by repeatedly shedding inertia-gravity waves backwards. Under the action of rotation and variable topography, the shoaling ISWs attenuate severely and disintegrate after passing through the continental slope. Wave polarity starts to reverse at the depth of about 130 m, which is consistent with the prediction of weakly nonlinear theories. It is also found that the rotational effects are more pronounced in combination with the topographic effects in the three-dimensional realistic context. Discrepancies between the wave profiles obtained with and without rotation are small in the deep part of the ocean but eventually turn out to be significant when going upon the shelf, addressing the crucial roles played by the rotation in the northern SCS.

  11. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peralta, J.; López-Valverde, M. A.; Imamura, T.

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the backgroundmore » wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.« less

  12. Formulation of the rotational transformation of wave fields and their application to digital holography.

    PubMed

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  13. The two-mode multi-photon intensity-dependent Rabi model

    NASA Astrophysics Data System (ADS)

    Lo, C. F.

    2014-06-01

    We have investigated the energy eigen-spectrum of the two-mode k-photon intensity-dependent Rabi (IDR) model for k ≥ 2. Our analysis shows that the model does not have eigenstates in the Hilbert space spanned by the eigenstates of the two-mode k-photon intensity-dependent Jaynes-Cummings (IDJC) model, which is obtained by applying the rotating-wave approximation (RWA) to the two-mode k-photon IDR model. That is, the two-mode k-photon IDR model is ill-defined for k ≥ 2, and it is qualitatively different from the RWA counterpart which is valid for all values of k, implying that the counter-rotating term does drastically alter the nature of the RWA counterpart. Hence, the previous study of the effect of the counter-rotating term in the two-mode k-photon IDJC model via the time-dependent perturbation expansion is completely invalid.

  14. Resonant tidal excitation of oscillation modes in merging binary neutron stars: Inertial-gravity modes

    NASA Astrophysics Data System (ADS)

    Xu, Wenrui; Lai, Dong

    2017-10-01

    In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (≲500 Hz ) oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide can induce phase shift in the gravitational waveforms, and potentially provide a new window of studying NS interior using gravitational waves. Previous works have considered tidal excitations of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We develop a nonperturbative numerical spectral code to compute the frequencies and tidal coupling coefficients of these modes. We then calculate the phase shift in the gravitational waveform due to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and stratification property, we adopt polytropic NS models with a parametrized stratification. We derive relevant scaling relations and survey how the phase shift depends on various properties of the NS. We find that for canonical NSs (with mass M =1.4 M⊙ and radius R =10 km ) and modest rotation rates (≲300 Hz ), the gravitational wave phase shift due to a resonance is generally less than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or more for low-mass NSs with larger radii (R ≳15 km ). Significant phase shift can also be produced when the combination of stratification and rotation gives rise to a very low frequency (≲20 Hz in the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also find that the m =1 r -mode, previously identified to have a small but finite inertial-frame frequency based on the Cowling approximation, in fact has essentially zero frequency, and therefore cannot be excited during the inspiral phase of NS binaries.

  15. Coupled modes locally interacting with qubits: Critical assessment of the rotating-wave approximation

    NASA Astrophysics Data System (ADS)

    Cárdenas, P. C.; Teixeira, W. S.; Semião, F. L.

    2017-04-01

    The interaction of qubits with quantized modes of electromagnetic fields has been largely addressed in the quantum optics literature under the rotating wave approximation (RWA), where rapid oscillating terms in the qubit-mode interaction picture Hamiltonian can be neglected. At the same time, it is generally accepted that, provided the interaction is sufficiently strong or for long times, the RWA tends to describe physical phenomena incorrectly. In this work, we extend the investigation of the validity of the RWA to a more involved setup where two qubit-mode subsystems are brought to interaction through their harmonic coordinates. Our treatment is all analytic thanks to a sequence of carefully chosen unitary transformations, which allows us to diagonalize the Hamiltonian within and without the RWA. By also considering qubit dephasing, we find that the purity of the two-qubit state presents non-Markovian features which become more pronounced as the coupling between the modes gets stronger and the RWA loses its validity. In the same regime, there occurs fast generation of entanglement between the qubits, which is also not correctly described under the RWA. The setup and results presented here clearly show the limitations of the RWA in a scenario amenable to exact description and free from numerical uncertainties. Consequently, it may be of interest for the community working with cavity or circuit quantum electrodynamic systems in the strong coupling regime.

  16. Effects of injection nozzle exit width on rotating detonation engine

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Zhou, Jin; Liu, Shijie; Lin, Zhiyong; Cai, Jianhua

    2017-11-01

    A series of numerical simulations of RDE modeling real injection nozzles with different exit widths are performed in this paper. The effects of nozzle exit width on chamber inlet state, plenum flowfield and detonation propagation are analyzed. The results are compared with that using an ideal injection model. Although the ideal injection model is a good approximation method to model RDE inlet, the two-dimensional effects of real nozzles are ignored in the ideal injection model so that some complicated phenomena such as the reflected waves caused by the nozzle walls and the reversed flow into the nozzles can not be modeled accurately. Additionally, the ideal injection model overpredicts the block ratio. In all the cases that stabilize at one-wave mode, the block ratio increases as the nozzle exit width gets smaller. The dual-wave mode case also has a relatively high block ratio. A pressure oscillation in the plenum with the same main frequency with the rotating detonation wave is observed. A parameter σ is applied to describe the non-uniformity in the plenum. σ increases as the nozzle exit width gets larger. Under some condition, the heat release on the interface of fresh premixed gas layer and detonation products can be strong enough to induce a new detonation wave. A spontaneous mode-transition process is observed for the smallest exit width case. Due to the detonation products existing in the premixed gas layer before the detonation wave, the detonation wave will propagate through reactants and products alternately, and therefore its strength will vary with time, especially near the chamber inlet. This tendency gets weaker as the injection nozzle exit width increases.

  17. Experimental observation of steady inertial wave turbulence in deep rotating flows

    NASA Astrophysics Data System (ADS)

    Yarom, Ehud; Sharon, Eran

    2015-11-01

    We present experimental evidence of inertial wave turbulence in deep rotating fluid. Experiments were performed in a rotating cylindrical water tank, where previous work showed statistics similar to 2D turbulence (specifically an inverse energy cascade). Using Fourier analysis of high resolution data in both space (3D) and time we show that most of the energy of a steady state flow is contained around the inertial wave dispersion relation. The nonlinear interaction between the waves is manifested by the widening of the time spectrum around the dispersion relation. We show that as the Rossby number increases so does the spectrum width, with a strong dependence on wave number. Our results suggest that in some parameters range, rotating turbulence velocity field can be represented as a field of interacting waves (wave turbulence). Such formalism may provide a better understanding of the flow statistics. This work was supported by the Israel Science Foundation, Grant No. 81/12.

  18. A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures

    NASA Astrophysics Data System (ADS)

    Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.

    2018-05-01

    The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.

  19. Coriolis-coupled wave packet dynamics of H + HLi reaction.

    PubMed

    Padmanaban, R; Mahapatra, S

    2006-05-11

    We investigated the effect of Coriolis coupling (CC) on the initial state-selected dynamics of H+HLi reaction by a time-dependent wave packet (WP) approach. Exact quantum scattering calculations were obtained by a WP propagation method based on the Chebyshev polynomial scheme and ab initio potential energy surface of the reacting system. Partial wave contributions up to the total angular momentum J=30 were found to be necessary for the scattering of HLi in its vibrational and rotational ground state up to a collision energy approximately 0.75 eV. For each J value, the projection quantum number K was varied from 0 to min (J, K(max)), with K(max)=8 until J=20 and K(max)=4 for further higher J values. This is because further higher values of K do not have much effect on the dynamics and also because one wishes to maintain the large computational overhead for each calculation within the affordable limit. The initial state-selected integral reaction cross sections and thermal rate constants were calculated by summing up the contributions from all partial waves. These were compared with our previous results on the title system, obtained within the centrifugal sudden and J-shifting approximations, to demonstrate the impact of CC on the dynamics of this system.

  20. Procedure for noise prediction and optimization of advanced technology propellers

    NASA Technical Reports Server (NTRS)

    Jou, W. H.; Bernstein, S.

    1979-01-01

    The sound field due to a propeller operating at supersonic tip speed in a uniform flow was investigated. Using the fact that the wave front in a uniform stream is a convected sphere, the fundamental solution to the convected wave equation was easily obtained. The Fourier coefficients of the pressure signature were obtained by a far field approximation, and are expressed as an integral over the blade platform. It is shown that cones of silence exist fore and aft the propeller plane. The semiapex angles are shown. These angles are independent of the individual Mach components such as the flight Mach number and the rotation Mach number. The result is confirmed by the computation of the ray path of the emitted Mach waves. The Doppler amplification factor strengthens the signal behind the propeller while it weakens that upstream.

  1. Effect of the counterrotating terms on polarizability in atom-field interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dawei; Wang Ligang; Li Aijun

    2009-12-15

    The effect of the counterrotating terms on the linear polarizability is investigated, which is responsible for the validity of the optical theorem in all frequency regions. A unitary transformation method [H. Zheng, S. -Y. Zhu, and M.S. Zubairy, Rev. Lett. 101, 200404 (2008)] is adopted to overcome the difficulty brought in by the counterrotating terms, which yields a rotating-wave-approximation-like Hamiltonian with modified coupling constant due to the counterrotating terms. A simple expression for the polarizability is obtained, which is a sum of resonant (-) and antiresonant (+) parts, and from which the role of the counterrotating terms and quantum interferencemore » between the counterrotating terms and rotating terms at far off-resonance are discussed.« less

  2. Alpha channeling in a rotating plasma.

    PubMed

    Fetterman, Abraham J; Fisch, Nathaniel J

    2008-11-14

    The wave-particle alpha-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with alpha particles in a mirror machine with ExB rotation to diffuse the alpha particles along constrained paths in phase space. Of major interest is that the alpha-particle energy, in addition to amplifying the rf waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.

  3. Wave induced supersonic rotation in mirrors

    NASA Astrophysics Data System (ADS)

    Fetterman, Abraham

    2010-11-01

    Wave-particle interactions in ExB supersonically rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy [1]. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field [2]. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particle's total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation [3]. [4pt] [1] A. J. Fetterman and N. J. Fisch, Phys Rev Lett 101, 205003 (2008). [0pt] [2] A. J. Fetterman and N. J. Fisch, Phys. Plasmas 17, 042112 (2010). [0pt] [3] A. J. Fetterman and N. J. Fisch, Plasma Sources Sci. Tech. 18, 045003 (2009).

  4. Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture.

    PubMed

    Pravdin, Sergey F; Dierckx, Hans; Katsnelson, Leonid B; Solovyova, Olga; Markhasin, Vladimir S; Panfilov, Alexander V

    2014-01-01

    We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.

  5. Theoretical prediction of a rotating magnon wave packet in ferromagnets.

    PubMed

    Matsumoto, Ryo; Murakami, Shuichi

    2011-05-13

    We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force. These rotational motions are caused by the Berry phase in momentum space from the magnon band structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength magnetostatic spin waves having macroscopic coherence length.

  6. Extracorporeal shock wave treatment for chronic rotator cuff tendonitis (shoulder pain).

    PubMed

    Ho, C

    2007-01-01

    (1) Electrohydraulic, electromagnetic, or piezoelectric devices are used to translate energy into acoustic waves during extracorporeal shock wave treatment (ESWT) for chronic rotator cuff tendonitis (shoulder pain). The acoustic waves may help to accelerate the healing process of chronic rotator cuff tendonitis via an unknown mechanism. (2) ESWT, which is performed as an outpatient procedure, is intended to alleviate the pain due to chronic rotator cuff tendonitis. (3) Limited evidence from a German study indicates that the cost of ESWT for rotator cuff tendonitis is one-fifth to one-seventh the cost of surgical treatment, with longer recovery time and time off work in the surgical treatment group accounting for about two-thirds of the overall cost. (4) The evidence reviewed for this bulletin supports the use of high-energy ESWT for chronic calcific rotator cuff tendonitis, but not for non-calcific rotator cuff tendonitis. High-quality RCTs with larger sample sizes are needed to provide stronger evidence.

  7. Axisymmetric electrostatic magnetohydrodynamic oscillations in tokamaks with general cross-sections and toroidal flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, M. S.; Guo, Wenfeng

    2016-06-15

    The frequency spectrum and mode structure of axisymmetric electrostatic oscillations [the zonal flow (ZF), sound waves (SW), geodesic acoustic modes (GAM), and electrostatic mean flows (EMF)] in tokamaks with general cross-sections and toroidal flows are studied analytically using the electrostatic approximation for magnetohydrodynamic modes. These modes constitute the “electrostatic continua.” Starting from the energy principle for a tokamak plasma with toroidal rotation, we showed that these modes are completely stable. The ZF, the SW, and the EMF could all be viewed as special cases of the general GAM. The Euler equations for the general GAM are obtained and are solvedmore » analytically for both the low and high range of Mach numbers. The solution consists of the usual countable infinite set of eigen-modes with discrete eigen-frequencies, and two modes with lower frequencies. The countable infinite set is identified with the regular GAM. The lower frequency mode, which is also divergence free as the plasma rotation tends to zero, is identified as the ZF. The other lower (zero) frequency mode is a pure geodesic E×B flow and not divergence free is identified as the EMF. The frequency of the EMF is shown to be exactly 0 independent of plasma cross-section or its flow Mach number. We also show that in general, sound waves with no geodesic components are (almost) completely lost in tokamaks with a general cross-sectional shape. The exception is the special case of strict up-down symmetry. In this case, half of the GAMs would have no geodesic displacements. They are identified as the SW. Present day tokamaks, although not strictly up-down symmetric, usually are only slightly up-down asymmetric. They are expected to share the property with the up-down symmetric tokamak in that half of the GAMs would be more sound wave-like, i.e., have much weaker coupling to the geodesic components than the other half of non-sound-wave-like modes with stronger coupling to the geodesic displacements. Based on the general notion that the geodesic component of the GAM is more effective in tearing up the eddies in the electrostatic turbulence, it is important to preferentially excite the GAMs that are non-sound-wave like to maximize the efficiency on turbulence suppression through external means. Finally, approximate formulae for the frequencies of the EMF, ZF, SW, and the GAM for a large aspect ratio circular tokamak rotating at low Mach numbers are also provided.« less

  8. Characterisation of columnar inertial modes in rapidly rotating spheres and spheroids

    NASA Astrophysics Data System (ADS)

    Maffei, S.; Jackson, A.; Livermore, P. W.

    2017-12-01

    We consider fluid-filled spheres and spheroidal containers of eccentricity ɛ in rapid rotation, as a proxy for the interior dynamics of stars and planets. The fluid motion is assumed to be quasi-geostrophic (QG): horizontal motions are invariant parallel to the rotation axis z, a characteristic which is handled by use of a stream function formulation which additionally enforces mass conservation and non-penetration at the boundary. By linearising about a quiescent background state, we investigate a variety of methods to study the QG inviscid inertial wave modes which are compared with fully 3-D calculations. We consider the recently-proposed weak formulation of the inviscid system valid in spheroids of arbitrary eccentricity, to which we present novel closed-form polynomial solutions. Our modal solutions accurately represent, in both spatial structure and frequency, the most z-invariant of the inertial wave modes in a spheroid, and constitute a simple basis set for the analysis of rotationally- dominated fluids. We further show that these new solutions are more accurate than those of the classical axial-vorticity equation, which is independent of ɛ and thus fails to properly encode the container geometry. We also consider the effects of viscosity for the cases of both no-slip and stress-free boundary conditions for a spherical container. Calculations performed under the columnar approximation are compared with 3-D solutions and excellent agreement has been found despite fundamental differences in the two formulations.

  9. CALCULATING ROTATING HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC WAVES TO UNDERSTAND MAGNETIC EFFECTS ON DYNAMICAL TIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xing, E-mail: xing.wei@sjtu.edu.cn; Princeton University Observatory, Princeton, NJ 08544

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flowmore » has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.« less

  10. Controlling the plasmonic surface waves of metallic nanowires by transformation optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yichao; Yuan, Jun; Yin, Ge

    2015-07-06

    In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.

  11. Electrical Wave Propagation in a Minimally Realistic Fiber Architecture Model of the Left Ventricle

    NASA Astrophysics Data System (ADS)

    Song, Xianfeng; Setayeshgar, Sima

    2006-03-01

    Experimental results indicate a nested, layered geometry for the fiber surfaces of the left ventricle, where fiber directions are approximately aligned in each surface and gradually rotate through the thickness of the ventricle. Numerical and analytical results have highlighted the importance of this rotating anisotropy and its possible destabilizing role on the dynamics of scroll waves in excitable media with application to the heart. Based on the work of Peskin[1] and Peskin and McQueen[2], we present a minimally realistic model of the left ventricle that adequately captures the geometry and anisotropic properties of the heart as a conducting medium while being easily parallelizable, and computationally more tractable than fully realistic anatomical models. Complementary to fully realistic and anatomically-based computational approaches, studies using such a minimal model with the addition of successively realistic features, such as excitation-contraction coupling, should provide unique insight into the basic mechanisms of formation and obliteration of electrical wave instabilities. We describe our construction, implementation and validation of this model. [1] C. S. Peskin, Communications on Pure and Applied Mathematics 42, 79 (1989). [2] C. S. Peskin and D. M. McQueen, in Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology, 309(1996)

  12. Wave packet and statistical quantum calculations for the He + NeH⁺ → HeH⁺ + Ne reaction on the ground electronic state.

    PubMed

    Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N

    2014-09-21

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  13. Analytic solution and pulse area theorem for three-level atoms

    NASA Astrophysics Data System (ADS)

    Shchedrin, Gavriil; O'Brien, Chris; Rostovtsev, Yuri; Scully, Marlan O.

    2015-12-01

    We report an analytic solution for a three-level atom driven by arbitrary time-dependent electromagnetic pulses. In particular, we consider far-detuned driving pulses and show an excellent match between our analytic result and the numerical simulations. We use our solution to derive a pulse area theorem for three-level V and Λ systems without making the rotating wave approximation. Formulated as an energy conservation law, this pulse area theorem can be used to understand pulse propagation through three-level media.

  14. Separation of variables in anisotropic models: anisotropic Rabi and elliptic Gaudin model in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2017-08-01

    We study the problem of separation of variables for classical integrable Hamiltonian systems governed by non-skew-symmetric non-dynamical so(3)\\otimes so(3) -valued elliptic r-matrices with spectral parameters. We consider several examples of such models, and perform separation of variables for classical anisotropic one- and two-spin Gaudin-type models in an external magnetic field, and for Jaynes-Cummings-Dicke-type models without the rotating wave approximation.

  15. Quantum Theory of an Atom Near Partially Reflecting Walls

    DTIC Science & Technology

    1987-06-15

    rotating - wave approximations . Jaynes and Cummings5 but they are damped by the factor e -Y, where y is the , showed that the same sort of "Rabi...equation describing renewed interest in the Jaynes - Cummings model by the coupling of the atoms of the (dielectric) mirror to the describing certain... Jaynes - Cummings model in which one begins a priori way. DISTR1UTION ffATDi0I A 35 5081 @1987 The American Physical Society Approvd for pubWi MIM D19bi

  16. Nonlinear wave interactions in shallow water magnetohydrodynamics of astrophysical plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimachkov, D. A., E-mail: klimachkovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru

    2016-05-15

    The rotating magnetohydrodynamic flows of a thin layer of astrophysical and space plasmas with a free surface in a vertical external magnetic field are considered in the shallow water approximation. The presence of a vertical external magnetic field changes significantly the dynamics of wave processes in an astrophysical plasma, in contrast to a neutral fluid and a plasma layer in an external toroidal magnetic field. There are three-wave nonlinear interactions in the case under consideration. Using the asymptotic method of multiscale expansions, we have derived nonlinear equations for the interaction of wave packets: three magneto- Poincare waves, three magnetostrophic waves,more » two magneto-Poincare and one magnetostrophic waves, and two magnetostrophic and one magneto-Poincare waves. The existence of decay instabilities and parametric amplification is predicted. We show that a magneto-Poincare wave decays into two magneto-Poincare waves, a magnetostrophic wave decays into two magnetostrophic waves, a magneto-Poincare wave decays into one magneto-Poincare and one magnetostrophic waves, and a magnetostrophic wave decays into one magnetostrophic and one magneto-Poincare waves. There are the following parametric amplification mechanisms: the parametric amplification of magneto-Poincare waves, the parametric amplification of magnetostrophic waves, the amplification of a magneto-Poincare wave in the field of a magnetostrophic wave, and the amplification of a magnetostrophic wave in the field of a magneto-Poincare wave. The instability growth rates and parametric amplification factors have been found for the corresponding processes.« less

  17. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  18. Extreme-ultraviolet observations of global coronal wave rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attrill, G. D. R.; Long, D. M.; Green, L. M.

    2014-11-20

    We present evidence of global coronal wave rotation in EUV data from SOHO/EIT, STEREO/EUVI, and SDO/AIA. The sense of rotation is found to be consistent with the helicity of the source region (clockwise for positive helicity, anticlockwise for negative helicity), with the source regions hosting sigmoidal structures. We also study two coronal wave events observed by SDO/AIA where no clear rotation (or sigmoid) is observed. The selected events show supporting evidence that they all originate with flux rope eruptions. We make comparisons across this set of observations (both with and without clear sigmoidal structures). On examining the magnetic configuration ofmore » the source regions, we find that the nonrotation events possess a quadrupolar magnetic configuration. The coronal waves that do show a rotation originate from bipolar source regions.« less

  19. Effect of partial wave parameter identification on IOS opacities and integral cross sections for rotationally inelastic collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pack, R.T

    1977-02-15

    The effect of identification of the partial wave parameter of the J/sub z/ CCS and IOS approximations as an orbital angular momentum rather than the total angular momentum is studied. Comparison with accurate close coupling calculations for Ar--N/sub 2/ and He--CO/sub 2/ collisions is made, and it is found that this identification results in a marked improvement, both quantitative and qualitative, in calculated IOS opacity functions and integral cross sections for both elastic and inelastic collisions. Use of the correct energy in the cross section formula also makes a marked improvement even though T matrices are computed with an averagemore » energy. (AIP)« less

  20. Deep Strong Coupling Regime of the Jaynes-Cummings Model

    NASA Astrophysics Data System (ADS)

    Casanova, J.; Romero, G.; Lizuain, I.; García-Ripoll, J. J.; Solano, E.

    2010-12-01

    We study the quantum dynamics of a two-level system interacting with a quantized harmonic oscillator in the deep strong coupling regime (DSC) of the Jaynes-Cummings model, that is, when the coupling strength g is comparable or larger than the oscillator frequency ω (g/ω≳1). In this case, the rotating-wave approximation cannot be applied or treated perturbatively in general. We propose an intuitive and predictive physical frame to describe the DSC regime where photon number wave packets bounce back and forth along parity chains of the Hilbert space, while producing collapse and revivals of the initial population. We exemplify our physical frame with numerical and analytical considerations in the qubit population, photon statistics, and Wigner phase space.

  1. Exact relativistic expressions for wave refraction in a generally moving fluid.

    PubMed

    Cavalleri, G; Tonni, E; Barbero, F

    2013-04-01

    The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.

  2. Electrical Wave Propagation in an Anisotropic Model of the Left Ventricle Based on Analytical Description of Cardiac Architecture

    PubMed Central

    Pravdin, Sergey F.; Dierckx, Hans; Katsnelson, Leonid B.; Solovyova, Olga; Markhasin, Vladimir S.; Panfilov, Alexander V.

    2014-01-01

    We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher–Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation. PMID:24817308

  3. Faraday effect on stimulated Raman scattering in the linear region

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.

    2018-04-01

    The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.

  4. Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev

    2002-01-01

    Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the approximation of very small pressure gradients is reduced to the problem of the classical oscillator in the rotational frame of reference which was previously introduced and applied for the interpretation of kHZ QPO observation by Osherovich & Titarchuk.

  5. Metasurface for multi-channel terahertz beam splitters and polarization rotators

    NASA Astrophysics Data System (ADS)

    Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin

    2018-04-01

    Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.

  6. Absorption of inertia-gravity waves in vertically sheared rotating stratified flows

    NASA Astrophysics Data System (ADS)

    Millet, C.; Lott, F.

    2012-12-01

    It is well established that gravity waves have a substantial role on the large-scale atmospheric circulation, particularly in the middle atmosphere. In the present work, we re-examine the reflection and transmission of gravity waves through a critical layer surrounded by two inertial levels for the case of a constant vertically sheared flow. In this configuration, the vertical structure of the disturbance can be described as quasi-geostrophic from the critical layer up to the inertial levels, at which the Doppler-shifted frequency is equal to the Coriolis parameter. Near and beyond these levels, the balanced approximations do not apply and there is a transition from the quasi-geostrophic solution to propagating gravity waves. The three-dimensional disturbance solution is obtained analytically using both an exact method, in terms of hypergeometric functions, and a WKB approximation valid for large Richardson numbers; the latter includes an exponentially small term which captures the radiation feedback in the region between the inertial levels. We first focused on the homogeneous part of the disturbance equations, under the assumption of an unbounded domain. In contrast with past studies which show that there is a finite reflection and did not analyze the transmission (Yamanaka and Tanaka, 1984), we find that the reflection coefficient is too small to be significant and that the transmission coefficient is exactly like in the much simpler non-rotating case analyzed by Booker and Bretherton (1966). Our theoretical predictions are found to be in very good agreement with those obtained by numerically integrating the complete hydrostatic-Boussinesq equations with a small Rayleigh damping. The discrepancies between our results and those in Yamanaka and Tanaka (1984) are related to the fact that the solutions are given in term of multivalued functions and the values of the reflection and transmission coefficients are exponentially small, e.g. quite difficult to cross check numerically. More specifically, we suspect that the differences come from their treatment of the analytic continuations in the matching regions (e.g. the inertial layers). Our results are useful to study the evolution of initial disturbances. As an illustration, we consider the problem of gravity waves generated by potential-vorticity anomalies, a problem that was recently studied in Lott et al. (2013) for an unbounded atmosphere. The vertical structure of the potential-vorticity anomaly is represented by a Dirac distribution localized at the critical level. The disturbance field can be deduced from the homogeneous solutions above and below the critical level, by using suitable jump conditions. It is shown how the inclusion of a boundary condition within the problem, below the potential-vorticity anomaly, changes the amplitude of the radiated gravity wave, especially when the Richardson number is not too large. This process may be related to the occurrence of radiative instability waves in sheared rotating stratified flows.

  7. Evolution of a hybrid micro-macro entangled state of the qubit-oscillator system via the generalized rotating wave approximation

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Yogesh, V.

    2016-04-01

    We study the evolution of the hybrid entangled states in a bipartite (ultra) strongly coupled qubit-oscillator system. Using the generalized rotating wave approximation the reduced density matrices of the qubit and the oscillator are obtained. The reduced density matrix of the oscillator yields the phase space quasi probability distributions such as the diagonal P-representation, the Wigner W-distribution and the Husimi Q-function. In the strong coupling regime the Q-function evolves to uniformly separated macroscopically distinct Gaussian peaks representing ‘kitten’ states at certain specified times that depend on multiple time scales present in the interacting system. The ultrastrong coupling strength of the interaction triggers appearance of a large number of modes that quickly develop a randomization of their phase relationships. A stochastic averaging of the dynamical quantities sets in, and leads to the decoherence of the system. The delocalization in the phase space of the oscillator is studied by using the Wehrl entropy. The negativity of the W-distribution reflects the departure of the oscillator from the classical states, and allows us to study the underlying differences between various information-theoretic measures such as the Wehrl entropy and the Wigner entropy. Other features of nonclassicality such as the existence of the squeezed states and appearance of negative values of the Mandel parameter are realized during the course of evolution of the bipartite system. In the parametric regime studied here these properties do not survive in the time-averaged limit.

  8. System for controlled acoustic rotation of objects

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1983-01-01

    A system is described for use with acoustically levitated objects, which enables close control of rotation of the object. One system includes transducers that propagate acoustic waves along the three dimensions (X, Y, Z) of a chamber of rectangular cross section. Each transducers generates one wave which is resonant to a corresponding chamber dimension to acoustically levitate an object, and additional higher frequency resonant wavelengths for controlling rotation of the object. The three chamber dimensions and the corresponding three levitation modes (resonant wavelengths) are all different, to avoid degeneracy, or interference, of waves with one another, that could have an effect on object rotation. Only the higher frequencies, with pairs of them having the same wavelength, are utilized to control rotation, so that rotation is controlled independently of levitation and about any arbitrarily chosen axis.

  9. Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xiaoyin

    The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less

  10. Modified dust ion-acoustic surface waves in a semi-bounded magnetized plasma containing the rotating dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion relation for modified dust ion-acoustic surface waves in the magnetized dusty plasma containing the rotating dust grains is derived, and the effects of magnetic field configuration on the resonant growth rate are investigated. We present the results that the resonant growth rates of the wave would increase with the ratio of ion plasma frequency to cyclotron frequency as well as with the increase of wave number for the case of perpendicular magnetic field configuration when the ion plasma frequency is greater than the dust rotation frequency. For the parallel magnetic field configuration, we find that the instability occursmore » only for some limited ranges of the wave number and the ratio of ion plasma frequency to cyclotron frequency. The resonant growth rate is found to decrease with the increase of the wave number. The influence of dust rotational frequency on the instability is also discussed.« less

  11. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    NASA Astrophysics Data System (ADS)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  12. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.

  13. Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture

    PubMed Central

    Majumder, Rupamanjari; Nayak, Alok Ranjan; Pandit, Rahul

    2011-01-01

    Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study. PMID:21483682

  14. The structure and evolution of galacto-detonation waves - Some analytic results in sequential star formation models of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Rybicki, G. B.

    1982-01-01

    Waves of star formation in a uniform, differentially rotating disk galaxy are treated analytically as a propagating detonation wave front. It is shown, that if single solitary waves could be excited, they would evolve asymptotically to one of two stable spiral forms, each of which rotates with a fixed pattern speed. Simple numerical solutions confirm these results. However, the pattern of waves that develop naturally from an initially localized disturbance is more complex and dies out within a few rotation periods. These results suggest a conclusive observational test for deciding whether sequential star formation is an important determinant of spiral structure in some class of galaxies.

  15. The reflection and diffraction of internal waves from the junction of a slit and a half-space, with application to submarine canyons

    NASA Astrophysics Data System (ADS)

    Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.

    1985-07-01

    We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.

  16. Mean Lagrangian drift in continental shelf waves

    NASA Astrophysics Data System (ADS)

    Drivdal, M.; Weber, J. E. H.

    2012-04-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.

  17. Radiation stress and mean drift in continental shelf waves

    NASA Astrophysics Data System (ADS)

    Weber, Jan Erik H.; Drivdal, Magnus

    2012-03-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E̅̅ over the shelf region, the radiation stress tensor component S̅11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio S̅11/E̅ depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of latter depends on ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deepwater drilling accidents.

  18. Analytical ground state for the Jaynes-Cummings model with ultrastrong coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yuanwei; Institute of Theoretical Physics, Shanxi University, Taiyuan 030006; Chen Gang

    2011-06-15

    We present a generalized variational method to analytically obtain the ground-state properties of the Jaynes-Cummings model with the ultrastrong coupling. An explicit expression for the ground-state energy, which agrees well with the numerical simulation in a wide range of the experimental parameters, is given. In particular, the introduced method can successfully solve this Jaynes-Cummings model with the positive detuning (the atomic resonant level is larger than the photon frequency), which cannot be treated in the adiabatical approximation and the generalized rotating-wave approximation. Finally, we also demonstrate analytically how to control the mean photon number by means of the current experimentalmore » parameters including the photon frequency, the coupling strength, and especially the atomic resonant level.« less

  19. Theory and evidence of global Rossby waves in upper main-sequence stars: r-mode oscillations in many Kepler stars

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Kurtz, Donald W.; Murphy, Simon J.; Antoci, Victoria L.; Lee, Umin

    2018-02-01

    Asteroseismic inference from pressure modes (p modes) and buoyancy, or gravity, modes (g modes) is ubiquitous for stars across the Hertzsprung-Russell diagram. Until now, however, discussion of r modes (global Rossby waves) has been rare. Here we derive the expected frequency ranges of r modes in the observational frame by considering the visibility of these modes. We find that the frequencies of r modes of azimuthal order m appear as groups at slightly lower frequency than m times the rotation frequency. Comparing the visibility curves for r modes with Fourier amplitude spectra of Kepler light curves of upper main-sequence B, A, and F stars, we find that r modes are present in many γ Dor stars (as first discovered by Van Reeth et al.), spotted stars, and so-called heartbeat stars, which are highly eccentric binary stars. We also find a signature of r modes in a frequently bursting Be star observed by Kepler. In the amplitude spectra of moderately to rapidly rotating γ Dor stars, r-mode frequency groups appear at lower frequency than prograde g-mode frequency groups, while in the amplitude spectra of spotted early A to B stars, groups of symmetric (with respect to the equator) r-mode frequencies appear just below the frequency of a structured peak that we suggest represents an approximate stellar rotation rate. In many heartbeat stars, a group of frequencies can be fitted with symmetric m = 1 r modes, which can be used to obtain rotation frequencies of these stars.

  20. Sub-weekly to interannual variability of a high-energy shoreline

    USGS Publications Warehouse

    Barnard, Patrick L.; Jeff E. Hansen,

    2010-01-01

    Sixty-one Global Positioning System (GPS), sub-aerial beach surveys were completed at 7 km long Ocean Beach, San Francisco, CA (USA), between April 2004 and March 2009. The five-year time series contains over 1 million beach elevation measurements and documents detailed changes in beach morphology over a variety of spatial, temporal, and physical forcing scales. Results show that seasonal processes dominate at Ocean Beach, with the seasonal increase and decrease in wave height being the primary driver of shoreline change. Storm events, while capable of causing large short-term changes in the shoreline, did not singularly account for a large percentage of the overall observed change. Empirical orthogonal function (EOF) analysis shows that the first two modes account for approximately three-quarters of the variance in the data set and are represented by the seasonal onshore/offshore movement of sediment (60%) and the multi-year trend of shoreline rotation (14%). The longer-term trend of shoreline rotation appears to be related to larger-scale bathymetric change. An EOF-based decomposition technique is developed that is capable of estimating the shoreline position to within one standard deviation of the range of shoreline positions observed at most locations along the beach. The foundation of the model is the observed relationship between the temporal amplitudes of the first EOF mode and seasonally-averaged offshore wave height as well as the linear trend of shoreline rotation. This technique, while not truly predictive because of the requirement of real-time wave data, is useful because it can predict shoreline position to within reasonable confidence given the absence of field data once the model is developed at a particular site.

  1. Sub-weekly to interannual variability of a high-energy shoreline

    USGS Publications Warehouse

    Hansen, J.E.; Barnard, P.L.

    2010-01-01

    Sixty-one Global Positioning System (GPS), sub-aerial beach surveys were completed at 7 km long Ocean Beach, San Francisco, CA (USA), between April 2004 and March 2009. The five-year time series contains over 1. million beach elevation measurements and documents detailed changes in beach morphology over a variety of spatial, temporal, and physical forcing scales. Results show that seasonal processes dominate at Ocean Beach, with the seasonal increase and decrease in wave height being the primary driver of shoreline change. Storm events, while capable of causing large short-term changes in the shoreline, did not singularly account for a large percentage of the overall observed change. Empirical orthogonal function (EOF) analysis shows that the first two modes account for approximately three-quarters of the variance in the data set and are represented by the seasonal onshore/offshore movement of sediment (60%) and the multi-year trend of shoreline rotation (14%). The longer-term trend of shoreline rotation appears to be related to larger-scale bathymetric change. An EOF-based decomposition technique is developed that is capable of estimating the shoreline position to within one standard deviation of the range of shoreline positions observed at most locations along the beach. The foundation of the model is the observed relationship between the temporal amplitudes of the first EOF mode and seasonally-averaged offshore wave height as well as the linear trend of shoreline rotation. This technique, while not truly predictive because of the requirement of real-time wave data, is useful because it can predict shoreline position to within reasonable confidence given the absence of field data once the model is developed at a particular site. ?? 2010 Elsevier B.V.

  2. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    NASA Astrophysics Data System (ADS)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small shift towards higher frequencies. This frequency shift is due to the reduction of the effective resonance volume that results from the existence of a Stokes boundary layer at the outer librating wall. Due to the symmetry of the forcing not all possible modes can be excited. It is shown that only symmetric modes with respect to the rotation axis exist. From a fundamental perspective, the study might help to understand better inertial mode excitation in librating planets and moons where inertial waves are emitted from critical points on the inner or outer spherical boundary. Recently, Zhang et al. (2013) pointed out the resonance should not occur in symmetric librating bodies without precession. We will discuss how this assumption depends on the boundary conditions. It might turn out that even when the projection of the Euler (or Poincare) force on the modes is zero, the projection of the excited wave beams on the modes is non-zero. K. Zhang, K. H. Chan, X. Liao, and J. M. Aurnou. The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration, J. Fluid Mech.,720, 212-235, 2013. I. D. Borcia and U. Harlander. Inertial waves in a rotating annulus with inclined inner cylinder, Theoret. Comp. Fluid Dynamics, 27, 397-413, 2013. I. D. Borcia, A. Ghasemi V., and U. Harlander. Inertial wave mode excitation inside a rotating cylindrical container with librating walls, submitted to Fluid Dyn. Res.,2013. M. Klein, T. Seelig, M. V. Kurgansky, A. Ghasemi V., I. D. Borcia, A. Will, E. Schaller, C. Egbers, and Uwe Harlander. Inertial wave excitation and focusing in a liquid bounded by a frustum and a cylinder, submitted to J. Fluid Mech., 2013.

  3. The Submillimeter-wave Rotational Spectra of Interstellar Molecules

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.; Butler, R. A. H.; Winnewisser, M.; Winnewisser, G.; Fuchs, U.; Groner, P.; Sastry, K. V. L. N.

    2002-01-01

    We discuss past and recent progress in our long-term laboratory program concerning the submillimeter-wave rotational spectroscopy of known and likely interstellar molecules, especially those associated with regions of high-mass star formation. Our program on the use of spectroscopy to study rotationally inelastic collisions of interstellar interest is also briefly mentioned.

  4. Tidal waves in 102Pd: a rotating condensate of multiple d bosons.

    PubMed

    Ayangeakaa, A D; Garg, U; Caprio, M A; Carpenter, M P; Ghugre, S S; Janssens, R V F; Kondev, F G; Matta, J T; Mukhopadhyay, S; Patel, D; Seweryniak, D; Sun, J; Zhu, S; Frauendorf, S

    2013-03-08

    Low-lying collective excitations in even-even vibrational and transitional nuclei may be described semiclassically as quadrupole running waves on the surface of the nucleus ("tidal waves"), and the observed vibrational-rotational behavior can be thought of as resulting from a rotating condensate of interacting d bosons. These concepts have been investigated by measuring lifetimes of the levels in the yrast band of the (102)Pd nucleus with the Doppler shift attenuation method. The extracted B(E2) reduced transition probabilities for the yrast band display a monotonic increase with spin, in agreement with the interpretation based on rotation-induced condensation of aligned d bosons.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherrer, Arne; UMR 8640 ENS-CNRS-UPMC, Département de Chimie, 24 rue Lhomond, École Normale Supérieure, 75005 Paris; UPMC Université Paris 06, 4, Place Jussieu, 75005 Paris

    The nuclear velocity perturbation theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similar to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strengths, related to the intensity of the VCD signal, contain a new contribution beyond-BO that canmore » be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.« less

  6. Discrete sudden perturbation theory for inelastic scattering. I. Quantum and semiclassical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, R.J.

    1985-12-01

    A double perturbation theory is constructed to treat rotationally and vibrationally inelastic scattering. It uses both the elastic scattering from the spherically averaged potential and the infinite-order sudden (IOS) approximation as the unperturbed solutions. First, a standard perturbation expansion is done to express the radial wave functions in terms of the elastic wave functions. The resulting coupled equations are transformed to the discrete-variable representation where the IOS equations are diagonal. Then, the IOS solutions are removed from the equations which are solved by an exponential perturbation approximation. The results for Ar+N/sub 2/ are very much more accurate than the IOSmore » and somewhat more accurate than a straight first-order exponential perturbation theory. The theory is then converted into a semiclassical, time-dependent form by using the WKB approximation. The result is an integral of the potential times a slowly oscillating factor over the classical trajectory. A method of interpolating the result is given so that the calculation is done at the average velocity for a given transition. With this procedure, the semiclassical version of the theory is more accurate than the quantum version and very much faster. Calculations on Ar+N/sub 2/ show the theory to be much more accurate than the infinite-order sudden (IOS) approximation and the exponential time-dependent perturbation theory.« less

  7. Transient Wave Rotor Performance Investigated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center is investigating the wave rotor for use as a core gas generator in future gas turbine engines. The device, which uses gas-dynamic waves to transfer energy directly to and from the working fluid through which the waves travel, consists of a series of constant-area passages that rotate about an axis. Through rotation, the ends of the passages are periodically exposed to various circumferentially arranged ports that initiate the traveling waves within the passages.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peralta, J.; López-Valverde, M. A.; Imamura, T.

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the backgroundmore » wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.« less

  9. The role of the complete Coriolis force in weakly stratified oceanic flows

    NASA Astrophysics Data System (ADS)

    Tort, M.; Winters, K. B.; Ribstein, B.; Zeitlin, V.

    2016-02-01

    Ocean dynamics is usually described using the primitive equations based on the so-called traditional approximation (TA), where the Coriolis force associated with the horizontal component of the planetary rotation is neglected (also called non-traditional (NT) part proportional to cosΦ, see Fig 1.). However, recent studies have shown that the NT part of the Coriolis force plays a non-negligible dynamical role in some particular oceanic flows (see Gerkema et al., 2008 for an extensive review of NT effects for geophysical and astrophysical flows). Here we explore the relevance of including the NT component of the Coriolis force in ocean models, by presenting particular results regarding two different mid-latitude flow configurations after relaxing the TA: Propagation of wind-induced near-inertial waves (NIWs). Under the TA, NIWs propagate toward the equator, the inertially poleward propagation being internally reflected at a depth-independent critical latitude. The combined effects of the NT Coriolis force and weak stratification in the deep ocean leads to the existence of waveguides for sub-inertial waves, which get trapped and propagate further poleward (Winters et al., 2011). Here we consider storm-induced NIWs and their evolution in a non-linear Boussinesq model on the β-plane in the NT approximation. Preliminary results are presented concerning the behavior of the waves in a weakly stratified mixed-layer, where NT effects are expected to be significant. Inertial instability. A detailed linear stability analysis of the Bickley jet at large Rossby numbers in the NT approximation on the f-plane is performed for long waves in a continuously stratified Boussinesq model. For a sufficiently weak stratification, both symmetric and asymmetric inertial instabilities have substantially higher growth rates than in the TA while no discernible differences between the two approximations are observed for strong enough stratifications (Tort et al., 2015).

  10. Analysis of unsteady wave processes in a rotating channel

    NASA Technical Reports Server (NTRS)

    Larosiliere, L. M.; Mawid, M.

    1993-01-01

    The impact of passage rotation on the gas dynamic wave processes is analyzed through a numerical simulation of ideal shock-tube flow in a closed rotating-channel. Initial conditions are prescribed by assuming homentropic solid-body rotation. Relevant parameters of the problem such as wheel Mach number, hub-to-tip radius ratio, length-to-tip radius ratio, diaphragm temperature ratio, and diaphragm pressure ratio are varied. The results suggest possible criteria for assessing the consequences of passage rotation on the wave processes, and they may therefore be applicable to pressure-exchange wave rotors. It is shown that for a fixed geometry and initial conditions, the contact interface acquires a distorted three-dimensional time-dependent orientation at non-zero wheel Mach numbers. At a fixed wheel Mach number, the level of distortion depends primarily on the density ratio across the interface as well as the hub-to-tip radius ratio. Rarefaction fronts, shocks, and contact interfaces are observed to propagate faster with increasing wheel Mach number.

  11. Analysis of unsteady wave processes in a rotating channel

    NASA Astrophysics Data System (ADS)

    Larosiliere, Louis M.; Mawid, M.

    1993-06-01

    The impact of passage rotation on the gas dynamic wave processes is analyzed through a numerical simulation of ideal shock-tube flow in a closed rotating-channel. Initial conditions are prescribed by assuming homentropic solid-body rotation. Relevant parameters of the problem such as wheel Mach number, hub-to-tip radius ratio, length-to-tip radius ratio, diaphragm temperature ratio, and diaphragm pressure ratio are varied. The results suggest possible criteria for assessing the consequences of passage rotation on the wave processes, and they may therefore be applicable to pressure-exchange wave rotors. It is shown that for a fixed geometry and initial conditions, the contact interface acquires a distorted three-dimensional time-dependent orientation at non-zero wheel Mach numbers. At a fixed wheel Mach number, the level of distortion depends primarily on the density ratio across the interface as well as the hub-to-tip radius ratio. Rarefaction fronts, shocks, and contact interfaces are observed to propagate faster with increasing wheel Mach number.

  12. On the large-scale dynamics of rapidly rotating convection zones. [in solar and stellar interiors

    NASA Technical Reports Server (NTRS)

    Durney, B. R.

    1983-01-01

    The fact that the values of the eight basic waves present in turbulent flows in the presence of rotation prohibit a tilt of eddy towards the axis of rotation is incorporated into a formalism for rapidly rotating convection zones. Equations for turbulent velocities are defined in a rotating coordinate system, assuming that gravity and grad delta T act in a radial direction. An expression is derived for the lifetime of a basic wave and then for the average velocity vector. A real convective eddy is formulated and the wave vectors are calculated. The velocity amplitude and the stress tensor amplitude are integrated over the eddy domain. Applied to the solar convective zone, it is found that the convective cells are aligned along the axis of rotation at the poles and at the equator, a model that conflicts with nonrotating mixng length theory predictions.

  13. Solitary Waves, Periodic Peakons and Pseudo-Peakons of the Nonlinear Acoustic Wave Model in Rotating Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Li, Jibin

    The dynamical model of the nonlinear acoustic wave in rotating magnetized plasma is governed by a partial differential equation system. Its traveling system is a singular traveling wave system of first class depending on two parameters. By using the bifurcation theory and method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as different solitary wave solutions.

  14. Ray Scattering by an Arbitrarily Oriented Spheroid: 2. Transmission and Cross-polarization Effects

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1996-01-01

    Transmission of an arbitrarily polarized plane wave by an arbitrarily oriented spheroid in the short-wavelength limit is considered in the context of ray theory. The transmitted electric field is added to the diffracted plus reflected ray-theory electric field that was previously derived to obtain an approximation to the far-zone scattered intensity in the forward hemisphere. Two different types of cross-polarization effects are found. These are: (a) a rotation of the polarization state of the transmitted rays from when they are referenced with respect to their entrance into the spheroid to when they are referenced with respect to their exit from it and (b) a rotation of the polarization state of the transmitted rays when they are referenced with respect to the polarization state of the diffracted plus reflected rays.

  15. Effects of high- and low-energy radial shock waves therapy combined with physiotherapy in the treatment of rotator cuff tendinopathy: a retrospective study.

    PubMed

    Su, Xiangzheng; Li, Zhongli; Liu, Zhengsheng; Shi, Teng; Xue, Chao

    2017-06-09

    The aim of this study was to investigate the efficacy of high- and low-energy radial shock waves combined with physiotherapy for rotator cuff tendinopathy patients. Data from rotator cuff tendinopathy patients received high- or low-energy radial shock waves combined with physiotherapy or physiotherapy alone were collected. The Constant and Murley score and visual analog scale score were collected to assess the effectiveness of treatment in three groups at 4, 8, 12, and 24 weeks. In total, 94 patients were involved for our retrospective study. All groups showed remarkable improvement in the visual analog scale and Constant and Murley score compared to baseline at 24 weeks. The high-energy radial shock waves group had more marked improvement in the Constant and Murley score compared to the physiotherapy group at 4 and 8 weeks and at 4 weeks when compared with low-energy group. Furthermore, high-energy radial shock waves group had superior results on the visual analog scale at 4, 8, and 12 weeks compared to low-energy and physiotherapy groups. This retrospective study supported the usage of high-energy radial shock waves as a supplementary therapy over physiotherapy alone for rotator cuff tendinopathy by relieving the symptoms rapidly and maintaining symptoms at a satisfactory level for 24 weeks. Implications for Rehabilitation High-energy radial shock waves can be a supplemental therapy to physiotherapy for rotator cuff tendinopathy. We recommend the usage of high-energy radial shock waves during the first 5 weeks, at an interval of 7 days, of physiotherapy treatment. High-energy radial shock waves treatment combined with physiotherapy can benefit rotator cuff tendinopathy by relieving symptoms rapidly and maintain these improvements at a satisfactory level for quite a long time.

  16. Rotational excitations in para-H2+para-H2 collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces.

    PubMed

    Otto, Frank; Gatti, Fabien; Meyer, Hans-Dieter

    2008-02-14

    We study the process of rotational excitation in the collisions of para-H(2) with para-H(2) by propagating wave packets with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Transition probabilities are then calculated by the method of Tannor and Weeks based on time-correlation functions. Calculations were carried out up to a total angular momentum of J=70 to compute integral cross sections up to 1.2 eV in collision energy and thermal rate coefficients from 100 to 3000 K. The process is studied on the full-dimensional potential energy surface of Boothroyd-Martin-Keogh-Peterson (BMKP) as well as on the rigid rotor surface of Diep and Johnson. We test the validity of the rigid rotor approximation by also considering two rigid rotor restrictions of the BMKP potential energy surface (PES). Additionally, we investigate a variant of the BMKP PES suggested by Pogrebnya and Clary [Chem. Phys. Lett. 363, 523 (2002)] with reduced anisotropy. We compare our results with previous theoretical data for the cross sections and with experimental data for the rate coefficients at low temperatures.

  17. Proper and improper zero energy modes in Hartree-Fock theory and their relevance for symmetry breaking and restoration.

    PubMed

    Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E

    2013-10-21

    We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.

  18. Analysis of DE-1 PWI electric field data

    NASA Technical Reports Server (NTRS)

    Weimer, Daniel

    1994-01-01

    The measurement of low frequency electric field oscillations may be accomplished with the Plasma Wave Instrument (PWI) on DE 1. Oscillations at a frequency around 1 Hz are below the range of the conventional plasma wave receivers, but they can be detected by using a special processing of the quasi-static electric field data. With this processing it is also possible to determine if the electric field oscillations are predominately parallel or perpendicular to the ambient magnetic field. The quasi-static electric field in the DE 1 spin/orbit plane is measured with a long-wire 'double probe'. This antenna is perpendicular to the satellite spin axis, which in turn is approximately perpendicular to the geomagnetic field in the polar magnetosphere. The electric field data are digitally sampled at a frequency of 16 Hz. The measured electric field signal, which has had phase reversals introduced by the rotating antenna, is multiplied by the sine of the rotation angle between the antenna and the magnetic field. This is called the 'perpendicular' signal. The measured time series is also multiplied with the cosine of the angle to produce a separate 'parallel' signal. These two separate time series are then processed to determine the frequency power spectrum.

  19. Visualizing, Approximating, and Understanding Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Nichols, David A.

    Numerical-relativity simulations of black-hole binaries and advancements in gravitational-wave detectors now make it possible to learn more about the collisions of compact astrophysical bodies. To be able to infer more about the dynamical behavior of these objects requires a fuller analysis of the connection between the dynamics of pairs of black holes and their emitted gravitational waves. The chapters of this thesis describe three approaches to learn more about the relationship between the dynamics of black-hole binaries and their gravitational waves: modeling momentum flow in binaries with the Landau-Lifshitz formalism, approximating binary dynamics near the time of merger with post-Newtonian and black-hole-perturbation theories, and visualizing spacetime curvature with tidal tendexes and frame-drag vortexes. In Chapters 2--4, my collaborators and I present a method to quantify the flow of momentum in black-hole binaries using the Landau-Lifshitz formalism. Chapter 2 reviews an intuitive version of the formalism in the first-post-Newtonian approximation that bears a strong resemblance to Maxwell's theory of electromagnetism. Chapter 3 applies this approximation to relate the simultaneous bobbing motion of rotating black holes in the superkick configuration---equal-mass black holes with their spins anti-aligned and in the orbital plane---to the flow of momentum in the spacetime, prior to the black holes' merger. Chapter 4 then uses the Landau-Lifshitz formalism to explain the dynamics of a head-on merger of spinning black holes, whose spins are anti-aligned and transverse to the infalling motion. Before they merge, the black holes move with a large, transverse, velocity, which we can explain using the post-Newtonian approximation; as the holes merge and form a single black hole, we can use the Landau-Lifshitz formalism without any approximations to connect the slowing of the final black hole to its absorbing momentum density during the merger. In Chapters 5--7, we discuss using analytical approximations, such as post-Newtonian and black-hole-perturbation theories, to gain further understanding into how gravitational waves are generated by black-hole binaries. Chapter 5 presents a way of combining post-Newtonian and black-hole-perturbation theories---which we call the hybrid method---for head-on mergers of black holes. It was able to produce gravitational waveforms and gravitational recoils that agreed well with comparable results from numerical-relativity simulations. Chapter 6 discusses a development of the hybrid model to include a radiation-reaction force, which is better suited for studying inspiralling black-hole binaries. The gravitational waveform from the hybrid method for inspiralling mergers agreed qualitatively with that from numerical-relativity simulations; when applied to the superkick configuration, it gave a simplified picture of the formation of the large black-hole kick. Chapter 7 describes an approximate method of calculating the frequencies of the ringdown gravitational waveforms of rotating black holes (quasinormal modes). The method generalizes a geometric interpretation of black-hole quasinormal modes and explains a degeneracy in the spectrum of these modes. In Chapters 8--11, we describe a new way of visualizing spacetime curvature using tools called tidal tendexes and frame-drag vortexes. This relies upon a time-space split of spacetime, which allows one to break the vacuum Riemann curvature tensor into electric and magnetic parts (symmetric, trace-free tensors that have simple physical interpretations). The regions where the eigenvalues of these tensors are large form the tendexes and vortexes of a spacetime, and the integral curves of their eigenvectors are its tendex and vortex lines, for the electric and magnetic parts, respectively. Chapter 8 provides an overview of these visualization tools and presents initial results from numerical-relativity simulations. Chapter 9 uses topological properties of vortex and tendex lines to classify properties of gravitational waves far from a source. Chapter 10 describes the formalism in more detail, and discusses the vortexes and tendexes of multipolar spacetimes in linearized gravity about flat space. The chapter helps to explain how near-zone vortexes and tendexes become gravitational waves far from a weakly gravitating, time-varying source. Chapter 11 is a detailed investigation of the vortexes and tendexes of stationary and perturbed black holes. It develops insight into how perturbations of (strongly gravitating) black holes extend from near the horizon to become gravitational waves.

  20. Catastrophic instabilities of modified DA-DC hybrid surface waves in a semi-bounded plasma system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    We find the catastrophic instabilities and derive the growth rates for the dust-cyclotron resonance (DCR) and dust-rotation resonance (DRR) modes of the modified dust-acoustic and dust-cyclotron (DA-DC) hybrid surface waves propagating at the plasma–vacuum interface where the plasma is semi-bounded and composed of electrons and rotating dust grains. The effects of magnetic field and dust rotation frequency on the DCR- and DDR-modes are also investigated. We find that the dust rotation frequency enhances the growth rate of DCR-mode and the effect of dust rotation on this resonance mode decreases with an increase of the wave number. We also find thatmore » an increase of magnetic field strength enhances the DCR growth rate, especially, for the short wavelength regime. In the case of DRR-mode, the growth rate is found to be decreased less sensitively with an increase of the wave number compared with the case of DCR, but much significantly enhanced by an increase of dust rotation frequency. The DRR growth rate also decreases with an increase of the magnetic field strength, especially in the long wavelength regime. Interestingly, we find that catastrophic instabilities occur for both DCR- and DRR-modes of the modified DA-DC hybrid surface waves when the rotational frequency is close to the dust-cyclotron frequency. Both modes can also be excited catastrophically due to the cooperative interaction between the DCR-mode and the DRR-mode.« less

  1. Analysis of rotation sensor data from the SINAPS@ Kefalonia (Greece) post-seismic experiment—link to surface geology and wavefield characteristics

    NASA Astrophysics Data System (ADS)

    Sbaa, Sarah; Hollender, Fabrice; Perron, Vincent; Imtiaz, Afifa; Bard, Pierre-Yves; Mariscal, Armand; Cochard, Alain; Dujardin, Alain

    2017-09-01

    Although rotational seismology has progressed in recent decades, the links between rotational ground motion and site soil conditions are poorly documented. New experiments were performed on Kefalonia Island (Greece) following two large earthquakes ( M W = 6.0, M W = 5.9) in early 2014 on two well-characterized sites (soft soil, V S30 250 m/s; rock, V S30 830 m/s, V S30 being harmonic average shear-wave velocity between 0 and 30 m depth). These earthquakes led to large six-component (three translations and three rotations) datasets of hundreds of well-recorded events. The relationship between peak translational acceleration versus peak rotational velocity is found sensitive to the site conditions mainly for the rotation around the vertical axis (torsion; dominated by Love waves): the stiffer the soil, the lower the torsion, for a given level of translational acceleration. For rotation around the horizontal axes (rocking; dominated by Rayleigh waves), this acceleration/rotation relationship exhibits much weaker differences between soft and rock sites. Using only the rotation sensor, an estimate of the Love-to-Rayleigh energy ratios could be carried out and provided the same results as previous studies that have analyzed the Love- and Rayleigh-wave energy proportions using data from translational arrays deployed at the same two sites. The coupling of translational and rotational measurements appears to be useful, not only for direct applications of engineering seismology, but also to investigate the composition of the wavefield, while avoiding deployment of dense arrays. The availability of new, low-noise rotation sensors that are easy to deploy in the field is of great interest and should extend the use of rotation sensors and expand their possible applications.[Figure not available: see fulltext.

  2. Fast strain wave induced magnetization changes in long cobalt bars: Domain motion versus coherent rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.; Adenwalla, S., E-mail: sadenwalla1@unl.edu; Borchers, J. A.

    2015-02-14

    A high frequency (88 MHz) traveling strain wave on a piezoelectric substrate is shown to change the magnetization direction in 40 μm wide Co bars with an aspect ratio of 10{sup 3}. The rapidly alternating strain wave rotates the magnetization away from the long axis into the short axis direction, via magnetoelastic coupling. Strain-induced magnetization changes have previously been demonstrated in ferroelectric/ferromagnetic heterostructures, with excellent fidelity between the ferromagnet and the ferroelectric domains, but these experiments were limited to essentially dc frequencies. Both magneto-optical Kerr effect and polarized neutron reflectivity confirm that the traveling strain wave does rotate the magnetization awaymore » from the long axis direction and both yield quantitatively similar values for the rotated magnetization. An investigation of the behavior of short axis magnetization with increasing strain wave amplitude on a series of samples with variable edge roughness suggests that the magnetization reorientation that is seen proceeds solely via coherent rotation. Polarized neutron reflectivity data provide direct experimental evidence for this model. This is consistent with expectations that domain wall motion cannot track the rapidly varying strain.« less

  3. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  4. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  5. Towards the Detection of Explosive Taggants: Microwave and Millimetre-Wave Gas-Phase Spectroscopies of 3-Nitrotoluene.

    PubMed

    Roucou, Anthony; Kleiner, Isabelle; Goubet, Manuel; Bteich, Sabath; Mouret, Gael; Bocquet, Robin; Hindle, Francis; Meerts, W Leo; Cuisset, Arnaud

    2018-05-07

    The monitoring of gas-phase mononitrotoluenes is crucial for defence, civil security and environmental interests because they are used as taggant for TNT detection and in the manufacturing of industrial compounds such as dyestuffs. In this study, we have succeeded to measure and analyse at high-resolution a room temperature rotationally resolved millimetre-wave spectrum of meta-nitrotoluene (3-NT). Experimental and theoretical difficulties have been overcome, in particular, those related to the low vapour pressure of 3-NT and to the presence of a CH 3 internal rotation in an almost free rotation regime (V 3 =6.7659(24) cm -1 ). Rotational spectra have been recorded in the microwave and millimetre-wave ranges using a supersonic jet Fourier Transform microwave spectrometer (T rot <10 K) and a millimetre-wave frequency multiplication chain (T=293 K), respectively. Spectral analysis of pure rotation lines in the vibrational ground state and in the first torsional excited state supported by quantum chemistry calculations permits the rotational energy of the molecule, the hyperfine structure due to the 14 N nucleus, and the internal rotation of the methyl group to be characterised. A line list is provided for future in situ detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Liberation of a pinned spiral wave by a rotating electric pulse

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Peng, Liang; Ma, Jun; Ying, He-Ping

    2014-08-01

    Spiral waves may be pinned to anatomical heterogeneities in the cardiac tissue, which leads to monomorphic ventricular tachycardia. Wave emission from heterogeneities (WEH) induced by electric pulses in one direction (EP) is a promising method for liberating such waves by using heterogeneities as internal virtual pacing sites. Here, based on the WEH effect, a new mechanism of liberation by means of a rotating electric pulse (REP) is proposed in a generic model of excitable media. Compared with the EP, the REP has the advantage of opening wider time window to liberate pinned spiral. The influences of rotating direction and frequency of the REP, and the radius of the obstacles on this new mechanism are studied. We believe this strategy may improve manipulations with pinned spiral waves in heart experiments.

  7. Efficiency of wave-driven rigid body rotation toroidal confinement

    NASA Astrophysics Data System (ADS)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  8. Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

    NASA Astrophysics Data System (ADS)

    Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2018-05-01

    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.

  9. Wavelength-doubling optical parametric oscillator

    DOEpatents

    Armstrong, Darrell J [Albuquerque, NM; Smith, Arlee V [Albuquerque, NM

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  10. Rotational seismology

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  11. Rotating-fluid experiments with an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Geisler, J. E.; Pitcher, E. J.; Malone, R. C.

    1983-01-01

    In order to determine features of rotating fluid flow that are dependent on the geometry, rotating annulus-type experiments are carried out with a numerical model in spherical coordinates. Rather than constructing and testing a model expressly for this purpose, it is found expedient to modify an existing general circulation model of the atmosphere by removing the model physics and replacing the lower boundary with a uniform surface. A regime diagram derived from these model experiments is presented; its major features are interpreted and contrasted with the major features of rotating annulus regime diagrams. Within the wave regime, a narrow region is found where one or two zonal wave numbers are dominant. The results reveal no upper symmetric regime; wave activity at low rotation rates is thought to be maintained by barotropic rather than baroclinic processes.

  12. The rollup of a vortex layer near a wall

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier; Orlandi, Paolo

    1993-01-01

    The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.

  13. Applications of seismic spatial wavefield gradient and rotation data in exploration seismology

    NASA Astrophysics Data System (ADS)

    Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.

    2017-12-01

    Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C recordings, a total of 49 components of the seismic wavefield can be excited and recorded. Such data potentially allow to further improve wavefield separation and may find application in directional imaging and coherent noise suppression.

  14. Bottom boundary layer forced by finite amplitude long and short surface waves motions

    NASA Astrophysics Data System (ADS)

    Elsafty, H.; Lynett, P.

    2018-04-01

    A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave nonlinearity.

  15. Vortex formation through inertial wave focusing

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Flor, Jan-Bert; Godeferd, Fabien

    2011-11-01

    We present a novel experimental and numerical study on the formation of columnar vortical structures by inertial waves in a rotating fluid. Two inertial-wave cones are generated by a vertically oscillating torus in a fluid in solid body rotation At the tip of the cones, there is a singular point towards which the energy of the waves gets focused. The particularity of this configuration, as compared to those of previous experiments (e.g. oscillating sphere or disc), is that the singular point's position within the fluid leads to complex non-linear wave interaction, which may lead to the formation of a localized vortex that expands in the vertical in the form of a Taylor column. Using detailed PIV measurements we consider the flow evolution from the localized wave overturning motion to the Taylor column formation as well as the inertial wave dynamics during this process, The results are discussed in the context of turbulence in rotating fluids. We acknowledge financial support from projects ANR ANISO and CIBLE.

  16. Observations and analysis of Alfvén wave phase mixing in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Sarris, T. E.; Wright, A. N.; Li, X.

    2009-03-01

    Signatures of Alfvén wave phase mixing in the Earth's magnetosphere, observed as polarization rotation of a transverse, Pc5 magnetospheric pulsation, are presented and compared to theory. The polarization rotation occurred during a rare event of a dayside narrowband ULF magnetospheric pulsation that lasted for 5 consecutive days, from 24 to 30 November 1997; details of this event were reported by Sarris et al. (2009) through observations at geosynchronous orbit and on the ground. In this paper we investigate the polarization signatures of the pulsation by performing a detailed analysis of its transverse components as observed through hodogram plots. Density measurements from one of the Los Alamos National Laboratory (LANL) spacecraft which had its L shells closest to GOES-8 are used to calculate field line resonance frequencies at geosynchronous orbit; these frequency calculations show good agreement with the observed pulsations but also have a local time offset. For an instance of an observed polarization rotation we estimate the observed poloidal lifetime of the pulsation by the time taken for the poloidal and toroidal amplitudes to become equal, which we compare with the theoretical approximation to the poloidal lifetime, as calculated in a box model magnetosphere by Mann and Wright (1995). Density measurements from different LANL spacecraft at geosynchronous orbit and their varying L shells as derived from their varying local times are used to estimate a local gradient in the local Alfvén speed, which is then used in the calculation of the predicted poloidal lifetime. This is the first time that such polarization rotations are directly observed and compared with theoretical predictions.

  17. Millimeter-wave spectroscopy of hydantoin, a possible precursor of glycine

    NASA Astrophysics Data System (ADS)

    Ozeki, Hiroyuki; Miyahara, Rio; Ihara, Hiroto; Todaka, Satoshi; Kobayashi, Kaori; Ohishi, Masatoshi

    2017-04-01

    Context. Hydantoin (Imidazolidine-2, 4-dione, C3H4N2O2) is a five-membered heterocyclic compound that is known to arise from prebiotic molecules such as glycolic acid and urea, and to give the simplest amino acid, glycine, by hydrolysis under acidic condition. The gas chromatography combined with the mass spectrometry of carbonaceous chondrites lead to the detection of this molecule as well as several kinds of amino acids. Aims: The lack of spectroscopic information, especially on the rotational constants, has prevented us from conducting a search for hydantoin in interstellar space. If a rotational temperature of 100 K is assumed as the kinetic temperature of a star-forming region, the spectral intensity is expected to be at its maximum in the millimeter-wave region. Laboratory spectroscopy of hydantoin in the millimeter-wave region is the most important in providing accurate rest frequencies to be used for astronomical research. Methods: Pure rotational spectra of hydantoin were observed in the millimeter-wave region using the frequency modulated microwave spectrometer at Toho University. Solid hydantoin was heated to around 150 °C to provide appropriate vapor pressure. Quantum chemical calculations suggest that the permanent dipole moment of this molecule lies almost along the b-molecular axis, so that spectral search for b-type R-branch transition has been conducted. Results: Rotational and centrifugal distortion constants up to the fourth order for the ground vibrational state of hydantoin were accurately determined by measuring 161 b-type transitions in the frequency range between 90 and 370 GHz. In addition, we succeeded in assigning 230 satellite lines, which were attributed to the two vibrationally excited states. The spectral intensity ratio of these lines indicates that these states correspond to the low-lying (approximately 150 cm-1 above the ground state) vibrational modes. Conclusions: The frequency catalog of hydantoin in the millimeter-wave range was created for the ground state and for the two low-lying excited states, and are ideal for a future astronomical research. The 1σ frequency accuracy is lower than 100 kHz for the lines with upper-state energy below 200 cm-1, corresponding to a velocity resolution of 0.1 km s-1 at 300 GHz The spectral line list of hydantoin is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A44

  18. Directional Absorption of Parameterized Mountain Waves and Its Influence on the Wave Momentum Transport in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming

    2018-03-01

    The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.

  19. Gravity Probe-B Spacecraft attitude control based on the dynamics of slosh wave-induced fluid stress distribution on rotating dewar container of cryogenic propellant

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1991-01-01

    The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.

  20. Trajectory Control of Small Rotating Projectiles by Laser Sparks

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard

    2015-09-01

    The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.

  1. Effects of counter-rotating-wave terms of the driving field on the spectrum of resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Yan, Yiying; Lü, Zhiguo; Zheng, Hang

    2013-11-01

    We investigate the fluorescence spectrum of a two-level system driven by a monochromatic classical field by the Born-Markovian master equation based on a unitary transformation. The main purpose is to understand the effects of counter-rotating-wave terms of the driving on spectral features of the fluorescence. We have derived an analytical expression for the fluorescence spectrum, which is different from Mollow's theory, while Mollow's result on resonance is the limiting case of ours in moderately weak driving regimes. Our results demonstrate precisely that the counter-rotating-wave terms of the driving play an important role in the fluorescence spectrum for intense driving: (i) the counter-rotating coupling suppresses the red sideband in the Mollow triplet and it enhances the blue one in explicitly contrast to the well-known equal intensity of the sideband in Mollow's theory, (ii) the higher-order Mollow triplets appear as a characteristic spectral feature arising from counter-rotating-wave terms of the driving, and (iii) a significant frequency shift of the sidebands is observed, which depends on both the detuning and driving strength.

  2. The Atmospheric Dynamics of Venus

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, Agustín; Lebonnois, Sebastien; Imamura, Takeshi; Read, Peter; Luz, David

    2017-11-01

    We review our current knowledge of the atmospheric dynamics of Venus prior to the Akatsuki mission, in the altitude range from the surface to approximately the cloud tops located at about 100 km altitude. The three-dimensional structure of the wind field in this region has been determined with a variety of techniques over a broad range of spatial and temporal scales (from the mesoscale to planetary, from days to years, in daytime and nighttime), spanning a period of about 50 years (from the 1960s to the present). The global panorama is that the mean atmospheric motions are essentially zonal, dominated by the so-called super-rotation (an atmospheric rotation that is 60 to 80 times faster than that of the planetary body). The zonal winds blow westward (in the same direction as the planet rotation) with a nearly constant speed of ˜ 100 m s^{-1} at the cloud tops (65-70 km altitude) from latitude 50°N to 50°S, then decreasing their speeds monotonically from these latitudes toward the poles. Vertically, the zonal winds decrease with decreasing altitude towards velocities ˜ 1-3 m s^{-1} in a layer of thickness ˜ 10 km close to the surface. Meridional motions with peak speeds of ˜ 15 m s^{-1} occur within the upper cloud at 65 km altitude and are related to a Hadley cell circulation and to the solar thermal tide. Vertical motions with speeds ˜1-3 m s^{-1} occur in the statically unstable layer between altitudes of ˜ 50 - 55 km. All these motions are permanent with speed variations of the order of ˜10%. Various types of wave, from mesoscale gravity waves to Rossby-Kelvin planetary scale waves, have been detected at and above cloud heights, and are considered to be candidates as agents for carrying momentum that drives the super-rotation, although numerical models do not fully reproduce all the observed features. Momentum transport by atmospheric waves and the solar tide is thought to be an indispensable component of the general circulation of the Venus atmosphere. Another conspicuous feature of the atmospheric circulation is the presence of polar vortices. These are present in both hemispheres and are regions of warmer and lower clouds, seen prominently at infrared wavelengths, showing a highly variable morphology and motions. The vortices spin with a period of 2-3 days. The South polar vortex rotates around a geographical point which is itself displaced from the true pole of rotation by ˜ 3 degrees. The polar vortex is surrounded and constrained by the cold collar, an infrared-dark region of lower temperatures. We still lack detailed models of the mechanisms underlying the dynamics of these features and how they couple (or not) to the super-rotation. The nature of the super-rotation relates to the angular momentum stored in the atmosphere and how it is transported between the tropics and higher latitudes, and between the deep atmosphere and upper levels. The role of eddy processes is crucial, but likely involves the complex interaction of a variety of different types of eddy, either forced directly by radiative heating and mechanical interactions with the surface or through various forms of instability. Numerical models have achieved some significant recent success in capturing some aspects of the observed super-rotation, consistent with the scenario discussed by Gierasch (J. Atmos. Sci. 32:1038-1044, 1975) and Rossow and Williams (J. Atmos. Sci. 36:377-389, 1979), but many uncertainties remain, especially in the deep atmosphere. The theoretical framework developed to explain the circulation in Venus's atmosphere is reviewed, as well as the numerical models that have been built to elucidate the super-rotation mechanism. These tools are used to analyze the respective roles of the different waves in the processes driving the observed motions. Their limitations and suggested directions for improvements are discussed.

  3. Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.

    1979-01-01

    Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.

  4. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    NASA Technical Reports Server (NTRS)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.

    2014-01-01

    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  5. Kinetic Monte Carlo simulations of travelling pulses and spiral waves in the lattice Lotka-Volterra model.

    PubMed

    Makeev, Alexei G; Kurkina, Elena S; Kevrekidis, Ioannis G

    2012-06-01

    Kinetic Monte Carlo simulations are used to study the stochastic two-species Lotka-Volterra model on a square lattice. For certain values of the model parameters, the system constitutes an excitable medium: travelling pulses and rotating spiral waves can be excited. Stable solitary pulses travel with constant (modulo stochastic fluctuations) shape and speed along a periodic lattice. The spiral waves observed persist sometimes for hundreds of rotations, but they are ultimately unstable and break-up (because of fluctuations and interactions between neighboring fronts) giving rise to complex dynamic behavior in which numerous small spiral waves rotate and interact with each other. It is interesting that travelling pulses and spiral waves can be exhibited by the model even for completely immobile species, due to the non-local reaction kinetics.

  6. Rotational superradiant scattering in a vortex flow

    NASA Astrophysics Data System (ADS)

    Torres, Theo; Patrick, Sam; Coutant, Antonin; Richartz, Maurício; Tedford, Edmund W.; Weinfurtner, Silke

    2017-09-01

    When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% +/- 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole, as well as to hydrodynamics, due to the close relation to over-reflection instabilities.

  7. The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice.

    PubMed

    Qian, Yu; Zhang, Zhaoyang

    2016-01-01

    In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.

  8. Eckhaus-Benjamin-Feir Instability in Rotating Convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Ecke, R.E.

    1997-06-01

    We report experimental measurements of a traveling-wave state in rotating Rayleigh-B{acute e}nard convection. The fluid was water with a Prandtl number of 6.3 and a dimensionless rotation rate of 274. The marginal and Eckhaus-Benjamin-Feir stability boundaries were determined and the local amplitude and wave number were obtained from demodulation of shadowgraph images. The phase-diffusion coefficient and group velocity were measured in the stable wave number band. This system was found to be well described by the one-dimensional complex Ginzburg-Landau equation. {copyright} {ital 1997} {ital The American Physical Society}

  9. Vibrational and rotational transitions in low-energy electron-diatomic-molecule collisions. I - Close-coupling theory in the moving body-fixed frame. II - Hybrid theory and close-coupling theory: An /l subscript z-prime/-conserving close-coupling approximation

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.

    1977-01-01

    A detailed vibrational-rotational (V-R) close-coupling formulation of electron-diatomic-molecule scattering is developed in which the target molecular axis is chosen to be the z-axis and the resulting coupled differential equation is solved in the moving body-fixed frame throughout the entire interaction region. The coupled differential equation and asymptotic boundary conditions in the body-fixed frame are given for each parity, and procedures are outlined for evaluating V-R transition cross sections on the basis of the body-fixed transition and reactance matrix elements. Conditions are discussed for obtaining identical results from the space-fixed and body-fixed formulations in the case where a finite truncated basis set is used. The hybrid theory of Chandra and Temkin (1976) is then reformulated, relevant expressions and formulas for the simultaneous V-R transitions of the hybrid theory are obtained in the same forms as those of the V-R close-coupling theory, and distorted-wave Born-approximation expressions for the cross sections of the hybrid theory are presented. A close-coupling approximation that conserves the internuclear axis component of the incident electronic angular momentum (l subscript z-prime) is derived from the V-R close-coupling formulation in the moving body-fixed frame.

  10. Nearshore sandbar rotation at single-barred embayed beaches

    NASA Astrophysics Data System (ADS)

    Blossier, B.; Bryan, K. R.; Daly, C. J.; Winter, C.

    2016-04-01

    The location of a shore-parallel nearshore sandbar derived from 7 years of video imagery data at the single-barred embayed Tairua Beach (NZ) is investigated to assess the contribution of barline rotation to the overall morphodynamics of sandbars in embayed environments and to characterize the process of rotation in relation to external conditions. Rotation induces cross-shore barline variations at the embayment extremities on the order of magnitude of those induced by alongshore uniform cross-shore migration of the bar. Two semiempirical models have been developed to relate the barline cross-shore migration and rotation to external wave forcing conditions. The rotation model is directly derived from the cross-shore migration model. Therefore, its formulation advocates for a primary role of cross-shore processes in the rotation of sandbars at embayed beaches. The orientation evolves toward an equilibrium angle directly related to the alongshore wave energy gradient due to two different mechanisms. Either the bar extremities migrate in opposite directions with no overall cross-shore bar migration (pivotal rotation) or the rotation relates to an overall migration of the barline which is not uniform along the beach (migration-driven rotation). Migration and rotation characteristic response times are similar, ranging from 10 to 30 days for mild and energetic wave conditions and above 200 days during very calm conditions or when the bar is located far offshore.

  11. Drift waves control using emissive cathodes in the laboratory

    NASA Astrophysics Data System (ADS)

    Plihon, N.; Desangles, V.; De Giorgio, E.; Bousselin, G.; Marino, R.; Pustelnik, N.; Poye, A.

    2017-12-01

    Low frequency plasma fluctuations are known to be the cause of strong transport perpendicular to magnetic guiding field line. These low frequency drift waves have been studied in linear devices in the laboratory over the last two decades. Their excitation or mitigation have been addressed using different drives, such as ring biasing or electromagnetic low frequency fields. Here we present an experimental characterization of the behavior of drift waves when the profile of the background plasma rotation is controlled using hot emissive cathodes. We show that electron emission from the cathodes modify the plasma potential, which in turn controls the rotation profile. Mitigation or enhancement of drift waves (on the amplitude or azimuthal mode number) is observed depending on the plasma rotation profile.

  12. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    PubMed

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  13. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.

  14. Superconducting resonators as beam splitters for linear-optics quantum computation.

    PubMed

    Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P

    2010-06-11

    We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.

  15. Extension of the measurement, assignment, and fit of the rotational spectrum of the two-top molecule methyl acetate

    NASA Astrophysics Data System (ADS)

    Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Shipman, Steven T.; Mae, Yoshiaki; Hirose, Kazue; Hatanaka, Shota; Kobayashi, Kaori

    2014-05-01

    New and previous spectroscopic data were recorded for the two-top molecule methyl acetate using five spectrometers in four different labs: a room temperature chirped-pulse Fourier transform microwave (FTMW) spectrometer in the frequency range from 8.7 to 26.5 GHz, two molecular beam FTMW spectrometers (2-40 GHz), a free jet absorption Stark-modulated spectrometer (60-78 GHz), and a room temperature millimeter-wave spectrometer (44-68 GHz). Approximately 800 new lines with J up to 40 and K up to 16 were assigned. In total, 1603 lines were fitted with 34 parameters using an internal rotation Hamiltonian in the Rho Axis Method (RAM) and the program BELGI-Cs-2tops to standard deviations close to the experimental uncertainties. More precise determinations of the top-top interaction and the J, K dependent parameters were carried out.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Leo C.; Yagi, Kent; Yunes, Nicolás, E-mail: leostein@astro.cornell.edu

    The gravitational field outside of astrophysical black holes is completely described by their mass and spin frequency, as expressed by the no-hair theorems. These theorems assume vacuum spacetimes, and thus they apply only to black holes and not to stars. Despite this, we analytically find that the gravitational potential of arbitrarily rapid, rigidly rotating stars can still be described completely by only their mass, spin angular momentum, and quadrupole moment. Although these results are obtained in the nonrelativistic limit (to leading order in a weak-field expansion of general relativity, GR), they are also consistent with fully relativistic numerical calculations ofmore » rotating neutron stars. This description of the gravitational potential outside the source in terms of just three quantities is approximately universal (independent of equation of state). Such universality may be used to break degeneracies in pulsar and future gravitational wave observations to extract more physics and test GR in the strong-field regime.« less

  17. How well can ultracompact bodies imitate black hole ringdowns?

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Pappas, George

    2018-02-01

    The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general-relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow-rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ by as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near-future Advanced LIGO/Virgo searches.

  18. Communications: Development and characterization of a source of rotationally cold, enriched para-H3+.

    PubMed

    Tom, Brian A; Mills, Andrew A; Wiczer, Michael B; Crabtree, Kyle N; McCall, Benjamin J

    2010-02-28

    In an effort to develop a source of H(3)(+) that is almost entirely in a single quantum state (J=K=1), we have successfully generated a plasma that is enriched to approximately 83% in para-H(3)(+) at a rotational temperature of 80 K. This enrichment is a result of the nuclear spin selection rules at work in hydrogenic plasmas, which dictate that only para-H(3)(+) will form from para-H(2), and that para-H(3)(+) can be converted to ortho-H(3)(+) by subsequent reaction with H(2). This is the first experimental study in which the H(2) and H(3) (+) nuclear spin selection rules have been observed at cold temperatures. The ions were produced from a pulsed solenoid valve source, cooled by supersonic expansion, and interrogated via continuous-wave cavity ringdown spectroscopy.

  19. A theoretical investigation of noise reduction through the cylindrical fuselage of a twin-engine, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bhat, R. B.; Mixson, J. S.

    1978-01-01

    Interior noise in the fuselage of a twin-engine, propeller-driven aircraft with two propellers rotating in opposite directions is studied analytically. The fuselage was modeled as a stiffened cylindrical shell with simply supported ends, and the effects of stringers and frames were averaged over the shell surface. An approximate mathematical model of the propeller noise excitation was formulated which includes some of the propeller noise characteristics such as sweeping pressure waves around the sidewalls due to propeller rotation and the localized nature of the excitation with the highest levels near the propeller plane. Results are presented in the form of noise reduction, which is the difference between the levels of external and interior noise. The influence of propeller noise characteristics on the noise reduction was studied. The results indicate that the sweep velocity of the excitation around the fuselage sidewalls is critical to noise reduction.

  20. Two mechanisms of resonance overlapping in excitation of azimuthal surface waves by rotating relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-filled metallic waveguides with a stationary axial magnetic field. These waves with extraordinary polarization can effectively interact with relativistic electron beams rotating along large Larmor orbits in the gap, which separates the plasma column from the waveguide wall. Both widening the layer and increasing the beam particle density are demonstrated to cause resonance overlapping seen from the perspective of the growth rate dependence on the effective wave number.

  1. Effect of Faraday rotation on the circular polarization of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.

    1974-01-01

    The effect of Faraday rotation on the circular polarization of an electromagnetic wave propagating through a magnetized plasma is calculated for various limits of the plasma and wave parameters appropriate to a 30-Hz wave in the Crab Nebula. It is shown that a static magnetic field of the proper geometry and only a few times stronger than the wave field can reduce the circular polarization of the nonlinear inverse Compton radiation to a value below the observed upper limit.-

  2. Rigid rotators. [deriving the time-independent energy states associated with rotational motions of the molecule

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.

  3. Possible acceleration of cosmic rays in a rotating system: Uehling-Uhlenbeck model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwang-Hua, Chu Rainer, E-mail: 1559877413@qq.com

    2016-11-15

    We illustrate the possible acceleration of cosmic rays passing through a kind of amplification channel (via diffusion modes of propagating plane-wave fronts) induced by a rotating system. Our analysis is mainly based on the quantum discrete kinetic model (considering a discrete Uehling-Uhlenbeck collision term), which has been used to study the propagation of plane (e.g., acoustic) waves in a system of rotating gases.

  4. Direct Numerical Simulation of Complex Turbulence

    NASA Astrophysics Data System (ADS)

    Hsieh, Alan

    Direct numerical simulations (DNS) of spanwise-rotating turbulent channel flow were conducted. The data base obtained from these DNS simulations were used to investigate the turbulence generation cycle for simple and complex turbulence. For turbulent channel flow, three theoretical models concerning the formation and evolution of sublayer streaks, three-dimensional hairpin vortices and propagating plane waves were validated using visualizations from the present DNS data. The principal orthogonal decomposition (POD) method was used to verify the existence of the propagating plane waves; a new extension of the POD method was derived to demonstrate these plane waves in a spatial channel model. The analyses of coherent structures was extended to complex turbulence and used to determine the proper computational box size for a minimal flow unit (MFU) at Rob < 0.5. Proper realization of Taylor-Gortler vortices in the highly turbulent pressure region was demonstrated to be necessary for acceptably accurate MFU turbulence statistics, which required a minimum spanwise domain length Lz = pi. A dependence of MFU accuracy on Reynolds number was also discovered and MFU models required a larger domain to accurately approximate higher-Reynolds number flows. In addition, the results obtained from the DNS simulations were utilized to evaluate several turbulence closure models for momentum and thermal transport in rotating turbulent channel flow. Four nonlinear eddy viscosity turbulence models were tested and among these, Explicit Algebraic Reynolds Stress Models (EARSM) obtained the Reynolds stress distributions in best agreement with DNS data for rotational flows. The modeled pressure-strain functions of EARSM were shown to have strong influence on the Reynolds stress distributions near the wall. Turbulent heatflux distributions obtained from two explicit algebraic heat flux models consistently displayed increasing disagreement with DNS data with increasing rotation rate. Results were also obtained regarding flow control of fully-developed spatially-evolving turbulent channel flow using phononic subsurface structures. Fluid-structure interaction (FSI) simulations were conducted by attaching phononic structures to the bottom wall of a turbulent channel flow field and reduction of turbulent kinetic energy was observed for different phononic designs.

  5. The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice

    PubMed Central

    Qian, Yu; Zhang, Zhaoyang

    2016-01-01

    In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects. PMID:26900841

  6. Theoretical calculations of rotationally inelastic collisions of He with NaK(A (1)Σ(+)): Transfer of population, orientation, and alignment.

    PubMed

    Malenda, R F; Price, T J; Stevens, J; Uppalapati, S L; Fragale, A; Weiser, P M; Kuczala, A; Talbi, D; Hickman, A P

    2015-06-14

    We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A(1)Σ(+)) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B(λ)(j, j') for each j → j' transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j' between 0 and 50, and total (translational and rotational) energies in the range 0.0002-0.0025 a.u. (∼44-550 cm(-1)). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j'. Finally, we compare the exact quantum results for j → j' transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.

  7. Homogeneous wave turbulence driven by tidal flows

    NASA Astrophysics Data System (ADS)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  8. Experimental study of inertial waves in a spherical shell induced by librations of the inner sphere

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Jahangir, Saad; Egbers, Christoph

    2015-04-01

    Many planetary bodies do not rotate with a constant velocity but undergo rotations with superposed oscillations called longitudinal librations. This is the case e.g. for the Earth's moon, Mars' moon, Mercury and many other moons of Jupiter and Saturn and some of them have a solid inner core and a molten outer core. It is worth to know the interaction between the libration of the core and the interior of the fluid to understand tidal heating, fluid mixing, and the generation of magnetic fields. Here we present an experimental investigation of inertial waves in a spherical shell. The shell rotates with a mean angular velocity Ω around its vertical axis overlaid by a time periodic oscillation of the inner sphere in the range 0 < ω < 2Ω, in order to excite inertial waves with a known frequency. We want to show the influence of the libration amplitude ɛ on different libration frequencies ω and how efficient libration is, to excite inertial waves in the given frequency range. For low ω and high ɛ instability starts to grow and, beside the excited inertial waves, several low frequency structures can be found. Quantitative PIV analyses of the horizontal plane in the co-rotation frame show clear spiral structures with different wave numbers for high libration amplitudes due to strong shear, similar to differential rotation. Another question, we like to address, is whether high libration amplitudes can also excite very low frequency Rossby wave structures? If the frequency increases, it can be seen from Poincaré plots that large attractor windows for inertial waves appear. We want to show PIV analyses for such flows dominated by wave attractors. It is known that for large excitation frequencies subharmonic parametric instability starts to grow and triads will be excited. Our experimental data show hints for the existence of triads and preliminary results will be discussed.

  9. Single-station 6C beamforming

    NASA Astrophysics Data System (ADS)

    Nakata, N.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.

  10. On the potential of seismic rotational motion measurements for extraterrestrial seismology

    NASA Astrophysics Data System (ADS)

    Schmelzbach, Cedric; Sollberger, David; Khan, Amir; Greenhalgh, Stewart; Van Renterghem, Cederic; Robertsson, Johan

    2017-04-01

    Classically, seismological recordings consist of measurements of translational ground motion only. However, in addition to three vector components of translation there are three components of rotation to consider, leading to six degrees of freedom. Of particular interest is thereby the fact that measuring rotational motion means isolating shear (S) waves. Recording the rotational motion requires dedicated rotational sensors. Alternatively, since the rotational motion is given by the curl of the vectorial displacements, the rotational motion around the two horizontal axes can be computed from the horizontal spatial gradients of vertical translational recordings if standard translational seismometers are placed in an areal array at the free surface. This follows from the zero stress free surface condition. Combining rotational and translational motion measurements opens up new ways of analyzing seismic data, such as facilitating much improved arrival identification and wavefield separation (e.g., P-/S-wave separation), and local slowness (arrival direction and velocity) determination. Such combined measurements maximize the seismic information content that a single six-component station or a small station array can provide, and are of particular interest for sparse or single-station measurements such as in extraterrestrial seismology. We demonstrate the value of the analysis of combined translational and rotational recordings by re-evaluating data from the Apollo 17 lunar seismic profiling experiment (LSPE). The LSPE setup consisted of four vertical-component geophones arranged in a star-like geometry. This areal receiver layout enables computing the horizontal spatial gradients by spatial finite differencing of the vertical-component data for two perpendicular directions and, hence, the estimation of rotational motion around two horizontal axes. Specifically, the recorded seismic waveform data originated from eight explosive packages as well as from continuously listening to the natural lunar seismic activity of moonquakes. As an example, the combined analysis of translational and rotational motion from the active-source LSPE data provides, for the first time, the possibility to extract S-wave information from the enigmatic and reverbatory lunar seismic waveform data, which hithertofore had masked later arriving S-waves. The identification of S-waves enables to characterize the shallow lunar crust in a full elastic sense. The resultant Poisson's ratio profile allows discriminating shallow basalt layers of different degree of fracturing. Our successful analysis of the Apollo 17 data highlights the anticipated significant value of rotational measurements for future extraterrestrial seismology missions.

  11. Nonlinear travelling waves in rotating Hagen–Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Pier, Benoît; Govindarajan, Rama

    2018-03-01

    The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.

  12. Rotating magnetic shallow water waves and instabilities in a sphere

    NASA Astrophysics Data System (ADS)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  13. Non-ideal magnetohydrodynamics on a moving mesh

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  14. RoMi: Refraction Microtremor Using Rotational Seismometers

    NASA Astrophysics Data System (ADS)

    Clark, B.; Abbott, R. E.; Knox, H. A.; Eimer, M. O.; Hart, D. M.; Skaggs, J.; Denning, J. T.

    2013-12-01

    We present the results of a shallow shear-wave velocity study that utilized both traditional geophones and a newly developed rotational seismometer (Applied Technology Associates ARS-16). We used Refraction Microtremor (ReMi), a method developed by John N. Louie, during processing to determine both Rayleigh and Love wave dispersion curves using both vertical and horizontal sources. ReMi uses a distance-time (x-t) wavefield transformation technique to image the dispersion curve in slowness-frequency (p-f) space. In the course of the ReMi processing, unwanted P waves are transformed into p-f space. As rotational seismometers are insensitive to P waves, they should prove to be superior sensors for Love wave studies, as those P waves would not interfere with interpretation of the p-f wavefield. Our results show that despite having one-fifth the geophone signal-to-noise ratio in the distance-time wavefield, the ARS-16 produced superior results in the p-f wavefield. Specifically, we found increases of up to 50% in ReMi spectral ratio along the dispersion curve. This implies that as more quiet and sensitive rotational sensors are developed, deploying rotational seismometers instead of traditional sensors will yield significantly better results. This will ultimately improve shallow shear-wave velocity resolution, which is vital for calculating seismic hazard. This data was collected at Sandia National Laboratories' Facility for Analysis, Calibration, and Testing (FACT) located in Albuquerque, NM. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    NASA Astrophysics Data System (ADS)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  16. Wave Augmented Diffuser for Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)

    2001-01-01

    A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.

  17. Trapping of high-energy electrons into regime of surfatron acceleration by electromagnetic waves in space plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.

    2012-05-15

    The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initialmore » particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.« less

  18. A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue

    NASA Astrophysics Data System (ADS)

    Stokes, M. Dale; Deane, Grant; Collins, Douglas B.; Cappa, Christopher; Bertram, Timothy; Dommer, Abigail; Schill, Steven; Forestieri, Sara; Survilo, Mathew

    2016-09-01

    In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.

  19. Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks

    NASA Astrophysics Data System (ADS)

    Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.

    2017-12-01

    The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.

  20. Capturing the flow beneath water waves.

    PubMed

    Nachbin, A; Ribeiro-Junior, R

    2018-01-28

    Recently, the authors presented two numerical studies for capturing the flow structure beneath water waves (Nachbin and Ribeiro-Junior 2014 Disc. Cont. Dyn. Syst. A 34 , 3135-3153 (doi:10.3934/dcds.2014.34.3135); Ribeiro-Junior et al. 2017 J. Fluid Mech. 812 , 792-814 (doi:10.1017/jfm.2016.820)). Closed orbits for irrotational waves with an opposing current and stagnation points for rotational waves were some of the issues addressed. This paper summarizes the numerical strategies adopted for capturing the flow beneath irrotational and rotational water waves. It also presents new preliminary results for particle trajectories, due to irrotational waves, in the presence of a bottom topography.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).

  1. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    NASA Astrophysics Data System (ADS)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  2. Torsional Alfvén Waves in a Dipolar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nataf, H. C.; Tigrine, Z.; Cardin, P.; Schaeffer, N.

    2017-12-01

    The discovery of torsional Alfvén waves in the Earth's core (Gillet et al, 2010) is a strong motivation for investigating the properties of these waves. Here, we report on the first experimental study of such waves. Alfvén waves are difficult to excite and observe in liquid metals because of their high magnetic diffusivity. Nevertheless, we obtained clear signatures of such diffusive waves in our DTS experiment. In this setup, some 40 liters of liquid sodium are contained between a ro = 210 mm-radius stainless steel outer shell, and a ri = 74 mm-radius copper inner sphere. Both spherical boundaries can rotate independently around a common vertical axis. The inner sphere shells a strong permanent magnet, which produces a nearly dipolar magnetic field whose intensity falls from 175 mT at ri to 8 mT at ro in the equatorial plane. We excite Alfvén waves in the liquid sodium by applying a sudden jerk of the inner sphere. To study the effect of global rotation, which leads to the formation of geostrophic torsional Alfvén waves, we spin the experiment at rotation rates fo = fi up to 15 Hz. The Alfvén wave produces a clear azimuthal magnetic signal on magnetometers installed in a sleeve inside the fluid. We also probe the associated azimuthal velocity field using ultrasound Doppler velocimetry. Electric potentials at the surface of the outer sphere turn out to be very revealing as well. In parallel, we use the XSHELLS magnetohydrodynamics spherical code to model torsional Alfvén waves in the experimental conditions, and beyond. We explore both linear and non-linear regimes. We observe a strong excitation of inertial waves in the equatorial plane, where the wave transits from a region of strong magnetic field to a region dominated by rotation (see figure of meridian map of azimuthal velocity). These novel observations should help deciphering the dynamics of Alfvén waves in planetary cores.

  3. Experimental quantification of nonlinear time scales in inertial wave rotating turbulence

    NASA Astrophysics Data System (ADS)

    Yarom, Ehud; Salhov, Alon; Sharon, Eran

    2017-12-01

    We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.

  4. Mesoscale Waves in Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These two images of Jupiter's atmosphere were taken with the violet filter of the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The images were obtained on June 26, 1996; the lower image was taken approximately one rotation (9 hours) later than the upper image.

    Mesoscale waves can be seen in the center of the upper image. They appear as a series of about 15 nearly vertical stripes; the wave crests are aligned north-south. The wave packet is about 300 kilometers in length and is aligned east-west. In the lower image there is no indication of the waves, though the clouds appear to have been disturbed. Such waves were seen also in images obtained by NASA's Voyager spacecraft in 1979, though lower spatial and time resolution made tracking of features such as these nearly impossible.

    Mesoscale waves occur when the wind shear is strong in an atmospheric layer that is sandwiched vertically between zones of stable stratification. The orientation of the wave crests is perpendicular to the shear. Thus, a wave observation gives information about how the wind direction changes with height in the atmosphere.

    North is at the top of these images which are centered at approximately 15 South latitude and 307 West longitude. In the upper image, each picture element (pixel) subtends a square of about 36 kilometers on a side, and the spacecraft was at a range of more than 1.7 million kilometers from Jupiter. In the lower image, each pixel subtends a square of about 30 kilometers on a side, and the spacecraft was at a range of more than 1.4 million kilometers from Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  6. Relationship between the transverse-field Ising model and the X Y model via the rotating-wave approximation

    NASA Astrophysics Data System (ADS)

    Kiely, Thomas G.; Freericks, J. K.

    2018-02-01

    In a large transverse field, there is an energy cost associated with flipping spins along the axis of the field. This penalty can be employed to relate the transverse-field Ising model in a large field to the X Y model in no field (when measurements are performed at the proper stroboscopic times). We describe the details for how this relationship works and, in particular, we also show under what circumstances it fails. We examine wave-function overlap between the two models and observables, such as spin-spin Green's functions. In general, the mapping is quite robust at short times, but will ultimately fail if the run time becomes too long. There is also a tradeoff between the length of time one can run a simulation out to and the time jitter of the stroboscopic measurements that must be balanced when planning to employ this mapping.

  7. Chiral magnetic effect of light

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya

    2018-05-01

    We study a photonic analog of the chiral magnetic (vortical) effect. We discuss that the vector component of magnetoelectric tensors plays a role of "vector potential," and its rotation is understood as "magnetic field" of a light. Using the geometrical optics approximation, we show that "magnetic fields" cause an anomalous shift of a wave packet of a light through an interplay with the Berry curvature of photons. The mechanism is the same as that of the chiral magnetic (vortical) effect of a chiral fermion, so that we term the anomalous shift "chiral magnetic effect of a light." We further study the chiral magnetic effect of a light beyond geometric optics by directly solving the transmission problem of a wave packet at a surface of a magnetoelectric material. We show that the experimental signal of the chiral magnetic effect of a light is the nonvanishing of transverse displacements for the beam normally incident to a magnetoelectric material.

  8. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-05-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  9. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-06-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  10. Double Resonances and Spectral Scaling in the Weak Turbulence Theory of Rotating and Stratified Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1999-01-01

    In rotating turbulence, stably stratified turbulence, and in rotating stratified turbulence, heuristic arguments concerning the turbulent time scale suggest that the inertial range energy spectrum scales as k(exp -2). From the viewpoint of weak turbulence theory, there are three possibilities which might invalidate these arguments: four-wave interactions could dominate three-wave interactions leading to a modified inertial range energy balance, double resonances could alter the time scale, and the energy flux integral might not converge. It is shown that although double resonances exist in all of these problems, they do not influence overall energy transfer. However, the resonance conditions cause the flux integral for rotating turbulence to diverge logarithmically when evaluated for a k(exp -2) energy spectrum; therefore, this spectrum requires logarithmic corrections. Finally, the role of four-wave interactions is briefly discussed.

  11. High-sensitivity rotation sensing with atom interferometers using Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Özcan, Meriac

    2006-02-01

    In recent years there has been significant activity in research and development of high sensitivity accelerometers and gyroscopes using atom interferometers. In these devices, a fringe shift in the interference of atom de Broglie waves indicates the rotation rate of the interferometer relative to an inertial frame of reference. In both optical and atomic conventional Sagnac interferometers, the resultant phase difference due to rotation is independent of the wave velocity. However, we show that if an atom interforemeter is enclosed in a Faraday cage which is at some potential, the phase difference of the counter-propagating waves is proportional to the inverse square of the particle velocity and it is proportional to the applied potential. This is due to Aharonov-Bohm effect and it can be used to increase the rotation sensitivity of atom interferometers.

  12. Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1988-01-01

    A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.

  13. Millimeter and submillimeter wave spectroscopy of propanal

    NASA Astrophysics Data System (ADS)

    Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Jørgensen, Jes K.; Schlemmer, Stephan

    2017-12-01

    The rotational spectra of the two stable conformers syn- and gauche-propanal (CH3CH2CHO) were studied in the millimeter and submillimeter wave regions from 75 to 500 GHz with the Cologne (Sub-)Millimeter wave Spectrometer. Furthermore, the first excited states associated with the aldehyde torsion and with the methyl torsion, respectively, of the syn-conformer were analyzed. The newly obtained spectroscopic parameters yield better predictions, thus fulfill sensitivity and resolution requirements in new astronomical observations in order to unambiguously assign pure rotational transitions of propanal. This is demonstrated on a radio astronomical spectrum from the Atacama Large Millimeter/submillimeter Array Protostellar Interferometric Line Survey (ALMA-PILS). In particular, an accurate description of observed splittings, caused by internal rotation of the methyl group in the syn-conformer and by tunneling rotation interaction from two stable degenerate gauche-conformers, is reported. The rotational spectrum of propanal is of additional interest because of its two large amplitude motions pertaining to the methyl and the aldehyde group, respectively.

  14. Second-order spherical optoelectronic detector for 3D multi-particles wave emission and propagation in space time domains

    NASA Astrophysics Data System (ADS)

    Romano, Francesco; Cimmino, Rosario F.

    2017-09-01

    This paper concerns a feasibility study on a 2nd order spherical, or three-dimensional, angular momentum and linear momentum detector for photonic radiation applications. It has been developed in order to obtain a paraxial approximation of physical events observed under Coulomb gauge condition, which is essential to compute both the longitudinal and transverse rotational components of the observed 3-D vortex field, generally neglected by conventional detection systems under current usage. Since light and laser beams are neither full transversal or rotational phenomena, to measure directly and in the same time both the energy, mainly not-rotational, related to the relevant part of the linear momentum and the potential solenoidal energy (vortex), related to the angular momentum, 2nd order spherical, or 3-D, detector techniques are required. In addition, direct 2nd order measure techniques enable development of TEM + DEM [17] studies, therefore allowing for monochromatic complex wave detection with a paraxial accuracy in the relativistic time-space domain. Light and optic or Electromagnetic 2nd order 3-D AnM energy may usefully be used in tre-dimensional optical TEM, noTEM, DEM vortex or laser communications The paper illustrates an innovative quadratic order 3-D spherical model detector applied to directly measure a light source power spectrum and compares the performances of this innovative technique with those obtained with a traditional 1st order system. Results from a number of test experiments conducted in cooperation with INAF Observatories of ArcetriFlorence and Medicina-Bologna (Italy), and focused on telescopic observations of the inter-stellar electromagnetic radiations, are also summarized. The innovative quadratic-order spherical detector turns out to be optimal for optical and/or radio telescopes application, optical and optoelectronic sensors development and gravitational wave 2nd order detectors implementation. Although the proposed method is very innovative, it shows a very good adherence with results obtained with the conventional techniques in current usage.

  15. The Faraday rotation experiment. [solar corona

    NASA Technical Reports Server (NTRS)

    Volland, H.; Levy, G. S.; Bird, M. K.; Stelzried, C. T.; Seidel, B. L.

    1984-01-01

    The magnetized plasma of the solar corona was remotely sounded using the Faraday rotation effect. The solar magnetic field together with the electrons of the coronal plasma cause a measurable Faraday rotation effect, since the radio waves of Helios are linearly polarized. The measurement is performed at the ground stations. Alfven waves traveling from the Sun's surface through the corona into interplanetary space are observed. Helios 2 signals penetrating through a region where coronal mass is ejected show wavelike structures.

  16. Rotating spiral waves in fertilized ascidian eggs.

    PubMed

    Ballarò, Benedetto; Reas, Pier Giorgio

    2002-01-01

    Excitable systems modelled by reaction-diffusion equation may be expected to produce quite complex spatial patterns. Winfree [1974] demonstrated experimentally, in the Belousov-Zhabotinskii reaction, the existence of particular waves called rotating spiral waves. Later Keener and Tyson [1986] presented a thorough analysis of these waves in excitable systems. Spiral waves can also be observed in brain tissue (Shibata and Bures [1974]), while it seems that the precursor to cardiac fibrillation is the appearance of rotating waves of electrical impulses (Winfree [1983]). In this work we suppose the appearance of Ca++ spiral waves in the vegetal pole of ascidian egg cells after the first ooplasmic segregation. Previously we observed that (Ballarò and Reas [2000a]), when the myoplasm is completely localized in the vegetal region (excitable stage) and the ascidian egg cell is perturbed by an increase of Ca++ concentration in the culture medium, the cell reacts by showing persistent mechanical waves of contraction which exist as long as the cell is perturbed. Experimentally we observed the production of a polar lobe located in the vegetal region and the change of the inclination of mitotic furrow, after the appearance of a myoplasmic spiral wave in the vegetal pole. So we suppose that the myoplasmic spiral wave is due to a Ca++ spiral wave, and the myoplasmic spiral wave then causes the changes in the shape of the cell (polar lobe, inclination of mitotic furrow, etc.). Moreover we give a simple geometrical description of a spiral wave.

  17. Excitation and propagation of nonlinear waves in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Hanazaki, Hideshi

    1993-09-01

    A numerical study of the nonlinear waves excited in an axisymmetric rotating flow through a circular tube is described. The waves are excited by either an undulation of the tube wall or an obstacle on the axis of the tube. The results are compared with the weakly nonlinear theory (forced KdV equation). The computations are done when the upstream swirling velocity is that of Burgers' vortex type. The flow behaves like the solution of the forced KdV equation, and the upstream advancing of the waves appear even when the flow is critical or slightly supercritical to the fastest inertial wave mode.

  18. Helicons in uniform fields. I. Wave diagnostics with hodograms

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2018-03-01

    The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.

  19. Emission-angle and polarization-rotation effects in the lensed CMB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Antony; Hall, Alex; Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Bornmore » field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.« less

  20. Faraday rotation of Automatic Dependent Surveillance Broadcast (ADS-B) signals as a method of ionospheric characterization

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Kabin, K.; Noel, J. M. A.

    2017-12-01

    Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices which are installed on most commercial aircraft. These radio waves can be detected by satellites in low earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this work we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick model.

  1. The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Tang, Jun; Ma, Jun; Luo, Jin Ming; Yang, Xian Qing

    2018-02-01

    Rotating spiral waves in cardiac tissue are implicated in life threatening cardiac arrhythmias. Experimental and theoretical evidences suggest the inhomogeneities in cardiac tissue play a significant role in the dynamics of spiral waves. Based on a modified 2D cardiac tissue model, the interaction of inhomogeneity on the nearby rigidly rotating spiral wave is numerically studied. The adjacent area of the inhomogeneity is divided to two areas, when the initial rotating center of the spiral tip is located in the two areas, the spiral tip will be attracted and anchor on the inhomogeneity finally, or be repulsed away. The width of the area is significantly dependent on the intensity and size of the inhomogeneity. Our numerical study sheds some light on the mechanism of the interaction of inhomogeneity on the spiral wave in cardiac tissue.

  2. On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame

    NASA Technical Reports Server (NTRS)

    Mahalov, A.

    1994-01-01

    The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction).

  3. Mode cross coupling observations with a rotation sensor

    NASA Astrophysics Data System (ADS)

    Nader-Nieto, M. F.; Igel, H.; Ferreira, A. M.; Al-Attar, D.

    2013-12-01

    The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations. Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of one of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements.

  4. Interaction between spiral and paced waves in cardiac tissue

    PubMed Central

    Agladze, Konstantin; Kay, Matthew W.; Krinsky, Valentin; Sarvazyan, Narine

    2010-01-01

    For prevention of lethal arrhythmias, patients at risk receive implantable cardioverter-defibrillators, which use high-frequency antitachycardia pacing (ATP) to convert tachycardias to a normal rhythm. One of the suggested ATP mechanisms involves paced-induced drift of rotating waves followed by their collision with the boundary of excitable tissue. This study provides direct experimental evidence of this mechanism. In monolayers of neonatal rat cardiomyocytes in which rotating waves of activity were initiated by premature stimuli, we used the Ca2+-sensitive indicator fluo 4 to observe propagating wave patterns. The interaction of the spiral tip with a paced wave was then monitored at a high spatial resolution. In the course of the experiments, we observed spiral wave pinning to local heterogeneities within the myocyte layer. High-frequency pacing led, in a majority of cases, to successful termination of spiral activity. Our data show that 1) stable spiral waves in cardiac monolayers tend to be pinned to local heterogeneities or areas of altered conduction, 2) overdrive pacing can shift a rotating wave from its original site, and 3) the wave break, formed as a result of interaction between the spiral tip and a paced wave front, moves by a paced-induced drift mechanism to an area where it may become unstable or collide with a boundary. The data were complemented by numerical simulations, which was used to further analyze experimentally observed behavior. PMID:17384124

  5. Four-wave mixing in an asymmetric double quantum dot molecule

    NASA Astrophysics Data System (ADS)

    Kosionis, Spyridon G.

    2018-06-01

    The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.

  6. Formation of virtual isthmus: A new scenario of spiral wave death after a decrease in excitability

    NASA Astrophysics Data System (ADS)

    Erofeev, I. S.; Agladze, K. I.

    2015-11-01

    Termination of rotating (spiral) waves or reentry is crucial when fighting with the most dangerous cardiac tachyarrhythmia. To increase the efficiency of the antiarrhythmic drugs as well as finding new prospective ones it is decisive to know the mechanisms how they act and influence the reentry dynamics. The most popular view on the mode of action of the contemporary antiarrhythmic drugs is that they increase the core of the rotating wave (reentry) to that extent that it is not enough space in the real heart for the reentry to exist. Since the excitation in cardiac cells is essentially change of the membrane potential, it relies on the functioning of the membrane ion channels. Thus, membrane ion channels serve as primary targets for the substances, which may serve as antiarrhythmics. At least, the entire group of antiarrhythmics class I (modulating activity of sodium channels) and partially class IV (modulating activity of calcium channels) are believed to destabilize and terminate reentry by decreasing the excitability of cardiac tissue. We developed an experimental model employing cardiac tissue culture and photosensitizer (AzoTAB) to study the process of the rotating wave termination while decreasing the excitability of the tissue. A new scenario of spiral wave cessation was observed: an asymmetric growth of the rotating wave core and subsequent formation of a virtual isthmus, which eventually caused a conduction block and the termination of the reentry.

  7. The generation and propagation of internal gravity waves in a rotating fluid

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.; Chabert Dhieres, G.; Didelle, H.

    1984-01-01

    The present investigation is concerned with an extension of a study conducted bu Maxworthy (1979) on internal wave generation by barotropic tidal flow over bottom topography. A short series of experiments was carried out during a limited time period on a large (14-m diameter) rotating table. It was attempted to obtain, in particular, information regarding the plan form of the waves, the exact character of the flow over the obstacle, and the evolution of the waves. The main basin was a dammed section of a long free surface water tunnel. The obstacle was towed back and forth by a wire harness connected to an electronically controlled hydraulic piston, the stroke and period of which could be independently varied. Attention is given to the evolution of the wave crests, the formation of solitary wave groups the evolution of the three-dimensional wave field wave shapes, the wave amplitudes, and particle motion.

  8. Steepened magnetosonic waves in the high beta plasma surrounding Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Smith, E. J.; Thorne, R. M.; Gosling, J. T.; Matsumoto, H.

    1986-01-01

    Studies of intense hydromagnetic waves at Giacobini-Zinner are extended to investigate the mode and direction of wave propagation. Simultaneous high-resolution measurements of electron density fluctuations demonstrate that long period waves propagate in the magnetosonic mode. Principal axis analyses of the long period waves and accompanying partial rotations show that the sum of the wave phase rotations is 360 deg, indicating that both are parts of the same wave oscillation. The time sequence of the steepened waveforms observed by ICE shows that the waves must propagate towards the Sun with Cph less than Vsw. Observations are consistent with wave generation by resonant ion ring or ion beam instability which predicts right-hand polarized waves propagating in the ion beam (solar) direction. The large amplitudes and small scale sizes of the cometary waves suggest that rapid pitch-angle scattering and energy transfer with energetic ions should occur. Since the waves are highly compressive, first-order Fermi acceleration is forecast.

  9. A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop

    NASA Astrophysics Data System (ADS)

    Ruan, Juan; Zhang, Wei-Gang; Zhang, Hao; Geng, Peng-Cheng; Bai, Zhi-Yong

    2013-06-01

    A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.

  10. Quantum effects in the capture of charged particles by dipolar polarizable symmetric top molecules. I. General axially nonadiabatic channel treatment.

    PubMed

    Auzinsh, M; Dashevskaya, E I; Litvin, I; Nikitin, E E; Troe, J

    2013-08-28

    The rate coefficients for capture of charged particles by dipolar polarizable symmetric top molecules in the quantum collision regime are calculated within an axially nonadiabatic channel approach. It uses the adiabatic approximation with respect to rotational transitions of the target within first-order charge-dipole interaction and takes into account the gyroscopic effect that decouples the intrinsic angular momentum from the collision axis. The results are valid for a wide range of collision energies (from single-wave capture to the classical limit) and dipole moments (from the Vogt-Wannier and fly-wheel to the adiabatic channel limit).

  11. A graph-theoretical representation of multiphoton resonance processes in superconducting quantum circuits

    DOE PAGES

    Jooya, Hossein Z.; Reihani, Kamran; Chu, Shih-I

    2016-11-21

    We propose a graph-theoretical formalism to study generic circuit quantum electrodynamics systems consisting of a two level qubit coupled with a single-mode resonator in arbitrary coupling strength regimes beyond rotating-wave approximation. We define colored-weighted graphs, and introduce different products between them to investigate the dynamics of superconducting qubits in transverse, longitudinal, and bidirectional coupling schemes. In conclusion, the intuitive and predictive picture provided by this method, and the simplicity of the mathematical construction, are demonstrated with some numerical studies of the multiphoton resonance processes and quantum interference phenomena for the superconducting qubit systems driven by intense ac fields.

  12. Continuous-variable quantum teleportation in bosonic structured environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Guangqiang; Zhang Jingtao; Zhu Jun

    2011-09-15

    The effects of dynamics of continuous-variable entanglement under the various kinds of environments on quantum teleportation are quantitatively investigated. Only under assumption of the weak system-reservoir interaction, the evolution of teleportation fidelity is analytically derived and is numerically plotted in terms of environment parameters including reservoir temperature and its spectral density, without Markovian and rotating wave approximations. We find that the fidelity of teleportation is a monotonically decreasing function for Markovian interaction in Ohmic-like environments, while it oscillates for non-Markovian ones. According to the dynamical laws of teleportation, teleportation with better performances can be implemented by selecting the appropriate time.

  13. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE PAGES

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  14. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Fisch, N. J.

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  15. Particle orbits in a force-balanced, wave-driven, rotating torus

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.

  16. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  17. Data Recorded as Juno Entered Magnetosphere

    NASA Image and Video Library

    2016-06-30

    This chart presents data that the Waves investigation on NASA's Juno spacecraft recorded as the spacecraft crossed the bow shock just outside of Jupiter's magnetosphere on June 24, 2016, while approaching Jupiter. Audio accompanies the animation, with volume and pitch correlated to the amplitude and frequency of the recorded waves. The graph is a frequency-time spectrogram with color coding to indicate wave amplitudes as a function of wave frequency (vertical axis, in hertz) and time (horizontal axis, with a total elapsed time of two hours). During the hour before Juno reached the bow shock, the Waves instrument was detecting mainly plasma oscillations just below 10,000 hertz (10 kilohertz). The frequency of these oscillations is related to the local density of electrons; the data yield an estimate of approximately one electron per cubic centimeter (about 16 per cubic inch) in this region just outside Jupiter's bow shock. The broadband burst of noise marked "Bow Shock" is the region of turbulence where the supersonic solar wind is heated and slowed by encountering the Jovian magnetosphere. The shock is analogous to a sonic boom generated in Earth's atmosphere by a supersonic aircraft. The region after the shock is called the magnetosheath. The vertical bar to the right of the chart indicates the color coding of wave amplitude, in decibels (dB) above the background level detected by the Waves instrument. Each step of 10 decibels marks a tenfold increase in wave power. When Juno collected these data, the distance from the spacecraft to Jupiter was about 5.56 million miles (8.95 million kilometers), indicated on the chart as 128 times the radius of Jupiter. Jupiter's magnetic field is tilted about 10 degrees from the planet's axis of rotation. The note of 22 degrees on the chart indicates that at the time these data were recorded, the spacecraft was 22 degrees north of the magnetic-field equator. The "LT" notation is local time on Jupiter at the longitude of the planet directly below the spacecraft, with a value of 6.2 indicating approximately dawn. http://photojournal.jpl.nasa.gov/catalog/PIA20753

  18. Data Recorded as Juno Crossed Jovian Bow Shock

    NASA Image and Video Library

    2016-06-30

    This chart presents data that the Waves investigation on NASA's Juno spacecraft recorded as the spacecraft crossed the bow shock just outside of Jupiter's magnetosphere on June 24, 2016, while approaching Jupiter. Audio accompanies the animation, with volume and pitch correlated to the amplitude and frequency of the recorded waves. The graph is a frequency-time spectrogram with color coding to indicate wave amplitudes as a function of wave frequency (vertical axis, in hertz) and time (horizontal axis, with a total elapsed time of two hours). During the hour before Juno reached the bow shock, the Waves instrument was detecting mainly plasma oscillations just below 10,000 hertz (10 kilohertz). The frequency of these oscillations is related to the local density of electrons; the data yield an estimate of approximately one electron per cubic centimeter (about 16 per cubic inch) in this region just outside Jupiter's bow shock. The broadband burst of noise marked "Bow Shock" is the region of turbulence where the supersonic solar wind is heated and slowed by encountering the Jovian magnetosphere. The shock is analogous to a sonic boom generated in Earth's atmosphere by a supersonic aircraft. The region after the shock is called the magnetosheath. The vertical bar to the right of the chart indicates the color coding of wave amplitude, in decibels (dB) above the background level detected by the Waves instrument. Each step of 10 decibels marks a tenfold increase in wave power. When Juno collected these data, the distance from the spacecraft to Jupiter was about 5.56 million miles (8.95 million kilometers), indicated on the chart as 128 times the radius of Jupiter. Jupiter's magnetic field is tilted about 10 degrees from the planet's axis of rotation. The note of 22 degrees on the chart indicates that at the time these data were recorded, the spacecraft was 22 degrees north of the magnetic-field equator. The "LT" notation is local time on Jupiter at the longitude of the planet directly below the spacecraft, with a value of 6.2 indicating approximately dawn. http://photojournal.jpl.nasa.gov/catalog/PIA20753

  19. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qi, E-mail: q.zhou@damtp.cam.ac.uk; Diamessis, Peter J.

    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes driftmore » cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.« less

  20. Risk Assessment of Face Skin Exposure to UV Irradiance from Different Rotation Angle Ranges

    PubMed Central

    Wang, Fang; Gao, Qian; Deng, Yan; Chen, Rentong; Liu, Yang

    2017-01-01

    Ultraviolet (UV) is one of the environmental pathogenic factors causing skin damage. Aiming to assess the risk of face skin exposure to UV irradiance from different rotation angles, a rotating model was used to monitor the exposure of the skin on the face to UV irradiance, with skin damage action spectra used to determine the biologically effective UV irradiance (UVBEskin) and UVBEskin radiant exposure (HBEskin) causing skin damage. The results indicate that the UVBEskin is directly influenced by variations in rotation angles. A significant decrease of approximately 52.70% and 52.10% in UVBEskin was found when the cheek and nose measurement sites was rotated from 0° to 90°, while a decrease of approximately 62.70% was shown when the forehead measurement sites was rotated from an angle of 0° to 108°. When HBEskin was compared to the exposure limits (ELs; 30 J·m−2), the maximum relative risk ratios (RR) for cheek, nose, and forehead were found to be approximately 2.01, 2.40, and 2.90, respectively, which were all measured at a rotation angle of 0°. The maximal increase in the percentage of the average HBEskin for rotation angles of 60°, 120°, 180°, and 360° facing the sun to ELs were found to be approximately 62.10%, 52.72%, 43.43%, and 26.27% for the cheek; approximately 130.61%, 109.68%, 86.43%, and 50.06% for the nose; and approximately 178.61%, 159.19%, 134.38%, and 83.41% for the forehead, respectively. PMID:28587318

  1. Risk Assessment of Face Skin Exposure to UV Irradiance from Different Rotation Angle Ranges.

    PubMed

    Wang, Fang; Gao, Qian; Deng, Yan; Chen, Rentong; Liu, Yang

    2017-06-06

    Ultraviolet (UV) is one of the environmental pathogenic factors causing skin damage. Aiming to assess the risk of face skin exposure to UV irradiance from different rotation angles, a rotating model was used to monitor the exposure of the skin on the face to UV irradiance, with skin damage action spectra used to determine the biologically effective UV irradiance (UVBE skin ) and UVBE skin radiant exposure (HBE skin ) causing skin damage. The results indicate that the UVBE skin is directly influenced by variations in rotation angles. A significant decrease of approximately 52.70% and 52.10% in UVBE skin was found when the cheek and nose measurement sites was rotated from 0° to 90°, while a decrease of approximately 62.70% was shown when the forehead measurement sites was rotated from an angle of 0° to 108°. When HBE skin was compared to the exposure limits (ELs; 30 J·m -2 ), the maximum relative risk ratios (RR) for cheek, nose, and forehead were found to be approximately 2.01, 2.40, and 2.90, respectively, which were all measured at a rotation angle of 0°. The maximal increase in the percentage of the average HBE skin for rotation angles of 60°, 120°, 180°, and 360° facing the sun to ELs were found to be approximately 62.10%, 52.72%, 43.43%, and 26.27% for the cheek; approximately 130.61%, 109.68%, 86.43%, and 50.06% for the nose; and approximately 178.61%, 159.19%, 134.38%, and 83.41% for the forehead, respectively.

  2. Wave Measurements in Landfast Ice in Svalbard: Evolution of Wave Propagation following Wind Waves to Swell Transition

    NASA Astrophysics Data System (ADS)

    Sutherland, G.; Rabault, J.; Jensen, A.; Christensen, K. H.; Ward, B.; Marchenko, A. V.; Morozov, E.; Gundersen, O.; Halsne, T.; Lindstrøm, E.

    2016-02-01

    The impact of sea-ice cover on propagation of water waves has been studied over five decades, both theoretically and from measurements on the ice. Understanding the interaction between water waves and sea-ice covers is a topic of interest for a variety of purposes such as formulation of ocean models for climate, weather and sea state predictions, and the analysis of pollution dispersion in the Arctic. Our knowledge of the underlying phenomena is still partial, and more experimental data is required to gain further insight into the associated physics. Three Inertial Motion Units (IMUs) have been assessed in the lab and used to perform measurements on landfast ice over 2 days in Tempelfjorden, Svalbard during March 2015. The ice thickness in the measurement area was approximately 60 to 80 cm. Two IMUs were located close to each other (6 meters) at a distance around 180 m from the ice edge. The third IMU was placed 120 m from the ice edge. The data collected contains a transition from high frequency, wind generated waves to lower frequency swell. Drastic changes in wave propagation are observed in relation with this transition. The level of reflected energy obtained from rotational spectra is much higher before the transition to low frequency swell than later on. The correlation between the signal recorded by the IMU closer to the ice edge and the two others IMUs is low during the wind waves dominated period, and increases with incoming swell. The dispersion relation for waves in ice was found to correspond to flexural-gravity waves before the transition and deepwater gravity waves afterwards.

  3. Modeled changes in extreme wave climate for US and US-affiliated Pacific Islands during the 21st century

    NASA Astrophysics Data System (ADS)

    Shope, J. B.; Storlazzi, C. D.; Erikson, L. H.; Hegermiller, C.

    2013-12-01

    Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Waves are the dominant spatially- and temporally-varying processes that influence the coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact the coastal infrastructure, natural and cultural resources, and coastal-related economic activities of these islands. Wave heights, periods, and directions were forecast through 2100 using wind parameter outputs from four coupled atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5., for Representative Concentration Pathways scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive the global WAVEWATCH III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. Although the results show some spatial heterogeneity, overall, the December-February extreme significant wave heights increase from present to mid century and then decrease toward the end of the century; June-August extreme wave heights decrease throughout the century. Peak wave periods decrease west of the International Date Line through all seasons, whereas peak periods increase in the eastern half of the study area; these trends are smaller during December-February and greatest during June-August. Extreme wave directions in equatorial Micronesia during June-August undergo an approximate 30 degree counter-clockwise rotation from primarily northwest to west. The spatial patterns and trends are similar between the two different greenhouse gas emission scenarios, with the magnitude of the trends greater for the higher scenario.

  4. Do inertial wave interactions control the rate of energy dissipation of rotating turbulence?

    NASA Astrophysics Data System (ADS)

    Cortet, Pierre-Philippe; Campagne, Antoine; Machicoane, Nathanael; Gallet, Basile; Moisy, Frederic

    2015-11-01

    The scaling law of the energy dissipation rate, ɛ ~U3 / L (with U and L the characteristic velocity and lengthscale), is one of the most robust features of fully developed turbulence. How this scaling is affected by a background rotation is still a controversial issue with importance for geo and astrophysical flows. At asymptotically small Rossby numbers Ro = U / ΩL , i.e. in the weakly nonlinear limit, wave-turbulence arguments suggest that ɛ should be reduced by a factor Ro . Such scaling has however never been evidenced directly, neither experimentally nor numerically. We report here direct measurements of the injected power, and therefore of ɛ, in an experiment where a propeller is rotating at a constant rate in a large volume of fluid rotating at Ω. In co-rotation, we find a transition between the wave-turbulence scaling at small Ro and the classical Kolmogorov law at large Ro . The transition between these two regimes is characterized from experiments varying the propeller and tank dimensions. In counter-rotation, the scenario is much richer with the observation of an additional peak of dissipation, similar to the one found in Taylor-Couette experiments.

  5. The Microwave Spectroscopy Study of 1,2-DIMETHOXYETHANE

    NASA Astrophysics Data System (ADS)

    Li, Weixing; Vigorito, Annalisa; Calabrese, Camilla; Evangelisti, Luca; Favero, Laura B.; Maris, Assimo; Melandri, Sonia

    2017-06-01

    With Pulsed-Jet Fourier Transform MicroWave (PJ-FTMW) spectroscopy and Stark modulated Free Jet Millimeter-Wave absorption (FJ-AMMW) spectroscopy, the rotational spectra of two conformers of 1,2-Dimethoxyethane were identified and characterized. Besides the normal species, the spectra of all the mono-substituted ^{13}C isotopologues in natural abundance were also measured. By fitting the rotational transitions split by the methyl internal rotations using both XIAM and ERHAM programs, the spectroscopic parameters were obtained and compared. The rotational constants indicated the conformers to be TGT and TGG', respectively. With the rotational constants of the normal and ^{13}C species, the coordinates of the substituted carbon atoms could be calculated with Kraitchmann's equations. The carbon-frameworks further confirmed the assignment of the two conformations. The V_{3} barriers of the two methyl groups' internal rotations were also experimentally determined.

  6. On hydromagnetic oscillations in a rotating cavity.

    NASA Technical Reports Server (NTRS)

    Gans, R. F.

    1971-01-01

    Time-dependent hydromagnetic phenomena in a rotating spherical cavity are investigated in the framework of an interior boundary-layer expansion. The first type of wave is a modification of the hydrodynamic inertial wave, the second is a pseudo-geostrophic wave and is involved in spinup, and the third is related to the MAC waves of Braginskii (1967). It is shown that the MAC waves must satisfy more than the usual normal boundary conditions, and that reference must be made to the boundary-layer solution to resolve the ambiguity regarding which conditions are to be taken. The boundary-layer structure is investigated in detail to display the interactions between applied field, viscosity, electrical conductivity, frequency and latitu de.

  7. Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces

    NASA Astrophysics Data System (ADS)

    Alesemi, Meshari

    2018-04-01

    The objective of this research is to illustrate the effectiveness of the thermal relaxation time based on the theory of Lord-Shulman (L-S), Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic magneto-thermoelastic medium. Assuming the elastic medium is rotating with stable angular velocity and the imposed magnetic field is parallel to the boundary of the half-space. The basic equations of a transversely isotropic rotating magneto-thermoelastic medium are formulated according to thermoelasticity theory of Lord-Shulman (L-S). Next to that, getting the velocity equation which is illustrated to show existence of three quasi-plane waves propagating in the medium. The amplitude ratios coefficients of these plane waves have been given and then computed numerically and plotted graphically to demonstrate the influences of the rotation on the Zinc material.

  8. Faraday Rotation of Automatic Dependent Surveillance-Broadcast (ADS-B) Signals as a Method of Ionospheric Characterization

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Kabin, K.; Noël, J.-M.

    2017-10-01

    Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices that are installed on most commercial aircraft. These radio waves can be detected by satellites in low Earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this manuscript we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick ionospheric model.

  9. Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness

    NASA Technical Reports Server (NTRS)

    Wood, C. D.; Stewart, J. J.; Wood, M. J.; Manno, J. E.; Manno, B. R.

    1990-01-01

    In addition to nausea and vomiting, motion sickness involves slowing of brain waves, loss of performance, inhibition of gastric motility and the Sopite Syndrome. The therapeutic effects of antimotion sickness drugs on these reactions were evaluated. The subjects were rotated to the M-III end-point of motion sickness. Intramuscular (IM) medications were then administered. Side effects before and after rotation were reported on the Cornell Medical Index. Brain waves were recorded on a Grass Model 6 Electroencephalograph (EEG), and gastric emptying was studied after an oral dose of 1 mCi Technetium 99m DTPA in 10 oz. isotonic saline. An increase in dizziness and drowsiness was reported with placebo after rotation. This was not prevented by IM scopolamine 0.1 mg or ephedrine 25 mg. EEG recordings indicated a slowing of alpha waves with some thea and delta waves from the frontal areas after rotation. IM ephedine and dimenhydrinate counteracted the slowing while 0.3 mg scopolamine had an additive effect. Alterations of performance on the pursuit meter correlated with the brain wave changes. Gastric emptying was restored by IM metoclopramide. Ephedrine IM but not scopolamine is effective for some of the secondary effects of motion sickness after it is established.

  10. Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform.

    PubMed

    Mendlovic, D; Ozaktas, H M; Lohmann, A W

    1994-09-10

    Two definitions of a fractional Fourier transform have been proposed previously. One is based on the propagation of a wave field through a graded-index medium, and the other is based on rotating a function's Wigner distribution. It is shown that both definitions are equivalent. An important result of this equivalency is that the Wigner distribution of a wave field rotates as the wave field propagates through a quadratic graded-index medium. The relation with ray-optics phase space is discussed.

  11. Estimates of Rayleigh-to-Love wave ratio in microseisms by co-located Ring Laser and STS-2

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wassermann, Joachim; Schreiber, Ulrich; Gebauer, André

    2015-04-01

    In older studies of microseisms (seismic noise), it was often assumed that microseisms, especially the secondary microseisms (0.1-0.3 Hz), mainly consist of Rayleigh waves. However, it has become clear that there exists a large amount of Love-wave energy mixed in it (e.g., Nishida et al., 2008). However, its confirmation is not necessarily straightforward and often required an array of seismographs. In this study, we take advantage of two co-located instruments, a Ring Laser and an STS-2 type seismograph, at Wettzell (WET), Germany (Schreiber et al., 2009). The Ring Laser records rotation (its vertical component) and is thus only sensitive to Love waves. The vertical component of STS-2 seismograph is only sensitive to Rayleigh waves. Therefore, a combination of the two instruments provides a unique opportunity to separate Rayleigh waves and Love waves in microseisms. The question we address in this paper is the ratio of Rayleigh waves to Love waves in microseisms. For both instruments, we analyze data from 2009 to 2014. Our basic approach is to create stacked vertical acceleration spectra for Rayleigh waves from STS-2 and stacked transverse acceleration spectra for Love waves from Ring Laser. The two spectra at Earth's surface can then be compared directly by their amplitudes. The first step in our analysis is a selection of time portions (each six-hour long) that are least affected by earthquakes. We do this by examining the GCMT (Global Centroid Moment Tensor) catalogue and also checking the PSDs for various frequency ranges. The second step is to create stacked (averaged) Fourier spectra from those selected time portions. The key is to use the same time portions for the STS-2 and the Ring Laser data so that the two can be directly compared. The vertical spectra from STS-2 are converted to acceleration spectra. The Ring Laser rotation spectra are first obtained in the unit of radians/sec (rotation rate). But as the Ring Laser spectra are dominated by fundamental-mode Love waves, the rotation spectra can be converted to transverse (SH) acceleration by multiplying them by the factor 2xCp where Cp is the Love-wave phase velocity. We used a seismic model by Fichtner et al. (2013) at WET to estimate Love-wave phase velocity. This conversion from rotation to transverse acceleration was first extensively used by Igel et al. (2005) for the analysis of lower frequency Love waves and the same relation holds for our spectral data. The two spectra provide the ratio of surface amplitudes. In the frequency range of secondary microseisms (0.10-0.35 Hz), they are comparable; near the spectral peak (~0.20 Hz), Rayleigh waves are about 20 percent larger in amplitudes but outside this peak region, Love waves have comparable or slightly larger amplitudes than Rayleigh waves. Therefore, the secondary microseisms at WET consist of similar contributions from Rayleigh waves and Love waves.

  12. Fast decomposition of two ultrasound longitudinal waves in cancellous bone using a phase rotation parameter for bone quality assessment: Simulation study.

    PubMed

    Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Kanai, Hiroshi; Izumi, Shin-Ichi

    2017-10-01

    Ultrasound signals that pass through cancellous bone may be considered to consist of two longitudinal waves, which are called fast and slow waves. Accurate decomposition of these fast and slow waves is considered to be highly beneficial in determination of the characteristics of cancellous bone. In the present study, a fast decomposition method using a wave transfer function with a phase rotation parameter was applied to received signals that have passed through bovine bone specimens with various bone volume to total volume (BV/TV) ratios in a simulation study, where the elastic finite-difference time-domain method is used and the ultrasound wave propagated parallel to the bone axes. The proposed method succeeded to decompose both fast and slow waves accurately; the normalized residual intensity was less than -19.5 dB when the specimen thickness ranged from 4 to 7 mm and the BV/TV value ranged from 0.144 to 0.226. There was a strong relationship between the phase rotation value and the BV/TV value. The ratio of the peak envelope amplitude of the decomposed fast wave to that of the slow wave increased monotonically with increasing BV/TV ratio, indicating the high performance of the proposed method in estimation of the BV/TV value in cancellous bone.

  13. Experimental validation of Mueller-Stokes theory and investigation of the influence of the Cotton-Mouton effect on polarimetry in a magnetized fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Peebles, W. A.; Crocker, N. A.

    Mueller-Stokes theory can be used to calculate the polarization evolution of an electromagnetic (EM) wave as it propagates through a magnetized plasma. Historically, the theory has been used to interpret polarimeter signals from systems operating on fusion plasmas. These interpretations have mostly employed approximations of Mueller-Stokes theory in regimes where either the Faraday rotation (FR) or the Cotton-Mouton (CM) effect is dominant. The current paper presents the first systematic comparison of polarimeter measurements with the predictions of full Mueller-Stokes theory where conditions transition smoothly from a FR-dominant (i.e., weak CM effect) plasma to one where the CM effect plays amore » significant role. A synthetic diagnostic code, based on Mueller-Stokes theory accurately reproduces the trends evident in the experimentally measured polarimeter phase over this entire operating range, thereby validating Mueller-Stokes theory. The synthetic diagnostic code is then used to investigate the influence of the CM effect on polarimetry measurements. As expected, the measurements are well approximated by the FR effect when the CM effect is predicted to be weak. However, the code shows that as the CM effect increases, it can compete with the FR effect in rotating the polarization of the EM-wave. This results in a reduced polarimeter response to the FR effect, just as observed in the experiment. The code also shows if sufficiently large, the CM effect can even reverse the handedness of a wave launched with circular polarization. This helps to understand the surprising experimental observations that the sensitivity to the FR effect can be nearly eliminated at high enough B{sub T} (2.0 T). The results also suggest that the CM effect on the plasma midplane can be exploited to potentially measure magnetic shear in tokamak plasmas. These results establish increased confidence in the use of such a synthetic diagnostic code to guide future polarimetry design and interpret the resultant experimental data.« less

  14. Mode cross coupling observations with a rotation sensor.

    NASA Astrophysics Data System (ADS)

    Nader, Maria-Fernanda; Igel, Heiner; Ferreira, Ana M. G.; Al-Attar, David

    2013-04-01

    The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations (Igel et al. 2011). Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of two of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011 and Maule, Chile, 2010. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements. Igel H, Nader MF, Kurrle D, Ferreira AM,Wassermann J, Schreiber KU (2011) ''Observations of Earth's toroidal free oscillations with a rotation sensor: the 2011 magnitude 9.0 Tohoku-Oki earthquake.'' Geophys Res Lett. doi:10.1029/2011GL049045

  15. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, D T , and rotational relaxation time, τ R. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparingmore » the values to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of D T and τ R can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.« less

  16. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.

    2002-03-26

    A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.

  17. Plasma waves near saturn: initial results from voyager 1.

    PubMed

    Gurnett, D A; Kurth, W S; Scarf, F L

    1981-04-10

    The Voyager 1 plasma wave instrument detected many familiar types of plasma waves during the encounter with Saturn, including ion-acoustic waves and electron plasma oscillations upstream of the bow shock, an intense burst of electrostatic noise at the shock, and chorus, hiss, electrostatic electron cyclotron waves, and upper hybrid resonance emissions in the inner magnetosphere. A clocklike Saturn rotational control of low-frequency radio emissions was observed, and evidence was obtained of possible control by the moon Dione. Strong plasma wave emissions were detected at the Titan encounter indicating the presence of a turbulent sheath extending around Titan, and upper hybrid resonance measurements of the electron density show the existence of a dense plume of plasma being carried downstream of Titan by the interaction with the rapidly rotating magnetosphere of Saturn.

  18. Magnetic Shocks and Substructures Excited by Torsional Alfvén Wave Interactions in Merging Expanding Flux Tubes

    NASA Astrophysics Data System (ADS)

    Snow, B.; Fedun, V.; Gent, F. A.; Verth, G.; Erdélyi, R.

    2018-04-01

    Vortex motions are frequently observed on the solar photosphere. These motions may play a key role in the transport of energy and momentum from the lower atmosphere into the upper solar atmosphere, contributing to coronal heating. The lower solar atmosphere also consists of complex networks of flux tubes that expand and merge throughout the chromosphere and upper atmosphere. We perform numerical simulations to investigate the behavior of vortex-driven waves propagating in a pair of such flux tubes in a non-force-free equilibrium with a realistically modeled solar atmosphere. The two flux tubes are independently perturbed at their footpoints by counter-rotating vortex motions. When the flux tubes merge, the vortex motions interact both linearly and nonlinearly. The linear interactions generate many small-scale transient magnetic substructures due to the magnetic stress imposed by the vortex motions. Thus, an initially monolithic tube is separated into a complex multithreaded tube due to the photospheric vortex motions. The wave interactions also drive a superposition that increases in amplitude until it exceeds the local Mach number and produces shocks that propagate upward with speeds of approximately 50 km s‑1. The shocks act as conduits transporting momentum and energy upward, and heating the local plasma by more than an order of magnitude, with a peak temperature of approximately 60,000 K. Therefore, we present a new mechanism for the generation of magnetic waveguides from the lower solar atmosphere to the solar corona. This wave guide appears as the result of interacting perturbations in neighboring flux tubes. Thus, the interactions of photospheric vortex motions is a potentially significant mechanism for energy transfer from the lower to upper solar atmosphere.

  19. A numerical investigation of wave-breaking-induced turbulent coherent structure under a solitary wave

    NASA Astrophysics Data System (ADS)

    Zhou, Zheyu; Sangermano, Jacob; Hsu, Tian-Jian; Ting, Francis C. K.

    2014-10-01

    To better understand the effect of wave-breaking-induced turbulence on the bed, we report a 3-D large-eddy simulation (LES) study of a breaking solitary wave in spilling condition. Using a turbulence-resolving approach, we study the generation and the fate of wave-breaking-induced turbulent coherent structures, commonly known as obliquely descending eddies (ODEs). Specifically, we focus on how these eddies may impinge onto bed. The numerical model is implemented using an open-source CFD library of solvers, called OpenFOAM, where the incompressible 3-D filtered Navier-Stokes equations for the water and the air phases are solved with a finite volume scheme. The evolution of the water-air interfaces is approximated with a volume of fluid method. Using the dynamic Smagorinsky closure, the numerical model has been validated with wave flume experiments of solitary wave breaking over a 1/50 sloping beach. Simulation results show that during the initial overturning of the breaking wave, 2-D horizontal rollers are generated, accelerated, and further evolve into a couple of 3-D hairpin vortices. Some of these vortices are sufficiently intense to impinge onto the bed. These hairpin vortices possess counter-rotating and downburst features, which are key characteristics of ODEs observed by earlier laboratory studies using Particle Image Velocimetry. Model results also suggest that those ODEs that impinge onto bed can induce strong near-bed turbulence and bottom stress. The intensity and locations of these near-bed turbulent events could not be parameterized by near-surface (or depth integrated) turbulence unless in very shallow depth.

  20. Hydrodynamic waves in films flowing under an inclined plane

    NASA Astrophysics Data System (ADS)

    Rohlfs, Wilko; Pischke, Philipp; Scheid, Benoit

    2017-04-01

    This study addresses the fluid dynamics of two-dimensional falling films flowing underneath an inclined plane using the weighted integral boundary layer (WIBL) model and direct numerical simulations (DNSs). Film flows under an inclined plane are subject to hydrodynamic and Rayleigh-Taylor instabilities, leading to the formation of two- and three-dimensional waves, rivulets, and eventually dripping. The latter can only occur in film flows underneath an inclined plane such that the gravitational force acts in a destabilizing manner by pulling liquid into the gaseous atmosphere. The DNSs are performed using the solver interFoam of the open-source code OpenFOAM with a gradient limiter approach that avoids artificial oversharpening of the interface. We find good agreement between the two model approaches for wave amplitude and wave speed irrespectively of the orientation of the gravitational force and before the onset of dripping. The latter cannot be modeled with the WIBL model by nature as it is a single-value model. However, for large-amplitude solitarylike waves, the WIBL model fails to predict the velocity field within the wave, which is confirmed by a balance of viscous dissipation and the change in potential energy. In the wavy film flows, different flow features can occur such as circulating waves, i.e., circulating eddies in the main wave hump, or flow reversal, i.e., rotating vortices in the capillary minima of the wave. A phase diagram for all flow features is presented based on results of the WIBL model. Regarding the transition to circulating waves, we show that a critical ratio between the maximum and substrate film thickness (approximately 2.5) is also universal for film flows underneath inclined planes (independent of wavelength, inclination, viscous dissipation, and Reynolds number).

  1. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.

  2. Experimental Investigation of Electron Cloud Containment in a Nonuniform Magnetic Field

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1974-01-01

    Dense clouds of electrons were generated and studied in an axisymmetric, nonuniform magnetic field created by a short solenoid. The operation of the experiment was similar to that of a low-pressure (approximately 0.000001 Torr) magnetron discharge. Discharge current characteristics are presented as a function of pressure, magnetic field strength, voltage, and cathode end-plate location. The rotation of the electron cloud is determined from the frequency of diocotron waves. In the space charge saturated regime of operation, the cloud is found to rotate as a solid body with frequency close to V sub a/phi sub a where V sub a is the anode voltage and phi suba is the total magnetic flux. This result indicates that, in regions where electrons are present, the magnetic field lines are electrostatic equipotentials (E bar, B bar = 0). Equilibrium electron density distributions suggested by this conditions are integrated with respect to total ionizing power and are found consistent with measured discharge currents.

  3. Bloch-Siegert shift in Dirac-Weyl fermionic systems

    NASA Astrophysics Data System (ADS)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-04-01

    The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.

  4. Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules

    NASA Astrophysics Data System (ADS)

    Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik

    2018-04-01

    A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.

  5. Detecting Rotational Superradiance in Fluid Laboratories

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Coutant, Antonin; Richartz, Mauricio; Weinfurtner, Silke

    2016-12-01

    Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a number of important effects and phenomenology in black-hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. Two types of instabilities are studied: one sets in whenever superradiant modes are confined near the rotating cylinder and the other, which does not rely on confinement, corresponds to a local excitation of the cylinder. Our findings are experimentally testable in existing fluid laboratories and, hence, offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  6. Opening and closing of band gaps in magnonic waveguide by rotating the triangular antidots - A micromagnetic study

    NASA Astrophysics Data System (ADS)

    Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.

    2018-05-01

    Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.

  7. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    PubMed Central

    Qiu, Gongzhe

    2017-01-01

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790

  8. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    PubMed

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  9. Using Co-located Rotational and Translational Ground-Motion Sensors to Characterize Seismic Scattering in the P-Wave Coda

    NASA Astrophysics Data System (ADS)

    Bartrand, J.; Abbott, R. E.

    2017-12-01

    We present data and analysis of a seismic data collect at the site of a historical underground nuclear explosion at Yucca Flat, a sedimentary basin on the Nevada National Security Site, USA. The data presented here consist of active-source, six degree-of-freedom seismic signals. The translational signals were collected with a Nanometrics Trillium Compact Posthole seismometer and the rotational signals were collected with an ATA Proto-SMHD, a prototype rotational ground motion sensor. The source for the experiment was the Seismic Hammer (a 13,000 kg weight-drop), deployed on two-kilometer, orthogonal arms centered on the site of the nuclear explosion. By leveraging the fact that compressional waves have no rotational component, we generated a map of subsurface scattering and compared the results to known subsurface features. To determine scattering intensity, signals were cut to include only the P-wave and its coda. The ratio of the time-domain signal magnitudes of angular velocity and translational acceleration were sectioned into three time windows within the coda and averaged within each window. Preliminary results indicate an increased rotation/translation ratio in the vicinity of the explosion-generated chimney, suggesting mode conversion of P-wave energy to S-wave energy at that location. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  10. Effect of Baffle on Gravity-Gradient-Excited Slosh Waves and Spacecraft Moment and Angular-Momentum Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.

    1995-01-01

    The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration has been investigated. In particular, the effects of surface tension on partially filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without baffles are studied. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and a torsional moment acting on the spacecraft. The results are clearly seen from one-up one-down and one-down one-up oscillations in the cross-section profiles of two bubbles in the vertical (r, z)-plane of the rotating dewar, and from the eccentric contour of the bubble rotating around the axis of the dewar in a horizontal (r, theta)-plane. As the viscous force, between liquid and solid interface, greatly contributes to the damping of slosh wave excitation, a rotating dewar with baffles provides more areas of liquid-solid interface than that of a rotating dewar without baffles. Results show that the damping effect provided by the baffles reduces the amplitude of slosh wave excitation and lowers the degree of asymmetry in liquid-vapor distribution. Fluctuations of angular momentum and fluid moment caused by the slosh wave excited by gravity gradient acceleration with and without baffle boards are also investigated. It is also shown that the damping effect provided by the baffles greatly reduces the amplitudes of angular momentum and fluid moment fluctuations.

  11. Segregation of helicity in inertial wave packets

    NASA Astrophysics Data System (ADS)

    Ranjan, A.

    2017-03-01

    Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.

  12. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    PubMed

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  13. Focusing optical waves with a rotationally symmetric sharp-edge aperture

    NASA Astrophysics Data System (ADS)

    Hu, Yanwen; Fu, Shenhe; Li, Zhen; Yin, Hao; Zhou, Jianying; Chen, Zhenqiang

    2018-04-01

    While there has been various kinds of patterned structures proposed for wave focusing, these patterned structures usually involve complicated lithographic techniques since the element size of the patterned structures should be precisely controlled in microscale or even nanoscale. Here we propose a new and straightforward method for focusing an optical plane wave in free space with a rotationally symmetric sharp-edge aperture. The focusing phenomenon of wave is realized by superposition of a portion of the higher-order symmetric plane waves generated from the sharp edges of the apertures, in contrast to previously focusing techniques which usually depend on a curved phase. We demonstrate both experimentally and theoretically the focusing effect with a series of apertures having different rotational symmetry, and find that the intensity of the hotspots could be controlled by the symmetric strength of the sharp-edge apertures. The presented results would advance the conventional wisdom that light would diffract in all directions and become expanding when it propagates through an aperture. The proposed method is easy to be processed, and might open potential applications in interferometry, image, and superresolution.

  14. Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-05-01

    The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.

  15. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Simonelli, Andreino; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Maccioni, Enrico; De Luca, Gaetano; Saccorotti, Gilberto; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    We present analyses of rotational and translational ground motions from earthquakes recorded during October-November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozen of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 40 km and 80 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. In theory - assuming plane wave propagation - the ratio between the vertical rotation rate and the transverse acceleration permits, in a single station approach, the estimation of apparent phase velocity in the case of SH arrivals or real phase velocity in the case of Love surface waves. This is a standard approach for the analysis of earthquakes at teleseismic distances, and the results reported by the literature are compatible with the expected phase velocities from the PREM model. Here we extend the application of the same approach to local events, thus exploring higher frequency ranges and larger rotation rate amplitudes. We use a novel approach to joint rotation/acceleration analysis based on the continuous wavelet transform (CWT). Wavelet coherence (WTC) is used as a filter for identifying those regions of the time-period plane where the rotation rate and transverse acceleration signals exhibit significant coherence. This allows retrieving estimates of phase velocities over the period range spanned by correlated arrivals. Coherency among ground rotation and translation is also observed throughout the coda of the P-wave arrival, an observation which is interpreted in terms of near-receiver P-SH converted energy due to 3D effects. Those particular coda waves, however, do exhibit a large variability in the rotation/acceleration ratio, as a likely consequence of differences in the wavepath and/or source mechanism.

  16. Enhanced Sensitivity of Novel Surface Acoustic Wave Microelectromechanical System-Interdigital Transducer Gyroscope

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Oh, Haekwan; Lee, Keekeun; Yoon, Sungjin; Yang, Sangsik

    2009-06-01

    In this paper, we present a novel microelectromechanical system-interdigital transducer (MEMS-IDT) surface acoustic wave (SAW) gyroscope with an 80 MHz central frequency on a 128° YX LiNbO3 wafer. The developed MEMS-IDT gyroscope is composed of a two-port SAW resonator, a dual delay line oscillator, and metallic dots. The SAW resonator provides a stable standing wave, and the vibrating metallic dot at an antinode of the standing wave induces the second SAW in the normal direction of its vibrating axis. The dual delay line oscillator detects the Coriolis force by comparing the resonant frequencies between two oscillators through the interference effect. The coupling of mode (COM) modeling was used to extract the optimal design parameters prior to fabrication. In the electrical testing by the network analyzer, the fabricated SAW resonator and delay lines showed low insertion loss and similar operation frequencies between a resonator and delay lines. When the device was rotated, the resonant frequency differences between two oscillators linearly varied owing to the Coriolis force. The obtained sensitivity was approximately 119 Hz deg-1 s-1 in the angular rate range of 0-1000 deg/s. Satisfactory linearity and superior directivity were also observed in the test.

  17. Travelling wave ultrasonic motors, Part I: Working principle and mathematical modelling of the stator

    NASA Astrophysics Data System (ADS)

    Hagedorn, P.; Wallaschek, J.

    1992-05-01

    Travelling wave ultrasonic motors have recently been attracting considerable attention: they may possibly soon replace—at least in certain areas—small electromagnetic motors. This development has been made possible by recent advances in power electronics, material research and digital control, which allow utilization of the piezoelectric effect for low power motors. In these motors the mechanical energy is generated with frequencies of the order of 40 kHz via piezo-elements producing bending waves in a stator, which has approximately the form of a circular plate. The rotor is then driven by the stator via contact forces, and with an extremely simple mechanism frequency reductions of 1:40 000 and more are obtained between the stator vibration and the rotor motion. As a consequence, one can work in the 40 kHz range on the electrical side, while a low frequency rotation is obtained on the mechanical side, as is desirable for many applications. In the present paper, which is the first of a series, the working principle of travelling wave ultrasonic motors is reviewed, and the main phenomena are mathematically modelled. In further papers a detailed mathematical description of the stator vibration and a first model of the contact problem will be given.

  18. Effects of reactant rotational excitation on H + O2--> OH + O reaction rate constant: quantum wave packet, quasi-classical trajectory and phase space theory calculations.

    PubMed

    Lin, Shi Ying; Guo, Hua; Lendvay, György; Xie, Daiqian

    2009-06-21

    We examine the impact of initial rotational excitation on the reactivity of the H + O(2)--> OH + O reaction. Accurate Chebyshev wave packet calculations have been carried out for the upsilon(i) = 0, j(i) = 9 initial state of O(2) and the J = 50 partial wave. In addition, we present Gaussian-weighted quasi-classical trajectory and phase space theory calculations of the integral cross section and thermal rate constant for the title reaction. These theoretical results suggest that the initial rotational excitation significantly enhances reactivity with an amount comparable to the effect of initial vibrational state excitation. The inclusion of internally excited reactants is shown to improve the agreement with experimental rate constant.

  19. Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets

    NASA Astrophysics Data System (ADS)

    Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.

    2017-12-01

    Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.

  20. Quasiperiodic waves at the onset of zero-Prandtl-number convection with rotation.

    PubMed

    Kumar, Krishna; Chaudhuri, Sanjay; Das, Alaka

    2002-02-01

    We show the possibility of temporally quasiperiodic waves at the onset of thermal convection in a thin horizontal layer of slowly rotating zero-Prandtl-number Boussinesq fluid confined between stress-free conducting boundaries. Two independent frequencies emerge due to an interaction between straight rolls and waves along these rolls in the presence of Coriolis force, if the Taylor number is raised above a critical value. Constructing a dynamical system for the hydrodynamical problem, the competition between the interacting instabilities is analyzed. The forward bifurcation from the conductive state is self-tuned.

  1. Wave-front propagation of rinsing flows on rotating semiconductor wafers

    NASA Astrophysics Data System (ADS)

    Frostad, John M.; Ylitalo, Andy; Walls, Daniel J.; Mui, David S. L.; Fuller, Gerald G.

    2016-11-01

    The semiconductor manufacturing industry is migrating to a cleaning technology that involves dispersing cleaning solutions onto a rotating wafer, similar to spin-coating. Advantages include a more continuous overall fabrication process, lower particle level, no cross contamination from the back side of a wafer, and less usage of harsh chemicals for a lower environmental impact. Rapid rotation of the wafer during rinsing can be more effective, but centrifugal forces can pull spiral-like ribbons of liquid radially outward from the advancing wave-front where particles can build up, causing higher instances of device failure at these locations. A better understanding of the rinsing flow is essential for reducing yield losses while taking advantage of the benefits of rotation. In the present work, high-speed video and image processing are used to study the dynamics of the advancing wave-front from an impinging jet on a rotating substrate. The flow-rate and rotation-speed are varied for substrates coated with a thin layer of a second liquid that has a different surface tension than the jet liquid. The difference in surface tension of the two fluids gives rise to Marangoni stresses at the interface that have a significant impact on the rinsing process, despite the extremely short time-scales involved.

  2. Localized transversal-rotational modes in linear chains of equal masses.

    PubMed

    Pichard, H; Duclos, A; Groby, J-P; Tournat, V; Gusev, V E

    2014-01-01

    The propagation and localization of transversal-rotational waves in a two-dimensional granular chain of equal masses are analyzed in this study. The masses are infinitely long cylinders possessing one translational and one rotational degree of freedom. Two dispersive propagating modes are predicted in this granular crystal. By considering the semi-infinite chain with a boundary condition applied at its beginning, the analytical study demonstrates the existence of localized modes, each mode composed of two evanescent modes. Their existence, position (either in the gap between the propagating modes or in the gap above the upper propagating mode), and structure of spatial localization are analyzed as a function of the relative strength of the shear and bending interparticle interactions and for different boundary conditions. This demonstrates the existence of a localized mode in a semi-infinite monatomic chain when transversal-rotational waves are considered, while it is well known that these types of modes do not exist when longitudinal waves are considered.

  3. Jet-front systems nearing strongly stratified region in differentially heated, rotating stratified annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Achatz, Ulrich

    2017-04-01

    The differentially heated, rotating annulus configuration has been used for a long time as a model system of the earth troposphere. It can easily reproduce thermal wind and baroclinic waves in the laboratory. It has recently been shown numerically that provided the Rossby number, the rotation rate and the Brunt-Väisälä frequency were well chosen, this configuration also reproduces the spontaneous emission of gravity waves by jet front systems [1]. This offers a very practical configuration in which to study an important process of emission of atmospheric gravity waves. It has also been shown experimentally that this configuration can be modified in order to add the possibility for the emitted wave to reach a strongly stratified region [2]. It thus creates a system containing a model troposphere where gravity waves are spontaneously emitted and can propagate to a model stratosphere. For this matter a stratification was created using a salinity gradient in the experimental apparatus. Through double diffusion, this generates a strongly stratified layer in the middle of the flow (the model stratosphere) and two weakly stratified region in the top and bottom layers (the model troposphere). In this poster, we present simulations of this configuration displaying baroclinic waves in the top and bottom layers. We aim at creating jet front systems strong enough that gravity waves can be spontaneously emitted. This will thus offer the possibility of studying the wave characteristic and mechanisms in emission and propagation in details. References [1] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [2] M. Vincze, I. Borcia, U. Harlander, P. Le Gal, Double-diffusive convection convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res. 48, 061414 (2016).

  4. Plasma waves near Saturn: initial results from Voyager 1. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurnett, D.A.; Kurth, W.S.; Scarf, F.L.

    1981-01-31

    The Voyager 1 plasma wave instrument detected many familiar types of plasma waves during the encounter with Saturn, including ion-acoustic waves and electron plasma oscillations upstream of the bow shock, an intense burst of electrostatic noise at the shock, and chorus, hiss, electrostatic (n + 1/2)fg waves and UHR emissions in the inner magnetosphere. A clock-like Saturn rotational control of low-frequency radio emissions was observed, and evidence was obtained of possible control by the moon Dione. Strong plasma wave emissions were detected at the Titan encounter indicating the presence of a turbulent sheath extending around Titan, and UHR measurements ofmore » the electron density show the existence of a dense plume of plasma being carried downstream of Titan by the interaction with the rapidly rotating magnetosphere of Saturn.« less

  5. Novel wave generator adaptable to indoor surfboarding

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.; Phillips, B. R.

    1970-01-01

    Method is devised for generating strong acoustic waves in confined body of water. Strong travelling acoustic waves or modes are created by rotation of radial jet of gas at center of short cylindrical chamber. Method and wave structure suggest novel facility for water sports.

  6. Utility of the CS and IOS approximations for calculating generalized phenomenological cross sections in atom-diatom systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitz, D.E.; Kouri, D.J.; Liu, W.K.

    1982-04-01

    The calculation of shear viscosity and thermal conductivity coefficients in the presence of a magnetic field requires the accurate calculation of several types of generalized phenomenological cross sections in which velocity and angular momentum tensors are coupled with the orbital and rotational motion of the system. These cross sections are then averaged over energy in a fashion appropriate for the phenomenon of interest. The coupled states (CS) and/or infinite order sudden (IOS) approximations have been used to calculate several such cross sections for systems such as He-HCl, He-CO, He-H/sub 2/, HD-Ne, Ar-N/sub 2/, and Ne-H/sub 2/. Excellent results are obtainedmore » compared with close-coupled methods for cross sections which are symmetric in tensor index, especially in the CS approximation, and these results are not very sensitive to the choice of orbital wave parameter. On the other hand, the cross sections which are asymmetric in tensor index are much more sensitive to interference effects and are unsatisfactory in many cases.« less

  7. A diffusion approximation for ocean wave scatterings by randomly distributed ice floes

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley

    2016-11-01

    This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.

  8. Analytical solutions by squeezing to the anisotropic Rabi model in the nonperturbative deep-strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yu; Chen, Xiang-You

    2017-12-01

    An unexplored nonperturbative deep strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation. Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones in a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which are omitted in previous displaced states. The atom population dynamics confirms the validity of our approach for the npDSC strength. Our approach offers the possibility to explore interesting phenomena analytically in the npDSC regime in qubit-oscillator experiments.

  9. A granular flow model for dense planetary rings

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1985-01-01

    In the present study of the viscosity of a differentially rotating particle disk, in the limiting case where the particles are densely packed and their collective behavior resembles that of a liquid, the pressure tensor is derived from both the equations of hydrodynamics and a simple kinetic model of collisions due to Haff (1983). Density waves and narrow circular rings are unstable if the liquid approximation applies, and the consequent nonlinear perturbations may generate 'splashing' of the ring material in the vertical direction. These results are pertinent to the origin of the ellipticities of ringlets, the nonaxisymmetric features near the outer edge of the Saturn B ring, and unexplained residuals in kinematic models of the Saturn and Uranus rings.

  10. Dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gravitational waves

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-01-01

    The model problem of the dynamics of a planar plasma ring rotating in the dipole magnetic field of a central body is considered. A finite-dimensional mathematical model of the system is synthesized by the Boubnov-Galerkin method. The class of solutions corresponding to magneto-gravitational waves associated with deformations of the ring boundaries is investigated.

  11. Nonlinear Interaction of Waves in Rotating Spherical Layers

    NASA Astrophysics Data System (ADS)

    Zhilenko, D.; Krivonosova, O.; Gritsevich, M.

    2018-01-01

    Flows of a viscous incompressible fluid in a spherical layer that are due to rotational oscillations of its inner boundary at two frequencies with respect to the state of rest are numerically studied. It is found that an increase in the amplitude of oscillations of the boundary at the higher frequency can result in a significant enhancement of the low-frequency mode in a flow near the outer boundary. The direction of propagation of the low-frequency wave changes from radial to meridional, whereas the high-frequency wave propagates in the radial direction in a limited inner region of the spherical layer. The role of the meridional circulation in the energy exchange between spaced waves is demonstrated.

  12. Theoretical calculations of rotationally inelastic collisions of He with NaK(A {sup 1}Σ{sup +}): Transfer of population, orientation, and alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malenda, R. F.; Price, T. J.; Stevens, J.

    2015-06-14

    We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A{sup 1}Σ{sup +}) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B{sub λ}(j, j′) for each j → j′ transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j ormore » j′ between 0 and 50, and total (translational and rotational) energies in the range 0.0002–0.0025 a.u. (∼44–550 cm{sup −1}). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j′. Finally, we compare the exact quantum results for j → j′ transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.« less

  13. Phase-locked scroll waves defy turbulence induced by negative filament tension.

    PubMed

    Li, Teng-Chao; Gao, Xiang; Zheng, Fei-Fei; Cai, Mei-Chun; Li, Bing-Wei; Zhang, Hong; Dierckx, Hans

    2016-01-01

    Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scroll waves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scroll waves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations.

  14. Control of dephasing in rotationally hot molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartram, David; Ivanov, Misha

    We consider a rotationally hot diatomic molecule as an example of an open quantum system, where molecular vibrational wave packets are subject to dephasing due to rovibrational coupling. We report analytical and numerical results addressing whether the dephasing rate can be controlled by adjustment of the initial wave packet phases. It appears that over long time scales, phase-only control is not possible, but for earlier time scales the possibility of phase-only control of dephasing remains. In addition, we point out that the time dependence of the dephasing process depends significantly upon the degeneracy of the rotational environment states.

  15. Low frequency wave propagation in a cold magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Ghosh, S.; Khan, M.

    1998-12-01

    In this paper several characteristics of low frequency waves in a cold magnetized dusty plasma propagating parallel and perpendicular to the static background magnetic field have been investigated. In the case of parallel propagation the negatively charged dust particles resonate with the right circularly polarized (RCP) component of em waves when the wave frequency equals the dust cyclotron frequency. It has been shown that an RCP wave in dusty plasma consists of two branches and there exists a region where an RCP wave propagation is not possible. Dispersion relation, phase velocity and group velocity of RCP waves have been obtained and propagation characteristics have been shown graphically. Poynting flux and Faraday rotation angles have been calculated for both lower and upper branches of the RCP wave. It has been observed that sense of rotation of the plane of polarization of the RCP wave corresponding to two distinct branches are opposite. Finally, the effect of dust particles on the induced magnetization from the inverse Faraday effect (IFE) due to the interaction of low frequency propagating and standing em waves with dusty plasmas has been evaluated.

  16. Theoretical studies of superconductivity in doped BaCoSO

    NASA Astrophysics Data System (ADS)

    Qin, Shengshan; Li, Yinxiang; Zhang, Qiang; Le, Congcong; Hu, Jiangping

    2018-06-01

    We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C 4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three {t_{{2_g}}} orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the {d_{{x^2} - {y^2}}} orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.

  17. Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission

    NASA Astrophysics Data System (ADS)

    Song, Kun; Ding, Changlin; Su, Zhaoxian; Liu, Yahong; Luo, Chunrong; Zhao, Xiaopeng; Bhattarai, Khagendra; Zhou, Jiangfeng

    2016-12-01

    We propose a planar composite chiral metamaterial (CCMM) by symmetrically inserting a metallic mesh between two layers of conjugated gammadion resonators. As the elaborate CCMM operates at off-resonance frequencies, it therefore presents low-loss and low-dispersion polarization rotation features. The results show that the proposed CCMM can achieve pure and dispersionless polarization rotation with efficient transmission for a linearly polarized wave within a broad bandwidth. This off-resonance CCMM overcomes the drawbacks of high transmission losses and highly dispersive polarization rotation that exist in the previous resonance-type chiral metamaterials and also exhibits more simplicity of fabrication than the three-dimensional CMMs. The intriguing properties greatly improve the performance of chiral metamaterials in controlling the polarization state of electromagnetic waves.

  18. 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Greenhalgh, Stewart A.; Schmelzbach, Cedric; Van Renterghem, Cédéric; Robertsson, Johan O. A.

    2018-04-01

    We provide a six-component (6-C) polarization model for P-, SV-, SH-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local P- and S-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.

  19. Analysis of Porous Media as Inlet Concept for Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Grogan, Kevin; Ihme, Matthias; Department of Mechanical Engineering Team

    2016-11-01

    Rotating detonation engines combust reactive gas mixtures with a high-speed, annularly-propagating detonation wave, which provides many advantages including a stagnation pressure gain and a compact, lightweight design. However, the optimal design of the inlet to the combustion chamber inlet is a moot topic since improper design can significantly reduce detonability and increase pressure losses. The highly diffusive properties of porous media could make it an ideal material to prevent the flashback of the detonation wave and therefore, allow the inlet gas to be premixed. Motivated by this potential, this work employs simulation to evaluate the application of porous media to the inlet of a rotating detonation engine as a novel means to stabilize a detonation wave while reducing the pressure losses incurred by non-ideal mixing strategies. Department of the Air Force.

  20. Poincare oscillations and geostrophic adjustment in a rotating paraboloid

    NASA Astrophysics Data System (ADS)

    Kalashnik, M.; Kakhiani, V.; Patarashvili, K.; Tsakadze, S.

    2009-10-01

    Free liquid oscillations (Poincare oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained. Address: alex_gaina@yahoo.com Database: phy

  1. The variety of MHD shock waves interactions in the solar wind flow

    NASA Technical Reports Server (NTRS)

    Grib, S. A.

    1995-01-01

    Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.

  2. Nonlinear dynamics near the stability margin in rotating pipe flow

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Leibovich, S.

    1991-01-01

    The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

  3. Dynamics of Scroll Wave in a Three-Dimensional System with Changing Gradient.

    PubMed

    Yuan, Xiao-Ping; Chen, Jiang-Xing; Zhao, Ye-Hua; Liu, Gui-Quan; Ying, He-Ping

    2016-01-01

    The dynamics of a scroll wave in an excitable medium with gradient excitability is studied in detail. Three parameter regimes can be distinguished by the degree of gradient. For a small gradient, the system reaches a simple rotating synchronization. In this regime, the rigid rotating velocity of spiral waves is maximal in the layers with the highest filament twist. As the excitability gradient increases, the scroll wave evolutes into a meandering synchronous state. This transition is accompanied by a variation in twisting rate. Filament twisting may prevent the breakup of spiral waves in the bottom layers with a low excitability with which a spiral breaks in a 2D medium. When the gradient is large enough, the twisted filament breaks up, which results in a semi-turbulent state where the lower part is turbulent while the upper part contains a scroll wave with a low twisting filament.

  4. The case for 6-component ground motion observations in planetary seismology

    NASA Astrophysics Data System (ADS)

    Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.

  5. Theory of rotational transition in atom-diatom chemical reaction

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Nakamura, Hiroki

    1989-05-01

    Rotational transition in atom-diatom chemical reaction is theoretically studied. A new approximate theory (which we call IOS-DW approximation) is proposed on the basis of the physical idea that rotational transition in reaction is induced by the following two different mechanisms: rotationally inelastic half collision in both initial and final arrangement channels, and coordinate transformation in the reaction zone. This theory gives a fairy compact expression for the state-to-state transition probability. Introducing the additional physically reasonable assumption that reaction (particle rearrangement) takes place in a spatially localized region, we have reduced this expression into a simpler analytical form which can explicitly give overall rotational state distribution in reaction. Numerical application was made to the H+H2 reaction and demonstrated its effectiveness for the simplicity. A further simplified most naive approximation, i.e., independent events approximation was also proposed and demonstrated to work well in the test calculation of H+H2. The overall rotational state distribution is expressed simply by a product sum of the transition probabilities for the three consecutive processes in reaction: inelastic transition in the initial half collision, transition due to particle rearrangement, and inelastic transition in the final half collision.

  6. Wave propagation reversal for wavy vortices in wide-gap counter-rotating cylindrical Couette flow.

    PubMed

    Altmeyer, S; Lueptow, Richard M

    2017-05-01

    We present a numerical study of wavy supercritical cylindrical Couette flow between counter-rotating cylinders in which the wavy pattern propagates either prograde with the inner cylinder or retrograde opposite the rotation of the inner cylinder. The wave propagation reversals from prograde to retrograde and vice versa occur at distinct values of the inner cylinder Reynolds number when the associated frequency of the wavy instability vanishes. The reversal occurs for both twofold and threefold symmetric wavy vortices. Moreover, the wave propagation reversal only occurs for sufficiently strong counter-rotation. The flow pattern reversal appears to be intrinsic in the system as either periodic boundary conditions or fixed end wall boundary conditions for different system sizes always result in the wave propagation reversal. We present a detailed bifurcation sequence and parameter space diagram with respect to retrograde behavior of wavy flows. The retrograde propagation of the instability occurs when the inner Reynolds number is about two times the outer Reynolds number. The mechanism for the retrograde propagation is associated with the inviscidly unstable region near the inner cylinder and the direction of the global average azimuthal velocity. Flow dynamics, spatio-temporal behavior, global mean angular velocity, and torque of the flow with the wavy pattern are explored.

  7. Three-dimensional infinite order sudden quantum theory for indirect photodissociation processes. Application to the photofragment yield spectrum of NOCl in the region of the T1(13A″) ←S0(11A') transition. Fragment rotational distributions and thermal averages

    NASA Astrophysics Data System (ADS)

    Grinberg, Horacio; Freed, Karl F.; Williams, Carl J.

    1997-08-01

    The analytical infinite order sudden (IOS) quantum theory of triatomic photodissociation, developed in paper I, is applied to study the indirect photodissociation of NOCl through a real or virtual intermediate state. The theory uses the IOS approximation for the dynamics in the final dissociative channels and an Airy function approximation for the continuum functions. The transition is taken as polarized in the plane of the molecule; symmetric top wave functions are used for both the initial and intermediate bound states; and simple semiempirical model potentials are employed for each state. The theory provides analytical expressions for the photofragment yield spectrum for producing particular final fragment ro-vibrational states as a function of the photon excitation energy. Computations are made of the photofragment excitation spectrum of NOCl in the region of the T1(13A″)←S0(11A') transition for producing the NO fragment in the vibrational states nNO=0, 1, and 2. The computed spectra for the unexcited nNO==0 and excited nNO=2 states are in reasonable agreement with experiment. However, some discrepancies are observed for the singly excited nNO=1 vibrational state, indicating deficiencies in the semiempirical potential energy surface. Computations for two different orientations of the in-plane transition dipole moment produce very similar excitation spectra. Calculations of fragment rotational distributions are performed for high values of the total angular momentum J, a feature that would be very difficult to perform with close-coupled methods. Computations are also made of the thermally averaged rotational energy distributions to simulate the conditions in actual supersonic jet experiments.

  8. Multifrequency observations of the radio continuum emission from NGC 253. 1: Magnetic fields and rotation measures in the bar and halo

    NASA Astrophysics Data System (ADS)

    Beck, R.; Carilli, C. L.; Holdaway, M. A.; Klein, U.

    1994-12-01

    Radio continuum observations of the spiral galaxy NGC 253 with the Effelsberg and Very Large Array (VLA) telescopes reveal polarized emission from the bar and halo regions. Within the bar Faraday depolarization is strong at 1.5 and 5 GHz, due to ionized gas with ne approximately equal 0.1 - 3/cu cm which is mixed with turbulent magnetic fields of approximately equal 17 microG estimated strength. Even at 10 GHz the degree of polarization in the bar is low (only approximately equal 5% east and approximately equal 2% west of the nucleus) due to beam depolarization by unresolved tangled fields. In contrast, the magnetic fields in the halo are highly uniform, as indicated by fractional polarizations up to 40% at 10 GHz. Faraday depolarization in the halo at 1.5 GHz calls for a warm, clumpy gas component with ne approximately equal 0.02/cu cm and approximately equal 6 microG turbulent fields. We detected Faraday rotation in the bar, with rotation measures absolute value of RM approximately equal 100 rad/sq m (between 10 and 5 GHz) having different signs east and west of the nucleus. Below 5 GHz Faraday rotation is strongly reduced by the limited transparency for polarized emission in the bar. Faraday rotation in the halo in two regions at approximately 5 kpc above and below the plane with RM approximately equal -7 rad/sq m between 10 and 1.5 GHz can be ascribed to hot gas with mean value of ne approximately equal 0.002/cu cm and uniform fields along the line of sight of mean value of Bu parallel approximately equal -2 microG. The magnetic field structure in the bar and halo of NGC 253 is best described by the quadrupole-type dynamo mode SO, with a ring-like field in the bar and a field mainly parallel to the plane in a co-rotating halo. A major perturbation occurs in the east where the field is perpendicular to the plane and follows a 'spur'. The galactic wind is suppressed by the dominating plane-parallel field, except along the spur.

  9. Comparison of velocity and temperature time series data analysis in experiments on the thermally driven rotating annulus

    NASA Astrophysics Data System (ADS)

    von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai

    2010-05-01

    The model of the differentially heated, rotating cylindrical gap filled with a fluid is since more than four decades extensively used for laboratory experiments of baroclinic wave interactions, and a number of data acquisition techniques are applied e.g. to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. In our experiments presented here, we make use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera, which resolution allows for resolving fine scale structures, measures the surface temperature field. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). In addition, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us not only to compare the data analysis methods but also to reclassify the results yielded with the LDV data analysis. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. For example, we found a dominant and a weak mode in the 3-4 wave transition region. This finding confirms earlier ideas on wave dispersion in transition regions between regular waves. Increasing the annulus' rotation leads to a growth of the weak mode until this mode becomes the dominant one. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5

  10. Electron acoustic solitons in magneto-rotating electron-positron-ion plasma with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Jilani, K.; Mirza, Arshad M.; Iqbal, J.

    2015-02-01

    The propagation of electron acoustic solitary waves (EASWs) in a magneto-rotating electron-positron-ion (epi) plasma containing cold dynamical electrons, nonthermal electrons and positrons obeying Cairns' distribution have been explored in the stationary background of massive positive ions. Through the linear dispersion relation (LDR) the effects of nonthermal components, magnetic field and rotation have been analyzed, wherein, various limiting cases have been deduced from the LDR. For nonlinear analysis, Korteweg-de Vries (KdV) equation is obtained using the reductive perturbation technique. It is found that in the presence of nonthermal positrons both hump and dip type solitons appear to excite, the structural properties of these solitary waves change drastically with magneto-rotating effects. The present work may be employed to explore and to understand the formation of electron acoustic solitary structures in the space and laboratory plasmas with nonthermal electrons and positrons under magneto-rotating effects.

  11. Sodium Lidar-observed Strong Inertia-gravity Wave Activities in the Mesopause Region over Fort Collins, Colorado (41 deg N, 105 deg W)

    NASA Technical Reports Server (NTRS)

    Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart

    2007-01-01

    In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.

  12. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    NASA Astrophysics Data System (ADS)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2016-05-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

  13. Comparison of techniques for approximating ocean bottom topography in a wave-refraction computer model

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    A study of the effects of using different methods for approximating bottom topography in a wave-refraction computer model was conducted. Approximation techniques involving quadratic least squares, cubic least squares, and constrained bicubic polynomial interpolation were compared for computed wave patterns and parameters in the region of Saco Bay, Maine. Although substantial local differences can be attributed to use of the different approximation techniques, results indicated that overall computed wave patterns and parameter distributions were quite similar.

  14. Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine

    DTIC Science & Technology

    2013-03-01

    Engine Research Facility HHV Higher heating value LHV Lower heating value PDE Pulsed detonation engine RDE Rotating detonation engine RTD...the combustion community are pulse detonation engines ( PDEs ) and rotating detonation engines (RDEs). 1.1 Differences between Pulsed and Rotating ...steadier than that of a PDE (2, 3). (2) (3) Figure 1. Unrolled rotating detonation wave from high-speed video (4) Another difference that

  15. Fixed node diffusion Monte Carlo using a genetic algorithm: a study of the CO-(4)He(N) complex, N = 1…10.

    PubMed

    Ramilowski, Jordan A; Farrelly, David

    2012-06-14

    The diffusion Monte Carlo (DMC) method is a widely used algorithm for computing both ground and excited states of many-particle systems; for states without nodes the algorithm is numerically exact. In the presence of nodes approximations must be introduced, for example, the fixed-node approximation. Recently we have developed a genetic algorithm (GA) based approach which allows the computation of nodal surfaces on-the-fly [Ramilowski and Farrelly, Phys. Chem. Chem. Phys., 2010, 12, 12450]. Here GA-DMC is applied to the computation of rovibrational states of CO-(4)He(N) complexes with N≤ 10. These complexes have been the subject of recent high resolution microwave and millimeter-wave studies which traced the onset of microscopic superfluidity in a doped (4)He droplet, one atom at a time, up to N = 10 [Surin et al., Phys. Rev. Lett., 2008, 101, 233401; Raston et al., Phys. Chem. Chem. Phys., 2010, 12, 8260]. The frequencies of the a-type (microwave) series, which correlate with end-over-end rotation in the CO-(4)He dimer, decrease from N = 1 to 3 and then smoothly increase. This signifies the transition from a molecular complex to a quantum solvated system. The frequencies of the b-type (millimeter-wave) series, which evolves from free rotation of the rigid CO molecule, initially increase from N = 0 to N∼ 6 before starting to decrease with increasing N. An interesting feature of the b-type series, originally observed in the high resolution infra-red (IR) experiments of Tang and McKellar [J. Chem. Phys., 2003, 119, 754] is that, for N = 7, two lines are observed. The GA-DMC algorithm is found to be in good agreement with experimental results and possibly detects the small (∼0.7 cm(-1)) splitting in the b-series line at N = 7. Advantages and disadvantages of GA-DMC are discussed.

  16. A simple wave driver

    NASA Astrophysics Data System (ADS)

    Kağan Temiz, Burak; Yavuz, Ahmet

    2015-08-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the wheel starts to turn at a constant angular speed. A rod that is fixed on the wheel turns at the same constant angular speed, too. A tight string that the wave will be created on is placed at a distance where the rod can touch the string. During each rotation of the wheel, the rod vibrates the string up and down. The vibration frequency of this rod equals the wheel’s rotation frequency, and this frequency value can be measured easily with a small magnet and a bicycle speedometer. In this way, the frequency of the waves formed in the rope can also be measured.

  17. Rotating swings—a theme with variations

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie

    2016-01-01

    Rotating swing rides can be found in many amusement parks, in many different versions. The ‘wave swinger’ ride, which introduces a wave motion by tilting the roof, is among the classical amusement rides that are found in many different parks, in different sizes, from a number of different makes and names, and varying thematization. The ‘StarFlyer’ is a more recent version, adding the thrill of lifting the riders 60 m or more over the ground. These rotating swing rides involve beautiful physics, often surprising, but easily observed, when brought to attention. The rides can be used for student worksheet tasks and assignments of different degrees of difficulty, across many math and physics topics. This paper presents a number of variations of student tasks relating to the theme of rotating swing rides.

  18. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Daniel B., E-mail: dbr@Dartmouth.edu; Weaver, John B.

    2015-06-21

    Magnetic nanoparticles are promising tools for a host of therapeutic and diagnostic medical applications. The dynamics of rotating magnetic nanoparticles in applied magnetic fields depend strongly on the type and strength of the field applied. There are two possible rotation mechanisms and the decision for the dominant mechanism is often made by comparing the equilibrium relaxation times. This is a problem when particles are driven with high-amplitude fields because they are not necessarily at equilibrium at all. Instead, it is more appropriate to consider the “characteristic timescales” that arise in various applied fields. Approximate forms for the characteristic time ofmore » Brownian particle rotations do exist and we show agreement between several analytical and phenomenological-fit models to simulated data from a stochastic Langevin equation approach. We also compare several approximate models with solutions of the Fokker-Planck equation to determine their range of validity for general fields and relaxation times. The effective field model is an excellent approximation, while the linear response solution is only useful for very low fields and frequencies for realistic Brownian particle rotations.« less

  19. Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air

    DTIC Science & Technology

    2011-06-01

    Naval Research Laboratory PDE Pulsed detonation engine RDE Rotating detonation engine TDW Transverse detonation wave Symbols [SI units...primarily been on pulsed detonation engines ( PDEs ). Recently, however, detonation research has begun to also focus on rotating , or continuous... rotating detonation engines have been studied, however, more progress was initially made regarding PDEs . Recently, though, there has been a renewed

  20. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure tomore » undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.« less

  1. Internal waves and rectification in a linearly stratified fluid

    NASA Astrophysics Data System (ADS)

    Pérenne, Nicolas; Renouard, Dominique P.

    Laboratory experiments were performed in a 13-m diameter rotating tank equipped with a continuous shelf break geometry and a central piston-like plunger. The fluid density was linearly stratified. The amplitude and period of the plunger, the rotation rate of the platform and the stratification are the parameters of the problem. The density fluctuations at six stations above and at mid-depth of the slope, along with dye visualization of the flow, were recorded. A limited set of experiments showed that a barotropic periodical forcing generated a first mode baroclinic wave which initially appears at the slope and propagates offshore. The likely presence of internal energy rays either slightly above, or immediately along the slope, is in agreement with previous analytical, laboratory and selected oceanic observations. In the former case, the stratification was such that the slope flow at mid-depth was supercritical while in the latter case, slope flow at mid-depth was critical. Rotation tended to decrease the amplitude of the generated internal wave. Also, non-linear processes were likely to act upon these waves for their normalized amplitude tended to decrease as the forcing increased (for similar forcing period, rotation rate and stratification). After the internal wave reflected from the plunger reaches the slope, there is a complex non-stationary regime with an occurrence of internal wave breaking in the vicinity of the slope. Thus there was an appearance of localized patches of turbulence and mixing. These events appeared both in dye visualization and in density fluctuations records. The subsequent mixing, or else the combined effect of topographical rectification and mixing, led to the appearance of a distinct Lagrangian transport, localized in the first few centimeters above the slope and oriented so as to leave the shallow waters on the right of its displacement.

  2. Torsional and Cyclic Fatigue Resistance of a New Nickel-Titanium Instrument Manufactured by Electrical Discharge Machining.

    PubMed

    Pedullà, Eugenio; Lo Savio, Fabio; Boninelli, Simona; Plotino, Gianluca; Grande, Nicola M; La Rosa, Guido; Rapisarda, Ernesto

    2016-01-01

    The purpose of this study was to evaluate the torsional and cyclic fatigue resistance of the new Hyflex EDM OneFile (Coltene/Whaledent AG, Altstatten, Switzerland) manufactured by electrical discharge machining and compare the findings with the ones of Reciproc R25 (VDW, Munich, Germany) and WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland). One hundred-twenty new Hyflex EDM OneFile (#25/0.08), Reciproc R25, and WaveOne Primary files were used. Torque and angle of rotation at failure of new instruments (n = 20) were measured according to ISO 3630-1 for each brand. Cyclic fatigue resistance was tested measuring the number of cycles to failure in an artificial stainless steel canal with a 60° angle and a 3-mm radius of curvature. Data were analyzed using the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. The fracture surface of each fragment was examined with a scanning electron microscope. The cyclic fatigue of Hyflex EDM was significantly higher than the one of Reciproc R25 and WaveOne Primary (P < .05 and P < .001, respectively). Hyflex EDM showed a lower maximum torque load (P < .05) but a significantly higher angular rotation (P < .0001) to fracture than Reciproc R25 and WaveOne Primary. No significant difference was found comparing the maximum torque load, angular rotation, and cyclic fatigue of Reciproc R25 and WaveOne Primary (P > .05). The new Hyflex EDM instruments (controlled memory wire) have higher cyclic fatigue resistance and angle of rotation to fracture but lower torque to failure than Reciproc R25 and WaveOne Primary files (M-wire for both files). Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Nanocomposites for Electronic Applications. Volume 1

    DTIC Science & Technology

    1993-06-14

    for a PZT thin film micro- motor using a rotating flexure wave generated in a PZT film on a silicon oxynitride diaphragm. The rotating wave has been...Solid State Science, The Pennsylvania State University (May 1992). 6. Jayne R. Giniewicz. "An Investigation of the Lead Scandium Tantalate-Lead...Materials and Structures, SPIE, Albuquerque, NM (February 1-4, 1993). 24. G. Harshe, J. P. Dougherty, and R. E. Newnham. "Theoretical Modelling of 3-0/0-3

  4. Neural rotational speed control for wave energy converters

    NASA Astrophysics Data System (ADS)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  5. WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1994-01-01

    WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.

  6. Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Diez, Anja; Weikusat, Ilka; Eisen, Olaf

    2018-05-01

    One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s-1 for P-wave and 200 m s-1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s-1 for the alpine ice core and 59 m s-1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s-1 for P-wave and 280 m s-1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s-1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s-1 for P wave and more than 200 m s-1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s-1 per 10 cm). Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy, without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.

  7. Creation of quantum steering by interaction with a common bath

    NASA Astrophysics Data System (ADS)

    Sun, Zhe; Xu, Xiao-Qiang; Liu, Bo

    2018-05-01

    By applying the hierarchy equation method, we computationally study the creation of quantum steering in a two-qubit system interacting with a common bosonic bath. The calculation does not adopt conventional approximate approaches, such as the Born, Markov, rotating-wave, and other perturbative approximations. Three kinds of quantum steering, i.e., Einstein-Podolsky-Rosen steering (EPRS), temporal steering (TS), and spatiotemporal steering (STS), are considered. Since the initial state of the two qubits is chosen as a product state, there does not exist EPRS at the beginning. During the evolution, we find that STS as well as EPRS are generated at the same time. An inversion relationship between STS and TS is revealed. By varying the system-bath coupling strength from weak to ultrastrong regimes, we find the nonmonotonic dependence of STS, TS, and EPRS on the coupling strength. It is interesting to study the dynamics of the three kinds of quantum steering by using an exactly numerical method, which is not considered in previous researches.

  8. Rotational waves in geodynamics

    NASA Astrophysics Data System (ADS)

    Gerus, Artyom; Vikulin, Alexander

    2015-04-01

    The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)

  9. Effects of age and pathology on shear wave speed of the human rotator cuff.

    PubMed

    Baumer, Timothy G; Dischler, Jack; Davis, Leah; Labyed, Yassin; Siegal, Daniel S; van Holsbeeck, Marnix; Moutzouros, Vasilios; Bey, Michael J

    2018-01-01

    Rotator cuff tears are common and often repaired surgically, but post-operative repair tissue healing, and shoulder function can be unpredictable. Tear chronicity is believed to influence clinical outcomes, but conventional clinical approaches for assessing tear chronicity are subjective. Shear wave elastography (SWE) is a promising technique for assessing soft tissue via estimates of shear wave speed (SWS), but this technique has not been used extensively on the rotator cuff. Specifically, the effects of age and pathology on rotator cuff SWS are not well known. The objectives of this study were to assess the association between SWS and age in healthy, asymptomatic subjects, and to compare measures of SWS between patients with a rotator cuff tear and healthy, asymptomatic subjects. SWE images of the supraspinatus muscle and intramuscular tendon were acquired from 19 asymptomatic subjects and 11 patients with a rotator cuff tear. Images were acquired with the supraspinatus under passive and active (i.e., minimal activation) conditions. Mean SWS was positively associated with age in the supraspinatus muscle and tendon under passive and active conditions (p ≤ 0.049). Compared to asymptomatic subjects, patients had a lower mean SWS in their muscle and tendon under active conditions (p ≤ 0.024), but no differences were detected under passive conditions (p ≥ 0.783). These findings identify the influences of age and pathology on SWS in the rotator cuff. These preliminary findings are an important step toward evaluating the clinical utility of SWE for assessing rotator cuff pathology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:282-288, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Embedding the dynamics of a single delay system into a feed-forward ring.

    PubMed

    Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir

    2017-10-01

    We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.

  11. Solar Supergranulation Revealed as a Superposition of Traveling Waves

    NASA Technical Reports Server (NTRS)

    Gizon, L.; Duvall, T. L., Jr.; Schou, J.; Oegerle, William (Technical Monitor)

    2002-01-01

    40 years ago two new solar phenomena were described: supergranulation and the five-minute solar oscillations. While the oscillations have since been explained and exploited to determine the properties of the solar interior, the supergranulation has remained unexplained. The supergranules, appearing as convective-like cellular patterns of horizontal outward flow with a characteristic diameter of 30 Mm and an apparent lifetime of 1 day, have puzzling properties, including their apparent superrotation and the minute temperature variations over the cells. Using a 60-day sequence of data from the MDI (Michelson-Doppler Imager) instrument onboard the SOHO (Solar and Heliospheric Observatory) spacecraft, we show that the supergranulation pattern is formed by a superposition of traveling waves with periods of 5-10 days. The wave power is anisotropic with excess power in the direction of rotation and toward the equator, leading to spurious rotation rates and north-south flows as derived from correlation analyses. These newly discovered waves could play an important role in maintaining differential rotation in the upper convection zone by transporting angular momentum towards the equator.

  12. Mechanical circulator for elastic waves by using the nonreciprocity of flexible rotating rings

    NASA Astrophysics Data System (ADS)

    Beli, Danilo; Silva, Priscilla Brandão; Arruda, José Roberto de França

    2018-01-01

    Circulators have a wide range of applications in wave manipulation. They provide a nonreciprocal response by breaking the time-reversal symmetry. In the mechanical field, nonlinear isolators and ferromagnetic circulators can be used for this objective. However, they require high power and high volumes. Herein, a flexible rotating ring is used to break the time-reversal symmetry as a result of the combined effect of Coriolis acceleration and material damping. Complete asymmetry of oscillating and evanescent components of wavenumbers is achieved. The elastic ring produces a nonreciprocal response that is used to design a three port mechanical circulator. The rotational speed for maximum transmission in one port and isolation in the other one is determined using analytical equations. A spectral element formulation is used to compute the complex dispersion diagrams and the forced response. Waveguides that support longitudinal and flexural waves are investigated. In this case, the ring nonreciprocity is modulated by the waveguide reciprocal response and the transmission coefficients can be affected. The proposed device is compact, nonferromagnetic, and may open new directions for elastic wave manipulation.

  13. Local heterogeneities in cardiac systems suppress turbulence by generating multi-armed rotors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Steinbock, Oliver

    2016-05-01

    Ventricular fibrillation is an extremely dangerous cardiac arrhythmia that is linked to rotating waves of electric activity and chaotically moving vortex lines. These filaments can pin to insulating, cylindrical heterogeneities which swiftly become the new rotation backbone of the local wave field. For thin cylinders, the stabilized rotation is sufficiently fast to repel the free segments of the turbulent filament tangle and annihilate them at the system boundaries. The resulting global wave pattern is periodic and highly ordered. Our cardiac simulations show that also thicker cylinders can establish analogous forms of tachycardia. This process occurs through the spontaneous formation of pinned multi-armed vortices. The observed number of wave arms N depends on the cylinder radius and is associated to stability windows that for N = 2, 3 partially overlap. For N = 1, 2, we find a small gap in which the turbulence is removed but the pinned rotor shows complex temporal dynamics. The relevance of our findings to human cardiology are discussed in the context of vortex pinning to more complex-shaped anatomical features and remodeled myocardium.

  14. Seismic sounding of convection in the Sun

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Katepalli R.

    2015-11-01

    Thermal convection is the dominant mechanism of energy transport in the outer envelope of the Sun (one-third by radius). It drives global fluid circulations and magnetic fields observed on the solar surface. Convection excites a broadband spectrum of acoustic waves that propagate within the interior and set up modal resonances. These acoustic waves, also called seismic waves, are observed at the surface of the Sun by space- and ground-based telescopes. Seismic sounding, the study of these seismic waves to infer the internal properties of the Sun, constitutes helioseismology. Here we review our knowledge of solar convection, especially that obtained through seismic inference. Several characteristics of solar convection, such as differential rotation, anisotropic Reynolds stresses, the influence of rotation on convection and supergranulation, are considered. On larger scales, several inferences suggest that convective velocities are substantially smaller than those predicted by theory and simulations. This discrepancy challenges the models of internal differential rotation that rely on convective stresses as a driving mechanism and provide an important benchmark for numerical simulations. In collaboration with Shravan Hanasoge, Tata Institute of Fundamental Research, Mumbai and Laurent Gizon, Max-Planck-Institut fuer Sonnensystemforschung, Goettingen.

  15. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Spiral Wave in Small-World Networks of Hodgkin-Huxley Neurons

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Yang, Li-Jian; Wu, Ying; Zhang, Cai-Rong

    2010-09-01

    The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.

  16. Fitting the High-Resolution Spectroscopic Data for Ncncs

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Winnewisser, Brenda P.; Winnewisser, Manfred; De Lucia, Frank C.; Tokaryk, Dennis; Ross, Stephen Cary; Billinghurst, Brant E.

    2014-06-01

    NCNCS is a quasi-linear molecule that displays plentiful spectroscopic signatures of transition from the asymmetric top to the linear rotor regime. The transition takes place on successive excitation of the ν_7 bending mode at ca 80 cm-1. The unusual spectroscopic manifestations on crossing the barrier to linearity are explained by quantum monodromy and described quantitatively by the generalised semi-rigid bender Hamiltonian. Nevertheless, analysis to experimental accuracy of the extensive mm-wave spectrum of NCNCS recorded with the FASSST technique has only so far been achieved with the use of separate J(J+1) expansions for each (v_7, K_a) transition sequence.^c In addition, several selective perturbations identified between transition sequences in different vibrational levels^c are still unfitted. Presently we seek effective approximations to the vibration-rotation Hamiltonian that would allow combining multiple sequences into a fit, would allow a perturbation analysis, and could use mm-wave data together with high-resolution infrared measurements of NCNCS made at the Canadian Light Source. The understanding of effective fits to low-K_a subsets of rotational transitions in the FASSST spectrum has already allowed confident assignment of the 34S and both 13C isotopic species of NCNCS in natural abundance, as will be described. B.P.Winnewisser, et al., Phys. Rev. Lett. 95 243002 (2005). M.Winnewisser, et al., J. Mol. Struct. 798, 1 (2006). B.P.Winnewisser, et al., Phys. Chem. Chem. Phys. 12, 8158 (2010).

  17. Atmospheric waves on Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Häusler, B.; Hinson, D. P.; Tyler, G. L.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-09-01

    Next to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves and turbulence play a significant role in the development and maintenance of atmospheric super rotation.

  18. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  19. Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder

    NASA Astrophysics Data System (ADS)

    Subbotin, Stanislav; Dyakova, Veronika

    2018-05-01

    The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.

  20. Precise Millimeter-Wave Laboratory Frequencies for CS and C34S

    NASA Astrophysics Data System (ADS)

    Gottlieb, C. A.; Myers, P. C.; Thaddeus, P.

    2003-05-01

    Nine successive rotational lines in the ground vibrational state of CS and C34S between 96 GHz (J=2-1) and 500 GHz (10-9) were measured in the laboratory to an accuracy of a few kHz. When our measurements are combined with the submillimeter-wave measurements of Ahrens & Winnewisser, the entire rotational spectrum of both isotopic species is predicted to an accuracy of about 1 part in 108 up to 500 GHz and 5 parts in 108 near 1000 GHz. These frequencies should be useful for quantitative studies of cloud core collapse and star formation in the millimeter- and submillimeter-wave bands.

  1. Stability of wave processes in a rotating electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Peregudin, S. I.; Peregudina, E. S.; Kholodova, S. E.

    2018-05-01

    The paper puts forward a mathematical model of dynamics of spatial large-scale motions in a rotating layer of electrically conducting incompressible perfect fluid of variable depth with due account of dissipative effects. The resulting boundary-value problem is reduced to a vector system of partial differential equations for any values of the Reynolds number. Theoretical analysis of the so-obtained analytical solution reveals the effect of the magnetic field diffusion on the stability of the wave mode — namely, with the removed external magnetic field, the diffusion of the magnetic field promotes its damping. Besides, a criterion of stability of a wave mode is obtained.

  2. The interaction between a propagating coastal vortex and topographic waves

    NASA Astrophysics Data System (ADS)

    Parry, Simon Wyn

    This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.

  3. Spin squeezing as an indicator of quantum chaos in the Dicke model.

    PubMed

    Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang

    2009-04-01

    We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.

  4. Computer program for calculating full potential transonic, quasi-three-dimensional flow through a rotating turbomachinery blade row

    NASA Technical Reports Server (NTRS)

    Farrell, C. A.

    1982-01-01

    A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.

  5. On the wing behaviour of the overtones of self-localized modes

    NASA Astrophysics Data System (ADS)

    Dusi, R.; Wagner, M.

    1998-08-01

    In this paper the solutions for self-localized modes in a nonlinear chain are investigated. We present a converging iteration procedure, which is based on analytical information of the wings and which takes into account higher overtones of the solitonic oscillations. The accuracy is controlled in a step by step manner by means of a Gaussian error analysis. Our numerical procedure allows for highly accurate solutions, in all anharmonicity regimes, and beyond the rotating-wave approximation (RWA). It is found that the overtone wings change their analytical behaviour at certain critical values of the energy of the self-localized mode: there is a turnover in the exponent of descent. The results are shown for a Fermi-Pasta-Ulam (FPU) chain with quartic anharmonicity.

  6. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    NASA Astrophysics Data System (ADS)

    Martin, J.; Shore, B. W.; Bergmann, K.

    1995-07-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.

  7. The structure of carbodiimide, HNCNH

    NASA Astrophysics Data System (ADS)

    Jabs, Wolfgang; Winnewisser, Manfred; Belov, Sergei P.; Lewen, Frank; Maiwald, Frank; Winnewisser, Gisbert

    An experimentally determined rs -type structure of HNCNH is reported: rNH = 1.0074 A, rCN = 1.2242 A, /HNC = 118.63, /NCN = 170.63, /HN NH = 88.99 . The number of digits quoted allow for errors with two significant figures. In order to obtain these values we recorded rotational-torsional spectra of HN13CNH, H15NC15NH and DNCND, by using isotopically enriched cyanamide. A chemical equilibrium exists between carbodiimide, HNCNH, and the more stable isomer cyanamide, H2NCN, which strongly favours cyanamide (approximately 1:115 at 110 oC). The expensive C- and N-substituted isotopomers could only be investigated in the millimetre wave region, while for DNCND the far infrared spectrum between 10-350 cm-1 was also recorded. Rotational constants of the three isotopomers, as well as of the parent species, were determined by fitting the assigned spectral transitions to the Watson Hamiltonian in S reduction. Using fitting programs written by Schwendeman and Rudolph, r0, rs and rrho m structures of HNCNH were derived. The experimentally determined structural parameters are compared with an ab initio re structure.

  8. VINYLIDENE!

    NASA Astrophysics Data System (ADS)

    Gibson, Stephen; Laws, Benjamin; Suits, Arthur; Fernando, Ravin; Field, Robert W.

    2015-06-01

    In 1989 the Lineberger group observed S0 vinylidene in the negative ion photoelectron spectrum. Excess widths were interpreted by some as indicating a sub-picosecond lifetime for vinylidene. 1998 Coulomb explosion experiments showed that vinylidene character survives for at least 3.5 μs. Chirped Pulse mm-Wave spectra showed that 193 nm photolysis of Vinyl Cyanide produces many vibrational levels of HCN and HNC but no trace of vinylidene or local-bender excited acetylene. David Perry's and Michel Herman's effective Hamiltonian model for local-bender acetylene showed that IVR is complete at J approximately 100. Observation of long-lived vinylidene requires formation at low-J. Photodetachment of an electron from the Vinylidene negative ion deposits negligible angular momentum in the C2H2 moiety. The high-resolution negative-ion Photoelectron Velocity Map Imaging spectrometer at ANU reveals vinylidene with strongly vibration-dependent β asymmetry parameters. Infrared Multi-Photon Dissociation of Vinyl Chloride in the Wayne State Velocity Map Imaging spectrometer reveals rotationally and vibrationally cold HCl, presumably the 3-center photofragmentation co-product of rotationally cold vinylidene. The mechanism of vinylidene-acetylene isomerization is emerging...

  9. High Resolution WENO Simulation of 3D Detonation Waves

    DTIC Science & Technology

    2012-02-27

    pocket behind the detonation front was not observed in their results because the rotating transverse detonation completely consumed the unburned gas. Dou...three-dimensional detonations We add source terms (functions of x, y, z and t) to the PDE system so that the following functions are exact solutions to... detonation rotates counter-clockwise, opposite to that in [48]. It can be seen that, the triple lines and transverse waves collide with the walls, and strong

  10. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  11. Salient features of solitary waves in dusty plasma under the influence of Coriolis force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, G. C.; Nag, Apratim; Department of Physics, G. C. College, Silchar-788004

    The main interest is to study the nonlinear acoustic wave in rotating dusty plasma augmented through the derivation of a modified Sagdeev potential equation. Small rotation causes the interaction of Coriolis force in the dynamical system, and leads to the complexity in the derivation of the nonlinear wave equation. As a result, the finding of solitary wave propagation in dusty plasma ought to be of merit. However, the nonlinear wave equation has been successfully solved by the use of the hyperbolic method. Main emphasis has been given to the changes on the evolution and propagation of soliton, and the variationmore » caused by the dusty plasma constituents as well as by the Coriolis force have been highlighted. Some interesting nonlinear wave behavior has been found which can be elaborately studied for the interest of laboratory and space plasmas. Further, to support the theoretical investigations, numeric plasma parameters have been taken for finding the inherent features of solitons.« less

  12. Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits

    PubMed Central

    Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander

    2014-01-01

    Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light. PMID:24534893

  13. Ionospheric tomography using Faraday rotation of Automatic Dependent Surveillance Broadcast (UHF) signals Ionospheric Measurement From ADS-B Signals

    NASA Astrophysics Data System (ADS)

    Cushley, Alex Clay

    The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).

  14. Collision Processes in Methyl Chloride

    NASA Astrophysics Data System (ADS)

    Pape, Travis W.

    Time-resolved, double resonance spectroscopy using infrared pump radiation and millimeter-wave and submillimeter -wave probe radiation (IRMMDR) has been used to study rotational and vibrational collision processes in CH_3 ^{35}Cl and CH_3 ^{37}Cl. A collisional energy transfer model using only five parameters for rotational processes plus those needed for vibrational processes accurately models over 500 IRMMDR time responses for 105 pump-probe combinations, using three pump coincidences and a wide range of probed rotational states. Previous studies in this laboratory revealed that J- and K-changing rotational energy transfer (RET) have vastly different characteristics in CH_3 F. As was found for CH_3F, J-changing rotational collision rates in CH_3 Cl are modeled accurately by both the Statistical Power Gap law and the Infinite Order Sudden approximation using a power law expression for the basis rates. However, in contrast to CH_3F, where all IRMMDR time responses for K-changing collisions have the same shape, many time responses of CH_3 Cl states populated by K-changing collisions contain an additional early-time feature (ETF) that varies with pump and probe state. Nonetheless, a simple generalization of the previously reported model for K-changing collisions is shown to account for all of the additional features observed in CH_3Cl. Rather than observing a fixed temperature for K-changing collisions as was the case for CH_3F, the temperature is found to be a function of time for CH_3 Cl. Moreover, the two new parameters this adds to the RET model are related to known physical quantities. A qualitative argument of K-changing collisions based on a classical picture is offered to explain the difference between the measured J- and K-changing state-to-state rates in CH_3Cl. As was observed in CH_3F, the principal vibrational collision processes are the near -resonant V-swap process, in which two colliding molecules exchange a quantum of vibrational energy, and a nonresonant process that directly moves population from the pumped {bf v}_6 = 1 vibrational state to the {bf v}_3 = 1 vibrational state. A V to T/R process was also measured. Finally, a V-swap process was measured that populates vibrational states of the other isotopic species.

  15. Time-resolved double resonance study of J- and K-changing rotational collisional processes in CH3Cl

    NASA Astrophysics Data System (ADS)

    Pape, Travis W.; De Lucia, Frank C.; Skatrud, David D.

    1994-04-01

    Time-resolved double resonance spectroscopy using infrared pump radiation and millimeter-wave and submillimeter-wave probe radiation (IRMMDR) has been used to study rotational energy transfer (RET) in CH3Cl. A collisional energy transfer model using only five parameters for RET plus those needed for vibrational processes is shown to accurately model 350 IRMMDR time responses for two different pump states and 43 probe transitions covering a wide range of rotational states. Previous studies in this laboratory have revealed that J- and K-changing RET have vastly different characters in CH3F [J. Chem. Phys. 92, 6480 (1990)]. Both J- and K-changing RET were accurately modeled with four parameters—one for dipole-dipole collisions, two for the ΔJ scaling law, and one for the cumulative rate of K-changing collisions. As was found for CH3F, J-changing rotational collision rates in CH3Cl are modeled accurately by both the statistical power gap (SPG) law and the infinite order sudden approximation using a power law expression for the basis rates (IOS-P). However, in contrast to CH3F, where all IRMMDR time responses for K-changing collisions have the same shape, many time responses of CH3Cl states populated by K-changing collisions contain an additional early time feature (ETF) that varies with pump and probe states. Nonetheless, a simple generalization of the previously reported model for K-changing collisions is shown to account for all of the additional features observed in CH3Cl. Rather than observing a fixed temperature for K-changing collisions as was the case for CH3F, the temperature is found to be a function of time for CH3Cl. Moreover, the two new parameters this adds to the RET model are related to known physical quantities. A qualitative argument of K-changing collisions based on a classical picture is offered to explain the difference between the measured J- and K-changing state-to-state rates in CH3Cl.

  16. Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takagi, Seiji; Ueda, Tetsuo

    2008-03-01

    The emergence and transitions of various spatiotemporal patterns of thickness oscillation were studied in the freshly isolated protoplasm of the Physarum plasmodium. New patterns, such as standing waves, and chaotic and rotating spirals, developed successively before the well-documented synchronous pattern appeared. There was also a spontaneous opposite transition from synchrony to chaotic and rotating spirals. Rotating spiral waves were observed in the large migrating plasmodium, where the vein structures were being destroyed. Thus, the Physarum plasmodium exhibits versatile patterns, which are generally expected in coupled oscillator systems. This paper discusses the physiological roles of spatiotemporal patterns, comparing them with other biological systems.

  17. Magnetization-induced second- and third-harmonic generation in transparent magnetic films

    NASA Astrophysics Data System (ADS)

    Ohkoshi, Shin-Ichi; Shimura, Jusuke; Ikeda, Katsuyoshi; Hashimoto, Kazuhito

    2005-01-01

    We describe the magnetization-induced second-harmonic (SH) generation in (FeIIxCrII1-x)1.5[CrIII(CN)6]. 7.5H2O and the magnetization-induced third-harmonic (TH) generation in Y1.5Bi1.5Fe3.8Al1.2O12 (Bi, Al:YIG). The polarization plane of a SH wave from a (FeIIxCrII1-x)1.5[CrIII(CN)6].7.5H2O film was rotated by an applied external magnetic field. This SH rotation is ascribed to the interaction between the electric polarization along the out-of-plane and spontaneous magnetizations. In particular, the magnetic linear term χijkLmagn(1) contributed to the SH rotation. Applying a longitudinal external magnetic field to a Bi,Al:YIG magnetic film rotated the polarization plane of the TH wave. This TH rotation is understood by the contribution of the magnetic term of χyxxxZmagn(1) in a third-order nonlinear optical susceptibility.

  18. On enigmatic properties of the main belt asteroids

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Two properties of the main belt asteroids still bother planetologists: why they are mainly of an oblong shape and why the larger bodies rotate faster than the smaller ones. According to the excepted impact theory constantly produced fragments should be rather more or less of equal dimensions. Larger bodies are more difficult to make rotating by hits than the smaller ones. The comparative wave planetology states that "orbits make structures". It means that as all celestial bodies move in non-round keplerian elliptic (and parabolic) orbits with periodically changing accelerations they are subjected to an action of inertia-gravity waves causing body warpings. These warpings in rotating bodies (but all celestial bodies rotate!) acquire stationary character and 4 ortho- and diagonal directions. An interference of these waves produces uprising (+), subsiding (-) and neutral (0) tectonic blocks size of which depends on the warping wavelengths. The fundamental wave 1 long 2πR makes one hemisphere to rise (bulge) and the opposite one to fall (press in) - this two-segment construction is the ubiquitous tectonic dichotomy. The first overtone wave 2 long πR is responsible for tectonic sectoring complicating the dichotomic segments. This already rather complicated structural picture is further complicated by a warping action of individual waves lengths of which are inversely proportional to orbital frequencies : higher frequency - smaller wave and , vice versa, lower frequency - larger waves. These waves produce tectonic granulation, granule size being a half of a wavelength. All terrestrial planets and the belt asteroids according to their orb. fr. are strictly arranged in the following row of granule sizes: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. The waves lengths and amplitudes increase with the solar distance, their warping action accordingly increases. If Mercury, Venus and Earth are more or less globular, Mars is already elliptical because two warping waves cannot be inscribed in a sphere otherwise than to stretch a body in one direction and to press it in the perpendicular one. Thus, an enigmatic shape of Mars is explained by this way. Asteroids are subjected to a warping action of the wave that bulges one hemisphere and presses the opposite one making convexo-concave bean shape [1]. This wave resonate (1 to 1) with the fundamental wave causing dichotomy of all celestial bodies . This very strong resonance enhances a warping action. That is why asteroids are flat, oblong and bean-shaped. The bulging hemisphere is always cracked, and this cracking sometimes is so strong that "saddles" appear sometimes cutting body into two or more pieces (binaries, satellites). Eros and the small Trojan satellite of Saturn Calypso (PIA07633) are very similar in this typical shape (convexo-concave shape and a "saddle") though they have different compositions, sizes and strengths. It was 1 shown earlier that degassing and rotations of terrestrial planets may be tied by redistribution of their angular momentum between a solid body and its gaseous envelope [2]. Bodies with higher orb. fr. and thus more finely granulated (Mercury, Venus) are more thoroughly wiped out of its volatiles and rotate slower because a significant part of their momenta gone with atmosphere (The Mercury's atmosphere was destroyed by the solar wind). The main asteroid belt rather stretched (2.2-3.2 a.u.) is composed of metallic, stone and carbonaceous bodies (judging by spectra and meteorites) , the first two dominating its inner part, the third -the outer one (similarity with the inner planets in respect of volatiles distribution). Less degassed asteroids keeping their original mass and "original" momentum (i.e.,the larger bodies) differ from the smaller ones having lost their original mass by degassing and spalling and shared their momenta with gone off parts. That is why the larger bodies are fast, the smaller ones slow rotating. References: [1] Kochemasov G.G. (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22; [2] Kochemasov G.G. (2003) Structures of the wave planetology and their projection onto the solar photosphere: why solar supergranules are 30000 km across. // Vernadsky-Brown microsymp. 38, Vernadsky Inst.,Moscow, Russia, Oct. 27-29, 2003, Abstr. (CD-ROM). 2

  19. Broadband integrated polarization rotator using three-layer metallic grating structures

    DOE PAGES

    Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen; ...

    2018-01-05

    In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

  20. Broadband integrated polarization rotator using three-layer metallic grating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen

    In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

  1. Determination of rock-sample anisotropy from P- and S-wave traveltime inversion

    NASA Astrophysics Data System (ADS)

    Pšenčík, Ivan; Růžek, Bohuslav; Lokajíček, Tomáš; Svitek, Tomáš

    2018-04-01

    We determine anisotropy of a rock sample from laboratory measurements of P- and S-wave traveltimes using weak-anisotropy approximation and parametri-zation of the medium by a special set of anisotropy parameters. For the traveltime inversion we use first-order velocity expressions in the weak-anisotropy approximation, which allow to deal with P and S waves separately. Each wave is described by 15 anisotropy parameters, 9 of which are common for both waves. The parameters allow an approximate construction of separate P- or common S-wave phase-velocity surfaces. Common S wave concept is used to simplify the treatment of S waves. In order to obtain all 21 anisotropy parameters, P- and S-wave traveltimes must be inverted jointly. The proposed inversion scheme has several advantages. As a consequence of the use of weak-anisotropy approximation and assumed homogeneity of the rock sample, equations used for the inversion are linear. Thus the inversion procedure is non-iterative. In the approximation used, phase and ray velocities are equal in their magnitude and direction. Thus analysis whether the measured velocity is the ray or phase velocity is unnecessary. Another advantage of the proposed inversion scheme is that, thanks to the use of the common S-wave concept, it does not require identification of S-wave modes. It is sufficient to know the two S-wave traveltimes without specification, to which S-wave mode they belong. The inversion procedure is tested first on synthetic traveltimes and then used for the inversion of traveltimes measured in laboratory. In both cases, we perform first the inversion of P-wave traveltimes alone and then joint inversion of P- and S-wave traveltimes, and compare the results.

  2. Ocean wave electric generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, H.R.

    This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbinemore » and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.« less

  3. A Numerical-Analytical Approach to Modeling the Axial Rotation of the Earth

    NASA Astrophysics Data System (ADS)

    Markov, Yu. G.; Perepelkin, V. V.; Rykhlova, L. V.; Filippova, A. S.

    2018-04-01

    A model for the non-uniform axial rotation of the Earth is studied using a celestial-mechanical approach and numerical simulations. The application of an approximate model containing a small number of parameters to predict variations of the axial rotation velocity of the Earth over short time intervals is justified. This approximate model is obtained by averaging variable parameters that are subject to small variations due to non-stationarity of the perturbing factors. The model is verified and compared with predictions over a long time interval published by the International Earth Rotation and Reference Systems Service (IERS).

  4. Multivariate statistical data analysis methods for detecting baroclinic wave interactions in the thermally driven rotating annulus

    NASA Astrophysics Data System (ADS)

    von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai

    2010-05-01

    Experiments on baroclinic wave instabilities in a rotating cylindrical gap have been long performed, e.g., to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. We present the application of appropriate multivariate data analysis methods on time series data sets acquired by the use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera measures the surface temperature field. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. Obviously, the temperature data set has much more information content as the velocity data set due to the particular measurement techniques. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). Our goal is (a) to verify the results yielded with the analysis of the velocity data and (b) to compare the data analysis methods. Therefor, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us to compare the methods. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5

  5. Laboratory detection of the rotational-tunnelling spectrum of the hydroxymethyl radical, CH2OH

    NASA Astrophysics Data System (ADS)

    Bermudez, C.; Bailleux, S.; Cernicharo, J.

    2017-02-01

    Context. Of the two structural isomers of CH3O, methoxy is the only radical whose astronomical detection has been reported through the observation of several rotational lines at 2 and 3 mm wavelengths. Although the hydroxymethyl radical, CH2OH, is known to be thermodynamically the most stable (by 3300 cm-1), it has so far eluded rotational spectroscopy presumably because of its high chemical reactivity. Aims: Recent high-resolution ( 10 MHz) sub-Doppler rovibrationally resolved infrared spectra of CH2OH (symmetric CH stretching a-type band) provided accurate ground vibrational state rotational constants, thus reviving the quest for its millimeter-wave spectrum in laboratory and subsequently in space. Methods: The search and assignment of the rotational spectrum of this fundamental species were guided by our quantum chemical calculations and by using rotational constants derived from high-resolution IR data. The hydroxymethyl radical was produced by hydrogen abstraction from methanol by atomic chlorine. Results: Ninety-six b-type rotational transitions between the v = 0 and v = 1 tunnelling sublevels involving 25 fine-structure components of Q branches (with Ka = 1 ← 0) and 4 fine-structure components of R branches (assigned to Ka = 0 ← 1) were measured below 402 GHz. Hyperfine structure alternations due to the two identical methylenic hydrogens were observed and analysed based on the symmetry and parity of the rotational levels. A global fit including infrared and millimeter-wave lines has been conducted using Pickett's reduced axis system Hamiltonian. The recorded transitions (odd ΔKa) did not allow us to evaluate the Coriolis tunnelling interaction term. The comparison of the experimentally determined constants for both tunnelling levels with their computed values secures the long-awaited first detection of the rotational-tunnelling spectrum of this radical. In particular, a tunnelling rate of 139.73 ± 0.10 MHz (4.6609(32) × 10-3 cm-1) was obtained along with the rotational constants, electron spin-rotation interaction parameters and several hyperfine coupling terms. Conclusions: The laboratory characterization of CH2OH by millimeter-wave spectroscopy now offers the possibility for its astronomical detection for the first time.

  6. Jeans instability of rotating magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sutar, D. L.; Kumar, V.; Pensia, R. K.

    2018-05-01

    It has been shown that rotation has to play a predominant important role in the formation of many astrophysical objects and the stability of molecular clouds. In this paper the theoretical investigation of the presence of rotation in the magnetized dusty plasma. The general dispersion relation is obtained normal mode analysis technique, and we found the Alfven mode is modified due to the presence of rotation and magnetic field. The graphical presentation shows that rotation and Alfven wave velocity have a stabilizing in the system.

  7. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves.

    PubMed

    Bernard, Ianis; Doinikov, Alexander A; Marmottant, Philippe; Rabaud, David; Poulain, Cédric; Thibault, Pierre

    2017-07-11

    We show experimental evidence of the acoustically-assisted micromanipulation of small objects like solid particles or blood cells, combining rotation and translation, using high frequency surface acoustic waves. This was obtained from the leakage in a microfluidic channel of two standing waves arranged perpendicularly in a LiNbO 3 piezoelectric substrate working at 36.3 MHz. By controlling the phase lag between the emitters, we could, in addition to translation, generate a swirling motion of the emitting surface which, in turn, led to the rapid rotation of spherical polystyrene Janus beads suspended in the channel and of human red and white blood cells up to several rounds per second. We show that these revolution velocities are compatible with a torque caused by the acoustic streaming that develops at the particles surface, like that first described by [F. Busse et al., J. Acoust. Soc. Am., 1981, 69(6), 1634-1638]. This device, based on standard interdigitated transducers (IDTs) adjusted to emit at equal frequencies, opens a way to a large range of applications since it allows the simultaneous control of the translation and rotation of hard objects, as well as the investigation of the response of cells to shear stress.

  8. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  9. Nonlinear optical magnetometry with accessible in situ optical squeezing

    DOE PAGES

    Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.

    2014-11-14

    In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.

  10. Numerical assessment of factors affecting nonlinear internal waves in the South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    2014-02-01

    Nonlinear internal waves in the South China Sea exhibit diverse characteristics, which are associated with the complex conditions in Luzon Strait, such as the double ridge topography, the Earth’s rotation, variations in stratification and the background current induced by the Kuroshio. These effects are individually assessed using the MITgcm. The performance of the model is first validated through comparison with field observations. Because of in-phased ray interaction, the western ridge in Luzon Strait intensifies the semidiurnal internal tides generated from the eastern ridge, thus reinforcing the formation of nonlinear internal waves. However, the ray interaction for K1 forcing becomes anti-phased so that the K1 internal tide generation is reduced by the western ridge. Not only does the rotational dispersion suppress internal tide generation, it also inhibits nonlinear steepening and consequent internal solitary wave formation. As a joint effect, the double ridges and the rotational dispersion result in a paradoxical phenomenon: diurnal barotropic tidal forcing is dominant in Luzon Strait, but semidiurnal internal tides prevail in the deep basin of the South China Sea. The seasonal variation of the Kuroshio is consistent with the seasonal appearance of nonlinear internal waves in the South China Sea. The model results show that the westward inflow due to the Kuroshio intrusion reduces the amplitude of internal tides in the South China Sea, causing the weakening or absence of internal solitary waves. Winter stratification cannot account for the significant reduction of nonlinear internal waves, because the amplitude growth of internal tides due to increased thermocline tilting counteracts the reduced nonlinearity caused by thermocline deepening.

  11. Extracorporeal shock wave therapy for calcific and noncalcific tendonitis of the rotator cuff: a systematic review.

    PubMed

    Harniman, Elaine; Carette, Simon; Kennedy, Carol; Beaton, Dorcas

    2004-01-01

    The authors conducted a systematic review to assess the effectiveness of extracorporeal shock wave therapy (ESWT) for the treatment of calcific and noncalcific tendonitis of the rotator cuff. Conservative treatment for rotator cuff tendonitis includes physiotherapy, nonsteroidal antiinflammatory drugs, and corticosteroid injections. If symptoms persist with conservative treatment, surgery is often considered. Extracorporeal shock wave therapy has been suggested as a treatment alternative for chronic rotator cuff tendonitis, which may decrease the need for surgery. Articles for this review were identified by electronically searching Medline, EMBASE, Cumulative Index to Nursing & Allied Health Literature (CINAHL), and Evidence Based Medicine (EBM) and hand-screening references. Two reviewers selected the trials that met the inclusion criteria, extracted the data, and assessed the methodological quality of the selected trials. Finally, the strength of scientific evidence was appraised. Evidence was classified as strong, moderate, limited, or conflicting. Sixteen trials met the inclusion criteria. There were only five randomized, controlled trials and all involved chronic (>/=3 months) conditions, three for calcific tendonitis and two for noncalcific tendonitis. For randomized, controlled trials, two (40%) were of high quality, one (33%) for calcific tendonitis and one (50%) for noncalcific tendonitis. The 11 nonrandomized trials included nine that involved calcific tendonitis and two that involved both calcific and noncalcific tendonitis. Common problem areas were sample size, randomization, blinding, treatment provider bias, and outcome measures. There is moderate evidence that high-energy ESWT is effective in treating chronic calcific rotator cuff tendonitis when the shock waves are focused at the calcified deposit. There is moderate evidence that low-energy ESWT is not effective for treating chronic noncalcific rotator cuff tendonitis, although this conclusion is based on only one high-quality study, which was underpowered. High-quality randomized, controlled trials are needed with larger sample sizes, better randomization and blinding, and better outcome measures.

  12. Penetration of steady fluid motions into an outer stable layer excited by MHD thermal convection in rotating spherical shells

    NASA Astrophysics Data System (ADS)

    Takehiro, Shin-ichi; Sasaki, Youhei

    2018-03-01

    Penetration of steady magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by MHD thermal convection in rotating spherical shells is investigated. The theoretical model proposed by Takehiro (2015) is reexamined in the case of steady fluid motion below the bottom boundary. Steady disturbances penetrate into a density stratified MHD fluid existing in the semi-infinite region in the vertical direction. The axis of rotation of the system is tilted with respect to the vertical. The basic magnetic field is uniform and may be tilted with respect to the vertical and the rotation axis. Linear dispersion relation shows that the penetration distance with zero frequency depends on the amplitude of Alfvén wave speed. When Alfvén wave speed is small, viscous diffusion becomes dominant and penetration distance is similar to the horizontal scale of the disturbance at the lower boundary. In contrast, when Alfvén wave speed becomes larger, disturbance can penetrate deeper, and penetration distance becomes proportional to the Alfvén wave speed and inversely proportional to the geometric average of viscous and magnetic diffusion coefficients and to the total horizontal wavenumber. The analytic expression of penetration distance is in good agreement with the extent of penetration of mean zonal flow induced by finite amplitude convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field. The theory expects that the stable layer suggested in the upper part of the outer core of the earth could be penetrated completely by mean zonal flows excited by thermal/compositional convection developing below the stable layer.

  13. Wave generation by fracture initiation and propagation in geomaterials with internal rotations

    NASA Astrophysics Data System (ADS)

    Esin, Maxim; Pasternak, Elena; Dyskin, Arcady; Xu, Yuan

    2016-04-01

    Crack or fracture initiation and propagation in geomaterials are sources of waves and is important in both stability and fracture (e.g. hydraulic fracture) monitoring. Many geomaterials consist of particles or other constituents capable of rotating with respect to each other, either due to the absence of the binder phase (fragmented materials) or due to extensive damage of the cement between the constituents inflicted by previous loading. In investigating the wave generated in fracturing it is important to distinguish between the cases when the fracture is instantaneously initiated to its full length or propagates from a smaller initial crack. We show by direct physical experiments and discrete element modelling of 2D arrangements of unbonded disks that under compressive load fractures are initiated instantaneously as a result of the material instability and localisation. Such fractures generate waves as a single impulse impact. When the fractures propagate, they produce a sequence of impulses associated with the propagation steps. This manifests itself as acoustic (microseismic) emission whose temporal pattern contains the information of the fracture geometry, such as fractal dimension of the fracture. The description of this process requires formulating criteria of crack growth capable of taking into account the internal rotations. We developed an analytical solution based on the Cosserat continuum where each point of body has three translational and three rotational degrees of freedom. When the Cosserat characteristic lengths are comparable with the grain sizes, the simplified equations of small-scale Cosserat continuum can be used. We established that the order of singularity of the main asymptotic term for moment stress is higher than the order of singularity for conventional stress. Therefore, the mutual rotation of particles and related bending and/or twisting of the bonds between the particles represent an unconventional mechanism of crack propagation.

  14. Generalized radially self-accelerating helicon beams.

    PubMed

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander

    2014-10-31

    We report, in theory and experiment, on a new class of optical beams that are radially self-accelerating and nondiffracting. These beams continuously evolve on spiraling trajectories while maintaining their amplitude and phase distribution in their rotating rest frame. We provide a detailed insight into the theoretical origin and characteristics of radial self-acceleration and prove our findings experimentally. As radially self-accelerating beams are nonparaxial and a solution to the full scalar Helmholtz equation, they can be implemented in many linear wave systems beyond optics, from acoustic and elastic waves to surface waves in fluids and soft matter. Our work generalized the study of classical helicon beams to a complete set of solutions for rotating complex fields.

  15. Internal wave scattering in continental slope canyons, part 1: Theory and development of a ray tracing algorithm

    NASA Astrophysics Data System (ADS)

    Nazarian, Robert H.; Legg, Sonya

    2017-10-01

    When internal waves interact with topography, such as continental slopes, they can transfer wave energy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach has been employed in other studies, we have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, as well as a test of robustness of the ray tracing, is presented in the companion article.

  16. Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect.

    PubMed

    Bliokh, K Yu; Bliokh, Yu P

    2004-08-01

    We present a modification of the geometrical optics method, which allows one to properly separate the complex amplitude and the phase of the wave solution. Appling this modification to a smoothly inhomogeneous isotropic medium, we show that in the first geometrical optics approximation the medium is weakly anisotropic. The refractive index, being dependent on the direction of the wave vector, contains the correction, which is proportional to the Berry geometric phase. Two independent eigenmodes of right-hand and left-hand circular polarizations exist in the medium. Their group velocities and phase velocities differ. The difference in the group velocities results in the shift of the rays of different polarizations (the optical Magnus effect). The difference in the phase velocities causes an increase of the Berry phase along with the interference of two modes leading to the familiar Rytov law about the rotation of the polarization plane of a wave. The theory developed suggests that both the optical Magnus effect and the Berry phase are accompanying nonlocal topological effects. In this paper the Hamilton ray equations giving a unified description for both of these phenomena have been derived and also a novel splitting effect for a ray of noncircular polarization has been predicted. Specific examples are also discussed.

  17. Imaging the dynamics of free-electron Landau states

    PubMed Central

    Schattschneider, P.; Schachinger, Th.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Bliokh, K. Y.; Nori, Franco

    2014-01-01

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563

  18. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Crocker, N. A.; Carter, T. A.

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation,more » it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.« less

  19. Langmuir circulation inhibits near-surface water turbulence

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.

  20. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE PAGES

    Fishman, Randy S.

    2018-01-03

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  1. Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

    NASA Astrophysics Data System (ADS)

    Fishman, Randy S.

    2018-01-01

    Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.

  2. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, Randy S.

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  3. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2017-02-01

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar-Friedman-Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (I.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.

  4. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A., E-mail: mbelyaev@berkeley.edu

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitationalmore » waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.« less

  5. High mode magnetohydrodynamic waves propagation in a twisted rotating jet emerging from a filament eruption

    NASA Astrophysics Data System (ADS)

    Zhelyazkov, Ivan; Chandra, Ramesh

    2018-05-01

    We study the conditions under which high mode magnetohydrodynamic (MHD) waves propagating on a rotating jet emerging from the filament eruption on 2013 April 10-11 can became unstable against the Kelvin-Helmholtz instability (KHI). The evolution of jet indicates the blob like structure at its boundary which could be one of the observable features of the KHI development. We model the jet as a twisted rotating axially moving magnetic flux tube and explore the propagation characteristics of the running MHD modes on the basis of dispersion relations derived in the framework of the ideal magnetohydrodynamics. It is established that unstable MHD waves with wavelengths in the range of 12-15 Mm and instability developing times from 1.5 to 2.6 min can be detected at the excitation of high mode MHD waves. The magnitude of the azimuthal mode number m crucially depends upon the twist of the internal magnetic field. It is found that at slightly twisted magnetic flux tube the appropriate azimuthal mode number is m = 16 while in the case of a moderately twisted flux tube it is equal to 18.

  6. Motion of isolated open vortex filaments evolving under the truncated local induction approximation

    NASA Astrophysics Data System (ADS)

    Van Gorder, Robert A.

    2017-11-01

    The study of nonlinear waves along open vortex filaments continues to be an area of active research. While the local induction approximation (LIA) is attractive due to locality compared with the non-local Biot-Savart formulation, it has been argued that LIA appears too simple to model some relevant features of Kelvin wave dynamics, such as Kelvin wave energy transfer. Such transfer of energy is not feasible under the LIA due to integrability, so in order to obtain a non-integrable model, a truncated LIA, which breaks the integrability of the classical LIA, has been proposed as a candidate model with which to study such dynamics. Recently Laurie et al. ["Interaction of Kelvin waves and nonlocality of energy transfer in superfluids," Phys. Rev. B 81, 104526 (2010)] derived truncated LIA systematically from Biot-Savart dynamics. The focus of the present paper is to study the dynamics of a section of common open vortex filaments under the truncated LIA dynamics. We obtain the analog of helical, planar, and more general filaments which rotate without a change in form in the classical LIA, demonstrating that while quantitative differences do exist, qualitatively such solutions still exist under the truncated LIA. Conversely, solitons and breather solutions found under the LIA should not be expected under the truncated LIA, as the existence of such solutions relies on the existence of an infinite number of conservation laws which is violated due to loss of integrability. On the other hand, similarity solutions under the truncated LIA can be quite different to their counterparts found for the classical LIA, as they must obey a t1/3 type scaling rather than the t1/2 type scaling commonly found in the LIA and Biot-Savart dynamics. This change in similarity scaling means that Kelvin waves are radiated at a slower rate from vortex kinks formed after reconnection events. The loss of soliton solutions and the difference in similarity scaling indicate that dynamics emergent under the truncated LIA can indeed differ a great deal from those previously studied under the classical LIA.

  7. Prediction of active control of subsonic centrifugal compressor rotating stall

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.

  8. Near-Resonant Raman Amplification in the Rotational Quantum Wave Packets of Nitrogen Molecular Ions Generated by Strong Field Ionization

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoxiang; Yao, Jinping; Chen, Jinming; Xu, Bo; Chu, Wei; Cheng, Ya

    2018-02-01

    The generation of laserlike narrow bandwidth emissions from nitrogen molecular ions (N2+ ) generated in intense near- and mid infrared femtosecond laser fields has aroused much interest because of the mysterious physics underlying such a phenomenon. Here, we perform a pump-probe measurement on the nonlinear interaction of rotational quantum wave packets of N2+ generated in midinfrared (e.g., at a wavelength centered at 1580 nm) femtosecond laser fields with an ultrashort probe pulse whose broad spectrum overlaps both P - and R -branch rotational transition lines between the electronic states N2+(B2Σu+,v'=0 ) and N2+(X2Σg+,v =0 ) . The results indicate the occurrence of highly efficient near-resonant stimulated Raman scattering in the quantum wave packets of N2+ ions generated in strong laser fields in the midinfrared region, of which the underlying mechanism is different from that of the air lasers generated in atmospheric environment when pumping with 800 nm intense pulses.

  9. Capsize of polarization in dilute photonic crystals.

    PubMed

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  10. A phase space approach to wave propagation with dispersion.

    PubMed

    Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J

    2015-08-01

    A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.

  11. Spatiotemporal Stochastic Resonance:Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Peter, Jung

    1996-03-01

    The amplification of weak periodic signals in bistable or excitable systems via stochastic resonance has been studied intensively over the last years. We are going one step further and ask: Can noise enhance spatiotemporal patterns in excitable media and can this effect be observed in nature? To this end, we are looking at large, two dimensional arrays of coupled excitable elements. Due to the coupling, excitation can propagate through the array in form of nonlinear waves. We observe target waves, rotating spiral waves and other wave forms. If the coupling between the elements is below a critical threshold, any excitational pattern will die out in the absence of noise. Below this threshold, large scale rotating spiral waves - as they are observed above threshold - can be maintained by a proper level of the noise[1]. Furthermore, their geometric features, such as the curvature can be controlled by the homogeneous noise level[2]. If the noise level is too large, break up of spiral waves and collisions with spontaneously nucleated waves yields spiral turbulence. Driving our array with a spatiotemporal pattern, e.g. a rotating spiral wave, we show that for weak coupling the excitational response of the array shows stochastic resonance - an effect we have termed spatiotemporal stochastic resonance. In the last part of the talk I'll make contact with calcium waves, observed in astrocyte cultures and hippocampus slices[3]. A. Cornell-Bell and collaborators[3] have pointed out the role of calcium waves for long-range glial signaling. We demonstrate the similarity of calcium waves with nonlinear waves in noisy excitable media. The noise level in the tissue is characterized by spontaneous activity and can be controlled by applying neuro-transmitter substances[3]. Noise effects in our model are compared with the effect of neuro-transmitters on calcium waves. [1]P. Jung and G. Mayer-Kress, CHAOS 5, 458 (1995). [2]P. Jung and G. Mayer-Kress, Phys. Rev. Lett.62, 2682 (1995). [3] A. Cornell-Bell, Steven M. Finkbeiner, Mark.S. Cooper and Stephen J. Smith, SCIENCE, 247, 373 (1990).

  12. The excitation of spiral density waves through turbulent fluctuations in accretion discs - I. WKBJ theory

    NASA Astrophysics Data System (ADS)

    Heinemann, T.; Papaloizou, J. C. B.

    2009-07-01

    We study and elucidate the mechanism of spiral density wave excitation in a differentially rotating flow with turbulence which could result from the magneto-rotational instability. We formulate a set of wave equations with sources that are only non-zero in the presence of turbulent fluctuations. We solve these in a shearing box domain, subject to the boundary conditions of periodicity in shearing coordinates, using a WKBJ method. It is found that, for a particular azimuthal wavelength, the wave excitation occurs through a sequence of regularly spaced swings during which the wave changes from leading to trailing form. This is a generic process that is expected to occur in shearing discs with turbulence. Trailing waves of equal amplitude propagating in opposite directions are produced, both of which produce an outward angular momentum flux that we give expressions for as functions of the disc parameters and azimuthal wavelength. By solving the wave amplitude equations numerically, we justify the WKBJ approach for a Keplerian rotation law for all parameter regimes of interest. In order to quantify the wave excitation completely, the important wave source terms need to be specified. Assuming conditions of weak non-linearity, these can be identified and are associated with a quantity related to the potential vorticity, being the only survivors in the linear regime. Under the additional assumption that the source has a flat power spectrum at long azimuthal wavelengths, the optimal azimuthal wavelength produced is found to be determined solely by the WKBJ response and is estimated to be 2πH, with H being the nominal disc scaleheight. In a following paper by Heinemann & Papaloizou, we perform direct three-dimensional simulations and compare results manifesting the wave excitation process and its source with the assumptions made and the theory developed here in detail, finding excellent agreement.

  13. Fully vectorial laser resonator modeling of continuous-wave solid-state lasers including rate equations, thermal lensing and stress-induced birefringence.

    PubMed

    Asoubar, Daniel; Wyrowski, Frank

    2015-07-27

    The computer-aided design of high quality mono-mode, continuous-wave solid-state lasers requires fast, flexible and accurate simulation algorithms. Therefore in this work a model for the calculation of the transversal dominant mode structure is introduced. It is based on the generalization of the scalar Fox and Li algorithm to a fully-vectorial light representation. To provide a flexible modeling concept of different resonator geometries containing various optical elements, rigorous and approximative solutions of Maxwell's equations are combined in different subdomains of the resonator. This approach allows the simulation of plenty of different passive intracavity components as well as active media. For the numerically efficient simulation of nonlinear gain, thermal lensing and stress-induced birefringence effects in solid-state active crystals a semi-analytical vectorial beam propagation method is discussed in detail. As a numerical example the beam quality and output power of a flash-lamp-pumped Nd:YAG laser are improved. To that end we compensate the influence of stress-induced birefringence and thermal lensing by an aspherical mirror and a 90° quartz polarization rotator.

  14. Solitary-wave solutions of the Benjamin equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, J.P.; Bona, J.L.; Restrepo, J.M.

    1999-10-01

    Considered here is a model equation put forward by Benjamin that governs approximately the evolution of waves on the interface of a two-fluid system in which surface-tension effects cannot be ignored. The principal focus is the traveling-wave solutions called solitary waves, and three aspects will be investigated. A constructive proof of the existence of these waves together with a proof of their stability is developed. Continuation methods are used to generate a scheme capable of numerically approximating these solitary waves. The computer-generated approximations reveal detailed aspects of the structure of these waves. They are symmetric about their crests, but unlikemore » the classical Korteqeg-de Vries solitary waves, they feature a finite number of oscillations. The derivation of the equation is also revisited to get an idea of whether or not these oscillatory waves might actually occur in a natural setting.« less

  15. The Thermal Phase Curve Offset on Tidally and Nontidally Locked Exoplanets: A Shallow Water Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, James; Vallis, Geoffrey K, E-mail: jp492@exeter.ac.uk, E-mail: g.vallis@exeter.ac.uk

    2017-06-20

    Using a shallow water model with time-dependent forcing, we show that the peak of an exoplanet thermal phase curve is, in general, offset from the secondary eclipse when the planet is rotating. That is, the planetary hot spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset are functions of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady state in the reference frame of the moving forcing. The model is an extension ofmore » the well-studied Matsuno–Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planet’s surface) exceeds that of the gravity waves, then the hot spot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wave speed of the system, the hottest point may lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics, as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.« less

  16. Spectral analysis of localized rotating waves in parabolic systems.

    PubMed

    Beyn, Wolf-Jürgen; Otten, Denny

    2018-04-13

    In this paper, we study the spectra and Fredholm properties of Ornstein-Uhlenbeck operators [Formula: see text]where [Formula: see text] is the profile of a rotating wave satisfying [Formula: see text] as [Formula: see text], the map [Formula: see text] is smooth and the matrix [Formula: see text] has eigenvalues with positive real parts and commutes with the limit matrix [Formula: see text] The matrix [Formula: see text] is assumed to be skew-symmetric with eigenvalues (λ 1 ,…,λ d )=(±i σ 1 ,…,±i σ k ,0,…,0). The spectra of these linearized operators are crucial for the nonlinear stability of rotating waves in reaction-diffusion systems. We prove under appropriate conditions that every [Formula: see text] satisfying the dispersion relation [Formula: see text]belongs to the essential spectrum [Formula: see text] in L p For values Re λ to the right of the spectral bound for [Formula: see text], we show that the operator [Formula: see text] is Fredholm of index 0, solve the identification problem for the adjoint operator [Formula: see text] and formulate the Fredholm alternative. Moreover, we show that the set [Formula: see text]belongs to the point spectrum [Formula: see text] in L p We determine the associated eigenfunctions and show that they decay exponentially in space. As an application, we analyse spinning soliton solutions which occur in the Ginzburg-Landau equation and compute their numerical spectra as well as associated eigenfunctions. Our results form the basis for investigating the nonlinear stability of rotating waves in higher space dimensions and truncations to bounded domains. This article is part of the themed issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).

  17. REVIEWS OF TOPICAL PROBLEMS Gravitational radiation of systems and the role of their force field

    NASA Astrophysics Data System (ADS)

    Nikishov, Anatolii I.; Ritus, Vladimir I.

    2011-02-01

    Gravitational radiation (GR) from compact relativistic systems with a known energy-momentum tensor (EMT) and GR from two masses elliptically orbiting their common center of inertia are considered. In the ultrarelativistic limit, the GR spectrum of a charge rotating in a uniform magnetic field, a Coulomb field, a magnetic moment field, and a combination of the last two fields differs by a factor 4πGm2Γ2/e2 (Γ being of the order of the charge Lorentz factor) from its electromagnetic radiation (EMR) spectrum. This factor is independent of the radiation frequency but does depend on the wave vector direction and the way the field behaves outside of the orbit. For a plane wave external field, the proportionality between the gravitational and electromagnetic radiation spectra is exact, whatever the velocity of the charge. Qualitative estimates of Γ are given for a charge moving ultrarelativistically in an arbitrary field, showing that it is of the order of the ratio of the nonlocal and local source contributions to the GR. The localization of external forces near the orbit violates the proportionality of the spectra and reduces GR by about the Lorentz factor squared. The GR spectrum of a rotating relativistic string with masses at the ends is given, and it is shown that the contributions by the masses and string are of the same order of magnitude. In the nonrelativistic limit, the harmonics of GR spectra behave universally for all the rotating systems considered. A trajectory method is developed for calculating the GR spectrum. In this method, the spatial (and hence polarization) components of the conserved EMT are calculated in the long wavelength approximation from the time component of the EMTs of the constituent masses of the system. Using this method, the GR spectrum of two masses moving in elliptic orbits about their common center of inertia is calculated, as are the relativistic corrections to it.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence J.

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler,more » closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.« less

  19. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  20. Modeling Wind Wave Evolution from Deep to Shallow Water

    DTIC Science & Technology

    2012-09-30

    WORK COMPLETED Development of a Lumped Quadruplet Approximation ( LQA ) A scalable parameterization of non-linear four-wave interactions is being...what we refer to as the Lumped Quadruplet Approximation ( LQA ), in which discrete contributions on the locus are treated as individual wave number...includes inhomogeneous wave fields, but is compatible with the action balance generally used in operational wave models. RESULTS Development LQA

  1. Dynamics of immiscible liquids in a rotating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Kozlov, N. V.; Kozlova, A. N.; Shuvalova, D. A.

    2016-11-01

    The dynamics of an interface between two immiscible liquids of different density is studied experimentally in a horizontal cylinder at rotation in the gravity field. Two liquids entirely fill the cavity volume, and the container is rotated sufficiently fast so that the liquids are centrifuged. The light liquid forms a column extended along the rotation axis, and the heavy liquid forms an annular layer. Under the action of gravity, the light liquid column displaces steadily along the radius, downwards in the laboratory frame. As a result, fluid oscillations in the cavity frame are excited at the interface, which lead to the generation of a steady streaming, and the fluid comes into a slow lagging rotation with respect to the cylinder walls. The dynamics of the studied system is determined by the ratio of the gravity acceleration to the centrifugal one—the dimensionless acceleration. In experiments, the system is controlled by the means of variation of the rotation rate, i.e., of the centrifugal force. At a critical value of the dimensionless acceleration the circular interface looses stability, and an azimuthal wave is excited. This leads to a strong increase in the interface differential velocity. A theoretical analysis is done based on the theory of centrifugal waves and a frequency equation is obtained. Experimental results are in good agreement with the theory at the condition of small wave amplitudes. Mechanism of steady streaming generation is analyzed based on previously published theoretical results obtained for the limiting case when the light phase is a solid cylinder. A qualitative agreement is found.

  2. The East Atlantic - West Russia Teleconnection in the North Atlantic: Climate Impact and Relation to Rossby Wave Propagation

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon

    2014-01-01

    Large-scale winter teleconnection of the East Atlantic - West Russia (EA-WR) over the Atlantic and surrounding regions is examined in order to quantify its impacts on temperature and precipitation and identify the physical mechanisms responsible for its existence. A rotated empirical orthogonal function (REOF) analysis of the upper-tropospheric monthly height field captures successfully the EA-WR pattern and its interannual variation, with the North Atlantic Oscillation as the first mode. EA-WRs climate impact extends from eastern North America to Eurasia. The positive (negative) EA-WR produces positive (negative) temperature anomalies over the eastern US, western Europe and Russia east of Caspian Sea, with negative (positive) anomalies over eastern Canada, eastern Europe including Ural Mountains and the Middle East. These anomalies are largely explained by lower-tropospheric temperature advections. Positive (negative) precipitation anomalies are found over the mid-latitude Atlantic and central Russia around 60E, where lower-level cyclonic (anticyclonic) circulation anomaly is dominant. The eastern Canada and the western Europe are characterized by negative (positive) precipitation anomalies.The EA-WR is found to be closely associated with Rossby wave propagation. Wave activity fluxes show that it is strongly tied to large-scale stationary waves. Furthermore, a stationary wave model (SWM) forced with vorticity transients in the mid-latitude Atlantic (approximately 40N) or diabatic heat source over the subtropical Atlantic near the Caribbean Sea produces well-organized EA-WR-like wave patterns, respectively. Sensitivity tests with the SWM indicate improvement in the simulation of the EA-WR when the mean state is modified to have a positive NAO component that enhances upper-level westerlies between 40-60N.

  3. Influence of seismic anisotropy on the cross correlation tensor: numerical investigations

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J. P.; Roux, P.; Cupillard, P.; Durand, S.; Brenguier, F.

    2015-05-01

    Temporal changes in seismic anisotropy can be interpreted as variations in the orientation of cracks in seismogenic zones, and thus as variations in the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes, although they are still not well understood. In this study, we investigate the azimuthal polarization of surface waves in anisotropic media with respect to the orientation of anisotropy, from a numerical point of view. This technique is based on the observation of the signature of anisotropy on the nine-component cross-correlation tensor (CCT) computed from seismic ambient noise recorded on pairs of three-component sensors. If noise sources are spatially distributed in a homogeneous medium, the CCT allows the reconstruction of the surface wave Green's tensor between the station pairs. In homogeneous, isotropic medium, four off-diagonal terms of the surface wave Green's tensor are null, but not in anisotropic medium. This technique is applied to three-component synthetic seismograms computed in a transversely isotropic medium with a horizontal symmetry axis, using a spectral element code. The CCT is computed between each pair of stations and then rotated, to approximate the surface wave Green's tensor by minimizing the off-diagonal components. This procedure allows the calculation of the azimuthal variation of quasi-Rayleigh and quasi-Love waves. In an anisotropic medium, in some cases, the azimuth of seismic anisotropy can induce a large variation in the horizontal polarization of surface waves. This variation depends on the relative angle between a pair of stations and the direction of anisotropy, the amplitude of the anisotropy, the frequency band of the signal and the depth of the anisotropic layer.

  4. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows

    NASA Astrophysics Data System (ADS)

    Gizon, Laurent; Barucq, Hélène; Duruflé, Marc; Hanson, Chris S.; Leguèbe, Michael; Birch, Aaron C.; Chabassier, Juliette; Fournier, Damien; Hohage, Thorsten; Papini, Emanuele

    2017-04-01

    Context. Local helioseismology has so far relied on semi-analytical methods to compute the spatial sensitivity of wave travel times to perturbations in the solar interior. These methods are cumbersome and lack flexibility. Aims: Here we propose a convenient framework for numerically solving the forward problem of time-distance helioseismology in the frequency domain. The fundamental quantity to be computed is the cross-covariance of the seismic wavefield. Methods: We choose sources of wave excitation that enable us to relate the cross-covariance of the oscillations to the Green's function in a straightforward manner. We illustrate the method by considering the 3D acoustic wave equation in an axisymmetric reference solar model, ignoring the effects of gravity on the waves. The symmetry of the background model around the rotation axis implies that the Green's function can be written as a sum of longitudinal Fourier modes, leading to a set of independent 2D problems. We use a high-order finite-element method to solve the 2D wave equation in frequency space. The computation is embarrassingly parallel, with each frequency and each azimuthal order solved independently on a computer cluster. Results: We compute travel-time sensitivity kernels in spherical geometry for flows, sound speed, and density perturbations under the first Born approximation. Convergence tests show that travel times can be computed with a numerical precision better than one millisecond, as required by the most precise travel-time measurements. Conclusions: The method presented here is computationally efficient and will be used to interpret travel-time measurements in order to infer, e.g., the large-scale meridional flow in the solar convection zone. It allows the implementation of (full-waveform) iterative inversions, whereby the axisymmetric background model is updated at each iteration.

  5. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection, and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-07-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the `dipole dichotomy' problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localized region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organization of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetized region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  6. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  7. Compressible Convection Experiment using Xenon Gas in a Centrifuge

    NASA Astrophysics Data System (ADS)

    Menaut, R.; Alboussiere, T.; Corre, Y.; Huguet, L.; Labrosse, S.; Deguen, R.; Moulin, M.

    2017-12-01

    We present here an experiment especially designed to study compressible convection in the lab. For significant compressible convection effects, the parameters of the experiment have to be optimized: we use xenon gaz in a cubic cell. This cell is placed in a centrifuge to artificially increase the apparent gravity and heated from below. With these choices, we are able to reach a dissipation number close to Earth's outer core value. We will present our results for different heating fluxes and rotation rates. We success to observe an adiabatic gradient of 3K/cm in the cell. Studies of pressure and temperature fluctuations lead us to think that the convection takes place under the form of a single roll in the cell for high heating flux. Moreover, these fluctuations show that the flow is geostrophic due to the high rotation speed. This important role of rotation, via Coriolis force effects, in our experimental setup leads us to develop a 2D quasigeostrophic compressible model in the anelastic liquid approximation. We test numerically this model with the finite element solver FreeFem++ and compare its results with our experimental data. In conclusion, we will present our project for the next experiment in which the cubic cell will be replace by a annulus cell. We will discuss the new expected effects due to this geometry as Rossby waves and zonal flows.

  8. Composite-Light-Pulse Technique for High-Precision Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Berg, P.; Abend, S.; Tackmann, G.; Schubert, C.; Giese, E.; Schleich, W. P.; Narducci, F. A.; Ertmer, W.; Rasel, E. M.

    2015-02-01

    We realize beam splitters and mirrors for atom waves by employing a sequence of light pulses rather than individual ones. In this way we can tailor atom interferometers with improved sensitivity and accuracy. We demonstrate our method of composite pulses by creating a symmetric matter-wave interferometer which combines the advantages of conventional Bragg- and Raman-type concepts. This feature leads to an interferometer with a high immunity to technical noise allowing us to devise a large-area Sagnac gyroscope yielding a phase shift of 6.5 rad due to the Earth's rotation. With this device we achieve a rotation rate precision of 120 nrad s-1 Hz-1 /2 and determine the Earth's rotation rate with a relative uncertainty of 1.2%.

  9. Uniform semiclassical sudden approximation for rotationally inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, H.J.; Schinke, R.

    1980-08-01

    The infinite-order-sudden (IOS) approximation is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase approximation for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less

  10. Power combiner

    DOEpatents

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  11. Inner Core Anisotropy: Can Seismic Observations be Reconciled with Ab Initio Calculations of Elasticity?

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2016-12-01

    Body-wave and normal-mode observations have revealed an inner-core structure that is radially layered, axially anisotropic, and hemispherically asymmetric. Previous theoretical studies have examined the consistency of these features with the elasticity of iron crystals thought to dominate inner-core composition, but a fully consistent model has been elusive. Here we compare the seismic observation with effective-medium models derived from ab initio calculations of the elasticity tensors for hcp-Fe and bcc-Fe. Our estimates are based on Jordan's (GJI, 2015) effective medium theory, which is derived from a self-consistent, second-order Born approximation. The theory provides closed-form expressions for the effective elastic parameters of 3D anisotropic, heterogeneous media in which the local anisotropy is a constant hexagonal stiffness tensor C stochastically oriented about a constant symmetry axis \\hat{s} and the statistics of the small-scale heterogeneities are transversely isotropic in the plane perpendicular to \\hat{s}. The stochastic model is then described by a dimensionless "aspect ratio of the heterogeneity", 0 ≤ η < ∞, and a dimensionless "orientation ratio of the anisotropy", 0 ≤ ξ < ∞. The latter determines the degree to which the axis of C is aligned with \\hat{s}. We compute the loci of models with \\hat{s} oriented along the Earth's rotational axis ( \\hat{s} = north) by varying ξ and η for various ab initio estimates of C. We show that a lot of widely used estimates of C are inconsistent with most published normal-mode models of inner-core anisotropy. In particular, if the P-wave fast axis aligns with the rotational axis, which is required to satisfy the body-wave observations, then these hcp-Fe models predict that the fast polarization of the S waves is in the plane perpendicular to \\hat{s}, which disagrees with most normal-mode models. We have attempted to resolve this discrepancy by examining alternative hcp-Fe models, including radially anisotropic distributions of stochastic anisotropy and heterogeneity (i.e., where \\hat{s} = \\hat{r}), as well as bcc-Fe models. Our calculations constrain the form of C needed to satisfy the seismological inferences.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Becker, Daniel; Showman, Adam P.

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiationmore » exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ{sub wave}, plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ{sub wave}∼√(τ{sub rad}/Ω), where τ{sub rad} is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ{sub rad} ∼ τ{sub vert}, where τ{sub vert} is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ{sub rad} and the horizontal day-night advection timescale, τ{sub adv}. Only because τ{sub adv} ∼ τ{sub vert} for hot Jupiters does the commonly assumed timescale comparison between τ{sub rad} and τ{sub adv} yield approximately correct predictions for the heat redistribution efficiency.« less

  13. APPROXIMATION OF ROTATIONAL STRENGTHS FROM MOLAR ROTATION DATA AND GENERATION OF ROTATORY DISPERSION CURVES FOR D-CAMPHOR-10-SULFONATE

    PubMed Central

    Urry, Dan W.

    1969-01-01

    Starting with the expression for optical rotatory dispersion in the absorption region that was arrived at by Condon, two series were considered for the purpose of achieving the experimentally observed, steeper wavelength dependence in the absorption region while retaining the established 1/λ2 law in regions removed from absorption. The first two terms of one series in which the second term exhibits a 1/λ6 wavelength dependence were found to calculate satisfactorily the optical rotatory dispersion curve of d-camphor-10-sulfonate from 400 mμ to 190 mμ when only three bands were considered. Evaluated at the extrema, the two-term expression can be approximated by a simple equation which allows calculation of the rotational strength of a nonoverlapping band by using only the wavelength and molar rotation of the extrema and the index of refraction of the solution. The rotational strengths calculated from optical rotatory dispersion data in this manner closely agree with those calculated from corresponding circular dichroism data. Thus when position and magnitude of rotatory dispersion extrema alone are reported for carbonyls, it is suggested that such published data may be converted to approximate rotational strengths. PMID:5257123

  14. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-04

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  15. Rotational elasticity

    NASA Astrophysics Data System (ADS)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  16. Quasi-radial modes of rotating stars in general relativity

    NASA Astrophysics Data System (ADS)

    Yoshida, Shin'ichirou; Eriguchi, Yoshiharu

    2001-04-01

    By using the Cowling approximation, quasi-radial modes of rotating general relativistic stars are computed along equilibrium sequences from non-rotating to maximally rotating models. The eigenfrequencies of these modes are decreasing functions of the rotational frequency. The eigenfrequency curve of each mode as a function of the rotational frequency has discontinuities, which arise from the avoided crossing with other curves of axisymmetric modes.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Bob; Laughlin, Darren

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' withinmore » drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence, thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA's angular rate and angular displacement measurement technologies; Angular rate: ATA's Magnetohydrodynamic Angular Rate Sensor (Seismic MHD); and Angular displacement: ATA's Low Frequency Improved Torsional Seismometer (LFITS). In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.« less

  18. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-08-31

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  19. Wave number selection in the presence of noise: Experimental results

    NASA Astrophysics Data System (ADS)

    Zhilenko, Dmitry; Krivonosova, Olga; Gritsevich, Maria; Read, Peter

    2018-05-01

    In this study, we consider how the wave number selection in spherical Couette flow, in the transition to azimuthal waves after the first instability, occurs in the presence of noise. The outer sphere was held stationary, while the inner sphere rotational speed was increased linearly from a subcritical flow to a supercritical one. In a supercritical flow, one of two possible flow states, each with different azimuthal wave numbers, can appear depending upon the initial and final Reynolds numbers and the acceleration value. Noise perturbations were added by introducing small disturbances into the rotational speed signal. With an increasing noise amplitude, a change in the dominant wave number from m to m ± 1 was found to occur at the same initial and final Reynolds numbers and acceleration values. The flow velocity measurements were conducted by using laser Doppler anemometry. Using these results, the role of noise as well as the behaviour of the amplitudes of the competing modes in their stages of damping and growth were determined.

  20. Selective wave-transmitting electromagnetic absorber through composite metasurface

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun

    2017-11-01

    Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.

  1. In Situ Guided Wave Structural Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  2. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  3. Absolute plate motions and true polar wander in the absence of hotspot tracks.

    PubMed

    Steinberger, Bernhard; Torsvik, Trond H

    2008-04-03

    The motion of continents relative to the Earth's spin axis may be due either to rotation of the entire Earth relative to its spin axis--true polar wander--or to the motion of individual plates. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find approximately 18 degrees anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20 degrees W, 0 degrees N, near the site that became the North American-South American-African triple junction at the break-up of Pangaea. This was followed by approximately 10 degrees clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases approximately 25-50 degrees E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).

  4. The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.

    2017-08-01

    Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.

  5. Venus: Atmospheric motion and structure from Mariner 10 pictures

    USGS Publications Warehouse

    Murray, B.C.; Belton, M.J.S.; Danielson, G. Edward; Davies, M.E.; Gault, D.; Hapke, B.; O'Leary, B.; Strom, R.G.; Suomi, V.; Trask, N.

    1974-01-01

    The Mariner 10 television cameras imaged the planet Venus in the visible and near ultraviolet for a period of 8 days at resolutions ranging from 100 meters to 130 kilometers. The general pattern of the atmospheric circulation in the upper tropospheric/lower stratospheric region is displayed in the pictures. Atmospheric flow is symmetrical between north and south hemispheres. The equatorial motions are zonal (east-west) at approximately 100 meters per second, consistent with the previously inferred 4-day retrograde rotation. Angular velocity increases with latitude. The subsolar region, and the region downwind from it, show evidence of large-scale convection that persists in spite of the main zonal motion. Dynamical interaction between the zonal motion and the relatively stationary region of convection is evidenced by bowlike waves.

  6. Electron-positron outflow from black holes.

    PubMed

    van Putten, M H

    2000-04-24

    Cosmological gamma-ray bursts (GRBs) appear as the brightest transient phenomena in the Universe. The nature of their central engine is a missing link in the theory of fireballs to stellar mass progenitors, and may be associated with low mass black holes. In contact with an external magnetic field B, black hole spin produces a gravitational potential on the wave function of charged particles. We show that a rapidly rotating black hole of mass M produces outflow from initially electrostatic equilibrium with normalized isotropic emission approximately 10(48)(B/B(c))(2)(M/7M)(2)sin (2) theta erg/s, where B(c) = 4.4x10(13) G. The half-opening angle satisfies theta >or = square root[B(c)/3B]. The outflow proposed as input to GRB fireball models.

  7. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOEpatents

    Möbius, Arnold; Ives, Robert Lawrence

    2005-07-19

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  8. Reducing injection loss in drill strings

    DOEpatents

    Drumheller, Douglas S.

    2004-09-14

    A system and method for transferring wave energy into or out of a periodic structure having a characteristic wave impedance profile at a prime frequency, the characteristic wave impedance profile comprising a real portion and an imaginary portion, comprising: locating one or more energy transfer elements each having a wave impedance at the prime frequency approximately equal to the real portion of the characteristic wave impedance at one or more points on the periodic structure with the imaginary portion approximately equaling zero; and employing the one or more energy transfer elements to transfer wave energy into or out of the periodic structure. The energy transfer may be repeaters. Quarter-wave transformers can be provided at one or more points on the periodic structure with the imaginary portion approximately equaling zero to transmit waves across one or more discontinuities. A terminator can be employed for cancellation of waves. The invention substantially eliminates reflections of the wave energy at the prime frequency by joints between sections of the periodic structure.

  9. Exploratory Bi-factor Analysis: The Oblique Case.

    PubMed

    Jennrich, Robert I; Bentler, Peter M

    2012-07-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (Psychometrika 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (Psychometrika 76:537-549, 2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bifactor rotation criterion designed to produce a rotated loading matrix that has an approximate bi-factor structure. Among other things this can be used as an aid in finding an explicit bi-factor structure for use in a confirmatory bi-factor analysis. They considered only orthogonal rotation. The purpose of this paper is to consider oblique rotation and to compare it to orthogonal rotation. Because there are many more oblique rotations of an initial loading matrix than orthogonal rotations, one expects the oblique results to approximate a bi-factor structure better than orthogonal rotations and this is indeed the case. A surprising result arises when oblique bi-factor rotation methods are applied to ideal data.

  10. Intertwined Orders in Heavy-Fermion Superconductor CeCoIn 5

    DOE PAGES

    Kim, Duk Young; Lin, Shi-Zeng; Weickert, Franziska; ...

    2016-12-20

    The appearance of spin-density-wave (SDW) magnetic order in the low-temperature and high-field corner of the superconducting phase diagram of CeCoIn 5 is unique among unconventional superconductors. The nature of this magnetic $Q$ phase is a matter of current debate. Here, we present the thermal conductivity of CeCoIn 5 in a rotating magnetic field, which reveals the presence of an additional order inside the $Q$ phase that is intimately intertwined with the superconducting d-wave and SDW orders. A discontinuous change of the thermal conductivity within the $Q$ phase, when the magnetic field is rotated about antinodes of the superconducting d-wave ordermore » parameter, demands that the additional order must change abruptly, together with the recently observed switching of the SDW. Lastly, a combination of interactions, where spin-orbit coupling orients the SDW, which then selects the secondary p -wave pair-density-wave component (with an average amplitude of 20% of the primary d-wave order parameter), accounts for the observed behavior.« less

  11. Numerical study on the instabilities in H2-air rotating detonation engines

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping

    2018-04-01

    Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.

  12. Theory of low-energy electron-molecule collision physics in the coupled-channel method and application to e-CO/sub 2/ scattering. [0. 01 to 10 eV, potentials, partial waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, M.A.

    1976-08-01

    A theory of electron-molecule scattering based on the fixed-nuclei approximation in a body-fixed reference frame is formulated and applied to e-CO/sub 2/ collisions in the energy range from 0.07 to 10.0 eV. The procedure used is a single-center coupled-channel method which incorporates a highly accurate static interaction potential, an approximate local exchange potential, and an induced polarization potential. Coupled equations are solved by a modification of the integral equations algorithm; several partial waves are required in the region of space near the nuclei, and a transformation procedure is developed to handle the consequent numerical problems. The potential energy is convergedmore » by separating electronic and nuclear contributions in a Legendre-polynomial expansion and including a large number of the latter. Formulas are derived for total elastic, differential, momentum transfer, and rotational excitation cross sections. The Born and asymptotic decoupling approximations are derived and discussed in the context of comparison with the coupled-channel cross sections. Both are found to be unsatisfactory in the energy range under consideration. An extensive discussion of the technical aspects of calculations for electron collisions with highly nonspherical targets is presented, including detailed convergence studies and a discussion of various numerical difficulties. The application to e-CO/sub 2/ scattering produces converged results in good agreement with observed cross sections. Various aspects of the physics of this collision are discussed, including the 3.8 eV shape resonance, which is found to possess both p and f character, and the anomalously large low-energy momentum transfer cross sections, which are found to be due to ..sigma../sub g/ symmetry. Comparison with static and static-exchange approximations are made.« less

  13. Coronal Jet Collimation by Nonlinear Induced Flows

    NASA Astrophysics Data System (ADS)

    Vasheghani Farahani, S.; Hejazi, S. M.

    2017-08-01

    Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma-β. As the shear flow and plasma-β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.

  14. Pulsars in the Classroom: Suggested Exercises for Lab or Homework

    ERIC Educational Resources Information Center

    Gordon, Kurtiss J.

    1978-01-01

    Exercises for introductory to intermediate level college students are proposed. Observations of pulsars can be used to illustrate the phenomena of dispersion and Faraday rotation of radio waves, and to illustrate the differential rotation of the galaxy. (BB)

  15. Phase-locking of magnetic islands diagnosed by ECE-imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, Benjamin; Grierson, Brian A.; Muscatello, Christopher M.

    2014-08-13

    Millimeter-wave imaging diagnostics identify phase-locking and the satisfaction of 3-wave coupling selection criteria amongst multiple magnetic island chains by providing a localized, internal measurement of the 2D power spectral density, S(ω, k pol). In high-confinement tokamak discharges, these interactions impact both plasma rotation and tearing stability. Here, nonlinear coupling amongst neoclassical tearing modes (NTMs) of different n-number, with islands not satisfying the poloidal mode number selection criterion {m, m ', m - m ' }, contributes to a reduction in core rotation and flow shear in the vicinity of the modes.

  16. Laboratory rotational spectroscopy of cyano substituted polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    McNaughton, Don; Jahn, Michaela K.; Travers, Michael J.; Wachsmuth, Dennis; Godfrey, Peter D.; Grabow, Jens-Uwe

    2018-06-01

    The rotational spectra of the four cyano substituted polycyclic aromatic hydrocarbon (PAH) molecules 1-cyanonaphthalene, 2-cyanonaphthalene, 9-cyanoanthracene, and 9-cyanophenanthrene have been recorded in molecular expansions using a Stark-modulated millimetre-wave spectrometer and a Fourier transform microwave spectrometer in the centimetre-wave region. The spectra have been assigned and fitted to provide molecular constants and quadrupole hyperfine constants of sufficient accuracy to enable complete hyperfine structure line predictions for interstellar searches. The data may provide a route into detection of small PAHs in the interstellar medium.

  17. Statistical study of ULF wave occurrence in the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Cao, M.; Mcpherron, R. L.; Russell, C. T.

    1994-01-01

    Ultralow-frequency (ULF) waves are observed almost everywhere in the dayside magnetosphere. The mechanism by which these waves are generated and transformed in the dayside magnetosphere is still not understood. Here we report a statistical study of these waves based on magnetic field data from the International Sun-Earth Explorer 1 (ISEE 1) spacecraft. Data from the first traversal of the spacecraft through the entire dayside magnetosphere have been examined to determine the spatial distribution of wave occurrence. Successive 20-min segments of data were transformed to a field-aligned coordinate system. The parallel component was detrended and all three components of the field spectrally analyzed. Wave occurrence was defined by the presence of significant peaks in the power spectra. Wave events were categorized by three wave frequency bands: Pc 3 with T approximately 10-45 s; Pc 4 with T approximately 45-150 s; the short-period part of the Pc 5 wave band with T approximately 150-324 s. Properties of the spectral peaks were then entered into a data base. The data base was next sorted to determine the spatial occurrence pattern for the waves. Our results show that Pc 3 waves most frequently occur just outside synchronous orbit and are approximately centered on local noon. Pc 4 waves have a similar distribution with its peak further out. Pc 5 waves have high occurrence rate at the two flanks of the magnetosphere. Peaks in spectra obtained near the magnetopause are less clearly defined than those deeper in the magnetosphere.

  18. Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror

    NASA Astrophysics Data System (ADS)

    Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu

    2017-02-01

    Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.

  19. Swimming Dynamics of the Lyme Disease Spirochete

    NASA Astrophysics Data System (ADS)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  20. Swimming dynamics of the lyme disease spirochete.

    PubMed

    Vig, Dhruv K; Wolgemuth, Charles W

    2012-11-21

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi's swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

Top