Symmetric rotating-wave approximation for the generalized single-mode spin-boson system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Victor V.; Scholes, Gregory D.; Brumer, Paul
2011-10-15
The single-mode spin-boson model exhibits behavior not included in the rotating-wave approximation (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating-wave approximation that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating-wave approximation both off-resonance and at deep-strong coupling. The symmetric rotating-wave approximation allows for the treatment of certain ultra- and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak-coupling regime.more » Additionally, we symmetrize the generalized form of the rotating-wave approximation to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating-wave approximation. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.« less
1998-01-01
and creation operators of the radiation mode of frequency win. The interaction (in the rotating wave approximation ) is described by Am =• x10)(1llat...based on a series of approx- imations [such as the rotating wave approximation (RWA) and the "pole" approxi- mation (PA)] validity of which is...possibly, the oscillating dependencies ti(eo) and r(eo) arise when and because one does not use the rotating - wave and pole approximations inherently present
Surface acoustic wave micromotor with arbitrary axis rotational capability
NASA Astrophysics Data System (ADS)
Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.
2011-11-01
A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.
Nonperturbative interpretation of the Bloch vector's path beyond the rotating-wave approximation
NASA Astrophysics Data System (ADS)
Benenti, Giuliano; Siccardi, Stefano; Strini, Giuliano
2013-09-01
The Bloch vector's path of a two-level system exposed to a monochromatic field exhibits, in the regime of strong coupling, complex corkscrew trajectories. By considering the infinitesimal evolution of the two-level system when the field is treated as a classical object, we show that the Bloch vector's rotation speed oscillates between zero and twice the rotation speed predicted by the rotating wave approximation. Cusps appear when the rotation speed vanishes. We prove analytically that in correspondence to cusps the curvature of the Bloch vector's path diverges. On the other hand, numerical data show that the curvature is very large even for a quantum field in the deep quantum regime with mean number of photons n¯≲1. We finally compute numerically the typical error size in a quantum gate when the terms beyond rotating wave approximation are neglected.
NASA Astrophysics Data System (ADS)
London, Steven D.
2018-01-01
In a recent paper (London, Geophys. Astrophys. Fluid Dyn. 2017, vol. 111, pp. 115-130, referred to as L1), we considered a perfect electrically conducting rotating fluid in the presence of an ambient toroidal magnetic field, governed by the shallow water magnetohydrodynamic (MHD) equations in a modified equatorial ?-plane approximation. In conjunction with a WKB type approximation, we used a multiple scale asymptotic scheme, previously developed by Boyd (J. Phys. Oceanogr. 1980, vol. 10, pp. 1699-1717) for equatorial solitary hydrodynamic waves, and found solitary MHD waves. In this paper, as in L1, we apply a WKB type approximation in order to extend the results of L1 from the modified ?-plane to the full spherical geometry. We have included differential rotation in the analysis in order to make the results more relevant to the solar case. In addition, we consider the case of hydrodynamic waves on the rotating sphere in the presence of a differential rotation intended to roughly model the varying large scale currents in the oceans and atmosphere. In the hydrodynamic case, we find the usual equatorial solitary waves as found by Boyd, as well as waves in bands away from the equator for sufficiently strong currents. In the MHD case, we find basically the same equatorial waves found in L1. L1 also found non-equatorial modes; no such modes are found in the full spherical geometry.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.
NASA Astrophysics Data System (ADS)
Simonelli, A.; Igel, H.; Wassermann, J.; Belfi, J.; Di Virgilio, A.; Beverini, N.; De Luca, G.; Saccorotti, G.
2018-05-01
We present the analysis of rotational and translational ground motions from earthquakes recorded during October/November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozens of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 30 km and 70 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. Under the plane wave approximation we process the data set in order to get an experimental estimation of the events back azimuth. Peak values of rotation rate (PRR) and horizontal acceleration (PGA) are markedly correlated, according to a scaling constant which is consistent with previous measurements from different earthquake sequences. We used a prediction model in use for Italy to calculate the expected PGA at the recording site, obtaining consequently predictions for PRR. Within the modeling uncertainties, predicted rotations are consistent with the observed ones, suggesting the possibility of establishing specific attenuation models for ground rotations, like the scaling of peak velocity and peak acceleration in empirical ground-motion prediction relationships. In a second step, after identifying the direction of the incoming wave-field, we extract phase velocity data using the spectral ratio of the translational and rotational components.. This analysis is performed over time windows associated with the P-coda, S-coda and Lg phase. Results are consistent with independent estimates of shear-wave velocities in the shallow crust of the Central Apennines.
3D MHD Simulations of Waves Excited in an Accretion Disk by a Rotating Magnetized Star
NASA Astrophysics Data System (ADS)
Lovelace, R. V. E.; Romanova, M. M.
2014-01-01
We present results of global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star's magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zω|/r ~ 0.3) between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r,z = 0)] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1994-01-01
An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.
Analytical approximations for spiral waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald
2013-12-15
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +}more » with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussin, V.; Nieto, L.M.
2005-12-15
Using algebraic techniques, we realize a systematic search of different types of ladder operators for the Jaynes-Cummings model in the rotating-wave approximation. The link between our results and previous studies on the diagonalization of the associated Hamiltonian is established. Using some of the ladder operators obtained before, examples are given on the possibility of constructing a variety of interesting coherent states for this Hamiltonian.
Inverse cascades and resonant triads in rotating and stratified turbulence
NASA Astrophysics Data System (ADS)
Oks, D.; Mininni, P. D.; Marino, R.; Pouquet, A.
2017-11-01
Kraichnan's seminal ideas on inverse cascades yielded new tools to study common phenomena in geophysical turbulent flows. In the atmosphere and the oceans, rotation and stratification result in a flow that can be approximated as two-dimensional at very large scales but which requires considering three-dimensional effects to fully describe turbulent transport processes and non-linear phenomena. Motions can thus be classified into two classes: fast modes consisting of inertia-gravity waves and slow quasi-geostrophic modes for which the Coriolis force and horizontal pressure gradients are close to balance. In this paper, we review previous results on the strength of the inverse cascade in rotating and stratified flows and then present new results on the effect of varying the strength of rotation and stratification (measured by the inverse Prandtl ratio N/f, of the Coriolis frequency to the Brunt-Väisäla frequency) on the amplitude of the waves and on the flow quasi-geostrophic behavior. We show that the inverse cascade is more efficient in the range of N/f for which resonant triads do not exist, 1 /2 ≤N /f ≤2 . We then use the spatio-temporal spectrum to show that in this range slow modes dominate the dynamics, while the strength of the waves (and their relevance in the flow dynamics) is weaker.
T sub 1-echo sequence: Protecting the State of a Qubit in the Presence of Coherent Interaction
2012-09-25
memory is at energy m, and they are coupled with a coupling strength v⊥. We write the coupling in the rotating - wave approximation , assuming q,m...important for the time evolution. In the validity range of the rotating - wave approximation , the above Hamiltonian preserves the total number of...excited state) in total is involved in the dynamics, the underlying Jaynes - Cummings Hamiltonian will lead to the same results as the ones presented here
Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S
2017-10-01
In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.
NASA Astrophysics Data System (ADS)
Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.
2017-10-01
In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.
Lagrangian particle drift and surface deformation in a rotating wave on a free liquid surface
NASA Astrophysics Data System (ADS)
Fontana, Paul W.; Francois, Nicolas; Xia, Hua; Punzmann, Horst; Shats, Michael
2017-11-01
A nonlinear model of a rotating wave on the free surface of a liquid is presented. The flow is assumed to be inviscid and irrotational. The wave is constructed as a superposition of two perpendicular, monochromatic standing Stokes waves and is standing-wave-like, but with ``antinodes'' or cells consisting of rotating surface gradients of alternating polarity. Lagrangian fluid particle trajectories show a rotational drift about each cell in the direction of wave rotation, corresponding to a rotating Stokes drift. Each cell therefore has a circulating flow and localized angular momentum even though the Eulerian flow is irrotational. Meanwhile, the wave sets up a static displacement of the free surface, making a trough in each cell. This static surface gradient provides a centripetal force that may account for additional rotation seen in experiments.
Cavity losses for the dissipative Jaynes Cummings Hamiltonian beyond rotating wave approximation
NASA Astrophysics Data System (ADS)
Scala, M.; Militello, B.; Messina, A.; Maniscalco, S.; Piilo, J.; Suominen, K.-A.
2007-11-01
A microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses is given, taking into account the terms in the dissipator which vary with frequencies of the order of the vacuum Rabi frequency. Our approach allows us to single out physical contexts wherein the usual phenomenological dissipator turns out to be fully justified and constitutes an extension of our previous analysis (Scala et al 2007 Phys. Rev. A 75 013811), where a microscopic derivation was given in the framework of the rotating wave approximation.
NASA Astrophysics Data System (ADS)
Auclair-Desrotour, P.; Mathis, S.; Laskar, J.
2018-02-01
Context. Thermal atmospheric tides can torque telluric planets away from spin-orbit synchronous rotation, as observed in the case of Venus. They thus participate in determining the possible climates and general circulations of the atmospheres of these planets. Aims: The thermal tidal torque exerted on an atmosphere depends on its internal structure and rotation and on the tidal frequency. Particularly, it strongly varies with the convective stability of the entropy stratification. This dependence has to be characterized to constrain and predict the rotational properties of observed telluric exoplanets. Moreover, it is necessary to validate the approximations used in global modelings such as the traditional approximation, which is used to obtain separable solutions for tidal waves. Methods: We wrote the equations governing the dynamics of thermal tides in a local vertically stratified section of a rotating planetary atmosphere by taking into account the effects of the complete Coriolis acceleration on tidal waves. This allowed us to analytically derive the tidal torque and the tidally dissipated energy, which we used to discuss the possible regimes of tidal dissipation and to examine the key role played by stratification. Results: In agreement with early studies, we find that the frequency dependence of the thermal atmospheric tidal torque in the vicinity of synchronization can be approximated by a Maxwell model. This behavior corresponds to weakly stably stratified or convective fluid layers, as observed previously. A strong stable stratification allows gravity waves to propagate, and makes the tidal torque negligible. The transition is continuous between these two regimes. The traditional approximation appears to be valid in thin atmospheres and in regimes where the rotation frequency is dominated by the forcing or the buoyancy frequencies. Conclusions: Depending on the stability of their atmospheres with respect to convection, observed exoplanets can be tidally driven toward synchronous or asynchronous final rotation rates. The domain of applicability of the traditional approximation is rigorously constrained by calculations.
Uniform analytic approximation of Wigner rotation matrices
NASA Astrophysics Data System (ADS)
Hoffmann, Scott E.
2018-02-01
We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.
Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics
ERIC Educational Resources Information Center
Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei
2013-01-01
At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a…
Future wave and wind projections for United States and United-States-affiliated Pacific Islands
Storlazzi, Curt D.; Shope, James B.; Erikson, Li H.; Hegermiller, Christine A.; Barnard, Patrick L.
2015-01-01
Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Spatially and temporally varying waves dominate coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact coastal infrastructure, natural and cultural resources, and coastal-related economic activities of the islands. Wave heights, periods, and directions were forecast through the year 2100 using wind parameter outputs from four atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5, for Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive a global WAVEWATCH-III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific for the years 1976–2005 (historical), 2026–2045 (mid-century projection), and 2085–2100 (end-of-century projection). Although the results show some spatial heterogeneity, overall the December-February extreme significant wave heights, defined as the mean of the top 5 percent of significant wave height time-series data modeled within a specific period, increase from present to mid-century and then decrease toward the end of the century; June-August extreme wave heights increase throughout the century within the Central region of the study area; and September-November wave heights decrease strongly throughout the 21st century, displaying the largest and most widespread decreases of any season. Peak wave periods increase east of the International Date Line during the December-February and June-August seasons under RCP4.5. Under the RCP8.5 scenario, wave periods decrease west of the International Date Line during December-February but increase in the eastern half of the study area. Otherwise, wave periods decrease throughout the study area during other seasons. Extreme wave directions in equatorial Micronesia during June-August undergo an approximate 30° clockwise rotation from primarily west to northwest. September-November RCP4.5 extreme mean wave directions rotate counterclockwise by approximately 30 to 45° in equatorial Micronesia; September-November RCP8.5 extreme mean wave directions within equatorial Micronesia rotate clockwise by approximately 20 to 30°. Extreme wind speeds decreased within both scenarios, with the largest decreases occurring in the September-November season. Extreme wind directions under RCP4.5 rotated clockwise by more than 60° in equatorial Micronesia during the September-November season and by approximately 30° during June-August. RCP8.5 extreme wind directions rotated counterclockwise during September-November within the same region by 30 to 50° and clockwise by 30 to 40° at one island. The spatial patterns and trends are similar between the two different greenhouse gas emission scenarios, with the magnitude and extent of the trends generally greater for the higher (RCP8.5) scenario.
Rotational-vibrational coupling in the theory of electron-molecule scattering
NASA Technical Reports Server (NTRS)
Temkin, A.; Sullivan, E. C.
1974-01-01
The adiabatic-nuclei approximation of vibrational-rotational excitation of homonuclear diatomic molecules can be simply augmented to describe the vibrational-rotational coupling by including the dependence of the vibrational wave function on j. Appropriate formulas are given, and the theory, is applied to e-H2 excitation, whereby it is shown that deviations from the simple Born-Oppenheimer approximation measured by Wong and Schultz can be explained. More important, it can be seen that the inclusion of the j-dependent centrifugal term is essential for transitions involving high-rotational quantum numbers.
Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.
Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi
2013-12-01
The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.
Gravitational-wave emission from rotating gravitational collapse in three dimensions.
Baiotti, L; Hawke, I; Rezzolla, L; Schnetter, E
2005-04-08
We present the first three-dimensional (3D) calculations of the gravitational-wave emission in the collapse of uniformly rotating stars to black holes. The initial models are polytropes which are dynamically unstable and near the mass-shedding limit. The waveforms have been extracted using a gauge-invariant approach and reflect the properties of both the initial stellar models and of newly produced black holes, being in good qualitative agreement with those computed in previous 2D simulations. The wave amplitudes, however, are about 1 order of magnitude smaller, giving, for a source at 10 kpc, a signal-to-noise ratio S/N approximately 0.25 for LIGO-VIRGO and S/N less than or approximately equal 4 for LIGO II.
Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)
NASA Technical Reports Server (NTRS)
Chandra, N.; Temkin, A.
1975-01-01
A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorder, Robert A., E-mail: Robert.VanGorder@maths.ox.ac.uk
2015-09-15
In a recent paper, we give a study of the purely rotational motion of general stationary states in the two-dimensional local induction approximation (2D-LIA) governing superfluid turbulence in the low-temperature limit [B. Svistunov, “Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)]. Such results demonstrated that variety of stationary configurations are possible from vortex filaments exhibiting purely rotational motion in addition to commonly discussed configurations such as helical or planar states. However, the filaments (or, more properly, waves along these filaments) can also exhibit translational motion along the axis of orientation. In contrast to the study onmore » vortex configurations for purely rotational stationary states, the present paper considers non-stationary states which exhibit a combination of rotation and translational motions. These solutions can essentially be described as waves or disturbances which ride along straight vortex filament lines. As expected from our previous work, there are a number of types of structures that can be obtained under the 2D-LIA. We focus on non-stationary states, as stationary states exhibiting translation will essentially take the form of solutions studied in [R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014)], with the difference being translation along the reference axis, so that qualitative appearance of the solution geometry will be the same (even if there are quantitative differences). We discuss a wide variety of general properties of these non-stationary solutions and derive cases in which they reduce to known stationary states. We obtain various routes to Kelvin waves along vortex filaments and demonstrate that if the phase and amplitude of a disturbance both propagate with the same wave speed, then Kelvin waves will result. We also consider the self-similar solutions to the model and demonstrate that these types of solutions can model vortex kinks that gradually smooth and radiate Kelvin waves as time increases. Such solutions qualitatively agree with what one might expect from post-reconnection events.« less
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.
Far-infrared rotational emission by carbon monoxide
NASA Technical Reports Server (NTRS)
Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.
1981-01-01
Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines 10 to the 4th power/cu cm n(H2), 100 K T 2000 K, and J 50. An approximate analytic expression for the emissitivities which is valid over most of this region is obtained. Population inversions in the lower rotational levels occur for densities n(H2) approximately 10 (to the 3rd to 5th power)/cu cm and temperatures T approximately 50 K. Interstellar shocks observed edge on are a potential source of millimeter wave CO maser emission. The CO rotational cooling function suggested by Hollenbach and McKee (1979) is verified, and accurate numerical values given. Application of these results to other linear molecules should be straightforward.
Transient Wave Rotor Performance Investigated
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center is investigating the wave rotor for use as a core gas generator in future gas turbine engines. The device, which uses gas-dynamic waves to transfer energy directly to and from the working fluid through which the waves travel, consists of a series of constant-area passages that rotate about an axis. Through rotation, the ends of the passages are periodically exposed to various circumferentially arranged ports that initiate the traveling waves within the passages.
Rotational motions for teleseismic surface waves
NASA Astrophysics Data System (ADS)
Lin, Chin-Jen; Huang, Han-Pang; Pham, Nguyen Dinh; Liu, Chun-Chi; Chi, Wu-Cheng; Lee, William H. K.
2011-08-01
We report the findings for the first teleseismic six degree-of-freedom (6-DOF) measurements including three components of rotational motions recorded by a sensitive rotation-rate sensor (model R-1, made by eentec) and three components of translational motions recorded by a traditional seismometer (STS-2) at the NACB station in Taiwan. The consistent observations in waveforms of rotational motions and translational motions in sections of Rayleigh and Love waves are presented in reference to the analytical solution for these waves in a half space of Poisson solid. We show that additional information (e.g., Rayleigh wave phase velocity, shear wave velocity of the surface layer) might be exploited from six degree-of-freedom recordings of teleseismic events at only one station. We also find significant errors in the translational records of these teleseismic surface waves due to the sensitivity of inertial translation sensors (seismometers) to rotational motions. The result suggests that the effects of such errors need to be counted in surface wave inversions commonly used to derive earthquake source parameters and Earth structure.
Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.
Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V
2017-10-03
The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.
Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji
2017-06-15
Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.
Gravitational radiation from rapidly rotating nascent neutron stars
NASA Technical Reports Server (NTRS)
Lai, Dong; Shapiro, Stuart L.
1995-01-01
We study the secular evolution and gravitational wave signature of a newly formed, rapidly rotating neutron star. The neutron star may arise from core collapse in a massive star or from the accretion-induced collapse of a white dwarf. After a brief dynamical phase, the nascent neutron star settles into an axisymmetric, secularly unstable state. Gravitational radiation drives the star to a nonaxisymmetric, stationary equilibrium configuration via the bar-mode instability. The emitted quasi-periodic gravitational waves have a unique signature: the wave frequency sweeps downward from a few hundred Hertz to zero, while the wave amplitude increase from zero to a maximum and then decays back to zero. Such a wave signal could detected by broadband gravitational wave interferometers currently being constructed. We also characterize two other types of gravitational wave signals that could arise in principle from a rapidly rotating, secularly unstable neutron star: a high-frequency (f greater than or approximately = 1000 Hz) wave which increases the pattern-speed of the star, and a wave that actually increases the angular momentum of the star.
Tidal dissipation in rotating fluid bodies: the presence of a magnetic field
NASA Astrophysics Data System (ADS)
Lin, Yufeng; Ogilvie, Gordon I.
2018-02-01
We investigate effects of the presence of a magnetic field on tidal dissipation in rotating fluid bodies. We consider a simplified model consisting of a rigid core and a fluid envelope, permeated by a background magnetic field (either a dipolar field or a uniform axial field). The wave-like tidal responses in the fluid layer are in the form of magnetic Coriolis waves, which are restored by both the Coriolis force and the Lorentz force. Energy dissipation occurs through viscous damping and Ohmic damping of these waves. Our numerical results show that the tidal dissipation can be dominated by Ohmic damping even with a weak magnetic field. The presence of a magnetic field smooths out the complicated frequency dependence of the dissipation rate, and broadens the frequency spectrum of the dissipation rate, depending on the strength of the background magnetic field. However, the frequency-averaged dissipation is independent of the strength and structure of the magnetic field, and of the dissipative parameters in the approximation that the wave-like response is driven only by the Coriolis force acting on the non-wavelike tidal flow. Indeed, the frequency-averaged dissipation quantity is in good agreement with previous analytical results in the absence of magnetic fields. Our results suggest that the frequency-averaged tidal dissipation of the wave-like perturbations is insensitive to detailed damping mechanisms and dissipative properties.
Helicons in uniform fields. II. Poynting vector and angular momenta
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.
2018-03-01
The orbital and spin angular momenta of helicon modes have been determined quantitatively from laboratory experiments. The current density is obtained unambiguously from three dimensional magnetic field measurements. The only approximation made is to obtain the electric field from Hall Ohm's law which is usually the case for low frequency whistler modes. This allows the evaluation of the Poynting vector from which the angular momentum is obtained. Comparing two helicon modes (m = 0 and m = 1), one can separate the contribution of angular momentum of a rotating and non-rotating wave field. The orbital angular momentum is important to assess the wave-particle interaction by the transverse Doppler shift of rotating waves which has not been considered so far.
Extreme-ultraviolet observations of global coronal wave rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attrill, G. D. R.; Long, D. M.; Green, L. M.
2014-11-20
We present evidence of global coronal wave rotation in EUV data from SOHO/EIT, STEREO/EUVI, and SDO/AIA. The sense of rotation is found to be consistent with the helicity of the source region (clockwise for positive helicity, anticlockwise for negative helicity), with the source regions hosting sigmoidal structures. We also study two coronal wave events observed by SDO/AIA where no clear rotation (or sigmoid) is observed. The selected events show supporting evidence that they all originate with flux rope eruptions. We make comparisons across this set of observations (both with and without clear sigmoidal structures). On examining the magnetic configuration ofmore » the source regions, we find that the nonrotation events possess a quadrupolar magnetic configuration. The coronal waves that do show a rotation originate from bipolar source regions.« less
Rotation-induced nonlinear wavepackets in internal waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk
2014-05-15
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less
Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal Conductivity
NASA Astrophysics Data System (ADS)
Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.; Movshovich, Roman
Unconventional superconductor CeCoIn5 orders magnetically in a spin-density-wave (SDW) in the low-temperature and high-field corner of the superconducting phase. Recent neutron scattering experiment revealed that the single-domain SDW's ordering vector Q depends strongly on the direction of the magnetic field, switching sharply as the field is rotated through the anti-nodal direction. This switching may be manifestation of a pair-density-wave (PDW) p-wave order parameter, which develops in addition to the well-established d-wave order parameter due to the SDW formation. We have investigated the hypersensitivity of the magnetic domain with a thermal conductivity measurement. The heat current (J) was applied along the [110] direction such that the Q vector is either perpendicular or parallel to J, depending on the magnetic field direction. A discontinuous change of the thermal conductivity was observed when the magnetic field is rotated around the [100] direction within 0 . 2° . The thermal conductivity with the Q parallel to the heat current (J ∥Q) is approximately 15% lager than that with the Q perpendicular to the heat current (J ⊥Q). This result is consistent with additional gapping of the nodal quasiparticle by the p-wave PDW coupled to SDW. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.
Chen, Zhenhua; Hoffmann, Mark R
2012-07-07
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.
Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G
2012-05-07
Approximate rotational characterization of variational rovibrational wave functions via the rigid rotor decomposition (RRD) protocol is developed for Hamiltonians based on arbitrary sets of internal coordinates and axis embeddings. An efficient and general procedure is given that allows employing the Eckart embedding with arbitrary polyatomic Hamiltonians through a fully numerical approach. RRD tables formed by projecting rotational-vibrational wave functions into products of rigid-rotor basis functions and previously determined vibrational eigenstates yield rigid-rotor labels for rovibrational eigenstates by selecting the largest overlap. Embedding-dependent RRD analyses are performed, up to high energies and rotational excitations, for the H(2) (16)O isotopologue of the water molecule. Irrespective of the embedding chosen, the RRD procedure proves effective in providing unambiguous rotational assignments at low energies and J values. Rotational labeling of rovibrational states of H(2) (16)O proves to be increasingly difficult beyond about 10,000 cm(-1), close to the barrier to linearity of the water molecule. For medium energies and excitations the Eckart embedding yields the largest RRD coefficients, thus providing the largest number of unambiguous rotational labels.
THE EFFECT OF GRAVITATION ON THE POLARIZATION STATE OF A LIGHT RAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Tanay; Sen, A. K.
In the present work, detailed calculations have been carried out on the rotation of the polarization vector of an electromagnetic wave due to the presence of a gravitational field of a rotating body. This has been done using the general expression of Maxwell’s equation in curved spacetime. Considering the far-field approximation (i.e., the impact parameter is greater than the Schwarzschild radius and rotation parameter), the amount of rotation of the polarization vector as a function of impact parameter has been obtained for a rotating body (considering Kerr geometry). The present work shows that the rotation of the polarization vector cannotmore » be observed in the case of Schwarzschild geometry. This work also calculates the rotational effect when considering prograde and retrograde orbits for the light ray. Although the present work demonstrates the effect of rotation of the polarization vector, it confirms that there would be no net polarization of an electromagnetic wave due to the curved spacetime geometry in a Kerr field.« less
NASA Astrophysics Data System (ADS)
Guo, C.; Vlasenko, V.
2012-12-01
The propagation of large amplitude internal solitary waves (ISWs) in the northern South China Sea (SCS) is simulated using the fully nonlinear, nonhydrostatic MIT general circulation model (MITgcm). Special attention is paid to the effects of rotation and the shoaling three-dimensional topography. It is found that for the conditions of the northern SCS, a propagating ISW continuously loses its energy under the action of rotation by shedding inertia-gravity waves backwards, which further become steepened and form a new ISW. Such a decay-reemergence process repeats itself in a similar way as discussed by Helfrich (2007) with the only difference that, instead of the formation of a final localized wave packet, the frontal waves constantly attenuate by repeatedly shedding inertia-gravity waves backwards. Under the action of rotation and variable topography, the shoaling ISWs attenuate severely and disintegrate after passing through the continental slope. Wave polarity starts to reverse at the depth of about 130 m, which is consistent with the prediction of weakly nonlinear theories. It is also found that the rotational effects are more pronounced in combination with the topographic effects in the three-dimensional realistic context. Discrepancies between the wave profiles obtained with and without rotation are small in the deep part of the ocean but eventually turn out to be significant when going upon the shelf, addressing the crucial roles played by the rotation in the northern SCS.
Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.
Papenbrock, T; Reimann, S M; Kavoulakis, G M
2012-02-17
We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.
NASA Astrophysics Data System (ADS)
Hamann, Madeleine M.; Alford, Matthew H.; Mickett, John B.
2018-04-01
The generation, propagation, and dissipation of nonlinear internal waves (NLIW) in sheared background currents is examined using 7 days of shipboard microstructure surveys and two moorings on the continental shelf offshore of Washington state. Surveys near the hypothesized generation region show semi-diurnal (D2) energy flux is onshore and that the ratio of energy flux to group speed times energy (F/cgE) increases sharply at the shelf break, suggesting that the incident D2 internal tide is partially reflected and partially transmitted. NLIW appear at an inshore mooring at the leading edge of the onshore phase of the baroclinic tide, consistent with nonlinear transformation of the shoaling internal tide as their generation mechanism. Of the D2 energy flux observed at the eastern extent of the generation region (133 ± 18 Wm-1), approximately 30% goes into the NLIW observed inshore (36 ± 11 Wm-1). Inshore of the moorings, 7 waves are tracked into shallow (30-40 m) water, where a vertically sheared, southward current becomes strong. As train-like waves propagate onshore, wave amplitudes of 25-30 m and energies of 5 MJ decrease to 12 m and 10 kJ, respectively. The observed direction of propagation rotates from 30° N of E to ˜30° S of E in the strongly sheared region. Linear ray tracing using the Taylor-Goldstein equation to incorporate parallel shear effects accounts for only a small portion of the observed rotation, suggesting that three-dimensionality of the wave crests and the background currents is important here.
Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms
NASA Astrophysics Data System (ADS)
Zhang, Guofeng; Zhu, Hanjie
2015-03-01
The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.
Analytical solution for the anisotropic Rabi model: effects of counter-rotating terms.
Zhang, Guofeng; Zhu, Hanjie
2015-03-04
The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.
Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms
Zhang, Guofeng; Zhu, Hanjie
2015-01-01
The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model. PMID:25736827
Rotational superradiant scattering in a vortex flow
NASA Astrophysics Data System (ADS)
Torres, Theo; Patrick, Sam; Coutant, Antonin; Richartz, Maurício; Tedford, Edmund W.; Weinfurtner, Silke
2017-09-01
When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% +/- 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole, as well as to hydrodynamics, due to the close relation to over-reflection instabilities.
Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions
NASA Technical Reports Server (NTRS)
Sun, Y.; Judson, R. S.; Kouri, D. J.
1989-01-01
The close coupling wave packet (CCWP) method is formulated in a body-fixed representation for atom-rigid rotor inelastic scattering. For J greater than j-max (where J is the total angular momentum and j is the rotational quantum number), the computational cost of propagating the coupled channel wave packets in the body frame is shown to scale approximately as N exp 3/2, where N is the total number of channels. For large numbers of channels, this will be much more efficient than the space frame CCWP method previously developed which scales approximately as N-squared under the same conditions.
Jooya, Hossein Z.; Reihani, Kamran; Chu, Shih-I
2016-11-21
We propose a graph-theoretical formalism to study generic circuit quantum electrodynamics systems consisting of a two level qubit coupled with a single-mode resonator in arbitrary coupling strength regimes beyond rotating-wave approximation. We define colored-weighted graphs, and introduce different products between them to investigate the dynamics of superconducting qubits in transverse, longitudinal, and bidirectional coupling schemes. In conclusion, the intuitive and predictive picture provided by this method, and the simplicity of the mathematical construction, are demonstrated with some numerical studies of the multiphoton resonance processes and quantum interference phenomena for the superconducting qubit systems driven by intense ac fields.
Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance
NASA Astrophysics Data System (ADS)
Mirza, Imran M.; Begzjav, Tuguldur
2016-04-01
Recently a new class of single-photon timed Dicke (TD) subradiant states has been introduced with possible applications in single-photon-based quantum information storage and on demand ultrafast retrieval (Scully M. O., Phys. Rev. Lett., 115 (2015) 243602). However, the influence of any kind of virtual processes on the decay of these new kind of subradiant states has been left as an open question. In the present paper, we focus on this problem in detail. In particular, we investigate how pure Fano-Agarwal couplings and other virtual processes arising from non-rotating wave approximation impact the decay of otherwise sub- and superradiant states. In addition to the overall virtual couplings among all TD states, we also focus on the dominant role played by the couplings between specific TD states.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Yu
2016-12-01
Generalized squeezing rotating-wave approximation (GSRWA) is proposed by employing both the displacement and the squeezing transformations. A solvable Hamiltonian is reformulated in the same form as the ordinary RWA ones. For a qubit coupled to oscillators experiment, a well-defined Schrödinger-cat-like entangled state is given by the displaced-squeezed oscillator state instead of the original displaced state. For the isotropic Rabi case, the mean photon number and the ground-state energy are expressed analytically with additional squeezing terms, exhibiting a substantial improvement of the GSRWA. And the ground-state energy in the anisotropic Rabi model confirms the effectiveness of the GSRWA. Due to the squeezing effect, the GSRWA improves the previous methods only with the displacement transformation in a wide range of coupling strengths even for large atom frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Leo C.; Yagi, Kent; Yunes, Nicolás, E-mail: leostein@astro.cornell.edu
The gravitational field outside of astrophysical black holes is completely described by their mass and spin frequency, as expressed by the no-hair theorems. These theorems assume vacuum spacetimes, and thus they apply only to black holes and not to stars. Despite this, we analytically find that the gravitational potential of arbitrarily rapid, rigidly rotating stars can still be described completely by only their mass, spin angular momentum, and quadrupole moment. Although these results are obtained in the nonrelativistic limit (to leading order in a weak-field expansion of general relativity, GR), they are also consistent with fully relativistic numerical calculations ofmore » rotating neutron stars. This description of the gravitational potential outside the source in terms of just three quantities is approximately universal (independent of equation of state). Such universality may be used to break degeneracies in pulsar and future gravitational wave observations to extract more physics and test GR in the strong-field regime.« less
Method to improve optical parametric oscillator beam quality
Smith, Arlee V.; Alford, William J.; Bowers, Mark S.
2003-11-11
A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Optical parametric osicllators with improved beam quality
Smith, Arlee V.; Alford, William J.
2003-11-11
An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Structural tailoring of counter rotation propfans
NASA Technical Reports Server (NTRS)
Brown, Kenneth W.; Hopkins, D. A.
1989-01-01
The STAT program was designed for the optimization of single rotation, tractor propfan designs. New propfan designs, however, generally consist of two counter rotating propfan rotors. STAT is constructed to contain two levels of analysis. An interior loop, consisting of accurate, efficient approximate analyses, is used to perform the primary propfan optimization. Once an optimum design has been obtained, a series of refined analyses are conducted. These analyses, while too computer time expensive for the optimization loop, are of sufficient accuracy to validate the optimized design. Should the design prove to be unacceptable, provisions are made for recalibration of the approximate analyses, for subsequent reoptimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, S.; Adenwalla, S., E-mail: sadenwalla1@unl.edu; Borchers, J. A.
2015-02-14
A high frequency (88 MHz) traveling strain wave on a piezoelectric substrate is shown to change the magnetization direction in 40 μm wide Co bars with an aspect ratio of 10{sup 3}. The rapidly alternating strain wave rotates the magnetization away from the long axis into the short axis direction, via magnetoelastic coupling. Strain-induced magnetization changes have previously been demonstrated in ferroelectric/ferromagnetic heterostructures, with excellent fidelity between the ferromagnet and the ferroelectric domains, but these experiments were limited to essentially dc frequencies. Both magneto-optical Kerr effect and polarized neutron reflectivity confirm that the traveling strain wave does rotate the magnetization awaymore » from the long axis direction and both yield quantitatively similar values for the rotated magnetization. An investigation of the behavior of short axis magnetization with increasing strain wave amplitude on a series of samples with variable edge roughness suggests that the magnetization reorientation that is seen proceeds solely via coherent rotation. Polarized neutron reflectivity data provide direct experimental evidence for this model. This is consistent with expectations that domain wall motion cannot track the rapidly varying strain.« less
Non-Markovian quantum Brownian motion in one dimension in electric fields
NASA Astrophysics Data System (ADS)
Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.
2018-04-01
Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.
Wave Journal Bearing. Part 1: Analysis
NASA Technical Reports Server (NTRS)
Dimofte, Florin
1995-01-01
A wave journal bearing concept features a waved inner bearing diameter of the non-rotating bearing side and it is an alternative to the plain journal bearing. The wave journal bearing has a significantly increased load capacity in comparison to the plain journal bearing operating at the same eccentricity. It also offers greater stability than the plain circular bearing under all operating conditions. The wave bearing's design is relatively simple and allows the shaft to rotate in either direction. Three wave bearings are sensitive to the direction of an applied stationary side load. Increasing the number of waves reduces the wave bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the wave bearing design for a specific application. It is concluded that the stiffness of an air journal bearing, due to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.
On the potential of seismic rotational motion measurements for extraterrestrial seismology
NASA Astrophysics Data System (ADS)
Schmelzbach, Cedric; Sollberger, David; Khan, Amir; Greenhalgh, Stewart; Van Renterghem, Cederic; Robertsson, Johan
2017-04-01
Classically, seismological recordings consist of measurements of translational ground motion only. However, in addition to three vector components of translation there are three components of rotation to consider, leading to six degrees of freedom. Of particular interest is thereby the fact that measuring rotational motion means isolating shear (S) waves. Recording the rotational motion requires dedicated rotational sensors. Alternatively, since the rotational motion is given by the curl of the vectorial displacements, the rotational motion around the two horizontal axes can be computed from the horizontal spatial gradients of vertical translational recordings if standard translational seismometers are placed in an areal array at the free surface. This follows from the zero stress free surface condition. Combining rotational and translational motion measurements opens up new ways of analyzing seismic data, such as facilitating much improved arrival identification and wavefield separation (e.g., P-/S-wave separation), and local slowness (arrival direction and velocity) determination. Such combined measurements maximize the seismic information content that a single six-component station or a small station array can provide, and are of particular interest for sparse or single-station measurements such as in extraterrestrial seismology. We demonstrate the value of the analysis of combined translational and rotational recordings by re-evaluating data from the Apollo 17 lunar seismic profiling experiment (LSPE). The LSPE setup consisted of four vertical-component geophones arranged in a star-like geometry. This areal receiver layout enables computing the horizontal spatial gradients by spatial finite differencing of the vertical-component data for two perpendicular directions and, hence, the estimation of rotational motion around two horizontal axes. Specifically, the recorded seismic waveform data originated from eight explosive packages as well as from continuously listening to the natural lunar seismic activity of moonquakes. As an example, the combined analysis of translational and rotational motion from the active-source LSPE data provides, for the first time, the possibility to extract S-wave information from the enigmatic and reverbatory lunar seismic waveform data, which hithertofore had masked later arriving S-waves. The identification of S-waves enables to characterize the shallow lunar crust in a full elastic sense. The resultant Poisson's ratio profile allows discriminating shallow basalt layers of different degree of fracturing. Our successful analysis of the Apollo 17 data highlights the anticipated significant value of rotational measurements for future extraterrestrial seismology missions.
Bohlin, Alexis; Bengtsson, Per-Erik
2010-08-01
Stray light interference is a common problem in spontaneous rotational Raman spectroscopy and rotational coherent anti-Stokes Raman spectropscopy (CARS). The reason is that the detected spectrum appears in the spectral vicinity of the probe beam wavelength, and stray light at this wavelength from optics and surfaces is hard to suppress. In this Note, efficient suppression of stray light is demonstrated for rotational CARS measurements using a commercially available short-wave-pass filter. By angle-tuning this filter with a specified cut-off wavelength at 561 nm, the cut-off wavelength could be tuned to a desired spectral position so that more than 80% transmission is achieved as close as 15 cm(-1) (approximately 0.4 nm) from the probe beam wavelength of 532.0 nm, while the intensity at this wavelength is suppressed by two orders of magnitude.
NASA Astrophysics Data System (ADS)
Zhang, Jian-Song; Zhang, Liu-Juan; Chen, Ai-Xi; Abdel-Aty, Mahmoud
2018-06-01
We study the dynamics of the three-qubit system interacting with multi-mode without rotating wave approximation (RWA). A physical realization of the system without direct qubits interactions with dephasing bath is proposed. It is shown that non-Markovian characters of the purity of the three qubits and the coupling strength of modes are stronger enough the RWA is no longer valid. The influences of the dephasing of qubits and interactions of modes on the dynamics of genuine multipartite entanglement and bipartite correlations of qubits are investigated. The multipartite and bipartite quantum correlations could be generated faster if we increase the coupling strength of modes and the RWA is not valid when the coupling strength is strong enough. The unitary transformations approach adopted here can be extended to other systems such as circuit or cavity quantum electrodynamic systems in the strong coupling regime.
Absence of Vacuum Induced Berry Phases without the Rotating Wave Approximation in Cavity QED
NASA Astrophysics Data System (ADS)
Larson, Jonas
2012-01-01
We revisit earlier studies on Berry phases suggested to appear in certain cavity QED settings. It has been especially argued that a nontrivial geometric phase is achievable even in the situation of no cavity photons. We, however, show that such results hinge on imposing the rotating wave approximation (RWA), while without the RWA no Berry phases occur in these schemes. A geometrical interpretation of our results is obtained by introducing semiclassical energy surfaces which in a simple way brings out the phase-space dynamics. With the RWA, a conical intersection between the surfaces emerges and encircling it gives rise to the Berry phase. Without the RWA, the conical intersection is absent and therefore the Berry phase vanishes. It is believed that this is a first example showing how the application of the RWA in the Jaynes-Cummings model may lead to false conclusions, regardless of the mutual strengths between the system parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Geloun, Joseph; Govaerts, Jan; Hounkonnou, M. Norbert
2007-03-15
Classes of (p,q) deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton state. These ladder operators allow for the construction of (p,q)-deformed vector coherent states. Using (p,q) arithmetics, explicit and exact solutions to the associated moment problem are displayed, providing new classes of coherent states for such models. Finally, in the limit of decoupled spin sectors, our analysis translatesmore » into (p,q) deformations of the supersymmetric harmonic oscillator, such that the two supersymmetric sectors get intertwined through the action of the ladder operators as well as in the associated coherent states.« less
QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon
2010-11-20
Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends onmore » the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.« less
The KP Approximation Under a Weak Coriolis Forcing
NASA Astrophysics Data System (ADS)
Melinand, Benjamin
2018-02-01
In this paper, we study the asymptotic behavior of weakly transverse water-waves under a weak Coriolis forcing in the long wave regime. We derive the Boussinesq-Coriolis equations in this setting and we provide a rigorous justification of this model. Then, from these equations, we derive two other asymptotic models. When the Coriolis forcing is weak, we fully justify the rotation-modified Kadomtsev-Petviashvili equation (also called Grimshaw-Melville equation). When the Coriolis forcing is very weak, we rigorously justify the Kadomtsev-Petviashvili equation. This work provides the first mathematical justification of the KP approximation under a Coriolis forcing.
Steepened magnetosonic waves in the high beta plasma surrounding Comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Smith, E. J.; Thorne, R. M.; Gosling, J. T.; Matsumoto, H.
1986-01-01
Studies of intense hydromagnetic waves at Giacobini-Zinner are extended to investigate the mode and direction of wave propagation. Simultaneous high-resolution measurements of electron density fluctuations demonstrate that long period waves propagate in the magnetosonic mode. Principal axis analyses of the long period waves and accompanying partial rotations show that the sum of the wave phase rotations is 360 deg, indicating that both are parts of the same wave oscillation. The time sequence of the steepened waveforms observed by ICE shows that the waves must propagate towards the Sun with Cph less than Vsw. Observations are consistent with wave generation by resonant ion ring or ion beam instability which predicts right-hand polarized waves propagating in the ion beam (solar) direction. The large amplitudes and small scale sizes of the cometary waves suggest that rapid pitch-angle scattering and energy transfer with energetic ions should occur. Since the waves are highly compressive, first-order Fermi acceleration is forecast.
NASA Astrophysics Data System (ADS)
Song, X.; Jordan, T. H.
2016-12-01
Body-wave and normal-mode observations have revealed an inner-core structure that is radially layered, axially anisotropic, and hemispherically asymmetric. Previous theoretical studies have examined the consistency of these features with the elasticity of iron crystals thought to dominate inner-core composition, but a fully consistent model has been elusive. Here we compare the seismic observation with effective-medium models derived from ab initio calculations of the elasticity tensors for hcp-Fe and bcc-Fe. Our estimates are based on Jordan's (GJI, 2015) effective medium theory, which is derived from a self-consistent, second-order Born approximation. The theory provides closed-form expressions for the effective elastic parameters of 3D anisotropic, heterogeneous media in which the local anisotropy is a constant hexagonal stiffness tensor C stochastically oriented about a constant symmetry axis \\hat{s} and the statistics of the small-scale heterogeneities are transversely isotropic in the plane perpendicular to \\hat{s}. The stochastic model is then described by a dimensionless "aspect ratio of the heterogeneity", 0 ≤ η < ∞, and a dimensionless "orientation ratio of the anisotropy", 0 ≤ ξ < ∞. The latter determines the degree to which the axis of C is aligned with \\hat{s}. We compute the loci of models with \\hat{s} oriented along the Earth's rotational axis ( \\hat{s} = north) by varying ξ and η for various ab initio estimates of C. We show that a lot of widely used estimates of C are inconsistent with most published normal-mode models of inner-core anisotropy. In particular, if the P-wave fast axis aligns with the rotational axis, which is required to satisfy the body-wave observations, then these hcp-Fe models predict that the fast polarization of the S waves is in the plane perpendicular to \\hat{s}, which disagrees with most normal-mode models. We have attempted to resolve this discrepancy by examining alternative hcp-Fe models, including radially anisotropic distributions of stochastic anisotropy and heterogeneity (i.e., where \\hat{s} = \\hat{r}), as well as bcc-Fe models. Our calculations constrain the form of C needed to satisfy the seismological inferences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, M. S.; Guo, Wenfeng
2016-06-15
The frequency spectrum and mode structure of axisymmetric electrostatic oscillations [the zonal flow (ZF), sound waves (SW), geodesic acoustic modes (GAM), and electrostatic mean flows (EMF)] in tokamaks with general cross-sections and toroidal flows are studied analytically using the electrostatic approximation for magnetohydrodynamic modes. These modes constitute the “electrostatic continua.” Starting from the energy principle for a tokamak plasma with toroidal rotation, we showed that these modes are completely stable. The ZF, the SW, and the EMF could all be viewed as special cases of the general GAM. The Euler equations for the general GAM are obtained and are solvedmore » analytically for both the low and high range of Mach numbers. The solution consists of the usual countable infinite set of eigen-modes with discrete eigen-frequencies, and two modes with lower frequencies. The countable infinite set is identified with the regular GAM. The lower frequency mode, which is also divergence free as the plasma rotation tends to zero, is identified as the ZF. The other lower (zero) frequency mode is a pure geodesic E×B flow and not divergence free is identified as the EMF. The frequency of the EMF is shown to be exactly 0 independent of plasma cross-section or its flow Mach number. We also show that in general, sound waves with no geodesic components are (almost) completely lost in tokamaks with a general cross-sectional shape. The exception is the special case of strict up-down symmetry. In this case, half of the GAMs would have no geodesic displacements. They are identified as the SW. Present day tokamaks, although not strictly up-down symmetric, usually are only slightly up-down asymmetric. They are expected to share the property with the up-down symmetric tokamak in that half of the GAMs would be more sound wave-like, i.e., have much weaker coupling to the geodesic components than the other half of non-sound-wave-like modes with stronger coupling to the geodesic displacements. Based on the general notion that the geodesic component of the GAM is more effective in tearing up the eddies in the electrostatic turbulence, it is important to preferentially excite the GAMs that are non-sound-wave like to maximize the efficiency on turbulence suppression through external means. Finally, approximate formulae for the frequencies of the EMF, ZF, SW, and the GAM for a large aspect ratio circular tokamak rotating at low Mach numbers are also provided.« less
Evolution and Survival of Quantum Entanglement
2015-05-06
Research Triangle Park, NC 27709-2211 quantum entanglement, decoherence, qubit, revival, survival, Jaynes-Cummings, Rabi , rotating wave approximation...measurements, PHYSICAL REVIEW A , (06 2013): 62331. doi: S Agarwal, , S M Hashemi Rafsanjani , J H Eberly. Dissipation of the Rabi Model Beyond the
Global-scale equatorial Rossby waves as an essential component of solar internal dynamics
NASA Astrophysics Data System (ADS)
Löptien, Björn; Gizon, Laurent; Birch, Aaron C.; Schou, Jesper; Proxauf, Bastian; Duvall, Thomas L.; Bogart, Richard S.; Christensen, Ulrich R.
2018-05-01
The Sun’s complex dynamics is controlled by buoyancy and rotation in the convection zone. Large-scale flows are dominated by vortical motions1 and appear to be weaker than expected in the solar interior2. One possibility is that waves of vorticity due to the Coriolis force, known as Rossby waves3 or r modes4, remove energy from convection at the largest scales5. However, the presence of these waves in the Sun is still debated. Here, we unambiguously discover and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at azimuthal wavenumbers below 15, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below twice the solar rotational frequency, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We observe a transition from turbulence-like to wave-like dynamics around the Rhines scale6 of angular wavenumber of approximately 20. This transition might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.
Paschalidis, Vasileios; Stergioulas, Nikolaos
2017-01-01
Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.
Conformer lifetimes of ethyl cyanoformate from exchange-averaged rotational spectra.
True, Nancy S
2009-06-25
Ethyl cyanoformate exists as a mixture of two conformers but displays three R-branch a-type band series in its rotational spectrum. Simulations with population fractions 0.37 at 210 K and 0.70 at 297 K undergoing conformer exchange with average conformer lifetimes,
Axisymmetric modes of rotating relativistic stars in the Cowling approximation
NASA Astrophysics Data System (ADS)
Font, José A.; Dimmelmeier, Harald; Gupta, Anshu; Stergioulas, Nikolaos
2001-08-01
Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core collapse, crust- and core-quakes or binary mergers, and could become detectable in either gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations are appropriately perturbed and are numerically evolved using an axisymmetric, non-linear relativistic hydrodynamics code, assuming time-independence of the gravitational field (Cowling approximation). The simulations are performed using a high-resolution shock-capturing finite-difference scheme accurate enough to maintain the initial rotation law for a large number of rotational periods, even for stars at the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid variables, we compute the frequencies of quasi-radial and non-radial modes with spherical harmonic indices l=0, 1, 2 and 3, for a sequence of rotating stars from the non-rotating limit to the mass-shedding limit. The frequencies of the axisymmetric modes are affected significantly by rotation only when the rotation rate exceeds about 50 per cent of the maximum allowed. As expected, at large rotation rates, apparent mode crossings between different modes appear. In addition to the above modes, several axisymmetric inertial modes are also excited in our numerical evolutions.
Translational Symmetry-Breaking for Spiral Waves
NASA Astrophysics Data System (ADS)
LeBlanc, V. G.; Wulff, C.
2000-10-01
Spiral waves are observed in numerous physical situations, ranging from Belousov-Zhabotinsky (BZ) chemical reactions, to cardiac tissue, to slime-mold aggregates. Mathematical models with Euclidean symmetry have recently been developed to describe the dynamic behavior (for example, meandering) of spiral waves in excitable media. However, no physical experiment is ever infinite in spatial extent, so the Euclidean symmetry is only approximate. Experiments on spiral waves show that inhomogeneities can anchor spirals and that boundary effects (for example, boundary drifting) become very important when the size of the spiral core is comparable to the size of the reacting medium. Spiral anchoring and boundary drifting cannot be explained by the Euclidean model alone. In this paper, we investigate the effects on spiral wave dynamics of breaking the translation symmetry while keeping the rotation symmetry. This is accomplished by introducing a small perturbation in the five-dimensional center bundle equations (describing Hopf bifurcation from one-armed spiral waves) which is SO(2)-equivariant but not equivariant under translations. We then study the effects of this perturbation on rigid spiral rotation, on quasi-periodic meandering and on drifting.
Experimental Investigation of Electron Cloud Containment in a Nonuniform Magnetic Field
NASA Technical Reports Server (NTRS)
Eninger, J. E.
1974-01-01
Dense clouds of electrons were generated and studied in an axisymmetric, nonuniform magnetic field created by a short solenoid. The operation of the experiment was similar to that of a low-pressure (approximately 0.000001 Torr) magnetron discharge. Discharge current characteristics are presented as a function of pressure, magnetic field strength, voltage, and cathode end-plate location. The rotation of the electron cloud is determined from the frequency of diocotron waves. In the space charge saturated regime of operation, the cloud is found to rotate as a solid body with frequency close to V sub a/phi sub a where V sub a is the anode voltage and phi suba is the total magnetic flux. This result indicates that, in regions where electrons are present, the magnetic field lines are electrostatic equipotentials (E bar, B bar = 0). Equilibrium electron density distributions suggested by this conditions are integrated with respect to total ionizing power and are found consistent with measured discharge currents.
Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures
NASA Astrophysics Data System (ADS)
Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.
2018-05-01
The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.
Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures
NASA Astrophysics Data System (ADS)
Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.
2018-06-01
The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.
Charge noise in quantum dot qubits: beyond the Markovian approximation.
NASA Astrophysics Data System (ADS)
Yang, Yuan-Chi; Friesen, Mark; Coppersmith, S. N.
Charge noise is a limiting factor in the performance of semiconductor quantum dot qubits, including both spin and charge qubits. In this work, we develop an analytical formalism for treating semiclassical noise beyond the Markovian approximation, which allows us to investigate noise models relevant for quantum dots, such as 1 / f noise. We apply our methods to both charge qubits and quantum dot hybrid qubits, and study the effects of charge noise on single-qubit rotations in these systems. The formalism is also directly applicable to the case of strong microwave driving, for which the rotating wave approximation breaks down. This work was supported in part by ARO (W911NF-12-0607) and ONR (N00014-15-1-0029), and the University of Wisconsin-Madison.
NASA Astrophysics Data System (ADS)
Yao, J.; Tian, D.; Sun, L.; Wen, L.
2017-12-01
Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.
The study of coronal plasma structures and fluctuations with Faraday rotation measurements
NASA Technical Reports Server (NTRS)
Sakurai, Takayuki; Sprangler, Steven R.
1994-01-01
We report dual-frequency, polarimetric measurements of Faraday rotation of extragalactic radio sources viewed through the solar corona. The observations were made at the Very Large Array in 1990 during solar maximum. Of the nine observed, an excess rotation measure of -12.6 rad/sq m was detected for one source (0010+005), which was observed at an elongation of about 9 solar radii. This measurement is in fair agreement with an a priori model rotation measure of -8.6 rad/sq m estimated from coronal potential field models and the electron density model of Paetzold et al. (1992). Our measurement provides a value for the coronal magnetic field strength at 9 solar radii given a knowledge of the magnetic field sector structure, of 12.5 +/- 2.3 mG. Rotation measurements of 0010+005 were made approximately once per hour over an 11 hr period. During this interval, a slow change of about 1 rad/sq m/hr in rotation measure was detected. Although we are not absolutely certain that this drift is not unremoved ionospheric Faraday rotation, extensive analysis of data from the other sources suggests that this is not the case (Sakurai & Spangler 1994). The very long timescale for this variation argues against the agency of magnetohydrodynamics (MHD) waves, and we suggest occultation of 0010+005 by relatively static plasma structures in the corona. We filtered our rotation measure time series to search for variations on an hourly timescale, such as those reported by Hollweg et al. (1992), which could be attributed to coronal MHD waves. We were unable to detect such fluctuations and can report only an upper limit to the rms variation of 1.6 rad/sq m. This upper limit is of the same order, but slightly larger than the values typically reported by Hollweg et al. (1982). This upper limit to the rotation measure fluctuations limits the dimensionless wave amplitude (delta B)/B in the corona to be less than 0.7. Using the number, we estimate the MHD wave flux at the coronal base to be less than 1.6 x 10(exp 5) ergs/sq cm/s. This is less than the amount of wave energy flux required by wave-driven models of the solar wind. Finally, we discuss a number of ways in which such observations could be improved in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Qinghu; Department of Physics, Zhejiang University, Hangzhou 310027; Yang Yuan
2010-11-15
Entanglement evolution of two independent Jaynes-Cummings atoms without the rotating-wave approximation (RWA) is studied by a numerically exact approach. Previous results based on the RWA are essentially modified in the strong-coupling regime (g{>=}0.1), which has been reached in the recent experiments on the flux qubit coupled to the LC resonator. For the initial Bell state with anticorrelated spins, entanglement sudden death (ESD) is absent in the RWA but does appear in the present numerical calculation without the RWA. Aperiodic entanglement evolution in the strong-coupling regime is observed. The strong atom-cavity coupling facilitates the ESD. The sign of the detuning playsmore » an essential role in the entanglement evolution for strong coupling, which is irrelevant in the RWA. Analytical results based on an unitary transformation are also given, which could not modify the RWA picture essentially. It is suggested that the activation of the photons may be the origin of ESD in this system.« less
Cooling and Trapping of Neutral Atoms
2009-04-30
Schrodinger equation in which the absence of the rotating wave approximation accounts for the two frequencies [18]. This result can be described in...depict this energy conservation process is the Jaynes - Cummings view, where the light field can be described as a number state. Then it becomes clear...of the problem under consideration. Find a suitable approximation for the normal modes; the simpler, the better. Decide how to model the light
Estimates of Rayleigh-to-Love wave ratio in microseisms by co-located Ring Laser and STS-2
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wassermann, Joachim; Schreiber, Ulrich; Gebauer, André
2015-04-01
In older studies of microseisms (seismic noise), it was often assumed that microseisms, especially the secondary microseisms (0.1-0.3 Hz), mainly consist of Rayleigh waves. However, it has become clear that there exists a large amount of Love-wave energy mixed in it (e.g., Nishida et al., 2008). However, its confirmation is not necessarily straightforward and often required an array of seismographs. In this study, we take advantage of two co-located instruments, a Ring Laser and an STS-2 type seismograph, at Wettzell (WET), Germany (Schreiber et al., 2009). The Ring Laser records rotation (its vertical component) and is thus only sensitive to Love waves. The vertical component of STS-2 seismograph is only sensitive to Rayleigh waves. Therefore, a combination of the two instruments provides a unique opportunity to separate Rayleigh waves and Love waves in microseisms. The question we address in this paper is the ratio of Rayleigh waves to Love waves in microseisms. For both instruments, we analyze data from 2009 to 2014. Our basic approach is to create stacked vertical acceleration spectra for Rayleigh waves from STS-2 and stacked transverse acceleration spectra for Love waves from Ring Laser. The two spectra at Earth's surface can then be compared directly by their amplitudes. The first step in our analysis is a selection of time portions (each six-hour long) that are least affected by earthquakes. We do this by examining the GCMT (Global Centroid Moment Tensor) catalogue and also checking the PSDs for various frequency ranges. The second step is to create stacked (averaged) Fourier spectra from those selected time portions. The key is to use the same time portions for the STS-2 and the Ring Laser data so that the two can be directly compared. The vertical spectra from STS-2 are converted to acceleration spectra. The Ring Laser rotation spectra are first obtained in the unit of radians/sec (rotation rate). But as the Ring Laser spectra are dominated by fundamental-mode Love waves, the rotation spectra can be converted to transverse (SH) acceleration by multiplying them by the factor 2xCp where Cp is the Love-wave phase velocity. We used a seismic model by Fichtner et al. (2013) at WET to estimate Love-wave phase velocity. This conversion from rotation to transverse acceleration was first extensively used by Igel et al. (2005) for the analysis of lower frequency Love waves and the same relation holds for our spectral data. The two spectra provide the ratio of surface amplitudes. In the frequency range of secondary microseisms (0.10-0.35 Hz), they are comparable; near the spectral peak (~0.20 Hz), Rayleigh waves are about 20 percent larger in amplitudes but outside this peak region, Love waves have comparable or slightly larger amplitudes than Rayleigh waves. Therefore, the secondary microseisms at WET consist of similar contributions from Rayleigh waves and Love waves.
High-resolution submillimeter-wave radiometry of supersonic flow
NASA Technical Reports Server (NTRS)
Dionne, G. F.; Weiss, J. A.; Fitzgerald, J. F.; Fetterman, H. R.; Litvak, M. M.
1983-01-01
The recent development of a high-resolution submillimeter-wave heterodyne radiometer has made possible the first measurements of H2O molecule rotational line excitation temperatures and detailed profiles in supersonic flow. Absorption signals were measured across the flow for the 2/11/ from 2//02/ (752 GHz) para-H2O rotational transition against a hot background. These signals decrease downstream owing to the volume expansion of the gas away from the sonic nozle exit in the high-vacuum chamber. Radiative transfer calculations based on the large-velocity-gradient approximation and multilevel statistical equilibrium agree with these results and with the measured spectral line shapes. The data reveal nearly isentropic gas expansion and cooling. These studies have shown that submillimeter-wave heterodyne radiometry can be useful for remote sensing of supersonic flow with low mass flux, provided the signal transmission is through a dry or thin atmosphere.
Results of a zonally truncated three-dimensional model of the Venus middle atmosphere
NASA Technical Reports Server (NTRS)
Newman, M.
1992-01-01
Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole.
Ultrafast Terahertz Nonlinear Optics of Landau Level Transitions in a Monolayer Graphene
NASA Astrophysics Data System (ADS)
Yumoto, Go; Matsunaga, Ryusuke; Hibino, Hiroki; Shimano, Ryo
2018-03-01
We investigated the ultrafast terahertz (THz) nonlinearity in a monolayer graphene under the strong magnetic field using THz pump-THz probe spectroscopy. An ultrafast suppression of the Faraday rotation associated with inter-Landau level (LL) transitions is observed, reflecting the Dirac electron character of nonequidistant LLs with large transition dipole moments. A drastic modulation of electron distribution in LLs is induced by far off-resonant THz pulse excitation in the transparent region. Numerical simulation based on the density matrix formalism without rotating-wave approximation reproduces the experimental results. Our results indicate that the strong light-matter coupling regime is realized in graphene, with the Rabi frequency exceeding the carrier wave frequency and even the relevant energy scale of the inter-LL transition.
Low frequency wave propagation in a cold magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Sarkar, S.; Ghosh, S.; Khan, M.
1998-12-01
In this paper several characteristics of low frequency waves in a cold magnetized dusty plasma propagating parallel and perpendicular to the static background magnetic field have been investigated. In the case of parallel propagation the negatively charged dust particles resonate with the right circularly polarized (RCP) component of em waves when the wave frequency equals the dust cyclotron frequency. It has been shown that an RCP wave in dusty plasma consists of two branches and there exists a region where an RCP wave propagation is not possible. Dispersion relation, phase velocity and group velocity of RCP waves have been obtained and propagation characteristics have been shown graphically. Poynting flux and Faraday rotation angles have been calculated for both lower and upper branches of the RCP wave. It has been observed that sense of rotation of the plane of polarization of the RCP wave corresponding to two distinct branches are opposite. Finally, the effect of dust particles on the induced magnetization from the inverse Faraday effect (IFE) due to the interaction of low frequency propagating and standing em waves with dusty plasmas has been evaluated.
Supersymmetry in the Jaynes-Cummings model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castanos, Octavio
2013-06-12
A review is presented of the Darboux method and its relation to the supersymmetric quantum mechanics, together with the embedding of a n-dimensional scalar Hamiltonian into a supersymmetric matrix. It is also shown that the Jaynes-Cummings model, with or without rotating wave approximation, admit a supersymmetric quantum mechanics description.
Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Kanai, Hiroshi; Izumi, Shin-Ichi
2017-10-01
Ultrasound signals that pass through cancellous bone may be considered to consist of two longitudinal waves, which are called fast and slow waves. Accurate decomposition of these fast and slow waves is considered to be highly beneficial in determination of the characteristics of cancellous bone. In the present study, a fast decomposition method using a wave transfer function with a phase rotation parameter was applied to received signals that have passed through bovine bone specimens with various bone volume to total volume (BV/TV) ratios in a simulation study, where the elastic finite-difference time-domain method is used and the ultrasound wave propagated parallel to the bone axes. The proposed method succeeded to decompose both fast and slow waves accurately; the normalized residual intensity was less than -19.5 dB when the specimen thickness ranged from 4 to 7 mm and the BV/TV value ranged from 0.144 to 0.226. There was a strong relationship between the phase rotation value and the BV/TV value. The ratio of the peak envelope amplitude of the decomposed fast wave to that of the slow wave increased monotonically with increasing BV/TV ratio, indicating the high performance of the proposed method in estimation of the BV/TV value in cancellous bone.
Gravitational waves and core-collapse supernovae
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Moiseenko, S. G.
2017-11-01
A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation results on core-collapse supernova explosions are presented for the neutrino and magneto-rotational models. These results are used to estimate the dimensionless amplitude of the gravitational wave with a frequency ν ~ 1300 Hz, radiated during the collapse of the rotating core of a pre-supernova with a mass of 1.2 M⊙ (calculated by the authors in 2D). This estimate agrees well with many other calculations (presented in this paper) that have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large-scale structure of the Universe in the Zel’dovich pancake model involves the emission of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that a gravitational wave radiated during a core-collapse supernova explosion in our Galaxy has a sufficient amplitude to be detected by existing gravitational wave telescopes.
Agate Beach BOBr Processed Breaking Wave Data
Adam C Brown
2013-10-31
This data was recorded of the coast of Newport, OR at Agate Beach in the surf zone. The data was recorded by a 9dof inertial measurement unit and consists of a timestamp, quaternion orientation, acceleration vector, rotation vector, and magnetic vector. The acceleration, rotation, and magnetic vectors have all been corrected back to a North East Down reference frame.
Communication: Creation of molecular vibrational motions via the rotation-vibration coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Chuan-Cun; School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600; Henriksen, Niels E., E-mail: neh@kemi.dtu.dk
2015-06-14
Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length whereas a fast rotational excitation leads to amore » non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds to a laser-induced breakdown of the adiabatic approximation for rotation-vibration coupling.« less
Direct Numerical Simulation of Complex Turbulence
NASA Astrophysics Data System (ADS)
Hsieh, Alan
Direct numerical simulations (DNS) of spanwise-rotating turbulent channel flow were conducted. The data base obtained from these DNS simulations were used to investigate the turbulence generation cycle for simple and complex turbulence. For turbulent channel flow, three theoretical models concerning the formation and evolution of sublayer streaks, three-dimensional hairpin vortices and propagating plane waves were validated using visualizations from the present DNS data. The principal orthogonal decomposition (POD) method was used to verify the existence of the propagating plane waves; a new extension of the POD method was derived to demonstrate these plane waves in a spatial channel model. The analyses of coherent structures was extended to complex turbulence and used to determine the proper computational box size for a minimal flow unit (MFU) at Rob < 0.5. Proper realization of Taylor-Gortler vortices in the highly turbulent pressure region was demonstrated to be necessary for acceptably accurate MFU turbulence statistics, which required a minimum spanwise domain length Lz = pi. A dependence of MFU accuracy on Reynolds number was also discovered and MFU models required a larger domain to accurately approximate higher-Reynolds number flows. In addition, the results obtained from the DNS simulations were utilized to evaluate several turbulence closure models for momentum and thermal transport in rotating turbulent channel flow. Four nonlinear eddy viscosity turbulence models were tested and among these, Explicit Algebraic Reynolds Stress Models (EARSM) obtained the Reynolds stress distributions in best agreement with DNS data for rotational flows. The modeled pressure-strain functions of EARSM were shown to have strong influence on the Reynolds stress distributions near the wall. Turbulent heatflux distributions obtained from two explicit algebraic heat flux models consistently displayed increasing disagreement with DNS data with increasing rotation rate. Results were also obtained regarding flow control of fully-developed spatially-evolving turbulent channel flow using phononic subsurface structures. Fluid-structure interaction (FSI) simulations were conducted by attaching phononic structures to the bottom wall of a turbulent channel flow field and reduction of turbulent kinetic energy was observed for different phononic designs.
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.
2015-10-01
> In this paper we review a recently developed approximate method for investigation of dynamics of compressible ellipsoidal figures. Collapse and subsequent behaviour are described by a system of ordinary differential equations for time evolution of semi-axes of a uniformly rotating, three-axis, uniform-density ellipsoid. First, we apply this approach to investigate dynamic stability of non-spherical bodies. We solve the equations that describe, in a simplified way, the Newtonian dynamics of a self-gravitating non-rotating spheroidal body. We find that, after loss of stability, a contraction to a singularity occurs only in a pure spherical collapse, and deviations from spherical symmetry prevent the contraction to the singularity through a stabilizing action of nonlinear non-spherical oscillations. The development of instability leads to the formation of a regularly or chaotically oscillating body, in which dynamical motion prevents the formation of the singularity. We find regions of chaotic and regular pulsations by constructing a Poincaré diagram. A real collapse occurs after damping of the oscillations because of energy losses, shock wave formation or viscosity. We use our approach to investigate approximately the first stages of collapse during the large scale structure formation. The theory of this process started from ideas of Ya. B. Zeldovich, concerning the formation of strongly non-spherical structures during nonlinear stages of the development of gravitational instability, known as `Zeldovich's pancakes'. In this paper the collapse of non-collisional dark matter and the formation of pancake structures are investigated approximately. Violent relaxation, mass and angular momentum losses are taken into account phenomenologically. We estimate an emission of very long gravitational waves during the collapse, and discuss the possibility of gravitational lensing and polarization of the cosmic microwave background by these waves.
Seismic shear waves as Foucault pendulum
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Langmuir circulation inhibits near-surface water turbulence
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-07-01
In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.
Song, Hongwei; Li, Jun; Jiang, Bin; Yang, Minghui; Lu, Yunpeng; Guo, Hua
2014-02-28
The dynamics of the hydrogen abstraction reaction between methane and hydroxyl radical is investigated using an initial state selected time-dependent wave packet method within a six-dimensional model. The ab initio calibrated global potential energy surface of Espinosa-García and Corchado was used. Integral cross sections from several low-lying rotational states of both reactants have been obtained using the centrifugal sudden and J-shifting approximations. On the empirical potential energy surface, the rotational excitation of methane has little effect on the reaction cross section, but excited rotational states of OH inhibit the reactivity slightly. These results are rationalized with the newly proposed sudden vector projection model.
Venus: Atmospheric motion and structure from Mariner 10 pictures
Murray, B.C.; Belton, M.J.S.; Danielson, G. Edward; Davies, M.E.; Gault, D.; Hapke, B.; O'Leary, B.; Strom, R.G.; Suomi, V.; Trask, N.
1974-01-01
The Mariner 10 television cameras imaged the planet Venus in the visible and near ultraviolet for a period of 8 days at resolutions ranging from 100 meters to 130 kilometers. The general pattern of the atmospheric circulation in the upper tropospheric/lower stratospheric region is displayed in the pictures. Atmospheric flow is symmetrical between north and south hemispheres. The equatorial motions are zonal (east-west) at approximately 100 meters per second, consistent with the previously inferred 4-day retrograde rotation. Angular velocity increases with latitude. The subsolar region, and the region downwind from it, show evidence of large-scale convection that persists in spite of the main zonal motion. Dynamical interaction between the zonal motion and the relatively stationary region of convection is evidenced by bowlike waves.
Lower Hybrid Wave Induced Rotation on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Parker, Ron; Podpaly, Yuri; Rice, John; Schmidt, Andrea
2009-11-01
Injection of RF power in the vicinity of the lower hybrid frequency has been observed to cause strong counter current rotation in Alcator C-Mod plasmas [1,2]. The spin-up rate is consistent with the rate at which momentum is injected by the LH waves, and also the rate at which fast electron momentum is transferred to the ions. A momentum diffusivity of ˜ 0.1 m^2/s is sufficient to account for the observed steady-state rotation. This value is also comparable with that derived from an analysis of rotation induced by RF mode conversion [3]. Radial force balance requires a radial electric field, suggesting a buildup of negative charge in the plasma core. This may be the result of an inward pinch of the LH produced fast electrons, as would be expected for resonant trapped particles. Analysis of the fast-electron-produced bremsstrahlung during LH power modulation experiments yields an inward pinch velocity of ˜ 1 m/s, consistent with the estimated trapped particle pinch velocity. [4pt] [1] A. Ince-Cushman, et.al., Phys. Rev. Lett., 102, 035002 (2009)[0pt] [2] J. E. Rice, et. al., Nucl. Fusion 49, 025004 (2009)[0pt] [3] Y. Lin, et.al., this meeting
Variationally consistent approximation scheme for charge transfer
NASA Technical Reports Server (NTRS)
Halpern, A. M.
1978-01-01
The author has developed a technique for testing various charge-transfer approximation schemes for consistency with the requirements of the Kohn variational principle for the amplitude to guarantee that the amplitude is correct to second order in the scattering wave functions. Applied to Born-type approximations for charge transfer it allows the selection of particular groups of first-, second-, and higher-Born-type terms that obey the consistency requirement, and hence yield more reliable approximation to the amplitude.
Infrasonic Influences of Tornados and Cyclonic Weather Systems
NASA Astrophysics Data System (ADS)
Cook, Tessa
2014-03-01
Infrasound waves travel through the air at approximately 340 m/s at sea level, while experiencing low levels of friction, allowing the waves to travel over larger distances. When seismic waves travel through unconsolidated soil, the waves slow down to approximately 340 m/s. Because the speeds of waves in the air and ground are similar, a more effective transfer of energy from the atmosphere to the ground can occur. Large ring lasers can be utilized for detecting sources of infrasound traveling through the ground by measuring anomalies in the frequency difference between their two counter-rotating beams. Sources of infrasound include tornados and other cyclonic weather systems. The way systems create waves that transfer to the ground is unknown and will be continued in further research; this research has focused on attempting to isolate the time that the ring laser detected anomalies in order to investigate if these anomalies may be contributed to isolatable weather systems. Furthermore, this research analyzed the frequencies detected in each of the anomalies and compared the frequencies with various characteristics of each weather system, such as tornado width, wind speeds, and system development. This research may be beneficial for monitoring gravity waves and weather systems.
NASA Astrophysics Data System (ADS)
Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.
2017-12-01
Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.
NASA Astrophysics Data System (ADS)
Bartrand, J.; Abbott, R. E.
2017-12-01
We present data and analysis of a seismic data collect at the site of a historical underground nuclear explosion at Yucca Flat, a sedimentary basin on the Nevada National Security Site, USA. The data presented here consist of active-source, six degree-of-freedom seismic signals. The translational signals were collected with a Nanometrics Trillium Compact Posthole seismometer and the rotational signals were collected with an ATA Proto-SMHD, a prototype rotational ground motion sensor. The source for the experiment was the Seismic Hammer (a 13,000 kg weight-drop), deployed on two-kilometer, orthogonal arms centered on the site of the nuclear explosion. By leveraging the fact that compressional waves have no rotational component, we generated a map of subsurface scattering and compared the results to known subsurface features. To determine scattering intensity, signals were cut to include only the P-wave and its coda. The ratio of the time-domain signal magnitudes of angular velocity and translational acceleration were sectioned into three time windows within the coda and averaged within each window. Preliminary results indicate an increased rotation/translation ratio in the vicinity of the explosion-generated chimney, suggesting mode conversion of P-wave energy to S-wave energy at that location. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Film stability in a vertical rotating tube with a core-gas flow.
NASA Technical Reports Server (NTRS)
Sarma, G. S. R.; Lu, P. C.; Ostrach, S.
1971-01-01
The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.
Composite fermion basis for two-component Bose gases
NASA Astrophysics Data System (ADS)
Meyer, Marius; Liabotro, Ola
The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.
NASA Astrophysics Data System (ADS)
Snow, B.; Fedun, V.; Gent, F. A.; Verth, G.; Erdélyi, R.
2018-04-01
Vortex motions are frequently observed on the solar photosphere. These motions may play a key role in the transport of energy and momentum from the lower atmosphere into the upper solar atmosphere, contributing to coronal heating. The lower solar atmosphere also consists of complex networks of flux tubes that expand and merge throughout the chromosphere and upper atmosphere. We perform numerical simulations to investigate the behavior of vortex-driven waves propagating in a pair of such flux tubes in a non-force-free equilibrium with a realistically modeled solar atmosphere. The two flux tubes are independently perturbed at their footpoints by counter-rotating vortex motions. When the flux tubes merge, the vortex motions interact both linearly and nonlinearly. The linear interactions generate many small-scale transient magnetic substructures due to the magnetic stress imposed by the vortex motions. Thus, an initially monolithic tube is separated into a complex multithreaded tube due to the photospheric vortex motions. The wave interactions also drive a superposition that increases in amplitude until it exceeds the local Mach number and produces shocks that propagate upward with speeds of approximately 50 km s‑1. The shocks act as conduits transporting momentum and energy upward, and heating the local plasma by more than an order of magnitude, with a peak temperature of approximately 60,000 K. Therefore, we present a new mechanism for the generation of magnetic waveguides from the lower solar atmosphere to the solar corona. This wave guide appears as the result of interacting perturbations in neighboring flux tubes. Thus, the interactions of photospheric vortex motions is a potentially significant mechanism for energy transfer from the lower to upper solar atmosphere.
Zhang, Zhaojun; Zhang, Dong H
2014-10-14
Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD3 in J0 = 1, 2 rotationally excited initial states with k0 = 0 - J0 (the projection of CHD3 rotational angular momentum on its C3 axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K0) equal to k0 are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD3 with respect to the relative velocity between the reagents H and CHD3. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K0 specified cross sections for the K0 = k0 initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K0 averaging for the J0 = 1, 2 initial states with all different k0 are essentially identical to the corresponding CS and CC results for the J0 = 0 initial state, meaning that the initial rotational excitation of CHD3 up to J0 = 2, regardless of its initial k0, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J0 = 1, 2 initial states are the same as those for the J0 = 0 initial state.
Saturation amplitude of the f-mode instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastaun, Wolfgang; Willburger, Beatrix; Kokkotas, Kostas D.
2010-11-15
We investigate strong nonlinear damping effects which occur during high amplitude oscillations of neutron stars, and the gravitational waves they produce. For this, we use a general relativistic nonlinear hydrodynamics code in conjunction with a fixed spacetime (Cowling approximation) and a polytropic equation of state (EOS). Gravitational waves are estimated using the quadrupole formula. Our main interest are l=m=2 f modes subject to the CFS (Chandrasekhar, Friedman, Schutz) instability, but we also investigate axisymmetric and quasiradial modes. We study various models to determine the influence of rotation rate and EOS. We find that axisymmetric oscillations at high amplitudes are predominantlymore » damped by shock formation, while the nonaxisymmetric f modes are mainly damped by wave breaking and, for rapidly rotating models, coupling to nonaxisymmetric inertial modes. From the observed nonlinear damping, we derive upper limits for the saturation amplitude of CFS-unstable f modes. Finally, we estimate that the corresponding gravitational waves for an oscillation amplitude at the upper limit should be detectable with the advanced LIGO (Laser Interferometer Gravitational Wave Observatory) and VIRGO interferometers at distances above 10 Mpc. This strongly depends on the stellar model, in particular, on the mode frequency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalozub, A.S.; Tsaune, A.Ya.
1994-12-01
A new approach for analyzing the highly excited vibration-rotation (VR) states of nonrigid molecules is suggested. It is based on the separation of the vibrational and rotational terms in the molecular VR Hamiltonian by introducing periodic auxiliary fields. These fields transfer different interactions within a molecule and are treated in terms of the mean-field approximation. As a result, the solution of the stationary Schroedinger equation with the VR Hamiltonian amounts to a quantization of the Berry phase in a problem of the molecular angular-momentum motion in a certain periodic VR field (rotational problem). The quantization procedure takes into account themore » motion of the collective vibrational variables in the appropriate VR potentials (vibrational problem). The quantization rules, the mean-field configurations of auxiliary interactions, and the solutions to the Schrodinger equations for the vibrational and rotational problems are self-consistently connected with one another. The potentialities of the theory are demonstrated by the bending-rotation interaction modeled by the Bunker-Landsberg potential function in the H{sub 2} molecule. The calculations are compared with both the results of the exact computations and those of other approximate methods. 32 refs., 4 tabs.« less
Ocean wave electric generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, H.R.
This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbinemore » and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.« less
Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel
2010-09-01
A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.
Uniform high order spectral methods for one and two dimensional Euler equations
NASA Technical Reports Server (NTRS)
Cai, Wei; Shu, Chi-Wang
1991-01-01
Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.
Far-infrared rotational emission by carbon monoxide
NASA Technical Reports Server (NTRS)
Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.
1982-01-01
Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines for an H2 molecule content of at least 10,000/cu cm, temperature in the range 100-3000 K, and J not more than 60 under the assumption that the lines are optically thin. An approximate analytic expression for the emissivities which is valid in this region is obtained. Population inversions in the lower rotational levels occur for densities of molecular H2 around 1000-100,000/cu cm and temperatures T not more than about 50 K provided photon trapping is unimportant. Interstellar shocks observed edge-on are a potential source of weak millimeter-wave CO maser emission.
NASA Astrophysics Data System (ADS)
Iliopoulos, Nikos; Thanopulos, Ioannis; Yannopapas, Vassilios; Paspalakis, Emmanuel
2018-03-01
We study the spontaneous emission of a two-level quantum emitter next to a plasmonic nanoparticle beyond the Markovian approximation and the rotating-wave approximation (RWA) by combining quantum dynamics and classical electromagnetic calculations. For emitters with decay times in the picosecond to nanosecond time regime, as well as located at distances from the nanoparticle up to its radius, the dynamics with and without the RWA and the transition from the non-Markovian to the Markovian regime are investigated. For emitters with longer decay times, the Markov approximation proves to be adequate for distances larger than half the nanoparticle radius. However, the RWA is correct for all distances of the emitter from the nanoparticle. For short decay time emitters, the Markov approximation and RWA are both inadequate, with only the RWA becoming valid again at a distance larger than half the nanoparticle radius. We also show that the entanglement dynamics of two initially entangled qubits interacting independently with the nanoparticle may have a strong non-Markovian character when counter-rotating effects are included. Interesting effects such as entanglement sudden death, periodic entanglement revival, entanglement oscillations, and entanglement trapping are further observed when different initial two-qubit states and different distances between the qubit and the nanoparticle are considered.
Three-dimensional modelling of thin liquid films over spinning disks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar
2016-11-01
In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.
NASA Astrophysics Data System (ADS)
Obergaulinger, M.; Aloy, M. A.; Dimmelmeier, H.; Müller, E.
2006-10-01
We continue our investigations of the magnetorotational collapse of stellar cores by discussing simulations performed with a modified Newtonian gravitational potential that mimics general relativistic effects. The approximate TOV gravitational potential used in our simulations captures several basic features of fully relativistic simulations quite well. In particular, it is able to correctly reproduce the behavior of models that show a qualitative change both of the dynamics and the gravitational wave signal when switching from Newtonian to fully relativistic simulations. For models where the dynamics and gravitational wave signals are already captured qualitatively correctly by a Newtonian potential, the results of the Newtonian and the approximate TOV models differ quantitatively. The collapse proceeds to higher densities with the approximate TOV potential, allowing for a more efficient amplification of the magnetic field by differential rotation. The strength of the saturation fields (˜ 1015 ~ G at the surface of the inner core) is a factor of two to three higher than in Newtonian gravity. Due to the more efficient field amplification, the influence of magnetic fields is considerably more pronounced than in the Newtonian case for some of the models. As in the Newtonian case, sufficiently strong magnetic fields slow down the core's rotation and trigger a secular contraction phase to higher densities. More clearly than in Newtonian models, the collapsed cores of these models exhibit two different kinds of shock generation. Due to magnetic braking, a first shock wave created during the initial centrifugal bounce at subnuclear densities does not suffice for ejecting any mass, and the temporarily stabilized core continues to collapse to supranuclear densities. Another stronger shock wave is generated during the second bounce as the core exceeds nuclear matter density. The gravitational wave signal of these models does not fit into the standard classification. Therefore, in the first paper of this series we introduced a new type of gravitational wave signal, which we call type IV or “magnetic type”. This signal type is more frequent for the approximate relativistic potential than for the Newtonian one. Most of our weak-field models are marginally detectable with the current LIGO interferometer for a source located at a distance of 10 kpc. Strongly magnetized models emit a substantial fraction of their GW power at very low frequencies. A flat spectrum between 10 Hz and ⪉ 100 kHz denotes the generation of a jet-like hydromagnetic outflow.
Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity
NASA Astrophysics Data System (ADS)
Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro
2018-06-01
A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.
Effect of Floquet engineering on the p-wave superconductor with second-neighbor couplings
NASA Astrophysics Data System (ADS)
Li, X. P.; Li, C. F.; Wang, L. C.; Zhou, L.
2018-06-01
The influence of the Floquet engineering on a particular one-dimensional p-wave superconductor, Kitaev model, with second-neighbor couplings is investigated in this paper. The effective Hamiltonians in the rotated reference frames have been obtained, and the convergent regions of the approximated Hamiltonian as well as the topological phase diagrams have been analyzed and discussed. We show that by modulating the external driving field amplitude, frequency as well as the second-neighbor hopping amplitude, the rich phase diagrams and transitions between different topological phases can be obtained.
NASA Astrophysics Data System (ADS)
Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.
2016-12-01
We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.
AR Scorpii and possible gravitational wave radiation from pulsar white dwarfs
NASA Astrophysics Data System (ADS)
Franzon, B.; Schramm, S.
2017-06-01
In view of the new recent observation and measurement of the rotating and highly magnetized white dwarf AR Scorpii, we determine bounds of its moment of inertia, magnetic fields and radius. Moreover, we investigate the possibility of fast rotating and/or magnetized white dwarfs to be sources of detectable gravitational wave (GW) emission. Numerical stellar models at different baryon masses are constructed. For each star configuration, we compute self-consistent relativistic solutions for white dwarfs endowed with poloidal magnetic fields by solving the Einstein-Maxwell field equations in a self-consistent way. The magnetic field supplies an anisotropic pressure, leading to the braking of the spherical symmetry of the star. In this case, we compute the quadrupole moment of the mass distribution. Next, we perform an estimate of the GW of such objects. Finally, we show that the new recent observation and measurement pulsar white dwarf AR Scorpii, as well as other stellar models, might generate GW radiation that lies in the bandwidth of the discussed next generation of space-based GW detectors DECI-hertz Interferometer Gravitational wave Observatory (DECIGO) and Big Bang Observer (BBO).
Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.
Polarization rotation in meteor burst communication systems
NASA Astrophysics Data System (ADS)
Cannon, P. S.
1986-06-01
Theoretical modeling of several meteor burst communication (MBC) paths indicates that polarization rotation losses are significant for a linearly polarized system operating near 40 MHz. Losses for a hybrid system with physical installation problems, consisting of linearly polarized transmitting and circularly polarized receiving antennas, were found to be less. Both ionospheric Faraday rotation polarization changes, and underdense meteor trail scattering wave polarization rotation, are considered. These losses are found to cause a 15-70 percent data throughput reduction of the value predicted for the situation without polarization rotation, in the two 40-MHz linearly polarized links considered for noon summer solstice conditions during high solar sunspot number periods. Qualitative experimental confirmation is provided through a cross polarization approach.
Quantum versus classical dynamics in the optical centrifuge
NASA Astrophysics Data System (ADS)
Armon, Tsafrir; Friedland, Lazar
2017-09-01
The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.
Quantum Dynamics Study of the Isotopic Effect on Capture Reactions: HD, D2 + CH3
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Kwak, Dochan (Technical Monitor)
2002-01-01
Time-dependent wave-packet-propagation calculations are reported for the isotopic reactions, HD + CH3 and D2 + CH3, in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probabilities for different initial rotational-vibrational states are presented in this study. This study shows that excitations of the HD(D2) enhances the reactivities; whereas the excitations of the CH3 umbrella mode have the opposite effects. This is consistent with the reaction of H2 + CH3. The comparison of these three isotopic reactions also shows the isotopic effects in the initial-state-selected reaction probabilities. The cumulative reaction probabilities (CRP) are obtained by summing over initial-state-selected reaction probabilities. The energy-shift approximation to account for the contribution of degrees of freedom missing in the six dimensionality calculation is employed to obtain approximate full-dimensional CRPs. The rate constant comparison shows H2 + CH3 reaction has the biggest reactivity, then HD + CH3, and D2 + CH3 has the smallest.
Freely-tunable broadband polarization rotator for terahertz waves
NASA Astrophysics Data System (ADS)
Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu
It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, G.A.; Pack, R.T
1978-02-15
A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less
2010-02-02
b). We approximate the Hamiltonian of our system using the Jaynes - Cummings model in the rotating - wave approxima- tion, Ĥ = Ĥq + Ĥr + ĤI(Φx) + Ĥ...when the coupler circulating cur- rent is at the critical current. It is also worth noting that in the limit that c → 1, (Meff )max increases without ...probability is approximately 10%, we can deter- mine the circulating current in the coupler as a function of Φx. Figure 2(a) shows the measured coupler
The Atmospheric Dynamics of Venus
NASA Astrophysics Data System (ADS)
Sánchez-Lavega, Agustín; Lebonnois, Sebastien; Imamura, Takeshi; Read, Peter; Luz, David
2017-11-01
We review our current knowledge of the atmospheric dynamics of Venus prior to the Akatsuki mission, in the altitude range from the surface to approximately the cloud tops located at about 100 km altitude. The three-dimensional structure of the wind field in this region has been determined with a variety of techniques over a broad range of spatial and temporal scales (from the mesoscale to planetary, from days to years, in daytime and nighttime), spanning a period of about 50 years (from the 1960s to the present). The global panorama is that the mean atmospheric motions are essentially zonal, dominated by the so-called super-rotation (an atmospheric rotation that is 60 to 80 times faster than that of the planetary body). The zonal winds blow westward (in the same direction as the planet rotation) with a nearly constant speed of ˜ 100 m s^{-1} at the cloud tops (65-70 km altitude) from latitude 50°N to 50°S, then decreasing their speeds monotonically from these latitudes toward the poles. Vertically, the zonal winds decrease with decreasing altitude towards velocities ˜ 1-3 m s^{-1} in a layer of thickness ˜ 10 km close to the surface. Meridional motions with peak speeds of ˜ 15 m s^{-1} occur within the upper cloud at 65 km altitude and are related to a Hadley cell circulation and to the solar thermal tide. Vertical motions with speeds ˜1-3 m s^{-1} occur in the statically unstable layer between altitudes of ˜ 50 - 55 km. All these motions are permanent with speed variations of the order of ˜10%. Various types of wave, from mesoscale gravity waves to Rossby-Kelvin planetary scale waves, have been detected at and above cloud heights, and are considered to be candidates as agents for carrying momentum that drives the super-rotation, although numerical models do not fully reproduce all the observed features. Momentum transport by atmospheric waves and the solar tide is thought to be an indispensable component of the general circulation of the Venus atmosphere. Another conspicuous feature of the atmospheric circulation is the presence of polar vortices. These are present in both hemispheres and are regions of warmer and lower clouds, seen prominently at infrared wavelengths, showing a highly variable morphology and motions. The vortices spin with a period of 2-3 days. The South polar vortex rotates around a geographical point which is itself displaced from the true pole of rotation by ˜ 3 degrees. The polar vortex is surrounded and constrained by the cold collar, an infrared-dark region of lower temperatures. We still lack detailed models of the mechanisms underlying the dynamics of these features and how they couple (or not) to the super-rotation. The nature of the super-rotation relates to the angular momentum stored in the atmosphere and how it is transported between the tropics and higher latitudes, and between the deep atmosphere and upper levels. The role of eddy processes is crucial, but likely involves the complex interaction of a variety of different types of eddy, either forced directly by radiative heating and mechanical interactions with the surface or through various forms of instability. Numerical models have achieved some significant recent success in capturing some aspects of the observed super-rotation, consistent with the scenario discussed by Gierasch (J. Atmos. Sci. 32:1038-1044, 1975) and Rossow and Williams (J. Atmos. Sci. 36:377-389, 1979), but many uncertainties remain, especially in the deep atmosphere. The theoretical framework developed to explain the circulation in Venus's atmosphere is reviewed, as well as the numerical models that have been built to elucidate the super-rotation mechanism. These tools are used to analyze the respective roles of the different waves in the processes driving the observed motions. Their limitations and suggested directions for improvements are discussed.
Hybrid Simulations of Pickup Ions and Ion Cyclotron Waves at Enceladus
NASA Astrophysics Data System (ADS)
Cowee, M.; Wei, H.; Tokar, R. L.
2014-12-01
Saturn's moon Enceladus releases tens of kilograms per second of water-group neutrals from its southern plumes. These neutrals are ionized and accelerated by the background co-rotation electric field, producing a local population of pickup ions with a ring distribution in velocity space. This velocity space distribution is highly unstable to the growth of electromagnetic ion cyclotron waves whose amplitudes are generally related to the pickup ion production rate, the mass of the pickup ion, the pickup velocity, and the degree of damping by the background plasma. Observations from the Cassini spacecraft show the amplitudes of the waves generally increase with distance within 2 Enceladus radii of the Moon, consistent with an increasing density of pickup ion source, but then decrease right at the Moon, consistent with zero pickup velocity in the stagnating plasma flow. In order to interpret the observed wave amplitudes in terms of ion production rates at Enceladus, we carry out self-consistent hybrid simulations of the growth of ion cyclotron waves from pickup ions to determine the relationship between wave amplitude and background plasma and ion pickup conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Shang-Min; Gu, Pin-Gao; Dobbs-Dixon, Ian
Three-dimensional (3D) equatorial trapped waves excited by stellar isolation and the resulting equatorial super-rotating jet in a vertical stratified atmosphere of a tidally locked hot Jupiter are investigated. Taking the hot Jupiter HD 189733b as a fiducial example, we analytically solve linear equations subject to stationary stellar heating with a uniform zonal-mean flow included. We also extract wave information in the final equilibrium state of the atmosphere from our radiative hydrodynamical simulation for HD 189733b. Our analytic wave solutions are able to qualitatively explain the 3D simulation results. Apart from previous wave studies, investigating the vertical structure of waves allowsmore » us to explore new wave features such as the wavefronts tilts related to the Rossby-wave resonance as well as dispersive equatorial waves. We also attempt to apply our linear wave analysis to explain some numerical features associated with the equatorial jet development seen in the general circulation model by Showman and Polvani. During the spin-up phase of the equatorial jet, the acceleration of the jet can be in principle boosted by the Rossby-wave resonance. However, we also find that as the jet speed increases, the Rossby-wave structure shifts eastward, while the Kelvin-wave structure remains approximately stationary, leading to the decline of the acceleration rate. Our analytic model of jet evolution implies that there exists only one stable equilibrium state of the atmosphere, possibly implying that the final state of the atmosphere is independent of initial conditions in the linear regime. Limitations of our linear model and future improvements are also discussed.« less
NASA Astrophysics Data System (ADS)
Sawa, Takeyasu; Fujimoto, M.
1993-05-01
The approximate dynamo equation, which yields asymptotic solutions for the large scale bisymmetric spiral (BSS) magnetic fields rotating rigidly over a large area of the galactic disk, is derived. The vertical thickness and the dynamo strength of the gaseous disk which are necessary to generate and sustain the BSS magnetic fields is determined. The globally BSS magnetic fields which propagate over the disk as a wave without being twisted more tightly are reproduced. A poloidal field configuration is theoretically predicted in the halo around the disk, and is observed in the edge-on galaxy NGC4631. Mathematical methods for the galactic dynamo are shown to be equivalent. Those methods give different growth rates between the BSS and the axisymmetric spiral (ASS) magnetic fields in the disk. Magnetohydrodynamical excitation is discussed between the BSS magnetic fields and the two armed spiral density waves.
NASA Astrophysics Data System (ADS)
Zhang, B.; Hou, Y. J.; Zhang, J.
2018-03-01
Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://https://www.aanda.org
The Inhomogeneous Waves in a Rotating Piezoelectric Body
Chen, Si
2013-01-01
This paper presents the analysis and numerical results of rotation, propagation angle, and attenuation angle upon the waves propagating in the piezoelectric body. Via considering the centripetal and Coriolis accelerations in the piezoelectric equations with respect to a rotating frame of reference, wave velocities and attenuations are derived and plotted graphically. It is demonstrated that rotation speed vector can affect wave velocities and make the piezoelectric body behaves as if it was damping. Besides, the effects of propagation angle and attenuation angle are presented. Critical point is found when rotation speed is equal to wave frequency, around which wave characteristics change drastically. PMID:24298219
A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America
NASA Astrophysics Data System (ADS)
Seminack, Christopher T.; McBride, Randolph A.
2018-03-01
A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt). Rotating wave-dominated tidal inlets follow a six-stage evolutionary model; whereas wave-dominated tidal inlets that exhibit little-to-no rotation follow a five-stage evolutionary model.
Propagation effects in the generation process of high-order vortex harmonics.
Zhang, Chaojin; Wu, Erheng; Gu, Mingliang; Liu, Chengpu
2017-09-04
We numerically study the propagation of a Laguerre-Gaussian beam through polar molecular media via the exact solution of full-wave Maxwell-Bloch equations where the rotating-wave and slowly-varying-envelope approximations are not included. It is found that beyond the coexistence of odd-order and even-order vortex harmonics due to inversion asymmetry of the system, the light propagation effect results in the intensity enhancement of a high-order vortex harmonics. Moreover, the orbital momentum successfully transfers from the fundamental laser driver to the vortex harmonics which topological charger number is directly proportional to its order.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.; Arai, Y.; Suzuki, J.
1996-01-01
1. The adaptive plasticity of the vestibuloocular reflex (VOR) following a selective lesion of the peripheral vestibular organs was investigated in rhesus monkeys whose lateral semicircular canals were inactivated by plugging of the canal lumen in both ears. Gain and phase of horizontal, vertical, and torsional slow-phase eye velocity were determined from three-dimensional eye movement recordings obtained acutely after the plugging operation, as well as in regular intervals up to 10 mo later. 2. Acutely after plugging, horizontal VOR was minimal during yaw rotation with gains of < 0.1 at all frequencies. Horizontal VOR gain gradually increased over time, reaching gains of 0.4-0.5 for yaw oscillations at 1.1 Hz approximately 5 mo after lateral canal inactivation. This response recovery was strongly frequency dependent: horizontal VOR gains were largest at the highest frequency tested and progressively decreased for lower frequencies. Below approximately 0.1 Hz, no consistent horizontal VOR could be elicited even 10 mo after plugging. 3. The frequency-dependent changes in gain paralleled changes in horizontal VOR phase. Below approximately 0.1-0.05 Hz large phase leads were present, similarly as in semicircular canal primary afferents. Smaller phase leads were also present at higher frequencies, particularly at 1.1 Hz (the highest frequency tested). 4. Consistent with the afferent-like dynamics of the adapted horizontal VOR, per- and postrotatory horizontal responses to constant-velocity yaw rotations were short lasting. Time constants of the slow-phase eye velocity envelope of the horizontal postrotatory nystagmus were approximately 2 s. Nonetheless, a consistent horizontal optokinetic afternystagmus was evoked in plugged animals. 5. A torsional component that was absent in intact animals was consistently present during yaw rotation acutely after lateral canal inactivation and remained approximately constant thereafter. The frequency response characteristics of this torsional component resembled those of the adapted horizontal slow-phase responses: gain decreased and large phase leads were introduced at frequencies below approximately 0.05-0.1 Hz. Torsional responses elicited by roll oscillations in supine position, on the other hand, were indistinguishable in their dynamics from intact animals. No consistent vertical nystagmus was elicited during yaw rotation. 6. Our results show that there is a slow, frequency-specific recovery of horizontal VOR after selective inactivation of the lateral semicircular canals. Both the spatial organization and the dynamic properties of the adapted VOR responses are distinctly different from responses in intact animals, suggesting complex changes in the underlying vestibuloocular circuitry.
Multi-scale phenomena of rotation-modified mode-2 internal waves
NASA Astrophysics Data System (ADS)
Deepwell, David; Stastna, Marek; Coutino, Aaron
2018-03-01
We present high-resolution, three-dimensional simulations of rotation-modified mode-2 internal solitary waves at various rotation rates and Schmidt numbers. Rotation is seen to change the internal solitary-like waves observed in the absence of rotation into a leading Kelvin wave followed by Poincaré waves. Mass and energy is found to be advected towards the right-most side wall (for a Northern Hemisphere rotation), leading to increased amplitude of the leading Kelvin wave and the formation of Kelvin-Helmholtz (K-H) instabilities on the upper and lower edges of the deformed pycnocline. These fundamentally three-dimensional instabilities are localized within a region near the side wall and intensify in vigour with increasing rotation rate. Secondary Kelvin waves form further behind the wave from either resonance with radiating Poincaré waves or the remnants of the K-H instability. The first of these mechanisms is in accord with published work on mode-1 Kelvin waves; the second is, to the best of our knowledge, novel to the present study. Both types of secondary Kelvin waves form on the same side of the channel as the leading Kelvin wave. Comparisons of equivalent cases with different Schmidt numbers indicate that while adopting a numerically advantageous low Schmidt number results in the correct general characteristics of the Kelvin waves, excessive diffusion of the pycnocline and various density features precludes accurate representation of both the trailing Poincaré wave field and the intensity and duration of the Kelvin-Helmholtz instabilities.
Center for Opto-Electronic Systems Research.
1988-02-01
Stroud, Jr. The Institute of Optics, University of Rochester Rochester, New York 14627 USA Abstract The Jaynes - Cummings model of a single two-level...surfaces, possibly to include certain classes of surfaces without rotational symmetry. An initial investigation was made of the surface roughness...number density of approximately 1018 - and the forward-going pump wave both enter the nonlinear -.molecules/cm3 . The intensities of the interacting
Drift wave turbulence simulations in LAPD
NASA Astrophysics Data System (ADS)
Popovich, P.; Umansky, M.; Carter, T. A.; Auerbach, D. W.; Friedman, B.; Schaffner, D.; Vincena, S.
2009-11-01
We present numerical simulations of turbulence in LAPD plasmas using the 3D electromagnetic code BOUT (BOUndary Turbulence). BOUT solves a system of fluid moment equations in a general toroidal equlibrium geometry near the plasma boundary. The underlying assumptions for the validity of the fluid model are well satisfied for drift waves in LAPD plasmas (typical plasma parameters ne˜1x10^12cm-3, Te˜10eV, and B ˜1kG), which makes BOUT a perfect tool for simulating LAPD. We have adapted BOUT for the cylindrical geometry of LAPD and have extended the model to include the background flows required for simulations of recent bias-driven rotation experiments. We have successfully verified the code for several linear instabilities, including resistive drift waves, Kelvin-Helmholtz and rotation-driven interchange. We will discuss first non-linear simulations and quasi-stationary solutions with self-consistent plasma flows and saturated density profiles.
Trapped modes in a non-axisymmetric cylindrical waveguide
NASA Astrophysics Data System (ADS)
Lyapina, A. A.; Pilipchuk, A. S.; Sadreev, A. F.
2018-05-01
We consider acoustic wave transmission in a non-axisymmetric waveguide which consists of a cylindrical resonator and two cylindrical waveguides whose axes are shifted relatively to each other by an azimuthal angle Δϕ. Under variation of the resonator's length L and fixed Δϕ we find bound states in the continuum (trapped modes) due to full destructive interference of resonant modes leaking into the waveguides. Rotation of the waveguide adds complex phases to the coupling strengths of the resonator eigenmodes with the propagating modes of the waveguides tuning Fano resonances to give rise to a wave faucet. Under variation of Δϕ with fixed resonator's length we find symmetry protected trapped modes. For Δϕ ≠ 0 these trapped modes contribute to the scattering function supporting high vortical acoustic intensity spinning inside the resonator. The waveguide rotation brings an important feature to the scattering and provides an instrument for control of acoustic transmittance and wave trapping.
Solvable model of spiral wave chimeras.
Martens, Erik A; Laing, Carlo R; Strogatz, Steven H
2010-01-29
Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.
Numerical assessment of factors affecting nonlinear internal waves in the South China Sea
NASA Astrophysics Data System (ADS)
Li, Qiang
2014-02-01
Nonlinear internal waves in the South China Sea exhibit diverse characteristics, which are associated with the complex conditions in Luzon Strait, such as the double ridge topography, the Earth’s rotation, variations in stratification and the background current induced by the Kuroshio. These effects are individually assessed using the MITgcm. The performance of the model is first validated through comparison with field observations. Because of in-phased ray interaction, the western ridge in Luzon Strait intensifies the semidiurnal internal tides generated from the eastern ridge, thus reinforcing the formation of nonlinear internal waves. However, the ray interaction for K1 forcing becomes anti-phased so that the K1 internal tide generation is reduced by the western ridge. Not only does the rotational dispersion suppress internal tide generation, it also inhibits nonlinear steepening and consequent internal solitary wave formation. As a joint effect, the double ridges and the rotational dispersion result in a paradoxical phenomenon: diurnal barotropic tidal forcing is dominant in Luzon Strait, but semidiurnal internal tides prevail in the deep basin of the South China Sea. The seasonal variation of the Kuroshio is consistent with the seasonal appearance of nonlinear internal waves in the South China Sea. The model results show that the westward inflow due to the Kuroshio intrusion reduces the amplitude of internal tides in the South China Sea, causing the weakening or absence of internal solitary waves. Winter stratification cannot account for the significant reduction of nonlinear internal waves, because the amplitude growth of internal tides due to increased thermocline tilting counteracts the reduced nonlinearity caused by thermocline deepening.
I-Love-Q anisotropically: Universal relations for compact stars with scalar pressure anisotropy
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolás
2015-06-01
Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum, and quadrupole moment) have recently been found to be interrelated in a manner that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis and model selection for future radio, x-ray, and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to magnetic fields or phase transitions in their interior. We investigate here whether pressure anisotropy affects the approximate universal relations and, if so, whether it prevents their use in future astrophysical observations. We achieve this by numerically constructing slowly rotating and tidally deformed, anisotropic, compact stars in general relativity to third order in stellar rotation relative to the mass shedding limit. We adopt simple models for pressure anisotropy where the matter stress-energy tensor is diagonal for a spherically symmetric spacetime but the tangential pressure differs from the radial one. We find that the equation-of-state variation increases as one increases the amount of anisotropy, but within the anisotropy range studied in this paper (motivated from anisotropy due to crystallization of the core and pion condensation), anisotropy affects the universal relations only weakly. The relations become less universal by a factor of 1.5-3 relative to the isotropic case when anisotropy is maximal, but even then they remain approximately universal to 10%. We find evidence that this increase in variability is strongly correlated to an increase in the eccentricity variation of isodensity contours, which provides further support for the emergent approximate symmetry explanation of universality. Whether one can use universal relations in actual observations ultimately depends on the currently unknown amount of anisotropy inside stars, but within the range studied in this paper, anisotropy does not prevent the use of universal relations in gravitational wave astrophysics or in experimental relativity. We provide an explicit example of the latter by simulating a binary pulsar/gravitational wave test of dynamical Chern-Simons gravity with anisotropic neutron stars. The increase in variability of the universal relations due to pressure anisotropy could affect their use in future x-ray observations of hot spots on rotating compact stars. Given expected observational uncertainties, however, the relations remain sufficiently universal for use in such observations if the anisotropic modifications to the moment of inertia and the quadrupole moment are less than 10% of their isotropic values.
Discovery of powerful gamma-ray flares from the Crab Nebula.
Tavani, M; Bulgarelli, A; Vittorini, V; Pellizzoni, A; Striani, E; Caraveo, P; Weisskopf, M C; Tennant, A; Pucella, G; Trois, A; Costa, E; Evangelista, Y; Pittori, C; Verrecchia, F; Del Monte, E; Campana, R; Pilia, M; De Luca, A; Donnarumma, I; Horns, D; Ferrigno, C; Heinke, C O; Trifoglio, M; Gianotti, F; Vercellone, S; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A W; Contessi, T; D'Ammando, F; DePris, G; Di Cocco, G; Di Persio, G; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Fuschino, F; Marisaldi, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Prest, M; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Vallazza, E; Zambra, A; Zanello, D; Lucarelli, F; Santolamazza, P; Giommi, P; Salotti, L; Bignami, G F
2011-02-11
The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega-electron volts to 10 giga-electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.
Yasumatsu, Naoya; Watanabe, Shinichi
2012-02-01
We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.
Vibrational-rotational deexcitation of HF in collision with He
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniek, R.J.
State-to-state cross sections are reported for vibrational-rotational transitions for HF in collisions with He, at collisional energies of 0.5 and 1.0 eV. These were computed within the infinite-order sudden (IOS) approximation using adiabatic, distorted-wave techniques. Values are tabulated for the vibrational-rotational deexcitation sequences (v, j) ..-->.. (v--1, 0), with v = 1, 2, 3, 4 and j = 0 -- 40. These quenching cross sections can be used in conjunction with IOS factorization formulas to compute VRT cross sections for final rotational states other than j/sub f/ = 0. In addition to IOS results, vibrational quenching cross sections were computedmore » using the much more simple breathing-sphere technique. The breathing-sphere results compare favorably to the more accurate IOS results, particularly as to energy dependence. This suggests a simple method of utilizing known quenching cross sections to predict values for different vibrational levels and/or collisional energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhaojun; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn
Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD{sub 3} in J{sub 0} = 1, 2 rotationally excited initial states with k{sub 0} = 0 − J{sub 0} (the projection of CHD{sub 3} rotational angular momentum on its C{sub 3} axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K{sub 0}) equal to k{sub 0} are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagentmore » CHD{sub 3} with respect to the relative velocity between the reagents H and CHD{sub 3}. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K{sub 0} specified cross sections for the K{sub 0} = k{sub 0} initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K{sub 0} averaging for the J{sub 0} = 1, 2 initial states with all different k{sub 0} are essentially identical to the corresponding CS and CC results for the J{sub 0} = 0 initial state, meaning that the initial rotational excitation of CHD{sub 3} up to J{sub 0} = 2, regardless of its initial k{sub 0}, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J{sub 0} = 1, 2 initial states are the same as those for the J{sub 0} = 0 initial state.« less
One-dimensional wave propagation in particulate suspensions
NASA Technical Reports Server (NTRS)
Rochelle, S. G.; Peddieson, J., Jr.
1976-01-01
One-dimensional small-amplitude wave motion in a two-phase system consisting of an inviscid gas and a cloud of suspended particles is analyzed using a continuum theory of suspensions. Laplace transform methods are used to obtain several approximate solutions. Properties of acoustic wave motion in particulate suspensions are inferred from these solutions.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.; Johnson, D. R.; Uccellini, L. W.
1983-01-01
In the present investigation, a one-dimensional linearized analysis is used to determine the effect of Asselin's (1972) time filter on both the computational stability and phase error of numerical solutions for the shallow water wave equations, in cases with diffusion but without rotation. An attempt has been made to establish the approximate optimal values of the filtering parameter nu for each of the 'lagged', Dufort-Frankel, and Crank-Nicholson diffusion schemes, suppressing the computational wave mode without materially altering the physical wave mode. It is determined that in the presence of diffusion, the optimum filter length depends on whether waves are undergoing significant propagation. When moderate propagation is present, with or without diffusion, the Asselin filter has little effect on the spatial phase lag of the physical mode for the leapfrog advection scheme of the three diffusion schemes considered.
Gigahertz dynamics of a strongly driven single quantum spin.
Fuchs, G D; Dobrovitski, V V; Toyli, D M; Heremans, F J; Awschalom, D D
2009-12-11
Two-level systems are at the core of numerous real-world technologies such as magnetic resonance imaging and atomic clocks. Coherent control of the state is achieved with an oscillating field that drives dynamics at a rate determined by its amplitude. As the strength of the field is increased, a different regime emerges where linear scaling of the manipulation rate breaks down and complex dynamics are expected. By calibrating the spin rotation with an adiabatic passage, we have measured the room-temperature "strong-driving" dynamics of a single nitrogen vacancy center in diamond. With an adiabatic passage to calibrate the spin rotation, we observed dynamics on sub-nanosecond time scales. Contrary to conventional thinking, this breakdown of the rotating wave approximation provides opportunities for time-optimal quantum control of a single spin.
Wave generation by fracture initiation and propagation in geomaterials with internal rotations
NASA Astrophysics Data System (ADS)
Esin, Maxim; Pasternak, Elena; Dyskin, Arcady; Xu, Yuan
2016-04-01
Crack or fracture initiation and propagation in geomaterials are sources of waves and is important in both stability and fracture (e.g. hydraulic fracture) monitoring. Many geomaterials consist of particles or other constituents capable of rotating with respect to each other, either due to the absence of the binder phase (fragmented materials) or due to extensive damage of the cement between the constituents inflicted by previous loading. In investigating the wave generated in fracturing it is important to distinguish between the cases when the fracture is instantaneously initiated to its full length or propagates from a smaller initial crack. We show by direct physical experiments and discrete element modelling of 2D arrangements of unbonded disks that under compressive load fractures are initiated instantaneously as a result of the material instability and localisation. Such fractures generate waves as a single impulse impact. When the fractures propagate, they produce a sequence of impulses associated with the propagation steps. This manifests itself as acoustic (microseismic) emission whose temporal pattern contains the information of the fracture geometry, such as fractal dimension of the fracture. The description of this process requires formulating criteria of crack growth capable of taking into account the internal rotations. We developed an analytical solution based on the Cosserat continuum where each point of body has three translational and three rotational degrees of freedom. When the Cosserat characteristic lengths are comparable with the grain sizes, the simplified equations of small-scale Cosserat continuum can be used. We established that the order of singularity of the main asymptotic term for moment stress is higher than the order of singularity for conventional stress. Therefore, the mutual rotation of particles and related bending and/or twisting of the bonds between the particles represent an unconventional mechanism of crack propagation.
Coherent control of ultrafast optical four-wave mixing with two-color {omega}-3{omega} laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrat, Carles
2005-08-15
A theoretical investigation on the coherent control of optical transient four-wave mixing interactions in two-level systems with two intense few-cycle propagating laser pulses of central angular frequencies {omega} and 3{omega} is reported. By numerically solving the full Maxwell-Bloch equations beyond the slowly varying envelope and rotating-wave approximations in the time domain, the nonlinear coupling to the optical field at frequency 5{omega} is found to depend critically on the initial relative phase {phi} of the propagating pulses: the coupling is enhanced when the pulses interfere constructively in the center ({phi}=0), while it is nearly suppressed when they are out of phasemore » ({phi}={pi})« less
Continuum calculations of continental deformation in transcurrent environments
NASA Technical Reports Server (NTRS)
Sonder, L. J.; England, P. C.; Houseman, G. A.
1986-01-01
A thin viscous sheet approximation is used to investigate continental deformation near a strike-slip boundary. The vertically averaged velocity field is calculated for a medium characterized by a power law rheology with stress exponent n. Driving stresses include those applied along boundaries of the sheet and those arising from buoyancy forces related to lateral differences in crustal thickness. Exact and approximate analytic solutions for a region with a sinusoidal strike-slip boundary condition are compared with solutions for more geologically relevant boundary conditions obtained using a finite element technique. The across-strike length scale of the deformation is approximately 1/4pi x sq rt n times the dominant wavelength of the imposed strike-slip boundary condition for both the analytic and the numerical solutions; this result is consistent with length scales observed in continental regions of large-scale transcurrent faulting. An approximate, linear relationship between displacement and rotation is found that depends only on the deformation length scale and the rheology. Calculated displacements, finite rotations, and distribution of crustal thicknesses are consistent with those observed in the region of the Pacific-North America plate boundary in California.
Dark state with counter-rotating dissipative channels.
Zhou, Zheng-Yang; Chen, Mi; Wu, Lian-Ao; Yu, Ting; You, J Q
2017-07-24
Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the Λ-type three-level system, this dark state is generally regarded as being dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a Λ-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.
Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway Dillaway; Theodor D. Leininger
2015-01-01
The Lower Mississippi Alluvial Valley (LMAV) offers an ecological niche for short-rotation woody crop (SRWC) production by mating marginal agricultural land with optimal growing conditions. Approximately 1.7 million ha within the LMAV consist of Sharkey shrink-swell clays. They are considered marginal in terms of traditional agricultural productivity due to their...
Spectroscopic factors in the N =20 island of inversion: The Nilsson strong-coupling limit
NASA Astrophysics Data System (ADS)
Macchiavelli, A. O.; Crawford, H. L.; Campbell, C. M.; Clark, R. M.; Cromaz, M.; Fallon, P.; Jones, M. D.; Lee, I. Y.; Richard, A. L.; Salathe, M.
2017-11-01
Spectroscopic factors, extracted from one-neutron knockout and Coulomb dissociation reactions, for transitions from the ground state of 33Mg to the ground-state rotational band in 32Mg, and from 32Mg to low-lying negative-parity states in 31Mg, are interpreted within the rotational model. Associating the ground state of 33Mg and the negative-parity states in 31Mg with the 3/2 [321 ] Nilsson level, the strong coupling limit gives simple expressions that relate the amplitudes (Cj ℓ) of this wave function with the measured cross sections and derived spectroscopic factors (Sj ℓ). To obtain a consistent agreement with the data within this framework, we find that one requires a modified 3/2 [321 ] wave function with an increased contribution from the spherical 2 p3 /2 orbit as compared to a standard Nilsson calculation. This is consistent with the findings of large-scale shell model calculations and can be traced to weak binding effects that lower the energy of low-ℓ orbitals.
Theory of inertial waves in rotating fluids
NASA Astrophysics Data System (ADS)
Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir
2017-04-01
The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V., & Dauxois, T., Internal wave attractors examined using laboratory experiments and 3D numerical simulations. Journal of Fluid Mechanics, 793, 109-131, 2016. [4] Gelash A. A., L'vov V. S., Zakharov V. E. Dynamics of inertial waves in rotating fluids, arXiv preprint arXiv:1604.07136. - 2016. [5] Galtier S. Weak inertial-wave turbulence theory, Physical Review E 68.1: 015301, 2003.
Evolution of Binary Supermassive Black Holes in Rotating Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasskazov, Alexander; Merritt, David
The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less
Anderst, William J; Tashman, Scott
2010-03-22
A new technique is presented that utilizes relative velocity vectors between articulating surfaces to characterize internal/external rotation of the tibio-femoral joint during dynamic loading. Precise tibio-femoral motion was determined by tracking the movement of implanted tantalum beads in high-speed biplane X-rays. Three-dimensional, subject-specific CT reconstructions of the femur and tibia, consisting of triangular mesh elements, were positioned in each analyzed frame. The minimum distance between subchondral bone surfaces was recorded for each mesh element comprising each bone surface, and the relative velocity between these opposing closest surface elements was determined in each frame. Internal/external rotation was visualized by superimposing tangential relative velocity vectors onto bone surfaces at each instant. Rotation about medial and lateral compartments was quantified by calculating the angle between these tangential relative vectors within each compartment. Results acquired from 68 test sessions involving 23 dogs indicated a consistent pattern of sequential rotation about the lateral condyle (approximately 60 ms after paw strike) followed by rotation about the medial condyle (approximately 100 ms after paw strike). These results imply that axial knee rotation follows a repeatable pattern within and among subjects. This pattern involves rotation about both the lateral and medial compartments. The technique described can be easily applied to study human knee internal/external rotation during a variety of activities. This information may be useful to define normal and pathologic conditions, to confirm post-surgical restoration of knee mechanics, and to design more realistic prosthetic devices. Furthermore, analysis of joint arthrokinematics, such as those described, may identify changes in joint mechanics associated with joint degeneration. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Research on New Approaches to Optical Systems for Inertial Rotation Sensing
1983-06-30
made large by focusing the beams to a small area. Although focusing increases the beam intensities to make dPJdz large, diffraction in a non -guiding...accurate since a much larger gain was anticipated. The next scheme shown in Fig. II-6 consisted of a bulk beam splitter used to fnmbine the pifhip... designed to measure the departure from reciprocity of the counter propagating waves caused by rotation in the plane of the fiber loop. The non -reciprocal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less
Niklasson; Datta; Dunn
2000-09-01
In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.
NASA Astrophysics Data System (ADS)
Eso, R.; Safiuddin, L. O.; Agusu, L.; Arfa, L. M. R. F.
2018-04-01
We propose a teaching instrument demonstrating the circular membrane waves using the excel interactive spreadsheets with the Visual Basic for Application (VBA) programming. It is based on the analytic solution of circular membrane waves involving Bessel function. The vibration modes and frequencies are determined by using Bessel approximation and initial conditions. The 3D perspective based on the spreadsheets functions and facilities has been explored to show the 3D moving objects in transitional or rotational processes. This instrument is very useful both in teaching activity and learning process of wave physics. Visualizing of the vibration of waves in the circular membrane which is showing a very clear manner of m and n vibration modes of the wave in a certain frequency has been compared and matched to the experimental result using resonance method. The peak of deflection varies in time if the initial condition was working and have the same pattern with matlab simulation in zero initial velocity
NASA Astrophysics Data System (ADS)
Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José
2017-12-01
Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Villante, U.; Bruno, R.; Mariani, F.; Burlaga, L. F.; Ness, N. F.
1979-01-01
Simultaneous observations by Helios-1 and Helios-2 over four solar rotations were used to determine the latitudinal dependence of the polarity of the interplanetary magnetic field within plus or minus 7.23 deg of the solar equator and within 1 AU. The longitudinal and latitudinal positions of the sector boundary crossing are consistent with a warped sector boundary which extended from the sun to 1 AU and was inclined approximately 10 deg with respect to the heliographic equator. This is consistent with simultaneous Pioneer 11 observations, which showed unipolar fields at latitude approximately 16 deg at heliocentric distances greater than 3.5 AU. Two sectors were observed at southern latitudes; however, four sectors were observed at northern latitudes on two rotations, indicating a distortion from planarity of the sectory boundary surface.
Transverse low frequency wave in a two fluid solar wind. M.S. Thesis
NASA Technical Reports Server (NTRS)
Solodyna, G. V.
1973-01-01
Investigation is made of the properties of low frequency transverse waves in a two-fluid solar wind having a radial magnetic field and radial streaming velocity. In order to examine what effects this streaming medium has on the waves, linearly polarized waves are decomposed into left and right circularly polarized waves. Computation is made of analytic expressions valid to first order for the radial amplitude and phase dependence of these constituent waves. It is shown that after travelling a given distance r, these waves have different amplitudes and phases. The former result causes their superposition to become elliptical rather than linear. The latter causes the axis of the ellipse of polarization to rotate through a well-defined angle. Analytic expressions are obtained for the eccentricity of the ellipse and for the angle of rotation. In analogy with regular Faraday rotation, in which the plane of polarization of a linear polarized wave rotates, the effect is denoted as generalized Faraday rotation.
Qu, Z; Kil, J; Xie, F; Garfinkel, A; Weiss, J N
2000-01-01
Scroll wave (vortex) breakup is hypothesized to underlie ventricular fibrillation, the leading cause of sudden cardiac death. We simulated scroll wave behaviors in a three-dimensional cardiac tissue model, using phase I of the Luo-Rudy (LR1) action potential model. The effects of action potential duration (APD) restitution, tissue thickness, filament twist, and fiber rotation were studied. We found that APD restitution is the major determinant of scroll wave behavior and that instabilities arising from APD restitution are the main determinants of scroll wave breakup in this cardiac model. We did not see a "thickness-induced instability" in the LR1 model, but a minimum thickness is required for scroll breakup in the presence of fiber rotation. The major effect of fiber rotation is to maintain twist in a scroll wave, promoting filament bending and thus scroll breakup. In addition, fiber rotation induces curvature in the scroll wave, which weakens conduction and further facilitates wave break. PMID:10827961
Wave-particle interactions in rotating mirrorsa)
NASA Astrophysics Data System (ADS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-05-01
Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
Freely Tunable Broadband Polarization Rotator for Terahertz Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping
2014-12-28
A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2018-01-01
A simplified, two-dimensional, computational fluid dynamic (CFD) simulation, with a reactive Euler solver is used to examine possible causes for the low detonation wave propagation speeds that are consistently observed in air breathing rotating detonation engine (RDE) experiments. Intense, small-scale turbulence is proposed as the primary mechanism. While the solver cannot model this turbulence, it can be used to examine the most likely, and profound effect of turbulence. That is a substantial enlargement of the reaction zone, or equivalently, an effective reduction in the chemical reaction rate. It is demonstrated that in the unique flowfield of the RDE, a reduction in reaction rate leads to a reduction in the detonation speed. A subsequent test of reduced reaction rate in a purely one-dimensional pulsed detonation engine (PDE) flowfield yields no reduction in wave speed. The reasons for this are explained. The impact of reduced wave speed on RDE performance is then examined, and found to be minimal. Two other potential mechanisms are briefly examined. These are heat transfer, and reactive mixture non-uniformity. In the context of the simulation used for this study, both mechanisms are shown to have negligible effect on either wave speed or performance.
Shope, J.B.; Storlazzi, Curt; Erikson, Li H.; Hegermiller, C.A.
2015-01-01
Wave heights, periods, and directions were forecast for 2081–2100 using output from four coupled atmosphere–ocean global climate models for representative concentration pathway scenarios RCP4.5 and RCP8.5. Global climate model wind fields were used to drive the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. December–February 95th percentile extreme significant wave heights under both climate scenarios decreased by 2100 compared to 1976–2010 historical values. Trends under both scenarios were similar, with the higher-emission RCP8.5 scenario displaying a greater decrease in extreme significant wave heights than where emissions are reduced in the RCP4.5 scenario. Central equatorial Pacific Islands displayed the greatest departure from historical values; significant wave heights decreased there by as much as 0.32 m during December–February and associated wave directions rotated approximately 30° clockwise during June–August compared to hindcast data.
NASA Astrophysics Data System (ADS)
Paldor, N.
2017-12-01
The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular everywhere) and that Kelvin waves do not exist as a separate mode (but the eastward propagating n=0 Inertia-Gravity is nearly non-dispersive). References Longuet-Higgins, M. S. Phil. Trans. Roy. Soc. London; 262, 511-607; 1968 Matsuno, T.; J. Met. Soc. Japan. 44(1), 25-43; 1966
Magellan radio occultation measurements of atmospheric waves on Venus
NASA Technical Reports Server (NTRS)
Hinson, David P.; Jenkins, J. M.
1995-01-01
Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.
Development of FullWave : Hot Plasma RF Simulation Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei
2017-10-01
Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.
Advances in wave turbulence: rapidly rotating flows
NASA Astrophysics Data System (ADS)
Cambon, C.; Rubinstein, R.; Godeferd, F. S.
2004-07-01
At asymptotically high rotation rates, rotating turbulence can be described as a field of interacting dispersive waves by the general theory of weak wave turbulence. However, rotating turbulence has some complicating features, including the anisotropy of the wave dispersion relation and the vanishing of the wave frequency on a non-vanishing set of 'slow' modes. These features prevent straightforward application of existing theories and lead to some interesting properties, including the transfer of energy towards the slow modes. This transfer competes with, and might even replace, the transfer to small scales envisioned in standard turbulence theories. In this paper, anisotropic spectra for rotating turbulence are proposed based on weak turbulence theory; some evidence for their existence is given based on numerical calculations of the wave turbulence equations. Previous arguments based on the properties of resonant wave interactions suggest that the slow modes decouple from the others. Here, an extended wave turbulence theory with non-resonant interactions is proposed in which all modes are coupled; these interactions are possible only because of the anisotropy of the dispersion relation. Finally, the vanishing of the wave frequency on the slow modes implies that these modes cannot be described by weak turbulence theory. A more comprehensive approach to rotating turbulence is proposed to overcome this limitation.
On the Vortex Waves in Nonadiabatic Flows
NASA Astrophysics Data System (ADS)
Ibáñez S., Miguel H.; Núñez, Luis A.
2018-03-01
Linear disturbances superposed on steady flows in nonadiabatic plasmas are analyzed. In addition to the potential modes resulting (two sound waves and a thermal mode) that are Doppler shifted, a rotational mode appears identified as an entropy-vortex wave (evw) which is carried along by the gas flow. In adiabatic flows, as well as in nonadiabatic flows, the evw always shows a null pressure disturbance. But in the second case, the wave number of the evw disturbance is fixed for the particular thermal conditions of the gas. The above holds for optically thin gases, as well as for radiating flows, if the dynamical effects of the radiation field are neglected in a first approximation. The above results allow us to calculate the dimensions of the vortex elements that are expected to be formed in nonadiabatic gas flows, particularly in hot ionized plasmas of interest in astrophysics.
Frequency band of the f-mode Chandrasekhar-Friedman-Schutz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zink, Burkhard; Korobkin, Oleg; Schnetter, Erik
2010-04-15
Rapidly rotating neutron stars can be unstable to the gravitational-wave-driven Chandrasekhar-Friedman-Schutz (CFS) mechanism if they have a neutral point in the spectrum of nonaxisymmetric f-modes. We investigate the frequencies of these modes in two sequences of uniformly rotating polytropes using nonlinear simulations in full general relativity, determine the approximate locations of the neutral points, and derive limits on the observable frequency band available to the instability in these sequences. We find that general relativity enhances the detectability of a CFS-unstable neutron star substantially, both by widening the instability window and enlarging the band into the optimal range for interferometric detectorsmore » like LIGO, VIRGO, and GEO-600.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haut, T. S.; Babb, T.; Martinsson, P. G.
2015-06-16
Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less
Experimental Preparation and Measurement of Quantum States of Motion of a Trapped Atom
1997-01-01
trapped atom are quantum harmonic oscillators, their couplings to internal atomic levels (described by the Jaynes - Cummings model (JCM) [ l , 21) are... wave approximation in a frame rotating with WO, where hwo is the energy difference of the two internal levels, the interaction of the classical laser... Jaynes - Cummings model , the system is suited to realizing many proposals originally introduced in the realm of quantum optics and cavity quantum
Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate
NASA Astrophysics Data System (ADS)
Simon, S. M.; Appel, J. W.; Campusano, L. E.; Choi, S. K.; Crowley, K. T.; Essinger-Hileman, T.; Gallardo, P.; Ho, S. P.; Kusaka, A.; Nati, F.; Palma, G. A.; Page, L. A.; Raghunathan, S.; Staggs, S. T.
2016-08-01
The Atacama B-Mode Search (ABS) instrument is a cryogenic (˜ 10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the cosmic microwave background (CMB) at large angular scales (40<ℓ <500) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at ℓ ˜ 100. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1 / f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.
Origin choice and petal loss in the flower garden of spiral wave tip trajectories
Gray, Richard A.; Wikswo, John P.; Otani, Niels F.
2009-01-01
Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh–Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system’s state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave. PMID:19791998
Origin choice and petal loss in the flower garden of spiral wave tip trajectories.
Gray, Richard A; Wikswo, John P; Otani, Niels F
2009-09-01
Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.
A Time-Dependent Quantum Dynamics Study of the H2 + CH3 yields H + CH4 Reaction
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Kwak, Dochan (Technical Monitor)
2002-01-01
We present a time-dependent wave-packet propagation calculation for the H2 + CH3 yields H + CH4 reaction in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probability for different initial rotational-vibrational states are presented in this study. The cumulative reaction probability (CRP) is obtained by summing over initial-state-selected reaction probability. The energy-shift approximation to account for the contribution of degrees of freedom missing in the 6D calculation is employed to obtain an approximate full-dimensional CRP. Thermal rate constant is compared with different experiment results.
Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force
NASA Astrophysics Data System (ADS)
Tort, Marine; Dubos, Thomas; Bouchut, François; Zeitlin, Vladimir
2014-05-01
Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force Marine Tort1, Thomas Dubos1, François Bouchut2 & Vladimir Zeitlin1,3 1 Laboratoire of Dynamical Meteorology, Univ. P. and M. Curie, Ecole Normale Supérieure, and Ecole Polytechnique, FRANCE 2 Université Paris-Est, Laboratoire d'Analyse et de Mathématiques Appliquées, FRANCE 3 Institut Universitaire de France Atmospheric and oceanic motion are usually modeled within the shallow-fluid approximation, which simplifies the 3D spherical geometry. For dynamical consistency, i.e. to ensure conservation laws for potential vorticity, energy and angular momentum, the horizontal component of the Coriolis force is neglected. Here new equation sets combining consistently a simplified shallow-fluid geometry with a complete Coriolis force is presented. The derivation invokes Hamilton's principle of least action with an approximate Lagrangian capturing the small increase with height of the solid-body entrainment velocity due to planetary rotation. A three-dimensional compressible model and a one-layer shallow-water model are obtained. The latter extends previous work done on the f-plane and β-plane. Preliminary numerical results confirm the accuracy of the 3D model within the range of parameters for which the equations are relevant. These new models could be useful to incorporate a full Coriolis force into existing numerical models and to disentangle the effects of the shallow-atmosphere approximation from those of the traditional approximation. Related papers: Tort M., Dubos T., Bouchut F. and Zeitlin V. Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography. J. Fluid Mech. (under revisions) Tort M. and Dubos T. Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Q.J.R. Meteorol. Soc. (DOI: 10.1002/qj.2274)
Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)
1996-01-01
There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coombe, D.A.; Snider, R.F.
1980-02-15
ES, CS, and IOS approximations to atom--diatom kinetic cross sections are derived. In doing so, reduced S-matrices in a translational-internal coupling scheme are stressed. This entails the insertion of recently obtained approximate reduced S-matrices in the translational-internal coupling scheme into previously derived general expressions for the kinetic cross sections. Of special interest is the structure (rotational j quantum number dependence) of the kinetic cross sections associated with the Senftleben Beenakker effects and of pure internal state relaxation phenomena. The viscomagnetic effect is used as an illustrative example. It is found in particular that there is a great similarity of structuremore » between the energy sudden (and IOS) approximation and the previously derived distorted wave Born results.« less
Ophus, Colin; Rasool, Haider I.; Linck, Martin; ...
2016-11-30
We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ophus, Colin; Rasool, Haider I.; Linck, Martin
We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less
Feasibility Assessment of Shear Wave Elastography to Rotator Cuff Muscle
Itoigawa, Yoshiaki; Sperling, John W.; Steinmann, Scott P.; Chen, Qingshan; Song, Pengfei; Chen, Shigao; Itoi, Eiji; Hatta, Taku; An, Kai-Nan
2017-01-01
Introduction Pre -surgical measurement of supraspinatus muscle extensibility would be important for rotator cuff repair. The purpose of the present study was to explore the potential feasibility of a shear wave ultrasound electrograph (SWE) based method, combined with B-mode ultrasound, to non-invasively measure in vivo stiffness of supraspinatus muscle, and thus obtaining the key information on supraspinatus muscle extensibility. Materials and Methods Our investigation consisted of 2 steps. First, we evaluated orientation of the supraspinatus muscle fiber on cadaveric shoulders without rotator cuff tear in order to optimize the ultrasound probe positions for SWE imaging. Second, we investigated the feasibility of quantifying the normal supraspinatus muscle stiffness by SWE in vivo. Results The supraspinatus muscle was divided into four anatomical regions, namely anterior superficial (AS), posterior superficial (PS), anterior deep (AD) and posterior deep (PD) regions. SWE was evaluated at each of these regions. SWE stiffness on AD, AS, PD, and PS were measured as 40.0±12.4, 34.0±9.9, 32.7±12.7, 39.1±15.7 kPa, respectively. Conclusions SWE combined with B-Mode ultrasound image may be a feasible method to quantify local tissue stiffness of the rotator cuff muscles. PMID:25557287
Anisotropy of the innermost inner core from body wave and normal mode observations
NASA Astrophysics Data System (ADS)
Deuss, A. F.; Smink, M.; Bouwman, D.; Ploegstra, J.; van Tent, R.
2016-12-01
It has been known for a long time that the Earth's inner core is cylindrically anisotropic, with waves that travel in the direction of the Earth's rotation axis arriving several seconds before waves travelling in the equatorial direction. Recently, several studies have suggested that the Earth's rotation axis may not be the fast anisotropy direction in the innermost inner core. Beghein and Trampert (2003) found that the Earth's rotation axis is slow, with the equatorial plane being fast. Wang et al (2015) found instead that the fast symmetry axis is in the equatorial plane. Here, we use both body wave and normal mode observations to test these two different hypotheses. Similar to Wang, we correct body wave PKIKP data for anisotropy in the upper inner core, and investigate if there is any anisotropy remaining in the innermost inner core. We find that the results strongly depend on the very limited number of polar direction waves with angle less than 25 degrees. With the limited data it is difficult to distinguish between the two different hypotheses, and if any tilted anisotropy is required at all. Normal modes see inner core anisotropy with north-south symmetry axis as anomalous zonal coefficients. We will show theoretically that if the anisotropy symmetry axis is tilted, non-zonal coefficients will also become anomalous. We search consistent anomalous non-zonal coefficients for modes sensitive to the innermost inner core. If the symmetry axis is still north south, but this is now the slow direction and the equatorial plane fast, then we predict negative zonal coefficients. This is observed for some normal modes, explaining why Beghein and Trampert (2003) found this type of anisotropy in the innermost inner core.
Space-plasma campaign on UCLA's Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Koepke, M. E.; Finnegan, S. M.; Knudsen, D. J.; Vincena, S.
2007-05-01
Knudsen [JGR, 1996] describes a potential role for stationary Alfvén (StA) waves in auroral arcs' frequency dependence. Magnetized plasmas are predicted to support electromagnetic perturbations that are static in a fixed frame if there is uniform background plasma convection. These stationary waves should not be confused with standing waves that oscillate in time with a fixed, spatially varying envelope. Stationary waves have no time variation in the fixed frame. In the drifting frame, there is an apparent time dependence as plasma convects past fixed electromagnetic structures. We describe early results from an experimental campaign to reproduce in the lab the basic conditions necessary for the creation of StA waves, namely quasi-steady-state convection across magnetic field-aligned current channels. We show that an off-axis, fixed channel of electron current (and depleted density) is created in the Large Plasma Device Upgrade (LAPD) at UCLA, using a small, heated, oxide-coated electrode at one plasma-column end and we show that the larger plasma column rotates about its cylindrical axis from a radial electric field imposed by a special termination electrode on the same end. Initial experimentation with plasma-rotation-inducing termination electrodes began in May 2006 in the West Virginia Q Machine, leading to two designs that, in January 2007, were tested in LAPD. The radial profile of azimuthal velocity was consistent with predictions of rigid-body rotation. Current-channel experiments in LAPD, in August 2006, showed that inertial Alfvén waves could be concentrated in an off-axis channel of electron current and depleted plasma density. These experimental results will be presented and discussed. This research is supported by DOE and NSF.
High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.
Baskakov, O I; Civis, S; Kawaguchi, K
2005-03-15
In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.
Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M. R.; Kamali, V.
2010-10-15
In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.
Coherent distributions for the rigid rotator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigorescu, Marius
2016-06-15
Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödingermore » equation.« less
A Translational Polarization Rotator
NASA Technical Reports Server (NTRS)
Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah
2012-01-01
We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peralta, J.; López-Valverde, M. A.; Imamura, T.
2014-07-01
This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the backgroundmore » wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.« less
Matsushima, Kyoji
2008-07-01
Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.
On the Cause of Solar Differential Rotations in the Solar Interior and Near the Solar Surface
NASA Astrophysics Data System (ADS)
Lyu, L.
2012-12-01
A theoretical model is proposed to explain the cause of solar differential rotations observed in the solar interior and near the solar surface. We propose that the latitudinal differential rotation in the solar convection zone is a manifestation of an easterly wind in the mid latitude. The speed of the easterly wind is controlled by the magnitude of the poleward temperature gradient in the lower part of the solar convection zone. The poleward temperature gradient depends on the orientation and strength of the magnetic fields at different latitudes in the solar convection zone. The north-south asymmetry in the wind speed can lead to north-south asymmetry in the evolution of the solar cycle. The easterly wind is known to be unstable for a west-to-east rotating star or planet. Based on the observed differential rotations in the solar convection zone, we can estimate the easterly wind speed at about 60-degree latitude and determine the azimuthal wave number of the unstable wave modes along the zonal flow. The lowest azimuthal wave number is about m=7~8. This result is consistent with the average width of the elephant-trunk coronal hole shown in the solar X-ray images. The nonlinear evolution of the unstable easterly wind can lead to transpolar migration of coronal holes and can change the poloidal magnetic field in a very efficient way. In the study of radial differential rotation near the solar surface, we propose that the radial differential rotation depends on the radial temperature gradient. The radial temperature gradient depends on the magnetic field structure above the solar surface. The non-uniform magnetic field distribution above the solar surface can lead to non-uniform radial convections and formation of magnetic flux rope at different spatial scales. The possible cause of continuous formation and eruption of prominences near an active region will also be discussed.
Equivalent retarder-rotator approach to on-state twisted nematic liquid crystal displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Vicente; Lancis, Jesus; Tajahuerce, Enrique
2006-06-01
Polarization properties of a twisted nematic liquid crystal cell are fully characterized by an equivalent optical system that consists of a retarder wave plate and a rotator. In this paper we show that this result is of interest to optimize the light-modulation capabilities of a voltage-addressed liquid crystal display (LCD). We provide two examples. First, we demonstrate a calibration method that can be carried out by a standard polarimetric technique with a high degree of precision. Second, we propose an optical device to generate a family of equiazimuth polarization states by adding a quarter-wave plate to the LCD. We findmore » that the design procedure is best described in geometrical terms on the Poincare sphere by use of the equivalent model. Finally, laboratory results corresponding to a commercial LCD are presented.« less
The two-mode multi-photon intensity-dependent Rabi model
NASA Astrophysics Data System (ADS)
Lo, C. F.
2014-06-01
We have investigated the energy eigen-spectrum of the two-mode k-photon intensity-dependent Rabi (IDR) model for k ≥ 2. Our analysis shows that the model does not have eigenstates in the Hilbert space spanned by the eigenstates of the two-mode k-photon intensity-dependent Jaynes-Cummings (IDJC) model, which is obtained by applying the rotating-wave approximation (RWA) to the two-mode k-photon IDR model. That is, the two-mode k-photon IDR model is ill-defined for k ≥ 2, and it is qualitatively different from the RWA counterpart which is valid for all values of k, implying that the counter-rotating term does drastically alter the nature of the RWA counterpart. Hence, the previous study of the effect of the counter-rotating term in the two-mode k-photon IDJC model via the time-dependent perturbation expansion is completely invalid.
NASA Astrophysics Data System (ADS)
Xu, Wenrui; Lai, Dong
2017-10-01
In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (≲500 Hz ) oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide can induce phase shift in the gravitational waveforms, and potentially provide a new window of studying NS interior using gravitational waves. Previous works have considered tidal excitations of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We develop a nonperturbative numerical spectral code to compute the frequencies and tidal coupling coefficients of these modes. We then calculate the phase shift in the gravitational waveform due to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and stratification property, we adopt polytropic NS models with a parametrized stratification. We derive relevant scaling relations and survey how the phase shift depends on various properties of the NS. We find that for canonical NSs (with mass M =1.4 M⊙ and radius R =10 km ) and modest rotation rates (≲300 Hz ), the gravitational wave phase shift due to a resonance is generally less than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or more for low-mass NSs with larger radii (R ≳15 km ). Significant phase shift can also be produced when the combination of stratification and rotation gives rise to a very low frequency (≲20 Hz in the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also find that the m =1 r -mode, previously identified to have a small but finite inertial-frame frequency based on the Cowling approximation, in fact has essentially zero frequency, and therefore cannot be excited during the inspiral phase of NS binaries.
NASA Astrophysics Data System (ADS)
Cárdenas, P. C.; Teixeira, W. S.; Semião, F. L.
2017-04-01
The interaction of qubits with quantized modes of electromagnetic fields has been largely addressed in the quantum optics literature under the rotating wave approximation (RWA), where rapid oscillating terms in the qubit-mode interaction picture Hamiltonian can be neglected. At the same time, it is generally accepted that, provided the interaction is sufficiently strong or for long times, the RWA tends to describe physical phenomena incorrectly. In this work, we extend the investigation of the validity of the RWA to a more involved setup where two qubit-mode subsystems are brought to interaction through their harmonic coordinates. Our treatment is all analytic thanks to a sequence of carefully chosen unitary transformations, which allows us to diagonalize the Hamiltonian within and without the RWA. By also considering qubit dephasing, we find that the purity of the two-qubit state presents non-Markovian features which become more pronounced as the coupling between the modes gets stronger and the RWA loses its validity. In the same regime, there occurs fast generation of entanglement between the qubits, which is also not correctly described under the RWA. The setup and results presented here clearly show the limitations of the RWA in a scenario amenable to exact description and free from numerical uncertainties. Consequently, it may be of interest for the community working with cavity or circuit quantum electrodynamic systems in the strong coupling regime.
Hammond, W.C.; Thatcher, W.
2005-01-01
We use geodetic velocities obtained with the Global Positioning System (GPS) to quantify tectonic deformation of the northwest Basin and Range province of the western United States. The results are based on GPS data collected in 1999 and 2003 across five new quasi-linear networks in northern Nevada, northeast California, and southeast Oregon. The velocities show ???3 mm/yr westward movement of northern Nevada with respect to stable North America. West of longitude 119??W the velocities increase and turn northwest, parallel to Sierra Nevada/Great Valley microplate motion, and similar to velocities previously obtained to the south. The observations are explained by a kinematic model with three domains that rotate around Euler poles in eastern Oregon and western Idaho. Northeast California experiences internal dextral shear deformation (11.2 ?? 3.6 nstrain/yr) subparallel to Pacific/North America motion. Relative motions of the domains imply 2-5 mm/yr approximately east-west extension in northwest Nevada and 1-4 mm/yr approximately north-south contraction near the California/Oregon border. The northward decreasing approximately east-west extension in northwest Nevada is consistent with the northern termination of Basin and Range deformation, faulting and characteristic topography. No significant extension is detected in the Oregon Basin and Range. The Oregon Cascade arc moves north at ???3.5 mm/yr and is possibly influenced by the approximately eastward motion of the Juan de Fuca plate. These results disagree with secular northwest trenchward motion of the Oregon forearc inferred from paleomagnetic rotations. South of latitude 43??, however, trenchward motion exists and is consistent with block rotations, approximately east-west Basin and Range extension, and northwest Sierra Nevada translation. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai
2016-09-01
We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.
Effects of injection nozzle exit width on rotating detonation engine
NASA Astrophysics Data System (ADS)
Sun, Jian; Zhou, Jin; Liu, Shijie; Lin, Zhiyong; Cai, Jianhua
2017-11-01
A series of numerical simulations of RDE modeling real injection nozzles with different exit widths are performed in this paper. The effects of nozzle exit width on chamber inlet state, plenum flowfield and detonation propagation are analyzed. The results are compared with that using an ideal injection model. Although the ideal injection model is a good approximation method to model RDE inlet, the two-dimensional effects of real nozzles are ignored in the ideal injection model so that some complicated phenomena such as the reflected waves caused by the nozzle walls and the reversed flow into the nozzles can not be modeled accurately. Additionally, the ideal injection model overpredicts the block ratio. In all the cases that stabilize at one-wave mode, the block ratio increases as the nozzle exit width gets smaller. The dual-wave mode case also has a relatively high block ratio. A pressure oscillation in the plenum with the same main frequency with the rotating detonation wave is observed. A parameter σ is applied to describe the non-uniformity in the plenum. σ increases as the nozzle exit width gets larger. Under some condition, the heat release on the interface of fresh premixed gas layer and detonation products can be strong enough to induce a new detonation wave. A spontaneous mode-transition process is observed for the smallest exit width case. Due to the detonation products existing in the premixed gas layer before the detonation wave, the detonation wave will propagate through reactants and products alternately, and therefore its strength will vary with time, especially near the chamber inlet. This tendency gets weaker as the injection nozzle exit width increases.
Experimental observation of steady inertial wave turbulence in deep rotating flows
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Sharon, Eran
2015-11-01
We present experimental evidence of inertial wave turbulence in deep rotating fluid. Experiments were performed in a rotating cylindrical water tank, where previous work showed statistics similar to 2D turbulence (specifically an inverse energy cascade). Using Fourier analysis of high resolution data in both space (3D) and time we show that most of the energy of a steady state flow is contained around the inertial wave dispersion relation. The nonlinear interaction between the waves is manifested by the widening of the time spectrum around the dispersion relation. We show that as the Rossby number increases so does the spectrum width, with a strong dependence on wave number. Our results suggest that in some parameters range, rotating turbulence velocity field can be represented as a field of interacting waves (wave turbulence). Such formalism may provide a better understanding of the flow statistics. This work was supported by the Israel Science Foundation, Grant No. 81/12.
NASA Astrophysics Data System (ADS)
Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.
2018-05-01
The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.
Coriolis-coupled wave packet dynamics of H + HLi reaction.
Padmanaban, R; Mahapatra, S
2006-05-11
We investigated the effect of Coriolis coupling (CC) on the initial state-selected dynamics of H+HLi reaction by a time-dependent wave packet (WP) approach. Exact quantum scattering calculations were obtained by a WP propagation method based on the Chebyshev polynomial scheme and ab initio potential energy surface of the reacting system. Partial wave contributions up to the total angular momentum J=30 were found to be necessary for the scattering of HLi in its vibrational and rotational ground state up to a collision energy approximately 0.75 eV. For each J value, the projection quantum number K was varied from 0 to min (J, K(max)), with K(max)=8 until J=20 and K(max)=4 for further higher J values. This is because further higher values of K do not have much effect on the dynamics and also because one wishes to maintain the large computational overhead for each calculation within the affordable limit. The initial state-selected integral reaction cross sections and thermal rate constants were calculated by summing up the contributions from all partial waves. These were compared with our previous results on the title system, obtained within the centrifugal sudden and J-shifting approximations, to demonstrate the impact of CC on the dynamics of this system.
Procedure for noise prediction and optimization of advanced technology propellers
NASA Technical Reports Server (NTRS)
Jou, W. H.; Bernstein, S.
1979-01-01
The sound field due to a propeller operating at supersonic tip speed in a uniform flow was investigated. Using the fact that the wave front in a uniform stream is a convected sphere, the fundamental solution to the convected wave equation was easily obtained. The Fourier coefficients of the pressure signature were obtained by a far field approximation, and are expressed as an integral over the blade platform. It is shown that cones of silence exist fore and aft the propeller plane. The semiapex angles are shown. These angles are independent of the individual Mach components such as the flight Mach number and the rotation Mach number. The result is confirmed by the computation of the ray path of the emitted Mach waves. The Doppler amplification factor strengthens the signal behind the propeller while it weakens that upstream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surin, L. A., E-mail: surin@ph1.uni-koeln.de; Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow; Potapov, A.
2015-03-21
The rotational spectrum of the van der Waals complex NH{sub 3}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112–139 GHz. Newly observed and assigned transitions belong to the K = 0–0, K = 1–1, K = 1–0, and K = 2–1 subbands correlating with the rotationless (j{sub k}){sub NH3} = 0{sub 0} ground state of free ortho-NH{sub 3} and the K = 0–1 and K = 2–1 subbands correlating with the (j{sub k}){sub NH3} = 1{sub 1} ground state of free para-NH{sub 3}. The (approximate) quantum number K is the projection of themore » total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH{sub 3}–CO and para-NH{sub 3}–CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH{sub 3}–CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy D{sub e} = 359.21 cm{sup −1}. The bound rovibrational levels of the NH{sub 3}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 210.43 and 218.66 cm{sup −1} for ortho-NH{sub 3}–CO and para-NH{sub 3}–CO, respectively.« less
An experimental study of turbulence by phase-contrast imaging in the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Coda, Stefano
1997-10-01
A CO2-laser imaging system employing the Zernike phase-contrast technique was designed, built, installed, and operated on the DIII-D tokamak. This system measures the line integrals of plasma density fluctuations along 16 vertical chords at the outer edge of the tokamak (0.85
NASA Astrophysics Data System (ADS)
Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo
2009-02-01
The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandel, Ilya
The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holesmore » into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a 'radiation-reaction field'. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field, whose wave frequency and near-horizon energy density are chosen to match those of the standing gravitational waves of the BBH quasistationary approximation. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves--sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.« less
Pressure effects on the electronic properties of the undoped superconductor ThFeAsN
NASA Astrophysics Data System (ADS)
Barbero, N.; Holenstein, S.; Shang, T.; Shermadini, Z.; Lochner, F.; Eremin, I.; Wang, C.; Cao, G.-H.; Khasanov, R.; Ott, H.-R.; Mesot, J.; Shiroka, T.
2018-04-01
The recently synthesized ThFeAsN iron pnictide superconductor exhibits a Tc of 30 K, the highest of the 1111-type series in the absence of chemical doping. To understand how pressure affects its electronic properties, we carried out microscopic investigations up to 3 GPa via magnetization, nuclear magnetic resonance, and muon-spin rotation experiments. The temperature dependence of the 75As Knight shift, the spin-lattice relaxation rates, and the magnetic penetration depth suggest a multiband s±-wave gap symmetry in the dirty limit, whereas the gap-to-Tc ratio Δ /kBTc hints at a strong-coupling scenario. Pressure modulates the geometrical parameters, thus reducing Tc as well as Tm, the temperature where magnetic-relaxation rates are maximized, both at the same rate of approximately -1.1 K /GPa . This decrease in Tc with pressure is consistent with band-structure calculations, which relate it to the deformation of the Fe 3 dz2 orbitals.
NASA Astrophysics Data System (ADS)
Nezlobinsky, T. V.; Pravdin, S. F.; Katsnelson, L. B.; Solovyova, O. E.
2016-07-01
It is known that preferential paths for the propagation of an electrical excitation wave in the human ventricular myocardium are associated with muscle fibers in tissue. The speed of the excitation wave along a fiber is several times higher than that across the direction of the fiber. To estimate the effect of the architecture and anisotropy of the myocardium of the left ventricle on the process of its electrical activation, we have studied the relation between the speed of the electrical excitation wave in a one-dimensional isolated myocardial fiber consisting of sequentially coupled cardiomyocytes and in an identical fiber located in the wall of a threedimensional anatomical model of the left ventricle. It has been shown that the speed of a wavefront along the fiber in the three-dimensional myocardial tissue is much higher than that in the one-dimensional fiber. The acceleration of the signal is due to the rotation of directions of fibers in the wall and to the position of the excitation wavefront with respect to the direction of this fiber. The observed phenomenon is caused by the approach of the excitable tissue with rotational anisotropy in its properties to a pseudoisotropic tissue.
Metachronal Motion of Artificial Magnetic Cilia
NASA Astrophysics Data System (ADS)
Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander
2017-11-01
Most microorganisms use asymmetrically oscillating hair like cilia on their surface to achieve fluid transport. These cilia are often seen to beat in a metachronal fashion with a constant phase difference with the neighbors which generates a travelling wave. Although the origin of metachronal waves in such cilia is not well understood, mimicking such behavior in synthetic systems could prove useful in achieving similar advantages. In this work, we demonstrate metachronal waves in synthetic magnetic ciliary systems. The soft magnetic cilia are forced by a uniform rotating magnetic field. The cilia bend as the field rotates and tend to align along the direction of field to minimize the potential energy. Longer cilia bend to a larger degree, while the shorter cilia show less bending. This difference in the bending of cilia based on their length leads to a phase difference in their oscillation cycle. We exploit this phase differences to metachronally oscillate the synthetic cilia. We fabricate an array consisting of cilia with increasing lengths, in which the cilia beat with a constant phase difference with the neighboring cilia, producing a travelling wave. Such behavior could potentially be useful in enhanced fluid and particle transport as seen in natural systems. USDA.
Effect of the counterrotating terms on polarizability in atom-field interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Dawei; Wang Ligang; Li Aijun
2009-12-15
The effect of the counterrotating terms on the linear polarizability is investigated, which is responsible for the validity of the optical theorem in all frequency regions. A unitary transformation method [H. Zheng, S. -Y. Zhu, and M.S. Zubairy, Rev. Lett. 101, 200404 (2008)] is adopted to overcome the difficulty brought in by the counterrotating terms, which yields a rotating-wave-approximation-like Hamiltonian with modified coupling constant due to the counterrotating terms. A simple expression for the polarizability is obtained, which is a sum of resonant (-) and antiresonant (+) parts, and from which the role of the counterrotating terms and quantum interferencemore » between the counterrotating terms and rotating terms at far off-resonance are discussed.« less
Structure of the Lithosphere and Upper Mantle Across the Arabian Peninsula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Amri, A; Rodgers, A
2007-01-05
Analysis of modern broadband (BB) waveform data allows for the inference of seismic velocity structure of the crust and upper mantle using a variety of techniques. This presentation will report inferences of seismic structure of the Arabian Plate using BB data from various networks. Most data were recorded by the Saudi Arabian National Digital Seismic Network (SANDSN) which consists of 38 (26 BB, 11 SP) stations, mostly located on the Arabian Shield. Additional data were taken from the 1995-7 Saudi Arabian IRIS-PASSCAL Deployment (9 BB stations) and other stations across the Peninsula. Crustal structure, inferred from teleseismic P-wave receiver functions,more » reveals thicker crust in the Arabian Platform (40-45 km) and the interior of the Arabian Shield (35-40 km) and thinner crust along the Red Sea coast. Lithospheric thickness inferred from teleseismic S-wave receiver functions reveals very thin lithosphere (40-80 km) along the Red Sea coast which thickens rapidly toward the interior of the Arabian Shield (100-120 km). We also observe a step of 20-40 km in lithospheric thickness across the Shield-Platform boundary. Seismic velocity structure of the upper mantle inferred from teleseismic P- and S-wave travel time tomography reveals large differences between the Shield and Platform, with the Shield being underlain by slower velocities, {+-}3% for P-waves and {+-}6% for S-waves. Seismic anisotropy was inferred from shear-wave splitting, using teleseismic SKS waveforms. Results reveal a splitting time of approximately 1.4 seconds, with the fast axis slightly east of north. The shear-wave splitting results are consistent across the Peninsula, with a slight clockwise rotation parallel for stations near the Gulf of Aqaba. In summary, these results allow us to make several conclusions about the tectonic evolution and current state of the Arabian Plate. Lithospheric thickness implies that thinning near the Red Sea has accompanied the rupturing of the Arabian-Nubian continental lithosphere. The step in the lithospheric thickness across the Shield-Platform boundary likely reveals a pre-existing difference in the lithospheric structure prior to accretion of the terranes composing the eastern Arabian Shield. Tomographic imaging of upper mantle velocities implies a single large-scale thermal anomaly underlies the Arabian Shield and is associated with Cenozoic uplift and volcanism.« less
Alpha channeling in a rotating plasma.
Fetterman, Abraham J; Fisch, Nathaniel J
2008-11-14
The wave-particle alpha-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with alpha particles in a mirror machine with ExB rotation to diffuse the alpha particles along constrained paths in phase space. Of major interest is that the alpha-particle energy, in addition to amplifying the rf waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.
Wave induced supersonic rotation in mirrors
NASA Astrophysics Data System (ADS)
Fetterman, Abraham
2010-11-01
Wave-particle interactions in ExB supersonically rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy [1]. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field [2]. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particle's total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation [3]. [4pt] [1] A. J. Fetterman and N. J. Fisch, Phys Rev Lett 101, 205003 (2008). [0pt] [2] A. J. Fetterman and N. J. Fisch, Phys. Plasmas 17, 042112 (2010). [0pt] [3] A. J. Fetterman and N. J. Fisch, Plasma Sources Sci. Tech. 18, 045003 (2009).
Pravdin, Sergey F; Dierckx, Hans; Katsnelson, Leonid B; Solovyova, Olga; Markhasin, Vladimir S; Panfilov, Alexander V
2014-01-01
We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.
Theoretical prediction of a rotating magnon wave packet in ferromagnets.
Matsumoto, Ryo; Murakami, Shuichi
2011-05-13
We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force. These rotational motions are caused by the Berry phase in momentum space from the magnon band structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength magnetostatic spin waves having macroscopic coherence length.
Extracorporeal shock wave treatment for chronic rotator cuff tendonitis (shoulder pain).
Ho, C
2007-01-01
(1) Electrohydraulic, electromagnetic, or piezoelectric devices are used to translate energy into acoustic waves during extracorporeal shock wave treatment (ESWT) for chronic rotator cuff tendonitis (shoulder pain). The acoustic waves may help to accelerate the healing process of chronic rotator cuff tendonitis via an unknown mechanism. (2) ESWT, which is performed as an outpatient procedure, is intended to alleviate the pain due to chronic rotator cuff tendonitis. (3) Limited evidence from a German study indicates that the cost of ESWT for rotator cuff tendonitis is one-fifth to one-seventh the cost of surgical treatment, with longer recovery time and time off work in the surgical treatment group accounting for about two-thirds of the overall cost. (4) The evidence reviewed for this bulletin supports the use of high-energy ESWT for chronic calcific rotator cuff tendonitis, but not for non-calcific rotator cuff tendonitis. High-quality RCTs with larger sample sizes are needed to provide stronger evidence.
Characterisation of columnar inertial modes in rapidly rotating spheres and spheroids
NASA Astrophysics Data System (ADS)
Maffei, S.; Jackson, A.; Livermore, P. W.
2017-12-01
We consider fluid-filled spheres and spheroidal containers of eccentricity ɛ in rapid rotation, as a proxy for the interior dynamics of stars and planets. The fluid motion is assumed to be quasi-geostrophic (QG): horizontal motions are invariant parallel to the rotation axis z, a characteristic which is handled by use of a stream function formulation which additionally enforces mass conservation and non-penetration at the boundary. By linearising about a quiescent background state, we investigate a variety of methods to study the QG inviscid inertial wave modes which are compared with fully 3-D calculations. We consider the recently-proposed weak formulation of the inviscid system valid in spheroids of arbitrary eccentricity, to which we present novel closed-form polynomial solutions. Our modal solutions accurately represent, in both spatial structure and frequency, the most z-invariant of the inertial wave modes in a spheroid, and constitute a simple basis set for the analysis of rotationally- dominated fluids. We further show that these new solutions are more accurate than those of the classical axial-vorticity equation, which is independent of ɛ and thus fails to properly encode the container geometry. We also consider the effects of viscosity for the cases of both no-slip and stress-free boundary conditions for a spherical container. Calculations performed under the columnar approximation are compared with 3-D solutions and excellent agreement has been found despite fundamental differences in the two formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xing, E-mail: xing.wei@sjtu.edu.cn; Princeton University Observatory, Princeton, NJ 08544
2016-09-01
To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flowmore » has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.« less
NASA Astrophysics Data System (ADS)
West, Channing; Sedo, Galen; van Wijngaarden, Jennifer
2017-05-01
Microwave spectra of 9-fluorenone and benzophenone have been observed using a broadband chirped-pulse Fourier Transform Microwave (cp-FTMW) Spectrometer. An analysis of the microwave spectra allowed for the assignment of 178 b-type rotational transitions for 9-fluorenone in the 8.0-13.0 GHz region, the assignment of 166 b-type transitions for benzophenone in the 8.0-14.0 GHz region, and effectively quadrupled the total number of pure rotational transitions observed for these molecules. This new microwave data and the previously published millimeter wave data of Maris et al. have been analyzed together in a global fit, where the resulting rotational constants accurately reproduce the spectra over the entire 8-80 GHz region for both molecules. In addition, the resulting constants have been found to be consistent with the expected planar C2v structure for 9-fluorenone and the paddle-wheel like C2 structure of benzophenone. The rotational constants of the combined global fit have allowed for a more precise determination of the inertial defects (Δ) and second moments of inertia (Pcc) for 9-fluoreneone and benzophenone. Specific focus has been paid to the second moment of benzophenone, which when used in conjunction with theory strongly suggests an ∼32.9° torsional angle out of the ab-plane for the paddle-wheel structure of the gas-phase molecule.
Controlling the plasmonic surface waves of metallic nanowires by transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yichao; Yuan, Jun; Yin, Ge
2015-07-06
In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.
High-order rogue wave solutions of the classical massive Thirring model equations
NASA Astrophysics Data System (ADS)
Guo, Lijuan; Wang, Lihong; Cheng, Yi; He, Jingsong
2017-11-01
The nth-order solutions of the classical massive Thirring model (MTM) equations are derived by using the n-fold Darboux transformation. These solutions are expressed by the ratios of the two determinants consisted of 2n eigenfunctions under the reduction conditions. Using this method, rogue waves are constructed explicitly up to the third-order. Three patterns, i.e., fundamental, triangular and circular patterns, of the rogue waves are discussed. The parameter μ in the MTM model plays the role of the mass in the relativistic field theory while in optics it is related to the medium periodic constant, which also results in a significant rotation and a remarkable lengthening of the first-order rogue wave. These results provide new opportunities to observe rouge waves by using a combination of electromagnetically induced transparency and the Bragg scattering four-wave mixing because of large amplitudes.
Interaction of Saturn's dual rotation periods
NASA Astrophysics Data System (ADS)
Smith, C. G. A.
2018-03-01
We develop models of the interaction of Rossby wave disturbances in the northern and southern ionospheres of Saturn. We show that interhemispheric field-aligned currents allow the exchange of vorticity, modifying the background Rossby wave propagation speed. This leads to interaction of the northern and southern Rossby wave periods. In a very simple symmetric model without a plasma disk the periods merge when the overall conductivity is sufficiently high. A more complex model taking account of the inertia of the plasma disk and the asymmetry of the two hemispheres predicts a rich variety of possible wave modes. We find that merging of the northern and southern periods can only occur when (i) the conductivities of both hemispheres are sufficiently low (a criterion that is fulfilled for realistic parameters) and (ii) the background Rossby wave periods in the two hemispheres are identical. We reconcile the second criterion with the observations of a merged period that also drifts by noting that ranges of Rossby wave propagation speeds are possible in each hemisphere. We suggest that a merged disturbance in the plasma disk may act as an 'anchor' and drive Rossby waves in each hemisphere within the range of possible propagation speeds. This suggestion predicts behaviour that qualitatively matches the observed merging and splitting of the northern and southern rotation periods that occurred in 2013 and 2014. Low conductivity modes also show long damping timescales that are consistent with the persistence of the periodic signals.
Electrical Wave Propagation in a Minimally Realistic Fiber Architecture Model of the Left Ventricle
NASA Astrophysics Data System (ADS)
Song, Xianfeng; Setayeshgar, Sima
2006-03-01
Experimental results indicate a nested, layered geometry for the fiber surfaces of the left ventricle, where fiber directions are approximately aligned in each surface and gradually rotate through the thickness of the ventricle. Numerical and analytical results have highlighted the importance of this rotating anisotropy and its possible destabilizing role on the dynamics of scroll waves in excitable media with application to the heart. Based on the work of Peskin[1] and Peskin and McQueen[2], we present a minimally realistic model of the left ventricle that adequately captures the geometry and anisotropic properties of the heart as a conducting medium while being easily parallelizable, and computationally more tractable than fully realistic anatomical models. Complementary to fully realistic and anatomically-based computational approaches, studies using such a minimal model with the addition of successively realistic features, such as excitation-contraction coupling, should provide unique insight into the basic mechanisms of formation and obliteration of electrical wave instabilities. We describe our construction, implementation and validation of this model. [1] C. S. Peskin, Communications on Pure and Applied Mathematics 42, 79 (1989). [2] C. S. Peskin and D. M. McQueen, in Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology, 309(1996)
Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N
2014-09-21
A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.
Analytic solution and pulse area theorem for three-level atoms
NASA Astrophysics Data System (ADS)
Shchedrin, Gavriil; O'Brien, Chris; Rostovtsev, Yuri; Scully, Marlan O.
2015-12-01
We report an analytic solution for a three-level atom driven by arbitrary time-dependent electromagnetic pulses. In particular, we consider far-detuned driving pulses and show an excellent match between our analytic result and the numerical simulations. We use our solution to derive a pulse area theorem for three-level V and Λ systems without making the rotating wave approximation. Formulated as an energy conservation law, this pulse area theorem can be used to understand pulse propagation through three-level media.
NASA Astrophysics Data System (ADS)
Skrypnyk, T.
2017-08-01
We study the problem of separation of variables for classical integrable Hamiltonian systems governed by non-skew-symmetric non-dynamical so(3)\\otimes so(3) -valued elliptic r-matrices with spectral parameters. We consider several examples of such models, and perform separation of variables for classical anisotropic one- and two-spin Gaudin-type models in an external magnetic field, and for Jaynes-Cummings-Dicke-type models without the rotating wave approximation.
Quantum Theory of an Atom Near Partially Reflecting Walls
1987-06-15
rotating - wave approximations . Jaynes and Cummings5 but they are damped by the factor e -Y, where y is the , showed that the same sort of "Rabi...equation describing renewed interest in the Jaynes - Cummings model by the coupling of the atoms of the (dielectric) mirror to the describing certain... Jaynes - Cummings model in which one begins a priori way. DISTR1UTION ffATDi0I A 35 5081 @1987 The American Physical Society Approvd for pubWi MIM D19bi
The interaction between fishbone modes and shear Alfvén waves in tokamak plasmas
NASA Astrophysics Data System (ADS)
He, Hongda; Liu, Yueqiang; Dong, J. Q.; Hao, G. Z.; Wu, Tingting; He, Zhixiong; Zhao, K.
2016-05-01
The resonant interaction between the energetic particle triggered fishbone mode and the shear Alfvén waves is computationally investigated and firmly demonstrated based on a tokamak plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503). This type of continuum resonance, occurring critically due to the mode’s toroidal rotation in the plasma frame, significantly modifies the eigenmode structure of the fishbone instability, by introducing two large peaks of the perturbed parallel current density near but offside the q = 1 rational surface (q is the safety factor). The self-consistently computed radial plasma displacement substantially differs from that being assumed in the conventional fishbone theory.
Nonlinear wave interactions in shallow water magnetohydrodynamics of astrophysical plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimachkov, D. A., E-mail: klimachkovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru
2016-05-15
The rotating magnetohydrodynamic flows of a thin layer of astrophysical and space plasmas with a free surface in a vertical external magnetic field are considered in the shallow water approximation. The presence of a vertical external magnetic field changes significantly the dynamics of wave processes in an astrophysical plasma, in contrast to a neutral fluid and a plasma layer in an external toroidal magnetic field. There are three-wave nonlinear interactions in the case under consideration. Using the asymptotic method of multiscale expansions, we have derived nonlinear equations for the interaction of wave packets: three magneto- Poincare waves, three magnetostrophic waves,more » two magneto-Poincare and one magnetostrophic waves, and two magnetostrophic and one magneto-Poincare waves. The existence of decay instabilities and parametric amplification is predicted. We show that a magneto-Poincare wave decays into two magneto-Poincare waves, a magnetostrophic wave decays into two magnetostrophic waves, a magneto-Poincare wave decays into one magneto-Poincare and one magnetostrophic waves, and a magnetostrophic wave decays into one magnetostrophic and one magneto-Poincare waves. There are the following parametric amplification mechanisms: the parametric amplification of magneto-Poincare waves, the parametric amplification of magnetostrophic waves, the amplification of a magneto-Poincare wave in the field of a magnetostrophic wave, and the amplification of a magnetostrophic wave in the field of a magneto-Poincare wave. The instability growth rates and parametric amplification factors have been found for the corresponding processes.« less
Hydrodynamic structures generated by a rotating magnetic field in a cylindrical vessel
NASA Astrophysics Data System (ADS)
Zibold, A. F.
2015-02-01
The hydrodynamic structures arising in a cylinder under the influence of a rotating magnetic field were considered, and the stability of a primary stationary flow in an infinitely long cylinder was investigated by linear approximation. The curves of neutral stability were obtained for a wide range of flow parameters and the calculations generated a single-vortex (in the radial direction) structure of Taylor’s vortices. The flow stability in the infinitely long cylinder was evaluated based on energy balance. The problem of three-dimensional stationary flow of a viscous incompressible conducting liquid induced by a rotating magnetic field in a cylindrical vessel of limited length was solved using an iteration method. The values of the parameters were found for which the iterative process still converges. Numerical experiment made it possible to investigate the arising spatial flow patterns and to track their evolution with changes in the flow parameters. Results of modelling showed the appearance of a three-dimensional structure of Taylor-type vortices in the middle portion of a sufficiently long vessel. The appearance of a double laminar boundary layer was demonstrated under certain conditions of azimuthal velocity distribution along the vessel height at the location of the end-wave vortex. This article was accepted for publication in Fluid Dynamics Research 2014 Vol 46, No 4; which was a special issue consisting of papers from the 5th International Symposium on Bifurcations in Fluid Dynamics. Due to an unfortunate error on the part of the journal, this article was not published with the other articles from this issue.
Helicon modes in uniform plasmas. I. Low m modes
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2015-09-01
Helicons are whistler modes with azimuthal wave numbers. They arise in bounded gaseous and solid state plasmas, but the present work shows that very similar modes also exist in unbounded uniform plasmas. The antenna properties determine the mode structure. A simple antenna is a magnetic loop with dipole moment aligned either along or across the ambient background magnetic field B0. For such configurations, the wave magnetic field has been measured in space and time in a large and uniform laboratory plasma. The observed wave topology for a dipole along B0 is similar to that of an m = 0 helicon mode. It consists of a sequence of alternating whistler vortices. For a dipole across B0, an m = 1 mode is excited which can be considered as a transverse vortex which rotates around B0. In m = 0 modes, the field lines are confined to each half-wavelength vortex while for m = 1 modes they pass through the entire wave train. A subset of m = 1 field lines forms two nested helices which rotate in space and time like corkscrews. Depending on the type of the antenna, both m = + 1 and m = -1 modes can be excited. Helicons in unbounded plasmas also propagate transverse to B0. The transverse and parallel wave numbers are about equal and form oblique phase fronts as in whistler Gendrin modes. By superimposing small amplitude fields of several loop antennas, various antenna combinations have been created. These include rotating field antennas, helical antennas, and directional antennas. The radiation efficiency is quantified by the radiation resistance. Since helicons exist in unbounded laboratory plasmas, they can also arise in space plasmas.
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Theory of finite disturbances in a centrifugal compression system with a vaneless radial diffuser
NASA Technical Reports Server (NTRS)
Moore, F. K.
1990-01-01
A previous small perturbation analysis of circumferential waves in circumferential compression systems, assuming inviscid flow, is shown to be consistent with observations that narrow diffusers are more stable than wide ones, when boundary layer displacement effect is included. The Moore-Greitzer analysis for finite strength transients containing both surge and rotating stall in axial machines is adapted for a centrifugal compression system. Under certain assumptions, and except for a new second order swirl, the diffuser velocity field, including resonant singularities, can be carried over from the previous inviscid linear analysis. Nonlinear transient equations are derived and applied in a simple example to show that throttling through a resonant value of flow coefficient must occur in a sudden surge-like drop, accompanied by a transient rotating wave. This inner solution is superseded by an outer surge response on a longer time scale. Surge may occur purely as result of circumferential wave resonance. Numerical results are shown for various parametric choices relating to throttle schedule and the characteristic slope. A number of circumferential modes considered simultaneously is briefly discussed.
NASA Technical Reports Server (NTRS)
Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.
2012-01-01
We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.
NASA Technical Reports Server (NTRS)
Thomas, S.; Faghri, A.; Hankey, W.
1990-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pack, R.T
1977-02-15
The effect of identification of the partial wave parameter of the J/sub z/ CCS and IOS approximations as an orbital angular momentum rather than the total angular momentum is studied. Comparison with accurate close coupling calculations for Ar--N/sub 2/ and He--CO/sub 2/ collisions is made, and it is found that this identification results in a marked improvement, both quantitative and qualitative, in calculated IOS opacity functions and integral cross sections for both elastic and inelastic collisions. Use of the correct energy in the cross section formula also makes a marked improvement even though T matrices are computed with an averagemore » energy. (AIP)« less
Deep Strong Coupling Regime of the Jaynes-Cummings Model
NASA Astrophysics Data System (ADS)
Casanova, J.; Romero, G.; Lizuain, I.; García-Ripoll, J. J.; Solano, E.
2010-12-01
We study the quantum dynamics of a two-level system interacting with a quantized harmonic oscillator in the deep strong coupling regime (DSC) of the Jaynes-Cummings model, that is, when the coupling strength g is comparable or larger than the oscillator frequency ω (g/ω≳1). In this case, the rotating-wave approximation cannot be applied or treated perturbatively in general. We propose an intuitive and predictive physical frame to describe the DSC regime where photon number wave packets bounce back and forth along parity chains of the Hilbert space, while producing collapse and revivals of the initial population. We exemplify our physical frame with numerical and analytical considerations in the qubit population, photon statistics, and Wigner phase space.
Exact relativistic expressions for wave refraction in a generally moving fluid.
Cavalleri, G; Tonni, E; Barbero, F
2013-04-01
The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.
Pravdin, Sergey F.; Dierckx, Hans; Katsnelson, Leonid B.; Solovyova, Olga; Markhasin, Vladimir S.; Panfilov, Alexander V.
2014-01-01
We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher–Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation. PMID:24817308
NASA Astrophysics Data System (ADS)
Martin, Calin Iulian
2017-12-01
We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f-plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ1 adjacent to the surface situated above another layer of constant non-zero vorticity γ2≠γ1 adjacent to the bed. For certain vorticities γ1,γ2, we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows. This article is part of the theme issue 'Nonlinear water waves'.
Faraday effect on stimulated Raman scattering in the linear region
NASA Astrophysics Data System (ADS)
Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.
2018-04-01
The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.
Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries
NASA Technical Reports Server (NTRS)
Titarchuk, Lev
2002-01-01
Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the approximation of very small pressure gradients is reduced to the problem of the classical oscillator in the rotational frame of reference which was previously introduced and applied for the interpretation of kHZ QPO observation by Osherovich & Titarchuk.
Metasurface for multi-channel terahertz beam splitters and polarization rotators
NASA Astrophysics Data System (ADS)
Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin
2018-04-01
Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.
Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, Diego
We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N-> infty kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping . Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N=2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of "violent" mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.
Absorption of inertia-gravity waves in vertically sheared rotating stratified flows
NASA Astrophysics Data System (ADS)
Millet, C.; Lott, F.
2012-12-01
It is well established that gravity waves have a substantial role on the large-scale atmospheric circulation, particularly in the middle atmosphere. In the present work, we re-examine the reflection and transmission of gravity waves through a critical layer surrounded by two inertial levels for the case of a constant vertically sheared flow. In this configuration, the vertical structure of the disturbance can be described as quasi-geostrophic from the critical layer up to the inertial levels, at which the Doppler-shifted frequency is equal to the Coriolis parameter. Near and beyond these levels, the balanced approximations do not apply and there is a transition from the quasi-geostrophic solution to propagating gravity waves. The three-dimensional disturbance solution is obtained analytically using both an exact method, in terms of hypergeometric functions, and a WKB approximation valid for large Richardson numbers; the latter includes an exponentially small term which captures the radiation feedback in the region between the inertial levels. We first focused on the homogeneous part of the disturbance equations, under the assumption of an unbounded domain. In contrast with past studies which show that there is a finite reflection and did not analyze the transmission (Yamanaka and Tanaka, 1984), we find that the reflection coefficient is too small to be significant and that the transmission coefficient is exactly like in the much simpler non-rotating case analyzed by Booker and Bretherton (1966). Our theoretical predictions are found to be in very good agreement with those obtained by numerically integrating the complete hydrostatic-Boussinesq equations with a small Rayleigh damping. The discrepancies between our results and those in Yamanaka and Tanaka (1984) are related to the fact that the solutions are given in term of multivalued functions and the values of the reflection and transmission coefficients are exponentially small, e.g. quite difficult to cross check numerically. More specifically, we suspect that the differences come from their treatment of the analytic continuations in the matching regions (e.g. the inertial layers). Our results are useful to study the evolution of initial disturbances. As an illustration, we consider the problem of gravity waves generated by potential-vorticity anomalies, a problem that was recently studied in Lott et al. (2013) for an unbounded atmosphere. The vertical structure of the potential-vorticity anomaly is represented by a Dirac distribution localized at the critical level. The disturbance field can be deduced from the homogeneous solutions above and below the critical level, by using suitable jump conditions. It is shown how the inclusion of a boundary condition within the problem, below the potential-vorticity anomaly, changes the amplitude of the radiated gravity wave, especially when the Richardson number is not too large. This process may be related to the occurrence of radiative instability waves in sheared rotating stratified flows.
Consistency of Post-Newtonian Waveforms with Numerical Relativity
NASA Technical Reports Server (NTRS)
Baker, John G.; vanMeter, James R.; McWilliams, Sean T.; Centrella, Joan; Kelly, Bernard J.
2007-01-01
General relativity predicts the gravitational radiation signatures of mergers of compact binaries,such as coalescing binary black hole systems. Derivations of waveform predictions for such systems are required for optimal scientific analysis of observational gravitational wave data, and have so far been achieved primarily with the aid of the post-Newtonian (PN) approximation. The quaIity of this treatment is unclear, however, for the important late inspiral portion. We derive late-inspiral wave forms via a complementary approach, direct numerical simulation of Einstein's equations, which has recently matured sufficiently for such applications. We compare waveform phasing from simulations covering the last approximately 14 cycles of gravitational radiation from an equal-mass binary system of nonspinning black holes with corresponding 3PN and 3.5PN waveforms. We find phasing agreement consistent with internal error estimates based in either approach, at the level of one radian over approximately 10 cycles. The result suggests that PN waveforms for this system are effective roughly until the system reaches its last stable orbit just prior to the final merger.
Critical Frequency in Nuclear Chiral Rotation
NASA Astrophysics Data System (ADS)
Olbratowski, P.; Dobaczewski, J.; Dudek, J.; Płóciennik, W.
2004-07-01
Self-consistent solutions for the so-called planar and chiral rotational bands in 132La are obtained for the first time within the Skyrme-Hartree-Fock cranking approach. It is suggested that the chiral rotation cannot exist below a certain critical frequency which under the approximations used is estimated as ℏωcrit≈0.5 0.6 MeV. However, the exact values of ℏωcrit may vary, to an extent, depending on the microscopic model used, in particular, through the pairing correlations and/or calculated equilibrium deformations. The existence of the critical frequency is explained in terms of a simple classical model of two gyroscopes coupled to a triaxial rigid body.
Feelings towards Older vs. Younger Adults: Results from the European Social Survey
ERIC Educational Resources Information Center
Ayalon, Liat
2013-01-01
The study evaluated the association of modernization (at the macro/societal-level) and modernity (at the micro/individual-level) with feelings towards older vs. younger adults. Analysis was based on the fourth wave of the European Social Survey, which includes a rotated module on ageism. The sample consisted of 28 countries and a total of 54,988…
NASA Astrophysics Data System (ADS)
Chakrabarti, R.; Yogesh, V.
2016-04-01
We study the evolution of the hybrid entangled states in a bipartite (ultra) strongly coupled qubit-oscillator system. Using the generalized rotating wave approximation the reduced density matrices of the qubit and the oscillator are obtained. The reduced density matrix of the oscillator yields the phase space quasi probability distributions such as the diagonal P-representation, the Wigner W-distribution and the Husimi Q-function. In the strong coupling regime the Q-function evolves to uniformly separated macroscopically distinct Gaussian peaks representing ‘kitten’ states at certain specified times that depend on multiple time scales present in the interacting system. The ultrastrong coupling strength of the interaction triggers appearance of a large number of modes that quickly develop a randomization of their phase relationships. A stochastic averaging of the dynamical quantities sets in, and leads to the decoherence of the system. The delocalization in the phase space of the oscillator is studied by using the Wehrl entropy. The negativity of the W-distribution reflects the departure of the oscillator from the classical states, and allows us to study the underlying differences between various information-theoretic measures such as the Wehrl entropy and the Wigner entropy. Other features of nonclassicality such as the existence of the squeezed states and appearance of negative values of the Mandel parameter are realized during the course of evolution of the bipartite system. In the parametric regime studied here these properties do not survive in the time-averaged limit.
System for controlled acoustic rotation of objects
NASA Technical Reports Server (NTRS)
Barmatz, M. B. (Inventor)
1983-01-01
A system is described for use with acoustically levitated objects, which enables close control of rotation of the object. One system includes transducers that propagate acoustic waves along the three dimensions (X, Y, Z) of a chamber of rectangular cross section. Each transducers generates one wave which is resonant to a corresponding chamber dimension to acoustically levitate an object, and additional higher frequency resonant wavelengths for controlling rotation of the object. The three chamber dimensions and the corresponding three levitation modes (resonant wavelengths) are all different, to avoid degeneracy, or interference, of waves with one another, that could have an effect on object rotation. Only the higher frequencies, with pairs of them having the same wavelength, are utilized to control rotation, so that rotation is controlled independently of levitation and about any arbitrarily chosen axis.
Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaoyin
The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less
NASA Astrophysics Data System (ADS)
Bray, Cédric; Cuisset, Arnaud; Hindle, Francis; Bocquet, Robin; Mouret, Gaël; Drouin, Brian J.
2017-03-01
Several previously unmeasured transitions of 12CH3D have been recorded by a terahertz photomixing continuous-wave spectrometer up to QR(10) branch at 2.5 THz. An improved set of rotational constants has been obtained utilizing a THz frequency metrology based on a frequency comb that achieved an averaged frequency position better than 150 kHz on more than fifty ground-state transitions. A detailed analysis of the measured line intensities was undertaken using the multispectrum fitting program and has resulted in a determination of new dipole moment parameters. Measurements at different pressures of the QR(7) transitions provide the first determination of self-broadening coefficients from pure rotational CH3D lines. The THz rotational measurements are consistent with IR rovibrational data but no significant vibrational dependence of self-broadening coefficient may be observed by comparison.
Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?
NASA Astrophysics Data System (ADS)
Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal
2007-02-01
We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
2016-05-15
The dispersion relation for modified dust ion-acoustic surface waves in the magnetized dusty plasma containing the rotating dust grains is derived, and the effects of magnetic field configuration on the resonant growth rate are investigated. We present the results that the resonant growth rates of the wave would increase with the ratio of ion plasma frequency to cyclotron frequency as well as with the increase of wave number for the case of perpendicular magnetic field configuration when the ion plasma frequency is greater than the dust rotation frequency. For the parallel magnetic field configuration, we find that the instability occursmore » only for some limited ranges of the wave number and the ratio of ion plasma frequency to cyclotron frequency. The resonant growth rate is found to decrease with the increase of the wave number. The influence of dust rotational frequency on the instability is also discussed.« less
An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations.
Sawai, Satoshi; Thomason, Peter A; Cox, Edward C
2005-01-20
Nutrient-deprived Dictyostelium amoebae aggregate to form a multicellular structure by chemotaxis, moving towards propagating waves of cyclic AMP that are relayed from cell to cell. Organizing centres are not formed by founder cells, but are dynamic entities consisting of cores of outwardly rotating spiral waves that self-organize in a homogeneous cell population. Spiral waves are ubiquitously observed in chemical reactions as well as in biological systems. Although feedback control of spiral waves in spatially extended chemical reactions has been demonstrated in recent years, the mechanism by which control is achieved in living systems is unknown. Here we show that mutants of the cyclic AMP/protein kinase A pathway show periodic signalling, but fail to organize coherent long-range wave territories, owing to the appearance of numerous spiral cores. A theoretical model suggests that autoregulation of cell excitability mediated by protein kinase A acts to optimize the number of signalling centres.
Study of Rayleigh-Love coupling from Spatial Gradient Observation
NASA Astrophysics Data System (ADS)
Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.
2017-12-01
We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.
He, Jianfang; Fang, Xiaohui; Lin, Yuanhai; Zhang, Xinping
2015-05-04
Half-wave plates were introduced into an interference-lithography scheme consisting of three fibers that were arranged into a rectangular triangle. Such a flexible and compact geometry allows convenient tuning of the polarizations of both the UV laser source and each branch arm. This not only enables optimization of the contrast of the produced photonic structures with expected square lattices, but also multiplies the nano-patterning functions of a fixed design of fiber-based interference lithography. The patterns of the photonic structures can be thus tuned simply by rotating a half-wave plate.
NASA Astrophysics Data System (ADS)
Lin, Y.; Perez, J. D.
A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.
NOx Emissions from a Rotating Detonation-wave Engine
NASA Astrophysics Data System (ADS)
Kailasanath, Kazhikathra; Schwer, Douglas
2016-11-01
Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. Results to date show that NOx emissions are not a problem for the RDE due to the short residence times and the nature of the flow field. Furthermore, simulations show that the amount of NOx can be further reduced by tailoring the fluid dynamics within the RDE.
Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine
NASA Astrophysics Data System (ADS)
Kailasanath, Kazhikathra; Schwer, Douglas
2014-11-01
Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.
Exhaust Gas Emissions from a Rotating Detonation-wave Engine
NASA Astrophysics Data System (ADS)
Kailasanath, Kazhikathra; Schwer, Douglas
2015-11-01
Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.
Majumder, Rupamanjari; Nayak, Alok Ranjan; Pandit, Rahul
2011-01-01
Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study. PMID:21483682
NASA Technical Reports Server (NTRS)
Cowie, L. L.; Rybicki, G. B.
1982-01-01
Waves of star formation in a uniform, differentially rotating disk galaxy are treated analytically as a propagating detonation wave front. It is shown, that if single solitary waves could be excited, they would evolve asymptotically to one of two stable spiral forms, each of which rotates with a fixed pattern speed. Simple numerical solutions confirm these results. However, the pattern of waves that develop naturally from an initially localized disturbance is more complex and dies out within a few rotation periods. These results suggest a conclusive observational test for deciding whether sequential star formation is an important determinant of spiral structure in some class of galaxies.
NASA Astrophysics Data System (ADS)
Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.
1985-07-01
We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.
Mean Lagrangian drift in continental shelf waves
NASA Astrophysics Data System (ADS)
Drivdal, M.; Weber, J. E. H.
2012-04-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.
Radiation stress and mean drift in continental shelf waves
NASA Astrophysics Data System (ADS)
Weber, Jan Erik H.; Drivdal, Magnus
2012-03-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E̅̅ over the shelf region, the radiation stress tensor component S̅11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio S̅11/E̅ depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of latter depends on ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deepwater drilling accidents.
A high precision, compact electromechanical ground rotation sensor
NASA Astrophysics Data System (ADS)
Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.; O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.
2014-05-01
We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of {1}{ × 10^{-11}}textrm { m}/sqrt{textrm {Hz}}. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of {5.7}{ × 10^{-9}}textrm { rad}/sqrt{textrm {Hz}} at 10 mHz and {6.4}{ × 10^{-10}}textrm { rad}/sqrt{textrm {Hz}} at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@harbor.kobe-u.ac.jp, E-mail: sano@ile.osaka-u.ac.jp
2014-10-10
The mechanism of large-scale dynamos in rigidly rotating stratified convection is explored by direct numerical simulations (DNS) in Cartesian geometry. A mean-field dynamo model is also constructed using turbulent velocity profiles consistently extracted from the corresponding DNS results. By quantitative comparison between the DNS and our mean-field model, it is demonstrated that the oscillatory α{sup 2} dynamo wave, excited and sustained in the convection zone, is responsible for large-scale magnetic activities such as cyclic polarity reversal and spatiotemporal migration. The results provide strong evidence that a nonuniformity of the α-effect, which is a natural outcome of rotating stratified convection, canmore » be an important prerequisite for large-scale stellar dynamos, even without the Ω-effect.« less
V471 Tauri, ballerina of the Hyades
NASA Astrophysics Data System (ADS)
Skillman, David R.; Patterson, Joseph
1988-09-01
Orbital light curves for V471 Tauri, the red dwarf-white dwarf binary in the Hyades, were obtained for the 1980-1983 observing seasons based on photometric and spectroscopic data. The results reveal the effects of tidal distortion of the secondary and a slow, transient wave which may originate from darker areas on the star's surface. A consistent ephemeris is derived. A Ca II line emission similar to that of rapidly rotating late-type stars and an additional component arising from the stellar region bathed in the white dwarf's UV-radiation field are found. An overall orbital-period decrease is noted which may be due to the strong braking of the K star's rotation by its own stellar wind, coupled with the enforcement of synchronous rotation by the tidal interaction with the white dwarf.
Analytical ground state for the Jaynes-Cummings model with ultrastrong coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yuanwei; Institute of Theoretical Physics, Shanxi University, Taiyuan 030006; Chen Gang
2011-06-15
We present a generalized variational method to analytically obtain the ground-state properties of the Jaynes-Cummings model with the ultrastrong coupling. An explicit expression for the ground-state energy, which agrees well with the numerical simulation in a wide range of the experimental parameters, is given. In particular, the introduced method can successfully solve this Jaynes-Cummings model with the positive detuning (the atomic resonant level is larger than the photon frequency), which cannot be treated in the adiabatical approximation and the generalized rotating-wave approximation. Finally, we also demonstrate analytically how to control the mean photon number by means of the current experimentalmore » parameters including the photon frequency, the coupling strength, and especially the atomic resonant level.« less
Efferent-mediated responses in vestibular nerve afferents of the alert macaque.
Sadeghi, Soroush G; Goldberg, Jay M; Minor, Lloyd B; Cullen, Kathleen E
2009-02-01
The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320 degrees/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (approximately 10 spikes/s) than in regular afferents (approximately 2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50 degrees upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.
A surprise at the bottom of the main sequence: Rapid rotation and NO H-alpha emission
NASA Technical Reports Server (NTRS)
Basri, Gibor; Marcy, Geoffrey W.
1995-01-01
We report Kech Observatory high-resolution echelle spectra from 640-850 nm for eight stars near the faint end of the main sequence. These spectra are the highest resolution spectra of such late-type stars, and clearly resolve the TiO, VO, and atomic lines. The sample includes the field brown-dwarf candidate, BRI 0021-0214 (M9.5+). Very unexpectedly, it shows the most rapid rotation in the entire samples, v sin i approximately 40 km/s, which is 20x faster than typical field nonemission M stars. Equally surprising is that BRI 0021 exhibits no emission or absorptionat H-alpha. We argue that this absence is not simply due to its cool photosphere, but that stellar activity declines in a fundamental way at the end of the main sequence. As it is the first very late M dwarf observed at high spectral resolution, BRI 0021 may be signaling a qualitative change in the angular momentum loss rate among the lowest mass stars. Conventionally, its rapid rotation would have marked BRI 0021 as very young, consistent with the selection effect which arises if the latest-type dwarfs are really brown dwarfs on cooling curves. In any case, it is unprecedented to find no sign of stellar activity in such a rapidly rotating convective star. We also discuss the possible conflict between this observation and the extremely strong H-alpha seen in another very cool star, PC 0025+0447. Extrapolation of M-L relations for BRI 0021 yields M approximately 0.065 solar mass, and the other sample objects have expected masses near the H-burning limit. These include two Pleiades brown-dwarf candidates, four field M6 dwarfs and one late-type T Tauri star. The two Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades membership. Similarly, the late-type T Tauri star has v sin i approximately 30 km/s and H alpha emission indicate of its youth. Two of the four late-type field dMe star also exhibit rotation above 5 km/s, consistent with expectations. BRI 0021 has no measurable absoprtion due to lithium, indicating that it is likely to be more massive than 0.065 solar mass.
Martin, Calin Iulian
2018-01-28
We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f -plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ 1 adjacent to the surface situated above another layer of constant non-zero vorticity γ 2 ≠ γ 1 adjacent to the bed. For certain vorticities γ 1 , γ 2 , we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Saio, Hideyuki; Kurtz, Donald W.; Murphy, Simon J.; Antoci, Victoria L.; Lee, Umin
2018-02-01
Asteroseismic inference from pressure modes (p modes) and buoyancy, or gravity, modes (g modes) is ubiquitous for stars across the Hertzsprung-Russell diagram. Until now, however, discussion of r modes (global Rossby waves) has been rare. Here we derive the expected frequency ranges of r modes in the observational frame by considering the visibility of these modes. We find that the frequencies of r modes of azimuthal order m appear as groups at slightly lower frequency than m times the rotation frequency. Comparing the visibility curves for r modes with Fourier amplitude spectra of Kepler light curves of upper main-sequence B, A, and F stars, we find that r modes are present in many γ Dor stars (as first discovered by Van Reeth et al.), spotted stars, and so-called heartbeat stars, which are highly eccentric binary stars. We also find a signature of r modes in a frequently bursting Be star observed by Kepler. In the amplitude spectra of moderately to rapidly rotating γ Dor stars, r-mode frequency groups appear at lower frequency than prograde g-mode frequency groups, while in the amplitude spectra of spotted early A to B stars, groups of symmetric (with respect to the equator) r-mode frequencies appear just below the frequency of a structured peak that we suggest represents an approximate stellar rotation rate. In many heartbeat stars, a group of frequencies can be fitted with symmetric m = 1 r modes, which can be used to obtain rotation frequencies of these stars.
Photographic laboratory studies of explosions.
NASA Technical Reports Server (NTRS)
Kamel, M. M.; Oppenheim, A. K.
1973-01-01
Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.
NASA Astrophysics Data System (ADS)
Švarc, A.; Wunderlich, Y.; Osmanović, H.; Hadžimehmedović, M.; Omerović, R.; Stahov, J.; Kashevarov, V.; Nikonov, K.; Ostrick, M.; Tiator, L.; Workman, R.
2018-05-01
Unconstrained partial -wave amplitudes, obtained at discrete energies from fits to complete sets of eight independent observables, may be used to reconstruct reaction amplitudes. These partial-wave amplitudes do not vary smoothly with energy and are in principle nonunique. We demonstrate how this behavior can be ascribed to the continuum ambiguity. Starting from the spinless scattering case, we show how an unknown overall phase, depending on energy and angle, mixes the structures seen in the associated partial-wave amplitudes. This process is illustrated using a simple toy model. We then apply these principles to pseudoscalar meson photoproduction, showing how the above effect can be removed through a phase rotation, allowing a consistent comparison with model amplitudes. The effect of this phase ambiguity is also considered for Legendre expansions of experimental observables.
Internal waves and Equatorial dynamics: an observational study in the West Atlantic Ocean
NASA Astrophysics Data System (ADS)
Rabitti, Anna; Maas, Leo R. M.; van Haren, Hans; Gerkema, Theo
2013-04-01
Internal waves present several fascinating aspects of great relevance for geo- and astro-physical fluid dynamics. These waves are supported by all kinds of stratified and rotating fluids, such as, for example, our ocean, atmosphere, a planet fluid core or a star. In a non linear regime, because of their oblique propagation, they are thought to play a key role in diapycnal mixing, as well as in angular momentum mixing. Unfortunately, a complete analytical description of internal waves in arbitrarily shaped enclosed domains is still an ongoing challenge. On the other hand, internal wave energy is observed travelling along rays, whose behaviour can be traced and whose reflections off the container's boundaries appears crucial in producing phenomena such as focussing of wave energy onto specific trajectories (attractors), and in triggering localized instabilities. Ray tracing studies have shown that equatorial regions of stratified and/or rotating spherical shells are likely affected by these features, being the place where the simplest shaped and most energetic attractors occur. In this study we aim to investigate the possible presence and role of internal wave attractors in determining the equatorial ocean dynamics. Internal wave attractors, observed in laboratory and numerical experiments, have not been observed in Nature, yet. A unique set of observations, collected in the deep Equatorial West Atlantic Ocean, will be used here in order to explore this possibility, the dataset consisting of 1.5 year long time series of current measured acoustically and with current meters moored between 0°and 2°N, at 37°W, off the Brazilian coast. In particular, angular momentum mixing due to internal wave focussing, is explored as a possible mechanism for maintaining the Equatorial Deep Jets. These jets are stacked alternating zonal currents that are ubiquitously observed in all the oceans and whose nature is still largely unknown. Remarkably, jet like structures are also observed in the equatorial regions of fluid planets, suggesting that their existence could be related to general properties of the system such as shape, stratification and rotation. The equatorial ocean shows a different dynamics compared to off-equatorial regions, in terms of mean flow, internal wave and mixing properties. Despite the crucial role it plays in the global circulation and in our climate, this region is still poorly understood. We propose that the use of a new framework of interpretation, together with long term, in situ measurements can shed some light on the processes taking place in this peculiar region, and constitutes a key step towards a better understanding of energy fluxes in the ocean, as well as in other stratified, rotating fluid domains.
Vibrational and [ital K][sup [prime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugliano, N.; Cruzan, J.D.; Loeser, J.G.
Using tunable far infrared laser absorption spectroscopy, 12 vibration--rotation-tunneling (VRT) subbands, consisting of approximately 230 transitions have been measured and analyzed for an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-[ital d][sub 4]. Each of the VRT subbands originate from [ital K][sup [double prime
Sub-weekly to interannual variability of a high-energy shoreline
Barnard, Patrick L.; Jeff E. Hansen,
2010-01-01
Sixty-one Global Positioning System (GPS), sub-aerial beach surveys were completed at 7 km long Ocean Beach, San Francisco, CA (USA), between April 2004 and March 2009. The five-year time series contains over 1 million beach elevation measurements and documents detailed changes in beach morphology over a variety of spatial, temporal, and physical forcing scales. Results show that seasonal processes dominate at Ocean Beach, with the seasonal increase and decrease in wave height being the primary driver of shoreline change. Storm events, while capable of causing large short-term changes in the shoreline, did not singularly account for a large percentage of the overall observed change. Empirical orthogonal function (EOF) analysis shows that the first two modes account for approximately three-quarters of the variance in the data set and are represented by the seasonal onshore/offshore movement of sediment (60%) and the multi-year trend of shoreline rotation (14%). The longer-term trend of shoreline rotation appears to be related to larger-scale bathymetric change. An EOF-based decomposition technique is developed that is capable of estimating the shoreline position to within one standard deviation of the range of shoreline positions observed at most locations along the beach. The foundation of the model is the observed relationship between the temporal amplitudes of the first EOF mode and seasonally-averaged offshore wave height as well as the linear trend of shoreline rotation. This technique, while not truly predictive because of the requirement of real-time wave data, is useful because it can predict shoreline position to within reasonable confidence given the absence of field data once the model is developed at a particular site.
Sub-weekly to interannual variability of a high-energy shoreline
Hansen, J.E.; Barnard, P.L.
2010-01-01
Sixty-one Global Positioning System (GPS), sub-aerial beach surveys were completed at 7 km long Ocean Beach, San Francisco, CA (USA), between April 2004 and March 2009. The five-year time series contains over 1. million beach elevation measurements and documents detailed changes in beach morphology over a variety of spatial, temporal, and physical forcing scales. Results show that seasonal processes dominate at Ocean Beach, with the seasonal increase and decrease in wave height being the primary driver of shoreline change. Storm events, while capable of causing large short-term changes in the shoreline, did not singularly account for a large percentage of the overall observed change. Empirical orthogonal function (EOF) analysis shows that the first two modes account for approximately three-quarters of the variance in the data set and are represented by the seasonal onshore/offshore movement of sediment (60%) and the multi-year trend of shoreline rotation (14%). The longer-term trend of shoreline rotation appears to be related to larger-scale bathymetric change. An EOF-based decomposition technique is developed that is capable of estimating the shoreline position to within one standard deviation of the range of shoreline positions observed at most locations along the beach. The foundation of the model is the observed relationship between the temporal amplitudes of the first EOF mode and seasonally-averaged offshore wave height as well as the linear trend of shoreline rotation. This technique, while not truly predictive because of the requirement of real-time wave data, is useful because it can predict shoreline position to within reasonable confidence given the absence of field data once the model is developed at a particular site. ?? 2010 Elsevier B.V.
Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate
NASA Astrophysics Data System (ADS)
Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe
2014-05-01
Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small shift towards higher frequencies. This frequency shift is due to the reduction of the effective resonance volume that results from the existence of a Stokes boundary layer at the outer librating wall. Due to the symmetry of the forcing not all possible modes can be excited. It is shown that only symmetric modes with respect to the rotation axis exist. From a fundamental perspective, the study might help to understand better inertial mode excitation in librating planets and moons where inertial waves are emitted from critical points on the inner or outer spherical boundary. Recently, Zhang et al. (2013) pointed out the resonance should not occur in symmetric librating bodies without precession. We will discuss how this assumption depends on the boundary conditions. It might turn out that even when the projection of the Euler (or Poincare) force on the modes is zero, the projection of the excited wave beams on the modes is non-zero. K. Zhang, K. H. Chan, X. Liao, and J. M. Aurnou. The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration, J. Fluid Mech.,720, 212-235, 2013. I. D. Borcia and U. Harlander. Inertial waves in a rotating annulus with inclined inner cylinder, Theoret. Comp. Fluid Dynamics, 27, 397-413, 2013. I. D. Borcia, A. Ghasemi V., and U. Harlander. Inertial wave mode excitation inside a rotating cylindrical container with librating walls, submitted to Fluid Dyn. Res.,2013. M. Klein, T. Seelig, M. V. Kurgansky, A. Ghasemi V., I. D. Borcia, A. Will, E. Schaller, C. Egbers, and Uwe Harlander. Inertial wave excitation and focusing in a liquid bounded by a frustum and a cylinder, submitted to J. Fluid Mech., 2013.
The Submillimeter-wave Rotational Spectra of Interstellar Molecules
NASA Technical Reports Server (NTRS)
Herbst, Eric; DeLucia, Frank C.; Butler, R. A. H.; Winnewisser, M.; Winnewisser, G.; Fuchs, U.; Groner, P.; Sastry, K. V. L. N.
2002-01-01
We discuss past and recent progress in our long-term laboratory program concerning the submillimeter-wave rotational spectroscopy of known and likely interstellar molecules, especially those associated with regions of high-mass star formation. Our program on the use of spectroscopy to study rotationally inelastic collisions of interstellar interest is also briefly mentioned.
Observation of Gravitational Waves
NASA Astrophysics Data System (ADS)
Gonzalez, Gabriela
2016-06-01
On September 14 2015, the two LIGO gravitational wave detectors in Hanford, Washington and Livingston, Louisiana registered a nearly simultaneous signal with time-frequency properties consistent with gravitational-wave emission by the merger of two massive compact objects. Further analysis of the signals by the LIGO Scientific Collaboration and Virgo Collaboration revealed that the gravitational waves detected by LIGO came from the merger of a binary black hole (BBH) system approximately 420 Mpc distant (z=0.09) with constituent masses of 36 and 29 M_sun. I will describe the details of the observation, the status of ground-based interferometric detectors, and prospects for future observations in the new era of gravitational wave astronomy.
Rotation, activity, and stellar obliquities in a large uniform sample of Kepler solar analogs
NASA Astrophysics Data System (ADS)
Buzasi, Derek; Lezcano, Andy; Preston, Heather L.
2016-10-01
In this study, we undertook a deep photometric examination of a narrowly-defined sample of solar analogs in the Kepler field, with the goals of producing a uniform and statistically meaningful sample of such stars, comparing the properties of planet hosts to those of the general stellar population, and examining the behavior of rotation and photometric activity among stars with similar overall physical parameters. We successfully derived photometric activity indicators and rotation periods for 95 planet hosts (Kepler objects of interest [KOIs]) and 954 solar analogs without detected planets; 573 of these rotation periods are reported here for the first time. Rotation periods average roughly 20 d, but the distribution has a wide dispersion, with a tail extending to P > 35 d which appears to be inconsistent with published gyrochronological relations. We observed a weak rotation-activity relation for stars with rotation periods less than about 12 d; for slower rotators, the relation is dominated by scatter. However, we are able to state that the solar activity level derived from Virgo data is consistent with the majority of stars with similar rotation periods in our sample. Finally, our KOI sample is consistently approximately 0.3 dex more variable than our non-KOIs; we ascribe the difference to a selection effect due to low orbital obliquity in the planet-hosting stars and derive a mean obliquity for our sample of χ = 6+5°-6, similar to that seen in the solar system.
Tidal waves in 102Pd: a rotating condensate of multiple d bosons.
Ayangeakaa, A D; Garg, U; Caprio, M A; Carpenter, M P; Ghugre, S S; Janssens, R V F; Kondev, F G; Matta, J T; Mukhopadhyay, S; Patel, D; Seweryniak, D; Sun, J; Zhu, S; Frauendorf, S
2013-03-08
Low-lying collective excitations in even-even vibrational and transitional nuclei may be described semiclassically as quadrupole running waves on the surface of the nucleus ("tidal waves"), and the observed vibrational-rotational behavior can be thought of as resulting from a rotating condensate of interacting d bosons. These concepts have been investigated by measuring lifetimes of the levels in the yrast band of the (102)Pd nucleus with the Doppler shift attenuation method. The extracted B(E2) reduced transition probabilities for the yrast band display a monotonic increase with spin, in agreement with the interpretation based on rotation-induced condensation of aligned d bosons.
Márquez-Ruiz, Javier; Escudero, Miguel
2010-11-01
the aim of this work was to characterize eye movements and abducens (ABD) motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis (NRPC). six female adult cats were prepared for chronic recording of eye movements (using the scleral search-coil technique), electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves in the lateral geniculate nucleus, and ABD motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPC. unilateral microinjections of carbachol in the NRPC induced tonic and phasic phenomena in the oculomotor system. Tonic effects consisted of ipsiversive rotation to the injected side, convergence, and downward rotation of the eyes. Phasic effects consisted of bursts of rhythmic rapid eye movements directed contralaterally to the injected side along with PGO-like waves in the lateral geniculate and ABD nuclei. Although tonic effects were dependent on the level of drowsiness, phasic effects were always present and appeared along with normal saccades when the animal was vigilant. ABD motoneurons showed phasic activities associated with ABD PGO-like waves during bursts of rapid eye movements, and tonic and phasic activities related to eye position and velocity during alertness. the cholinergic activation of the NRPC induces oculomotor phenomena that are somewhat similar to those described during REM sleep. A precise comparison of the dynamics and timing of the eye movements further suggests that a temporal organization of both NRPCs is needed to reproduce the complexity of the oculomotor behavior during REM sleep.
NASA Technical Reports Server (NTRS)
Grady, C. A.; Currie, T.
2012-01-01
We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r approximates 46 AU, our observations reveal the presence of scattered light components as close as 0".2 (approx 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.
Majidi-Ahy, Gholamreza; Bloom, David M.
1991-01-01
A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Arne; UMR 8640 ENS-CNRS-UPMC, Département de Chimie, 24 rue Lhomond, École Normale Supérieure, 75005 Paris; UPMC Université Paris 06, 4, Place Jussieu, 75005 Paris
The nuclear velocity perturbation theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similar to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strengths, related to the intensity of the VCD signal, contain a new contribution beyond-BO that canmore » be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.« less
Discrete sudden perturbation theory for inelastic scattering. I. Quantum and semiclassical treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, R.J.
1985-12-01
A double perturbation theory is constructed to treat rotationally and vibrationally inelastic scattering. It uses both the elastic scattering from the spherically averaged potential and the infinite-order sudden (IOS) approximation as the unperturbed solutions. First, a standard perturbation expansion is done to express the radial wave functions in terms of the elastic wave functions. The resulting coupled equations are transformed to the discrete-variable representation where the IOS equations are diagonal. Then, the IOS solutions are removed from the equations which are solved by an exponential perturbation approximation. The results for Ar+N/sub 2/ are very much more accurate than the IOSmore » and somewhat more accurate than a straight first-order exponential perturbation theory. The theory is then converted into a semiclassical, time-dependent form by using the WKB approximation. The result is an integral of the potential times a slowly oscillating factor over the classical trajectory. A method of interpolating the result is given so that the calculation is done at the average velocity for a given transition. With this procedure, the semiclassical version of the theory is more accurate than the quantum version and very much faster. Calculations on Ar+N/sub 2/ show the theory to be much more accurate than the infinite-order sudden (IOS) approximation and the exponential time-dependent perturbation theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peralta, J.; López-Valverde, M. A.; Imamura, T.
This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the backgroundmore » wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.« less
Calculation and observation of thermal electrostatic noise in solar wind plasma
NASA Technical Reports Server (NTRS)
Kellogg, P. J.
1981-01-01
Calculations, both approximate algebraic and numerical, have been carried out for the noise due to electrostatic waves incident on a dipole antenna. The noise is calculated both for a thermal equilibrium plasma, and one having several components at different temperatures. The results are compared with measurements from the IMP-6 satellite. In various frequency ranges, the noise power is dominated by Langmuir oscillations, by electron acoustic waves and by ion acoustic waves. The measurements are consistent with all of these, although the ion waves are not definitely observed, due to interference from shot noise.
The role of the complete Coriolis force in weakly stratified oceanic flows
NASA Astrophysics Data System (ADS)
Tort, M.; Winters, K. B.; Ribstein, B.; Zeitlin, V.
2016-02-01
Ocean dynamics is usually described using the primitive equations based on the so-called traditional approximation (TA), where the Coriolis force associated with the horizontal component of the planetary rotation is neglected (also called non-traditional (NT) part proportional to cosΦ, see Fig 1.). However, recent studies have shown that the NT part of the Coriolis force plays a non-negligible dynamical role in some particular oceanic flows (see Gerkema et al., 2008 for an extensive review of NT effects for geophysical and astrophysical flows). Here we explore the relevance of including the NT component of the Coriolis force in ocean models, by presenting particular results regarding two different mid-latitude flow configurations after relaxing the TA: Propagation of wind-induced near-inertial waves (NIWs). Under the TA, NIWs propagate toward the equator, the inertially poleward propagation being internally reflected at a depth-independent critical latitude. The combined effects of the NT Coriolis force and weak stratification in the deep ocean leads to the existence of waveguides for sub-inertial waves, which get trapped and propagate further poleward (Winters et al., 2011). Here we consider storm-induced NIWs and their evolution in a non-linear Boussinesq model on the β-plane in the NT approximation. Preliminary results are presented concerning the behavior of the waves in a weakly stratified mixed-layer, where NT effects are expected to be significant. Inertial instability. A detailed linear stability analysis of the Bickley jet at large Rossby numbers in the NT approximation on the f-plane is performed for long waves in a continuously stratified Boussinesq model. For a sufficiently weak stratification, both symmetric and asymmetric inertial instabilities have substantially higher growth rates than in the TA while no discernible differences between the two approximations are observed for strong enough stratifications (Tort et al., 2015).
Optimal ancilla-free Pauli+V circuits for axial rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blass, Andreas; Bocharov, Alex; Gurevich, Yuri
We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL{sub 2}(ℤ) geometrymore » is almost elementary.« less
Analysis of unsteady wave processes in a rotating channel
NASA Technical Reports Server (NTRS)
Larosiliere, L. M.; Mawid, M.
1993-01-01
The impact of passage rotation on the gas dynamic wave processes is analyzed through a numerical simulation of ideal shock-tube flow in a closed rotating-channel. Initial conditions are prescribed by assuming homentropic solid-body rotation. Relevant parameters of the problem such as wheel Mach number, hub-to-tip radius ratio, length-to-tip radius ratio, diaphragm temperature ratio, and diaphragm pressure ratio are varied. The results suggest possible criteria for assessing the consequences of passage rotation on the wave processes, and they may therefore be applicable to pressure-exchange wave rotors. It is shown that for a fixed geometry and initial conditions, the contact interface acquires a distorted three-dimensional time-dependent orientation at non-zero wheel Mach numbers. At a fixed wheel Mach number, the level of distortion depends primarily on the density ratio across the interface as well as the hub-to-tip radius ratio. Rarefaction fronts, shocks, and contact interfaces are observed to propagate faster with increasing wheel Mach number.
Analysis of unsteady wave processes in a rotating channel
NASA Astrophysics Data System (ADS)
Larosiliere, Louis M.; Mawid, M.
1993-06-01
The impact of passage rotation on the gas dynamic wave processes is analyzed through a numerical simulation of ideal shock-tube flow in a closed rotating-channel. Initial conditions are prescribed by assuming homentropic solid-body rotation. Relevant parameters of the problem such as wheel Mach number, hub-to-tip radius ratio, length-to-tip radius ratio, diaphragm temperature ratio, and diaphragm pressure ratio are varied. The results suggest possible criteria for assessing the consequences of passage rotation on the wave processes, and they may therefore be applicable to pressure-exchange wave rotors. It is shown that for a fixed geometry and initial conditions, the contact interface acquires a distorted three-dimensional time-dependent orientation at non-zero wheel Mach numbers. At a fixed wheel Mach number, the level of distortion depends primarily on the density ratio across the interface as well as the hub-to-tip radius ratio. Rarefaction fronts, shocks, and contact interfaces are observed to propagate faster with increasing wheel Mach number.
On the large-scale dynamics of rapidly rotating convection zones. [in solar and stellar interiors
NASA Technical Reports Server (NTRS)
Durney, B. R.
1983-01-01
The fact that the values of the eight basic waves present in turbulent flows in the presence of rotation prohibit a tilt of eddy towards the axis of rotation is incorporated into a formalism for rapidly rotating convection zones. Equations for turbulent velocities are defined in a rotating coordinate system, assuming that gravity and grad delta T act in a radial direction. An expression is derived for the lifetime of a basic wave and then for the average velocity vector. A real convective eddy is formulated and the wave vectors are calculated. The velocity amplitude and the stress tensor amplitude are integrated over the eddy domain. Applied to the solar convective zone, it is found that the convective cells are aligned along the axis of rotation at the poles and at the equator, a model that conflicts with nonrotating mixng length theory predictions.
On the oblateness and rotation rate of Neptune's atmosphere
NASA Technical Reports Server (NTRS)
Hubbard, W. B.
1986-01-01
Recent observations of a stellar occultation by Neptune give an oblateness of 0.022 + or - 0.004 for Neptune's atmosphere at the 1-microbar pressure level. This results is consistent with hydrostatic equilibrium at a uniform atmospheric rotation period of 15 hours, although the error bars on quantities used in the calculation are such that an 18-hour period is not excluded. The oblateness of a planetary atmosphere is determined from stellar occultations by measuring the times at which a specified point on immersion or emersion occultation profiles is reached. Whether this standard procedure for deriving the shape of the atmosphere is consistent with what is known about vertical and horizontal temperature gradients in Neptune's atmosphere is evaluated. The nature of the constraint placed on the interior mass distribution by an oblateness determined in this manner is consided, as is the effects of possible differential rotation. A 15-hour Neptune internal mass distribution is approximately homologous to Uranus', but an 18-hour period is not. The implications for Neptune's interior structure if its body rotation period is actually 18 hours are discussed.
NASA Astrophysics Data System (ADS)
Li, Jibin
The dynamical model of the nonlinear acoustic wave in rotating magnetized plasma is governed by a partial differential equation system. Its traveling system is a singular traveling wave system of first class depending on two parameters. By using the bifurcation theory and method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as different solitary wave solutions.
Ray Scattering by an Arbitrarily Oriented Spheroid: 2. Transmission and Cross-polarization Effects
NASA Technical Reports Server (NTRS)
Lock, James A.
1996-01-01
Transmission of an arbitrarily polarized plane wave by an arbitrarily oriented spheroid in the short-wavelength limit is considered in the context of ray theory. The transmitted electric field is added to the diffracted plus reflected ray-theory electric field that was previously derived to obtain an approximation to the far-zone scattered intensity in the forward hemisphere. Two different types of cross-polarization effects are found. These are: (a) a rotation of the polarization state of the transmitted rays from when they are referenced with respect to their entrance into the spheroid to when they are referenced with respect to their exit from it and (b) a rotation of the polarization state of the transmitted rays when they are referenced with respect to the polarization state of the diffracted plus reflected rays.
Su, Xiangzheng; Li, Zhongli; Liu, Zhengsheng; Shi, Teng; Xue, Chao
2017-06-09
The aim of this study was to investigate the efficacy of high- and low-energy radial shock waves combined with physiotherapy for rotator cuff tendinopathy patients. Data from rotator cuff tendinopathy patients received high- or low-energy radial shock waves combined with physiotherapy or physiotherapy alone were collected. The Constant and Murley score and visual analog scale score were collected to assess the effectiveness of treatment in three groups at 4, 8, 12, and 24 weeks. In total, 94 patients were involved for our retrospective study. All groups showed remarkable improvement in the visual analog scale and Constant and Murley score compared to baseline at 24 weeks. The high-energy radial shock waves group had more marked improvement in the Constant and Murley score compared to the physiotherapy group at 4 and 8 weeks and at 4 weeks when compared with low-energy group. Furthermore, high-energy radial shock waves group had superior results on the visual analog scale at 4, 8, and 12 weeks compared to low-energy and physiotherapy groups. This retrospective study supported the usage of high-energy radial shock waves as a supplementary therapy over physiotherapy alone for rotator cuff tendinopathy by relieving the symptoms rapidly and maintaining symptoms at a satisfactory level for 24 weeks. Implications for Rehabilitation High-energy radial shock waves can be a supplemental therapy to physiotherapy for rotator cuff tendinopathy. We recommend the usage of high-energy radial shock waves during the first 5 weeks, at an interval of 7 days, of physiotherapy treatment. High-energy radial shock waves treatment combined with physiotherapy can benefit rotator cuff tendinopathy by relieving symptoms rapidly and maintain these improvements at a satisfactory level for quite a long time.
Otto, Frank; Gatti, Fabien; Meyer, Hans-Dieter
2008-02-14
We study the process of rotational excitation in the collisions of para-H(2) with para-H(2) by propagating wave packets with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Transition probabilities are then calculated by the method of Tannor and Weeks based on time-correlation functions. Calculations were carried out up to a total angular momentum of J=70 to compute integral cross sections up to 1.2 eV in collision energy and thermal rate coefficients from 100 to 3000 K. The process is studied on the full-dimensional potential energy surface of Boothroyd-Martin-Keogh-Peterson (BMKP) as well as on the rigid rotor surface of Diep and Johnson. We test the validity of the rigid rotor approximation by also considering two rigid rotor restrictions of the BMKP potential energy surface (PES). Additionally, we investigate a variant of the BMKP PES suggested by Pogrebnya and Clary [Chem. Phys. Lett. 363, 523 (2002)] with reduced anisotropy. We compare our results with previous theoretical data for the cross sections and with experimental data for the rate coefficients at low temperatures.
Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E
2013-10-21
We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.
Analysis of DE-1 PWI electric field data
NASA Technical Reports Server (NTRS)
Weimer, Daniel
1994-01-01
The measurement of low frequency electric field oscillations may be accomplished with the Plasma Wave Instrument (PWI) on DE 1. Oscillations at a frequency around 1 Hz are below the range of the conventional plasma wave receivers, but they can be detected by using a special processing of the quasi-static electric field data. With this processing it is also possible to determine if the electric field oscillations are predominately parallel or perpendicular to the ambient magnetic field. The quasi-static electric field in the DE 1 spin/orbit plane is measured with a long-wire 'double probe'. This antenna is perpendicular to the satellite spin axis, which in turn is approximately perpendicular to the geomagnetic field in the polar magnetosphere. The electric field data are digitally sampled at a frequency of 16 Hz. The measured electric field signal, which has had phase reversals introduced by the rotating antenna, is multiplied by the sine of the rotation angle between the antenna and the magnetic field. This is called the 'perpendicular' signal. The measured time series is also multiplied with the cosine of the angle to produce a separate 'parallel' signal. These two separate time series are then processed to determine the frequency power spectrum.
Matter-Induced Neutrino Oscillation in Double Universal Seesaw Model
NASA Astrophysics Data System (ADS)
Sogami, I. S.; Shinohara, T.; Egawa, Y.
1992-04-01
The Mikheyev-Smirnov-Wolfenstein effect is investigated in an extended gauge field theory in which the universal seesaw mechanism is applied singly to the charged fermion sectors to lower their masses below the electroweak energy scale and doubly to the neutral fermion sector to make neutrinos superlight. At the first seesaw approximation, neutrinos are proved to have a distinctive spectrum consisting of doubly degenerate states with smaller mass m_{S} and a singlet state with larger mas m_{L}. The lepton mixing matrix is determined definitely in terms of the masses of charged leptons and down quarks, with a very small vacuum mixing angle sin theta = 0.043 +/- 0.004. The Schrödinger-like equation describing the spatial evolution of stationary neutrino flux is solved for globally-rotated-flavor wave functions. Comparison of its nonadiabatic solution with experimental results leads to an estimation m_{L}(2) - m_{S}(2) = (6 +/- 2) x 10(-6) eV(2) for the squared mass difference and a capture rate prediction of 74 +/- 12 SNU for the SAGE gallium experiment.
Dynamics of molecular hydrogen in crystalline silicon
NASA Astrophysics Data System (ADS)
Fowler, W. Beall; Walters, Peter; Stavola, Michael
2002-03-01
We have studied the dynamics of interstitial molecular hydrogen in crystalline silicon by using a potential energy function for the molecule that consists of the superposition of potentials for two separated atomic hydrogens as generated from the quantum-mechanical calculations of Porter et al.(1) The rotational properties were calculated using the approach of Martin and Fowler (2) and the vibrational properties of the molecules as a whole were obtained. Results for molecular hydrogen, deuterium, and HD indicate nearly free rotational motion, consistent with shallow rotational potentials. Confinement of the molecules leads to center-of-mass vibrations of a few hundred wave numbers and dynamical "off-centeredness" that breaks tetrahedral symmetry for the high-frequency stretch vibrations. These and other results have helped to interpret recent experiments on these systems (3). This work was supported by the NSF REU program at Lehigh University. 1. A. R. Porter et al., Phys. Rev. B 60, 13 534 (1999). 2. K. R. Martin and W. B. Fowler, Phys. Rev. B 52, 16 516 (1995). 3. E Chen, M. Stavola, W. B. Fowler, and P. Walters (to be published).
Visualizing, Approximating, and Understanding Black-Hole Binaries
NASA Astrophysics Data System (ADS)
Nichols, David A.
Numerical-relativity simulations of black-hole binaries and advancements in gravitational-wave detectors now make it possible to learn more about the collisions of compact astrophysical bodies. To be able to infer more about the dynamical behavior of these objects requires a fuller analysis of the connection between the dynamics of pairs of black holes and their emitted gravitational waves. The chapters of this thesis describe three approaches to learn more about the relationship between the dynamics of black-hole binaries and their gravitational waves: modeling momentum flow in binaries with the Landau-Lifshitz formalism, approximating binary dynamics near the time of merger with post-Newtonian and black-hole-perturbation theories, and visualizing spacetime curvature with tidal tendexes and frame-drag vortexes. In Chapters 2--4, my collaborators and I present a method to quantify the flow of momentum in black-hole binaries using the Landau-Lifshitz formalism. Chapter 2 reviews an intuitive version of the formalism in the first-post-Newtonian approximation that bears a strong resemblance to Maxwell's theory of electromagnetism. Chapter 3 applies this approximation to relate the simultaneous bobbing motion of rotating black holes in the superkick configuration---equal-mass black holes with their spins anti-aligned and in the orbital plane---to the flow of momentum in the spacetime, prior to the black holes' merger. Chapter 4 then uses the Landau-Lifshitz formalism to explain the dynamics of a head-on merger of spinning black holes, whose spins are anti-aligned and transverse to the infalling motion. Before they merge, the black holes move with a large, transverse, velocity, which we can explain using the post-Newtonian approximation; as the holes merge and form a single black hole, we can use the Landau-Lifshitz formalism without any approximations to connect the slowing of the final black hole to its absorbing momentum density during the merger. In Chapters 5--7, we discuss using analytical approximations, such as post-Newtonian and black-hole-perturbation theories, to gain further understanding into how gravitational waves are generated by black-hole binaries. Chapter 5 presents a way of combining post-Newtonian and black-hole-perturbation theories---which we call the hybrid method---for head-on mergers of black holes. It was able to produce gravitational waveforms and gravitational recoils that agreed well with comparable results from numerical-relativity simulations. Chapter 6 discusses a development of the hybrid model to include a radiation-reaction force, which is better suited for studying inspiralling black-hole binaries. The gravitational waveform from the hybrid method for inspiralling mergers agreed qualitatively with that from numerical-relativity simulations; when applied to the superkick configuration, it gave a simplified picture of the formation of the large black-hole kick. Chapter 7 describes an approximate method of calculating the frequencies of the ringdown gravitational waveforms of rotating black holes (quasinormal modes). The method generalizes a geometric interpretation of black-hole quasinormal modes and explains a degeneracy in the spectrum of these modes. In Chapters 8--11, we describe a new way of visualizing spacetime curvature using tools called tidal tendexes and frame-drag vortexes. This relies upon a time-space split of spacetime, which allows one to break the vacuum Riemann curvature tensor into electric and magnetic parts (symmetric, trace-free tensors that have simple physical interpretations). The regions where the eigenvalues of these tensors are large form the tendexes and vortexes of a spacetime, and the integral curves of their eigenvectors are its tendex and vortex lines, for the electric and magnetic parts, respectively. Chapter 8 provides an overview of these visualization tools and presents initial results from numerical-relativity simulations. Chapter 9 uses topological properties of vortex and tendex lines to classify properties of gravitational waves far from a source. Chapter 10 describes the formalism in more detail, and discusses the vortexes and tendexes of multipolar spacetimes in linearized gravity about flat space. The chapter helps to explain how near-zone vortexes and tendexes become gravitational waves far from a weakly gravitating, time-varying source. Chapter 11 is a detailed investigation of the vortexes and tendexes of stationary and perturbed black holes. It develops insight into how perturbations of (strongly gravitating) black holes extend from near the horizon to become gravitational waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artemyev, A. V., E-mail: ante0226@gmail.com; Mourenas, D.; Krasnoselskikh, V. V.
2015-06-15
In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonantmore » scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.« less
Catastrophic instabilities of modified DA-DC hybrid surface waves in a semi-bounded plasma system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
We find the catastrophic instabilities and derive the growth rates for the dust-cyclotron resonance (DCR) and dust-rotation resonance (DRR) modes of the modified dust-acoustic and dust-cyclotron (DA-DC) hybrid surface waves propagating at the plasma–vacuum interface where the plasma is semi-bounded and composed of electrons and rotating dust grains. The effects of magnetic field and dust rotation frequency on the DCR- and DDR-modes are also investigated. We find that the dust rotation frequency enhances the growth rate of DCR-mode and the effect of dust rotation on this resonance mode decreases with an increase of the wave number. We also find thatmore » an increase of magnetic field strength enhances the DCR growth rate, especially, for the short wavelength regime. In the case of DRR-mode, the growth rate is found to be decreased less sensitively with an increase of the wave number compared with the case of DCR, but much significantly enhanced by an increase of dust rotation frequency. The DRR growth rate also decreases with an increase of the magnetic field strength, especially in the long wavelength regime. Interestingly, we find that catastrophic instabilities occur for both DCR- and DRR-modes of the modified DA-DC hybrid surface waves when the rotational frequency is close to the dust-cyclotron frequency. Both modes can also be excited catastrophically due to the cooperative interaction between the DCR-mode and the DRR-mode.« less
NASA Astrophysics Data System (ADS)
Sbaa, Sarah; Hollender, Fabrice; Perron, Vincent; Imtiaz, Afifa; Bard, Pierre-Yves; Mariscal, Armand; Cochard, Alain; Dujardin, Alain
2017-09-01
Although rotational seismology has progressed in recent decades, the links between rotational ground motion and site soil conditions are poorly documented. New experiments were performed on Kefalonia Island (Greece) following two large earthquakes ( M W = 6.0, M W = 5.9) in early 2014 on two well-characterized sites (soft soil, V S30 250 m/s; rock, V S30 830 m/s, V S30 being harmonic average shear-wave velocity between 0 and 30 m depth). These earthquakes led to large six-component (three translations and three rotations) datasets of hundreds of well-recorded events. The relationship between peak translational acceleration versus peak rotational velocity is found sensitive to the site conditions mainly for the rotation around the vertical axis (torsion; dominated by Love waves): the stiffer the soil, the lower the torsion, for a given level of translational acceleration. For rotation around the horizontal axes (rocking; dominated by Rayleigh waves), this acceleration/rotation relationship exhibits much weaker differences between soft and rock sites. Using only the rotation sensor, an estimate of the Love-to-Rayleigh energy ratios could be carried out and provided the same results as previous studies that have analyzed the Love- and Rayleigh-wave energy proportions using data from translational arrays deployed at the same two sites. The coupling of translational and rotational measurements appears to be useful, not only for direct applications of engineering seismology, but also to investigate the composition of the wavefield, while avoiding deployment of dense arrays. The availability of new, low-noise rotation sensors that are easy to deploy in the field is of great interest and should extend the use of rotation sensors and expand their possible applications.[Figure not available: see fulltext.
Longitudinal Consistency in Self-Reported Age of First Vaginal Intercourse Among Young Adults
Goldberg, Shoshana K.; Haydon, Abigail A.; Herring, Amy H.; Halpern, Carolyn T.
2014-01-01
We examined consistency in self-reports of age at first vaginal sex among 9,399 male and female respondents who participated in Waves III and IV (separated by approximately 7 years) of the National Longitudinal Study of Adolescent Health (Add Health). Respondents were coded as consistent if they reported an age at first vaginal intercourse at Wave IV that was within 1 year of the age they reported at Wave III. Sociodemographic, behavioral, and cognitive predictors of consistency were examined using bivariate and multivariate logistic regression. Overall, 85.43% of respondents were able to provide consistent reports. Among both males and females, consistency was associated with age, years since first vaginal intercourse, race/ethnicity, and lifetime number of other-sex partners in final multivariate models. Respondents who were older and had more recently had their first sexual experience were more likely to be consistent. For females only, those who reported a history of non-parental, physically forced sex were less likely to be consistent. Most young adults consistently report age at first vaginal intercourse, supporting the credibility of retrospective self-reports about salient sexual events such as timing of first vaginal intercourse. PMID:23237101
Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.
Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver
2014-12-02
Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.
Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum
Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver
2014-01-01
Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349
Self-consistent chaos in a mean-field Hamiltonian model of fluids and plasmas
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, D.; Firpo, Marie-Christine
2002-11-01
We present a mean-field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas. In plasmas, the model describes the self-consistent evolution of electron holes and clumps in phase space. In fluids, the model describes the dynamics of vortices with negative and positive circulation in shear flows. The mean-field nature of the system makes it a tractable model to study the dynamics of large degrees-of-freedom, coupled Hamiltonian systems. Here we focus in the role of self-consistent chaos in the formation and destruction of phase space coherent structures. Numerical simulations in the finite N and in the Narrow kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles, and show that the N = 2 limit has a family of rotating integrable solutions described by a one degree-of-freedom nontwist Hamiltonian. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. For a class of initial conditions, the mean field exhibits a self-consistent, elliptic-hyperbolic bifurcation that leads to the destruction of the dipole and violent mixing of the phase space.
Subcritical Thermal Convection of Liquid Metals in a Rapidly Rotating Sphere
NASA Astrophysics Data System (ADS)
Kaplan, E. J.; Schaeffer, N.; Vidal, J.; Cardin, P.
2017-09-01
Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here, we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct numerical simulation. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superseded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are smoothly connected. As the planetary core rotates faster, the smooth transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ek <10-6. Here, the strong branch persists even as the thermal forcing drops well below the linear onset of convection (Ra =0.7 Racrit in this study). We highlight the importance of the Reynolds stress, which is required for convection to subsist below the linear onset. In addition, the Péclet number is consistently above 10 in the strong branch. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets through a subcritical bifurcation.
Low-frequency approximation for high-order harmonic generation by a bicircular laser field
NASA Astrophysics Data System (ADS)
Milošević, D. B.
2018-01-01
We present low-frequency approximation (LFA) for high-order harmonic generation (HHG) process. LFA represents the lowest-order term of an expansion of the final-state interaction matrix element in powers of the laser-field frequency ω . In this approximation the plane-wave recombination matrix element which appears in the strong-field approximation is replaced by the exact laser-free recombination matrix element calculated for the laser-field dressed electron momenta. First, we have shown that the HHG spectra obtained using the LFA agree with those obtained solving the time-dependent Schrödinger equation. Next, we have applied this LFA to calculate the HHG rate for inert gases exposed to a bicircular field. The bicircular field, which consists of two coplanar counter-rotating fields having different frequencies (usually ω and 2 ω ), is presently an important subject of scientific research since it enables efficient generation of circularly polarized high-order harmonics (coherent soft x rays). Analyzing the photorecombination matrix element we have found that the HHG rate can efficiently be calculated using the angular momentum basis with the states oriented in the direction of the bicircular field components. Our numerical results show that the HHG rate for atoms having p ground state, for higher high-order harmonic energies, is larger for circularly polarized harmonics having the helicity -1 . For lower energies the harmonics having helicity +1 prevails. The transition between these two harmonic energy regions can appear near the Cooper minimum, which, in the case of Ar atoms, makes the selection of high-order harmonics having the same helicity much easier. This is important for applications (for example, for generation of attosecond pulse trains of circularly polarized harmonics).
Roucou, Anthony; Kleiner, Isabelle; Goubet, Manuel; Bteich, Sabath; Mouret, Gael; Bocquet, Robin; Hindle, Francis; Meerts, W Leo; Cuisset, Arnaud
2018-05-07
The monitoring of gas-phase mononitrotoluenes is crucial for defence, civil security and environmental interests because they are used as taggant for TNT detection and in the manufacturing of industrial compounds such as dyestuffs. In this study, we have succeeded to measure and analyse at high-resolution a room temperature rotationally resolved millimetre-wave spectrum of meta-nitrotoluene (3-NT). Experimental and theoretical difficulties have been overcome, in particular, those related to the low vapour pressure of 3-NT and to the presence of a CH 3 internal rotation in an almost free rotation regime (V 3 =6.7659(24) cm -1 ). Rotational spectra have been recorded in the microwave and millimetre-wave ranges using a supersonic jet Fourier Transform microwave spectrometer (T rot <10 K) and a millimetre-wave frequency multiplication chain (T=293 K), respectively. Spectral analysis of pure rotation lines in the vibrational ground state and in the first torsional excited state supported by quantum chemistry calculations permits the rotational energy of the molecule, the hyperfine structure due to the 14 N nucleus, and the internal rotation of the methyl group to be characterised. A line list is provided for future in situ detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liberation of a pinned spiral wave by a rotating electric pulse
NASA Astrophysics Data System (ADS)
Chen, Jiang-Xing; Peng, Liang; Ma, Jun; Ying, He-Ping
2014-08-01
Spiral waves may be pinned to anatomical heterogeneities in the cardiac tissue, which leads to monomorphic ventricular tachycardia. Wave emission from heterogeneities (WEH) induced by electric pulses in one direction (EP) is a promising method for liberating such waves by using heterogeneities as internal virtual pacing sites. Here, based on the WEH effect, a new mechanism of liberation by means of a rotating electric pulse (REP) is proposed in a generic model of excitable media. Compared with the EP, the REP has the advantage of opening wider time window to liberate pinned spiral. The influences of rotating direction and frequency of the REP, and the radius of the obstacles on this new mechanism are studied. We believe this strategy may improve manipulations with pinned spiral waves in heart experiments.
Efficiency of wave-driven rigid body rotation toroidal confinement
NASA Astrophysics Data System (ADS)
Rax, J. M.; Gueroult, R.; Fisch, N. J.
2017-03-01
The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.
Wave fluctuations in the system with some Yang-Mills condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorov, G., E-mail: zhoraprox@yandex.ru; Pasechnik, R., E-mail: Roman.Pasechnik@thep.lu.se; Vereshkov, G., E-mail: gveresh@gmail.com
2016-12-15
Self-consistent dynamics of non-homogeneous fluctuations and homogeneous and isotropic condensate of Yang–Mills fields was investigated in zero, linear and quasilinear approximations over the wave modes in the framework of N = 4 supersymmetric model in Hamilton gauge in quasiclassical theory. The models with SU(2), SU(3) and SU(4) gauge groups were considered. Particle production effect and effect of generation of longitudinal oscillations were obtained.
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2018-05-01
For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.
Study of a Novel Oscillating Surge Wave Energy Converter: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M; Choiniere, Michael; Thiagarajan, Krish P.
This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. Thismore » ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.« less
Migliaccio, Americo A; Cremer, Phillip D; Aw, Swee T; Halmagyi, G Michael; Curthoys, Ian S; Minor, Lloyd B; Todd, Michael J
2003-07-01
The aim of this study was to determine whether vergence-mediated changes in the axis of eye rotation in the human vestibulo-ocular reflex (VOR) would obey Listing's Law (normally associated with saccadic eye movements) independent of the initial eye position. We devised a paradigm for disassociating the saccadic velocity axis from eye position by presenting near and far targets that were centered with respect to one eye. We measured binocular 3-dimensional eye movements using search coils in ten normal subjects and 3-dimensional linear head acceleration using Optotrak in seven normal subjects. The stimuli consisted of passive, unpredictable, pitch head rotations with peak acceleration of approximately 2000 degrees /s(2 )and amplitude of approximately 20 degrees. During the pitch head rotation, each subject fixated straight ahead with one eye, whereas the other eye was adducted 4 degrees during far viewing (94 cm) and 25 degrees during near viewing (15 cm). Our data showed expected compensatory pitch rotations in both eyes, and a vergence-mediated horizontal rotation only in the adducting eye. In addition, during near viewing we observed torsional eye rotations not only in the adducting eye but also in the eye looking straight ahead. In the straight-ahead eye, the change in torsional eye velocity between near and far viewing, which began approximately 40 ms after the start of head rotation, was 10+/-6 degrees /s (mean +/- SD). This change in torsional eye velocity resulted in a 2.4+/-1.5 degrees axis tilt toward Listing's plane in that eye. In the adducting eye, the change in torsional eye velocity between near and far viewing was 16+/-6 degrees /s (mean +/- SD) and resulted in a 4.1+/-1.4 degrees axis tilt. The torsional eye velocities were conjugate and both eyes partially obeyed Listing's Law. The axis of eye rotation tilted in the direction of the line of sight by approximately one-third of the angle between the line of sight and a line orthogonal to Listing's plane. This tilt was higher than predicted by the one-quarter rule. The translational acceleration component of the pitch head rotation measured 0.5 g and may have contributed to the increased torsional component observed during near viewing. Our data show that vergence-mediated eye movements obey a VOR/Listing's Law compromise strategy independent of the initial eye position.
Wavelength-doubling optical parametric oscillator
Armstrong, Darrell J [Albuquerque, NM; Smith, Arlee V [Albuquerque, NM
2007-07-24
A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.
Approximation of wave action flux velocity in strongly sheared mean flows
NASA Astrophysics Data System (ADS)
Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei
2017-08-01
Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.
Lee, William H K.
2016-01-01
Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.
Rotating-fluid experiments with an atmospheric general circulation model
NASA Technical Reports Server (NTRS)
Geisler, J. E.; Pitcher, E. J.; Malone, R. C.
1983-01-01
In order to determine features of rotating fluid flow that are dependent on the geometry, rotating annulus-type experiments are carried out with a numerical model in spherical coordinates. Rather than constructing and testing a model expressly for this purpose, it is found expedient to modify an existing general circulation model of the atmosphere by removing the model physics and replacing the lower boundary with a uniform surface. A regime diagram derived from these model experiments is presented; its major features are interpreted and contrasted with the major features of rotating annulus regime diagrams. Within the wave regime, a narrow region is found where one or two zonal wave numbers are dominant. The results reveal no upper symmetric regime; wave activity at low rotation rates is thought to be maintained by barotropic rather than baroclinic processes.
1989-08-07
One class (I. discussed in §4) of bifurcating flows is again coiumnar. so there are no axial varations: a second class Il1. §6) consists of solitary...34Amplitude Expansion for Viscous Rotating Pipe Flow Near a Degenerate Bifurcation Point ( A . Mahalov & S. Leibovich) American Physical Society Division of...Fluid Mechanics, Buffalo, NY, November 22, 1988. "Fully Nonlinear Waves on Vortices" ( A . Kribus & S. Leibovich) Seminars "Static bifurcations of vortex
The rollup of a vortex layer near a wall
NASA Technical Reports Server (NTRS)
Jimenez, Javier; Orlandi, Paolo
1993-01-01
The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.
Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom
NASA Astrophysics Data System (ADS)
Plenio, M. B.; Hartley, J.; Eisert, J.
2004-03-01
We study the entanglement dynamics of a system consisting of a large number of coupled harmonic oscillators in various configurations and for different types of nearest-neighbour interactions. For a one-dimensional chain, we provide compact analytical solutions and approximations to the dynamical evolution of the entanglement between spatially separated oscillators. Key properties such as the speed of entanglement propagation, the maximum amount of transferred entanglement and the efficiency for the entanglement transfer are computed. For harmonic oscillators coupled by springs, corresponding to a phonon model, we observe a non-monotonic transfer efficiency in the initially prepared amount of entanglement, i.e. an intermediate amount of initial entanglement is transferred with the highest efficiency. In contrast, within the framework of the rotating-wave approximation (as appropriate, e.g. in quantum optical settings) one finds a monotonic behaviour. We also study geometrical configurations that are analogous to quantum optical devices (such as beamsplitters and interferometers) and observe characteristic differences when initially thermal or squeezed states are entering these devices. We show that these devices may be switched on and off by changing the properties of an individual oscillator. They may therefore be used as building blocks of large fixed and pre-fabricated but programmable structures in which quantum information is manipulated through propagation. We discuss briefly possible experimental realizations of systems of interacting harmonic oscillators in which these effects may be confirmed experimentally.
Applications of seismic spatial wavefield gradient and rotation data in exploration seismology
NASA Astrophysics Data System (ADS)
Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.
2017-12-01
Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C recordings, a total of 49 components of the seismic wavefield can be excited and recorded. Such data potentially allow to further improve wavefield separation and may find application in directional imaging and coherent noise suppression.
Bottom boundary layer forced by finite amplitude long and short surface waves motions
NASA Astrophysics Data System (ADS)
Elsafty, H.; Lynett, P.
2018-04-01
A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave nonlinearity.
A macroscopic scale model of bacterial flagellar bundling
NASA Astrophysics Data System (ADS)
Kim, Munju; Bird, James C.; van Parys, Annemarie J.; Breuer, Kenneth S.; Powers, Thomas R.
2003-12-01
Escherichia coli and other bacteria use rotating helical filaments to swim. Each cell typically has about four filaments, which bundle or disperse depending on the sense of motor rotation. To study the bundling process, we built a macroscopic scale model consisting of stepper motor-driven polymer helices in a tank filled with a high-viscosity silicone oil. The Reynolds number, the ratio of viscous to elastic stresses, and the helix geometry of our experimental model approximately match the corresponding quantities of the full-scale E. coli cells. We analyze digital video images of the rotating helices to show that the initial rate of bundling is proportional to the motor frequency and is independent of the characteristic relaxation time of the filament. We also determine which combinations of helix handedness and sense of motor rotation lead to bundling.
Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco
NASA Astrophysics Data System (ADS)
Drake, Jeremy J.; Delgado, Laura; Laming, J. Martin; Starrfield, Sumner; Kashyap, Vinay; Orlando, Salvatore; Page, Kim L.; Hernanz, M.; Ness, J.-U.; Gehrz, R. D.; van Rossum, Daan; Woodward, Charles E.
2016-07-01
The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s-1, an FWHM of 1200 ± 30 km s-1, and an average net blueshift of 165 ± 10 km s-1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10-7 M ⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.
Vortex formation through inertial wave focusing
NASA Astrophysics Data System (ADS)
Duran-Matute, Matias; Flor, Jan-Bert; Godeferd, Fabien
2011-11-01
We present a novel experimental and numerical study on the formation of columnar vortical structures by inertial waves in a rotating fluid. Two inertial-wave cones are generated by a vertically oscillating torus in a fluid in solid body rotation At the tip of the cones, there is a singular point towards which the energy of the waves gets focused. The particularity of this configuration, as compared to those of previous experiments (e.g. oscillating sphere or disc), is that the singular point's position within the fluid leads to complex non-linear wave interaction, which may lead to the formation of a localized vortex that expands in the vertical in the form of a Taylor column. Using detailed PIV measurements we consider the flow evolution from the localized wave overturning motion to the Taylor column formation as well as the inertial wave dynamics during this process, The results are discussed in the context of turbulence in rotating fluids. We acknowledge financial support from projects ANR ANISO and CIBLE.
Observations and analysis of Alfvén wave phase mixing in the Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Sarris, T. E.; Wright, A. N.; Li, X.
2009-03-01
Signatures of Alfvén wave phase mixing in the Earth's magnetosphere, observed as polarization rotation of a transverse, Pc5 magnetospheric pulsation, are presented and compared to theory. The polarization rotation occurred during a rare event of a dayside narrowband ULF magnetospheric pulsation that lasted for 5 consecutive days, from 24 to 30 November 1997; details of this event were reported by Sarris et al. (2009) through observations at geosynchronous orbit and on the ground. In this paper we investigate the polarization signatures of the pulsation by performing a detailed analysis of its transverse components as observed through hodogram plots. Density measurements from one of the Los Alamos National Laboratory (LANL) spacecraft which had its L shells closest to GOES-8 are used to calculate field line resonance frequencies at geosynchronous orbit; these frequency calculations show good agreement with the observed pulsations but also have a local time offset. For an instance of an observed polarization rotation we estimate the observed poloidal lifetime of the pulsation by the time taken for the poloidal and toroidal amplitudes to become equal, which we compare with the theoretical approximation to the poloidal lifetime, as calculated in a box model magnetosphere by Mann and Wright (1995). Density measurements from different LANL spacecraft at geosynchronous orbit and their varying L shells as derived from their varying local times are used to estimate a local gradient in the local Alfvén speed, which is then used in the calculation of the predicted poloidal lifetime. This is the first time that such polarization rotations are directly observed and compared with theoretical predictions.
Millimeter-wave spectroscopy of hydantoin, a possible precursor of glycine
NASA Astrophysics Data System (ADS)
Ozeki, Hiroyuki; Miyahara, Rio; Ihara, Hiroto; Todaka, Satoshi; Kobayashi, Kaori; Ohishi, Masatoshi
2017-04-01
Context. Hydantoin (Imidazolidine-2, 4-dione, C3H4N2O2) is a five-membered heterocyclic compound that is known to arise from prebiotic molecules such as glycolic acid and urea, and to give the simplest amino acid, glycine, by hydrolysis under acidic condition. The gas chromatography combined with the mass spectrometry of carbonaceous chondrites lead to the detection of this molecule as well as several kinds of amino acids. Aims: The lack of spectroscopic information, especially on the rotational constants, has prevented us from conducting a search for hydantoin in interstellar space. If a rotational temperature of 100 K is assumed as the kinetic temperature of a star-forming region, the spectral intensity is expected to be at its maximum in the millimeter-wave region. Laboratory spectroscopy of hydantoin in the millimeter-wave region is the most important in providing accurate rest frequencies to be used for astronomical research. Methods: Pure rotational spectra of hydantoin were observed in the millimeter-wave region using the frequency modulated microwave spectrometer at Toho University. Solid hydantoin was heated to around 150 °C to provide appropriate vapor pressure. Quantum chemical calculations suggest that the permanent dipole moment of this molecule lies almost along the b-molecular axis, so that spectral search for b-type R-branch transition has been conducted. Results: Rotational and centrifugal distortion constants up to the fourth order for the ground vibrational state of hydantoin were accurately determined by measuring 161 b-type transitions in the frequency range between 90 and 370 GHz. In addition, we succeeded in assigning 230 satellite lines, which were attributed to the two vibrationally excited states. The spectral intensity ratio of these lines indicates that these states correspond to the low-lying (approximately 150 cm-1 above the ground state) vibrational modes. Conclusions: The frequency catalog of hydantoin in the millimeter-wave range was created for the ground state and for the two low-lying excited states, and are ideal for a future astronomical research. The 1σ frequency accuracy is lower than 100 kHz for the lines with upper-state energy below 200 cm-1, corresponding to a velocity resolution of 0.1 km s-1 at 300 GHz The spectral line list of hydantoin is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A44
NASA Astrophysics Data System (ADS)
Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming
2018-03-01
The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.
Six components observations of local earthquakes during the 2016 Central Italy seismic sequence
NASA Astrophysics Data System (ADS)
Simonelli, A.; Bernauer, F.; Chow, B.; Braun, T.; Wassermann, J. M.; Igel, H.
2017-12-01
For many years the seismological community has looked for a reliable, sensitive, broadband three-component portable rotational sensor. In this preliminary study, we show the possibility of measuring and extracting relevant seismological information from local earthquakes. We employ portable three-component rotational sensors, insensitive to translations, which operate on optical interferometry principles (Sagnac effect). Multiple sensors recording redundantly add significance to the measurements.During the Central Italy seismic sequence in November 2016, we deployed two portable fiber-optic gyroscopes (BlueSeis3A from iXBlue and LCG demonstrator from LITEF) and a broadband seismometer in Colfiorito, Italy. We present here the six-component observations, with analysis of rotational (three redundant components) and translational (three components) ground motions, generated by earthquakes at local distances. For each seismic event, we compare coherence between rotational sensors and estimate a back azimuth consistent with theoretical values. We also estimate Love and Rayleigh wave phase velocities in the 5 to 10 Hz frequency range.
Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng
Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less
Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...
2017-04-17
Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less
NASA Technical Reports Server (NTRS)
Kennedy, Ronald; Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.
Spiral wave chimera states in large populations of coupled chemical oscillators
NASA Astrophysics Data System (ADS)
Totz, Jan Frederik; Rode, Julian; Tinsley, Mark R.; Showalter, Kenneth; Engel, Harald
2018-03-01
The coexistence of coherent and incoherent dynamics in a population of identically coupled oscillators is known as a chimera state1,2. Discovered in 20023, this counterintuitive dynamical behaviour has inspired extensive theoretical and experimental activity4-15. The spiral wave chimera is a particularly remarkable chimera state, in which an ordered spiral wave rotates around a core consisting of asynchronous oscillators. Spiral wave chimeras were theoretically predicted in 200416 and numerically studied in a variety of systems17-23. Here, we report their experimental verification using large populations of nonlocally coupled Belousov-Zhabotinsky chemical oscillators10,18 in a two-dimensional array. We characterize previously unreported spatiotemporal dynamics, including erratic motion of the asynchronous spiral core, growth and splitting of the cores, as well as the transition from the chimera state to disordered behaviour. Spiral wave chimeras are likely to occur in other systems with long-range interactions, such as cortical tissues24, cilia carpets25, SQUID metamaterials26 and arrays of optomechanical oscillators9.
Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber.
Londero, Pablo; Venkataraman, Vivek; Bhagwat, Amar R; Slepkov, Aaron D; Gaeta, Alexander L
2009-07-24
We demonstrate extremely efficient four-wave mixing with gains greater than 100 at microwatt pump powers and signal-to-idler conversion of 50% in Rb vapor confined to a hollow-core photonic band-gap fiber. We present a theoretical model that demonstrates such efficiency is consistent with the dimensions of the fiber and the optical depths attained. This is, to our knowledge, the largest four-wave mixing gain observed at such low total pump powers and the first demonstrated example of four-wave mixing in an alkali-metal vapor system with a large (approximately 30 MHz) ground state decoherence rate.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Leslie, F. W.
1991-01-01
The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.
Trajectory Control of Small Rotating Projectiles by Laser Sparks
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard
2015-09-01
The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.
NASA Astrophysics Data System (ADS)
Yan, Yiying; Lü, Zhiguo; Zheng, Hang
2013-11-01
We investigate the fluorescence spectrum of a two-level system driven by a monochromatic classical field by the Born-Markovian master equation based on a unitary transformation. The main purpose is to understand the effects of counter-rotating-wave terms of the driving on spectral features of the fluorescence. We have derived an analytical expression for the fluorescence spectrum, which is different from Mollow's theory, while Mollow's result on resonance is the limiting case of ours in moderately weak driving regimes. Our results demonstrate precisely that the counter-rotating-wave terms of the driving play an important role in the fluorescence spectrum for intense driving: (i) the counter-rotating coupling suppresses the red sideband in the Mollow triplet and it enhances the blue one in explicitly contrast to the well-known equal intensity of the sideband in Mollow's theory, (ii) the higher-order Mollow triplets appear as a characteristic spectral feature arising from counter-rotating-wave terms of the driving, and (iii) a significant frequency shift of the sidebands is observed, which depends on both the detuning and driving strength.
Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions
NASA Technical Reports Server (NTRS)
Barrow, C. H.
1979-01-01
Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.
Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument
NASA Technical Reports Server (NTRS)
Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.
2014-01-01
Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhao, Li-Ming
2012-05-01
In this paper, the second-harmonic generation (SHG) in a one-dimensional nonlinear crystal that is embedded in air is investigated. Previously, the identical configuration was studied in Li Z. Y. et al., Phys. Rev. B, 60 (1999) 10644, without the use of the slowly varying amplitude approximation (SVAA), but by adopting the infinite plane-wave approximation (PWA), despite the fact that this approximation is not quite applicable to such a system. We calculate the SHG conversion efficiency without a PWA, and compare the results with those from the quoted reference. The investigation reveals that conversion efficiencies of SHG as calculated by the two methods appear to exhibit significant differences, and that the SHG may be modulated by the field of a fundamental wave (FW). The ratio between SHG conversion efficiencies as produced by the two methods shows a periodic variation, and this oscillatory behavior is fully consistent with the variation in transmittance of the FW. Quasi-phase matching (QPM) is also studied, and we find that the location of the peak for SHG conversion efficiency deviates from Δd=0, which differs from the conventional QPM results.
Nearly steady flows in GONG prototype data
NASA Technical Reports Server (NTRS)
Hathaway, David H.
1993-01-01
Doppler velocity images obtained with the GONG prototype instrument were analyzed to measure the nearly steady photospheric flows. The data consists of 88 images each of velocity, intensity, and modulation obtained at 20:00 UT on 88 days from July 1992 to February 1994. Each velocity image was temporally filtered to remove the p-mode oscillations, masked to exclude active regions, and then analyzed using spherical harmonics and orthogonal functions as described by Hathaway (1992). The spectral coefficients show very consistent results for the entire time interval with some evidence of year-to-year variations. The rotation profile agrees well with previous results and exhibits a north-south asymmetry that reverses sign during the 20 month interval. The residual rotation velocities exhibit structures with amplitudes of approximately 5 m/s that may be related to torsional oscillations. The meridional circulation is directed from the equator toward the poles with a peak velocity in the photosphere of approximately 50 m/s. The higher order components are very weak but indicate a divergent flow from the mid-latitudes (opposite that found for the June 1989 data). The convective limb shift is well fit by a 3rd order polynomial. The convection spectrum has a prominent peak at spherical harmonic degrees of l approximately 150 with very little signal in the low degree modes. Analysis of this signal shows that there is no evidence for giant cell convection at the level of approximately 10 m/s for all modes up to l = 32.
Makeev, Alexei G; Kurkina, Elena S; Kevrekidis, Ioannis G
2012-06-01
Kinetic Monte Carlo simulations are used to study the stochastic two-species Lotka-Volterra model on a square lattice. For certain values of the model parameters, the system constitutes an excitable medium: travelling pulses and rotating spiral waves can be excited. Stable solitary pulses travel with constant (modulo stochastic fluctuations) shape and speed along a periodic lattice. The spiral waves observed persist sometimes for hundreds of rotations, but they are ultimately unstable and break-up (because of fluctuations and interactions between neighboring fronts) giving rise to complex dynamic behavior in which numerous small spiral waves rotate and interact with each other. It is interesting that travelling pulses and spiral waves can be exhibited by the model even for completely immobile species, due to the non-local reaction kinetics.
Qian, Yu; Zhang, Zhaoyang
2016-01-01
In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.
Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian
2017-06-01
Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.
Approximate optimal tracking control for near-surface AUVs with wave disturbances
NASA Astrophysics Data System (ADS)
Yang, Qing; Su, Hao; Tang, Gongyou
2016-10-01
This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles (AUVs) in the presence of wave disturbances. An approximate optimal tracking control (AOTC) approach is proposed. Firstly, a six-degrees-of-freedom (six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value (TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit (REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felker, Peter M., E-mail: felker@chem.ucla.edu
2014-11-14
The quantal translation-rotation (TR) states of the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound have been computed. The ten-dimensional problem (in the rigid-cage and rigid-H{sub 2} approximation) is solved by first approximating the H{sub 2} moieties as spherically symmetric and solving for their 6D translational eigenstates. These are then combined with H{sub 2} free rotational states in a product basis that is used to diagonalize the full TR hamiltonian. The computed low-energy eigenstates have translational components that are essentially identical to the 6D translational eigenstates and rotational components that are 99.9% composed of rotationally unexcited H{sub 2} moieties.more » In other words, TR coupling is minimal for the low-energy states of the species. The low-energy level structure is found to be substantially more congested than that of the more tightly packed (p-H{sub 2}){sub 4}@5{sup 12}6{sup 4} clathrate species. The level structure is also shown to be understandable in terms of a model of (H{sub 2}){sub 2} as a semirigid diatomic species consisting of two spherically symmetric H{sub 2} pseudo-atoms.« less
Eckhaus-Benjamin-Feir Instability in Rotating Convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Ecke, R.E.
1997-06-01
We report experimental measurements of a traveling-wave state in rotating Rayleigh-B{acute e}nard convection. The fluid was water with a Prandtl number of 6.3 and a dimensionless rotation rate of 274. The marginal and Eckhaus-Benjamin-Feir stability boundaries were determined and the local amplitude and wave number were obtained from demodulation of shadowgraph images. The phase-diffusion coefficient and group velocity were measured in the stable wave number band. This system was found to be well described by the one-dimensional complex Ginzburg-Landau equation. {copyright} {ital 1997} {ital The American Physical Society}
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.
1977-01-01
A detailed vibrational-rotational (V-R) close-coupling formulation of electron-diatomic-molecule scattering is developed in which the target molecular axis is chosen to be the z-axis and the resulting coupled differential equation is solved in the moving body-fixed frame throughout the entire interaction region. The coupled differential equation and asymptotic boundary conditions in the body-fixed frame are given for each parity, and procedures are outlined for evaluating V-R transition cross sections on the basis of the body-fixed transition and reactance matrix elements. Conditions are discussed for obtaining identical results from the space-fixed and body-fixed formulations in the case where a finite truncated basis set is used. The hybrid theory of Chandra and Temkin (1976) is then reformulated, relevant expressions and formulas for the simultaneous V-R transitions of the hybrid theory are obtained in the same forms as those of the V-R close-coupling theory, and distorted-wave Born-approximation expressions for the cross sections of the hybrid theory are presented. A close-coupling approximation that conserves the internuclear axis component of the incident electronic angular momentum (l subscript z-prime) is derived from the V-R close-coupling formulation in the moving body-fixed frame.
Nearshore sandbar rotation at single-barred embayed beaches
NASA Astrophysics Data System (ADS)
Blossier, B.; Bryan, K. R.; Daly, C. J.; Winter, C.
2016-04-01
The location of a shore-parallel nearshore sandbar derived from 7 years of video imagery data at the single-barred embayed Tairua Beach (NZ) is investigated to assess the contribution of barline rotation to the overall morphodynamics of sandbars in embayed environments and to characterize the process of rotation in relation to external conditions. Rotation induces cross-shore barline variations at the embayment extremities on the order of magnitude of those induced by alongshore uniform cross-shore migration of the bar. Two semiempirical models have been developed to relate the barline cross-shore migration and rotation to external wave forcing conditions. The rotation model is directly derived from the cross-shore migration model. Therefore, its formulation advocates for a primary role of cross-shore processes in the rotation of sandbars at embayed beaches. The orientation evolves toward an equilibrium angle directly related to the alongshore wave energy gradient due to two different mechanisms. Either the bar extremities migrate in opposite directions with no overall cross-shore bar migration (pivotal rotation) or the rotation relates to an overall migration of the barline which is not uniform along the beach (migration-driven rotation). Migration and rotation characteristic response times are similar, ranging from 10 to 30 days for mild and energetic wave conditions and above 200 days during very calm conditions or when the bar is located far offshore.
Drift waves control using emissive cathodes in the laboratory
NASA Astrophysics Data System (ADS)
Plihon, N.; Desangles, V.; De Giorgio, E.; Bousselin, G.; Marino, R.; Pustelnik, N.; Poye, A.
2017-12-01
Low frequency plasma fluctuations are known to be the cause of strong transport perpendicular to magnetic guiding field line. These low frequency drift waves have been studied in linear devices in the laboratory over the last two decades. Their excitation or mitigation have been addressed using different drives, such as ring biasing or electromagnetic low frequency fields. Here we present an experimental characterization of the behavior of drift waves when the profile of the background plasma rotation is controlled using hot emissive cathodes. We show that electron emission from the cathodes modify the plasma potential, which in turn controls the rotation profile. Mitigation or enhancement of drift waves (on the amplitude or azimuthal mode number) is observed depending on the plasma rotation profile.
Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi
2016-04-15
We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.
Perkins, Bradford G; Häber, Thomas; Nesbitt, David J
2005-09-01
An apparatus for detailed study of quantum state-resolved inelastic energy transfer dynamics at the gas-liquid interface is described. The approach relies on supersonic jet-cooled molecular beams impinging on a continuously renewable liquid surface in a vacuum and exploits sub-Doppler high-resolution laser absorption methods to probe rotational, vibrational, and translational distributions in the scattered flux. First results are presented for skimmed beams of jet-cooled CO(2) (T(beam) approximately 15 K) colliding at normal incidence with a liquid perfluoropolyether (PFPE) surface at E(inc) = 10.6(8) kcal/mol. The experiment uses a tunable Pb-salt diode laser for direct absorption on the CO(2) nu(3) asymmetric stretch. Measured rotational distributions in both 00(0)0 and 01(1)0 vibrational manifolds indicate CO(2) inelastically scatters from the liquid surface into a clearly non-Boltzmann distribution, revealing nonequilibrium dynamics with average rotational energies in excess of the liquid (T(s) = 300 K). Furthermore, high-resolution analysis of the absorption profiles reveals that Doppler widths correspond to temperatures significantly warmer than T(s) and increase systematically with the J rotational state. These rotational and translational distributions are consistent with two distinct gas-liquid collision pathways: (i) a T approximately 300 K component due to trapping-desorption (TD) and (ii) a much hotter distribution (T approximately 750 K) due to "prompt" impulsive scattering (IS) from the gas-liquid interface. By way of contrast, vibrational populations in the CO(2) bending mode are inefficiently excited by scattering from the liquid, presumably reflecting much slower T-V collisional energy transfer rates.
Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow
NASA Astrophysics Data System (ADS)
Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph
2016-04-01
We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.
Superconducting resonators as beam splitters for linear-optics quantum computation.
Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P
2010-06-11
We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.
Crystallographic features of the approximant H (Mn7Si2V) phase in the Mn-Si-V alloy system
NASA Astrophysics Data System (ADS)
Nakayama, Kei; Komatsuzaki, Takumi; Koyama, Yasumasa
2018-07-01
The intermetallic compound H (Mn7Si2V) phase in the Mn-Si-V alloy system can be regarded as an approximant phase of the dodecagonal quasicrystal as one of the two-dimensional quasicrystals. To understand the features of the approximant H phase, in this study, the crystallographic features of both the H phase and the (σ → H) reaction in Mn-Si-V alloy samples were investigated, mainly by transmission electron microscopy. It was found that, in the H phase, there were characteristic structural disorders with respect to an array of a dodecagonal structural unit consisting of 19 dodecagonal atomic columns. Concretely, penetrated structural units consisting of two dodecagonal structural units were presumed to be typical of such disorders. An interesting feature of the (σ → H) reaction was that regions with a rectangular arrangement of penetrated structural units (RAPU) first appeared in the σ matrix as the initial state, and H regions were then nucleated in contact with RAPU regions. The subsequent conversion of RAPU regions into H regions eventually resulted in the formation of the approximant H state as the final state. Furthermore, atomic positions in both the H structure and the dodecagonal quasicrystal were examined using a simple plane-wave model with 12 plane waves.
NASA Astrophysics Data System (ADS)
Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Shipman, Steven T.; Mae, Yoshiaki; Hirose, Kazue; Hatanaka, Shota; Kobayashi, Kaori
2014-05-01
New and previous spectroscopic data were recorded for the two-top molecule methyl acetate using five spectrometers in four different labs: a room temperature chirped-pulse Fourier transform microwave (FTMW) spectrometer in the frequency range from 8.7 to 26.5 GHz, two molecular beam FTMW spectrometers (2-40 GHz), a free jet absorption Stark-modulated spectrometer (60-78 GHz), and a room temperature millimeter-wave spectrometer (44-68 GHz). Approximately 800 new lines with J up to 40 and K up to 16 were assigned. In total, 1603 lines were fitted with 34 parameters using an internal rotation Hamiltonian in the Rho Axis Method (RAM) and the program BELGI-Cs-2tops to standard deviations close to the experimental uncertainties. More precise determinations of the top-top interaction and the J, K dependent parameters were carried out.
How well can ultracompact bodies imitate black hole ringdowns?
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George
2018-02-01
The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general-relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow-rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ by as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near-future Advanced LIGO/Virgo searches.
Tom, Brian A; Mills, Andrew A; Wiczer, Michael B; Crabtree, Kyle N; McCall, Benjamin J
2010-02-28
In an effort to develop a source of H(3)(+) that is almost entirely in a single quantum state (J=K=1), we have successfully generated a plasma that is enriched to approximately 83% in para-H(3)(+) at a rotational temperature of 80 K. This enrichment is a result of the nuclear spin selection rules at work in hydrogenic plasmas, which dictate that only para-H(3)(+) will form from para-H(2), and that para-H(3)(+) can be converted to ortho-H(3)(+) by subsequent reaction with H(2). This is the first experimental study in which the H(2) and H(3) (+) nuclear spin selection rules have been observed at cold temperatures. The ions were produced from a pulsed solenoid valve source, cooled by supersonic expansion, and interrogated via continuous-wave cavity ringdown spectroscopy.
NASA Technical Reports Server (NTRS)
Bhat, R. B.; Mixson, J. S.
1978-01-01
Interior noise in the fuselage of a twin-engine, propeller-driven aircraft with two propellers rotating in opposite directions is studied analytically. The fuselage was modeled as a stiffened cylindrical shell with simply supported ends, and the effects of stringers and frames were averaged over the shell surface. An approximate mathematical model of the propeller noise excitation was formulated which includes some of the propeller noise characteristics such as sweeping pressure waves around the sidewalls due to propeller rotation and the localized nature of the excitation with the highest levels near the propeller plane. Results are presented in the form of noise reduction, which is the difference between the levels of external and interior noise. The influence of propeller noise characteristics on the noise reduction was studied. The results indicate that the sweep velocity of the excitation around the fuselage sidewalls is critical to noise reduction.
NASA Astrophysics Data System (ADS)
Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred
2018-05-01
Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-filled metallic waveguides with a stationary axial magnetic field. These waves with extraordinary polarization can effectively interact with relativistic electron beams rotating along large Larmor orbits in the gap, which separates the plasma column from the waveguide wall. Both widening the layer and increasing the beam particle density are demonstrated to cause resonance overlapping seen from the perspective of the growth rate dependence on the effective wave number.
Effect of Faraday rotation on the circular polarization of the Crab Nebula
NASA Technical Reports Server (NTRS)
Gerver, M. J.
1974-01-01
The effect of Faraday rotation on the circular polarization of an electromagnetic wave propagating through a magnetized plasma is calculated for various limits of the plasma and wave parameters appropriate to a 30-Hz wave in the Crab Nebula. It is shown that a static magnetic field of the proper geometry and only a few times stronger than the wave field can reduce the circular polarization of the nonlinear inverse Compton radiation to a value below the observed upper limit.-
Trapped waves on the mid-latitude β-plane
NASA Astrophysics Data System (ADS)
Paldor, Nathan; Sigalov, Andrey
2008-08-01
A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.
Green, Lee A; Gorenflo, Daniel W; Wyszewianski, Leon
2002-11-01
The goal of this study was to develop a psychometric instrument that classified physiciansamprsquo response styles to new information as seekers, receptives, traditionalists, or pragmatists. This classification was based on specific combinations of 3 scales: (a) belief in evidence vs experience as the basis of knowledge, (b) willingness to diverge from common or previous practice, and (c) sensitivity to pragmatic concerns of practice. The instrument will help focus efforts to change practice more accurately. This was a cross-sectional study of physician responses to a psychometric instrument. Paper-and-pencil survey forms were distributed to 3 waves of physicians, with revision for improved internal consistency at each iteration. Participants were 1393 primary care physicians at continuing education events in the Midwest or at primary care clinic sites in the Veteransamprsquo Health Administration system. Internal consistency was measured by factor analysis with orthogonal rotation and Cronbachamprsquos alpha. A total of 1287 usable instruments were returned (106, 1120, and 61 in the 3 iterations, respectively), representing approximately three fourths of distributed forms. Final scale internal consistencies were a = 0.79, b = 0.74, and c = 0.68. The patterns of scores on the 3 scales were consistent with the predictions of the theoretical scheme of physician types. The "seeker" type was the rarest, at fewer than 3%. It is possible to reliably classify physicians into categories that a theoretical framework predicts will respond differently to different interventions for implementing guidelines and translating research findings into practice. The next step is to demonstrate that the classification predicts physician practice behavior.
NASA Technical Reports Server (NTRS)
1976-01-01
The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.
An imaging method of wavefront coding system based on phase plate rotation
NASA Astrophysics Data System (ADS)
Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua
2018-01-01
Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.
Possible acceleration of cosmic rays in a rotating system: Uehling-Uhlenbeck model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwang-Hua, Chu Rainer, E-mail: 1559877413@qq.com
2016-11-15
We illustrate the possible acceleration of cosmic rays passing through a kind of amplification channel (via diffusion modes of propagating plane-wave fronts) induced by a rotating system. Our analysis is mainly based on the quantum discrete kinetic model (considering a discrete Uehling-Uhlenbeck collision term), which has been used to study the propagation of plane (e.g., acoustic) waves in a system of rotating gases.
NASA Astrophysics Data System (ADS)
Kivelson, M.; Jia, X.
2013-12-01
In previous work we demonstrated that a magnetohydrodynamic (MHD) simulation of Saturn's magnetosphere in which periodicity is imposed by rotating vortical flows in the ionosphere reproduces many reported periodically varying properties of the system. Here we shall show that previously unreported features of the MHD simulation of Saturn's magnetosphere illuminate additional measured properties of the system. By averaging over a rotation period, we identify a global electric field whose magnitude is a few tenths of a mV/m (see Figure 1). The electric field intensity decreases with radial distance in the middle magnetosphere, consistent with drift speeds v=E/B of a few km/s towards the morning side and relatively independent of radial distance. The electric field within 10 RS in the equatorial plane is oriented from post-noon to post-midnight, in excellent agreement with observations [e.g., Thomsen et al., 2012; Andriopoulou et al., 2012, 2013; Wilson et al., 2013]. By following the electric field over a full rotation phase we identify oscillatory behavior whose magnitude is consistent with the reported fluctuations of measured electric fields. Of particular interest is the nature of the fast mode perturbations that produce periodic displacement of the magnetopause and flapping of the current sheet. Figure (2) shows the total perturbation pressure (the sum of magnetic and thermal pressure) in the equatorial plane at a rotation phase for which the ionospheric flow near noon is equatorward. By following the perturbations over a full rotation period, we demonstrate properties of the fast mode wave launched by the rotating flow structures and thereby characterize the 'cam' signal originally proposed by Espinosa et al. [2003].
Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.
Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin
2016-07-26
Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (<100 rpm) or motion frequencies (<2 Hz) energy, which fits the frequency range for most of the water wave based blue energy, while W-EMG is able to produce larger output at high frequencies (>10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.
NASA Astrophysics Data System (ADS)
Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William
2017-11-01
The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.
The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice
Qian, Yu; Zhang, Zhaoyang
2016-01-01
In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects. PMID:26900841
On wave dark matter in spiral and barred galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L., E-mail: lmedina@fis.cinvestav.mx, E-mail: bray@math.duke.edu, E-mail: tmatos@fis.cinvestav.mx
2015-12-01
We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particlesmore » simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.« less
NASA Astrophysics Data System (ADS)
Pigeon, J. J.; Tochitsky, S. Ya.; Welch, E. C.; Joshi, C.
2018-04-01
We present measurements of the third-order optical nonlinearity of Kr, Xe, N2, O2, and air at a wavelength near 10 µm by using four-wave mixing of ˜15 -GW /c m2 , 200-ps (full width at half maximum) C O2 laser pulses. Measurements in molecular gases resulted in an asymmetric four-wave mixing spectrum indicating that the nonlinear response is strongly affected by the delayed, rotational contribution to the effective nonlinear refractive index. Within the uncertainty of our measurements, we have found that the long-wavelength nonlinear refractive indices of these gases are consistent with measurements performed in the near IR.
NASA Astrophysics Data System (ADS)
Zhou, Yifan; Apai, Dániel; Schneider, Glenn H.; Marley, Mark S.; Showman, Adam P.
2016-02-01
Rotational modulations of brown dwarfs have recently provided powerful constraints on the properties of ultra-cool atmospheres, including longitudinal and vertical cloud structures and cloud evolution. Furthermore, periodic light curves directly probe the rotational periods of ultra-cool objects. We present here, for the first time, time-resolved high-precision photometric measurements of a planetary-mass companion, 2M1207b. We observed the binary system with Hubble Space Telescope/Wide Field Camera 3 in two bands and with two spacecraft roll angles. Using point-spread function-based photometry, we reach a nearly photon-noise limited accuracy for both the primary and the secondary. While the primary is consistent with a flat light curve, the secondary shows modulations that are clearly detected in the combined light curve as well as in different subsets of the data. The amplitudes are 1.36% in the F125W and 0.78% in the F160W filters, respectively. By fitting sine waves to the light curves, we find a consistent period of {10.7}-0.6+1.2 hr and similar phases in both bands. The J- and H-band amplitude ratio of 2M1207b is very similar to a field brown dwarf that has identical spectral type but different J-H color. Importantly, our study also measures, for the first time, the rotation period for a directly imaged extra-solar planetary-mass companion.
Malenda, R F; Price, T J; Stevens, J; Uppalapati, S L; Fragale, A; Weiser, P M; Kuczala, A; Talbi, D; Hickman, A P
2015-06-14
We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A(1)Σ(+)) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B(λ)(j, j') for each j → j' transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j' between 0 and 50, and total (translational and rotational) energies in the range 0.0002-0.0025 a.u. (∼44-550 cm(-1)). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j'. Finally, we compare the exact quantum results for j → j' transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.
Are Gravitational Waves Spinning Down PSR J1023+0038?
Haskell, B; Patruno, A
2017-10-20
The pulsar J1023+0038 rotates with a frequency ν≈592 Hz and has been observed to transition between a radio state, during which it is visible as a millisecond radio pulsar, and a low-mass x-ray binary (LMXB) state, during which accretion powered x-ray pulsations are visible. Timing during the two phases reveals that during the LMXB phase the neutron star is spinning down at a rate of ν[over ˙]≈-3×10^{-15} Hz/s, which is approximately 27% faster than the rate measured during the radio phase, ν[over ˙]≈-2.4×10^{-15} Hz/s, and is at odds with the predictions of accretion models. We suggest that the increase in spin-down rate is compatible with gravitational wave emission, particularly with the creation of a "mountain" during the accretion phase. We show that asymmetries in pycnonuclear reaction rates in the crust can lead to a large enough mass quadrupole to explain the observed spin-down rate, which thus far has no other self-consistent explanation. We also suggest two observational tests of this scenario, involving radio timing at the onset of the next millisecond radio pulsar phase, when the mountain should dissipate, and accurate timing during the next LMXB phase to track the increase in torque as the mountain builds up. Another possibility is that an unstable r mode with an amplitude α≈5×10^{-8} may be present in the system.
Investigation of Finite Sources through Time Reversal
NASA Astrophysics Data System (ADS)
Kremers, Simon; Brietzke, Gilbert; Igel, Heiner; Larmat, Carene; Fichtner, Andreas; Johnson, Paul A.; Huang, Lianjie
2010-05-01
Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the hypocenter and other information might be inferred. In this study, the backward propagation is performed numerically using a parallel cartesian spectral element code. Initial tests using point source moment tensors serve as control for the adaptability of the used wave propagation algorithm. After that we investigated the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, rupture velocity etc.). We used synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice-rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of various assumptions made on the source (e.g., origin time, hypocenter, fault location, etc.), adjoint source weighting (e.g., correct for epicentral distance) and structure (uncertainty in the velocity model) on the results of the time reversal process. We give an overview about the quality of focussing of the different wavefield properties (i.e., displacements, strains, rotations, energies). Additionally, the potential to recover source properties of multiple point sources at the same time is discussed.
Homogeneous wave turbulence driven by tidal flows
NASA Astrophysics Data System (ADS)
Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.
2017-12-01
When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.
Experimental study of inertial waves in a spherical shell induced by librations of the inner sphere
NASA Astrophysics Data System (ADS)
Hoff, Michael; Harlander, Uwe; Jahangir, Saad; Egbers, Christoph
2015-04-01
Many planetary bodies do not rotate with a constant velocity but undergo rotations with superposed oscillations called longitudinal librations. This is the case e.g. for the Earth's moon, Mars' moon, Mercury and many other moons of Jupiter and Saturn and some of them have a solid inner core and a molten outer core. It is worth to know the interaction between the libration of the core and the interior of the fluid to understand tidal heating, fluid mixing, and the generation of magnetic fields. Here we present an experimental investigation of inertial waves in a spherical shell. The shell rotates with a mean angular velocity Ω around its vertical axis overlaid by a time periodic oscillation of the inner sphere in the range 0 < ω < 2Ω, in order to excite inertial waves with a known frequency. We want to show the influence of the libration amplitude ɛ on different libration frequencies ω and how efficient libration is, to excite inertial waves in the given frequency range. For low ω and high ɛ instability starts to grow and, beside the excited inertial waves, several low frequency structures can be found. Quantitative PIV analyses of the horizontal plane in the co-rotation frame show clear spiral structures with different wave numbers for high libration amplitudes due to strong shear, similar to differential rotation. Another question, we like to address, is whether high libration amplitudes can also excite very low frequency Rossby wave structures? If the frequency increases, it can be seen from Poincaré plots that large attractor windows for inertial waves appear. We want to show PIV analyses for such flows dominated by wave attractors. It is known that for large excitation frequencies subharmonic parametric instability starts to grow and triads will be excited. Our experimental data show hints for the existence of triads and preliminary results will be discussed.
NASA Astrophysics Data System (ADS)
Nakata, N.; Hadziioannou, C.; Igel, H.
2017-12-01
Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.
Direct observation of generation and propagation of magnetosonic waves following substorm injection
NASA Astrophysics Data System (ADS)
Su, Z.; Wang, G.; Liu, N.; Zheng, H.; Wang, Y.; Wang, S.
2017-12-01
Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magnetosonic waves following substorm injections. At higher L-shells with significant substorm injections, the discrete magnetosonic emission lines started approximately at the proton gyrofrequency harmonics, qualitatively consistent with the prediction of linear proton Bernstein mode instability. In the frequency-time spectrograms, these emission lines exhibited a clear rising tone characteristic with a long duration of 15-25 mins, implying the additional contribution of other undiscovered mechanisms. Nearly at the same time, the magnetosonic waves arose at lower L-shells without substorm injections. The wave signals at two different locations, separated by ΔL up to 2.0 and by ΔMLT up to 4.2, displayed the consistent frequency-time structures, strongly supporting the hypothesis about the radial and azimuthal propagation of magnetosonic waves.
Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology
NASA Astrophysics Data System (ADS)
Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.
2014-08-01
The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.
On the dipole approximation with error estimates
NASA Astrophysics Data System (ADS)
Boßmann, Lea; Grummt, Robert; Kolb, Martin
2018-01-01
The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave
Dyachenko, Sergey A.; A. Silantyev, Denis
2017-01-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.
Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis
2017-06-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.
Nonlinear travelling waves in rotating Hagen–Poiseuille flow
NASA Astrophysics Data System (ADS)
Pier, Benoît; Govindarajan, Rama
2018-03-01
The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.
NASA Astrophysics Data System (ADS)
Cartar, William K.
Photonic crystal microcavity quantum dot lasers show promise as high quality-factor, low threshold lasers, that can be integrated on-chip, with tunable room temperature opera- tions. However, such semiconductor microcavity lasers are notoriously difficult to model in a self-consistent way and are primarily modelled by simplified rate equation approxima- tions, typically fit to experimental data, which limits investigations of their optimization and fundamental light-matter interaction processes. Moreover, simple cavity mode optical theory and rate equations have recently been shown to fail in explaining lasing threshold trends in triangular lattice photonic crystal cavities as a function of cavity size, and the potential impact of fabrication disorder is not well understood. In this thesis, we develop a simple but powerful numerical scheme for modelling the quantum dot active layer used for lasing in these photonic crystal cavity structures, as an ensemble of randomly posi- tioned artificial two-level atoms. Each two-level atom is defined by optical Bloch equations solved by a quantum master equation that includes phenomenological pure dephasing and an incoherent pump rate that effectively models a multi-level gain system. Light-matter in- teractions of both passive and lasing structures are analyzed using simulation defined tools and post-simulation Green function techniques. We implement an active layer ensemble of up to 24,000 statistically unique quantum dots in photonic crystal cavity simulations, using a self-consistent finite-difference time-domain method. This method has the distinct advantage of capturing effects such as dipole-dipole coupling and radiative decay, without the need for any phenomenological terms, since the time-domain solution self-consistently captures these effects. Our analysis demonstrates a powerful ability to connect with recent experimental trends, while remaining completely general in its set-up; for example, we do not invoke common approximations such as the rotating-wave or slowly-varying envelope approximations, and solve dynamics with zero a priori knowledge.
Rotating magnetic shallow water waves and instabilities in a sphere
NASA Astrophysics Data System (ADS)
Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.
2017-07-01
Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.
COLLIMATION AND ASYMMETRY OF THE HOT BLAST WAVE FROM THE RECURRENT NOVA V745 Sco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, Jeremy J.; Kashyap, Vinay; Delgado, Laura
The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 10{sup 7} K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s{sup 1}, an FWHM of 1200 ± 30 km s{sup 1}, and an average net blueshift of 165more » ± 10 km s{sup 1}. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 10{sup 43} erg and confirms an ejected mass of approximately 10{sup 7} M {sub ⊙}. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.« less
Vibration-rotation-tunneling dynamics in small water clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugliano, Nick
The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm -1 intermolecular vibration of the water dimer-d 4. Each of the VRT subbands originate from K a''=0 and terminate in either K a'=0 or 1. These data provide a complete characterization of the tunneling dynamics in themore » vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K a' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v 12 acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D 2O-DOH isotopomer.« less
Non-ideal magnetohydrodynamics on a moving mesh
NASA Astrophysics Data System (ADS)
Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker
2018-05-01
In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.
RoMi: Refraction Microtremor Using Rotational Seismometers
NASA Astrophysics Data System (ADS)
Clark, B.; Abbott, R. E.; Knox, H. A.; Eimer, M. O.; Hart, D. M.; Skaggs, J.; Denning, J. T.
2013-12-01
We present the results of a shallow shear-wave velocity study that utilized both traditional geophones and a newly developed rotational seismometer (Applied Technology Associates ARS-16). We used Refraction Microtremor (ReMi), a method developed by John N. Louie, during processing to determine both Rayleigh and Love wave dispersion curves using both vertical and horizontal sources. ReMi uses a distance-time (x-t) wavefield transformation technique to image the dispersion curve in slowness-frequency (p-f) space. In the course of the ReMi processing, unwanted P waves are transformed into p-f space. As rotational seismometers are insensitive to P waves, they should prove to be superior sensors for Love wave studies, as those P waves would not interfere with interpretation of the p-f wavefield. Our results show that despite having one-fifth the geophone signal-to-noise ratio in the distance-time wavefield, the ARS-16 produced superior results in the p-f wavefield. Specifically, we found increases of up to 50% in ReMi spectral ratio along the dispersion curve. This implies that as more quiet and sensitive rotational sensors are developed, deploying rotational seismometers instead of traditional sensors will yield significantly better results. This will ultimately improve shallow shear-wave velocity resolution, which is vital for calculating seismic hazard. This data was collected at Sandia National Laboratories' Facility for Analysis, Calibration, and Testing (FACT) located in Albuquerque, NM. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Nonlinear vibrations analysis of rotating drum-disk coupling structure
NASA Astrophysics Data System (ADS)
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
Wave Augmented Diffuser for Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.
2012-05-15
The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initialmore » particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.« less
A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue
NASA Astrophysics Data System (ADS)
Stokes, M. Dale; Deane, Grant; Collins, Douglas B.; Cappa, Christopher; Bertram, Timothy; Dommer, Abigail; Schill, Steven; Forestieri, Sara; Survilo, Mathew
2016-09-01
In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.
Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks
NASA Astrophysics Data System (ADS)
Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.
2017-12-01
The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.
Capturing the flow beneath water waves.
Nachbin, A; Ribeiro-Junior, R
2018-01-28
Recently, the authors presented two numerical studies for capturing the flow structure beneath water waves (Nachbin and Ribeiro-Junior 2014 Disc. Cont. Dyn. Syst. A 34 , 3135-3153 (doi:10.3934/dcds.2014.34.3135); Ribeiro-Junior et al. 2017 J. Fluid Mech. 812 , 792-814 (doi:10.1017/jfm.2016.820)). Closed orbits for irrotational waves with an opposing current and stagnation points for rotational waves were some of the issues addressed. This paper summarizes the numerical strategies adopted for capturing the flow beneath irrotational and rotational water waves. It also presents new preliminary results for particle trajectories, due to irrotational waves, in the presence of a bottom topography.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave
NASA Astrophysics Data System (ADS)
Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan
2015-08-01
We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.
Torsional Alfvén Waves in a Dipolar Magnetic Field
NASA Astrophysics Data System (ADS)
Nataf, H. C.; Tigrine, Z.; Cardin, P.; Schaeffer, N.
2017-12-01
The discovery of torsional Alfvén waves in the Earth's core (Gillet et al, 2010) is a strong motivation for investigating the properties of these waves. Here, we report on the first experimental study of such waves. Alfvén waves are difficult to excite and observe in liquid metals because of their high magnetic diffusivity. Nevertheless, we obtained clear signatures of such diffusive waves in our DTS experiment. In this setup, some 40 liters of liquid sodium are contained between a ro = 210 mm-radius stainless steel outer shell, and a ri = 74 mm-radius copper inner sphere. Both spherical boundaries can rotate independently around a common vertical axis. The inner sphere shells a strong permanent magnet, which produces a nearly dipolar magnetic field whose intensity falls from 175 mT at ri to 8 mT at ro in the equatorial plane. We excite Alfvén waves in the liquid sodium by applying a sudden jerk of the inner sphere. To study the effect of global rotation, which leads to the formation of geostrophic torsional Alfvén waves, we spin the experiment at rotation rates fo = fi up to 15 Hz. The Alfvén wave produces a clear azimuthal magnetic signal on magnetometers installed in a sleeve inside the fluid. We also probe the associated azimuthal velocity field using ultrasound Doppler velocimetry. Electric potentials at the surface of the outer sphere turn out to be very revealing as well. In parallel, we use the XSHELLS magnetohydrodynamics spherical code to model torsional Alfvén waves in the experimental conditions, and beyond. We explore both linear and non-linear regimes. We observe a strong excitation of inertial waves in the equatorial plane, where the wave transits from a region of strong magnetic field to a region dominated by rotation (see figure of meridian map of azimuthal velocity). These novel observations should help deciphering the dynamics of Alfvén waves in planetary cores.
Experimental quantification of nonlinear time scales in inertial wave rotating turbulence
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Salhov, Alon; Sharon, Eran
2017-12-01
We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lianjie
Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Resultsmore » from various data input to the method indicate significant improvements are provided in both image quality and resolution.« less
Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations
NASA Astrophysics Data System (ADS)
Graizer, V.
2017-12-01
Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt spectrum. Amplitudes of rotations at the site depend upon the size of the base and usually decrease with depth. They are also amplified by soft material. Earthquake data used in this study were downloaded from the Center for Engineering Strong Motion Data at http://www.strongmotioncenter.org/.
Mesoscale Waves in Jupiter's Atmosphere
NASA Technical Reports Server (NTRS)
1997-01-01
These two images of Jupiter's atmosphere were taken with the violet filter of the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The images were obtained on June 26, 1996; the lower image was taken approximately one rotation (9 hours) later than the upper image.
Mesoscale waves can be seen in the center of the upper image. They appear as a series of about 15 nearly vertical stripes; the wave crests are aligned north-south. The wave packet is about 300 kilometers in length and is aligned east-west. In the lower image there is no indication of the waves, though the clouds appear to have been disturbed. Such waves were seen also in images obtained by NASA's Voyager spacecraft in 1979, though lower spatial and time resolution made tracking of features such as these nearly impossible.Mesoscale waves occur when the wind shear is strong in an atmospheric layer that is sandwiched vertically between zones of stable stratification. The orientation of the wave crests is perpendicular to the shear. Thus, a wave observation gives information about how the wind direction changes with height in the atmosphere.North is at the top of these images which are centered at approximately 15 South latitude and 307 West longitude. In the upper image, each picture element (pixel) subtends a square of about 36 kilometers on a side, and the spacecraft was at a range of more than 1.7 million kilometers from Jupiter. In the lower image, each pixel subtends a square of about 30 kilometers on a side, and the spacecraft was at a range of more than 1.4 million kilometers from Jupiter.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoQPOs from Random X-ray Bursts around Rotating Black Holes
NASA Technical Reports Server (NTRS)
Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon
2009-01-01
We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.
On the experimental prediction of the stability threshold speed caused by rotating damping
NASA Astrophysics Data System (ADS)
Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.
2016-08-01
An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.
NASA Astrophysics Data System (ADS)
Kiely, Thomas G.; Freericks, J. K.
2018-02-01
In a large transverse field, there is an energy cost associated with flipping spins along the axis of the field. This penalty can be employed to relate the transverse-field Ising model in a large field to the X Y model in no field (when measurements are performed at the proper stroboscopic times). We describe the details for how this relationship works and, in particular, we also show under what circumstances it fails. We examine wave-function overlap between the two models and observables, such as spin-spin Green's functions. In general, the mapping is quite robust at short times, but will ultimately fail if the run time becomes too long. There is also a tradeoff between the length of time one can run a simulation out to and the time jitter of the stroboscopic measurements that must be balanced when planning to employ this mapping.
Chiral magnetic effect of light
NASA Astrophysics Data System (ADS)
Hayata, Tomoya
2018-05-01
We study a photonic analog of the chiral magnetic (vortical) effect. We discuss that the vector component of magnetoelectric tensors plays a role of "vector potential," and its rotation is understood as "magnetic field" of a light. Using the geometrical optics approximation, we show that "magnetic fields" cause an anomalous shift of a wave packet of a light through an interplay with the Berry curvature of photons. The mechanism is the same as that of the chiral magnetic (vortical) effect of a chiral fermion, so that we term the anomalous shift "chiral magnetic effect of a light." We further study the chiral magnetic effect of a light beyond geometric optics by directly solving the transmission problem of a wave packet at a surface of a magnetoelectric material. We show that the experimental signal of the chiral magnetic effect of a light is the nonvanishing of transverse displacements for the beam normally incident to a magnetoelectric material.
A nonradial pulsation model for the rapidly rotating Delta Scuti star Kappa(2) Bootis
NASA Technical Reports Server (NTRS)
Kennelly, E. J.; Walker, G. A. H.; Hubeny, I.
1991-01-01
A sectorial nonradial pulsation model is used to construct theoretical line profiles which mimic the variations for Kappa(2) Boo. Synthetic spectra generated with the appropriate Teff and log g are used as input. It is found that the data can be reproduced by the combination of a high-degree l is approximately equal to 12 mode with P(osc) aproximately equal to 0.071 d, and a low-degree mode, l is approximately equal to 0-2 with P(osc) approximately equal to 0.071-0.079 d. The projected rotational velocity (v sin i - 115 +/-5 km/s) was determined by fitting synthetic line profiles to the observed spectra. The velocity amplitude of the high-degree oscillations is estimated to be about 3.5 km/s. It is found that the ratio of the horizontal and radial pulsation amplitudes is small (about 0.02) and consistent with p-mode oscillations. Comparisons are made with models invoking starspots, and it is impossible to fit the observations of Kappa(2) Boo by a starspot model without assuming unrealistic values of radius or equatorial velocity.
Local models of astrophysical discs
NASA Astrophysics Data System (ADS)
Latter, Henrik N.; Papaloizou, John
2017-12-01
Local models of gaseous accretion discs have been successfully employed for decades to describe an assortment of small-scale phenomena, from instabilities and turbulence, to dust dynamics and planet formation. For the most part, they have been derived in a physically motivated but essentially ad hoc fashion, with some of the mathematical assumptions never made explicit nor checked for consistency. This approach is susceptible to error, and it is easy to derive local models that support spurious instabilities or fail to conserve key quantities. In this paper we present rigorous derivations, based on an asympototic ordering, and formulate a hierarchy of local models (incompressible, Boussinesq and compressible), making clear which is best suited for a particular flow or phenomenon, while spelling out explicitly the assumptions and approximations of each. We also discuss the merits of the anelastic approximation, emphasizing that anelastic systems struggle to conserve energy unless strong restrictions are imposed on the flow. The problems encountered by the anelastic approximation are exacerbated by the disc's differential rotation, but also attend non-rotating systems such as stellar interiors. We conclude with a defence of local models and their continued utility in astrophysical research.
NASA Technical Reports Server (NTRS)
Rubinstein, Robert
1999-01-01
In rotating turbulence, stably stratified turbulence, and in rotating stratified turbulence, heuristic arguments concerning the turbulent time scale suggest that the inertial range energy spectrum scales as k(exp -2). From the viewpoint of weak turbulence theory, there are three possibilities which might invalidate these arguments: four-wave interactions could dominate three-wave interactions leading to a modified inertial range energy balance, double resonances could alter the time scale, and the energy flux integral might not converge. It is shown that although double resonances exist in all of these problems, they do not influence overall energy transfer. However, the resonance conditions cause the flux integral for rotating turbulence to diverge logarithmically when evaluated for a k(exp -2) energy spectrum; therefore, this spectrum requires logarithmic corrections. Finally, the role of four-wave interactions is briefly discussed.
High-sensitivity rotation sensing with atom interferometers using Aharonov-Bohm effect
NASA Astrophysics Data System (ADS)
Özcan, Meriac
2006-02-01
In recent years there has been significant activity in research and development of high sensitivity accelerometers and gyroscopes using atom interferometers. In these devices, a fringe shift in the interference of atom de Broglie waves indicates the rotation rate of the interferometer relative to an inertial frame of reference. In both optical and atomic conventional Sagnac interferometers, the resultant phase difference due to rotation is independent of the wave velocity. However, we show that if an atom interforemeter is enclosed in a Faraday cage which is at some potential, the phase difference of the counter-propagating waves is proportional to the inverse square of the particle velocity and it is proportional to the applied potential. This is due to Aharonov-Bohm effect and it can be used to increase the rotation sensitivity of atom interferometers.
Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser
NASA Technical Reports Server (NTRS)
Moore, F. K.
1988-01-01
A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.
Millimeter and submillimeter wave spectroscopy of propanal
NASA Astrophysics Data System (ADS)
Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Jørgensen, Jes K.; Schlemmer, Stephan
2017-12-01
The rotational spectra of the two stable conformers syn- and gauche-propanal (CH3CH2CHO) were studied in the millimeter and submillimeter wave regions from 75 to 500 GHz with the Cologne (Sub-)Millimeter wave Spectrometer. Furthermore, the first excited states associated with the aldehyde torsion and with the methyl torsion, respectively, of the syn-conformer were analyzed. The newly obtained spectroscopic parameters yield better predictions, thus fulfill sensitivity and resolution requirements in new astronomical observations in order to unambiguously assign pure rotational transitions of propanal. This is demonstrated on a radio astronomical spectrum from the Atacama Large Millimeter/submillimeter Array Protostellar Interferometric Line Survey (ALMA-PILS). In particular, an accurate description of observed splittings, caused by internal rotation of the methyl group in the syn-conformer and by tunneling rotation interaction from two stable degenerate gauche-conformers, is reported. The rotational spectrum of propanal is of additional interest because of its two large amplitude motions pertaining to the methyl and the aldehyde group, respectively.
NASA Astrophysics Data System (ADS)
Romano, Francesco; Cimmino, Rosario F.
2017-09-01
This paper concerns a feasibility study on a 2nd order spherical, or three-dimensional, angular momentum and linear momentum detector for photonic radiation applications. It has been developed in order to obtain a paraxial approximation of physical events observed under Coulomb gauge condition, which is essential to compute both the longitudinal and transverse rotational components of the observed 3-D vortex field, generally neglected by conventional detection systems under current usage. Since light and laser beams are neither full transversal or rotational phenomena, to measure directly and in the same time both the energy, mainly not-rotational, related to the relevant part of the linear momentum and the potential solenoidal energy (vortex), related to the angular momentum, 2nd order spherical, or 3-D, detector techniques are required. In addition, direct 2nd order measure techniques enable development of TEM + DEM [17] studies, therefore allowing for monochromatic complex wave detection with a paraxial accuracy in the relativistic time-space domain. Light and optic or Electromagnetic 2nd order 3-D AnM energy may usefully be used in tre-dimensional optical TEM, noTEM, DEM vortex or laser communications The paper illustrates an innovative quadratic order 3-D spherical model detector applied to directly measure a light source power spectrum and compares the performances of this innovative technique with those obtained with a traditional 1st order system. Results from a number of test experiments conducted in cooperation with INAF Observatories of ArcetriFlorence and Medicina-Bologna (Italy), and focused on telescopic observations of the inter-stellar electromagnetic radiations, are also summarized. The innovative quadratic-order spherical detector turns out to be optimal for optical and/or radio telescopes application, optical and optoelectronic sensors development and gravitational wave 2nd order detectors implementation. Although the proposed method is very innovative, it shows a very good adherence with results obtained with the conventional techniques in current usage.
The Faraday rotation experiment. [solar corona
NASA Technical Reports Server (NTRS)
Volland, H.; Levy, G. S.; Bird, M. K.; Stelzried, C. T.; Seidel, B. L.
1984-01-01
The magnetized plasma of the solar corona was remotely sounded using the Faraday rotation effect. The solar magnetic field together with the electrons of the coronal plasma cause a measurable Faraday rotation effect, since the radio waves of Helios are linearly polarized. The measurement is performed at the ground stations. Alfven waves traveling from the Sun's surface through the corona into interplanetary space are observed. Helios 2 signals penetrating through a region where coronal mass is ejected show wavelike structures.
Rotating spiral waves in fertilized ascidian eggs.
Ballarò, Benedetto; Reas, Pier Giorgio
2002-01-01
Excitable systems modelled by reaction-diffusion equation may be expected to produce quite complex spatial patterns. Winfree [1974] demonstrated experimentally, in the Belousov-Zhabotinskii reaction, the existence of particular waves called rotating spiral waves. Later Keener and Tyson [1986] presented a thorough analysis of these waves in excitable systems. Spiral waves can also be observed in brain tissue (Shibata and Bures [1974]), while it seems that the precursor to cardiac fibrillation is the appearance of rotating waves of electrical impulses (Winfree [1983]). In this work we suppose the appearance of Ca++ spiral waves in the vegetal pole of ascidian egg cells after the first ooplasmic segregation. Previously we observed that (Ballarò and Reas [2000a]), when the myoplasm is completely localized in the vegetal region (excitable stage) and the ascidian egg cell is perturbed by an increase of Ca++ concentration in the culture medium, the cell reacts by showing persistent mechanical waves of contraction which exist as long as the cell is perturbed. Experimentally we observed the production of a polar lobe located in the vegetal region and the change of the inclination of mitotic furrow, after the appearance of a myoplasmic spiral wave in the vegetal pole. So we suppose that the myoplasmic spiral wave is due to a Ca++ spiral wave, and the myoplasmic spiral wave then causes the changes in the shape of the cell (polar lobe, inclination of mitotic furrow, etc.). Moreover we give a simple geometrical description of a spiral wave.
Excitation and propagation of nonlinear waves in a rotating fluid
NASA Astrophysics Data System (ADS)
Hanazaki, Hideshi
1993-09-01
A numerical study of the nonlinear waves excited in an axisymmetric rotating flow through a circular tube is described. The waves are excited by either an undulation of the tube wall or an obstacle on the axis of the tube. The results are compared with the weakly nonlinear theory (forced KdV equation). The computations are done when the upstream swirling velocity is that of Burgers' vortex type. The flow behaves like the solution of the forced KdV equation, and the upstream advancing of the waves appear even when the flow is critical or slightly supercritical to the fastest inertial wave mode.
Helicons in uniform fields. I. Wave diagnostics with hodograms
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2018-03-01
The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.
Emission-angle and polarization-rotation effects in the lensed CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Antony; Hall, Alex; Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk
Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Bornmore » field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.« less
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Kabin, K.; Noel, J. M. A.
2017-12-01
Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices which are installed on most commercial aircraft. These radio waves can be detected by satellites in low earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this work we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick model.
The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue
NASA Astrophysics Data System (ADS)
Zhang, Juan; Tang, Jun; Ma, Jun; Luo, Jin Ming; Yang, Xian Qing
2018-02-01
Rotating spiral waves in cardiac tissue are implicated in life threatening cardiac arrhythmias. Experimental and theoretical evidences suggest the inhomogeneities in cardiac tissue play a significant role in the dynamics of spiral waves. Based on a modified 2D cardiac tissue model, the interaction of inhomogeneity on the nearby rigidly rotating spiral wave is numerically studied. The adjacent area of the inhomogeneity is divided to two areas, when the initial rotating center of the spiral tip is located in the two areas, the spiral tip will be attracted and anchor on the inhomogeneity finally, or be repulsed away. The width of the area is significantly dependent on the intensity and size of the inhomogeneity. Our numerical study sheds some light on the mechanism of the interaction of inhomogeneity on the spiral wave in cardiac tissue.
A simplified method of evaluating the stress wave environment of internal equipment
NASA Technical Reports Server (NTRS)
Colton, J. D.; Desmond, T. P.
1979-01-01
A simplified method called the transfer function technique (TFT) was devised for evaluating the stress wave environment in a structure containing internal equipment. The TFT consists of following the initial in-plane stress wave that propagates through a structure subjected to a dynamic load and characterizing how the wave is altered as it is transmitted through intersections of structural members. As a basis for evaluating the TFT, impact experiments and detailed stress wave analyses were performed for structures with two or three, or more members. Transfer functions that relate the wave transmitted through an intersection to the incident wave were deduced from the predicted wave response. By sequentially applying these transfer functions to a structure with several intersections, it was found that the environment produced by the initial stress wave propagating through the structure can be approximated well. The TFT can be used as a design tool or as an analytical tool to determine whether a more detailed wave analysis is warranted.
Analytic approximation for random muffin-tin alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, R.; Gray, L.J.; Kaplan, T.
1983-03-15
The methods introduced in a previous paper under the name of ''traveling-cluster approximation'' (TCA) are applied, in a multiple-scattering approach, to the case of a random muffin-tin substitutional alloy. This permits the iterative part of a self-consistent calculation to be carried out entirely in terms of on-the-energy-shell scattering amplitudes. Off-shell components of the mean resolvent, needed for the calculation of spectral functions, are obtained by standard methods involving single-site scattering wave functions. The single-site TCA is just the usual coherent-potential approximation, expressed in a form particularly suited for iteration. A fixed-point theorem is proved for the general t-matrix TCA, ensuringmore » convergence upon iteration to a unique self-consistent solution with the physically essential Herglotz properties.« less
When the Earth's Inner Core Shuffles
NASA Astrophysics Data System (ADS)
Tkalcic, H.; Young, M. K.; Bodin, T.; Ngo, S.; Sambridge, M.
2011-12-01
Shuffling is a tribal dance recently adapted by teenagers as a street dance. In one of the most popular moves, the so-called "Running Man", a stomp forward on one foot, shifted without being lifted from the ground, is followed by a change of position backwards on the same foot. Here, we present strong observational evidence from a newly observed collection of earthquake doublets that the Earth's inner core "shuffles" exhibiting both prograde and retrograde rotation in the reference frame of the mantle. This discovery is significant on several levels. First, the observed pattern consists of intermittent intervals of quasi-locked and differentially rotating inner core with respect to the Earth's mantle. This means that the angular alignment of the inner core and mantle oscillates in time over the past five decades. Jolting temporal changes are revealed, indicating that during the excursions from the quasi-locked state, the Earth's inner core can rotate both faster and slower than the rest of the planet, thus exhibiting both eastward and westward rotation. According to our results, a short time interval (on the order of one to two years) is needed for the inner core to accelerate to a differential rotation rate of several degrees per year, and typically a slightly longer time is needed to decelerate down to a negligibly small differential rotation rate. These time scales are in agreement with experimental spin-up times obtained when the magnetic torque alone is used to accelerate the inner core. Second, when we integrate the rotation rate over different time intervals, it is possible to explain discrepancies between the body wave and normal modes results for the rate of the inner core differential rotation found by previous authors. We show that the integrated shift in angular alignment and average rotation rates (previously determined to be constant) in normal mode studies are much smaller that those for the body waves. The repeating earthquakes from the South Atlantic generate elastic waves that traverse the Earth's mantle and core, and are recorded by the seismographs located in the northern hemisphere. The waveform doublets produced by repeating earthquakes present a reliable probe, which can reveal temporal changes exhibited by the inner core due to the fact that the mantle effects are minimized. We observe new waveform-doublets at the College station, Alaska, and analyse all existing doublets recorded at that station using state of the art mathematical methods. The complex temporal pattern of differences in travel times between the first and the second event of a doublet is impossible to explain with a simple linear-fit approach. An ensemble approach utilizing transdimensional and hierarchical Bayesian analysis proves to be a powerful approach in this case, relaxing the choices on model parameterization and revealing hitherto unseen complex dynamics of the Earth's inner core.
Design and laboratory testing of a prototype linear temperature sensor
NASA Astrophysics Data System (ADS)
Dube, C. M.; Nielsen, C. M.
1982-07-01
This report discusses the basic theory, design, and laboratory testing of a prototype linear temperature sensor (or "line sensor'), which is an instrument for measuring internal waves in the ocean. The operating principle of the line sensor consists of measuring the average resistance change of a vertically suspended wire (or coil of wire) induced by the passage of an internal wave in a thermocline. The advantage of the line sensor over conventional internal wave measurement techniques is that it is insensitive to thermal finestructure which contaminates point sensor measurements, and its output is approximately linearly proportional to the internal wave displacement. An approximately one-half scale prototype line sensor module was teste in the laboratory. The line sensor signal was linearly related to the actual fluid displacement to within 10%. Furthermore, the absolute output was well predicted (within 25%) from the theoretical model and the sensor material properties alone. Comparisons of the line sensor and a point sensor in a wavefield with superimposed turbulence (finestructure) revealed negligible distortion in the line sensor signal, while the point sensor signal was swamped by "turbulent noise'. The effects of internal wave strain were also found to be negligible.
Lectures series in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Thompson, Kevin W.
1987-01-01
The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.
On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame
NASA Technical Reports Server (NTRS)
Mahalov, A.
1994-01-01
The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction).
Diurnal and Semidiurnal Variations in Earth Rotation
NASA Astrophysics Data System (ADS)
Weijing, Q.; Xu, X.; Dong, D.; Zhou, Y.
2016-12-01
In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including Satellite Laser ranging (SLR), Very Long Baseline Interferometry (VLBI) and the Global Positioning System (GPS). We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1 with Consistency of 90% , and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. This work add the motivating term libration to the empirical tidal models, which can reduce the difference between the high frequency earth rotation model and observations. Then the numerical simulated ocean tidal model is obtained with the newest ERP datas from GPS, and the Scaled Sensitivity Matrix (SSM) approach is used to separate the sidebands in major ocean tides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong-Yeon; Hahn, Insik; Kim, Yeongduk
2009-06-15
The soft-rotator model is applied to self-consistent analyses of the nuclear level structures and the nucleon interaction data of the even-even Sn isotopes, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, and {sup 122}Sn. The model successfully describes low-lying collective levels of these isotopes, which exhibit neither typical rotational nor harmonic vibrational structures. The experimental nucleon interaction data--total neutron cross sections, proton reaction cross sections, and nucleon elastic and inelastic scattering data--are well described up to 200 MeV in a coupled-channels optical model approach. For the calculations, nuclear wave functions for the Sn isotopes are taken from the nonaxial soft-rotator model withmore » the model parameters adjusted to fit the measured low-lying collective level structures. We find that the {beta}{sub 2} and {beta}{sub 3} deformations for incident protons are larger than those for incident neutrons by {approx}15%, which is clear evidence of the deviation from the pure collective model for these isotopes.« less
Elliptical optical solitary waves in a finite nematic liquid crystal cell
NASA Astrophysics Data System (ADS)
Minzoni, Antonmaria A.; Sciberras, Luke W.; Smyth, Noel F.; Worthy, Annette L.
2015-05-01
The addition of orbital angular momentum has been previously shown to stabilise beams of elliptic cross-section. In this article the evolution of such elliptical beams is explored through the use of an approximate methodology based on modulation theory. An approximate method is used as the equations that govern the optical system have no known exact solitary wave solution. This study brings to light two distinct phases in the evolution of a beam carrying orbital angular momentum. The two phases are determined by the shedding of radiation in the form of mass loss and angular momentum loss. The first phase is dominated by the shedding of angular momentum loss through spiral waves. The second phase is dominated by diffractive radiation loss which drives the elliptical solitary wave to a steady state. In addition to modulation theory, the "chirp" variational method is also used to study this evolution. Due to the significant role radiation loss plays in the evolution of an elliptical solitary wave, an attempt is made to couple radiation loss to the chirp variational method. This attempt furthers understanding as to why radiation loss cannot be coupled to the chirp method. The basic reason for this is that there is no consistent manner to match the chirp trial function to the generated radiating waves which is uniformly valid in time. Finally, full numerical solutions of the governing equations are compared with solutions obtained using the various variational approximations, with the best agreement achieved with modulation theory due to its ability to include both mass and angular momentum losses to shed diffractive radiation.
Mode cross coupling observations with a rotation sensor
NASA Astrophysics Data System (ADS)
Nader-Nieto, M. F.; Igel, H.; Ferreira, A. M.; Al-Attar, D.
2013-12-01
The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations. Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of one of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements.
Observations of the interaction between near-inertial waves and mesoscale eddies
NASA Astrophysics Data System (ADS)
Martínez-Marrero, Antonio; Sangrá, Pablo; Caldeira, Rui; Aguiar-González, Borja; Rodríguez-Santana, Ángel
2014-05-01
Trajectories of eight drifters dragged below the surface mixed layer and current meter data from a mooring are used to analyse the interaction between near-inertial waves and mesoscale eddies. Drifters were deployed within eddies generated downstream of Canary and Madeira islands between 1998 and 2007. The mooring was installed in the passage of cyclonic eddies induced by Gran Canaria island during 2006. Rotatory wavelet analysis of Lagrangian velocities shows a clear relationship between the near-inertial waves' intrinsic frequencies and the eddy angular velocities. The results reveal that near-inertial waves reach a minimum frequency of half the planetary vorticity (f/2) in the inner core of young anticyclonic eddies rotating with its maximum absolute angular speed of f/2. The highest amplitudes of the observed inertial motions are also found within anticyclonic eddies evidencing the trapping of inertial waves. Finally, the analysis of the current meter series show frequency fluctuations of the near-inertial currents in the upper 500 meters that are related to the passage of cyclonic eddies. These fluctuations appear to be consistent with the variation of the background vorticity produced by the eddies.
Jet crackle: skewness transport budget and a mechanistic source model
NASA Astrophysics Data System (ADS)
Buchta, David; Freund, Jonathan
2016-11-01
The sound from high-speed (supersonic) jets, such as on military aircraft, is distinctly different than that from lower-speed jets, such as on commercial airliners. Atop the already loud noise, a higher speed adds an intense, fricative, and intermittent character. The observed pressure wave patterns have strong peaks which are followed by relatively long shallows; notably, their pressure skewness is Sk >= 0 . 4 . Direct numerical simulation of free-shear-flow turbulence show that these skewed pressure waves occur immediately adjacent to the turbulence source for M >= 2 . 5 . Additionally, the near-field waves are seen to intersect and nonlinearly merge with other waves. Statistical analysis of terms in a pressure skewness transport equation show that starting just beyond δ99 the nonlinear wave mechanics that add to Sk are balanced by damping molecular effects, consistent with this aspect of the sound arising in the source region. A gas dynamics description is developed that neglects rotational turbulence dynamics and yet reproduces the key crackle features. At its core, this mechanism shows simply that nonlinear compressive effects lead directly to stronger compressions than expansions and thus Sk > 0 .
Recent Successes of Wave/Turbulence Driven Models of Solar Wind Acceleration
NASA Astrophysics Data System (ADS)
Cranmer, S. R.; Hollweg, J. V.; Chandran, B. D.; van Ballegooijen, A. A.
2010-12-01
A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a first-principles understanding of coronal heating. Also, it is still unknown whether the solar wind is "fed" through flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy are input intermittently from closed loops into the open-field regions. In this presentation, we discuss self-consistent models that assume the energy comes from solar Alfven waves that are partially reflected, and then dissipated, by magnetohydrodynamic turbulence. These models have been found to reproduce many of the observed features of the fast and slow solar wind without the need for artificial "coronal heating functions" used by earlier models. For example, the models predict a variation with wind speed in commonly measured ratios of charge states and elemental abundances that agrees with observed trends. This contradicts a commonly held assertion that these ratios can only be produced by the injection of plasma from closed-field regions on the Sun. This presentation also reviews two recent comparisons between the models and empirical measurements: (1) The models successfully predict the amplitude and radial dependence of Faraday rotation fluctuations (FRFs) measured by the Helios probes for heliocentric distances between 2 and 15 solar radii. The FRFs are a particularly sensitive test of turbulence models because they depend not only on the plasma density and Alfven wave amplitude in the corona, but also on the turbulent correlation length. (2) The models predict the correct sense and magnitude of changes seen in the polar high-speed solar wind by Ulysses from the previous solar minimum (1996-1997) to the more recent peculiar minimum (2008-2009). By changing only the magnetic field along the polar magnetic flux tube, consistent with solar and heliospheric observations at the two epochs, the model correctly predicts that the wind speed remains relatively unchanged, but the in-situ density and temperature decrease by approximately 20 percent and 10 percent, respectively.
Interaction between spiral and paced waves in cardiac tissue
Agladze, Konstantin; Kay, Matthew W.; Krinsky, Valentin; Sarvazyan, Narine
2010-01-01
For prevention of lethal arrhythmias, patients at risk receive implantable cardioverter-defibrillators, which use high-frequency antitachycardia pacing (ATP) to convert tachycardias to a normal rhythm. One of the suggested ATP mechanisms involves paced-induced drift of rotating waves followed by their collision with the boundary of excitable tissue. This study provides direct experimental evidence of this mechanism. In monolayers of neonatal rat cardiomyocytes in which rotating waves of activity were initiated by premature stimuli, we used the Ca2+-sensitive indicator fluo 4 to observe propagating wave patterns. The interaction of the spiral tip with a paced wave was then monitored at a high spatial resolution. In the course of the experiments, we observed spiral wave pinning to local heterogeneities within the myocyte layer. High-frequency pacing led, in a majority of cases, to successful termination of spiral activity. Our data show that 1) stable spiral waves in cardiac monolayers tend to be pinned to local heterogeneities or areas of altered conduction, 2) overdrive pacing can shift a rotating wave from its original site, and 3) the wave break, formed as a result of interaction between the spiral tip and a paced wave front, moves by a paced-induced drift mechanism to an area where it may become unstable or collide with a boundary. The data were complemented by numerical simulations, which was used to further analyze experimentally observed behavior. PMID:17384124
Four-wave mixing in an asymmetric double quantum dot molecule
NASA Astrophysics Data System (ADS)
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
Synoptic, Global Mhd Model For The Solar Corona
NASA Astrophysics Data System (ADS)
Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.
2007-05-01
The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.
Formation of virtual isthmus: A new scenario of spiral wave death after a decrease in excitability
NASA Astrophysics Data System (ADS)
Erofeev, I. S.; Agladze, K. I.
2015-11-01
Termination of rotating (spiral) waves or reentry is crucial when fighting with the most dangerous cardiac tachyarrhythmia. To increase the efficiency of the antiarrhythmic drugs as well as finding new prospective ones it is decisive to know the mechanisms how they act and influence the reentry dynamics. The most popular view on the mode of action of the contemporary antiarrhythmic drugs is that they increase the core of the rotating wave (reentry) to that extent that it is not enough space in the real heart for the reentry to exist. Since the excitation in cardiac cells is essentially change of the membrane potential, it relies on the functioning of the membrane ion channels. Thus, membrane ion channels serve as primary targets for the substances, which may serve as antiarrhythmics. At least, the entire group of antiarrhythmics class I (modulating activity of sodium channels) and partially class IV (modulating activity of calcium channels) are believed to destabilize and terminate reentry by decreasing the excitability of cardiac tissue. We developed an experimental model employing cardiac tissue culture and photosensitizer (AzoTAB) to study the process of the rotating wave termination while decreasing the excitability of the tissue. A new scenario of spiral wave cessation was observed: an asymmetric growth of the rotating wave core and subsequent formation of a virtual isthmus, which eventually caused a conduction block and the termination of the reentry.
Identification and onset of inertial modes in the wide-gap spherical Couette system
NASA Astrophysics Data System (ADS)
Barik, A.; Wicht, J.; Triana, S. A.; Hoff, M.
2016-12-01
The spherical Couette system consists of two concentric rotating spheres with a fluid filling the shell in between. The system has been studied for a long time by fluid dynamicists and is ideal for studying flow instabilities due to differential rotation and the interaction of the same with magnetic fields - important for understanding dynamics of planetary and stellar interiors. The system is also a basis for a new generation of dynamo experiments because of its closer geometrical resemblance to real astrophysical objects as compared to past experiments. We simulate this system using the two different pseudo-spectral codes MagIC and XSHELLS. We focus here on a very interesting and general instability in this system - inertial modes. A rotating body of fluid is known to sustain oscillatory waves due to the restoring action of the Coriolis force. In a bounded container, these form a discrete spectrum called inertial modes. These modes have been analytically known for a rotating full sphere for over a century now. In a spherical shell, they cannot be formulated analytically. However, many of these inertial modes are observed in spherical Couette experiments as well as in simulations. Past studies have tried to explain the onset of these modes invoking wave over-reflection or critical layer instabilities on the cylinder tangent to the inner sphere. In this study, we present the inertial modes found in our simulations and try to explain their onset as secondary instabilities due to the destabilization of the fundamental non-axisymmetric instability, forming a triadic resonance with the fundamental instability. We run various simulations varying the rotation rate of the inner sphere, while keeping the rotation rate of the outer sphere constant. We track velocities and induced magnetic field and produce spectrograms similar to those of the experiments. Our results match very well the experimental data from spherical Couette set-ups at BTU Cottbus and the University of Maryland.
Dust Ion-Acoustic Shock Waves in a Multicomponent Magnetorotating Plasma
NASA Astrophysics Data System (ADS)
Kaur, Barjinder; Saini, N. S.
2018-02-01
The nonlinear properties of dust ion-acoustic (DIA) shock waves in a magnetorotating plasma consisting of inertial ions, nonextensive electrons and positrons, and immobile negatively charged dust are examined. The effects of dust charge fluctuations are not included in the present investigation, but the ion kinematic viscosity (collisions) is a source of dissipation, leading to the formation of stable shock structures. The Zakharov-Kuznetsov-Burgers (ZKB) equation is derived using the reductive perturbation technique, and from its solution the effects of different physical parameters, i.e. nonextensivity of electrons and positrons, kinematic viscosity, rotational frequency, and positron and dust concentrations, on the characteristics of shock waves are examined. It is observed that physical parameters play a very crucial role in the formation of DIA shocks. This study could be useful in understanding the electrostatic excitations in dusty plasmas in space (e.g. interstellar medium).
Ultrathin Nonlinear Metasurface for Optical Image Encoding.
Walter, Felicitas; Li, Guixin; Meier, Cedrik; Zhang, Shuang; Zentgraf, Thomas
2017-05-10
Security of optical information is of great importance in modern society. Many cryptography techniques based on classical and quantum optics have been widely explored in the linear optical regime. Nonlinear optical encryption in which encoding and decoding involve nonlinear frequency conversions represents a new strategy for securing optical information. Here, we demonstrate that an ultrathin nonlinear photonic metasurface, consisting of meta-atoms with 3-fold rotational symmetry, can be used to hide optical images under illumination with a fundamental wave. However, the hidden image can be read out from second harmonic generation (SHG) waves. This is achieved by controlling the destructive and constructive interferences of SHG waves from two neighboring meta-atoms. In addition, we apply this concept to obtain gray scale SHG imaging. Nonlinear metasurfaces based on space variant optical interference open new avenues for multilevel image encryption, anticounterfeiting, and background free image reconstruction.
The generation and propagation of internal gravity waves in a rotating fluid
NASA Technical Reports Server (NTRS)
Maxworthy, T.; Chabert Dhieres, G.; Didelle, H.
1984-01-01
The present investigation is concerned with an extension of a study conducted bu Maxworthy (1979) on internal wave generation by barotropic tidal flow over bottom topography. A short series of experiments was carried out during a limited time period on a large (14-m diameter) rotating table. It was attempted to obtain, in particular, information regarding the plan form of the waves, the exact character of the flow over the obstacle, and the evolution of the waves. The main basin was a dammed section of a long free surface water tunnel. The obstacle was towed back and forth by a wire harness connected to an electronically controlled hydraulic piston, the stroke and period of which could be independently varied. Attention is given to the evolution of the wave crests, the formation of solitary wave groups the evolution of the three-dimensional wave field wave shapes, the wave amplitudes, and particle motion.
NASA Astrophysics Data System (ADS)
Ruan, Juan; Zhang, Wei-Gang; Zhang, Hao; Geng, Peng-Cheng; Bai, Zhi-Yong
2013-06-01
A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.
NASA Astrophysics Data System (ADS)
Barklage, Mitchell
We determine shear wave splitting parameters of teleseismic SKS and SKKS phases recorded at 43 broadband seismometers deployed in South Victoria Land as part of the Transantarctic Mountains seismic experiment (TAMSEIS) from 2000-2003. We use an eigenvalue technique to linearize the rotated and shifted shear wave particle motions and determine the best splitting parameters. The data show a fairly consistent fast direction of azimuthal anisotropy oriented approximately N60°E with splitting times of about 1 second. Based on a previous study of the azimuthal variations of Rayleigh wave phase velocities which show a similar fast direction, we suggest the anisotropy is localized in the uppermost mantle, with a best estimate of 3% anisotropy in a layer of about 150 km thickness. We suggest that the observed anisotropy near the Ross Sea coast, a region underlain by thin lithosphere, results either from upper mantle flow related to Cenozoic Ross Sea extension or to edge-driven convection associated with a sharp change in lithospheric thickness between East and West Antarctica. Both hypotheses are consistent with the more E-W fast axis orientation for stations on Ross Island and along the coast, sub-parallel to the extension direction and the lithospheric boundary. Anisotropy in East Antarctica, which is underlain by cold thick continental lithosphere, must be localized within the lithospheric upper mantle and reflect a relict tectonic fabric from past deformation events. Fast axes for the most remote stations in the Vostok Highlands are rotated by 20° and are parallel to splitting measurements at South Pole. These observations seem to delineate a distinct domain of lithospheric fabric, which may represent the extension of the Darling Mobile Belt or Pinjarra Orogen into the interior of East Antarctica. Seismic tomography imaging provides an opportunity to constrain mantle wedge processes associated with subduction, volatile transport, arc volcanism, and back-arc spreading. We investigate seismic velocity structure of the upper mantle across the Central Mariana subduction system using data from the 2003-2004 Mariana Subduction Factory Imaging Experiment. This 11-month experiment consisted of 20 broadband seismic stations deployed on islands and 58 semi-broadband ocean bottom seismographs deployed across the forearc, island arc, and back-arc spreading center. We determine Vp and Vp/Vs structure on a three dimensional grid using over 25,000 local travel time observations as well as over 2000 teleseismic arrival times determined by waveform cross correlation. The mantle wedge is characterized by a region of low velocity and high Vp/Vs beneath the forearc, an inclined zone of low velocity underlying the volcanic front, and a broad region of low velocity beneath the back-arc spreading center. The slow velocity anomalies are strongest at roughly 20-30 km depth in the forearc, 60-70 km depth beneath the volcanic arc, and 20-30 km beneath the back-arc spreading center. The slow velocity anomalies beneath the arc and back-arc appear as separate and distinct features in our images, with a small channel of connectivity occurring at approximately 75 km depth. The subducting Pacific plate is characterized by high seismic velocities. An exception occurs in the forearc beneath the big blue seamount and at the top of the slab at roughly 80 km depth where slow velocities are observed. We interpret the forearc anomalies to represent a region of large scale serpentinization of the mantle whereas the arc and back-arc anomalies represent regions of high temperature with a small amount of increased water content and/or melt and constrain the source regions in the mantle for arc and back-arc lavas. We investigate the double seismic zone (dsz) beneath the Central Mariana Arc using data from a land-sea array of 58 ocean bottom seismographs and 20 land seismographs deployed during 2003-2004. Nearly 600 well-recorded earthquakes were located using a P and S wave arrival times and a double difference relocation technique. The double seismic zone is well imaged from the forearc region to a depth of nearly 200 km. The width of the dsz is approximately 30 km at shallow depths and gradually becomes narrower with depth until it is now longer resolvable at depths greater than 180-200 km. Focal mechanisms determined from P and S wave polarities and amplitudes indicate that events from 70-150 km depth show along strike extension, whereas events greater than 150 km show downdip extension. Both the upper and lower zones of the dsz show similar focal mechanisms, demonstrating that the dsz is not caused by bending or unbending stresses. Along-strike tension may result from stresses related to the increasing curvature of the Mariana slab over the past few million years, as indicated by plate reconstructions. Downdip extension may result from slab pull forces consistent with the strong density anomaly of an old, cold plate relative to the surrounding mantle.
Auzinsh, M; Dashevskaya, E I; Litvin, I; Nikitin, E E; Troe, J
2013-08-28
The rate coefficients for capture of charged particles by dipolar polarizable symmetric top molecules in the quantum collision regime are calculated within an axially nonadiabatic channel approach. It uses the adiabatic approximation with respect to rotational transitions of the target within first-order charge-dipole interaction and takes into account the gyroscopic effect that decouples the intrinsic angular momentum from the collision axis. The results are valid for a wide range of collision energies (from single-wave capture to the classical limit) and dipole moments (from the Vogt-Wannier and fly-wheel to the adiabatic channel limit).
Continuous-variable quantum teleportation in bosonic structured environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Guangqiang; Zhang Jingtao; Zhu Jun
2011-09-15
The effects of dynamics of continuous-variable entanglement under the various kinds of environments on quantum teleportation are quantitatively investigated. Only under assumption of the weak system-reservoir interaction, the evolution of teleportation fidelity is analytically derived and is numerically plotted in terms of environment parameters including reservoir temperature and its spectral density, without Markovian and rotating wave approximations. We find that the fidelity of teleportation is a monotonically decreasing function for Markovian interaction in Ohmic-like environments, while it oscillates for non-Markovian ones. According to the dynamical laws of teleportation, teleportation with better performances can be implemented by selecting the appropriate time.
Particle orbits in a force-balanced, wave-driven, rotating torus
Ochs, I. E.; Fisch, N. J.
2017-09-01
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less
Particle orbits in a force-balanced, wave-driven, rotating torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochs, I. E.; Fisch, N. J.
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less
Particle orbits in a force-balanced, wave-driven, rotating torus
NASA Astrophysics Data System (ADS)
Ochs, I. E.; Fisch, N. J.
2017-09-01
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.
Ultra high energy electrons powered by pulsar rotation.
Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino
2013-01-01
A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.
Data Recorded as Juno Entered Magnetosphere
2016-06-30
This chart presents data that the Waves investigation on NASA's Juno spacecraft recorded as the spacecraft crossed the bow shock just outside of Jupiter's magnetosphere on June 24, 2016, while approaching Jupiter. Audio accompanies the animation, with volume and pitch correlated to the amplitude and frequency of the recorded waves. The graph is a frequency-time spectrogram with color coding to indicate wave amplitudes as a function of wave frequency (vertical axis, in hertz) and time (horizontal axis, with a total elapsed time of two hours). During the hour before Juno reached the bow shock, the Waves instrument was detecting mainly plasma oscillations just below 10,000 hertz (10 kilohertz). The frequency of these oscillations is related to the local density of electrons; the data yield an estimate of approximately one electron per cubic centimeter (about 16 per cubic inch) in this region just outside Jupiter's bow shock. The broadband burst of noise marked "Bow Shock" is the region of turbulence where the supersonic solar wind is heated and slowed by encountering the Jovian magnetosphere. The shock is analogous to a sonic boom generated in Earth's atmosphere by a supersonic aircraft. The region after the shock is called the magnetosheath. The vertical bar to the right of the chart indicates the color coding of wave amplitude, in decibels (dB) above the background level detected by the Waves instrument. Each step of 10 decibels marks a tenfold increase in wave power. When Juno collected these data, the distance from the spacecraft to Jupiter was about 5.56 million miles (8.95 million kilometers), indicated on the chart as 128 times the radius of Jupiter. Jupiter's magnetic field is tilted about 10 degrees from the planet's axis of rotation. The note of 22 degrees on the chart indicates that at the time these data were recorded, the spacecraft was 22 degrees north of the magnetic-field equator. The "LT" notation is local time on Jupiter at the longitude of the planet directly below the spacecraft, with a value of 6.2 indicating approximately dawn. http://photojournal.jpl.nasa.gov/catalog/PIA20753
Data Recorded as Juno Crossed Jovian Bow Shock
2016-06-30
This chart presents data that the Waves investigation on NASA's Juno spacecraft recorded as the spacecraft crossed the bow shock just outside of Jupiter's magnetosphere on June 24, 2016, while approaching Jupiter. Audio accompanies the animation, with volume and pitch correlated to the amplitude and frequency of the recorded waves. The graph is a frequency-time spectrogram with color coding to indicate wave amplitudes as a function of wave frequency (vertical axis, in hertz) and time (horizontal axis, with a total elapsed time of two hours). During the hour before Juno reached the bow shock, the Waves instrument was detecting mainly plasma oscillations just below 10,000 hertz (10 kilohertz). The frequency of these oscillations is related to the local density of electrons; the data yield an estimate of approximately one electron per cubic centimeter (about 16 per cubic inch) in this region just outside Jupiter's bow shock. The broadband burst of noise marked "Bow Shock" is the region of turbulence where the supersonic solar wind is heated and slowed by encountering the Jovian magnetosphere. The shock is analogous to a sonic boom generated in Earth's atmosphere by a supersonic aircraft. The region after the shock is called the magnetosheath. The vertical bar to the right of the chart indicates the color coding of wave amplitude, in decibels (dB) above the background level detected by the Waves instrument. Each step of 10 decibels marks a tenfold increase in wave power. When Juno collected these data, the distance from the spacecraft to Jupiter was about 5.56 million miles (8.95 million kilometers), indicated on the chart as 128 times the radius of Jupiter. Jupiter's magnetic field is tilted about 10 degrees from the planet's axis of rotation. The note of 22 degrees on the chart indicates that at the time these data were recorded, the spacecraft was 22 degrees north of the magnetic-field equator. The "LT" notation is local time on Jupiter at the longitude of the planet directly below the spacecraft, with a value of 6.2 indicating approximately dawn. http://photojournal.jpl.nasa.gov/catalog/PIA20753
LISA: Astrophysics Out to z Approximately 10 with Low-Frequency Gravitational Waves
NASA Technical Reports Server (NTRS)
Stebbins, Robin T.
2008-01-01
This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.
Waves in a plane graphene - dielectric waveguide structure
NASA Astrophysics Data System (ADS)
Evseev, Dmitry A.; Eliseeva, Svetlana V.; Sementsov, Dmitry I.
2017-10-01
The features of the guided TE modes propagation have been investigated on the basis of computer simulations in a planar structure consisting of a set of alternating layers of dielectric and graphene. Within the framework of the effective medium approximation, the dispersion relations have been received for symmetric and antisymmetric waveguide modes, determined by the frequency range of their existence. The wave field distribution by structure, frequency dependences of the constants of propagation and transverse components of the wave vectors, as well as group and phase velocities of waveguide modes have been obtained, the effect of the graphene part in a structure on the waveguide mode behavior has been shown.
Experimental verification of a tuned inertial mass electromagnetic transducer
NASA Astrophysics Data System (ADS)
Watanabe, Yuta; Sugiura, Keita; Asai, Takehiko
2018-03-01
This research reports on the design and experimental verification of a tuned inertial mass electromagnetic trans- ducer (TIMET) for energy harvesting from vibrating large structures and structural vibration control devices. The TIMET consists of a permanent-magnetic synchronous motor (PMSM), a rotational mass, and a tuning spring. The PMSM and the rotational mass are connected to a ball screw mechanism so that the rotation of the PMSM is synchronized with the rotational mass. And the tuning spring interfaced to the shaft of the ball screw mechanism is connected to the vibrating structure. Thus, through this ball screw mechanism, transla- tional vibration motion of the structure is converted to rotational behavior and mechanical energy is absorbed as electrical energy by the PMSM. Moreover, the amplified equivalent inertial mass effect is obtained by rotating relatively small physical masses. Therefore, when the stiffness of the tuning spring is determined so that the inertial mass resonates with the natural frequency of the vibratory structure, the PMSM rotates more effectively. As a result, the generated energy by the PMSM can be increased. The authors design a prototype of the TIMET and carry out experiments using sine and sine seep waves to show the effectiveness of the tuned inertial mass mechanism. Also, an analytical model of the proposed device is developed using a curve fitting technique to simulate the behavior of the TIMET.
Lagrangian flows within reflecting internal waves at a horizontal free-slip surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qi, E-mail: q.zhou@damtp.cam.ac.uk; Diamessis, Peter J.
In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes driftmore » cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.« less
The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms
NASA Technical Reports Server (NTRS)
Pickett, H. M.
1979-01-01
The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.
1996-01-01
Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.
Risk Assessment of Face Skin Exposure to UV Irradiance from Different Rotation Angle Ranges
Wang, Fang; Gao, Qian; Deng, Yan; Chen, Rentong; Liu, Yang
2017-01-01
Ultraviolet (UV) is one of the environmental pathogenic factors causing skin damage. Aiming to assess the risk of face skin exposure to UV irradiance from different rotation angles, a rotating model was used to monitor the exposure of the skin on the face to UV irradiance, with skin damage action spectra used to determine the biologically effective UV irradiance (UVBEskin) and UVBEskin radiant exposure (HBEskin) causing skin damage. The results indicate that the UVBEskin is directly influenced by variations in rotation angles. A significant decrease of approximately 52.70% and 52.10% in UVBEskin was found when the cheek and nose measurement sites was rotated from 0° to 90°, while a decrease of approximately 62.70% was shown when the forehead measurement sites was rotated from an angle of 0° to 108°. When HBEskin was compared to the exposure limits (ELs; 30 J·m−2), the maximum relative risk ratios (RR) for cheek, nose, and forehead were found to be approximately 2.01, 2.40, and 2.90, respectively, which were all measured at a rotation angle of 0°. The maximal increase in the percentage of the average HBEskin for rotation angles of 60°, 120°, 180°, and 360° facing the sun to ELs were found to be approximately 62.10%, 52.72%, 43.43%, and 26.27% for the cheek; approximately 130.61%, 109.68%, 86.43%, and 50.06% for the nose; and approximately 178.61%, 159.19%, 134.38%, and 83.41% for the forehead, respectively. PMID:28587318
Risk Assessment of Face Skin Exposure to UV Irradiance from Different Rotation Angle Ranges.
Wang, Fang; Gao, Qian; Deng, Yan; Chen, Rentong; Liu, Yang
2017-06-06
Ultraviolet (UV) is one of the environmental pathogenic factors causing skin damage. Aiming to assess the risk of face skin exposure to UV irradiance from different rotation angles, a rotating model was used to monitor the exposure of the skin on the face to UV irradiance, with skin damage action spectra used to determine the biologically effective UV irradiance (UVBE skin ) and UVBE skin radiant exposure (HBE skin ) causing skin damage. The results indicate that the UVBE skin is directly influenced by variations in rotation angles. A significant decrease of approximately 52.70% and 52.10% in UVBE skin was found when the cheek and nose measurement sites was rotated from 0° to 90°, while a decrease of approximately 62.70% was shown when the forehead measurement sites was rotated from an angle of 0° to 108°. When HBE skin was compared to the exposure limits (ELs; 30 J·m -2 ), the maximum relative risk ratios (RR) for cheek, nose, and forehead were found to be approximately 2.01, 2.40, and 2.90, respectively, which were all measured at a rotation angle of 0°. The maximal increase in the percentage of the average HBE skin for rotation angles of 60°, 120°, 180°, and 360° facing the sun to ELs were found to be approximately 62.10%, 52.72%, 43.43%, and 26.27% for the cheek; approximately 130.61%, 109.68%, 86.43%, and 50.06% for the nose; and approximately 178.61%, 159.19%, 134.38%, and 83.41% for the forehead, respectively.
Kelvin-Mach Wake in a Two-Dimensional Fermi Sea
NASA Astrophysics Data System (ADS)
Kolomeisky, Eugene B.; Straley, Joseph P.
2018-06-01
The dispersion law for plasma oscillations in a two-dimensional electron gas in the hydrodynamic approximation interpolates between Ω ∝√{q } and Ω ∝q dependences as the wave vector q increases. As a result, downstream of a charged impurity in the presence of a uniform supersonic electric current flow, a wake pattern of induced charge density and potential is formed whose geometry is controlled by the Mach number M . For 1
NASA Astrophysics Data System (ADS)
Sutherland, G.; Rabault, J.; Jensen, A.; Christensen, K. H.; Ward, B.; Marchenko, A. V.; Morozov, E.; Gundersen, O.; Halsne, T.; Lindstrøm, E.
2016-02-01
The impact of sea-ice cover on propagation of water waves has been studied over five decades, both theoretically and from measurements on the ice. Understanding the interaction between water waves and sea-ice covers is a topic of interest for a variety of purposes such as formulation of ocean models for climate, weather and sea state predictions, and the analysis of pollution dispersion in the Arctic. Our knowledge of the underlying phenomena is still partial, and more experimental data is required to gain further insight into the associated physics. Three Inertial Motion Units (IMUs) have been assessed in the lab and used to perform measurements on landfast ice over 2 days in Tempelfjorden, Svalbard during March 2015. The ice thickness in the measurement area was approximately 60 to 80 cm. Two IMUs were located close to each other (6 meters) at a distance around 180 m from the ice edge. The third IMU was placed 120 m from the ice edge. The data collected contains a transition from high frequency, wind generated waves to lower frequency swell. Drastic changes in wave propagation are observed in relation with this transition. The level of reflected energy obtained from rotational spectra is much higher before the transition to low frequency swell than later on. The correlation between the signal recorded by the IMU closer to the ice edge and the two others IMUs is low during the wind waves dominated period, and increases with incoming swell. The dispersion relation for waves in ice was found to correspond to flexural-gravity waves before the transition and deepwater gravity waves afterwards.
NASA Astrophysics Data System (ADS)
Shope, J. B.; Storlazzi, C. D.; Erikson, L. H.; Hegermiller, C.
2013-12-01
Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Waves are the dominant spatially- and temporally-varying processes that influence the coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact the coastal infrastructure, natural and cultural resources, and coastal-related economic activities of these islands. Wave heights, periods, and directions were forecast through 2100 using wind parameter outputs from four coupled atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5., for Representative Concentration Pathways scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive the global WAVEWATCH III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. Although the results show some spatial heterogeneity, overall, the December-February extreme significant wave heights increase from present to mid century and then decrease toward the end of the century; June-August extreme wave heights decrease throughout the century. Peak wave periods decrease west of the International Date Line through all seasons, whereas peak periods increase in the eastern half of the study area; these trends are smaller during December-February and greatest during June-August. Extreme wave directions in equatorial Micronesia during June-August undergo an approximate 30 degree counter-clockwise rotation from primarily northwest to west. The spatial patterns and trends are similar between the two different greenhouse gas emission scenarios, with the magnitude of the trends greater for the higher scenario.
Do inertial wave interactions control the rate of energy dissipation of rotating turbulence?
NASA Astrophysics Data System (ADS)
Cortet, Pierre-Philippe; Campagne, Antoine; Machicoane, Nathanael; Gallet, Basile; Moisy, Frederic
2015-11-01
The scaling law of the energy dissipation rate, ɛ ~U3 / L (with U and L the characteristic velocity and lengthscale), is one of the most robust features of fully developed turbulence. How this scaling is affected by a background rotation is still a controversial issue with importance for geo and astrophysical flows. At asymptotically small Rossby numbers Ro = U / ΩL , i.e. in the weakly nonlinear limit, wave-turbulence arguments suggest that ɛ should be reduced by a factor Ro . Such scaling has however never been evidenced directly, neither experimentally nor numerically. We report here direct measurements of the injected power, and therefore of ɛ, in an experiment where a propeller is rotating at a constant rate in a large volume of fluid rotating at Ω. In co-rotation, we find a transition between the wave-turbulence scaling at small Ro and the classical Kolmogorov law at large Ro . The transition between these two regimes is characterized from experiments varying the propeller and tank dimensions. In counter-rotation, the scenario is much richer with the observation of an additional peak of dissipation, similar to the one found in Taylor-Couette experiments.
An inverse method using toroidal mode data
Willis, C.
1986-01-01
The author presents a numerical method for calculating the density and S-wave velocity in the upper mantle of a spherically symmetric, non-rotating Earth which consists of a perfect elastic, isotropic material. The data comes from the periods of the toroidal oscillations. She tests the method on a smoothed version of model A. The error in the reconstruction is less than 1%. The effects of perturbations in the eigenvalues are studied and she finds that the final model is sensitive to errors in the data.
Timothy A. Martin; Eric J. Jokela
2004-01-01
The objectives of this study were to examine the effects of stand development and soil nutrient supply on processes affecting the productivity of loblolly pine (Pinux taeda L.) over a period approximately equal to a pulpwood rotation (18 years). The experiment consisted of a 2 x 2 factorial combination of complete and sustained weed control and...
The Microwave Spectroscopy Study of 1,2-DIMETHOXYETHANE
NASA Astrophysics Data System (ADS)
Li, Weixing; Vigorito, Annalisa; Calabrese, Camilla; Evangelisti, Luca; Favero, Laura B.; Maris, Assimo; Melandri, Sonia
2017-06-01
With Pulsed-Jet Fourier Transform MicroWave (PJ-FTMW) spectroscopy and Stark modulated Free Jet Millimeter-Wave absorption (FJ-AMMW) spectroscopy, the rotational spectra of two conformers of 1,2-Dimethoxyethane were identified and characterized. Besides the normal species, the spectra of all the mono-substituted ^{13}C isotopologues in natural abundance were also measured. By fitting the rotational transitions split by the methyl internal rotations using both XIAM and ERHAM programs, the spectroscopic parameters were obtained and compared. The rotational constants indicated the conformers to be TGT and TGG', respectively. With the rotational constants of the normal and ^{13}C species, the coordinates of the substituted carbon atoms could be calculated with Kraitchmann's equations. The carbon-frameworks further confirmed the assignment of the two conformations. The V_{3} barriers of the two methyl groups' internal rotations were also experimentally determined.
On hydromagnetic oscillations in a rotating cavity.
NASA Technical Reports Server (NTRS)
Gans, R. F.
1971-01-01
Time-dependent hydromagnetic phenomena in a rotating spherical cavity are investigated in the framework of an interior boundary-layer expansion. The first type of wave is a modification of the hydrodynamic inertial wave, the second is a pseudo-geostrophic wave and is involved in spinup, and the third is related to the MAC waves of Braginskii (1967). It is shown that the MAC waves must satisfy more than the usual normal boundary conditions, and that reference must be made to the boundary-layer solution to resolve the ambiguity regarding which conditions are to be taken. The boundary-layer structure is investigated in detail to display the interactions between applied field, viscosity, electrical conductivity, frequency and latitu de.
NASA Astrophysics Data System (ADS)
Alesemi, Meshari
2018-04-01
The objective of this research is to illustrate the effectiveness of the thermal relaxation time based on the theory of Lord-Shulman (L-S), Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic magneto-thermoelastic medium. Assuming the elastic medium is rotating with stable angular velocity and the imposed magnetic field is parallel to the boundary of the half-space. The basic equations of a transversely isotropic rotating magneto-thermoelastic medium are formulated according to thermoelasticity theory of Lord-Shulman (L-S). Next to that, getting the velocity equation which is illustrated to show existence of three quasi-plane waves propagating in the medium. The amplitude ratios coefficients of these plane waves have been given and then computed numerically and plotted graphically to demonstrate the influences of the rotation on the Zinc material.
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Kabin, K.; Noël, J.-M.
2017-10-01
Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices that are installed on most commercial aircraft. These radio waves can be detected by satellites in low Earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this manuscript we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick ionospheric model.
Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness
NASA Technical Reports Server (NTRS)
Wood, C. D.; Stewart, J. J.; Wood, M. J.; Manno, J. E.; Manno, B. R.
1990-01-01
In addition to nausea and vomiting, motion sickness involves slowing of brain waves, loss of performance, inhibition of gastric motility and the Sopite Syndrome. The therapeutic effects of antimotion sickness drugs on these reactions were evaluated. The subjects were rotated to the M-III end-point of motion sickness. Intramuscular (IM) medications were then administered. Side effects before and after rotation were reported on the Cornell Medical Index. Brain waves were recorded on a Grass Model 6 Electroencephalograph (EEG), and gastric emptying was studied after an oral dose of 1 mCi Technetium 99m DTPA in 10 oz. isotonic saline. An increase in dizziness and drowsiness was reported with placebo after rotation. This was not prevented by IM scopolamine 0.1 mg or ephedrine 25 mg. EEG recordings indicated a slowing of alpha waves with some thea and delta waves from the frontal areas after rotation. IM ephedine and dimenhydrinate counteracted the slowing while 0.3 mg scopolamine had an additive effect. Alterations of performance on the pursuit meter correlated with the brain wave changes. Gastric emptying was restored by IM metoclopramide. Ephedrine IM but not scopolamine is effective for some of the secondary effects of motion sickness after it is established.
Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform.
Mendlovic, D; Ozaktas, H M; Lohmann, A W
1994-09-10
Two definitions of a fractional Fourier transform have been proposed previously. One is based on the propagation of a wave field through a graded-index medium, and the other is based on rotating a function's Wigner distribution. It is shown that both definitions are equivalent. An important result of this equivalency is that the Wigner distribution of a wave field rotates as the wave field propagates through a quadratic graded-index medium. The relation with ray-optics phase space is discussed.
NASA Astrophysics Data System (ADS)
Zietlow, Daniel W.; Molnar, Peter H.; Sheehan, Anne F.
2016-06-01
A P wave speed tomogram produced from teleseismic travel time measurements made on and offshore the South Island of New Zealand shows a nearly vertical zone with wave speeds that are 4.5% higher than the background average reaching to depths of approximately 450 km under the northwestern region of the island. This structure is consistent with oblique west-southwest subduction of Pacific lithosphere since about 45 Ma, when subduction beneath the region began. The high-speed zone reaches about 200-300 km below the depths of the deepest intermediate-depth earthquakes (subcrustal to ~200 km) and therefore suggests that ~200-300 km of slab below them is required to produce sufficient weight to induce the intermediate-depth seismicity. In the southwestern South Island, high P wave speeds indicate subduction of the Australian plate at the Puysegur Trench to approximately 200 km depth. A band with speeds ~2-3.5% lower than the background average is found along the east coast of the South Island to depths of ~150-200 km and underlies Miocene or younger volcanism; these low speeds are consistent with thinned lithosphere. A core of high speeds under the Southern Alps associated with a convergent margin and mountain building imaged in previous investigations is not well resolved in this study. This could suggest that such high speeds are limited in both width and depth and not resolvable by our data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Peebles, W. A.; Crocker, N. A.
Mueller-Stokes theory can be used to calculate the polarization evolution of an electromagnetic (EM) wave as it propagates through a magnetized plasma. Historically, the theory has been used to interpret polarimeter signals from systems operating on fusion plasmas. These interpretations have mostly employed approximations of Mueller-Stokes theory in regimes where either the Faraday rotation (FR) or the Cotton-Mouton (CM) effect is dominant. The current paper presents the first systematic comparison of polarimeter measurements with the predictions of full Mueller-Stokes theory where conditions transition smoothly from a FR-dominant (i.e., weak CM effect) plasma to one where the CM effect plays amore » significant role. A synthetic diagnostic code, based on Mueller-Stokes theory accurately reproduces the trends evident in the experimentally measured polarimeter phase over this entire operating range, thereby validating Mueller-Stokes theory. The synthetic diagnostic code is then used to investigate the influence of the CM effect on polarimetry measurements. As expected, the measurements are well approximated by the FR effect when the CM effect is predicted to be weak. However, the code shows that as the CM effect increases, it can compete with the FR effect in rotating the polarization of the EM-wave. This results in a reduced polarimeter response to the FR effect, just as observed in the experiment. The code also shows if sufficiently large, the CM effect can even reverse the handedness of a wave launched with circular polarization. This helps to understand the surprising experimental observations that the sensitivity to the FR effect can be nearly eliminated at high enough B{sub T} (2.0 T). The results also suggest that the CM effect on the plasma midplane can be exploited to potentially measure magnetic shear in tokamak plasmas. These results establish increased confidence in the use of such a synthetic diagnostic code to guide future polarimetry design and interpret the resultant experimental data.« less
The amplitude effects of sedimentary basins on through-passing surface waves
NASA Astrophysics Data System (ADS)
Feng, L.; Ritzwoller, M. H.; Pasyanos, M.
2016-12-01
Understanding the effect of sedimentary basins on through-passing surface waves is essential in many aspects of seismology, including the estimation of the magnitude of natural and anthropogenic events, the study of the attenuation properties of Earth's interior, and the analysis of ground motion as part of seismic hazard assessment. In particular, knowledge of the physical causes of amplitude variations is important in the application of the Ms:mb discriminant of nuclear monitoring. Our work addresses two principal questions, both in the period range between 10 s and 20 s. The first question is: In what respects can surface wave propagation through 3D structures be simulated as 2D membrane waves? This question is motivated by our belief that surface wave amplitude effects down-stream from sedimentary basins result predominantly from elastic focusing and defocusing, which we understand as analogous to the effect of a lens. To the extent that this understanding is correct, 2D membrane waves will approximately capture the amplitude effects of focusing and defocusing. We address this question by applying the 3D simulation code SW4 (a node-based finite-difference code for 3D seismic wave simulation) and the 2D code SPECFEM2D (a spectral element code for 2D seismic wave simulation). Our results show that for surface waves propagating downstream from 3D sedimentary basins, amplitude effects are mostly caused by elastic focusing and defocusing which is modeled accurately as a 2D effect. However, if the epicentral distance is small, higher modes may contaminate the fundamental mode, which may result in large errors in the 2D membrane wave approximation. The second question is: Are observations of amplitude variations across East Asia following North Korean nuclear tests consistent with simulations of amplitude variations caused by elastic focusing/defocusing through a crustal reference model of China (Shen et al., A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion, Geophys. J. Int., 206(2), 2015)? We simulate surface wave propagation across Eastern Asia with SES3D (a spectral element code for 3D seismic wave simulation) and observe significant amplitude variations caused by focusing and defocusing with a magnitude that is consistent with the observations.
Mode cross coupling observations with a rotation sensor.
NASA Astrophysics Data System (ADS)
Nader, Maria-Fernanda; Igel, Heiner; Ferreira, Ana M. G.; Al-Attar, David
2013-04-01
The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations (Igel et al. 2011). Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of two of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011 and Maule, Chile, 2010. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements. Igel H, Nader MF, Kurrle D, Ferreira AM,Wassermann J, Schreiber KU (2011) ''Observations of Earth's toroidal free oscillations with a rotation sensor: the 2011 magnitude 9.0 Tohoku-Oki earthquake.'' Geophys Res Lett. doi:10.1029/2011GL049045
International cometary explorer encounter with giacobini-zinner: magnetic field observations.
Smith, E J; Tsurutani, B T; Slvain, J A; Jones, D E; Siscoe, G L; Mendis, D A
1986-04-18
The vector helium magnetometer on the International Cometary Explorer observed the magnetic fields induced by the interaction of comet Giacobini-Zinner with the solar wind. A magnetic tail was penetrated approximately 7800 kilometers downstream from the comet and was found to be 10(4) kilometers wide. It consisted of two lobes, containing oppositely directed fields with strengths up to 60 nanoteslas, separated by a plasma sheet approximately 10(3)kilometers thick containing a thin current sheet. The magnetotail was enclosed in an extended ionosheath characterized by intense hydromagnetic turbulene and interplanetary fields draped around the comet. A distant bow wave, which may or may not have been a bow shock, was observed at both edges of the ionosheath. Weak turbulence was observed well upstream of the bow wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantha, Sriteja; Yethiraj, Arun
2016-02-24
The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, D T , and rotational relaxation time, τ R. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparingmore » the values to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of D T and τ R can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.« less
Electro-optic voltage sensor for sensing voltage in an E-field
Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.
2002-03-26
A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.
The time course from gender categorization to gender-stereotype activation.
Zhang, Xiaobin; Li, Qiong; Sun, Shan; Zuo, Bin
2018-02-01
Social categorization is the foundation of stereotype activation, and the process from social categorization to stereotype activation is rapid. However, the time from social categorization to stereotype activation is unknown. This study involves a real-time measurement of the time course of gender-stereotype activation beginning with gender categorization using event-related potential technology with a face as the priming stimulus. We found that 195 ms after a face stimulus was presented, brain waves stimulated by male or female gender categorization showed a clear separation, with male faces stimulating larger N200 waves. In addition, 475 ms after a face stimulus appeared or 280 ms after the gendercategorization process occurred, gender-stereotype-consistent and gender-stereotype-inconsistent stimuli were distinct, with gender-stereotype-inconsistent stimuli inducing larger N400 waves. These results indicate that during gender-stereotype activation by face perception, gender categorization occurs approximately 195 ms after seeing a face stimulus and a gender stereotype is activated at approximately 475 ms.
Soderblom, L.A.; Boice, D.C.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Kirk, R.L.; Lee, M.; Nelson, R.M.; Oberst, J.; Sandel, B.R.; Stern, S.A.; Thomas, N.; Yelle, R.V.
2004-01-01
The nucleus, coma, and dust jets of short-period Comet 19P/Borrelly were imaged from the Deep Space 1 spacecraft during its close flyby in September 2001. A prominent jet dominated the near-nucleus coma and emanated roughly normal to the long axis of nucleus from a broad central cavity. We show it to have remained fixed in position for more than 34 hr, much longer than the 26-hr rotation period. This confirms earlier suggestions that it is co-aligned with the rotation axis. From a combination of fitting the nucleus light curve from approach images and the nucleus' orientation from stereo images at encounter, we conclude that the sense of rotation is right-handed around the main jet vector. The inferred rotation pole is approximately perpendicular to the long axis of the nucleus, consistent with a simple rotational state. Lacking an existing IAU comet-specific convention but applying a convention provisionally adopted for asteroids, we label this the north pole. This places the sub-solar latitude at ???60?? N at the time of the perihelion with the north pole in constant sunlight and thus receiving maximum average insolation. ?? 2003 Elsevier Inc. All rights reserved.
Plasma waves near saturn: initial results from voyager 1.
Gurnett, D A; Kurth, W S; Scarf, F L
1981-04-10
The Voyager 1 plasma wave instrument detected many familiar types of plasma waves during the encounter with Saturn, including ion-acoustic waves and electron plasma oscillations upstream of the bow shock, an intense burst of electrostatic noise at the shock, and chorus, hiss, electrostatic electron cyclotron waves, and upper hybrid resonance emissions in the inner magnetosphere. A clocklike Saturn rotational control of low-frequency radio emissions was observed, and evidence was obtained of possible control by the moon Dione. Strong plasma wave emissions were detected at the Titan encounter indicating the presence of a turbulent sheath extending around Titan, and upper hybrid resonance measurements of the electron density show the existence of a dense plume of plasma being carried downstream of Titan by the interaction with the rapidly rotating magnetosphere of Saturn.