Sample records for rotation willow coppice

  1. Nutrient enhanced short rotation coppice for biomass in central Wales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodson, R.W.; Slater, F.M.; Lynn, S.F.

    1993-12-31

    Two projects involving short rotation willow coppice are taking place on the eastern side of the Cambrian Mountains in central Wales. One project examines, as an alternative land use, the potential of short rotation willow coppice variously enhanced by combinations of lime, phosphorous and potassium fertilizers and also digested sewage sludge on an acidic upland site at an altitude of 260m. The first year results of this project are described in detail, showing the necessity for limestone additions and also demonstrating that of the four willow varieties established, Salix dasyclados is the only possible, profitable fuel crop. The other projectmore » involving willow in a filter bed system is outlined along with an additional project investigating the effect of sewage sludge additions on the Rubus fruticosus production in a birch dominated mixed deciduous woodland.« less

  2. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but

  3. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.

    PubMed

    Gommers, A; Gäfvert, T; Smolders, E; Merckx, R; Vandenhove, H

    2005-01-01

    The feasibility of willow short rotation coppice (SRC) for energy production as a revaluation tool for severely radiocaesium-contaminated land was studied. The effects of crop age, clone and soil type on the radiocaesium levels in the wood were assessed following sampling in 14 existing willow SRC fields, planted on radiocaesium-contaminated land in Sweden following Chernobyl deposition. There was only one plot where willow stands of different maturity (R6S2 and R5S4: R, root age and S, shoot age) and clone (Rapp and L78183 both of age category R5S4) were sampled and no significant differences were found. The soils differed among others in clay fraction (3-34%), radiocaesium interception potential (515-6884 meq kg(-1)), soil solution K (0.09-0.95 mM), exchangeable K (0.58-5.77 meq kg(-1)) and cation exchange capacity (31-250 meq kg(-1)). The soil-to-wood transfer factor (TF) of radiocaesium differed significantly between soil types. The TF recorded was generally small (0.00086-0.016 kg kg(-1)), except for willows established on sandy soil (0.19-0.46 kg kg(-1)). Apart from the weak yet significant exponential correlation between the Cs-TF and the solid/liquid distribution coefficient (R2 = 0.54) or the radiocaesium interception potential, RIP (R2 = 0.66), no single significant correlations between soil characteristics and TF were found. The wood-soil solution 137Cs concentration factor (CF) was significantly related to the potassium concentration in the soil solution. A different relation was, however, found between the sandy Trödje soils (CF = 1078.8 x m(K)(-1.83), R2 = 0.99) and the other soils (CF = 35.75 x m(K)(-0.61), R2 =0.61). Differences in the ageing rate of radiocaesium in the soil (hypothesised fraction of bioavailable caesium subjected to fast ageing for Trödje soils only 1% compared to other soils), exchangeable soil K (0.8-1.8 meq kg(-1) for Trödje soils and 1.5-5.8 meq kg(-1) for the other soils) and the ammonium concentration in the soil solution

  4. Black willow tree improvement: development of a biomass species for marginal agricultural land in the lower Mississippi alluvial valley

    Treesearch

    Rochelle Brazas Bailey; Randall J. Rousseau; Emile Gardiner; Jason C. Mack

    2014-01-01

    Short rotation woody crops, such as willows (Salix spp.), continue to be examined as biomass species because of their fast growth, ease of vegetative propagation, and ability to be coppice regenerated. Black willow (Salix nigra Marsh.) fits well into a biomass program for the southern United States because of its ability to grow on...

  5. Dry Matter Losses and Greenhouse Gas Emissions From Outside Storage of Short Rotation Coppice Willow Chip.

    PubMed

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO 2 ) concentration within the heap. A peak in methane (CH 4 ) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH 4 concentration occurred as CO 2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other

  6. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.

    PubMed

    Dou, Chang; Marcondes, Wilian F; Djaja, Jessica E; Bura, Renata; Gustafson, Rick

    2017-01-01

    Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees. The biomass from these 2-year-old trees is very heterogeneous, and includes components of leaf, bark, branch, and wood chip. This material is quite different than the samples that have been used in most poplar bioconversion research, which come from mature trees of short rotation forestry (SRF) plantations. If the coppice management regime is to be used, it is important that feedstock growers maximize their revenue from this initial harvest, but the heterogeneous nature of the biomass may be challenging for bioconversion. This work evaluates bioconversion of 2-year-old poplar coppice and compares its performance to whitewood chips from 12-year-old poplar. The 2-year-old whole tree coppice (WTC) is comprised of 37% leaf, 9% bark, 12% branch, and 42% wood chip. As expected, the chemical compositions of each component were markedly different. The leaf has a low sugar content but is high in phenolics, ash, and extractives. By removing the leaves, the sugar content of the biomass increased significantly, while the phenolic, ash, and extractives contents decreased. Leaf removal improved monomeric sugar yield by 147 kg/tonne of biomass following steam pretreatment and enzymatic hydrolysis. Bioconversion of the no-leaf coppice (NLC) achieved a 67% overall sugar recovery, showing no significant difference to mature whitewood from forestry plantation (WWF, 71%). The overall sugar yield of NLC was 135 kg/tonne less than that of WWF, due to the low inherent sugar content in original biomass. An economic analysis shows the minimum ethanol selling price required to cover the

  7. Natural flood retention in mountain areas by forests and forest like short rotation coppices

    NASA Astrophysics Data System (ADS)

    Reinhardt-Imjela, Christian; Schulte, Achim; Hartwich, Jens

    2017-04-01

    Natural water retention is an important element of flood risk management in flood generating headwater areas in the low mountain ranges of Central Europe. In this context forests are of particular interest because of the high infiltration capacities of the soils and to increase water retention reforestation of agricultural land would be worthwhile. However competing claims for land use in intensely cultivated regions in Central Europe impede reforestation plans so the potential for a significant increase of natural water retention in forests is strongly limited. Nevertheless the development of innovative forms of land use and crop types opens new perspectives for a combination of agricultural land use with the water retention potential of forests. Recently the increasing demand for renewable energy resources leads to the cultivation of fast growing poplar and willow hybrids on agricultural land in short rotation coppices (SRC). Harvested in cycles of three to six years the wood from the plantations can be used as wood chips for heat and electricity production in specialized power plants. With short rotation plantations a crop type is established on arable land which is similar to forests so that an improvement of water retention can be expected. To what extend SRC may contribute to flood attenuation in headwater areas is investigated for the Chemnitzbach watershed (48 km2) in the Eastern Ore Mountains (Free State of Saxony, Germany), a low mountain range which is an important source of flood runoff in the Elbe basin. The study is based on a rainfall-runoff model of flood events using the conceptual modelling system NASIM. First results reveal a significant reduction of the flood peaks after the implementation of short rotation coppices. However the effect strongly depends on two factors. The first factor is the availability of areas for the plantations. For a substantial impact on the watershed scale large areas are required and with decreasing percentages of SRC

  8. Rootstock mass of coppiced Platanus occidentalis as affected by spacing and rotation length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinbeck, K.; Nwoboshi, L.C.

    1980-01-01

    The root mass per unit land area for Platanus occidentalis was determined 9 years after planting 1-0 seedlings. Trees had been planted at 0.3 X 1.2, 0.6 X 1.2 and 1.2 X 1.2 m spacings and coppiced after two growing seasons in the field. Rotations of 1, 2, and 7 years were then imposed. Rootstocks coppiced annually had significantly less rootstock mass (16.0 tons/ha) than those harvested on longer cycles. No significant difference was found between the 2- and 7-year rotations, which averaged 22.8 and 25.2 tons of dry rootstock mass per hectare, respectively. Spacing did not affect rootstock massmore » per unit land area. Rotations of 2 years or longer and relatively wide spacings are recommended for short rotation forestry.« less

  9. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  10. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE PAGES

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    2016-05-02

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  11. A comparison of the suitability of different willow varieties to treat on-site wastewater effluent in an Irish climate.

    PubMed

    Curneen, S J; Gill, L W

    2014-01-15

    Short rotation coppiced willow trees can be used to treat on-site wastewater effluent with the advantage that, if planted in a sealed basin and sized correctly, they produce no effluent discharge. This paper has investigated the evapotranspiration rate of four different willow varieties while also monitoring the effects of three different effluent types on each variety. The willow varieties used are all cultivars of Salix viminalis. The effluents applied were primary (septic tank) effluent, secondary treated effluent and rain water (control). The results obtained showed that the addition of effluent had a positive effect on the evapotranspiration. The willows were also found to uptake a high proportion of the nitrogen and phosphorus from the primary and secondary treated effluents added during the first year. The effect of the different effluents on the evapotranspiration rate has been used to design ten full scale on-site treatment systems which are now being monitored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England.

    PubMed

    Glithero, Neryssa J; Wilson, Paul; Ramsden, Stephen J

    2013-07-01

    Biomass will play a role in the UK meeting EU targets on renewable energy use. Short Rotation Coppice (SRC) and miscanthus are potential biomass feedstocks; however, supply will rely on farmer willingness to grow these crops. Despite attractive crop establishment grants for dedicated energy crops (DECs) in the UK, uptake remains low. Drawing on results from an on-farm survey with 244 English arable farmers, 81.6% (87.7%) of farmers would not consider growing miscanthus (SRC), while respectively, 17.2% (11.9%) would consider growing and 1.2% (0.4%) were currently growing these crops. Farmer age, location, land ownership, farm type, farm size and farmer education level were not significant factors in determining acceptance of DECs. The main reasons cited for not growing DECs were impacts on land quality, lack of appropriate machinery, commitment of land for a long period of time, time to financial return and profitability. Reasons cited for willingness to grow DECs included land quality, ease of crop management, commitment of land for a long period of time, and profitability. Farmers cited a range of 'moral' (e.g. should not be using land for energy crops when there is a shortage of food), land quality, knowledge, profit and current farming practice comments as reasons for not growing DECs, while those willing to grow DECs cited interest in renewable energy, willingness to consider new crops, and low labour needs as rationale for their interest. Farm business objectives indicated that maximising profit and quality of life were most frequently cited as very important objectives. Previous research in the UK indicates that farmers in arable areas are unlikely to convert large areas of land to DECs, even where these farmers have an interest and willingness to grow them. Assuming that those farmers interested in growing DECs converted 9.29% (average percentage of arable land set-aside between 1996 and 2005) of their utilised agricultural area to these crops, 50,700

  13. Melampsora rust species on biomass willows in central and north-eastern Germany.

    PubMed

    Bubner, Ben; Wunder, Sebastian; Zaspel, Irmtraut; Zander, Matthias; Gloger, Jan; Fehrenz, Steffen; Ulrichs, Christian

    2014-11-01

    Melampsora willow rusts are the most important fungal pathogens in short rotation coppices of biomass willows. In the past, breeding programmes for rust resistant biomass willows concentrated on the distinction of races within the forma specialis Melampsora larici-epitea f. sp. larici-epitea typica that colonized Salix viminalis and related clones. In a new breeding program that is based on a wider range of willow species it is necessary to identify further Melampsora species and formae specialis that are pathogens of willow species other than S. viminalis. Therefore, three stock collections with Salix daphnoides, Salix purpurea, and other shrub willow species (including S. viminalis) species were sampled in north-eastern Germany. A fourth stock collection in central Germany contributed rusts of tree willows (Salix fragilis and Salix alba) and the large shrub Salix caprea. Out of 156 rust samples, 149 were successfully sequenced for ITS rDNA. A phylogenetic analysis combining Neighbour-Joining, Maximum-Likelihood and Bayesian analysis revealed six species: Melampsora ribesii-purpureae, Melampsora allii-salicis-albae, Melampsora sp. aff. allii-fragilis, Melampsora larici-pentandrae, Melampsora larici-caprearum, and Melampsora larici-epitea. The first four species were found exclusively on the expected hosts. Melampsora larici-caprearum had a wider host range comprising S. caprea and S. viminalis hybrids. Melampsora larici-epitea can be further differentiated into two formae speciales. The forma specialis larici-epitea typica (59 samples) colonized Salix viminalis clones, Salix purpurea, Salix×dasyclados, and Salix×aquatica. In contrast to this relatively broad host range, f. sp. larici-daphnoides (65 samples) was found exclusively on Salix daphnoides. With the distinction and identification of the rust species/formae speciales it is now possible to test for race-specific resistances in a more targeted manner within the determined pairings of rust and willow

  14. Dry matter losses and quality changes during short rotation coppice willow storage in chip or rod form.

    PubMed

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    2018-05-01

    This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60 °C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.

  15. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England

    PubMed Central

    Glithero, Neryssa J.; Wilson, Paul; Ramsden, Stephen J.

    2013-01-01

    Biomass will play a role in the UK meeting EU targets on renewable energy use. Short Rotation Coppice (SRC) and miscanthus are potential biomass feedstocks; however, supply will rely on farmer willingness to grow these crops. Despite attractive crop establishment grants for dedicated energy crops (DECs) in the UK, uptake remains low. Drawing on results from an on-farm survey with 244 English arable farmers, 81.6% (87.7%) of farmers would not consider growing miscanthus (SRC), while respectively, 17.2% (11.9%) would consider growing and 1.2% (0.4%) were currently growing these crops. Farmer age, location, land ownership, farm type, farm size and farmer education level were not significant factors in determining acceptance of DECs. The main reasons cited for not growing DECs were impacts on land quality, lack of appropriate machinery, commitment of land for a long period of time, time to financial return and profitability. Reasons cited for willingness to grow DECs included land quality, ease of crop management, commitment of land for a long period of time, and profitability. Farmers cited a range of ‘moral’ (e.g. should not be using land for energy crops when there is a shortage of food), land quality, knowledge, profit and current farming practice comments as reasons for not growing DECs, while those willing to grow DECs cited interest in renewable energy, willingness to consider new crops, and low labour needs as rationale for their interest. Farm business objectives indicated that maximising profit and quality of life were most frequently cited as very important objectives. Previous research in the UK indicates that farmers in arable areas are unlikely to convert large areas of land to DECs, even where these farmers have an interest and willingness to grow them. Assuming that those farmers interested in growing DECs converted 9.29% (average percentage of arable land set-aside between 1996 and 2005) of their utilised agricultural area to these crops, 50,700

  16. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    PubMed Central

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. PMID:26339128

  17. Spatial distribution of arsenic and heavy metals in willow roots from a contaminated floodplain soil measured by X-ray fluorescence spectroscopy.

    PubMed

    Zimmer, Dana; Kruse, Jens; Baum, Christel; Borca, Camelia; Laue, Michael; Hause, Gerd; Meissner, Ralph; Leinweber, Peter

    2011-09-01

    Under changing redox conditions some plants create plaques at their root surface, which may affect the mobility and uptake of As and heavy metals but it is unknown to what extent this also holds true for willows in contaminated floodplain soils. Therefore, willow roots were sampled from a phytoremediation trial in the contaminated floodplain of the river Elbe (Germany), cryofixed, freeze-dried, and cross sections were mapped for the distribution of As, Ca, Cu, Fe, K, Mn, Ni, S and Zn by synchrotron based X-ray fluorescence spectroscopy. The elements Ca, Cu, Ni, S and Zn were concentrated in the aerenchymatic tissue, and not associated with Fe and Mn. Mixed Fe-Mn plaques covered the surface of the willow roots and As was accumulated in these plaques. The observed association pattern between As and Fe was explained by the different sorption/desorption properties of As(III) and As(V). The Cu and Zn intensities were not associated with the intensity of Fe in the plaque, which seems to be a willow-specific difference compared to other wetland plants. These results suggested that willows are especially suited to stabilize low-phytoextractable elements like Cu and As in their roots and rhizosphere. Thus, short rotation coppicing of willows may be a practical approach to mitigate the adverse effects of floodplain soil contamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Background CH4 and N2O fluxes in low-input short rotation coppice

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Zenone, Terenzio; Ceulemans, Reinhart

    2016-04-01

    Extensively managed short rotation coppice systems are characterized by low fluxes of CH4 and N2O. However due to the large global warming potential of these trace gases (GWP100: CH4: 34, N2O: 298), such background fluxes can still significantly contribute to offsetting the CO2 uptake of short rotation coppice systems. Recent technological advances in fast-response CH4 and N2O analysers have improved our capability to capture these background fluxes, but their quantification still remains a challenge. As an example, we present here CH4 and N2O fluxes from a short-rotation bioenergy plantation in Belgium. Poplars have been planted in a double-row system on a loamy sand in 2010 and coppiced in the beginning of 2012 and 2014 (two-year rotation system). In 2013 (June - November) and 2014 (April - August), the plantation's CH4 and N2O fluxes were measured in parallel with an eddy covariance tower (EC) and an automated chamber system (AC). The EC had a detection limit of 13.68 and 0.76 μmol m-2 h-1 for CH4 and N2O, respectively. The median detection limit of the AC was 0.38 and 0.08 μmol m-2 h-1 for CH4 and N2O, respectively. The EC picked up a few high CH4 emission events with daily averages >100 μmol m-2 h-1, but a large proportion of the measured fluxes were within the EC's detection limit. The same was true for the EC-derived N2O fluxes where the daily average flux was often close to the detection limit. Sporadically, some negative (uptake) fluxes of N2O were observed. On the basis of the EC data, no clear link was found between CH4 and N2O fluxes and environmental variables. The problem with fluxes within the EC detection limit is that a significant amount of the values can show the opposite sign, thus "mirroring" the true flux. Subsequently, environmental controls of background trace gas fluxes might be disguised in the analysis. As a next step, it will be tested if potential environmental drivers of background CH4 and N2O fluxes at the plantation can be

  19. Fast-growing willow shrub named `Canastota`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-15

    A distinct male cultivar of Salix sachalinensis.times.S. miyabeana named `Canastota`, characterized by rapid stem growth producing greater than 2.7-fold more woody biomass than its female parent (Salix sachalinensis `SX61`), 28% greater woody biomass yield than its male parent (Salix miyabeana `SX64`), and 20% greater woody biomass yield than a standard production cultivar, Salix dasyclados `SV1` when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Canastota` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. `Canastota` displays a low incidence of rust disease or damage by willow sawfly.

  20. Fast-growing willow shrub named `Canastota`

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, Lawrence P; Kopp, Richard F; Smart, Lawrence B

    A distinct male cultivar of Salix sachalinensis.times.S. miyabeana named `Canastota`, characterized by rapid stem growth producing greater than 2.7-fold more woody biomass than its female parent (Salix sachalinensis `SX61`), 28% greater woody biomass yield than its male parent (Salix miyabeana `SX64`), and 20% greater woody biomass yield than a standard production cultivar, Salix dasyclados `SV1` when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Canastota` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant.more » In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. `Canastota` displays a low incidence of rust disease or damage by willow sawfly.« less

  1. Effect of drought on fine roots productivity in poplar-based short rotation coppice

    NASA Astrophysics Data System (ADS)

    Mani Tripathi, Abhishek; Fischer, Milan; Berhongaray, Gonzalo; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    Short rotation woody crops (SRWC) are alternative source of bioenergy, which apart from their 'carbon neutrality' have potential to store carbon (C) into soil and mitigate the increasing CO2 emission. Studies of below ground biomass of trees are divided into two types according to root diameter - analysis of fine roots (less than 2 mm) and coarse roots (more than 2 mm). Trees roots are spatially highly heterogeneous and it requires large number of samples to obtain a representative estimate of belowground biomass. For this study we used hybrid poplar clone J-105 (Populus nigra x P. maximowiczii) grown under short rotation coppice system in the region of Bohemian-Moravian Highland (49o32'N, 16o15'E and altitude 530 m a.s.l.) since April 2000. The plantation with planting density of 9,216 trees ha-1 was established on the former agricultural land and the length of the rotation cycle was set to 6-8 years. While mean annual rainfall was 609 mm with mean annual temperature 7.2oC during 1981-2013 significant increase of temperature and more frequent droughts are expected. In 2011, we established drought experiment based on throughfall exclusion system, reducing up to 70 % of throughfall precipitation. Thus 2 treatments with normal and lowered soil moisture levels were introduced. In January and February 2014, we cored 18 places including drought and control using root bipartite auger. The main goal of the study is to assess the response of fine roots productivity and fine roots vertical distribution on the reduced soil water availability. Results will be presented at the conference. Acknowledgements: This study was funded by research project IGA Mendel University 2014 "Study of below ground biomass in short rotation poplar coppice (J-105) in the Czech-Moravian Highlands", project PASED (KONTAKT II LH12037 ʺDevelopment of models for the assessment of abiotic stresses in selected energy woody plantsʺ and "Building up a multidisciplinary scientific team focused on drought

  2. Development of a black willow improvement program for biomass production in the Lower Mississippi River Alluvial Valley

    Treesearch

    Randell J. Rousseau; Emile S. Gardiner; Theodor D. Leininger

    2012-01-01

    Black willow (Salix nigra Marsh.) has the potential to be a significant feedstock source for bioenergy and biofuels production in the Lower Mississippi Alluvial Valley (LMAV). This potential is based on a number of primary factors including rapid growth, ease of vegetative propagation, excellent rooting, and the ability to regenerate from coppice...

  3. Some seasonal carbohydrate fluctuations in coppiced rootstocks of Platanus occidentalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, M.R.; Steinbeck, K.

    Carbohydrate concentrations were determined in 11-year-old rootstocks of American sycamore (Platanus occidentalis) which had been coppiced on one- or two-year rotations for the preceding eight years. Sixty rootstocks were destructively sampled periodically between September 1976 and April 1977. Root starch concentrations declined erratically from 21 percent of dry weight in autumn to 14 percent by late April. Sugar levels rose from 1.5 percent in autumn to 5 percent in winter and declined to 3 percent in spring. Considerable variation in root starch levels from tree to tree was observed, and differences in starch and sugar concentrations between rootstocks coppiced onmore » an annual or biannual basis were unimportant. These data suggest that while differences in above-ground biomass yields encountered in short rotation coppice forestry are not due to differences in rootstocks carbohydrate concentrations, the total quantity of reserve carbohydrate stored in a root system is probably a controlling factor for sprout regrowth potential.« less

  4. Effect of composting on the Cd, Zn and Mn content and fractionation in feedstock mixtures with wood chips from a short-rotation coppice and bark.

    PubMed

    Vandecasteele, B; Willekens, K; Zwertvaegher, A; Degrande, L; Tack, F M G; Du Laing, G

    2013-11-01

    Micronutrient content and availability in composts may be affected by the addition of wood chips or tree bark as a bulking agent in the compost feedstock. In the first part of this study, micronutrient levels were assessed in bark and wood of poplar and willow clones in a short-rotation coppice. Large differences between species were observed in bark concentrations for Cd, Zn and Mn. In the second part of the study, we aimed to determine the effect of feedstock composition and composting on Cd, Zn and Mn concentrations and availability. By means of three composting experiments we examined the effect of (a) bark of different tree species, (b) the amount of bark, and (c) the use of bark versus wood chips. In general, compost characteristics such as pH, organic matter and nutrient content varied due to differences in feedstock mixture and composting process. During the composting process, the availability of Cd, Zn and Mn decreased, although the use of willow and poplar bark or wood chips resulted in elevated total Cd, Zn or Mn concentrations in the compost. Cd concentrations in some composts even exceeded legal criteria. Cd and Zn were mainly bound in the reducible fraction extracted with 0.5M NH2OH⋅HCl. A higher acid-extractable fraction for Mn than for Cd and Zn was found. Higher Cd concentrations in the compost due to the use of bark or wood chips did not result in higher risk of Cd leaching. The results of the pH-stat experiment with gradual acidification of composts illustrated that only a strong pH decline in the compost results in higher availability of Cd, Zn and Mn. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Determining the effects of felling method and season of year on the regeneration of short rotation coppice

    Treesearch

    Daniel P.L. de Souza; Tom Gallagher; Dana Mitchell; Tim McDonald; Mathew Smidt

    2016-01-01

    There is increasing interest in plantations with the objective of producing biomass for energy and fuel. These types of plantations are called Short Rotation Woody Crops (SRWC). Popular SRWC species are Eucalypt (Eucalyptus spp.), Cottonwood (Populus deltoides) and Willow (Salix spp.). These species have in...

  6. Yield and Water Quality Impacts of Field-Scale Integration of Willow into a Continuous Corn Rotation System.

    PubMed

    Zumpf, Colleen; Ssegane, Herbert; Negri, Maria Cristina; Campbell, Patty; Cacho, Julian

    2017-07-01

    Agricultural landscape design has gained recognition by the international environmental and development community as a strategy to address multiple goals in land, water, and ecosystem service management; however, field research is needed to quantify impacts on specific local environments. The production of bioenergy crops in specific landscape positions within a grain-crop field can serve the dual purpose of producing cellulosic biomass (nutrient recovery) while also providing regulating ecosystem services to improve water quality (nutrient reduction). The effectiveness of such a landscape design was evaluated by the strategic placement of a 0.8-ha short-rotation shrub willow ( Seemen) bioenergy buffer along marginal soils in a 6.5-ha corn ( L.) field in a 6-yr field study in central Illinois. The impact of willow integration on water quality (soil water, shallow groundwater leaching, and crop nutrient uptake) and quantity (soil moisture and transpiration) was monitored in comparison with corn in the willow's first cycle of growth. Willows significantly reduced nitrate leachate in shallow subsurface water by 88% while maintaining adequate nutrient and water usage. Results suggest that willows offer an efficient nutrient-reduction strategy and may provide additional ecosystem services and benefits, including enhanced soil health. However, low values for calculated willow biomass will need to be readdressed in the future as harvest data become available to understand contributing factors that affected productivity beyond nutrient availability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Modelling short-rotation coppice and tree planting for urban carbon management - a citywide analysis.

    PubMed

    McHugh, Nicola; Edmondson, Jill L; Gaston, Kevin J; Leake, Jonathan R; O'Sullivan, Odhran S

    2015-10-01

    The capacity of urban areas to deliver provisioning ecosystem services is commonly overlooked and underutilized. Urban populations have globally increased fivefold since 1950, and they disproportionately consume ecosystem services and contribute to carbon emissions, highlighting the need to increase urban sustainability and reduce environmental impacts of urban dwellers. Here, we investigated the potential for increasing carbon sequestration, and biomass fuel production, by planting trees and short-rotation coppice (SRC), respectively, in a mid-sized UK city as a contribution to meeting national commitments to reduce CO 2 emissions.Iterative GIS models were developed using high-resolution spatial data. The models were applied to patches of public and privately owned urban greenspace suitable for planting trees and SRC, across the 73 km 2 area of the city of Leicester. We modelled tree planting with a species mix based on the existing tree populations, and SRC with willow and poplar to calculate biomass production in new trees, and carbon sequestration into harvested biomass over 25 years.An area of 11 km 2 comprising 15% of the city met criteria for tree planting and had the potential over 25 years to sequester 4200 tonnes of carbon above-ground. Of this area, 5·8 km 2 also met criteria for SRC planting and over the same period this could yield 71 800 tonnes of carbon in harvested biomass.The harvested biomass could supply energy to over 1566 domestic homes or 30 municipal buildings, resulting in avoided carbon emissions of 29 236 tonnes of carbon over 25 years when compared to heating by natural gas. Together with the net carbon sequestration into trees, a total reduction of 33 419 tonnes of carbon in the atmosphere could be achieved in 25 years by combined SRC and tree planting across the city. Synthesis and applications . We demonstrate that urban greenspaces in a typical UK city are underutilized for provisioning ecosystem services by trees and

  8. Soil carbon and belowground carbon balance of a short-rotation coppice: assessments from three different approaches.

    PubMed

    Berhongaray, Gonzalo; Verlinden, Melanie S; Broeckx, Laura S; Janssens, Ivan A; Ceulemans, Reinhart

    2017-02-01

    Uncertainty in soil carbon (C) fluxes across different land-use transitions is an issue that needs to be addressed for the further deployment of perennial bioenergy crops. A large-scale short-rotation coppice (SRC) site with poplar ( Populus ) and willow ( Salix ) was established to examine the land-use transitions of arable and pasture to bioenergy. Soil C pools, output fluxes of soil CO 2 , CH 4 , dissolved organic carbon (DOC) and volatile organic compounds, as well as input fluxes from litter fall and from roots, were measured over a 4-year period, along with environmental parameters. Three approaches were used to estimate changes in the soil C. The largest C pool in the soil was the soil organic carbon (SOC) pool and increased after four years of SRC from 10.9 to 13.9 kg C m -2 . The belowground woody biomass (coarse roots) represented the second largest C pool, followed by the fine roots (Fr). The annual leaf fall represented the largest C input to the soil, followed by weeds and Fr. After the first harvest, we observed a very large C input into the soil from high Fr mortality. The weed inputs decreased as trees grew older and bigger. Soil respiration averaged 568.9 g C m -2  yr -1 . Leaching of DOC increased over the three years from 7.9 to 14.5 g C m -2 . The pool-based approach indicated an increase of 3360 g C m -2 in the SOC pool over the 4-year period, which was high when compared with the -27 g C m -2 estimated by the flux-based approach and the -956 g C m -2 of the combined eddy-covariance + biometric approach. High uncertainties were associated to the pool-based approach. Our results suggest using the C flux approach for the assessment of the short-/medium-term SOC balance at our site, while SOC pool changes can only be used for long-term C balance assessments.

  9. The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea.

    PubMed

    Goodger, Jason Q D; Woodrow, Ian E

    2010-02-01

    A micropropagation protocol was recently developed for Eucalyptus polybractea R.T. Baker, a commercially important eucalypt grown in short-rotation coppice cultivation and harvested for its foliar 1,8-cineole oil. Micropropagation of elite E. polybractea trees has resulted in selection gains for foliar oil traits, but decreased above-ground biomass accumulation has been observed in clones compared to related half-sibling families. This study aims to use a greenhouse study to investigate if micropropagation induces somaclonal variation that can account for the reduction in above-ground biomass in E. polybractea clones. Secondly, the study aims to compare the coppicing ability of micropropagated clones with related half-sibling seedlings using de-topped plantation-grown saplings. The results of the greenhouse study suggest that micropropagation of E. polybractea induces somaclonal variation that manifests in more mature leaf morphologies such as increased foliar oil concentrations and lower specific leaf area (SLA), attributable to an isobilateral arrangement of increased palisade mesophyll layers. Lower SLA, rather than differences in root allocation, is likely to be a key contributor to the lower relative growth rates observed in early sapling growth of micropropagated clones. In the field study, all micropropagated and seedling-derived E. polybractea saplings coppiced vigorously in the 12 months after de-topping. The coppice growth was so vigorous in the 12 months after de-topping that total above-ground biomass equalled that of the 27-month-old saplings, irrespective of propagation source. The morphological distinction between leaves of micropropagated and seed-derived plants was no longer evident in the coppice regrowth. The results presented here suggest that the micropropagated leaf morphology and the resultant growth reduction is transient and micropropagated plants coppice just as vigorously as seed-derived plants. Therefore, micropropagation is unlikely to

  10. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    PubMed

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  11. Harvesting systems and costs for short rotation poplar

    Treesearch

    B. Rummer; D. Mitchell

    2013-01-01

    The objective of this review is to compare the cost of coppice and longer rotation poplar harvesting technology. Harvesting technology for short rotation poplar has evolved over the years to address both coppice harvest and single-stem harvest systems. Two potential approaches for coppice harvesting are modified forage harvesters and modified mulcher-balers. Both of...

  12. Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow.

    PubMed

    Brereton, Nicholas J B; Pitre, Frederic E; Shield, Ian; Hanley, Steven J; Ray, Michael J; Murphy, Richard J; Karp, Angela

    2014-11-01

    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and (15)N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2-3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production. © The Author 2013. Published by Oxford University Press.

  13. Harvesting to get a Eucalyptus coppice crop

    Treesearch

    Thomas F. Geary

    1983-01-01

    Coppicing of eucalypts saves replanting after harvesting, but plan for coppice before planting seedlings. Select a species that coppices in the planned season of harvest; plan spacing and harvesting methods so that harvesting will not damage stumps; plan coppice management. Best coppice is produced by spring harvest with chain saws, low stumps, no bark or root damage,...

  14. Harvesting short rotation woody crops with a shear

    Treesearch

    Wellington Cardoso; Dana Mitchell; Tom Gallagher; Daniel and de Souza

    2014-01-01

    A time and motion study was performed on a skid steer equipped with a 14-inch tree shear attachment. The machine was used to install initial coppice harvesting treatments on three stands across the south. The study included one willow and two cottonwood sites. The stands averaged from 2 to 4 years old. Approximately 200 trees were shear harvested from each of the...

  15. Influence of Robinia pseudoacacia short rotation coppice on soil physical properties

    NASA Astrophysics Data System (ADS)

    Xavier, Morvan; Isabelle, Bertrand; Gwenaelle, Gibaud

    2015-04-01

    Human activities can lead to the degradation of soil physical properties. For instance, machinery traffic across the land can induce the development of compacted areas at the wheel tracks. It leads to a decrease in porosity which results in a decrease of the hydraulic conductivity, and therefore, prevents water infiltration and promotes surface runoff. Land use, soil management and soil cover also have a significant influence on soil physical properties (Kodesova et al., 2011). In the arable land, surface runoff and soil erosion are enhanced by the absence of soil cover for part of the year and by the decrease of aggregate stability due to a decline of soil organic matter. In that context, few studies focused on the effects of a Robinia pseudoacacia short rotation coppice (SRC) on soil physical properties. Therefore, this study aims to determine the effect of the conversion of a grassland in a SRC on soil physical properties. These properties have also been compared to those of arable land and natural forest. For that, in several plots of the experimental farm of Grignon (30 km west of Paris, France), different measurements were performed: i) soil water retention on a pressure plate apparatus for 7 water potential between 0 and 1500 kPa, ii) bulk density using the method for gravelly and rocky soil recommended by the USDA, iii) aggregate stability using the method described in Le Bissonnais (1996), and iv) soil hydraulic conductivity using a Guelph permeameter. All these measurements were performed on the same soil type and on different land uses: arable land (AL), grassland (GL), natural forest (NF) and short rotation coppice (SRC) of Robinia pseudoacacia planted 5 years ago. Soil water retention measurements are still under progress and will be presented in congress. Bulk density measurements of the AL, GL and SRC are not significantly different. They ranged from 1.32 to 1.42. Only the NF measurements are significantly lower than the other (0.97). Aggregate

  16. Willow Bark

    MedlinePlus

    ... from several varieties of the willow tree, including white willow or European willow, black willow or pussy willow, ... taking a specific product containing glucosamine sulfate, methylsufonlylmethane, white willow bark extract, ginger root concentrate, boswellia extract, turmeric ...

  17. Five willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance

    PubMed Central

    Berthod, Nicolas; Brereton, Nicholas J. B.; Pitre, Frédéric E.; Labrecque, Michel

    2015-01-01

    Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured to evaluate growth performance of the cultivars according to the diverse pedoclimatic conditions. Each cultivar showed very specific responses to its environment. While no significant variation in lignin content was observed between sites, there was variation between cultivars. Surprisingly, the pattern of substantial genotype variability in stem density was maintained across all sites. However, wood anatomy did differ between sites in a cultivar (producing high and low density wood), suggesting a probable response to an abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50% of secondary xylem, were also found in the high density wood, a finding with potential to bring higher value to the lignocellulosic bioethanol industry. PMID:26583024

  18. Effect of severing method and stump height on coppice growth

    Treesearch

    John B. Crist; James A. Mattson; Sharon A. Winsauer

    1983-01-01

    In this study we evaluated the effect of stem severing method and stump height on coppice growth in a short-rotation intensively cultured Populus plantation 1, 2, and 3 years after cutting. Initially, stumps 46 cm high had smaller and significantly more sprouts than either 8 or 15 cm high stumps. However, the dominant sprouts were not affected by the stump height....

  19. Response surface methodology to simplify calculation of wood energy potency from tropical short rotation coppice species

    NASA Astrophysics Data System (ADS)

    Haqiqi, M. T.; Yuliansyah; Suwinarti, W.; Amirta, R.

    2018-04-01

    Short Rotation Coppice (SRC) system is an option to provide renewable and sustainable feedstock in generating electricity for rural area. Here in this study, we focussed on application of Response Surface Methodology (RSM) to simplify calculation protocols to point out wood chip production and energy potency from some tropical SRC species identified as Bauhinia purpurea, Bridelia tomentosa, Calliandra calothyrsus, Fagraea racemosa, Gliricidia sepium, Melastoma malabathricum, Piper aduncum, Vernonia amygdalina, Vernonia arborea and Vitex pinnata. The result showed that the highest calorific value was obtained from V. pinnata wood (19.97 MJ kg-1) due to its high lignin content (29.84 %, w/w). Our findings also indicated that the use of RSM for estimating energy-electricity of SRC wood had significant term regarding to the quadratic model (R2 = 0.953), whereas the solid-chip ratio prediction was accurate (R2 = 1.000). In the near future, the simple formula will be promising to calculate energy production easily from woody biomass, especially from SRC species.

  20. Merging nitrogen management and renewable energy needs.

    PubMed

    Wilson, E; Chapman, P J; McDonald, A

    2001-11-22

    The ARBRE (ARable Biomass Renewable Energy) project, the first large-scale wood-fueled electricity generating plant in the U.K., represents a significant development in realising British and European policy objectives on renewable energy. The plant is fueled by a mix of wood from short rotation coppice (SRC) and forest residues. Where feasible, composted/conditioned sewage sludge is applied to coppice sites to increase yields and improve soil structure. In the Yorkshire Water region, typical total N:P:K composition of composted/conditioned sludge is 2.9:3.8:0.3, respectively. Sludge application is calculated on the basis of total nitrogen (N) content to achieve 750 kg N ha(-1), for 3 years" requirement. Willow coppice forms a dense, widely spaced, root network, which, with its long growing season, makes it an effective user of nutrients. This, in combination with willow"s use as a nonfood, nonfodder crop, makes it an attractive route for the recycling of sewage sludge in the absence of sea disposal, banned under the EC Urban Waste Water Treatment Directive (UWWTD). Further work is required on the nutritional requirements of SRC in order to understand better the quantities of sludge that can be applied to SRC without having a detrimental impact on the environment. This paper suggests the source of N rerouting under the UWWTD and suggests the likely expansion of SRC as an alternative recycling pathway.

  1. Detectability of landscape effects on recolonization increases with regional population density.

    PubMed

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2015-07-01

    Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level.

  2. Detectability of landscape effects on recolonization increases with regional population density

    PubMed Central

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2015-01-01

    Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level. PMID:26257881

  3. Biochar mineralization and priming effect on SOM decomposition. Results from a field trial in a short rotation coppice in Italy

    NASA Astrophysics Data System (ADS)

    Ventura, Maurizio; Alberti, Giorgio; Panzacchi, Pietro; Delle Vedove, Gemini; Miglietta, Franco; Tonon, Giustino

    2016-04-01

    Biochar application to soil has been proposed as a promising strategy for carbon (C) sequestration and climate change mitigation, helping at the same time to maintain soil fertility. However, most of the knowledge on biochar stability is based on short-term lab incubation experiments, as field studies are scarce. Therefore, little is known about the interactions between biochar and roots and the related effects on biochar stability in field conditions. The present study aimed to assess the stability of biochar, its effect on original soil organic matter (SOM) decomposition, and the effect of plant roots on biochar stability in field conditions in Northern Italy, for a three-year monitoring period within the EuroChar project. The experiment was conducted in a poplar short rotation coppice (SRC). Biochar produced from maize (δ13C = -13.8‰) silage pellets in a gasification plant was applied in a poplar short rotation coppice (SRC) plantation in Northern Italy. Root exclusion subplots were established using the trenching method to measure heterotrophic respiration. Total (Rtot) and heterotrophic (Rh) respiration were measured every 2 hours in control and biochar-treated soil, with a closed dynamic soil respiration system. δ13C of the soil-emited CO2 was periodically measured using the Keeling plot method. The percentage of biochar-derived soil respiration (fB), was calculated using an isotopic mass balance. Results showed that fB varied between 7% and 37% according to the sampling date, and was generally higher in the presence of roots than in trenched plots where the root growth was excluded. Without roots, only the 14% of the carbon originally added with biochar was decomposed. In the presence of roots, this percentage increased to 21%, suggesting a positive priming effect of roots on biochar decomposition. On the other hand, biochar decreased the decomposition of original SOM by about 17%, suggesting a protective effect of biochar on SOM.

  4. Evaluation of Water Use Efficiency of Short Rotation Poplar Coppice at Bohemian-Moravian Highlands

    NASA Astrophysics Data System (ADS)

    Hlaváčová, Marcela; Fischer, Milan; Mani Tripathi, Abhishek; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    The water availability of the locality constitutes one of the main constraint for short rotation coppices grown on arable land. As a convenient characteristic assessing how the water use is coupled with the biomass yields, so called water use efficiency (WUE) is proposed. One method of water use efficiency determination is presented within this study. The study was carried out at short rotation poplar coppice (poplar clone J-105) at the Test Station Domanínek, Ltd. at Bohemian-Moravian Highlands during the growing season 2013. Diameters at breast height (DBH) were measured for 16 sample trees where sap flow measuring systems (Granier's Thermal Dissipation Probe, TDP) were installed. TDP outputs are expressed as temperature differences (ΔT) between the heated and non-heated probes. Estimation of sap flux density (Fd) by the Granier method relies on the measurement of temperature difference (ΔT). Determination of maximum temperature difference (ΔTmax) is fundamental for sap flux density (Fd) calculation. Although ΔTmax can be theoretically defined as ΔT at Fd = 0, many factors may prevent the occurrence of the zero flow state, such as night-time water movement for new growth (vegetative or reproductive) or water loss from the canopy due to high vapour pressure deficit (VPD). Therefore, the VPD condition was established for determination of ΔTmax. VPD condition was established as follows: VPD reaching values 0.2 at least 6 hours during night (from 21 p. m. to 3 a. m. and when the condition was fullfilled, the value at 3 a. m. was taken) because it is a supposed time after that the tree has no transpiration. The programmable part of Mini 32 software (www.emsbrno.cz) was used for application of the script establishing ΔTmax values under this VPD condition. Nevertheless, another script was applied on ΔT data set to determination of ΔTmax values for every night at 3 a. m. (as this is when ΔT should be at its daily maximum) without VPD condition restriction for

  5. Competition favors elk over beaver in a riparian willow ecosystem

    USGS Publications Warehouse

    Baker, B.W.; Peinetti, H.R.; Coughenour, M.C.; Johnson, T.L.

    2012-01-01

    Beaver (Castor spp.) conservation requires an understanding of their complex interactions with competing herbivores. Simulation modeling offers a controlled environment to examine long-term dynamics in ecosystems driven by uncontrollable variables. We used a new version of the SAVANNA ecosystem model to investigate beaver (C. Canadensis) and elk (Cervus elapses) competition for willow (Salix spp.). We initialized the model with field data from Rocky Mountain National Park, Colorado, USA, to simulate a 4-ha riparian ecosystem containing beaver, elk, and willow. We found beaver persisted indefinitely when elk density was or = 30 elk km_2. The loss of tall willow preceded rapid beaver declines, thus willow condition may predict beaver population trajectory in natural environments. Beaver were able to persist with slightly higher elk densities if beaver alternated their use of foraging sites in a rest-rotation pattern rather than maintained continuous use. Thus, we found asymmetrical competition for willow strongly favored elk over beaver in a simulated montane ecosystem. Finally, we discuss application of the SAVANNA model and mechanisms of competition relative to beaver persistence as metapopulations, ecological resistance and alternative state models, and ecosystem regulation.

  6. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    PubMed

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labrecque, M.; Teodorescu, T.I.

    Since 1989, short rotation and intensive culture (SRIC) techniques have been experimented to grow various fast growing species of trees and shrubs for energy plantation or environmental purposes. The objectives were to evaluate the biomass productivity with respect to (1) different weed control methods during the establishment phase; (2) drainage conditions and soil quality of the plantation site; and (3) frequency of coppicing. Native or introduced species of willows and various species of shrubs, such as honeysuckle and cornel, were grown in an experimental design in the nursery of the Montreal Botanical Garden on former agricultural land. Productivity, in tonsmore » of dry material per hectare, was evaluated and compared by harvesting shoot and branch samples at the end of each growing season. Weed control is essential to the establishment of trees in SRIC. When weed repression was applied during the two first growing seasons, biomass productivity was 4 to 5 times greater than the biomass produced on the control plot of the well drained site. With good weed control, willows can yield more than 20 tons of dry material on well drained site and near 15 tons on a poorly drained site, only two years after plantation. The growth potential of shrub species is also interesting. Some of them were able to produce up to 10 tons of dry biomass per hectare per year, which is appreciable considering that such species can be used on marginal lands and for the fixation of river banks. Frequency of coppicing also influences productivity. For willows, we determined that three-year rotation cycle allowed the highest biomass productivity. Shrubs should be coppiced each year to obtain the best results. Fast growing species and SRIC techniques are not only a good way of producing wood and alcohol for energy but they also represent a way of rapidly colonizing degraded or marginal sites and of fixing river banks.« less

  8. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar

    PubMed Central

    de Jong, Femke; Hanley, Steven J.; Beale, Michael H.; Karp, Angela

    2015-01-01

    Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow. PMID:26070140

  9. Effect of harvesting season on hybrid poplar coppicing

    Treesearch

    Terry F. Strong; Jerry Zavitkovskj

    1983-01-01

    A study was begun in 1980 in a 4-year-old planting of P. nigra var. betulifolia x P. trichocarpa to identify the effects of harvesting season on-coppice production. Parts of the plantation were harvested monthly from October 1980 to September 1981. The trees were cut leaving 10 and 30 cm (4 and 12 in) stumps. Coppice measurements were taken 1 year after harvest....

  10. Transpiration and Multiple Use Management of Thinned Emory Oak Coppice

    Treesearch

    D. Catlow Shipek; Peter F. Ffolliott; Gerald J. Gottfried; Leonard F. DeBano

    2004-01-01

    The effects of thinning Emory oak (Quercus emoryi) coppice on transpiration have been estimated by the heat-pulse velocity (HPV) method. Rootstocks of trees harvested for fuelwood were thinned to one, two, or three dominant stump-sprouts or left as unthinned controls. Differences in transpiration rates of the thinned coppice were found for each...

  11. Evaluating growth effects from an imidacloprid treatment in black willow and eastern cottonwood cuttings

    Treesearch

    Luciano de Sene Fernandes; Ray A. Souter; Theodor D. Leininger

    2015-01-01

    Black willow (Salix nigra Marsh.) and eastern cottonwood (Populus deltoides Bartram ex Marsh.), two species native in the Lower Mississippi Alluvial Valley, have importance in short rotation woody crop (SRWC) systems for biomass production (Ruark 2006).

  12. Water use of a multigenotype poplar short-rotation coppice from tree to stand scale.

    PubMed

    Bloemen, Jasper; Fichot, Régis; Horemans, Joanna A; Broeckx, Laura S; Verlinden, Melanie S; Zenone, Terenzio; Ceulemans, Reinhart

    2017-02-01

    Short-rotation coppice (SRC) has great potential for supplying biomass-based heat and energy, but little is known about SRC's ecological footprint, particularly its impact on the water cycle. To this end, we quantified the water use of a commercial scale poplar ( Populus ) SRC plantation in East Flanders (Belgium) at tree and stand level, focusing primarily on the transpiration component. First, we used the AquaCrop model and eddy covariance flux data to analyse the different components of the stand-level water balance for one entire growing season. Transpiration represented 59% of evapotranspiration (ET) at stand scale over the whole year. Measured ET and modelled ET were lower as compared to the ET of reference grassland, suggesting that the SRC only used a limited amount of water. Secondly, we compared leaf area scaled and sapwood area scaled sap flow ( F s ) measurements on individual plants vs. stand scale eddy covariance flux data during a 39-day intensive field campaign in late summer 2011. Daily stem diameter variation (∆ D ) was monitored simultaneously with F s to understand water use strategies for three poplar genotypes. Canopy transpiration based on sapwood area or leaf area scaling was 43.5 and 50.3 mm, respectively, and accounted for 74%, respectively, 86%, of total ecosystem ET measured during the intensive field campaign. Besides differences in growth, the significant intergenotypic differences in daily ∆ D (due to stem shrinkage and swelling) suggested different water use strategies among the three genotypes which were confirmed by the sap flow measurements. Future studies on the prediction of SRC water use, or efforts to enhance the biomass yield of SRC genotypes, should consider intergenotypic differences in transpiration water losses at tree level as well as the SRC water balance at stand level.

  13. Living Willow Huts

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2007-01-01

    Living Willow Huts are inexpensive to make, fun to plant, easy to grow, and make beautiful spaces for children. They involve planting dormant willow shoots in the ground and weaving them into shapes that will sprout and grow over time. People have been creating similar living architecture throughout the world for centuries in the forms of living…

  14. CO 2 uptake is offset by CH 4 and N 2O emissions in a poplar short-rotation coppice

    DOE PAGES

    Zenone, Terenzio; Zona, Donatella; Gelfand, Ilya; ...

    2015-04-18

    The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast-growing biomass crops across Europe. These are commonly cultivated as short-rotation coppice (SRC), and currently poplar ( Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO 2), methane (CH 4) and nitrous oxide (N 2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4more » years of the study was an emission of 1.90 (±1.37) Mg CO 2eq ha -1; this indicated that soil trace gas emissions offset the CO 2 uptake by the plantation. CH 4 and N 2O contributed almost equally to offset the CO 2 uptake of -5.28 (±0.67) Mg CO2eq ha -1 with an overall emission of 3.56 (±0.35) Mg CO 2eq ha -1 of N 2O and of 3.53 (±0.85) Mg CO 2eq ha-1 of CH 4. N 2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N 2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N 2O and CH 4, respectively. Here, this study underlines the importance of the ‘non-CO 2 GHGs’ on the overall balance. Further long-term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.« less

  15. Tree and stand water fluxes of hybrid poplar clone (Populus nigra x P. maximowiczii) in short rotation coppice culture

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Trnka, M.; Kucera, J.; Zalud, Z.

    2010-09-01

    This study reports on evapotranspiration and tree water use in short rotation coppice culture of hybrid poplar (Populus nigra x P. maximowiczii) for biomass energy in the Czech Republic. The high density poplar plantation (10 000 trees per ha) was established in 2003 on arable land in Czech-Moravian Highland (49°32´ N, 16°15´ E, 530 m a.s.l.) and has been coppiced in rotation period of 7 years. Firstly, evapotranspiration of the stand has been estimated by applying the Bowen ratio-energy budget method, which is considered as reliable, robust, quite simple and inexpensive technique with comparable results to eddy covariance and lysimeters. The gaps in evapotranspiration diurnal patterns caused by limitation of the bowen ratio method were filled with simple linear regression model based on relation between potential and actual evapotranspiration with regard to soil water availability and leaf area index and thus the daily, monthly and seasonal totals could be calculated. The amount of evapotranspiration during the growing season 2009 (1 March - 31 October) was 593 mm with highest monthly total 116 mm in June. Mean daily water loss over the season reached 2.43 mm per day. During the hot summer day, the maximal value 5.73 mm per day, which presented 89 % of potential evapotranspiration calculated by Penman equation, was recorded with a peak rate 0.94 mm per hour. Secondly, the transpiration was measured by sap flow tissue heat balance techniques on four individual trees with greatest stem diameters (11 - 12 cm d.b.h.) and height of 12 - 12.5 m. Relatively high transpiration values by the poplars were found during the measured part of growing season (18 June - 31 October), with maximum and mean daily transpiration of 44.41 dm3 and 16.69 dm3 per day, respectively. The seasonal transpiration of the most vigorous from the investigated individuals amounted 2542 dm3. Because in this study we didńt evaluate the transpiration of thinner trees (technical features of sap

  16. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    PubMed

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  17. Limitations for phytoextraction management on metal-polluted soils with poplar short rotation coppice-evidence from a 6-year field trial.

    PubMed

    Michels, E; Annicaerta, B; De Moor, S; Van Nevel, L; De Fraeye, M; Meiresonne, L; Vangronsveld, J; Tack, F M G; Ok, Y S; Meers, Erik

    2018-01-02

    Poplar clones were studied for their phytoextraction capacity in the second growth cycle (6-year growth) on a site in the Belgian Campine region, which is contaminated with Cd and Zn via historic atmospheric deposition of nearby zinc smelter activities. The field trial revealed regrowth problems for some clones that could not be predicted in the first growth cycle. Four allometric relations were assessed for their capacity to predict biomass yield in the second growth cycle. A power function based on the shoot diameter best estimates the biomass production of poplar with R 2 values between 0.94 and 0.98. The woody biomass yield ranged from 2.1 to 4.8 ton woody Dry Mass (DM) ha -1 y -1 . The primary goal was to reduce soil concentrations of metals caused by phytoextraction. Nevertheless, increased metal concentrations were determined in the topsoil. This increase can partially be explained by the input of metals from deeper soil layers in the top soil through litterfall. The phytoextraction option with poplar short rotation coppice in this setup did not lead to the intended soil remediation in a reasonable time span. Therefore, harvest of the leaf biomass is put forward as a crucial part of the strategy for soil remediation through Cd/Zn phytoextraction.

  18. Blue Willow Story Plates

    ERIC Educational Resources Information Center

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  19. Water requirements of short rotation poplar coppice: Experimental and modelling analyses across Europe

    DOE PAGES

    Fischer, Milan; Zenone, Terenzio; Trnka, Miroslav; ...

    2017-12-26

    Poplars are among the most widely used short rotation woody coppice (SRWC) species but due to their assumed high water use, concerns have been raised with respect to large-scale exploitation and potentially detrimental effects on water resources. Here we present a quantitative analysis of the water requirements of poplar SRWC using experimental data and a soil water balance modelling approach at three different sites across Europe. We used (i) eddy covariance (EC) measurements (2004–2006) at an irrigated SRWC grown on a previous rice paddy in northern Italy, (ii) Bowen ratio and energy balance (BREB) measurements (2008–2015) and EC (2011–2015) atmore » a SRWC in rain-fed uplands in the Czech Republic, and (iii) EC measurements (2010–2013) at a SRWC on a previous agricultural land with a shallow water table in Belgium. Without any calibration against water balance component measurements, simulations by the newly developed soil water balance model R-4ET were compared with evapotranspiration (ET) measurements by EC and BREB with a resulting mean root mean square error (RMSE) of 0.75 mm day -1. In general, there was better agreement between EC and the model (RMSE = 0.66 mm day -1) when EC data were adjusted for lack of energy balance closure. A comparison of the simulated and measured soil water content yielded a mean RMSE of 0.03 m 3 m -3. The mean annual crop coefficient, i.e. the ratio between actual and reference ET, was 0.82 (ranging from 0.65 to 0.95) while the monthly maxima reached 1.16. These values indicated that ET of poplar SRWC was significantly lower than ET of a well-watered grass cover at the annual time scale, but exceeded ET of the reference cover at shorter time scales during the growing season. We show that the model R-4ET is a simple, yet reliable tool for the assessment of water requirements of existing or planned SRWC. For very simple assessments on an annual basis, using a crop coefficient of 0.86 (adjusted to a sub-humid climate

  20. Water requirements of short rotation poplar coppice: Experimental and modelling analyses across Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Milan; Zenone, Terenzio; Trnka, Miroslav

    Poplars are among the most widely used short rotation woody coppice (SRWC) species but due to their assumed high water use, concerns have been raised with respect to large-scale exploitation and potentially detrimental effects on water resources. Here we present a quantitative analysis of the water requirements of poplar SRWC using experimental data and a soil water balance modelling approach at three different sites across Europe. We used (i) eddy covariance (EC) measurements (2004–2006) at an irrigated SRWC grown on a previous rice paddy in northern Italy, (ii) Bowen ratio and energy balance (BREB) measurements (2008–2015) and EC (2011–2015) atmore » a SRWC in rain-fed uplands in the Czech Republic, and (iii) EC measurements (2010–2013) at a SRWC on a previous agricultural land with a shallow water table in Belgium. Without any calibration against water balance component measurements, simulations by the newly developed soil water balance model R-4ET were compared with evapotranspiration (ET) measurements by EC and BREB with a resulting mean root mean square error (RMSE) of 0.75 mm day -1. In general, there was better agreement between EC and the model (RMSE = 0.66 mm day -1) when EC data were adjusted for lack of energy balance closure. A comparison of the simulated and measured soil water content yielded a mean RMSE of 0.03 m 3 m -3. The mean annual crop coefficient, i.e. the ratio between actual and reference ET, was 0.82 (ranging from 0.65 to 0.95) while the monthly maxima reached 1.16. These values indicated that ET of poplar SRWC was significantly lower than ET of a well-watered grass cover at the annual time scale, but exceeded ET of the reference cover at shorter time scales during the growing season. We show that the model R-4ET is a simple, yet reliable tool for the assessment of water requirements of existing or planned SRWC. For very simple assessments on an annual basis, using a crop coefficient of 0.86 (adjusted to a sub-humid climate

  1. White Willow in Russian Literature: Folklore "Roots" of Image

    ERIC Educational Resources Information Center

    Dudareva, Marianna A.; Goeva, Nina P.

    2017-01-01

    The article deals with a complicated archetypal tree complex in Russian literature. The object chosen here is "white willow" (vetla) as one of the species of willow in its different variations--daphne willow (verba) and goat willow (rakita), and willow itself. In the 19th century Russian literature we can find the image of white willow…

  2. Willow plant name 'Preble'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.

    A distinct female cultivar of Salix viminalis.times.(Salix sachalinensis.times.Salix miyabeana) named `Preble`, characterized by rapid stem growth producing 29% more woody biomass than the average of three current production cultivars (Salix.times.dasyclados `SV1` (unpatented), Salix sachalinensis `SX61` (unpatented), and Salix miyabeana `SX64` (unpatented)) when grown in the same field for the same length of time (three growing seasons after coppice) in two different trials in Constableville, N.Y. and Middlebury, Vt. `Preble` can be planted from dormant stem cuttings, produces multiple stems after coppice and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plantmore » will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Preble` displays a low incidence of rust disease and is not damaged by potato leafhoppers.« less

  3. Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years.

    PubMed

    Berlin, Sofia; Hallingbäck, Henrik R; Beyer, Friderike; Nordh, Nils-Erik; Weih, Martin; Rönnberg-Wästljung, Ann-Christin

    2017-07-01

    Phenotypic plasticity can affect the geographical distribution of taxa and greatly impact the productivity of crops across contrasting and variable environments. The main objectives of this study were to identify genotype-phenotype associations in key biomass and phenology traits and the strength of phenotypic plasticity of these traits in a short-rotation coppice willow population across multiple years and contrasting environments to facilitate marker-assisted selection for these traits. A hybrid Salix viminalis  × ( S. viminalis × Salix schwerinii ) population with 463 individuals was clonally propagated and planted in three common garden experiments comprising one climatic contrast between Sweden and Italy and one water availability contrast in Italy. Several key phenotypic traits were measured and phenotypic plasticity was estimated as the trait value difference between experiments. Quantitative trait locus (QTL) mapping analyses were conducted using a dense linkage map and phenotypic effects of S. schwerinii haplotypes derived from detected QTL were assessed. Across the climatic contrast, clone predictor correlations for biomass traits were low and few common biomass QTL were detected. This indicates that the genetic regulation of biomass traits was sensitive to environmental variation. Biomass QTL were, however, frequently shared across years and across the water availability contrast. Phenology QTL were generally shared between all experiments. Substantial phenotypic plasticity was found among the hybrid offspring, that to a large extent had a genetic origin. Individuals carrying influential S. schwerinii haplotypes generally performed well in Sweden but less well in Italy in terms of biomass production. The results indicate that specific genetic elements of S. schwerinii are more suited to Swedish conditions than to those of Italy. Therefore, selection should preferably be conducted separately for such environments in order to maximize biomass

  4. The effect of chestnut coppice forests abandon on slope stability: a case study

    NASA Astrophysics Data System (ADS)

    Vergani, Chiara; Bassanelli, Chiara; Rossi, Lorenzo; Chiaradia, Enrico Antonio; Battista Bischetti, Gian

    2013-04-01

    Sweet chestnut has been fundamental for Italian mountainous economies for many centuries. This kind of forest was traditionally managed by coppicing in shortly rotation (15-20 years) to rapidly produce wood biomass until half of XX century. In the last decades these forests were in large part abandoned due to change in economy which made coppiced forest management unprofitable, especially in steeper slopes and where forest viability is scarce. As a consequence most of them are over aged and very dense, leading to an observed increasing in localized slope instability, primary because of the uprooting of stools (Vogt et al., 2006). In this work the effect of the abandon of chestnut coppice on slope stability was analyzed, focusing on shallow landslides triggering. The mechanical contribution to soil shear strength of differently managed chestnut stand was estimated and compared in terms of additional root cohesion. The study area is located in the Valcuvia Valley (Lombardy Prealps - Northern Italy) at an elevation about 600 m a.s.l., where two different stands, one managed and the other abandoned (over 40 year aged), were chosen. The two sampling stands are on cohesionless slopes (quaternary moraine deposits) and are homogeneous with regard to the substrate, exposure and elevation. Slope steepness influences heavily forestry practices and steeper stands are more frequently abandoned than stands on gentler terrain: in fact in the abandoned coppice the slope was higher (35 degrees against 13 in the managed stand) and no stands completely homogeneous can be found. In each site the main characteristics of the stand were surveyed and a trench in each stand was excavated to analyze root diameter and number distribution with depth; root specimens were also collected for the tensile force determination through laboratory tensile tests. Root distribution and force were then used to estimate root cohesion values through a Fiber Boundle Model (Pollen and Simon, 2005). Results

  5. Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2008-09-01

    Due to its essentiality, deficiency, and toxicity to living organisms and the extensive use in industrial activities, selenium (Se) has become an element of global environmental and health concern. Se removal from contaminated sites using physical, chemical, and engineering techniques is quite complicated and expensive. The goal of this study was to investigate uptake and translocation of Se in willows and to provide quantitative information for field application whether Se phytoremediation is feasible and ecologically safe. Intact pre-rooted plants of hybrid willows (Salix matsudana Koidz x alba L.) and weeping willows (Salix babylonica L.) were grown hydroponically and treated with selenite or selenate at 24.0 +/- 1 degrees C for 144 h. Removal of leaves was also performed as a treatment to quantify the effect of transpiration on translocation and volatilization of Se. At the end of the study, total Se in the hydroponic solution and in different parts of plant tissues was analyzed quantitatively by hydride generation-atomic fluorescence spectrometry. The capacity of willows to assimilate both chemical forms of Se was also evaluated using detached leaves and roots in sealed glass vessels in vivo. Translocation efficiency of Se in both plants was estimated. Significant amounts of the applied selenite and selenate were eliminated from plant growth media by willows during the period of incubation. Both willows showed a significantly higher removal rate for selenate than for selenite (p < 0.05). Substantial differences existed in the distribution of both chemical forms of Se in plant materials: lower stems and roots were the major sites for accumulation of selenite and selenate, respectively. Translocation efficiency for selenite was significantly higher than that for selenate in both willow species (p < 0.01). Compared to the intact trees, remarkable decrease in the removal rate of both chemical forms of Se was found for willows without any leaves (p < 0

  6. Phytotoxicity of cyanide to weeping willow trees.

    PubMed

    Yu, Xiaozhang; Trapp, Stefan; Zhou, Puhua

    2005-01-01

    Cyanide is found predominantly in industrial effluents generated by metallurgical operations. It is an extremely toxic compound, so that problems and catastrophic accidents have recently occurred all around the globe. The goal of this study was to determine the toxicity of cyanide to a Chinese willow species, and to determine the removal capacity. The toxicity of potassium cyanide (KCN) to weeping willow trees (Salix babylonica L.) was tested. The normalized, relative transpiration of the plants was used to determine the phytotoxicity of cyanide. The cyanide removal capacity of weeping willows was also determined. In hydroponic solution, no chlorosis of leaves and only a small reduction in normalized relative transpiration was observed when weeping willows were exposed to low doses of cyanide (< or = 0.93 mg CN/L). Severe signs of toxicity were found for the treatment groups exposed to higher doses of cyanide (> or = 9.3 mg CN/L). Weeping willows grown in sandy soils survived the entire period (216 hours) without any toxic effect when irrigated with low doses of cyanide (3.72 mg CN/L). High doses of cyanide (> or = 18.6 mg CN/L) in irrigation water were fatal for the weeping willows within 216 hours. EC50 values for a 50% inhibition of the transpiration of the trees were estimated to be between 3.27 and 8.23 mg CN/L, depending on the duration of the exposure. The results obtained for the Chinese willow species Salix babylonica were very similar to those obtained for the European species S. viminalis in earlier studies. Phytotoxic effects were only found at high doses of cyanide. A large proportion of applied cyanide was removed from the contaminated media in the presence of weeping willows. This gives rise to the conclusion that the metabolism of cyanide by weeping willows is possible. Cyanide elimination with trees seems to be a feasible option for cleaning soils and water contaminated with cyanide. A full-scale treatment has been installed in Denmark. For

  7. Adsorption Property and Mechanism of Oxytetracycline onto Willow Residues

    PubMed Central

    Wang, Di; Xu, Haiyang; Yang, Shengke; Wang, Wenke; Wang, Yanhua

    2017-01-01

    To elucidate the adsorption property and the mechanism of plant residues to reduce oxytetracycline (OTC), the adsorption of OTC onto raw willow roots (WR-R), stems (WS-R), leaves (WL-R), and adsorption onto desugared willow roots (WR-D), stems (WS-D), and leaves (WL-D) were investigated. The structural characterization was analyzed by scanning electron microscopy, Fourier-transform infrared spectra, and an elemental analyzer. OTC adsorption onto the different tissues of willow residues was compared and correlated with their structures. The adsorption kinetics of OTC onto willow residues was found to follow the pseudo-first-order model. The isothermal adsorption process of OTC onto the different tissues of willow residues followed the Langmuir and Freundlich model and the process was also a spontaneous endothermic reaction, which was mainly physical adsorption. After the willow residues were desugared, the polarity decreased and the aromaticity increased, which explained why the adsorption amounts of the desugared willow residues were higher than those of the unmodified residues. These observations suggest that the raw and modified willow residues have great potential as adsorbents to remove organic pollutants. PMID:29271892

  8. Willow bioenergy plantation research in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E.H.; Abrahamson, L.P.; Kopp, R.F.

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are nowmore » being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.« less

  9. Musings on Willower's "Fog": A Response.

    ERIC Educational Resources Information Center

    English, Fenwick

    1998-01-01

    Professor Willower complains about the "fog" encountered in postmodernist literature and the author's two articles in "Journal of School Leadership." On closer examination, this miasma is simply the mildew on Willower's Cartesian glasses. Educational administration continues to substitute management and business fads for any…

  10. The use of short rotation willows and poplars for the recycling of saline waste waters

    Treesearch

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  11. Bottom-up factors influencing riparian willow recovery in Yellowstone National Park

    USGS Publications Warehouse

    Tercek, M.T.; Stottlemyer, R.; Renkin, R.

    2010-01-01

    After the elimination of wolves (Canis lupis L.) in the 1920s, woody riparian plant communities on the northern range of Yellowstone National Park (YNP) declined an estimated 50%. After the reintroduction of wolves in 19951996, riparian willows (Salix spp.) on YNP's northern range showed significant growth for the first time since the 1920s. However, the pace of willow recovery has not been uniform. Some communities have exceeded 400 cm, while others are still at pre-1995 levels of 250 cm max. height) willow sites where willows had escaped elk (Cervus elaphus L.) browsing with "short" willow sites that could still be browsed. Unlike studies that manipulated willow height with fences and artificial dams, we examined sites that had natural growth differences in height since the reintroduction of wolves. Tall willow sites had greater water availability, more-rapid net soil nitrogen mineralization, greater snow depth, lower soil respiration rates, and cooler summer soil temperatures than nearby short willow sites. Most of these differences were measured both in herbaceous areas adjacent to the willow patches and in the willow patches themselves, suggesting that they were not effects of varying willow height recovery but were instead preexisting site differences that may have contributed to increased plant productivity. Our results agree with earlier studies in experimental plots which suggest that the varying pace of willow recovery has been influenced by abiotic limiting factors that interact with top-down reductions in willow browsing by elk. ?? 2010 Western North American Naturalist.

  12. Response of the Imported Willow Leaf Beetle to Bacillus thuringiensis var. san diego on Poplar Willow1

    Treesearch

    Leah S. Bauer

    1992-01-01

    The imported willow leaf beetle, Plagiodera versicolora (Laicharting) (Coleoptera: Chrysomelidae), a multivoltine defoliator of willow and poplar (Salicaceae), is considered a significant pest throughout eastern North America (W.T. Johnson and H.H Lyon, "Insects that Feed on Trees and Shrubs," Cornell University Press, Ithaca, 1988)....

  13. Songbird response to increased willow (Salix spp.) growth in Yellowstone's northern range.

    PubMed

    Baril, Lisa M; Hansen, Andrew J; Renkin, Roy; Lawrence, Rick

    2011-09-01

    After nearly a century of height suppression, willows (Salix spp.) in the northern range of Yellowstone National Park, U.S.A., are increasing in height growth as a possible consequence of wolf (Canis lupus) restoration, climate change, or other factors. Regardless of the drivers, the recent release of this rare but important habitat type could have significant implications for associated songbirds that are exhibiting declines in the region. Our objective was to evaluate bird response to releasing willows by comparing willow structure and bird community composition across three willow growth conditions: height suppressed, recently released, and previously tall (i.e., tall prior to the height increase of released willows). Released and previously tall willows exhibited high and similar vertical structure, but released willows were significantly lower in horizontal structure. Suppressed willows were significantly shorter and lower in horizontal cover than released or previously tall willows. Bird richness increased along a gradient from lowest in suppressed to highest in previously tall willows, but abundance and diversity were similar between released and previously tall willows, despite lower horizontal cover in the released condition. Common Yellowthroat (Geothlypis trichas) and Lincoln's Sparrow (Melospiza lincolnii) were found in all three growth conditions; however, Yellow Warbler (Dendroica petechia), Warbling Vireo (Vireo gilvus), Willow Flycatcher (Empidonax traillii), and Song Sparrow (Melospiza melodii) were present in released and previously tall willows only. Wilson's Warbler (Wilsonia pusilla) was found in previously tall willows only, appearing to specialize on tall, dense willows. The results of our a priori habitat models indicated that foliage height diversity was the primary driver of bird richness, abundance, and diversity. These results indicate that vertical structure was a more important driver of bird community variables than horizontal

  14. Estimating the effect of coppice practice on carbon dynamics of oak forests in Turkey

    NASA Astrophysics Data System (ADS)

    Lee, J.; Han, S. H.; Makineci, E.; Tolunay, D.; Son, Y.

    2016-12-01

    Coppice is a forest management practice, maximizing wood production by short-interval harvest. Coppice practice of oak forests in Turkey was abandoned in 2006, however, quantitative assessment to carbon (C) dynamics after the abandonment is still lacking. Accordingly, we simulated the annual changes in C stocks of oak forests in Turkey (7 regions) under the two management scenarios, using a forest C model (FBDC model): 200-year-interval harvest (A scenario) and abandonment of 20-year-interval coppice (B scenario). Growth of biomass was estimated by diameter at breast height (DBH) and allometric functions from previous studies. Survival of root and regeneration from sprout were formulated by a combination of empirical data and assumptions. Dead organic matter C dynamics were estimated by turnover (mortality) rates of biomass and decay rates of dead organic matter. The model estimates were verified by comparing the estimates and measured C stocks. Under the A scenario, the total (biomass, litter, dead wood, and mineral soil) C stock (Mg C ha-1) varied with stand age, ranging from 153.65 to 284.64. The total C stock (Mg C ha-1) started increasing rapidly after abandonment of coppice practice from 134.23 at 1 year to 280.71 at 200 year. The total C stock under the B scenario converged to the level of total C stock under the A scenario. After the abandonment of coppice practice, the C stocks of biomass, litter, and dead wood almost recovered in 30 years, however, the mineral soil C stock required longer time for recovery. This study was supported by Korea Ministry of Environment (2014001310008) and Korea Forest Service (S111314L100110).

  15. Water tables constrain height recovery of willow on Yellowstone's northern range.

    PubMed

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  16. Performance of Willow Clones on Sharkey Clay

    Treesearch

    Robert B. Ferguson

    1983-01-01

    Random clones of black willow (Salix nigra) and sandbar willow (S. exigua) from near Stoneville, MS and of S. argebtinensis and S. babylonica X S. alba were grown in Sharkey clay near Stoneville, MS for 11 years. S. babylonica X S. alba grew best throughout the...

  17. Describing Willow Flycatcher habitats: scale perspectives and gender differences

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    We compared habitat characteristics of nest sites (female-selected sites) and song perch sites (male-selected sites) with those of sites unused by Willow Flycatchers (Empidonax traillii) at three different scales of vegetation measurement: (1) microplot (central willow [Salix spp.] bush and four adjacent bushes); (2) mesoplot (0.07 ha); and, (3) macroplot (flycatcher territory size). Willow Flycatchers exhibited vegetation preferences at all three scales. Nest sites were distinguished by high willow density and low variability in willow patch size and bush height. Song perch sites were characterized by large central shrubs, low central shrub vigor, and high variability in shrub size. Unused sites were characterized by greater distances between willows and willow patches, less willow coverage, and a smaller riparian zone width than either nest or song perch sites. At all scales, nest sites were situated farther from unused sites in multivariate habitat space than were song perch sites, suggesting (1) a correspondence among scales in their ability to describe Willow Flycatcher habitat, and (2) females are more discriminating in habitat selection than males. Microhabitat differences between male-selected (song perch) and female-selected (nest) sites were evident at the two smaller scales; at the finest scale, the segregation in habitat space between male-selected and female-selected sites was greater than that between male-selected and unused sites. Differences between song perch and nest sites were not apparent at the scale of flycatcher territory size, possibly due to inclusion of (1) both nest and song perch sites, (2) defended, but unused habitat, and/or (3) habitat outside of the territory, in larger scale analyses. The differences between nest and song perch sites at the finer scales reflect their different functions (e.g., nest concealment and microclimatic requirements vs. advertising and territorial defense, respectively), and suggest that the exclusive use

  18. Black Willow

    Treesearch

    R. M. Krinard

    1980-01-01

    Black willow and other species of Salix together comprise a majority of the stocking. Cottonwood is the chief associate, particularly in the early stages, but green ash, sycamore, pecan, persimmon, waterlocust, American elm, baldcypress, red maple, sugarberry, box-elder, and in some areas, silver maple are invaders preceding the next successional stage.

  19. Coppice Regeneration in Water Tupelo--Does It Work?

    Treesearch

    Harvey E. Kennedy

    1977-01-01

    In the lower Atchafalaya Basin, water tupelo trees were cut in May and November at three stump heights to study coppice regeneration. Sprouting was extremely good after one growing season, and live sprouts grew well through the third and fourth growing seasons. However, some stumps began to deteriorate and sprouts die after the second growing season. After 6 years,...

  20. Closed Loop Short Rotation Woody Biomass Energy Crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Michael

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded inmore » 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.« less

  1. Pollen limitation of reproductive effort in willows.

    PubMed

    Fox, John F

    1992-05-01

    Pollen limitation of seed set differs from resource limitation in its implications for the evolution of floral traits. Willow flowers attract insects, but also abundantly produce wind-dispersed pollen. I demonstrated pollen limitation in single branches bearing 2-4 inflorescences (catkins) in a field experiment with five species by artificially increasing or decreasing the pollen load. Because the responses by single branches might be explained by diversion of resources to better-pollinated branches within a plant, a second experiment with one species tested both pollen limitation of whole plants and the autonomy of catkins. Seed set of single willow catkins is unaffected by experimental alterations of seed set in other catkins on the same plant. Hand-pollination of single catkins and of whole plants increased seed set to the same degree, suggesting there is little or no competition for resources between catkins only 5-10 cm apart. Thus, seed set in willows appears to be pollen limited, favoring insect pollination and the evolution of entomophilous traits. The data support previous views that willows have a dual pollination system utilizing wind and insects.

  2. Interaction of beaver and elk herbivory reduces standing crop of willow

    USGS Publications Warehouse

    Baker, B.W.; Mitchell, D.C.S.; Ducharme, H.C.; Stanley, T.R.; Peinetti, H.R.

    2005-01-01

    Populations of beaver and willow have not thrived in riparian environments that are heavily browsed by livestock or ungulates, such as elk. The interaction of beaver and elk herbivory may be an important mechanism underlying beaver and willow declines in this competitive environment. We conducted a field experiment that compared the standing crop of willow three years after simulated beaver cutting on paired plants with and without intense elk browsing (∼85% utilization rate). Simulated beaver cutting with intense elk browsing produced willow that was small (biomass and diameter) and short, with far fewer, but longer, shoots and a higher percentage of dead biomass. In contrast, simulated beaver cutting without elk browsing produced willow that was large, tall, and leafy, with many more, but shorter, shoots (highly branched) and a lower percentage of dead biomass. Total stem biomass after three years was 10 times greater on unbrowsed plants than on browsed plants. Unbrowsed plants recovered 84% of their pre-cut biomass after only two growing seasons, whereas browsed plants recovered only 6%. Thus, the interaction of beaver cutting and elk browsing strongly suppressed the standing crop of willow. We predict that a lack of willow suitable as winter food for beaver can cause beaver populations to decline, creating a feedback mechanism that reduces beaver and willow populations. Thus, intense herbivory by ungulates or livestock can disrupt beaver–willow mutualisms that naturally occur in less competitive environments.

  3. Influences of herbivory and water on willow in elk winter range

    USGS Publications Warehouse

    Zeigenfuss, L.C.; Singer, F.J.; Williams, S.A.; Johnson, T.L.

    2002-01-01

    Elimination of large predators and reduced hunter harvest have led to concerns that an increasing elk (Cervus elaphus) population may be adversely affecting vegetation on the low-elevation elk winter range of Rocky Mountain National Park, Colorado, USA. Beaver (Castor canadensis) and their impoundments also have declined dramatically (94%) in the same area over the past 50 years coincident with a 20% decline in willow (Salix spp.) cover. From 1994 to 1998, we studied vegetation production responses of willow communities to elk herbivory and water availability. We estimated willow production by measuring current annual growth of shrubs in 9.3-m2 circular plots, and we measured herbaceous production by clipping vegetation within 0.25-m2 circular plots. Elk herbivory suppressed willow heights, leader lengths, annual production, and herbaceous productivity of willow communities. Water impoundment had a positive effect on herbaceous plant production, but little effect on shrubs, possibly because water tables were naturally high on the study sites even without beaver dams. Nevertheless, the winter range environment previously included more riparian willow habitat because of more stream area (47-69%) due to larger beaver populations. Elk herbivory appears to be the dominant force determining vegetation productivity in willow sites, but the effects may be exacerbated by lowered water tables. Fewer elk or protection from browsing, and water enhancement for <10 years along with management to encourage elk movement away from willow communities, could possibly work as strategies to reestablish sustainable willow communities.

  4. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions.

    PubMed

    Schulze, Jule; Frank, Karin; Priess, Joerg A; Meyer, Markus A

    2016-01-01

    Meeting the world's growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape. This

  5. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions

    PubMed Central

    Schulze, Jule; Frank, Karin; Priess, Joerg A.; Meyer, Markus A.

    2016-01-01

    Meeting the world’s growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape

  6. Guide to the willows of Shoshone National Forest

    Treesearch

    Walter Fertig; Stuart Markow

    2001-01-01

    Correct identification of willow species is an important part of land management. This guide describes the 29 willows that are known to occur on the Shoshone National Forest, Wyoming. Keys to pistillate catkins and leaf morphology are included with illustrations and plant descriptions.

  7. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential.

    PubMed

    Laureysens, I; De Temmerman, L; Hastir, T; Van Gysel, M; Ceulemans, R

    2005-02-01

    Short rotation coppice cultures (SRC) are intensively managed, high-density plantations of multi-shoot trees. In April 1996, an SRC field trial with 17 different poplar clones was established in Boom (Belgium) on a former waste disposal site. In December 1996 and January 2001, all shoots were cut back to a height of 5 cm to create a coppice culture. For six clones, wood and bark were sampled at the bottom, middle and top of a shoot in August and November 2002. No significant height effect of metal concentration was found, but for wood, metal concentrations generally increased toward the top of the shoot in August, and decreased toward the top of the shoot in November. Phytoextraction potential of a clone was primarily determined by metal concentration and by biomass production. Shoot size and number of shoots per stool were less important, as a high biomass production could be achieved by producing a few large shoots or many smaller shoots. Clone Fritzi Pauley accumulated 1.4 kg ha(-1) of Al over two years; Wolterson and Balsam Spire showed a relatively high accumulation of Cd and Zn, i.e. averaging, respectively 47 and 57 g ha(-1) for Cd and 2.4 and 2.0 kg ha(-1) for Zn over two years.

  8. Bioenergy from willow. 1995 Annual report, November 1987--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E.H.; Abrahamson, L.P.

    Experiments were established at Tully, New York, by the State University of New York College of Environmental Science and Forestry, in cooperation with the University of Toronto and the Ontario Ministry of Natural Resources, to assess the potential of willows for wood biomass production. Specific objectives included determining the effects of clone type, fertilization, spacing, cutting cycle, and irrigation on biomass production. Production was high, with willow clone SV1 yielding nearly 32 oven dry tons per acre (odt ac{sup -1}) with three-year harvest cycle, irrigation, and fertilization. Clone type, fertilization, spacing, cutting cycle, and irrigation all significantly affected biomass production.more » Willow clone-site trials planted at Massena, and Tully, NY in 1993 grew well during 1994 and 1995, but some clones in the Massena trial were severely damaged by deer browse. Several new cooperators joined the project, broadening the funding base, and enabling establishment of additional willow plantings. Willow clone-site trials were planted at Himrod, King Ferry, Somerset, and Tully, NY, during 1995. A willow cutting orchard was planted during 1995 at the NYS Department of Environmental Conservation Saratoga Tree Nursery in Saratoga, NY. Plans are to begin site preparation for a 100+ acre willow bioenergy demonstration farm in central New York, and additional clone-site trials, in 1996.« less

  9. Wolf presence and increased willow consumption by Yellowstone elk: implications for trophic cascades.

    PubMed

    Creel, Scott; Christianson, David

    2009-09-01

    Recent increases in the height and growth ring width of willow (Salix spp.) and other woody plants in the Greater Yellowstone Ecosystem (GYE) have been attributed to a behaviorally mediated trophic cascade from wolves (Canis lupus) to elk (Cervus elaphus) to willows. This hypothesis predicts that individual elk consume less willow in response to the presence of wolves, but this prediction has not been directly tested with data from elk. We collected 727 fecal samples from elk in the Gallatin Canyon portion of the GYE over three winters and used microhistological methods to quantify the proportion of willow in each sample. We then tested the effect of wolf presence on willow consumption by elk, controlling for the effects of snow conditions, sex, and habitat type. During the period of study, 8-17 wolves occupied the study area, and wolves were locally present on 49% of 260 sampling days, stratified at two-week intervals across three drainages. Over the three years combined, willow consumption was related to snow conditions, wolf presence, and a wolf X sex interaction. As expected, willow consumption increased with deeper and less penetrable snow, and this effect was strong. Contrary to expectation, willow consumption increased in the presence of wolves. As with other aspects of antipredator behavior, wolves had different effects on willow consumption by males and females. Finally, we aggregated the data to estimate winter-long mean willow consumption within each drainage; at this broader scale, willow consumption again increased as predation risk increased. In summary, willow consumption was more strongly affected by snow conditions than by the presence of wolves. Interactions between elk and willow were affected by wolves, but not as predicted by the hypothesis that wolf presence favors willow release through a reduction in the selection of willow by individual elk. If a trophic cascade is operating, our results suggest that a decline in the size of the elk

  10. Coppicing to convert small cull trees to growing stock

    Treesearch

    Gerald A. Walters

    1972-01-01

    Several tree species are now being planted in Hawaii to reforest areas on which firetree (Myrica faya Ait.)-a plant pest of little commercial value-has been killed. The potential of converting cull trees of five ofthe replacement species into growing stock trees by coppicing was evaluated. Australian toon and tropical ash showed the greatest...

  11. Fast-growing willow shrub named `Tully Champion`

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, Lawrence P; Kopp, Richard F; Smart, Lawrence B

    2007-08-28

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Tully Champion`, characterized by rapid stem growth producing greater than 25% more woody biomass than two current production clones (Salix dasyclados `SV1` and Salix miyabeana `SX64`), more than 2.5-fold greater biomass than one of its parents (Salix miyabeana `SX67`), and nearly 3-fold more biomass than another production clone (Salix sacchalinensis, `SX61`) when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Tully Champion` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can bemore » harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Tully Champion` displays a low incidence of rust disease and is not damaged by potato leafhoppers.« less

  12. Fast-growing willow shrub named `Tully Champion`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-08-28

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Tully Champion`, characterized by rapid stem growth producing greater than 25% more woody biomass than two current production clones (Salix dasyclados `SV1` and Salix miyabeana `SX64`), more than 2.5-fold greater biomass than one of its parents (Salix miyabeana `SX67`), and nearly 3-fold more biomass than another production clone (Salix sacchalinensis, `SX61`) when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Tully Champion` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Tully Champion` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  13. Testing of Willow Clones for Biomass Production in Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubiske, Marke E.

    A core experiment with 31 willow clones and 8 standard poplar clones was established at the Harshaw Experimental Farm, Rhinelander, WI in 1997. Data analysis is continuing for survival, growth, and biomass data for all willow test sites in this project.

  14. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    PubMed

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  15. Environmental assessment of energy production based on long term commercial willow plantations in Sweden.

    PubMed

    González-García, Sara; Mola-Yudego, Blas; Dimitriou, Ioannis; Aronsson, Pär; Murphy, Richard

    2012-04-01

    The present paper analyzed the environmental assessment of short rotation willow plantations in Sweden based on the standard framework of Life Cycle Assessment (LCA) from the International Standards Organisation. The analysis is focused on two alternative management regimes for willow plantations dedicated to biomass production for energy purposes. The data used included the averages of a large sample of commercial plantations. One of the scenarios is carried out under nitrogen based fertilized conditions and the other under non-fertilized management with total biomass yields (dry weight) of 140t/ha and 86t/ha over a 21 and 22-year life time respectively. The environmental profile was analyzed in terms of the potentials for abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, photochemical oxidant formation, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. In addition, an energy analysis was performed using the cumulative energy demand method (CED). The application of nitrogen based fertilizers allows an increase in the biomass yield per ha of up to 40% although the contributions to almost all impact categories, particularly the eutrophication potential and toxicity potential impact categories are also considerably higher. Conversely, due to the higher biomass yields achieved with fertilization of these willow plantations, that regime presents a better overall environmental profile in terms of energy yield and global warming potential. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Management of thinned Emory oak coppice for multiple resource benefits

    Treesearch

    D. Catlow Shipek; Peter F. Ffolliott

    2005-01-01

    Managers are increasingly moving toward an ecosystem-based, multiple-use approach in managing Emory oak woodlands in the Southwestern United States. Often of particular interest is managing the coppice that evolves from earlier fuelwood harvesting activities. Emory oak (Quercus emoryi) is a prolific sprouting species and, as a consequence, post-...

  17. Experimental restoration of coppice-with-standards: Response of understorey vegetation from the conservation perspective.

    PubMed

    Vild, Ondřej; Roleček, Jan; Hédl, Radim; Kopecký, Martin; Utinek, Dušan

    2013-12-15

    A substantial part of European lowland woodlands was managed as coppices or wood pastures for millennia. However, traditional management forms were almost completely abandoned in Central Europe by the middle of the 20th century. Combined with the effects of nitrogen deposition and herbivore pressure, shifts in management resulted in biodiversity loss affecting particularly light-demanding oligotrophic plant species. Experimental thinning was applied in a former oak coppice-with-standards in an attempt to restore vanishing understorey plant communities. Two levels of thinning intensity and zero management as control were used on 90 plots. Ten years after the treatment, significant changes in species composition and diversity were observed in heavily thinned plots, while moderate thinning had mostly insignificant effects. Light-demanding oligotrophic species significantly increased, indicating positive consequences of restoration. However, heavy thinning also brought about the expansion of native ruderal species. Alien species remained unchanged. We conclude that the restoration of coppice-with-standards can be an efficient tool to support vanishing light-demanding woodland species. Combined with biodiversity benefits, the increasing demand for biofuel may contribute to the renaissance of traditional management forms in forestry.

  18. PROGRESS REPORT: COFIRING PROJECTS FOR WILLOW ISLAND AND ALBRIGHT GENERATING STATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period April 1, 2001--June 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) accelerated construction of the Willow Island cofiring project, completed the installation of foundations for the fuel storage facility, the fuel receiving facility, and the processing building. Allegheny received all processing equipment to be installed at Willow Island. Allegheny completed the combustion modeling for the Willow Island project. During this time period construction of the Albright Generating Station cofiring facility was completed, with few items left for final action. The facility was dedicated at a ceremony on June 29. Initial testing of cofiring at the facility commenced.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less

  19. Status, ecology, and conservation of the southwestern willow flycatcher

    Treesearch

    Deborah M. Finch; Scott H. Stoleson

    2000-01-01

    This publication was prepared in response to a need expressed by southwestern agencies and organizations for a comprehensive assessment of the population status, history, biology, ecology, habitats, threats, and conservation of the southwestern willow flycatcher (Empidonax traillii extimus). The southwestern willow flycatcher was federally listed as...

  20. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.

    PubMed

    Bauen, A W; Dunnett, A J; Richter, G M; Dailey, A G; Aylott, M; Casella, E; Taylor, G

    2010-11-01

    Biomass from lignocellulosic energy crops can contribute to primary energy supply in the short term in heat and electricity applications and in the longer term in transport fuel applications. This paper estimates the optimal feedstock allocation of herbaceous and woody lignocellulosic energy crops for England and Wales based on empirical productivity models. Yield maps for Miscanthus, willow and poplar, constrained by climatic, soil and land use factors, are used to estimate the potential resource. An energy crop supply-cost curve is estimated based on the resource distribution and associated production costs. The spatial resource model is then used to inform the supply of biomass to geographically distributed demand centres, with co-firing plants used as an illustration. Finally, the potential contribution of energy crops to UK primary energy and renewable energy targets is discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. 3D numerical modelling of a willow vegetated river/floodplain system

    NASA Astrophysics Data System (ADS)

    Wilson, C. A. M. E.; Yagci, O.; Rauch, H.-P.; Olsen, N. R. B.

    2006-07-01

    SummaryUsing a three-dimensional finite volume code with standard k- ɛ turbulence closure the hydraulic impact of willow stands ( Salix alba and Salix fragilis) on the velocity distribution was modelled. The additional hydraulic resistance of the willow stands was modelled separately to the bed resistance using a drag force term that was introduced into the Navier-Stokes equations. Two flood events of varying magnitude and stages of plant development were simulated using this approach. The river comprises an asymmetric compound channel with vegetated floodplain of reach length 170 m. The willow development has been monitored annually and this information was used to define the density of the willow stands (average number per m 2) and its variation as a function of stand height. During both flood events the willow stands were submerged and in pronation. The willow stands were modelled in bending as well as in their undisturbed vertical state. Modelling the willow stands as vertical or in bending was found to have a major impact on the computed velocity profiles. The impact of using a drag-force approach based on a non-uniform projected area distribution was found to be greater when the plants are modelled vertically than when the plants are modelled in high degrees of bending. In field studies involving flexible plants without leaves, the determination of the drag coefficient is of less importance compared to the need to quantify the degree by which plants are in pronation.

  2. Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong; Xing, Li-Qun

    2008-11-01

    Uptake and translocation of chromium (Cr) by two willow species was investigated. Intact pre-rooted weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were grown hydroponically and spiked with hexavalent chromium [Cr (VI)] or trivalent chromium [Cr (III)] at 25.0 +/- 0.5 degrees C for 120 h. Removal of leaves was also performed as a treatment to quantify the effect of transpiration on uptake and translocation of either of the Cr species. Although the two willow species were able to eliminate Cr (VI) and Cr (III) from the hydroponic solution, significant differences in the removal rate for both chemical species were observed between the two willows (p < 0.05): faster removal rate for Cr (III) than Cr (VI) was detected in both willow species; hankow willows showed higher removal potential for both chemical species than weeping willows. Remarkable decreases in the removal rates for both Cr species were detected in the willows with leaves removed (p < 0.05). The results from the treatments spiked with Cr (VI) also revealed that Cr was more mobile in plant materials of hankow willows than that in weeping willows (p < 0.01), while higher translocation efficiency of Cr was observed in weeping willows than hankow willows for the Cr (III) treated (p < 0.01). However, a convincing decrease in the translocation efficiency due to the removal of leaves was only observed in the treatments spiked with Cr (VI) (p < 0.05). Substantial differences existed in the distribution of Cr species in plant materials after exposure of either of the chemical forms: roots and lower stems were the major sites for accumulation in weeping willows exposed to Cr (VI) and Cr (III), respectively; in contrast roots were the only sink in hankow willows exposed to both chemical species. The capacity of willows to assimilate both Cr species was also evaluated using detached leaves and roots of both willow species in sealed glass vessels in vivo. The results indicated that

  3. WILLOW CREEK RECLAMATION PROJECT

    EPA Science Inventory

    Working in cooperation with the EPA, Colorado Division of Minerals and Geology, and others, the Willow Creek Reclamation Committee (WCRC) will investigate the sources and character of water entering the mine workings on the Amethyst vein near the town of Creede, Colorado. Activi...

  4. Models in Educational Administration: Revisiting Willower's "Theoretically Oriented" Critique

    ERIC Educational Resources Information Center

    Newton, Paul; Burgess, David; Burns, David P.

    2010-01-01

    Three decades ago, Willower (1975) argued that much of what we take to be theory in educational administration is in fact only theoretically oriented. If we accept Willower's assessment of the field as true, what implications does this statement hold for the academic study and practical application of the theoretically oriented aspects of our…

  5. Root growth studies of willow cuttings using Rhizoboxes

    NASA Astrophysics Data System (ADS)

    Omarova, Dinara; Lammeranner, Walter; Florineth, Florin

    2014-05-01

    Riparian forests (Tugay forests) in Central Asia (Kazakhstan) play a significant in soil protection. However, unadapted forest use leads to damage and loss of these fragile ecosystems. Willows have a crucial function in the ecosystem of these riparian forests. Willows facilitate the colonization with other important tree species and furthermore they protect the soil from wind and water erosion. To propagate willows and to estimate the beneficial effects of these plants it is important to know the root growth development. The research design is planned as model experiment with rhizoboxes. Rhizoboxes are non-invasive investigation methods which offer the possibility to survey the root system growth dynamics in time and space. A total of 33 rhizoboxes in size of 50cm x 75 cm x 5 cm will be constructed. The rhizoboxes will be tilted by 45 degrees using the gravitropism of the roots. The willow cuttings (Salix purpurea) will be planted in three different soil types. Each test series (growth period) will take three months. Investigated parameters will be root architecture, dynamic of root growth and above and below ground biomass allocation. Data will be drawn from photographic surveys which will be performed once a week. The contribution will present the methodology of these rhizobox investigations.

  6. Coppicing to convert cull austrailian toon, tropical ash to acceptable trees

    Treesearch

    Gerald A. Walters; Herbert L. Wick

    1973-01-01

    Coppicing provides a method of converting cull sapling and pole-size Australian toon (Toono australis) and tropical ash (Fraxillus uhdel) trees to "acceptable trees." In trial plots on the island of Hawaii, stumps of both species sprouted, resulting in a high percentage of vigorous, well-formed sterns. Codominant stems on...

  7. Primary song by a juvenile willow flycatcher

    USGS Publications Warehouse

    Sogge, M.K.

    1997-01-01

    The timing of song development in suboscines, in which song appears not to be learned from other adults is poorly known. The Willow Flycatcher (Empidonax traillii) is a suboscine with a primary song typically referred to as fitz-bew. I report here an instance of very early singing by a 6-8-wk-old Willow Flycatcher, which sang in an aggressive context in response to a recording of adult flycatcher song. This is exceptionally early development of primary song, even among suboscines. Early song development may assist in the defense of winter territories.

  8. Efficacy and Safety of White Willow Bark (Salix alba) Extracts.

    PubMed

    Shara, Mohd; Stohs, Sidney J

    2015-08-01

    Willow bark extract has been used for thousands of years as an anti-inflammatory, antipyretic, and analgesic. In spite of its long history of use, relatively few human and animal studies have been published that confirm anecdotal observations. A small number of clinical studies have been conducted that support the use of willow bark extracts in chronic lower back and joint pain and osteoarthritis. Willow bark extracts also are widely used in sports performance and weight loss products presumably because of anti-inflammatory and analgesic activities, although no human studies have been published that specifically and directly document beneficial effects. In recent years, various in vitro and animal studies have demonstrated that the anti-inflammatory activity of willow bark extract is associated with down regulation of the inflammatory mediators tumor necrosis factor-α and nuclear factor-kappa B. Although willow bark extracts are generally standardized to salicin, other ingredients in the extracts including other salicylates as well as polyphenols, and flavonoids may also play prominent roles in the therapeutic actions. Adverse effects appear to be minimal as compared to non-steroidal anti-inflammatory drugs including aspirin. The primary cause for concern may relate to allergic reactions in salicylate-sensitive individuals. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.

    PubMed

    Clausen, Lauge Peter Westergaard; Broholm, Mette Martina; Gosewinkel, Ulrich; Trapp, Stefan

    2017-08-01

    Trichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S. viminalis) and willows inoculated with three strains of B. cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE in solution were measured every 2-3 days and chloride and metabolite concentrations in plants were measured at test termination. Based on transpiration, no tree toxicity of TCE exposure was observed. However, trees grown in chloride-free solution showed severely inhibited transpiration. No or very little chloride was formed during the test, and levels of chloride in TCE-exposed trees were not elevated. Chloride concentrations in chloride containing TCE-free nutrient solution doubled within 23 days, indicating active exclusion of chloride by root cell membranes. Only traces of TCE-metabolites were detected in plant tissue. We conclude that TCE is not, or to a limited extent (less than 3%), aerobically degraded by the willow trees. The three strains of B. cepacia did not enhance TCE mineralization. Future successful application of rhizo- and phytodegradation of TCE requires measures to be taken to improve the degradation rates.

  10. Valuation of ecosystem services of commercial shrub willow (Salix spp.) woody biomass crops.

    PubMed

    Bressler, Alison; Vidon, Philippe; Hirsch, Paul; Volk, Timothy

    2017-04-01

    The development of shrub willow as a bioenergy feedstock contributes to renewable energy portfolios in many countries with temperate climates and marginal croplands due to excessive moisture. However, to fully understand the potential of shrub willow as an alternative crop on marginal cropland, more research is needed to understand the potential of shrub willow for providing a variety of ecosystem services. At the same time, there is much need for research developing strategies to value ecosystem services beyond conventional valuation systems (e.g., monetary, intrinsic). In this context, this project investigates the ecosystem services of shrub willow woody biomass from an environmental science perspective, and proposes a new avenue to assess ecosystem services for management purposes based on the relative value of key ecosystem services under various land management strategies (i.e., willow vs. corn vs. hay). On marginal cropland in the US Northeast, shrub willow may be used to replace crops like corn or hay. Transitioning from conventional corn or hay to willow tends to reduce nutrient loss and erosion, improve biodiversity and adaptability to climate change, and increase access to recreational activities. However, it is unlikely to change soil carbon pools or greenhouse gas emissions at the soil-atmosphere interface. By encouraging decision makers to weigh the pros and cons of each management decision (i.e., willow vs. corn vs. hay) based on the situation, the ecosystems services valuation method used here provides a clear framework for decision making in a watershed management context.

  11. Soil Profile Observations Relating to Drouth Damage in Black Willow Stands

    Treesearch

    WIlliam R. Beaufait

    1955-01-01

    During drouth, black willow (Salix nigra Karsh.) is quite sensitive to subsoil differences. Surface inspection alone rarely gives an adequate clue to the quality of the variously stratified alluvial soils on which willow may occur.

  12. Willow System Demonstration

    DTIC Science & Technology

    2003-01-01

    possibility of terrorists attempting to breach airport security . If a few terrorists attempt to smuggle weapons at any single airport, most will be...introduction of law- enforcement officials, and so on. For airport security , secu- rity staff would indicate when a banned object was found using a touch...necessary responses could be communicated to the airport security staff. In the Willow architecture, the various components and all of the algorithms

  13. Forest operations in coppice: Environmental assessment of two different logging methods.

    PubMed

    Laschi, Andrea; Marchi, Enrico; González-García, Sara

    2016-08-15

    Wood is a renewable resource and it actively contributes to enhance energy production under a sustainable perspective. However, harvesting, transport and use of wood imply several consequences and impacts on environment. There are different ways for managing forests dedicated to wood production and a sustainable approach is fundamental to preserve the resource. In this context, Life Cycle Assessment (LCA) is a useful tool for estimating the environmental impacts related to renewable resources. Traditional coppice is a common approach for forest management in several areas, including southern Europe and, specifically, Italy, Spain and the Balkans. Due to different terrain conditions, different types of forest operations are considered for wood extraction from coppices, where the main product is firewood used in domestic heating. The aim of this work was to compare the main common systems for firewood production in two different terrain conditions ('flat/low steep' and 'steep/very steep' terrains), in a representative environment for Mediterranean area, located in central Italy, by means of LCA. Seven different impact categories were evaluated in a cradle-to-gate perspective taking into account all the operations carried out from the trees felling to the firewood storage at factory. Results showed that the extraction phase was the most important in terms of environmental burdens in firewood production and the use of heavy and high-power machines negatively influenced the emissions compared with manual operations. Finally, considering the general low-inputs involved in wood production in coppice, the transport of workers by car to the work site resulted on consistent contributions into environmental burdens. An additional analysis about the modifications of CH4 and N2O exchanges between soil and atmosphere, due to soil compaction in the extraction phase, was made and based on bibliographic information. Results showed a sensible difference between disturbed and

  14. Salt intrusion in tidal wetlands: European willow species tolerate oligohaline conditions

    NASA Astrophysics Data System (ADS)

    Markus-Michalczyk, Heike; Hanelt, Dieter; Ludewig, Kristin; Müller, David; Schröter, Brigitte; Jensen, Kai

    2014-01-01

    Tidal wetlands experience salt intrusion due to the effects of climate change. This study clarifies that the European flood plain willows species Salix alba and Salix viminalis tolerate oligohaline conditions. Salix alba L. and Salix viminalis L. are distributed on flood plains up to transitional waters of the oligohaline to the mesohaline estuarine stretch in temperate climates. They experience spatial and temporal variations in flooding and salinity. In the past, willows dominated the vegetation above the mean high water line, attenuated waves and contributed to sedimentation. In recent centuries, human utilization reduced willow stands. Today, the Elbe estuary - a model system for an estuary in temperate zones - exhibits increasing flooding and salinity due to man-induced effects and climatic changes. Willows were described as having no salinity tolerance. In contrast, our soil water salinity measurements at willows in tidal wetlands prove that mature Salix individuals tolerate oligohaline conditions. To assess immature plant salinity tolerance, we conducted a hydroponic greenhouse experiment. Vegetative propagules originating from a freshwater and an oligohaline site were treated in four salinities. Related to growth rates and biomass production, we found interspecific similarities and a salinity tolerance up to salinity 2. Vitality and chlorophyll fluorescence indicated an acclimation of Salix viminalis to oligohaline conditions. We conclude, that the survival of S. alba and S. viminalis and the restoration of willow stands in estuarine flood plains - with regard to wave attenuation and sedimentation - might be possible, despite increasing salinity in times of climate change.

  15. Growth and yield of Populus coppice stands grown under intensive culture

    Treesearch

    Alan R. Ek; John E. Lenarz; Albert Dudek

    1983-01-01

    Growth and survival data on the first three years of development of coppiced stands representing seven clones are described. The data were collected from small multispaced plots at the Rhinelander, Wisconsin, nursery. Sprout growth and mortality equations developed from this data were then integrated with growth and mortality equations developed for older trees of...

  16. Armillaria root disease affects oak coppice regeneration in upland Missouri Ozark forests

    Treesearch

    J. N. Bruhn; D. C. Dey; K. K. Kromroy; J. D. Mihail; J. M. Kabrick; J. J., Jr. Wetteroff

    2005-01-01

    Coppice regeneration is favored in North America for oak (Quercus spp.) regeneration. Although models of oak stump sprouting do not consider Armillaria root disease, many oak stumps in upland Ozark forest stands carry active Armillaria root crown infections. The spatial pattern of sprouting on oak stumps is...

  17. Phylogenetic Relationships of American Willows (Salix L., Salicaceae)

    PubMed Central

    Lauron-Moreau, Aurélien; Pitre, Frédéric E.; Argus, George W.; Labrecque, Michel; Brouillet, Luc

    2015-01-01

    Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns. PMID:25880993

  18. Status and breeding ecology of the southwestern willow flycatcher in the Grand Canyon

    USGS Publications Warehouse

    Sogge, M.K.; Tibbitts, T.J.; Petterson, J.R.

    1997-01-01

    Ernpidonax trailIll extirnus is one of several recognized subspecies of the Willow Flycatcher (Unitt 1987, Browning 1993), a neotropical migrant that breeds across much of North America. This southwestern race is a riparian obligate, nesting in dense patches of willow (Salix sp.), willow-cottonwood (Populus sp.), or other similarly structured habitats. In some areas of the Southwest, it nests in dense stands of tamarisk (Tamarix sp.). Willow Flycatchers were once widespread and locally common in the Southwest (Unitt 1987) but have declined to the point that E. t. extirnus was listed as an endangered subspecies in 1995 (USFWS 1995).

  19. Coastal Energy Corporation, Willow Springs, MO

    EPA Pesticide Factsheets

    notice of a proposed Administrative Penalty Assessment against Coastal Energy Corporation, located at 232 Burnham Road, Willow Springs, Missouri, for alleged violations at the facility located at or near that facility.

  20. Effects of soil conditions on survival and growth of black willow cuttings.

    PubMed

    Schaff, Steven D; Pezeshki, S Reza; Shields, F Douglas

    2003-06-01

    Current streambank restoration efforts focus on providing bank stability, enhancing water quality, and improving woody habitat using native vegetation rather than traditional engineering techniques. However, in most cases harsh site conditions limit restoration success. A two-year field study was conducted at Twentymile Creek, in northern Mississippi, investigating edaphic factors governing the survival of black willow (Salix nigra) cuttings used for streambank restoration. Low height growth, above-ground biomass production, and average leaf area were observed in willow cuttings grown in plots subjected to moisture deficits. However, sediment texture emerged as the dominant factor determining willow post growth, health, and survival. Shoot biomass, leaf biomass, and total above-ground biomass were 15-, 10-, and 14-fold greater for large willow cuttings (posts) grown in plots with sandy sediments relative to those grown in plots with similar moisture and soil redox potential but with silt and clay sediments. Average leaf size, average leaf mass and specific leaf area were all lower in fine textured plots. Under moisture conditions present at our sites, coarse-grained sediment (sand) was more conducive to willow growth, biomass production, and survival than were fine-grained sediments (silt/clay). Our results strongly suggest that soil texture and moisture conditions can determine restoration success. Therefore, it is critical that site conditions are factored into the selection of project locations prior to the initiation of willow planting restoration projects.

  1. Ungulate herbivory on alpine willow in the Sangre de Cristo Mountains of Colorado

    USGS Publications Warehouse

    Zeigenfuss, L.C.; Schoenecker, K.A.; Amburg, L.K.V.

    2011-01-01

    In many areas of the Rocky Mountains, elk (Cervus elaphus) migrate from low-elevation mountain valleys during spring to high-elevation subalpine and alpine areas for the summer. Research has focused on the impacts of elk herbivory on winter-range plant communities, particularly on woody species such as willow and aspen; however, little information is available on the effects of elk herbivory on alpine willows. In the Sangre de Cristo Mountains of south central Colorado, select alpine areas appear to receive high levels of summer elk herbivory, while other areas are nearly unbrowsed. In 2005 and 2008, we measured willow height, cover, and utilization on sites that appeared to be used heavily by elk, as well as on sites that appeared to be used lightly, to determine differences between these communities over time. We found less willow cover and shorter willows at sites that received higher levels of browsing compared to those that had lower levels of browsing. Human recreational use was greater at lightly browsed sites than at highly browsed sites. From 2005 to 2008, willow utilization declined, and willow cover and height increased at sites with heavy browsing, likely owing to ownership change of adjacent valley land which led to (1) removal of grazing competition from, cattle at valley locations and (2) increased human use in alpine areas, which displaced elk. We discuss the implications of increased human use and climate change on elk use of these alpine habitats. ?? 2011.

  2. 76 FR 179 - General Motors Company, Formerly Known as General Motors Corporation, Willow Run Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ..., Formerly Known as General Motors Corporation, Willow Run Transmission Plant, Including On-Site Leased... to workers of General Motors Company, formerly known as General Motors Corporation, Willow Run... location of General Motors Company, formerly known as General Motors Corporation, Willow Run Transmission...

  3. 75 FR 49527 - General Motors Company Formerly Known as General Motors Corporation, Willow Run Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Formerly Known as General Motors Corporation, Willow Run Transmission Plant Including On-Site Leased... Corporation, Willow Run Transmission Plant, Ypsilanti, Michigan. The notice was published in the Federal... Motors Corporation, Willow Run Transmission Plant. The Department has determined that these workers were...

  4. Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture.

    PubMed

    Johnston, Danielle B; Cooper, David J; Hobbs, N Thompson

    2007-12-01

    In the northern elk wintering range of Yellowstone National Park, USA, wolf (Canis lupus) removal allowed elk (Cervus elaphus) to overbrowse riparian woody plants, leading to the exclusion of beaver (Castor canadensis) and a subsequent water table decline in many small stream valleys. Reduced elk browsing following wolf reintroduction may or may not facilitate willow (Salix sp.) recovery in these areas. To determine if the effect of elk browsing on willow interacts with that of beaver abandonment, we manipulated elk browsing and the water table in a factorial experiment. Under the condition of an ambient (low) water table, elk browsing increased shoot water potential (Psis), photosynthesis per unit leaf area (A), stomatal conductance per unit leaf area (gs), and aboveground current annual growth (CAG) by 50%. Elk browsing occurred entirely during dormancy and did not affect total plant leaf area (L). Improved water balance, photosynthetic rate, and annual aboveground productivity in browsed willows appeared to be due to morphological changes, such as increased shoot diameter and decreased branching, which typically increase plant hydraulic conductivity. An elevated water table increased Psis, A, gs, CAG, and L, and eliminated or lessened the positive effect of browsing on CAG for most species. Because low water tables create conditions whereby high willow productivity depends on the morphological effects of annual elk browsing, removing elk browsing in areas of water table decline is unlikely to result in vigorous willow stands. As large willow standing crops are required by beaver, a positive feedback between water-stressed willow and beaver absence may preclude the reestablishment of historical conditions. In areas with low water table, willow restoration may depend on actions to promote the re-establishment of beaver in addition to reducing elk browsing.

  5. A survey protocol for the Southwestern Willow Flycatcher (Empidonax traillii extimus)

    USGS Publications Warehouse

    Tibbitts, Timothy J.; Sogge, Mark K.; Sferra, Susan J.

    1994-01-01

    The southwestern willow flycatcher (Empidonax traillii extimus) is a riparian obligate neotropical migrant, nesting in cottonwood-willow associations and structurally similar riparian vegetation associations. The southwestern willow flycatcher has declined through the twentieth century, primarily due to a number of factors, including loss and fragmentation of riparian habitat, brood parasitism by brown-headed cowbirds (Molothrus ater), invasion of riparian habitat by the exotic tamarisk (Tamarix sp.), and predation (Hunter et al. 1987), Unitt 1987, Hunter et al. 1988, Whitfield 1990, Harris 1991, Rosenberg et al. 1991). In 1991 the U.S. Fish and Wildlife Service (USFWS) designated the southwestern willow flycatcher as a candidate category 1 species (USFWS 1991), indicating that the USFWS had sufficient information to support listing under the Endangered Species Act of 1973, as amended (Act), but that a proposal to list was precluded by other listing actions of higher priority. In July 1993, the USFWS proposed to list E. t. extimus as an endangered species and to designate critical habitat under the Act (USFWS 1993). The states of Arizona, New Mexico, and California comprise most of the southwestern willow flycatcher's historic and current range. Each of these states lists the species as endangered [Arizona Game and Fish Department (AGFD) 1988, New Mexico Department of Game and Fish (NMDGF) 1988, California Department of Game and Fish 1991]. Because of the precarious status of the southwestern willow flycatcher (Unitt 1987, USFWS 1993), there is a need to identify as many remaining breeding locations as possible. This survey protocol was developed to facilitate and standardize breeding surveys, and is based primarily on extensive 1992 and 1993 field surveys. It was developed at the request of the Arizona Partners in flight, and organization of Federal and State agencies, nongovernmental organizations, and individuals. This protocol is intended to be useful

  6. Coppicing evaluation of short rotation coppice in the southeast of the U.S. to determine appropriate harvesting methods.

    Treesearch

    Rafael Santiago; Tom Gallagher; Matthew Smidt; Dana Mitchell

    2016-01-01

    Renewable fuels are being tested as an alternative for fossil fuels. For the Southeast U.S., the use of woody biomass has proven to be an excellent source of renewable energy in terms of cost benefit and availability. Short rotation woody crops (SRWC) are timber plantations with exclusive characteristics that can meet the intensive demand for wood due to their fast...

  7. Final recovery plan of the southwestern willow flycatcher (Empidonax traillii extimus)

    Treesearch

    Deborah M. Finch; Stephen I. Rothstein; Jon C. Boren; William L. Graf; Jerry L. Holechek; Barbara E. Kus; Robert M. Marshall; Molly M. Pohl; Susan J. Sferra; Mark K. Sogge; Julie C. Stromberg; Bradley A. Valentine; Mary J. Whitfield; Sartor O. Williams

    2002-01-01

    The Southwestern Willow Flycatcher Recovery Team is composed of a Technical Subgroup (pg. ii), six Implementation Subgroups (Appendix A), and a Tribal Working Group. The Technical Subgroup consists of 14 academic scientists, researchers, and resource managers with a wide range of expertise in avian biology and ecology, southwestern willow flycatcher ecology, cowbird...

  8. Flood of May 6, 2007, Willow Creek, west-central Iowa

    USGS Publications Warehouse

    Fischer, Edward E.; Eash, David A.

    2008-01-01

    Major flooding occurred May 6, 2007, in the Willow Creek drainage basin in Harrison County following severe thunderstorm activity over west-central Iowa. More than 7 inches of rain were recorded for the 72-hour period ending 7 a.m., May 6, at the Logan, Iowa weather station. The peak discharge in Willow Creek at Medford Avenue near Missouri Valley, Iowa, was 17,000 cubic feet per second. The recurrence interval of the flood is 160 years, which was estimated using regional regression equations. Information about the basin, the storms, the flooding, and a profile of high-water marks measured at 10 locations along Willow Creek between the mouth at the Boyer River and State Highway 37 in Monona County, a distance of almost 33 river miles, are presented in this report.

  9. Growth and Survival of Water Tupelo Coppice Regeneration After Six Growing Seasons

    Treesearch

    Harvey E. Kennedy

    1982-01-01

    In the lower Atchafalaya Basin, water tupelo (Nyssa aquatica L.) trees were cut in May and November at three stump heights to study coppice regeneration. Sprouting was extremely good after one growing season, and live sprouts grew well through the third and fourth seasons. However, some stumps began to deteriorate and sprouts die after the second...

  10. 75 FR 76038 - General Motors Company Formerly Known as General Motors Corporation Willow Run Transmission Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Formerly Known as General Motors Corporation Willow Run Transmission Plant Including On-Site Leased Workers... Company, formerly known as General Motors Corporation, Willow Run Transmission Plant, Ypsilanti, Michigan... Motors Company, formerly known as General Motors Corporation, Willow Run Transmission Plant. The...

  11. Impact of phosphate on glyphosate uptake and toxicity in willow.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Moingt, Matthieu; Smedbol, Elise; Paquet, Serge; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-03-05

    Phosphate (PO4(3-)) has been shown to increase glyphosate uptake by willow, a plant species known for its phytoremediation potential. However, it remains unclear if this stimulation of glyphosate uptake can result in an elevated glyphosate toxicity to plants (which could prevent the use of willows in glyphosate-remediation programs). Consequently, we studied the effects of PO4(3-) on glyphosate uptake and toxicity in a fast growing willow cultivar (Salix miyabeana SX64). Plants were grown in hydroponic solution with a combination of glyphosate (0, 0.001, 0.065 and 1 mg l(-1)) and PO4(3-) (0, 200 and 400 mg l(-1)). We demonstrated that PO4(3-) fertilization greatly increased glyphosate uptake by roots and its translocation to leaves, which resulted in increased shikimate concentration in leaves. In addition to its deleterious effects in photosynthesis, glyphosate induced oxidative stress through hydrogen peroxide accumulation. Although it has increased glyphosate accumulation, PO4(3-) fertilization attenuated the herbicide's deleterious effects by increasing the activity of antioxidant systems and alleviating glyphosate-induced oxidative stress. Our results indicate that in addition to the glyphosate uptake, PO4(3-) is involved in glyphosate toxicity in willow by preventing glyphosate induced oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Salix transect of Europe: latitudinal patterns in willow diversity from Greece to arctic Norway.

    PubMed

    Cronk, Quentin; Ruzzier, Enrico; Belyaeva, Irina; Percy, Diana

    2015-01-01

    Willows (Salix spp.) are ecosystem "foundation species" that are hosts to large numbers of associated insects. Determining their patterns of distribution across Europe is therefore of interest for understanding the spatial distribution of associated fauna. The aim of this study was to record species composition at multiple sites on a long latitudinal gradient (megatransect) across Europe as a baseline for the future detailed analysis of insect fauna at these sites. In this way we used willow stands as comparable mesocosms in which to study floristic and faunistic changes with latitude across Europe. To determine spatial patterning of  an ecologically important group on a latitudinal gradient across Europe, we sampled willows at the stand level in 42 sites, approximately 100 km apart, from the Aegean (38.8°N) to the Arctic Ocean (70.6°N), but at a similar longitude (21.2 to 26.1°E). The sites were predominantly lowland (elevations 1 to 556 metres amsl, median = 95 m) and wet (associated with rivers, lakes, drainage ditches or wet meadows). The median number of willow taxa (species and hybrids) per stand was four, and varied from one to nine. There is a progressive increase in willow diversity from south to north with the median number of taxa per stand in southern Europe being three, and in northern Europe six. A total of 20 willow species were recorded, along with 12 hybrids. The most widespread willow in the transect was Salix alba L. (occurring in 20 sites out of 42) followed by S. triandra L. (15 sites), S. caprea L., S. phylicifolia L. (14 sites) and S. myrsinifolia Salisb., Salix ×fragilis L. (13 sites). Voucher specimens from this study are deposited in the herbaria of the Natural History Museum (BM) and the Royal Botanic Gardens Kew (K). These samples provide a "snapshot" of willow diversity along a latitudinal gradient and an indication of the geographically changing taxonomic diversity that is presented to willow-feeding herbivores

  13. Salix transect of Europe: latitudinal patterns in willow diversity from Greece to arctic Norway

    PubMed Central

    Ruzzier, Enrico; Belyaeva, Irina; Percy, Diana

    2015-01-01

    Abstract Background Willows (Salix spp.) are ecosystem "foundation species" that are hosts to large numbers of associated insects. Determining their patterns of distribution across Europe is therefore of interest for understanding the spatial distribution of associated fauna. The aim of this study was to record species composition at multiple sites on a long latitudinal gradient (megatransect) across Europe as a baseline for the future detailed analysis of insect fauna at these sites. In this way we used willow stands as comparable mesocosms in which to study floristic and faunistic changes with latitude across Europe. New information To determine spatial patterning of  an ecologically important group on a latitudinal gradient across Europe, we sampled willows at the stand level in 42 sites, approximately 100 km apart, from the Aegean (38.8°N) to the Arctic Ocean (70.6°N), but at a similar longitude (21.2 to 26.1°E). The sites were predominantly lowland (elevations 1 to 556 metres amsl, median = 95 m) and wet (associated with rivers, lakes, drainage ditches or wet meadows). The median number of willow taxa (species and hybrids) per stand was four, and varied from one to nine. There is a progressive increase in willow diversity from south to north with the median number of taxa per stand in southern Europe being three, and in northern Europe six. A total of 20 willow species were recorded, along with 12 hybrids. The most widespread willow in the transect was Salix alba L. (occurring in 20 sites out of 42) followed by S. triandra L. (15 sites), S. caprea L., S. phylicifolia L. (14 sites) and S. myrsinifolia Salisb., Salix ×fragilis L. (13 sites). Voucher specimens from this study are deposited in the herbaria of the Natural History Museum (BM) and the Royal Botanic Gardens Kew (K). These samples provide a "snapshot" of willow diversity along a latitudinal gradient and an indication of the geographically changing taxonomic diversity that is

  14. Willow Flycatcher nonbreeding territory defense behavior in Costa Rica

    USGS Publications Warehouse

    Sogge, M.K.; Koronkiewicz, T.J.; van Riper, Charles; Durst, S.L.

    2007-01-01

    We studied the intraspecific territorial defense behavior of wintering Willow Flycatchers (Empidonax traillii) in Costa Rica using a randomized playback experiment that exposed male and female birds to recordings of Willow Flycatcher songs and calls, Lesser Ground Cuckoo (Morococcyx erythropygius) vocalizations, and random noise. Flycatchers of both sexes responded most strongly to simulated conspecific territory intrusion, and the agonistic behaviors that we observed were similar to those seen during natural intraspecific encounters in winter. Both males and females engaged in song and aggressive behaviors in defense of territories, and there was no significant difference between the sexes in scored agonistic responses. The similarity between the sexes in intraspecific territorial defense behaviors and aggressiveness may account for both sexes of flycatchers using the same habitats at our study sites in Costa Rica, and wintering females defending territories against males. The Willow Flycatcher, a sexually monomorphic species, differs in this way from a number of sexually dimorphic passerines, in which behaviorally dominant males occur in more optimal winter habitats. ?? The Cooper Ornithological Society 2007.

  15. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    PubMed

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to <15% of initial values. A flushing treatment to remove excess salts was therefore not necessary. Irrigation had an impact on biosolids attributes such as salinity and pH, and that this had an influence on metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a

  16. Beaver herbivory of willow under two flow regimes: A comparative study on the Green and Yampa rivers

    USGS Publications Warehouse

    Breck, Stewart W.; Wilson, Kenneth R.; Andersen, Douglas C.

    2003-01-01

    The effect of flow regulation on plant-herbivore ecology has received very little attention, despite the fact that flow regulation can alter both plant and animal abundance and environmental factors that mediate interactions between them. To determine how regulated flows have impacted beaver (Castor canadensis) and sandbar willow (Salix exigua) ecology, we first quantified the abundance and mapped the spatial distribution of sandbar willow on alluvial sections of the flow-regulated Green River and free-flowing Yampa River in northwestern Colorado. We then established 16 and 15 plots (1 m × 2.7 m) in patches of willow on the Green and Yampa Rivers, respectively, to determine whether rates of beaver herbivory of willow differed between rivers (Green versus Yampa River), seasons (fall-winter versus spring-summer), and years (spring 1998-spring 1999 versus spring 1999-spring 2000). Areal extent of willow was similar on each river, but Green River willow patches were smaller and more numerous. Beavers cut more stems during fall and winter than spring and summer and cut over 6 times more stems (percentage basis) on the Green River than on the Yampa River. We attribute the between-river difference in herbivory to higher availability of willow, greater beaver density, and lower availability of young Fremont cottonwood (Populus deltoides subsp. wislizenii; an alternative food source) on the Green River. Flow regulation increased willow availability to beaver by promoting the formation of island patches that are continuously adjacent to water and feature a perimeter with a relatively high proportion of willow interfacing with water.

  17. Estimates of Nutrient Drain by Dormant-Season Harvests of Coppice American Sycamore

    Treesearch

    B.G. Blackmon

    1979-01-01

    Estimates of the amount of nutrients removed by dormant-season harvests of coppice American sycamore indicated that harvesting once (at age 4) or twice (at ages 2 and 4) removed 20-145 kg/ha of N, P, K, Ca, and Mg and small quantities of Mn, Zn, Fe, and Cu. Calculations of nutrient drain indicated that for N, gains through natural processes about equal losses, but...

  18. Anaphylactic reaction to a dietary supplement containing willow bark.

    PubMed

    Boullata, Joseph I; McDonnell, Patrick J; Oliva, Cynthia D

    2003-06-01

    To report a case of anaphylaxis resulting from the use of a willow bark-containing dietary supplement in a patient with a history of an aspirin allergy. A 25-year-old white woman presented to the emergency department of a community teaching hospital with anaphylaxis requiring epinephrine, diphenhydramine, methylprednisolone, and volume resuscitation to which she responded favorably. Medication history revealed that she had ingested 2 capsules of Stacker 2 (NVE Pharmaceuticals, Newton, NJ), a dietary supplement promoted for weight loss, prior to experiencing her initial symptoms. Among other active ingredients, this product contains willow bark. Of significance is that this patient also reported a history of allergy to acetylsalicylic acid. No other causes for anaphylaxis were identified. She continued to receive routine supportive care and the remaining hospital course was uncomplicated. Dietary supplements, including herbal products, are used by many individuals who consider them to be inherently safe despite limited regulatory oversight by the Food and Drug Administration. While there may be value to specific botanical ingredients, a potential for adverse effects also exists. The popular product consumed by our patient is used for weight loss and contains willow bark, a source of salicylates. Based on the Naranjo probability scale, it is probable that this case of anaphylaxis was due to this dietary supplement. The use of any willow bark-containing dietary supplement may present a risk of anaphylactic reaction to patients with a history of allergy to salicylates. Clinicians need to recognize the potential for adverse effects from dietary supplements.

  19. Benefits from Thinning Black Willow

    Treesearch

    R. L. Johnson; J. S. McKnight

    1969-01-01

    Black willow stands 18 and 24 years old were cut from about 130 square feet of basal area per acre to near 95, 75, and 55 square feet. Growth was best on plots thinned to 55 square feet in the 24-year-old stand and to 95 square feet in the 18-yearold stand. The stands were along the Mississippi River.

  20. Willow establishment in relation to cattle grazing on an eastern Oregon stream

    Treesearch

    Nancy L. Shaw; Warren P. Clary

    1996-01-01

    Natural regeneration and growth of coyote willow (Salix exigua Nutt. ssp. exigua) and whiplash willow (S. lasiandra Bemth. var. caudata [Nutt.] Sudw.) were monitored from 1987 to 1993 on a low-elevation eastern Oregon stream degraded by more than a century of heavy livestock grazing. Treatments were no grazing, moderate spring grazing, moderate fall grazing, and...

  1. Short Rotation Woody Crops Program. Quarterly progress report, March 1-May 31, 1985. [Sycamore, alders, black locust, larch, poplars, saltbush

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, L.L.; Perlack, R.D.; Wenzel, C.R.

    1985-08-01

    This report covers the progress of the Short Rotation Woody Crops Program (SRWCP) during the third quarter of fiscal year 1985. This report summarizes ORNL management activities, technical activities at ORNL and subcontract institutions, and the technology transfer that is occurring as a result of subcontractor and ORNL activities. Third-year results of a nutrient utilization study confirmed that there were no benefits to quarterly fertilization with urea nitrogen. Testing of one prototype short-rotation intensive culture harvester was conducted on a sycamore plantation on Scott Paper Company land in southern Alabama. Coppice yields of European black alder reported by Iowa Statemore » University indicate potential productivity of about 7.2 dry Mg . ha/sup -1/ . year/sup -1/ if the best trees are selected. Coppice yields were more than double first-rotation yields. About 31,000 black locust and larch trees were established in 12 genetic tests at 4 sites in Michigan. Seedling rotation productivity rates of 4-year-old hybrid poplar, based on harvest data, were reported by Pennsylvania State University. Rates varied from 4.8 dry Mg . ha/sup -1/ . year/sup -1/ to 10.7 dry Mg . ha/sup -1/ . year/sup -1/, depending on site, management strategy, and planting year. An efficient method for in vitro micropropagation of elite genotypes of fourwing saltbush was developed by Plant Resources Institute. A new study to evaluate yield/density relationships was established by the USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. Dissertation research on the crown geometry of plantation-grown American sycamore was completed.« less

  2. 77 FR 2603 - Public Notice for Waiver of Aeronautical Land-Use Assurance; Willow Run Airport; Detroit, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ..., Hydra-Matic Division, Willow Run Plant Property, South 01 degree 27 minutes 26 seconds West along the..., Hydra-Matic Division, Willow Run Plant Property; thence the following courses and distance along the Southerly line of said Hydra-Matic Division, Willow Run Plant Property, South 89 degrees 55 minutes 54...

  3. Willow Leaves' Extracts Contain Anti-Tumor Agents Effective against Three Cell Types

    PubMed Central

    El-Shemy, Hany A.; Aboul-Enein, Ahmed M.; Aboul-Enein, Khalid Mostafa; Fujita, Kounosuke

    2007-01-01

    Many higher plants contain novel metabolites with antimicrobial, antifungal and antiviral properties. However, in the developed world almost all clinically used chemotherapeutics have been produced by in vitro chemical synthesis. Exceptions, like taxol and vincristine, were structurally complex metabolites that were difficult to synthesize in vitro. Many non-natural, synthetic drugs cause severe side effects that were not acceptable except as treatments of last resort for terminal diseases such as cancer. The metabolites discovered in medicinal plants may avoid the side effect of synthetic drugs, because they must accumulate within living cells. The aim here was to test an aqueous extract from the young developing leaves of willow (Salix safsaf, Salicaceae) trees for activity against human carcinoma cells in vivo and in vitro. In vivo Ehrlich Ascites Carcinoma Cells (EACC) were injected into the intraperitoneal cavity of mice. The willow extract was fed via stomach tube. The (EACC) derived tumor growth was reduced by the willow extract and death was delayed (for 35 days). In vitro the willow extract could kill the majority (75%–80%) of abnormal cells among primary cells harvested from seven patients with acute lymphoblastic leukemia (ALL) and 13 with AML (acute myeloid leukemia). DNA fragmentation patterns within treated cells inferred targeted cell death by apoptosis had occurred. The metabolites within the willow extract may act as tumor inhibitors that promote apoptosis, cause DNA damage, and affect cell membranes and/or denature proteins. PMID:17264881

  4. Performance of shrub willows (Salix spp.) as an evapotranspiration cover on Solvay wastebeds

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette

    2009-12-01

    Soda ash (Na2CO3) production in the Syracuse New York area created 607 ha of wastebeds over the course of about 100 years. Today the primary concern of the Solvay wastebeds is high chloride concentrations in the leachate and storm water that may end up in the groundwater and nearby Onondaga Lake. The potential of shrub willow evapotranspiration (ET) covers to minimize leaching and to manage storm water was assessed in two studies. A sap flow sensor field study to estimate transpiration rates of four shrub willow varieties over an entire growing season. A greenhouse study focused on recycling saline Solvay storm water onto shrub willows. Annual sap flow and crop coefficients (Kc) were similar among four shrub willows, but differences were present over the course of the growing season. Peak K c values did not coincide with peak leaf area index (LAI), as might be expected if LAI were the main driver of transpiration. Rather than solely being driven by LAI, coupling with the atmosphere was an important factor in stand level sap flow. Estimates of ET were measured during both experiments, the ET/sap flow rankings of the shrub willow varieties were similar; Salix miyabeana (SX64)< S. purpurea (9882-34)< S. miyabeana x S. sachalinensis (9870-23 or 9870-40). In the greenhouse study, Solvay storm water that contained 1,625 mg Cl - L-1 (close to the average storm water concentration) did not significantly decrease ET values or growth for any of the willow varieties. Mass balances of sodium and chloride were carried out to assess the potentials of recycling saline Solvay storm water back onto a shrub willow ET cover during the growing season. During a ten-week study the combination of a shallow depth soil (33 cm) and a high irrigation regime (170% of average precipitation in the Syracuse NY area) resulted in the accumulation of at least 62% of both sodium and chloride in the plant/soil system for all five Solvay storm water treatments. Both studies indicated that shrub

  5. Willow on Yellowstone's northern range: evidence for a trophic cascade?

    PubMed

    Beyer, Hawthorne L; Merrill, Evelyn H; Varley, Nathan; Boyce, Mark S

    2007-09-01

    Reintroduction of wolves (Canis lupus) to Yellowstone National Park in 1995-1996 has been argued to promote a trophic cascade by altering elk (Cervus elaphus) density, habitat-selection patterns, and behavior that, in turn, could lead to changes within the plant communities used by elk. We sampled two species of willow (Salix boothii and S. geyeriana) on the northern winter range to determine whether (1) there was quantitative evidence of increased willow growth following wolf reintroduction, (2) browsing by elk affected willow growth, and (3) any increase in growth observed was greater than that expected by climatic and hydrological factors alone, thereby indicating a trophic cascade caused by wolves. Using stem sectioning techniques to quantify historical growth patterns we found an approximately twofold increase in stem growth-ring area following wolf reintroduction for both species of willow. This increase could not be explained by climate and hydrological factors alone; the presence of wolves on the landscape was a significant predictor of stem growth above and beyond these abiotic factors. Growth-ring area was positively correlated with the previous year's ring area and negatively correlated with the percentage of twigs browsed from the stem during the winter preceding growth, indicating that elk browse impeded stem growth. Our results are consistent with the hypothesis of a behaviorally mediated trophic cascade on Yellowstone's northern winter range following wolf reintroduction. We suggest that the community-altering effects of wolf restoration are an endorsement of ecological-process management in Yellowstone National Park.

  6. Model tests of living brush mattresses made of shrub and tree willows as bank protection at navigable waters

    NASA Astrophysics Data System (ADS)

    Sokopp, Manuel

    2014-05-01

    The embankment stability at navigable waters suffers from hydraulic loads, like strong ship induced waves, resulting hydropeaking and strong water-level fluctuations. Willow brush mattresses can reduce erosion at the embankments of rivers and increase bank stability. Due to experiences gained in the project "Alternative Technical-Biological Bank Protection on Inland Water-ways" the Federal Waterways Engineering and Research Institute commissioned a more detailed investigation of protective functions of willow brush mattresses respectively the differences between brush mattresses made of pure shrub (Salix viminalis) or tree willows (Salix alba) at water ways with high ship-induced hydraulic loads. This paper shows the upcoming research methods of the years 2014 to 2016. The protective functions of two different willow brush mattresses and the congruence between soil, hydraulics and willow sprouts movement will be investigated in a wave basin by measuring flow velocity with ADVs (Acoustic Doppler Velocimeters) installed near the soil surface and in different embankment areas, the pore water pressure with probes in different soil layers, the wave height with ultrasound probes and the willow movements with permanently installed cameras while flooding the basin as well as measuring the erosion afterwards. These flooding test series will be conducted two times during the vegetation period. The shear strength of the tree willow rooted soil will be examined in different soil layers with a shear load frame. The results will be compared with the data of shear strength tests of same aged brush mattresses made of shrub willows, which have already been carried out by the Federal Waterways Engineering and Research Institute. The filtering capability of the soil covering branches and the near surface willow roots will be investigated by growing willow brush mattresses in sample boxes. Those can be repeatedly moved up and down into a diving pool while measuring pore water pressure

  7. Microhabitat use by breeding Southwestern Willow Flycatchers on the Gila River, New Mexico

    Treesearch

    Scott H. Stoleson; Deborah M. Finch

    2003-01-01

    The endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) breeds at numerous sites throughout its range that vary greatly in floristics, vegetation structure, and the extent of human alteration of the habitat. Here we present information on nesting habitat characteristics of Willow Flycatchers in the largest extant population of the subspecies along...

  8. Simulation modeling to understand how selective foraging by beaver can drive the structure and function of a willow community

    USGS Publications Warehouse

    Peinetti, H.R.; Baker, B.W.; Coughenour, M.B.

    2009-01-01

    Beaver-willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m-2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.

  9. Southwestern willow flycatchers recaptured at wintering sites in Costa Rica

    USGS Publications Warehouse

    Koronkiewicz, Thomas J.; Sogge, Mark K.

    2001-01-01

    An adult Southwestern Willow Flycatcher banded in summer 1998 at Ash Meadows National Wildlife Refuge, Nevada, was recaptured the following winter in Santa Cruz, Costa Rica, then relocated at Ash Meadows during the 1999 breeding season. Another Southwestern Willow Flycatcher banded in 1999 as a nestling at Roosevelt Lake, Arizona, was recaptured in January 2000 on its wintering grounds in Bolsen, Costa Rica. The bird was recaptured at Roosevelt Lake in summer 2000, returned to the same wintering site in Bolsen the following winter, and was relocated at Roosevelt Lake in summer 2001.

  10. The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2008-04-01

    Effects of the synthetic chelator ethylenediamine tetraacetate (EDTA) on uptake and internal translocation of hexavalent and trivalent chromium by plants were investigated. Two different concentrations of EDTA were studied for enhancing the uptake and translocation of Cr from the hydroponic solution spiked with K(2)CrO(4) or CrCl(3) maintained at 24.0 +/- 1 degrees C. Faster removal of Cr(3+) than Cr(6+) by hybrid willows (Salix matsudana Koidz x Salix alba L.) from the plant growth media was observed. Negligible effect of EDTA on the uptake of Cr(6+) was found, but significant decrease of the Cr concentration in roots was measured. Although the translocation of Cr(6+) within plant materials was detected in response to EDTA concentration, the amount of Cr(6+) translocated to the lower stems was considerably small. EDTA in the nutrient media showed a negative effect on the uptake of Cr(3+ )by hybrid willows; the removal rates of Cr(3+ )were significantly decreased. Translocation of Cr(3+) into the stems and leaves was undetectable, but roots were the exclusive sink for Cr(3+) accumulation. Weeping willows (Salix babylonica L.) showed lower removal rates for both chemical forms of Cr than hybrid willows. Although EDTA had a minor effect on Cr(6+ )uptake by weeping willows, positive effect on Cr(6+ )translocation within plant materials was observed. It was also determined that EDTA in plant growth media significantly decreased the amount of Cr(3+) taken up by plants, but significantly increased Cr(3+) mobilization from roots to stems. Results indicated that EDTA was unable to increase the uptake of Cr(6+) by both plant species, but translocation of Cr(6+)-EDTA within plant materials was possible. Addition of EDTA in the nutrient media showed a strong influence on the uptake and translocation of Cr(3+) in both willows. Cr(3+)-EDTA in tissues of weeping willows was more mobile than that in hybrid willows. The information has important implications for the use of metal

  11. Winter distribution of willow flycatcher subspecies

    USGS Publications Warehouse

    Paxton, E.H.; Unitt, P.; Sogge, M.K.; Whitfield, M.; Keim, P.

    2011-01-01

    Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies. ?? The Cooper Ornithological Society 2011.

  12. Effect of browsing on willow in the Steel Creek grazing allotment

    USGS Publications Warehouse

    Keigley, R.B.; Gale, Gil

    2000-01-01

    View upstream from the study area. Salix geyerriana is the dominant willow species. Salix drummondiana and S. Boothii are less common; older individuals of both species grow to about 2-m tall. Salix bebbiana is much less common, and where present, is browsed close to ground level. The carcass of an old Bebb willow that had attained typical stature is located near the study area. Beaver are absent. The remains of relic beaver dams indicate that beaver were once an important hydrologic influence.

  13. Deep Eutectic Solvents (DESs) for the Isolation of Willow Lignin (Salix matsudana cv. Zhuliu)

    PubMed Central

    Li, Tengfei; Liu, Yu; Lou, Rui; Yang, Guihua; Chen, Jiachuan; Saeed, Haroon A. M.

    2017-01-01

    Deep eutectic solvents (DESs) are a potentially high-value lignin extraction methodology. DESs prepared from choline chloride (ChCl) and three hydrogen-bond donors (HBD)—lactic acid (Lac), glycerol, and urea—were evaluated for isolation of willow (Salix matsudana cv. Zhuliu) lignin. DESs types, mole ratio of ChCl to HBD, extraction temperature, and time on the fractionated DES-lignin yield demonstrated that the optimal DES-lignin yield (91.8 wt % based on the initial lignin in willow) with high purity of 94.5% can be reached at a ChCl-to-Lac molar ratio of 1:10, extraction temperature of 120 °C, and time of 12 h. Fourier transform infrared spectroscopy (FT-IR) , 13C-NMR, and 31P-NMR showed that willow lignin extracted by ChCl-Lac was mainly composed of syringyl and guaiacyl units. Serendipitously, a majority of the glucan in willow was preserved after ChCl-Lac treatment. PMID:29143790

  14. Hexavalent chromium induced stress and metabolic responses in hybrid willows.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong; Huang, Shen-Zhuo

    2007-04-01

    Metabolic responses to hexavalent chromium (Cr(6+)) stress and the uptake and translocation of Cr(6+ )were investigated using pre-rooted hybrid willows (Salix matsudana Koidz x Salix alba L.) exposed to hydroponic solution spiked with K(2)CrO(4) at 24.0 +/- 1 degrees C for 192 h. Various physiological parameters of the plants were monitored to determine toxicity from Cr(6+ )exposure. At Cr(6+) treatments of 50% higher than that of the non-treated control plants. As Cr concentrations were increased further, a slight increase in the transpiration rate was also observed compared with the controls. Negligible difference in the chlorophyll contents in leaves between the treated and the non-treated control plants was measured, except for willows exposed to 1.05 mg Cr/l. The response of soluble proteins in leaves of willows to Cr treatments was remarkable. Cr-induced toxicity appeared in all treatments resulting in reduced activities of catalase (CAT) and peroxidase (POD) compared to the controls. Superoxide dismutases (SOD) activity in the leaf cells showed a positive increase after Cr exposure. Of all selected parameters, soluble proteins in leaves were the most sensitive to Cr(6+ )doses, showing a significant linear correlation negatively (R (2) = 0.931). Uptake of Cr(6+) by willows grown in flasks was found to increase linearly with the added Cr(6+ )(a zero order kinetics), as indicated by the high R (2) (0.9322). Recovery of Cr in different parts of plant materials varied significantly with roots being the dominant site of Cr accumulation. Although the translocation to shoots was detected, the amount of Cr translocated to shoots was considerably small. The capacity of willows to assimilate Cr(6+ )was also evaluated using detached leaves and roots in sealed glass vessels in vivo. Uptake of Cr by roots was mediated possibly through an active transport mechanism, whereas the cuticle of leaves was the major obstacle

  15. The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation.

    PubMed

    Urbaniak, Magdalena; Wyrwicka, Anna; Tołoczko, Wojciech; Serwecińska, Liliana; Zieliński, Marek

    2017-05-15

    The aim of the study was to determine the impact of sewage sludge from three wastewater treatment plants of different sizes (small, medium and large) applied in two doses (3 and 9 tons per hectare) on soil properties, determined as the content of organic carbon and humus fractions, bacterial abundance, phytotoxicity and PCDD/PCDF TEQ concentrations. The study also evaluated the impact of this sewage sludge on the biometric and physiological parameters and detoxification reaction of willow (Salix sp.) as a typical crop used for the remediation of soil following sludge application. The cultivation of willow on soil treated with sludge was found to result in a gradual increase of humus fractions, total organic carbon content and bacterial abundance as well as soil properties measured using Lepidium sativum. However, it also produced an initial increase of soil phytotoxicity, indicated by Sinapis alba and Sorghum sacharatum, and PCDD/PCDF Toxic Equivalent (TEQ) concentrations, which then fell during the course of the experiment, particularly in areas planted by willow. Although the soil phytotoxicity and PCDD/PCDF TEQ content of the sewage sludge-amended soil initially increased, sludge application was found to have a positive influence on willow, probably due to its high nutrient and carbon content. The obtained results reveal increases in willow biomass, average leaf surface area and leaf length as well as chlorophyll a+b content. Moreover, a strong decline was found in the activity of the detoxifying enzyme glutathione S-transferase (GSTs), a multifunctional enzyme involved in the metabolism of xenobiotics in plants, again demonstrating the used sludge had a positive influence on willow performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites.

    PubMed

    Vandecasteele, Bart; De Vos, Bruno; Tack, Filip M G

    2002-11-01

    Salix species and Sambucus nigra L. (elder) naturally invade dredged sediment landfills and are commonly encountered on substrates contaminated with heavy metals. Foliar concentrations of Cd and Zn in four Salix species and elder were explored in the field. Metal contents in dredged sediment derived soils were elevated compared to baseline concentration levels reported for Flanders. To evaluate foliar concentrations, reference data were compiled from observations in nurseries, young plantations and unpolluted sites with volunteer willow vegetation. Willows grown on polluted dredged sediment landfills showed elevated foliar Cd and Zn concentrations (>6.6 mg Cd/kg DW and >700 mg Zn/kg DW). This was not the case for elder. For willow, a significant relation was found between soil total Zn or Cd and foliar Zn or Cd, regardless of age, species, or clone. Willows proved to be useful bioindicators. Results indicated a possible threat in long-term habitat development of willow brushwood from transfer of Cd and Zn to the food web.

  17. Environmental applications of poplars and willows

    Treesearch

    J.G. Isebrands; P. Aronsson; M. Carlson; R. Ceulemans; M. Coleman; N. Dickinson; J. Dimitriou; S. Doty; E. Gardiner; K. Heinsoo; J.D. Johnson; Y.B. Koo; J. Kort; J. Kuzovkina; L. Licht; A.R. McCracken; I. McIvor; P. Mertens; K. Perttu; D. Riddell-Black; B. Robins; G. Scarascia-Mugnozza; W.R. Schroeder; John Stanturf; T.A. Volk; M. Weih

    2014-01-01

    Poplars and willows have been planted for environmental purposes for millennia. There are reports that poplars were planted to improve the human environment 4000 years ago in the third dynasty of Ur, for streamside stabilization 2000 years ago in what is now the south-western USA by native North Americans and for urban amenities by the early Chinese dynasties (see...

  18. G-fibre cell wall development in willow stems during tension wood induction

    PubMed Central

    Gritsch, Cristina; Wan, Yongfang; Mitchell, Rowan A. C.; Shewry, Peter R.; Hanley, Steven J.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) are important as a potential feedstock for bioenergy and biofuels. Previous work suggested that reaction wood (RW) formation could be a desirable trait for biofuel production in willows as it is associated with increased glucose yields, but willow RW has not been characterized for cell wall components. Fasciclin-like arabinogalactan (FLA) proteins are highly up-regulated in RW of poplars and are considered to be involved in cell adhesion and cellulose biosynthesis. COBRA genes are involved in anisotropic cell expansion by modulating the orientation of cellulose microfibril deposition. This study determined the temporal and spatial deposition of non-cellulosic polysaccharides in cell walls of the tension wood (TW) component of willow RW and compared it with opposite wood (OW) and normal wood (NW) using specific antibodies and confocal laser scanning microscopy and transmission electron microscopy. In addition, the expression patterns of an FLA gene (SxFLA12) and a COBRA-like gene (SxCOBL4) were compared using RNA in situ hybridization. Deposition of the non-cellulosic polysaccharides (1–4)-β-D-galactan, mannan and de-esterified homogalacturonan was found to be highly associated with TW, often with the G-layer itself. Of particular interest was that the G-layer itself can be highly enriched in (1–4)-β-D-galactan, especially in G-fibres where the G-layer is still thickening, which contrasts with previous studies in poplar. Only xylan showed a similar distribution in TW, OW, and NW, being restricted to the secondary cell wall layers. SxFLA12 and SxCOBL4 transcripts were specifically expressed in developing TW, confirming their importance. A model of polysaccharides distribution in developing willow G-fibre cells is presented. PMID:26220085

  19. Coastal Energy Corporation, Willow Springs, MO - Public Notice Document

    EPA Pesticide Factsheets

    Notice of a proposed Administrative Penalty Assessment against Coastal Energy Corporation, located at 232 Burnham Road, Willow Springs, Missouri, for alleged violations at the facility located at or near that facility

  20. Available data support protection of the Southwestern Willow Flycatcher under the Endangered Species Act

    USGS Publications Warehouse

    Theimer, Tad C.; Smith, Aaron D.; Mahoney, Sean M.; Ironside, Kirsten E.

    2016-01-01

    Zink (2015) argued there was no evidence for genetic, morphological, or ecological differentiation between the federally endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) and other Willow Flycatcher subspecies. Using the same data, we show there is a step-cline in both the frequency of a mtDNA haplotype and in plumage variation roughly concordant with the currently recognized boundary between E. t. extimus and E. t adastus, the subspecies with which it shares the longest common boundary. The geographical pattern of plumage variation is also concordant with previous song analyses differentiating those 2 subspecies and identified birds in one low-latitude, high-elevation site in Arizona as the northern subspecies. We also demonstrate that the ecological niche modeling approach used by Zink yields the same result whether applied to the 2 flycatcher subspecies or to 2 unrelated species, E. t. extimus and Yellow Warbler (Setophaga petechia). As a result, any interpretation of those results as evidence for lack of ecological niche differentiation among Willow Flycatcher subspecies would also indicate no differentiation among recognized species and would therefore be an inappropriate standard for delineating subspecies. We agree that many analytical techniques now available to examine genetic, morphological, and ecological differentiation would improve our understanding of the distinctness (or lack thereof) of Willow Flycatcher subspecies, but we argue that currently available evidence supports protection of the Southwestern Willow Flycatcher under the Endangered Species Act.

  1. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral “Salicoid” Genome Duplication

    PubMed Central

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-01-01

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the “salicoid” duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants. PMID:27352946

  2. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism.

    PubMed

    Yu, X-Z; Gu, J-D

    2007-05-01

    The metabolic response of plants to exogenous supply and bioaccumulation of trivalent chromium (Cr(3+) ) was investigated. Pre-rooted young hybrid willows (Salix matsudana Koidz x alba L.) were exposed to hydroponic solution spiked with CrCl(3) at 24.0 degrees C +/- 1 degrees C for 192 hours. Various physiologic parameters of the plants were monitored to determine toxicity from Cr exposure. The transpiration rate of willows exposed to 2.5 mg Cr/L was 49% higher than that of the untreated control plants, but it was decreased by 17% when exposed to 30.0 mg Cr/L. Significant decrease (> or =20%) of soluble protein in young leaves of willows was detected in the treatment group with > or =7.5 mg Cr/L. The measured chlorophyll contents in leaves of treated plants varied with the dose of Cr, but a linear correlation could not be established. The contents of chlorophyll in leaves of willows exposed to > or =7.5 mg Cr/L were higher than that of the untreated plants but lower at 30.0 mg Cr/L. Superoxide dismutase activity (SOD) in leaves between the treated and untreated willows did not show any significant difference, but activities of both catalase (CAT) and peroxidase (POD) in leaf cells of all treated plants were higher than those in the untreated willows. The correlation between the concentration of Cr and CAT activity in leaf cells was the highest of all toxicity assays (R ( 2 ) = 0.9096), indicating that CAT activity was most sensitive to the change in Cr(3+) doses compared with the other selected parameters. Results from the Cr uptake study showed that significant removal of Cr from hydroponic solution was observed in the presence of hybrid willows without showing detectable phytotoxicity, even at high does of Cr. More than 90% of the applied Cr(3+) was removed from the aqueous solution by willows at concentrations up to 7.5 mg Cr/L. Approximately 70% of the initial Cr was recovered in the plant materials. At the low-Cr(3+) treatment (2.5 mg Cr/L), Cr accumulation by

  3. Phytoextraction of risk elements by willow and poplar trees.

    PubMed

    Kacálková, Lada; Tlustoš, Pavel; Száková, Jiřina

    2015-01-01

    To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4-2.0 mg Cd.kg(-1), 78-313 mg Zn.kg(-1), 21.3-118 mg Cu.kg(-1)). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg(-1), 909 mg Zn.kg(-1), and 17.7 mg Cu.kg(-1)) compared to Populus clones (maximum 2.06 mg Cd.kg(-1), 463 mg Zn.kg(-1), and 11.8 mg Cu.kg(-1)). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.

  4. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient.

    PubMed

    Erlandson, Sonya R; Savage, Jessica A; Cavender-Bares, Jeannine M; Peay, Kabir G

    2016-01-01

    Influences of soil environment and willow host species on ectomycorrhizal fungi communities was studied across an hydrologic gradient in temperate North America. Soil moisture, organic matter and pH strongly predicted changes in fungal community composition. In contrast, increased fungal richness strongly correlated with higher plant-available phosphorus. The 93 willow trees sampled for ectomycorrhizal fungi included seven willow species. Host identity did not influence fungal richness or community composition, nor was there strong evidence of willow host preference for fungal species. Network analysis suggests that these mutualist interaction networks are not significantly nested or modular. Across a strong environmental gradient, fungal abiotic niche determined the fungal species available to associate with host plants within a habitat. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests

    PubMed Central

    Košulič, Ondřej; Michalko, Radek; Hula, Vladimír

    2016-01-01

    Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40%) and red-listed threatened species (26%). The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small-scale improvements

  6. Wind in the Willows--Theatre Activity Packet.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    Part of the New York City Board of Education's Early Stages program, and intended for elementary and secondary school teachers who wish to include a unit on theater in their classes, this guide offers suggestions for lessons and activities to accompany viewing a performance of "Wind in the Willows" at the Nederlander Theater. Part one of…

  7. Injury due to leg bands in willow flycatchers

    USGS Publications Warehouse

    Sedgwick, J.A.; Klus, R.J.

    1997-01-01

    We report an apparently unusually high incidence of leg injury in Willow Flycatchers (Empidonax traillii) as a result of banding and color banding. Color bands and U.S. Fish and Wildlife Service (USFWS) bands applied to Willow Flycatchers from 1988-1995 resulted in an overall leg injury rate of 9.6% to birds returning to our study areas in subsequent years. Most injuries occurred on legs with only color band(s) (58.3%) or on legs with both a USFWS band and a color band (35%); only 6.7% of injuries (4/60) were due to USFWS bands alone, yielding an overall USFWS band injury rate of only 0.6%. Injuries ranged from severe (swollen, bleeding legs; a missing foot) to relatively minor (irritations on the tarsus). Amputation of the foot occurred in 33.9% of the cases. Return rates of adult injured birds in the year(s) following injury were significantly lower than for the population at large.

  8. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2000 - December 31, 2000, Allegheny Energy Supply Co., LLC (Allegheny) executed a Cooperative Agreement with the National Energy Technology Laboratory to implement a major cofiring demonstration at the Willow Island Generating Station Boiler No.2. Willow Island Boiler No.2 is a cyclone boiler. Allegheny also will demonstrate separate injection cofiring at the Albright Generating Station Boiler No.3, a tangentially fired boiler. The Allegheny team includes Foster Wheeler as its primary subcontractor. Additional subcontractors are Cofiring Alternatives and N.S. Harding and Associates. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrationsmore » at Willow Island and Albright Generating Stations. The second quarter of the project involved completing the designs for each location. Further, geotechnical investigations proceeded at each site. Preparations were made to perform demolition on two small buildings at the Willow Island site. Fuels strategies were initiated for each site. Test planning commenced for each site. A groundbreaking ceremony was held at the Willow Island site on October 18, with Governor C. Underwood being the featured speaker.« less

  9. White willow sexual regeneration capacity under estuarine conditions in times of climate change

    NASA Astrophysics Data System (ADS)

    Markus-Michalczyk, Heike; Hanelt, Dieter; Denstorf, Julian; Jensen, Kai

    2016-10-01

    Tidal wetlands provide both habitats for coastal populations and wildlife, and ecosystem services for human welfare. Building with nature regarding cost-effective coastal protection is of increasing interest. Much research has been carried out on plant reproduction capacities in mangroves and salt marshes, but less is known on this issue in tidal freshwater wetlands. Willows are being successfully used for bank stabilization in riverine habitats, however, today white willow softwood forests in tidal wetlands are highly fragmented, and restoration is required e.g. by the European Habitats Directive. Recently, tolerance to increasing salinity and tidal flooding was found for vegetative propagules of floodplain willows. However, the establishment of autochthonous sexual recruits is necessary to conserve the genetic diversity of local populations, and thus may be preferable in restoration. The germination and early seedling establishment of Salix alba (white willow) was experimentally studied under simulated estuarine conditions. The species tolerance to increasing salinity (0, 0.5, 1, 1.5, and 2) was tested in a climate chamber, and its tolerance to flooding at different tidal treatments (control, spring tide, daily tide 15 min and 2 h flooding) in the greenhouse. Germination was neither affected by increasing salinity nor by tidal flooding. Salix seedlings established up to salinity 1.5, but cotyledon performance and radicle growth was largely reduced at salinity 2. Under tidal flooding, seedling growth was similar in all treatments. However, in the treatments with daily tides seedling anchorage in the substrate took more than two weeks, and fewer seedlings reached a suitable length to approach the high water line. We assess S. alba sexual regeneration under estuarine conditions as generally possible. Further studies are needed on the effects of sedimentation-erosion processes on willow establishment in the field, especially on feedbacks between Salix survival and

  10. 8. Inverted siphon structure carrying ditch flow under Willow Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Inverted siphon structure carrying ditch flow under Willow Creek, looking southwest - Natomas Ditch System, Blue Ravine Segment, Juncture of Blue Ravine & Green Valley Roads, Folsom, Sacramento County, CA

  11. 7. Inverted siphon structure carrying ditch flow under Willow Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Inverted siphon structure carrying ditch flow under Willow Creek, looking east - Natomas Ditch System, Blue Ravine Segment, Juncture of Blue Ravine & Green Valley Roads, Folsom, Sacramento County, CA

  12. Arthropods of native and exotic vegetation and their association with willow flycatchers and Wilson's warblers

    Treesearch

    Linda S. DeLay; Deborah M. Finch; Sandra Brantley; Richard Fagerlund; Michael D. Means; Jeffrey F. Kelly

    1999-01-01

    We compared abundance of migrating Willow Flycatchers and Wilson's Warblers to the abundance of arthropods in exotic and native vegetation at Bosque del Apache National Wildlife Refuge. We trapped arthropods using glue-boards in 1996 and 1997 in the same cottonwood, saltcedar, and willow habitats where we mist-netted birds during spring and fall migration. There...

  13. 3. VIEW OF WILLOW CREEK TRESTLE FROM CORNER BASELINE AVENUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF WILLOW CREEK TRESTLE FROM CORNER BASELINE AVENUE AND 185TH AVENUE, FACING NORTHEAST - Oregon Electric Railway Westside Corridor, Between Watson & 185th Avenues, Beaverton, Washington County, OR

  14. Physiological and morphological responses of pine and willow saplings to post-fire salvage logging

    NASA Astrophysics Data System (ADS)

    Millions, E. L.; Letts, M. G.; Harvey, T.; Rood, S. B.

    2015-12-01

    With global warming, forest fires may be increasing in frequency, and post-fire salvage logging may become more common. The ecophysiological impacts of this practice on tree saplings remain poorly understood. In this study, we examined the physiological and morphological impacts of increased light intensity, due to post-fire salvage logging, on the conifer Pinus contorta (pine) and deciduous broadleaf Salix lucida (willow) tree and shrub species in the Crowsnest Pass region of southern Alberta. Photosynthetic gas-exchange and plant morphological measurements were taken throughout the summer of 2013 on approximately ten year-old saplings of both species. Neither species exhibited photoinhibition, but different strategies were observed to acclimate to increased light availability. Willow saplings were able to slightly elevate their light-saturated rate of net photosynthesis (Amax) when exposed to higher photosynthetic photon flux density (PPFD), thus increasing their growth rate. Willow also exhibited increased leaf inclination angles and leaf mass per unit area (LMA), to decrease light interception in the salvage-logged plot. By contrast, pine, which exhibited lower Amax and transpiration (E), but higher water-use efficiency (WUE = Amax/E) than willow, increased the rate at which electrons were moved through and away from the photosynthetic apparatus in order to avoid photoinhibition. Acclimation indices were higher in willow saplings, consistent with the hypothesis that species with short-lived foliage exhibit greater acclimation. LMA was higher in pine saplings growing in the logged plot, but whole-plant and branch-level morphological acclimation was limited and more consistent with a response to decreased competition in the logged plot, which had much lower stand density.

  15. The potential for phytoremediation of iron cyanide complex by willows.

    PubMed

    Yu, Xiao-Zhang; Zhou, Pu-Hua; Yang, Yong-Miao

    2006-07-01

    Hybrid willows (Salix matsudana Koidz x Salix alba L.), weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were exposed to potassium ferrocyanide to determine the potential of these plants to extract, transport and metabolize this iron cyanide complex. Young rooted cuttings were grown in hydroponic solution at 24.0 +/- 0.5 degrees C for 144 h. Ferrocyanide in solution, air, and aerial tissues of plants was analyzed spectrophotometrically. Uptake of ferrocyanide from the aqueous solution by plants was evident for all treatments and varied with plant species, ranging from 8.64 to 15.67% of initial mass. The uptake processes observed from hydroponic solution showed exponential disappearance kinetics. Very little amounts of the applied ferrocyanide were detected in all parts of plant materials, confirming passage of ferrocyanide through the plants. No ferrocyanide in air was found due to plant transpiration. Mass balance analysis showed that a large fraction of the reduction of initial mass in hydroponic solution was metabolized during transport within the plant materials. The difference in the metabolic rate of ferrocyanide between the three plant species was comparably small, indicating transport of ferrocyanide from hydroponic solution to plant materials and further transport within plant materials was a limiting step for assimilating this iron cyanide complex. In conclusion, phytoremediation of ferrocyanide by the plants tested in this study has potential field application.

  16. Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates

    USDA-ARS?s Scientific Manuscript database

    Seven-year-old coppiced shoots from thirteen species of native and non-native trees and shrubs were harvested, dried, and were pyrolyzed to produce biochars for potential use in horticultural substrates. Several chemical and physical characteristics of the biochars were determined. There were slight...

  17. Conservation assessment for the autumn willow in the Black Hills National Forest, South Dakota and Wyoming

    Treesearch

    J. Hope Hornbeck; Carolyn Hull Sieg; Deanna J. Reyher

    2003-01-01

    Autumn willow, Salix serissima (Bailey) Fern., is an obligate wetland shrub that occurs in fens and bogs in the northeastern United States and eastern Canada. Disjunct populations of autumn willow occur in the Black Hills of South Dakota. Only two populations occur on Black Hills National Forest lands: a large population at McIntosh Fen and a small...

  18. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.

    PubMed

    Hultine, K R; Bush, S E; Ehleringer, J R

    2010-03-01

    Riparian cottonwood/willow forest assemblages are highly valued in the southwestern United States for their wildlife habitat, biodiversity, and watershed protection. Yet these forests are under considerable threat from climate change impacts on water resources and land-use activities to support human enterprise. Stream diversions, groundwater pumping, and extended drought have resulted in the decline of cottonwood/willow forests along many riparian corridors in the Southwest and, in many cases, the replacement of these forests with less desirable invasive shrubs and trees. Nevertheless, ecophysiological responses of cottonwood and willow, along with associated ecohydrological feedbacks of soil water depletion, are not well understood. Ecophysiological processes of mature Fremont cottonwood and coyote willow stands were examined over four consecutive growing seasons (2004-2007) near Salt Lake City, Utah, USA. The tree stands occurred near the inlet of a reservoir that was drained in the spring of 2005 and remained empty until mid-summer of 2006, effectively removing the primary water source for most of two growing seasons. Stem sap flux density (Js) in cottonwood was highly correlated with volumetric soil moisture (theta) in the upper 60 cm and decreased sevenfold as soil moisture dropped from 12% to 7% after the reservoir was drained. Conversely, Js in willow was marginally correlated with 0 and decreased by only 25% during the same period. Opposite patterns emerged during the following growing season: willow had a lower whole-plant conductance (kt) in June and higher leaf carbon isotope ratios (delta13C) than cottonwood in August, whereas k(t) and delta13C were otherwise similar between species. Water relations in both species recovered quickly from soil water depletion, with the exception that sapwood area to stem area (As:Ast) was significantly lower in both species after the 2007 growing season compared to 2004. Results suggest that cottonwood has a greater

  19. 75 FR 63431 - Radio Broadcasting Services; Willow Creek, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ...] Radio Broadcasting Services; Willow Creek, CA AGENCY: Federal Communications Commission. ACTION... filing procedures for comments, see 47 CFR 1.415 and 1.420. List of Subjects in 47 CFR Part 73 Radio, Radio broadcasting. For the reasons discussed in the preamble, the Federal Communications Commission...

  20. Fast-growing willow shrub named `Oneida`

    DOEpatents

    Abrahamson, Lawrence P [Marcellus, NY; Kopp, Richard F [Marietta, NY; Smart, Lawrence B [Geneva, NY; Volk, Timothy A [Syracuse, NY

    2007-05-01

    A distinct male cultivar of Salix purpurea.times.S. miyabeana named `Oneida`, characterized by rapid stem growth producing 2.7-times greater woody biomass than one of its parents (`SX67`) and greater than 36% more biomass than current production cultivars (`SV1` and `SX64`). `Oneida` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Oneida` displays a low incidence of rust disease or damage by beetles or sawflies.

  1. Confirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage Analysis.

    PubMed

    Chen, Yingnan; Wang, Tiantian; Fang, Lecheng; Li, Xiaoping; Yin, Tongming

    2016-01-01

    In this study, we constructed high-density genetic maps of Salix suchowensis and mapped the gender locus with an F1 pedigree. Genetic maps were separately constructed for the maternal and paternal parents by using amplified fragment length polymorphism (AFLP) markers and the pseudo-testcross strategy. The maternal map consisted of 20 linkage groups that spanned a genetic distance of 2333.3 cM; whereas the paternal map contained 21 linkage groups that covered 2260 cM. Based on the established genetic maps, it was found that the gender of willow was determined by a single locus on linkage group LG_03, and the female was the heterogametic gender. Aligned with mapped SSR markers, linkage group LG_03 was found to be associated with chromosome XV in willow. It is noteworthy that marker density in the vicinity of the gender locus was significantly higher than that expected by chance alone, which indicates severe recombination suppression around the gender locus. In conclusion, this study confirmed the findings on the single-locus sex determination and female heterogamety in willow. It also provided additional evidence that validated the previous studies, which found that different autosomes evolved into sex chromosomes between the sister genera of Salix (willow) and Populus (poplar).

  2. Phytoscreening and phytoextraction of heavy metals at Danish polluted sites using willow and poplar trees.

    PubMed

    Algreen, Mette; Trapp, Stefan; Rein, Arno

    2014-01-01

    The main purpose of this study was to determine typical concentrations of heavy metals (HM) in wood from willows and poplars, in order to test the feasibility of phytoscreening and phytoextraction of HM. Samples were taken from one strongly, one moderately, and one slightly polluted site and from three reference sites. Wood from both tree species had similar background concentrations at 0.5 mg kg(-1) for cadmium (Cd), 1.6 mg kg(-1) for copper (Cu), 0.3 mg kg(-1) for nickel (Ni), and 25 mg kg(-1) for zinc (Zn). Concentrations of chromium (Cr) and lead (Pb) were below or close to detection limit. Concentrations in wood from the highly polluted site were significantly elevated, compared to references, in particular for willow. The conclusion from these results is that tree coring could be used successfully to identify strongly heavy metal-polluted soil for Cd, Cu, Ni, Zn, and that willow trees were superior to poplars, except when screening for Ni. Phytoextraction of HMs was quantified from measured concentration in wood at the most polluted site. Extraction efficiencies were best for willows and Cd, but below 0.5% over 10 years, and below 1‰ in 10 years for all other HMs.

  3. Confirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage Analysis

    PubMed Central

    Fang, Lecheng; Li, Xiaoping; Yin, Tongming

    2016-01-01

    In this study, we constructed high-density genetic maps of Salix suchowensis and mapped the gender locus with an F1 pedigree. Genetic maps were separately constructed for the maternal and paternal parents by using amplified fragment length polymorphism (AFLP) markers and the pseudo-testcross strategy. The maternal map consisted of 20 linkage groups that spanned a genetic distance of 2333.3 cM; whereas the paternal map contained 21 linkage groups that covered 2260 cM. Based on the established genetic maps, it was found that the gender of willow was determined by a single locus on linkage group LG_03, and the female was the heterogametic gender. Aligned with mapped SSR markers, linkage group LG_03 was found to be associated with chromosome XV in willow. It is noteworthy that marker density in the vicinity of the gender locus was significantly higher than that expected by chance alone, which indicates severe recombination suppression around the gender locus. In conclusion, this study confirmed the findings on the single-locus sex determination and female heterogamety in willow. It also provided additional evidence that validated the previous studies, which found that different autosomes evolved into sex chromosomes between the sister genera of Salix (willow) and Populus (poplar). PMID:26828940

  4. Soil trace element changes during a phytoremediation trial with willows in southern Québec, Canada.

    PubMed

    Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Tremblay, Gilbert; Munro, Lara; Masse, Jacynthe; Labrecque, Michel

    2017-07-03

    This study determined the changes in trace elements (TE) (As, Cd, Cu, Ni, Pb, Zn) chemistry in the soils of a willow ("Fish Creek" - Salix purpurea, SV1 - Salix x dasyclados and SX67 - Salix miyabeana) plantation growing under a cold climate during a three-year trial. The soil HNO 3 -extractable and H 2 O-soluble TE concentrations and pools significantly decreased under most cultivars (Fish, SX67). Yet, TE changes showed inconsistent patterns and localized soil TE increases (Ni, Pb) were measured. Temporal changes in soil TE were also detected in control plots and sometimes exceeded changes in planted plots. Discrepancies existed between the amount of soil TE change and the amount of TE uptake by willows, except for Cd and Zn. Phytoremediation with willows could reduce soil Cd and Zn within a decadal timeframe indicating that they can be remediated by willows in moderately contaminated soils. However, the time needed to reduce soil As, Cu, Ni and Pb was too long to be efficient. We submit that soil leaching contributed to the TE decrease in controls and the TE discrepancies, and that the plantation could have secondary effects such as the accelerated leaching of soil TE.

  5. Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1H NMR spectroscopy metabolite profiling

    PubMed Central

    Aliferis, Konstantinos A.; Chamoun, Rony; Jabaji, Suha

    2015-01-01

    The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and 1H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib.research.mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs. PMID:26042135

  6. Seasonal Variation in the Hormone Content of Willow

    PubMed Central

    Alvim, Ronald; Thomas, Sheila; Saunders, Peter F.

    1978-01-01

    Levels of abscisic acid were followed in the xylem sap, mature leaves, and apices of field-grown willow (Salix viminalis L.) during the summer months, under natural and artificially extended photoperiods. Although the long day treatment prevented the general onset of dormancy, the plants grown under natural daylengths showed lower concentration of abscisic acid than those kept under long days. PMID:16660604

  7. Southwestern Willow Flycatcher Breeding Site and Territory Summary - 2007

    USGS Publications Warehouse

    Durst, Scott L.; Sogge, Mark K.; Stump, Shay D.; Walker, Hira A.; Kus, Barbara E.; Sferra, Susan J.

    2008-01-01

    The Southwestern willow flycatcher (Empidonax traillii extimus; hereafter references to willow flycatcher and flycatcher refer to E.t. extimus, except where specifically noted) is an endangered bird that breeds only in dense riparian habitats in parts of six Southwestern states (Arizona, New Mexico, southern California, extreme southern Nevada, southern Utah, and southwestern Colorado). Since 1993, hundreds of Southwestern willow flycatcher surveys have been conducted each year, and many new flycatcher breeding sites located. This document synthesizes the most current information available on all known Southwestern willow flycatcher breeding sites. This rangewide data synthesis was designed to meet two objectives: (1) identify all known Southwestern willow flycatcher breeding sites and (2) assemble data to estimate population size, location, habitat, and other information for all breeding sites, for as many years as possible, from 1993 through 2007. This report provides data summaries in terms of the number of flycatcher sites and the number of territories. When interpreting and using this information, it must be kept in mind that a 'site' is a geographic location where one or more willow flycatchers establishes a territory. Sites with unpaired territorial males are considered breeding sites, even if no nesting attempts were documented. A site is often a discrete patch of riparian habitat but may also be a cluster of riparian patches; there is no standardized definition for site, and its use varies within and among states. For example, five occupied habitat patches along a 10-km stretch of river might be considered five different sites in one state but only a single site in another state. This lack of standardization makes comparisons based on site numbers problematic. Researchers for this report generally deferred to statewide summary documents or to local managers and researchers when delineating a site for inclusion in the database. However, to avoid inflating

  8. Fast-growing willow shrub named `Millbrook`

    DOEpatents

    Abrahamson, Lawrence P [Marcellus, NY; Kopp, Richard F [Marietta, NY; Smart, Lawrence B [Geneva, NY; Volk, Timothy A [Syracuse, NY

    2007-04-24

    A distinct female cultivar of Salix purpurea.times.Salix miyabeana named `Millbrook`, characterized by rapid stem growth producing 9% more woody biomass than one of its parents (`SX64`) and 2% more biomass than a current production cultivar (`SV1`). `Millbrook` produced greater than 2-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Millbrook` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Millbrook` displays a low incidence of rust disease.

  9. Fast-growing willow shrub named `Fish Creek`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  10. Recovering southwestern willow flycatcher populations will benefit riparian health

    Treesearch

    Deborah M. Finch

    1999-01-01

    When the U.S. Fish and Wildlife Service (USFWS) listed the southwestern willow flycatcher (Empidonax traillii exigua) as federally endangered in 1995, new incentives, controversies and energy were generated to conserve and restore southwestern riparian ecosystems. Close attention has been focused on river and stream conservation in the Southwest since at least 1977,...

  11. Responses of black willow ( Salix nigra) cuttings to simulated herbivory and flooding

    NASA Astrophysics Data System (ADS)

    Li, Shuwen; Martin, Lili T.; Pezeshki, S. Reza; Shields, F. Douglas

    2005-09-01

    Herbivory and flooding influence plant species composition and diversity in many wetland ecosystems. Black willow ( Salix nigra) naturally occurs in floodplains and riparian zones of the southeastern United States. Cuttings from this species are used as a bioengineering tool for streambank stabilization and habitat rehabilitation. The present study was conducted to evaluate the photosynthetic and growth responses of black willow to simulated herbivory and flooding. Potted cuttings were subjected to three levels of single-event herbivory: no herbivory (control), light herbivory, and heavy herbivory; and three levels of flooding conditions: no flooding (control), continuous flooding, and periodic flooding. Results indicated that elevated stomatal conductance partially contributed to the increased net photosynthesis noted under both levels of herbivory on day 30. However, chlorophyll content was not responsible for the observed compensatory photosynthesis. Cuttings subjected to heavy herbivory accumulated the lowest biomass even though they had the highest height growth by the conclusion of the experiment. In addition, a reduction in root/shoot ratio was noted for plants subjected to continuous flooding with no herbivory. However, continuously flooded, lightly clipped plants allocated more resources to roots than shoots. This study provides evidence that it is feasible to use black willow for habitat rehabilitation along highly eroded streambanks where both flooding and herbivory are present.

  12. Elucidating spatially explicit behavioral landscapes in the Willow Flycatcher

    USGS Publications Warehouse

    Bakian, Amanda V.; Sullivan, Kimberly A.; Paxton, Eben H.

    2012-01-01

    Animal resource selection is a complex, hierarchical decision-making process, yet resource selection studies often focus on the presence and absence of an animal rather than the animal's behavior at resource use locations. In this study, we investigate foraging and vocalization resource selection in a population of Willow Flycatchers, Empidonax traillii adastus, using Bayesian spatial generalized linear models. These models produce “behavioral landscapes” in which space use and resource selection is linked through behavior. Radio telemetry locations were collected from 35 adult Willow Flycatchers (n = 14 males, n = 13 females, and n = 8 unknown sex) over the 2003 and 2004 breeding seasons at Fish Creek, Utah. Results from the 2-stage modeling approach showed that habitat type, perch position, and distance from the arithmetic mean of the home range (in males) or nest site (in females) were important factors influencing foraging and vocalization resource selection. Parameter estimates from the individual-level models indicated high intraspecific variation in the use of the various habitat types and perch heights for foraging and vocalization. On the population level, Willow Flycatchers selected riparian habitat over other habitat types for vocalizing but used multiple habitat types for foraging including mountain shrub, young riparian, and upland forest. Mapping of observed and predicted foraging and vocalization resource selection indicated that the behavior often occurred in disparate areas of the home range. This suggests that multiple core areas may exist in the home ranges of individual flycatchers, and demonstrates that the behavioral landscape modeling approach can be applied to identify spatially and behaviorally distinct core areas. The behavioral landscape approach is applicable to a wide range of animal taxa and can be used to improve our understanding of the spatial context of behavior and resource selection.

  13. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.).

    PubMed

    Wuytack, Tatiana; Verheyen, Kris; Wuyts, Karen; Kardel, Fatemeh; Adriaenssens, Sandy; Samson, Roeland

    2010-12-01

    In this study, we assess the potential of white willow (Salix alba L.) as bioindicator for monitoring of air quality. Therefore, shoot biomass, specific leaf area, stomatal density, stomatal pore surface, and stomatal resistance were assessed from leaves of stem cuttings. The stem cuttings were introduced in two regions in Belgium with a relatively high and a relatively low level of air pollution, i.e., Antwerp city and Zoersel, respectively. In each of these regions, nine sampling points were selected. At each sampling point, three stem cuttings of white willow were planted in potting soil. Shoot biomass and specific leaf area were not significantly different between Antwerp city and Zoersel. Microclimatic differences between the sampling points may have been more important to plant growth than differences in air quality. However, stomatal pore surface and stomatal resistance of white willow were significantly different between Zoersel and Antwerp city. Stomatal pore surface was 20% lower in Antwerp city due to a significant reduction in both stomatal length (-11%) and stomatal width (-14%). Stomatal resistance at the adaxial leaf surface was 17% higher in Antwerp city because of the reduction in stomatal pore surface. Based on these results, we conclude that stomatal characteristics of white willow are potentially useful indicators for air quality.

  14. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis.

    PubMed

    Dudits, Dénes; Török, Katalin; Cseri, András; Paul, Kenny; Nagy, Anna V; Nagy, Bettina; Sass, László; Ferenc, Györgyi; Vankova, Radomira; Dobrev, Petre; Vass, Imre; Ayaydin, Ferhan

    2016-03-01

    The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction*

    PubMed Central

    Yang, Wei-dong; Wang, Yu-yan; Zhao, Feng-liang; Ding, Zhe-li; Zhang, Xin-cheng; Zhu, Zhi-qiang; Yang, Xiao-e

    2014-01-01

    Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study compares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 μmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu. PMID:25183033

  16. Maturation of Acorns of Cherrybark, Water, and Willow Oaks

    Treesearch

    F. T. Bonner

    1974-01-01

    Acorns of cherrybark, water, and willow oaks grew slowly but steadily in July and August and reached maximum size in September, when fats and carbohydrates, the major storage foods, accumulated rapidly. At physiological maturity in late October or early November, crude fat levels were 15 to 20 percent of seed dry weight and carbohydrates totaled 25 percent.

  17. Fast-growing shrub willow named `Owasco`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-07-03

    A distinct female cultivar of Salix viminalis.times.Salix miyabeana named `Owasco`, characterized by rapid stem growth producing greater than 49% more woody biomass than one of its parents (`SX64`) and 39% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.7-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Owasco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Owasco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  18. Fast-growing willow shrub named `Otisco`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-09-11

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Otisco`, characterized by rapid stem growth producing greater than 42% more woody biomass than one of its parents (`SX64`) and 33% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.5-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Otisco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Otisco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  19. Fast-growing willow shrub named `Fish Creek`

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, Lawrence P; Kopp, Richard F; Smart, Lawrence B

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. Themore » stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.« less

  20. "The Wind in the Willows" and the Style of Romance

    ERIC Educational Resources Information Center

    Gill, R. B.

    2012-01-01

    The style of Kenneth Grahame's "The Wind in the Willows" arises from an alternative vision and choice of values characteristic of romance. Romance seeks fulfillment beyond the consequences of everyday relationships and the constrictions of ordinary life. Causal relationships give way to lists of independent items, unmotivated outcomes, and…

  1. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

    PubMed Central

    Tardif, Stacie; Yergeau, Étienne; Tremblay, Julien; Legendre, Pierre; Whyte, Lyle G.; Greer, Charles W.

    2016-01-01

    The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology. PMID:27660624

  2. Stand-volume estimation from multi-source data for coppiced and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Sibanda, Mbulisi; Shoko, Cletah; Mutanga, Onisimo

    2017-10-01

    Forest stand volume is one of the crucial stand parameters, which influences the ability of these forests to provide ecosystem goods and services. This study thus aimed at examining the potential of integrating multispectral SPOT 5 image, with ancillary data (forest age and rainfall metrics) in estimating stand volume between coppiced and planted Eucalyptus spp. in KwaZulu-Natal, South Africa. To achieve this objective, Partial Least Squares Regression (PLSR) algorithm was used. The PLSR algorithm was implemented by applying three tier analysis stages: stage I: using ancillary data as an independent dataset, stage II: SPOT 5 spectral bands as an independent dataset and stage III: combined SPOT 5 spectral bands and ancillary data. The results of the study showed that the use of an independent ancillary dataset better explained the volume of Eucalyptus spp. growing from coppices (adjusted R2 (R2Adj) = 0.54, RMSEP = 44.08 m3/ha), when compared with those that were planted (R2Adj = 0.43, RMSEP = 53.29 m3/ha). Similar results were also observed when SPOT 5 spectral bands were applied as an independent dataset, whereas improved volume estimates were produced when using combined dataset. For instance, planted Eucalyptus spp. were better predicted adjusted R2 (R2Adj) = 0.77, adjusted R2Adj = 0.59, RMSEP = 36.02 m3/ha) when compared with those that grow from coppices (R2 = 0.76, R2Adj = 0.46, RMSEP = 40.63 m3/ha). Overall, the findings of this study demonstrated the relevance of multi-source data in ecosystems modelling.

  3. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A Natural History Summary and Survey Protocol for the Southwestern Willow Flycatcher

    USGS Publications Warehouse

    Sogge, Mark K.; ,; Ahlers, Darrell; ,; Sferra, Susan J.; ,

    2010-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus) has been the subject of substantial research, monitoring, and management activity since it was listed as an endangered species in 1995. When proposed for listing in 1993, relatively little was known about the flycatcher's natural history, and there were only 30 known breeding sites supporting an estimated 111 territories rangewide (Sogge and others, 2003a). Since that time, thousands of presence/absences surveys have been conducted throughout the historical range of the flycatcher, and many studies of its natural history and ecology have been completed. As a result, the ecology of the flycatcher is much better understood than it was just over a decade ago. In addition, we have learned that the current status of the flycatcher is better than originally thought: as of 2007, the population was estimated at approximately 1,300 territories distributed among approximately 280 breeding sites (Durst and others, 2008a). Concern about the Southwestern Willow Flycatcher on a rangewide scale was brought to focus by Unitt (1987), who described declines in flycatcher abundance and distribution throughout the Southwest. E. t. extimus populations declined during the 20th century, primarily because of habitat loss and modification from activities, such as dam construction and operation, groundwater pumping, water diversions, and flood control. In 1991, the U.S. Fish and Wildlife Service (USFWS) designated the Southwestern Willow Flycatcher as a candidate category 1 species (U.S. Fish and Wildlife Service, 1991). In July 1993, the USFWS proposed to list E. t. extimus as an endangered species and to designate critical habitat under the Act (U.S. Fish and Wildlife Service, 1993). A final rule listing E. t. extimus as endangered was published in February 1995 (U.S. Fish and Wildlife Service, 1995); critical habitat was designated in 1997 (U.S. Fish and Wildlife Service, 1997). The USFWS Service released a Recovery Plan for

  5. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems.

    PubMed

    Luo, Jie; Qi, Shihua; Peng, Li; Xie, Xianming

    2015-03-01

    The objective of this research was to determine the phytoremediation potential of Eucalyptus globulus in Cd contaminated soil through two different harvest methods. Although replanting is more expensive than coppicing and produces less aboveground biomass, more Cd can be removed from the soil with roots removal at each harvest as the E. globulus absorbs vast majority of heavy metals in non-metabolically active parts like roots. Despite the higher cost of replanting in a single harvest, when phytoremediation efficiency and total duration are considered as important factors, the replanting treatment should be recommended as an appropriate method which can decrease the phytoremediation time obviously.

  6. Spatial distribution of galls caused by Aculus tetanothrix (Acari: Eriophyoidea) on arctic willows.

    PubMed

    Kuczyński, Lechosław; Skoracka, Anna

    2005-01-01

    The distribution of galls caused by Aculus tetanothrix (Acari: Eriophyoidea) on three Salix species was studied. The factors influencing this distribution were analysed, i.e. willow species, study area and shoot length. Spatial pattern of gall distribution within the shoot was also examined. The study was conducted in Russia, Kola Peninsula. Densities of galls caused by A. tetanothrix differed significantly among willow species. Considerably higher gall density was recorded in the White Sea coast than in the Khibiny Mountains. This may be explained by the influence of a milder maritime climate that favors mite occurrence compared to a harsh and variable mountain climate that limits mite abundance. There was no relationship between the gall density and the shoot length. The highest density of galls was recorded on the inner offshoots; within the offshoot, there was a maximum density on the fifth leaf. This pattern was repeatable for all shoots studied, independent of the study area, willow species and length of shoots, suggesting the optimal conditions for A. tetanothrix exist on leaves in the middle part of a shoot. This distribution pattern may be an effect of the trade-off between the costs and benefits resulting from leaf quality and mite movement along the shoot. This hypothesis, however, needs to be tested experimentally.

  7. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period January 1, 2001-March 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) finalized the engineering of the Willow Island cofiring project, completed the fuel characterizations for both the Willow Island and Albright Generating Station projects, and initiated construction of both projects. Allegheny and its contractor, Foster Wheeler, selected appropriate fuel blends and issued purchase orders for all processing and mechanical equipment to be installed at both sites. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The third quarter of the project involved completing the detailedmore » designs for the Willow Island Designer Fuel project. It also included complete characterization of the coal and biomass fuels being burned, focusing upon the following characteristics: proximate and ultimate analysis; higher heating value; carbon 13 nuclear magnetic resonance testing for aromaticity, number of aromatic carbons per cluster, and the structural characteristics of oxygen in the fuel; drop tube reactor testing for high temperature devolatilization kinetics and generation of fuel chars; thermogravimetric analyses (TGA) for char oxidation kinetics; and related testing. The construction at both sites commenced during this quarter, and was largely completed at the Albright Generating Station site.« less

  8. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis1

    PubMed Central

    Dudits, Dénes; Török, Katalin; Cseri, András; Paul, Kenny; Nagy, Bettina; Sass, László; Ferenc, Györgyi; Vankova, Radomira; Dobrev, Petre; Vass, Imre; Ayaydin, Ferhan

    2016-01-01

    The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity. PMID:26729798

  9. Geologic associations of Arizona willow in the White Mountains, Arizona

    Treesearch

    Jonathan W. Long; Alvin L. Medina

    2007-01-01

    The Arizona willow (Salix arizonica Dorn) is a rare species growing in isolated populations at the margins of the Colorado Plateau. Although its habitat in the White Mountains of Arizona has been mischaracterized as basaltic, the area is actually a complex mixture of felsic, basaltic and epiclastic formations. Comparing the distribution of the...

  10. Biomass power for rural development. Technical progress report, May 1, 1996--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Developing commercial energy crops for power generation by the year 2000 is the focus of the DOE/USDA sponsored Biomass Power for Rural Development project. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Facette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG). Phase-II of the project willmore » focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. There will be testing of the energy crop as part of the gasification trials expected to occur at BED`s McNeill power station and potentially at one of GPU`s facilities. Phase-III will represent full-scale commercialization of the energy crop and power generation on a sustainable basis. Willow has been selected as the energy crop of choice for many reasons. Willow is well suited to the climate of the Northeastern United States, and initial field trials have demonstrated that the yields required for the success of the project are obtainable. Like other energy crops, willow has rural development benefits and could serve to diversify local crop production, provide new sources of income for participating growers, and create new jobs. Willow could be used to put a large base of idle acreage back into crop production. Additionally, the willow coppicing system integrates well with current farm operations and utilizes agricultural practices that are already familiar to farmers.« less

  11. Temporal and spatial variation of hematozoans in Scandinavian willow warblers.

    PubMed

    Bensch, Staffan; Akesson, Susanne

    2003-04-01

    We examined temporal and geographical distribution of Haemoproteus sp. and Plasmodium sp. parasites in Swedish willow warblers, Phylloscopus trochilus. Parasite lineages were detected with molecular methods in 556 birds from 41 sites distributed at distances up to 1,500 km. Two mitochondrial lineages of Haemoproteus sp. were detected, WW1 in 56 birds and WW2 in 75 birds, that differed by 5.2% sequence divergence. We discuss the reasons behind the observed pattern of variation and identify 3 possible causes: (1) variation in the geographic distribution of the vector species, (2) the degree of parasite sharing with other bird species coexisting with the willow warbler, and (3) timing of transmission. Our results support a fundamental and rarely tested assumption of the now classical Hamilton-Zuk hypothesis of sexual selection, namely, that these parasites vary in both time and space. Such fluctuations of parasites and the selection pressure they supposedly impose on the host population are likely to maintain variation in immune system genes in the host population.

  12. Status and migration of the Southwestern willow flycatcher in New Mexico

    Treesearch

    Deborah M. Finch; Jeffrey F. Kelly

    1999-01-01

    In the Southwestern United States, recent degradation of riparian habitats has been linked to decline of the Southwestern subspecies of the Willow Flycatcher. During a 2-year banding effort, migration patterns and bird fat content were analyzed. Recommendations for managers, and outlines for conservation plans, are included.

  13. Migration of the Willow Flycatcher along the Middle Rio Grande

    Treesearch

    Wang Yong; Deborah M. Finch

    1997-01-01

    We studied timing, abundance, subspecies composition, fat stores, stopover length, and habitat use of Willow Flycatchers (Empidonax traillii) during spring and fall stopover along the Middle Rio Grande, New Mexico. Spring migration started in mid-May and lasted about a month. Fall migration started in early-August and also lasted about a month. The most abundant...

  14. Weight distribution in the current annual twigs of barclay willow.

    Treesearch

    John F. Thilenius

    1988-01-01

    The current annual twigs of unbrowsed Barclay willow (Salix barclayi Anderss.) grow as gently tapering cylinders. Consequently, the distal half of the twig has only 33 to 41 percent of the total weight. Longer twigs have proportionally less weight in the distal end. The total weight of an unbrowsed twig can be estimated by simple regression of...

  15. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales) on Willows in China

    PubMed Central

    Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto

    2015-01-01

    The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was

  16. Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems.

    PubMed

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Djomo, Sylvestre Njakou; Corona, Andrea; Birkved, Morten; Dalgaard, Tommy

    2017-05-15

    The current study aimed at evaluating potential environmental impacts for the production of willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. A method of Life Cycle Assessment was used to evaluate based on the following impact categories: Global Warming Potential (GWP 100 ), Eutrophication Potential (EP), Non-Renewable Energy (NRE) use, Agricultural Land Occupation (ALO), Potential Freshwater Ecotoxicity (PFWTox) and Soil quality. With regard to the methods, soil organic carbon (SOC) change related to the land occupation was calculated based on the net carbon input to the soil. Freshwater ecotoxicity was calculated using the comparative toxicity units of the active ingredients and their average emission distribution fractions to air and freshwater. Soil quality was based on the change in the SOC stock estimated during the land use transformation and land occupation. Environmental impacts for straw were economically allocated from the impacts obtained for spring barley. The results obtained per ton dry matter showed a lower carbon footprint for willow and alfalfa compared to straw. It was due to higher soil carbon sequestration and lower N 2 O emissions. Likewise, willow and alfalfa had lower EP than straw. Straw had lowest NRE use compared to other biomasses. PFWTox was lower in willow and alfalfa compared to straw. A critical negative effect on soil quality was found with the spring barley production and hence for straw. Based on the energy output to input ratio, willow performed better than other biomasses. On the basis of carbohydrate content of straw, the equivalent dry matter of alfalfa and willow would be requiring higher. The environmental impacts of the selected biomasses in biorefinery therefore would differ based on the conversion efficiency, e.g. of the carbohydrates in the related biorefinery processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genetic variation in the endangered Southwestern Willow Flycatcher

    USGS Publications Warehouse

    Busch, Joseph; Miller, Mark P.; Paxton, E.H.; Sogge, M.K.; Keim, Paul

    2000-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus) is an endangered Neotropical migrant that breeds in isolated remnants of dense riparian habitat in the southwestern United States. We estimated genetic variation at 20 breeding sites of the Southwestern Willow Flycatcher (290 individuals) using 38 amplified fragment length polymorphisms (AFLPs). Our results suggest that considerable genetic diversity exists within the subspecies and within local breeding sites. Statistical analyses of genetic variation revealed only slight, although significant, differentiation among breeding sites (Mantel's r = 0.0705, P < 0.0005; θ = 0.0816, 95% CI = 0.0608 to 0.1034; ΦST = 0.0458, P < 0.001). UPGMA cluster analysis of the AFLP markers indicates that extensive gene flow has occurred among breeding sites. No one site stood out as being genetically unique or isolated. Therefore, the small level of genetic structure that we detected may not be biologically significant. Ongoing field studies are consistent with this conclusion. Of the banded birds that were resighted or recaptured in Arizona during the 1996 to 1998 breeding seasons, one-third moved between breeding sites and two-thirds were philopatric. Low differentiation may be the result of historically high rangewide diversity followed by recent geographic isolation of breeding sites, although observational data indicate that gene flow is a current phenomenon. Our data suggest that breeding groups of E. t. extimus act as a metapopulation.

  18. Influence of flooding duration on the biomass growth of alder and willow.

    Treesearch

    Lewis F. Ohmann; M. Dean Knighton; Ronald McRoberts

    1990-01-01

    Simple second-order (quadratic) polynomials were used to model the relationship between 3-year biomass increase (net ovendry weight in grams) and flooding duration (days) for four combinations of shrub type (alder, willow) and soils type (fine-sand, clay-loam).

  19. Establishment, sex structure and breeding system of an exotic riparian willow, Salix X rubens

    USGS Publications Warehouse

    Shafroth, Patrick B.; Scott, Michael L.; Friedman, Jonathan M.; Laven, Richard D.

    1994-01-01

    Several Eurasian tree willows (Salix spp.) have become naturalized in riparian areas outside of their native range. Salix x rubens is a Eurasian willow that is conspicuous along streams in the high plains of Colorado. We examined establishment of seedlings and cuttings, the sex structure and the breeding system of S. x rubens. An experiment was conducted on establishment and growth of seedlings and cuttings under a range of hydrologic conditions. Seedlings became established under all conditions except when flooded, although many fewer seedlings became established where soil surface conditions were relatively dry. Cuttings became established under all experimental conditions, but most frequently where soil moisture was highest. The sex structure of S. x rubens was determined along several streams in the Colorado high plains. Of 2175 trees surveyed, >99% (2172) were female. Salix x rubens produce viable seed apparently as a result of hybridization with another Eurasian willow, S. alba var. vitellina. Salix x rubens often reproduces vegetatively, which, combined with low hybrid seedling survival in the field, may explain the unusual sex structure. Salix x rubens will likely continue to spread vegetatively in high plains riparian areas, and the potential for spread through hybridization could increase if males of compatible Salix spp. are planted near extant S. x rubens.

  20. Polymorphism and Divergence in Two Willow Species, Salix viminalis L. and Salix schwerinii E. Wolf

    PubMed Central

    Berlin, Sofia; Fogelqvist, Johan; Lascoux, Martin; Lagercrantz, Ulf; Rönnberg-Wästljung, Ann Christin

    2011-01-01

    We investigated species divergence, present and past gene flow, levels of nucleotide polymorphism, and linkage disequilibrium in two willows from the plant genus Salix. Salix belongs together with Populus to the Salicaceae family; however, most population genetic studies of Salicaceae have been performed in Populus, the model genus in forest biology. Here we present a study on two closely related willow species Salix viminalis and S. schwerinii, in which we have resequenced 33 and 32 nuclear gene segments representing parts of 18 nuclear loci in 24 individuals for each species. We used coalescent simulations and estimated the split time to around 600,000 years ago and found that there is currently limited gene flow between the species. Mean intronic nucleotide diversity across gene segments was slightly higher in S. schwerinii (πi = 0.00849) than in S. viminalis (πi = 0.00655). Compared with other angiosperm trees, the two willows harbor intermediate levels of silent polymorphisms. The decay of linkage disequilibrium was slower in S. viminalis compared with S. schwerinii, and we speculate that this is due to different demographic histories as S. viminalis has been partly domesticated in Europe. PMID:22384349

  1. The Study of Interactions between Active Compounds of Coffee and Willow (Salix sp.) Bark Water Extract

    PubMed Central

    Durak, Agata; Gawlik-Dziki, Urszula

    2014-01-01

    Coffee and willow are known as valuable sources of biologically active phytochemicals such as chlorogenic acid, caffeine, and salicin. The aim of the study was to determine the interactions between the active compounds contained in water extracts from coffee and bark of willow (Salix purpurea and Salix myrsinifolia). Raw materials and their mixtures were characterized by multidirectional antioxidant activities; however, bioactive constituents interacted with each other. Synergism was observed for ability of inhibition of lipid peroxidation and reducing power, whereas compounds able to scavenge ABTS radical cation acted antagonistically. Additionally, phytochemicals from willow bark possessed hydrophilic character and thermostability which justifies their potential use as an ingredient in coffee beverages. Proposed mixtures may be used in the prophylaxis or treatment of some civilization diseases linked with oxidative stress. Most importantly, strong synergism observed for phytochemicals able to prevent lipids against oxidation may suggest protective effect for cell membrane phospholipids. Obtained results indicate that extracts from bark tested Salix genotypes as an ingredient in coffee beverages can provide health promoting benefits to the consumers; however, this issue requires further study. PMID:25013777

  2. Phytochemical and physical-chemical analysis of Polish willow (Salix spp.) honey: identification of the marker compounds.

    PubMed

    Jerković, Igor; Kuś, Piotr Marek; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2014-02-15

    The case study of Polish Salix spp. honey was compared with published data on willow honey from other regions. GC-FID/MS (after HS-SPME and ultrasonic solvent extraction) and targeted HPLC-DAD were applied. Phenolic content, FRAP/DPPH assays and the colour coordinates were determined spectrophotometrically. Beside ubiquitous linalool derivatives, borneol (up to 10.9%), bicyclic monoterpenes with pinane skeleton (pinocarvone up to 10.6%, myrtenal up to 4.8% and verbenone up to 3.4%) and trans-β-damascenone (up to 13.0%) dominated in the headspace. The main compounds of the extractives were vomifoliol (up to 39.6%) and methyl syringate (up to 16.5%) along with not common 4-hydroxy-3-(1-methylethyl)benzaldehyde (up to 11.1%). Abscisic acid (ABA) was found (up to 53.7 mg/kg) with the isomeric ratio (Z,E)-ABA:(E,E)-ABA=1:2. The honey exhibited low antioxidant potential with pale yellow colour. The composition of Polish willow honey is similar to Mediterranean willow honeys with several relevant differences. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Effects of hot water extraction pretreatment on pyrolysis of shrub willow

    USDA-ARS?s Scientific Manuscript database

    Treatment of biomass via hot water extraction (HWE) reduces the amount of hemicellulose and ash in the biomass resulting in a concentration of cellulose and lignin content. In this study, we tested the effect of HWE as a biomass pretreatment on the pyrolysis of shrub willow via both conventional he...

  4. AmeriFlux US-WCr Willow Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ankur

    This is the AmeriFlux version of the carbon flux data for the site US-WCr Willow Creek. Site Description - Upland decduous broadleaf forest. Mainly sugar maple, also basswood. Uniform stand atop a very modest hill. Clearcut approximately 80 years ago. Chosen to be representative of the upland deciduous broadleaf forests within the WLEF tall tower flux footprint. It appears to be more heavily forested and more productive than most of the upland deciduous broadleaf forests in the WLEF flux footprint (see publications for more details). It is also important that SE winds are screened from the flux data (see Cookmore » et al, 2004 for details). Propane generator power.« less

  5. Epicormic branches affect lumber grade and value in willow oak

    Treesearch

    James S. Meadows; E.C. Burkhardt

    2001-01-01

    A case study was conducted in a 50-yr-old bottomland oak stand in central Alabama to investigate the relationship between epicormic branches and lumber grade and value in willow oak (Quercus phellos L.). The stand had been thinned from below 7–10 yr earlier, resulting in a wide variety of epicormic branch conditions on the residual trees. A...

  6. Phytoextraction of heavy metals by willows growing in biosolids under field conditions.

    PubMed

    Laidlaw, W S; Arndt, S K; Huynh, T T; Gregory, D; Baker, A J M

    2012-01-01

    Biosolids produced by sewage treatment facilities can exceed guideline thresholds for contaminant elements. Phytoextraction is one technique with the potential to reduce these elements allowing reuse of the biosolids as a soil amendment. In this field trial, cuttings of seven species/cultivars of Salix(willows) were planted directly into soil and into biosolids to identify their suitability for decontaminating biosolids. Trees were irrigated and harvested each year for three consecutive years. Harvested biomass was weighed and analyzed for the contaminant elements: As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn. All Salix cultivars, except S. chilensis, growing in soils produced 10 to 20 t ha(-1) of biomass, whereas most Salix cultivars growing in biosolids produced significantly less biomass (<6 t ha(-1)). Salix matsudana (30 t ha(-1)) and S. × reichardtii A. Kerner (18 t ha(-1)) had similar aboveground biomass production in both soil and biosolids. These were also the most successful cultivars in extracting metals from biosolids, driven by superior biomass increases and not high tissue concentrations. The willows were effectual in extracting the most soluble/exchangeable metals (Cd, 0.18; Ni, 0.40; and Zn, 11.66 kg ha(-1)), whereas Cr and Cu were extracted to a lesser degree (0.02 and 0.11 kg ha(-1)). Low bioavailable elements, As, Hg, and Pb, were not detectable in any of the aboveground biomass of the willows. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Growth response of speckled alder and willow to depth of flooding

    Treesearch

    M. Dean Knighton

    1981-01-01

    Growth and survival of speckled alder and willow were determined for two growing seasons with continuous flooding at different depths. Growth was at least four times greater when the water table was below the root crown than when it was 15 cm above. Mortality increased with flooding depth and as greatest for alder.

  8. History of late Holocene earthquakes at the Willow Creek site on the Nephi segment, Wasatch fault zone, Utah

    USGS Publications Warehouse

    Crone, Anthony J.; Personius, Stephen F.; Duross, Christopher; Machette, Michael N.; Mahan, Shannon

    2014-01-01

    This 43-page report presents new data from the Willow Creek site that provides well-defined and narrow bounds on the times of the three youngest earthquakes on the southern strand of the Nephi segment, Wasatch Fault zone, and refines the time of the youngest earthquake to about 200 years ago. This is the youngest surface rupture on the entire Wasatch fault zone, which occurred about a century or less before European settles arrived in Utah. Two trenches at the Willow Creek site exposed three scarp-derived colluvial wedges that are evidence of three paleoearthquakes. OxCal modeling of ages from Willow Creek indicate that paleoearthquake WC1 occurred at 0.2 ± 0.1 ka, WC2 occurred at 1.2 ± 0.1 ka, and WC3 occurred at 1.9 ± 0.6 ka. Stratigraphic constraints on the time of paleoearthquake WC4 are extremely poor, so OxCal modeling only yields a broadly constrained age of 4.7 ± 1.8 ka. Results from the Willow Creek site significantly refine the times of late Holocene earthquakes on the Southern strand of the Nephi segment, and this result, when combined with a reanalysis of the stratigraphic and chronologic information from previous investigations at North Creek and Red Canyon, yield a stronger basis of correlating individual earthquakes between all three sites.

  9. 76 FR 44602 - Notice of Temporary Closure of Roads and Trails on Public Lands Adjacent to Big Willow Creek in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... 4500020817] Notice of Temporary Closure of Roads and Trails on Public Lands Adjacent to Big Willow Creek in.... SUMMARY: Notice is hereby given that the Big Willow closure to motorized vehicle use is in effect on.... 5, lot 4; Sec. 6, all; Sec. 7, lot 1, portions of the NW\\1/4\\NE\\1/4\\ and NE\\1/4\\NW\\1/4\\ north and...

  10. Clonal variation in survival and growth of hybrid poplar and willow in an in situ trial on soils heavily contaminated with petroleum hydrocarbons

    Treesearch

    Ronald S., Jr. Zalesny; Edmund O. Bauer; Richard B. Hall; Jill A. Zalesny; Joshua Kunzman; Chris J. Rog; Don E. Riemenschneider

    2005-01-01

    Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2)...

  11. The Caring Business: Lynch Community Homes, Willow Grove, Pennsylvania. A Case Study.

    ERIC Educational Resources Information Center

    Bogdan, Robert

    This paper, one of a series of reports describing innovative practices in integrating people with disabilities into community life, describes the Lynch Community Homes in Willow Grove, Pennsylvania. Lynch Homes is a for-profit organization that provides homes and supportive services for approximately 75 people with severe and profound…

  12. Crown size relationships for black willow in the Lower Mississippi Alluvial Valley

    Treesearch

    Jamie L. Schuler; Bradley Woods; Joshua Adams; Ray Souter

    2015-01-01

    Growing space requirements derived from maximum and minimum crown sizes have been identified for many southern hardwood species. These requirements help managers assess stocking levels, schedule intermediate treatments, and even assist in determining planting densities. Throughout the Mississippi Alluvial Valley, black willow (Salix nigra Marsh.) stands are common...

  13. Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz).

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2008-06-01

    The effect of available nitrogen in nutrient solution on removal of two chemical forms of chromium (Cr) by plants was investigated. Pre-rooted hankow willows (Salix matsudana Koidz) were grown in a hydroponic solution system with or without nitrogen, and amended with hexavalent chromium [Cr (VI)] or trivalent chromium [Cr (III)] at 25.0+/-0.5 degrees C for 192 h. The results revealed that higher removal of Cr by plants was achieved from the hydroponic solutions without any nitrogen than those containing nitrogen. Although faster removal of Cr (VI) than Cr (III) was observed, translocation of Cr (III) within plant materials was more efficient than Cr (VI). Substantial difference existed in the distribution of Cr in different parts of plant tissues due to the nitrogen in nutrient solutions (p<0.05): lower stems were the major sink for both Cr species in willows grown in the N-free nutrient solutions and more Cr was accumulated in the roots of plants in N-containing ones. No significant difference was found in the removal rate of Cr (VI) between willows grown in the N-free and N-containing solutions (p>0.05). Removal rates of Cr (III) decreased linearly with the strength of nutrient solutions with or without N addition (p<0.01). Translocation efficiencies of both Cr species increased proportionally with the strength of N-containing nutrient solutions and decreased with the strength of N-free nutrient solutions. Results suggest that uptake and translocation mechanisms of Cr (VI) and Cr (III) are apparently different in hankow willows. The presence of easily available nitrogen and other nutrient elements in the nutrient solutions had a more pronounced influence on the uptake of Cr (III) than Cr (VI). Nitrogen availability and quantities in the ambient environment will affect the translocation of both Cr species and their distribution in willows in phytoremediation.

  14. Extracellular enzyme activity in a willow sewage treatment system.

    PubMed

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  15. Riverbank restoration in the southern United States: The effects of soil texture and moisture regime on survival and growth of willow posts

    Treesearch

    S. Reza Pezeshki; Steven D. Schaff; F. Douglas Shields

    2000-01-01

    Field studies were conducted to quantify the relationship between soil conditions and growth of black willow posts planted for riverbank erosion control along Harland Creek (HC) and Twentymile Creek (TC) sites in Mississippi. Both sites had a wide range of soil texture and moisture regimes. Soil texture, water level, redox potential (Eh), and willow survival and growth...

  16. Simulation of rain floods on Willow Creek, Valley County, Montana

    USGS Publications Warehouse

    Parrett, Charles

    1986-01-01

    The Hydrologic Engineering Center-1 rainfall-runoff simulation model was used to assess the effects of a system of reservoirs and waterspreaders in the 550-sq mi Willow Creek Basin in northeastern Montana. For simulation purposes, the basin was subdivided into 100 subbasins containing 84 reservoirs and 14 waterspreaders. Precipitation input to the model was a 24-hr duration, 100-yr frequency synthetic rainstorm developed from National Weather Service data. Infiltration and detention losses were computed using the U.S. Soil Conservation Service Curve Number concept, and the dimensionless unit hydrograph developed by the U.S. Soil Conservation Service was used to compute runoff. Channel and reservoir flow routing was based on the modified Puls storage routing procedure. Waterspreaders were simulated by assuming that each dike in a spreader system functions as a reservoir, with only an emergency spillway discharging directly into the next dike. Waterspreader and reservoir volumes were calculated from surface areas measured on maps. The first simulation run was made with no structures in place, and resulted in a 100-yr frequency peak at the mouth of Willow Creek of 22,700 cu ft/sec. With all structures in place, the 100-yr frequency peak was decreased by 74% to 5,870 cu ft/sec. (USGS)

  17. Effects of a willow overstory on planted seedlings in a bottomland restoration

    Treesearch

    C. J. Dulohery; Randy K. Kolka; M. R. McKevlin

    2000-01-01

    Four bottomland tree species (green ash, bald cypress, water tupelo, and swamp chestnut oak) were planted under four levels of willow canopy (intact canopy, 60% thinned with herbicide, complete control with herbicide, and complete mechanical removal plus control with herbicide). Through age 5, species selection rather than canopy control treatment was the dominant...

  18. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.).

    PubMed

    Pucholt, P; Rönnberg-Wästljung, A-C; Berlin, S

    2015-06-01

    Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover.

  19. Nestling sex ratio in the Southwestern Willow Flycatcher

    USGS Publications Warehouse

    Paxton, E.H.; Sogge, M.K.; McCarthey, T.D.; Keim, P.

    2002-01-01

    Using molecular-genetic techniques, we determined the gender of 202 Southwestern Willow Flycatcher (Empidonax traillii extimus) nestlings from 95 nests sampled over a five-year period. Overall nestling sex ratio did not vary significantly from 50:50 among years, by clutch order, or by mating strategy (monogamous vs. polygamous pairings). However, we did observe significant differences among the four sites sampled, with sex ratios biased either toward males or females at the different sites. Given the small population sizes and geographic isolation of many of the endangered subspecies' breeding populations, sex-ratio differences may have localized negative impacts. ?? The Cooper Ornithological Society 2002.

  20. Nestling sex ratios in the southwestern willow flycatcher

    USGS Publications Warehouse

    Paxton, E.H.; Sogge, M.K.; McCarthey, Tracy; Keim, Paul

    2002-01-01

    Using molecular-genetic techniques, we determined the gender of 202 Southwestern Willow Flycatcher (Empidonax traillii extimus) nestlings from 95 nests sampled over a five-year period. Overall nestling sex ratio did not vary significantly from 50:50 among years, by clutch order, or by mating strategy (monogamous vs. polygamous pairings). However, we did observe significant differences among the four sites sampled, with sex ratios biased either toward males or females at the different sites. Given the small population sizes and geographic isolation of many of the endangered subspecies' breeding populations, sex-ratio differences may have localized negative impacts.

  1. Saltcedar and Southwestern Willow Flycatchers: Lessons From Long-term Studies in Central Arizona

    Treesearch

    M. K. Sogge; E. H. Paxton; April A. Tudor

    2006-01-01

    The endangered Southwestern Willow Flycatcher (Empidonax traillii extimus: SWWF) is a riparian-obligate bird that breeds only in dense, typically wet riparian vegetation. Since the mid-1990s, biologists have discovered a substantial number of flycatchers breeding in habitat dominated by exotic saltcedar (Tamarix ramossisima) in...

  2. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.

    PubMed

    Johnson, Jon D; Tognetti, Roberto; Paris, Piero

    2002-05-01

    Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 &mgr;mol mol-1) or elevated (700 &mgr;mol mol-1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar.

  3. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2002--December 31, 2002, Allegheny Energy Supply Co., LLC (Allegheny) completed the first year of testing at the Willow Island cofiring project. This included data acquisition and analysis associated with certain operating parameters and environmental results. Over 2000 hours of cofiring operation were logged at Willow Island, and about 4,000 tons of sawdust were burned along with slightly more tire-derived fuel (TDF). The results were generally favorable. During this period, also, a new grinder was ordered for the Albright Generating Station to handle oversized material rejected by the disc screen. This report summarizes the activities associatedmore » with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the test results at Willow Island and summarizes the grinder program at Albright.« less

  4. Landscape heterogeneity controls growth variability of alder, willow, and birch shrubs in response to observed increases in temperature and snow

    NASA Astrophysics Data System (ADS)

    Tape, K. D.; Hallinger, M.; Buras, A.; Wilmking, M.

    2013-12-01

    Over the last decade, evidence has emerged for a circumarctic trend of increasing shrub cover in tundra regions. On the Alaskan tundra, repeat photography has shown spatial differences in shrub patch dynamics: since 1950, most patches expanded while some remained stable. In this study we explore the underpinnings of this landscape heterogeneity by sampling the three dominant shrubs of the Alaskan tundra--alder, willow and birch--and creating shrub ring width chronologies to determine the influence of climate variability on shrub growth. Shrubs of expanding patches of all three species grew at higher rates than shrubs of stable patches. Alder and willow shrubs in expanding patches exhibited mainly positive growth trends, while their counterparts in stable patches exhibited mainly negative growth trends. Birch shrub growth declined in expanding and stable patches. Alder and willow shrub growth rates and responses to climate were controlled more by soil characteristics than by their genus; expanding alder and willow shrubs showed significant positive correlations with spring and summer temperatures, whereas alder and willow shrubs of stable patches were negatively influenced by winter precipitation. The widely-scattered stable shrub patches sampled here are considered ';moist tussock tundra,' which covers 13.4% of the low arctic landscape. In moist tussock tundra, and presumably also wet tussock tundra, the negative influence of deeper snow on shrubs outweighed the positive influence of deeper snow on ground temperature and nutrient stocks articulated by the snow-shrub-microbe hypothesis. Thus, while shrubs of expanding patches have generally profited from warmer summers, shrubs of stable patches have suffered from increased soil moisture resulting from increased snowmelt water. These results underscore the spatial and temporal complexity in shrub-climate dynamics, which will require considerable finesse to appropriately integrate into modeling efforts.

  5. Genotype × environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabio, Eric S.; Volk, Timothy A.; Miller, Raymond O.

    Development of dedicated bioenergy crop production systems will require accurate yield estimates, which will be important for determining many of the associated environmental and economic impacts of their production. Shrub willow (Salix spp) is being promoted in areas of the USA and Canada due to its adaption to cool climates and wide genetic diversity available for breeding improvement. Willow breeding in North America is in an early stage, and selection of elite genotypes for commercialization will require testing across broad geographic regions to gain an understanding of how shrub willow interacts with the environment. We analyzed a dataset of first-rotationmore » shrub willow yields of 16 genotypes across 10 trial environments in the USA and Canada for genotype-by-environment interactions using the additive main effects and multiplicative interactions (AMMI) model. Mean genotype yields ranged from 5.22 to 8.58 oven-dry Mg ha -1 yr -1. Analysis of the main effect of genotype showed that one round of breeding improved yields by as much as 20% over check cultivars and that triploid hybrids, most notably Salix viminalis × S. miyabeana, exhibited superior yields. We also found important variability in genotypic response to environments, which suggests specific adaptability could be exploited among 16 genotypes for yield gains. Strong positive correlations were found between environment main effects and AMMI parameters and growing environment temperatures. These findings demonstrate yield improvements are possible in one generation and will be important for developing cultivar recommendations and for future breeding efforts.« less

  6. Genotype × environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids

    DOE PAGES

    Fabio, Eric S.; Volk, Timothy A.; Miller, Raymond O.; ...

    2016-01-30

    Development of dedicated bioenergy crop production systems will require accurate yield estimates, which will be important for determining many of the associated environmental and economic impacts of their production. Shrub willow (Salix spp) is being promoted in areas of the USA and Canada due to its adaption to cool climates and wide genetic diversity available for breeding improvement. Willow breeding in North America is in an early stage, and selection of elite genotypes for commercialization will require testing across broad geographic regions to gain an understanding of how shrub willow interacts with the environment. We analyzed a dataset of first-rotationmore » shrub willow yields of 16 genotypes across 10 trial environments in the USA and Canada for genotype-by-environment interactions using the additive main effects and multiplicative interactions (AMMI) model. Mean genotype yields ranged from 5.22 to 8.58 oven-dry Mg ha -1 yr -1. Analysis of the main effect of genotype showed that one round of breeding improved yields by as much as 20% over check cultivars and that triploid hybrids, most notably Salix viminalis × S. miyabeana, exhibited superior yields. We also found important variability in genotypic response to environments, which suggests specific adaptability could be exploited among 16 genotypes for yield gains. Strong positive correlations were found between environment main effects and AMMI parameters and growing environment temperatures. These findings demonstrate yield improvements are possible in one generation and will be important for developing cultivar recommendations and for future breeding efforts.« less

  7. Southwestern willow flycatchers (Empidonax traillii extimus) in a grazed landscape: factors influencing brood parasitism

    Treesearch

    Katherine M. Brodhead; Scott H. Stoleson; Deborah M. Finch

    2007-01-01

    Brood parasitism by Brown-headed Cowbirds (Molothrus ater; hereafter "cowbirds") is an important factor contributing to the endangered status of the Southwestern Willow Flycatcher (Empidonax traillii extimus, hereafter "flycatcher"). We report on factors that influence brood parasitism on the flycatcher using...

  8. Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.

    PubMed

    Carnegie, D; Ramsay, J A

    2009-07-01

    Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l(-1) (120 g l(-1)) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO(2) produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l(-1) day(-1) in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need

  9. The Regional Geochemistry of Soils and Willow in a Metamorphic Bedrock Terrain, Seward Peninsula, Alaska, 2005, and Its Possible Relation to Moose

    USGS Publications Warehouse

    Gough, L.P.; Lamothe, P.J.; Sanzolone, R.F.; Drew, L.J.; Maier, J.A.K.

    2009-01-01

    In 2005 willow leaves (all variants of Salix pulchra) and A-, B-, and C-horizon soils were sampled at 10 sites along a transect near the Quarry prospect and 11 sites along a transect near the Big Hurrah mine for the purpose of defining the spatial variability of elements and the regional geochemistry of willow and soil over Paleozoic metamorphic rocks potentially high in cadmium (Cd). Willow, a favorite browse of moose (Alces alces), has been shown by various investigators to bioaccumulate Cd. Moose in this region show clinical signs of tooth wear and breakage and are declining in population for unknown reasons. A trace element imbalance in their diet has been proposed as a possible cause for these observations. Cadmium, in high enough concentrations, is one dietary trace element that potentially could produce such symptoms. We report both the summary statistics for elements in willow and soils and the results of an unbalanced, one-way, hierarchical analysis of variance (ANOVA) (general linear model, GLM), which was constructed to measure the geochemical variability in willow (and soil) at various distance scales across the Paleozoic geologic unit high in bioavailable Cd. All of the geochemical data are presented in the Appendices. The two locations are separated by approximately 80 kilometers (km); sites within a location are approximately 0.5 kilometers apart. Duplicate soil samples collected within a site were separated by 0.05 km or slightly less. Results of the GLM are element specific and range from having very little regional variability to having most of their variance at the top (greater than 80 km) level. For willow, a significant proportion of the total variance occurred at the 'between locations' level for ash yield, barium (Ba), Cd, calcium (Ca), cobalt (Co), nickel (Ni), and zinc (Zn). For soils, concentrations of elements in all three soil horizons were similar in that most of the variability in the geochemical data occurred at the 'between locations

  10. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.)

    PubMed Central

    Pucholt, P; Rönnberg-Wästljung, A-C; Berlin, S

    2015-01-01

    Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover. PMID:25649501

  11. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  12. Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment.

    PubMed

    Styles, David; Börjesson, Pål; D'Hertefeldt, Tina; Birkhofer, Klaus; Dauber, Jens; Adams, Paul; Patil, Sopan; Pagella, Tim; Pettersson, Lars B; Peck, Philip; Vaneeckhaute, Céline; Rosenqvist, Håkan

    2016-12-01

    Whilst life cycle assessment (LCA) boundaries are expanded to account for negative indirect consequences of bioenergy such as indirect land use change (ILUC), ecosystem services such as water purification sometimes delivered by perennial bioenergy crops are typically neglected in LCA studies. Consequential LCA was applied to evaluate the significance of nutrient interception and retention on the environmental balance of unfertilised energy willow planted on 50-m riparian buffer strips and drainage filtration zones in the Skåne region of Sweden. Excluding possible ILUC effects and considering oil heat substitution, strategically planted filter willow can achieve net global warming potential (GWP) and eutrophication potential (EP) savings of up to 11.9 Mg CO 2 e and 47 kg PO 4 e ha -1 year -1 , respectively, compared with a GWP saving of 14.8 Mg CO 2 e ha -1 year -1 and an EP increase of 7 kg PO 4 e ha -1 year -1 for fertilised willow. Planting willow on appropriate buffer and filter zones throughout Skåne could avoid 626 Mg year -1 PO 4 e nutrient loading to waters.

  13. Positive impact of bio-stimulators on growth and physiological activity of willow in climate change conditions

    NASA Astrophysics Data System (ADS)

    Piotrowski, Krzysztof; Romanowska-Duda, Zdzisława

    2018-04-01

    The aim of this research was to evaluate the physiological activity and growth of willow (Salix viminalis L.) plants cultivated under the conditions of adverse temperature and soil moisture content, and to assess the effect of the foliar application of Biojodis (1.0%) and Asahi SL (0.03%) bio-stimulators, or a mixture of Microcistis aeruginosa MKR 0105 and Anabaena PCC 7120 cyanobacteria under such changing growth conditions. The obtained results showed different reactions to the applied constant or periodically changed temperature and soil moisture content. The plants which grew at periodically changed adverse temperature (from -5 to 40oC) or in scantily (20% m.c.) or excessively (60% m.c.) watered soils, grew slowly, in comparison with those growing at 20oC and in optimally moistened soil (30% m.c.). Foliar application of Biojodis and Asahi SL cyanobacteria increased the growth of willow at optimal and adverse temperature or in scantily and excessively moistened soil. The changes in plant growth were associated with the changes in electrolyte leakage, activity of acid or alkaline phosphatases, RNase, index of chlorophyll content in leaves and gas exchange. The above indicates that the foliar application of the studied cyanobacteria and bio-stimulators partly alleviates the harmful impact of adverse temperature and water stress on growth and physiological activity of willow plants

  14. Effect of temperature on phytoextraction of hexavalent and trivalent chromium by hybrid willows.

    PubMed

    Yu, Xiao-Zhang; Peng, Xiao-Ying; Xing, Li-Qun

    2010-01-01

    The removal of hexavalent and trivalent chromium from hydroponic solution by plants to changes in temperature was investigated. Pre-rooted hybrid willows (Salix matsudana Koidz x alba L.) were exposed to a nutrient solution spiked with potassium chromate (K(2)CrO(4)) or chromium chloride (CrCl(3)) for 4 days. Ten different temperatures were tested ranging from 11 to 32 degrees C. Total Cr in solutions and in plant materials were all analyzed quantitatively. The results revealed that large amounts of the applied Cr were removed from the hydroponic solution in the presence of the plants. Significantly faster removal of Cr(III) than Cr(VI) was achieved by hybrid willows from the hydroponic solutions at all temperatures (P < 0.01). The removal rates of both chemical forms of Cr by plants increased linearly with the increase of temperatures. The highest removal rate of Cr(VI) was found at 32 degrees C with a value of 1.99 microg Cr/g day, whereas the highest value of Cr(III) was 3.55 microg Cr/g day at the same temperature. Roots were the main sink for Cr accumulation in plants at all temperatures. Translocation of both chemical forms of Cr from roots to lower stems was only found at temperatures > or = 24 degrees C. The temperature coefficient values (Q(10)) were 2.41 and 1.42 for Cr(VI) and Cr(III), respectively, indicating that the removal of Cr(VI) by hybrid willows was much more susceptible to changes in temperature than that of Cr(III). This information suggests that changes in temperature have a substantial influence on the uptake and accumulation of both chemical forms of Cr by plants.

  15. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2003-December 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) continued with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Islandmore » and Albright Generating Stations.« less

  16. Bird Use of Natural and Recently Revegetated Cottonwood-Willow Habitats on the Kern River

    Treesearch

    William C. Hunter; Bertin W. Anderson; Reed E. Tollefson

    1989-01-01

    Birds were censused concomitant with revegetation efforts on the Kern River Nature Conservancy Preserve during spring and summer 1987. Three types of sites were surveyed: naturally occurring cottonwood (Populus fremontii)-willow (Salix spp.) habitats, one 10-ha revegetation site implemented in 1986, and two 10-ha revegetation sites...

  17. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2001--December 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) completed construction of the Willow Island cofiring project. This included completion of the explosion proof electrical wiring, the control system, and the control software. Procedures for system checkout, shakedown, and initial operation were initiated during this period. During this time period the 100-hour test of the Albright Generating Station cofiring facility was completed. The testing demonstrated that cofiring at the Albright Generating Station could reliably contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions over a significant load range. Duringmore » this period of time Allegheny Energy conducted facility tours of both Albright and Willow Island for the Biomass Interest Group of the Electric Power Research Institute. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the completion of construction activities at the Willow Island site along with the 100-hr test at the Albright site.« less

  18. Porous Carbon with Willow-Leaf-Shaped Pores for High-Performance Supercapacitors.

    PubMed

    Shi, Yanhong; Zhang, Linlin; Schon, Tyler B; Li, Huanhuan; Fan, Chaoying; Li, Xiaoying; Wang, Haifeng; Wu, Xinglong; Xie, Haiming; Sun, Haizhu; Seferos, Dwight S; Zhang, Jingping

    2017-12-13

    A novel kind of biomass-derived, high-oxygen-containing carbon material doped with nitrogen that has willow-leaf-shaped pores was synthesized. The obtained carbon material has an exotic hierarchical pore structure composed of bowl-shaped macropores, willow-leaf-shaped pores, and an abundance of micropores. This unique hierarchical porous structure provides an effective combination of high current densities and high capacitance because of a pseudocapacitive component that is afforded by the introduction of nitrogen and oxygen dopants. Our synthetic optimization allows further improvements in the performance of this hierarchical porous carbon (HPC) material by providing a high degree of control over the graphitization degree, specific surface area, and pore volume. As a result, a large specific surface area (1093 m 2 g -1 ) and pore volume (0.8379 cm 3 g -1 ) are obtained for HPC-650, which affords fast ion transport because of its short ion-diffusion pathways. HPC-650 exhibits a high specific capacitance of 312 F g -1 at 1 A g -1 , retaining 76.5% of its capacitance at 20 A g -1 . Moreover, it delivers an energy density of 50.2 W h kg -1 at a power density of 1.19 kW kg -1 , which is sufficient to power a yellow-light-emitting diode and operate a commercial scientific calculator.

  19. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, D. N.; Smith, P.; Davies, C.; McNamara, N. P.

    2016-12-01

    Bioenergy crops are an important source of renewable energy and likely to play a major role in transitioning to a lower CO2 energy system. There is, however, uncertainty about the impacts of the growth of bioenergy crops on broader sustainability encompassed by ecosystem services, further enhanced by ongoing climate change. The goal of this project is to develop a comprehensive model that covers ecosystem services at a continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC; willow and poplar) was modelled using ECOSSE, DayCent, SalixFor and MiscanFor models. In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models are utilised. We will present results for synergies and trade-offs between land use change and ecosystem services, impact on food security and land management. Further, we will show modelled yield maps for different cultivars of Miscanthus, willow and poplar in Europe and constraint/opportunity maps based on projected yield and other factors e.g. total economic value, technical potential, current land use, climate change and trade-offs and synergies. It will be essential to include multiple ecosystem services when assessing the potential for bioenergy production/expansion that does not impact other land uses or provisioning services. Considering that the soil GHG balance is dominated by change in soil organic carbon (SOC) and the difference among Miscanthus and SRC is largely determined by yield, an important target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation. This research could inform future policy decisions on bioenergy crops in

  20. How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies

    PubMed Central

    Orians, Colin M.; Fritz, Robert S.; Hochwender, Cris G.; Albrectsen, Benedicte R.; Czesak, Mary Ellen

    2013-01-01

    Background and Aims Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug, Arion subfuscus, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages. Methods Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), ‘selected’ and undamaged ‘control’ trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years. Key Results The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (Melampsora epitea), a native herbivorous beetle (Chrysomela knabi) and an exotic willow leaf beetle (Plagiodera versicolora). Conclusions This exotic

  1. The status of the Willow and Pacific-slope flycatchers in northwestern California and southern Oregon

    Treesearch

    C. John Ralph; K. Hollinger

    2003-01-01

    The Willow (Empidonax traillii) and Pacific-slope (E. dificilis) flycatchers are generally similar in their morphology and foraging, but differ in their habitat and population dynamics. Through a concentration of constant-effort mist-netting stations, we documented the movements and composition of populations over a relatively...

  2. The ecology of the Southwestern Willow Flycatcher in central Arizona - A 10-year synthesis report

    USGS Publications Warehouse

    Paxton, Eben H.; Sogge, Mark K.; Durst, Scott L.; Theimer, Tad C.; Hatten, James R.

    2007-01-01

    BACKGROUND From 1996 to 2005, the U.S. Geological Survey (USGS) conducted a demographic study of the Southwestern Willow Flycatcher (Empidonax traillii extimus) in Arizona in collaboration with the Arizona Game and Fish Department (AGFD). The study was begun the year following the listing of the Southwestern Willow Flycatcher as an endangered species. At the time of the listing, very little was known about the biology and threats to the flycatcher, and one of the main objectives of the study was to gather detailed long-term information on the biology of the flycatcher. This report is organized into eight chapters. Following the introductory chapter, we deal with specific aspects of flycatcher ecology and habitat use in each of six separate chapters. We end with a concluding chapter that synthesizes information into broad topical themes that address key management issues. Each of the core chapters (chapters 2 through 7) conclude with a list of management considerations derived from the findings of the respective chapter.

  3. Survivorship across the annual cycle of a migratory passerine, the willow flycatcher

    USGS Publications Warehouse

    Paxton, Eben H.; Durst, Scott L.; Sogge, Mark K.; Koronkiewicz, Thomas J.; Paxton, Kristina L.

    2017-01-01

    Annual survivorship in migratory birds is a product of survival across the different periods of the annual cycle (i.e. breeding, wintering, and migration), and may vary substantially among these periods. Determining which periods have the highest mortality, and thus are potentially limiting a population, is important especially for species of conservation concern. To estimate survival probabilities of the willow flycatcher Empidonax traillii in each of the different periods, we combined demographic data from a 10-year breeding season study with that from a 5-year wintering grounds study. Estimates of annual apparent survival for breeding and wintering periods were nearly identical (65–66%), as were estimates of monthly apparent survival for both breeding and wintering stationary periods (98–99%). Because flycatchers spend at least half the year on the wintering grounds, overall apparent survivorship was lower (88%) on the wintering grounds than on the breeding grounds (97%). The migratory period had the highest mortality rate, accounting for 62% of the estimated annual mortality even though it comprises only one quarter or less of the annual cycle. The migratory period in the willow flycatcher and many other neotropical migrants is poorly understood, and further research is needed to identify sources of mortality during this crucial period.

  4. Paleoseismology of the Nephi Segment of the Wasatch Fault Zone, Juab County, Utah - Preliminary Results From Two Large Exploratory Trenches at Willow Creek

    USGS Publications Warehouse

    Machette, Michael N.; Crone, Anthony J.; Personius, Stephen F.; Mahan, Shannon; Dart, Richard L.; Lidke, David J.; Olig, Susan S.

    2007-01-01

    In 2004, we identified a small parcel of U.S. Forest Service land at the mouth of Willow Creek (about 5 km west of Mona, Utah) that was suitable for trenching. At the Willow Creek site, which is near the middle of the southern strand of the Nephi segment, the WFZ has vertically displaced alluvial-fan deposits >6-7 m, forming large, steep, multiple-event scarps. In May 2005, we dug two 4- to 5-m-deep backhoe trenches at the Willow Creek site, identified three colluvial wedges in each trench, and collected samples of charcoal and A-horizon organic material for AMS (acceleration mass spectrometry) radiocarbon dating, and sampled fine-grained eolian and colluvial sediment for luminescence dating. The trenches yielded a stratigraphic assemblage composed of moderately coarse-grained fluvial and debris-flow deposits and discrete colluvial wedges associated with three faulting events (P1, P2, and P3). About one-half of the net vertical displacement is accommodated by monoclinal tilting of fan deposits on the hanging-wall block, possibly related to massive ductile landslide deposits that are present beneath the Willow Creek fan. The timing of the three surface-faulting events is bracketed by radiocarbon dates and results in a much different fault chronology and higher slip rates than previously considered for this segment of the Wasatch fault zone.

  5. A habitat overlap analysis derived from Maxent for Tamarisk and the South-western Willow Flycatcher

    Treesearch

    Patricia York; Paul Evangelista; Sunil Kumar; James Graham; Curtis Flather; Thomas Stohlgren

    2011-01-01

    Biologic control of the introduced and invasive, woody plant tamarisk (Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher (Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control...

  6. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2003-September 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of bio mass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. During this period, a major presentation summarizing the program was presented at the Pittsburgh Coal Conference.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.« less

  7. Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by autochthonous willow (Salix x aureo-pendula CL 'J1011') in the lower reaches of the Yangtze River.

    PubMed

    Li, Jiahua; Sun, Yuanyuan; Yin, Ying; Ji, Rong; Wu, Jichun; Wang, Xiaorong; Guo, Hongyan

    2010-09-15

    In order to explore a practical approach to the remediation of the cadmium (Cd)-contaminated soil in the lower reaches of the Yangtze River, we evaluated the effects of a local willow (Salix x aureo-pendula CL 'J1011') of absorbing, accumulating, and translocating Cd; and assessed the potential of chelator ethylenediaminetetraacetic acid (EDTA) in combination with ethyl lactate for enhancing the efficiency of the willow in removing Cd in two water-culture growth chamber trials and a field one. The willow showed a high tolerance to Cd in growth chamber trial 1 where the Cd concentration in the medium reached up to 25 mg L(-1) medium, and the bioaccumulation factors (BAFs) of the shoots for Cd rose from 3.8 to 7.4 as the Cd concentration in the medium was elevated from 5 to 25 mg L(-1) medium. In growth chamber trial 2, the average Cd removal rates in two treatments with EDTA and ethyl lactate (molar ratios of EDTA to ethyl lactate=68/39 and 53.5/53.5, respectively) reached 0.71 mg d(-1) pot(-1) for the duration of Day 5-8 and 0.59 mg d(-1) pot(-1) for that of Day 8-11, which were 5- and 4-fold of their counterparts in the control, respectively. In the field trial, for the remediational duration of 45 days, three treatments-willow alone, willow combined with EDTA, and willow combined with EDTA and ethyl lactate-led to decreases in the Cd concentration in soil by 5%, 20%, and 29%, respectively; increases in that in the leaves by 14.6%, 56.7%, and 146.5%, respectively; and increases in that in the stems by 15.6%, 41.2%, and 87.4%, respectively, compared to their counterparts on Day 0. These results indicate that EDTA combined with ethyl lactate significantly enhanced the efficiency of willow in removing Cd from the soil. Therefore, a phytoextration system consisting of the autochthonous willow, EDTA, and ethyl lactate has high potential for the remediation of the Cd-polluted soil in the lower reaches of the Yangtze River. Copyright 2010 Elsevier B.V. All rights

  8. Development of an applied black willow tree improvement program for biomass production in the south

    Treesearch

    Randall J. Rousseau; Emile S. Gardiner; Theodor D. Leininger

    2012-01-01

    The development of rapidly growing biomass woody crops is imperative as the United States strives to meet renewable energy goals. The Department of Energy has indicated that biomass is a prime source for renewable energy for the southern United States. Black Willow (Salix nigra Marsh.) is a potential bioenergy/biofuels crop for dedicated short-...

  9. Longer black willow cuttings result in better initial height and diameter growth in biomass plantations

    Treesearch

    Jake C. Camp; Randall J. Rousseau; Emile S. Gardiner

    2012-01-01

    Black willow (Salix nigra Marsh.) has the potential to be a viable plantation species for biomass production on heavy clay soils throughout the southern United States. The most favorable planting stock for woody biomass plantations is dormant unrooted cuttings, because they are easy to plant and use of clonal material allows for advancing genetic...

  10. Development of water tupelo coppice stands on the Mobile-Tensaw River delta for five years after precommercial thinning and cleaning

    Treesearch

    J.C.G. Goelz; J.S. Meadows; T.C. Fristoe

    2001-01-01

    Three 4-yr-old stands (or locations) were selected for treatment. Treatment consisted of two components: (1) thinning water tupelo (Nyssa aquatica L.) stump sprouts and (2) cutting all stems of Carolina ash (Fraxinus caroliniana Mill.) and black willow (Salix nigra Marsh.) (cleaning). Contrary to results in other...

  11. 75 FR 56520 - Information on Surplus Land at a Military Installation Designated for Disposal: NASJRB Willow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF DEFENSE Department of the Navy Information on Surplus Land at a Military Installation Designated for Disposal: NASJRB Willow Grove, PA AGENCY: Department of the Navy, DoD. ACTION... facilities at this installation were declared excess to the Department of Navy (DoN) and made available to...

  12. Transcriptome Analysis of the Differentially Expressed Genes in the Male and Female Shrub Willows (Salix suchowensis)

    PubMed Central

    Liu, Jingjing; Yin, Tongming; Ye, Ning; Chen, Yingnan; Yin, Tingting; Liu, Min; Hassani, Danial

    2013-01-01

    Background The dioecious system is relatively rare in plants. Shrub willow is an annual flowering dioecious woody plant, and possesses many characteristics that lend it as a great model for tracking the missing pieces of sex determination evolution. To gain a global view of the genes differentially expressed in the male and female shrub willows and to develop a database for further studies, we performed a large-scale transcriptome sequencing of flower buds which were separately collected from two types of sexes. Results Totally, 1,201,931 high quality reads were obtained, with an average length of 389 bp and a total length of 467.96 Mb. The ESTs were assembled into 29,048 contigs, and 132,709 singletons. These unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 291 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified 806 differentially expressed genes between the male and female flower buds. And 33 of them located on the incipient sex chromosome of Salicaceae, among which, 12 genes might involve in plant sex determination empirically. These genes were worthy of special notification in future studies. Conclusions In this study, a large number of EST sequences were generated from the flower buds of a male and a female shrub willow. We also reported the differentially expressed genes between the two sex-type flowers. This work provides valuable information and sequence resources for uncovering the sex determining genes and for future functional genomics analysis of Salicaceae spp. PMID:23560075

  13. Timber resource statistics for the Willow block, Susitna River Basin multiresource inventory unit, Alaska, 1978.

    Treesearch

    Theodore S. Setzer; Bert R. Mead; Gary L. Carroll

    1984-01-01

    A multiresource inventory of the Willow block, Susitna River basin inventory unit, was conducted in 1978. Statistics on forest area, timber volumes, and growth and mortality from this inventory are presented. Timberland area is estimated at 230,200 acres and net growing stock volume, mostly birch, at 231.9 million cubic feet. Net annual growth of growing stock is...

  14. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials.

    PubMed

    Watson, C; Pulford, I D; Riddell-Black, D

    2003-01-01

    The aim of this study was to ascertain whether metal resistance in willow (Salix) clones grown in a hydroponics screening test correlated with data from the same clones grown independently in a field trial. If so, results from a short-term, glasshouse-based system could be extrapolated to the field, allowing rapid identification of willows suitable for planting in metal-contaminated substrates without necessitating longterm field trials. Principal Components Analysis was used to show groups of clones and to assess the relative importance of the parameters measured in both the hydroponics system and the field; including plant response factors such as increase in stem height, as well as metal concentrations in plant tissues. The clones tested fell into two distinct groups. Salix viminalis clones and the basket willow Black Maul (S. triandra) were less resistant to elevated concentrations of heavy metals than a group of hardier clones, including S. burjatica 'Germany,' S.x dasyclados, S. candida and S. spaethii. The more resistant clones produced more biomass in the glasshouse and field, and had higher metal concentrations in the wood. The less resistant clones had greater concentrations of Cu and Ni in the bark, and produced less biomass in the glasshouse and field. Significant relationships were found between the response of the same clones grown the in short-term glasshouse hydroponics system and in the field.

  15. Minimum Irrigation Requirements for Cottonwood (Populus fremontii and P. deltoides) and Willow (Salix gooddingii) Grown in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Glenn, E. P.; Hartwell, S.; Morino, K.; Nagler, P. L.

    2009-12-01

    Native tree plots have been established in riverine irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the minimum effective irrigation requirements of the target species. We summarize preliminary (or unpublished) findings of a study or cottonwood (Populus spp.) and willow (Salix gooddingii) trees that were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona to determine plant water use. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three summer irrigation schedules: 6.2 mm d-1; 8.26 mm d-1 and 15.7 mm d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, but willows suffered partial die-back on this rate, and required 8.26 mm d-1 to maintain growth. These irrigation rates were required April 15 - September 15, but only 0.88 mm d-1 was required during the dormant periods of the year. Expressed as a fraction of reference crop evapotranspiration (ET/ETo), annual water requirements were 0.83 ETo for cottonwood and 1.01 ETo for willow, which includes irrigation plus precipitation. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use.

  16. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period January 1, 2003--March 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with improvements to both the Willow Island and Albright Generating Station cofiring systems. These improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  17. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gasmore » emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less

  18. Geologic map of the Willow Creek Reservoir SE Quadrangle, Elko, Eureka, and Lander Counties, Nevada

    USGS Publications Warehouse

    Wallace, Alan R.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Willow CreekReservoir 7.5-minute SE Quadrangle in Elko, Eureka, and LanderCounties, Nevada, with two cross sections and descriptions of 24 rock units. Accompanying text discusses the geology, paleogeography, and formation of the Ivanhoe Hg-Au district.

  19. Microbial expression profiles in the rhizosphere of willows depend on soil contamination

    PubMed Central

    Yergeau, Etienne; Sanschagrin, Sylvie; Maynard, Christine; St-Arnaud, Marc; Greer, Charles W

    2014-01-01

    The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation. PMID:24067257

  20. Winter distribution of willow flycatcher subspecies (Distribución Invernal de las Subespecies de Empidonax traillii)

    USGS Publications Warehouse

    Paxton, Eben H.; Unitt, Philip; Sogge, Mark K.; Whitfield, Mary; Keim, Paul

    2011-01-01

    Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies.

  1. Spatially distinct responses within willow to bark stripping by deer: effects on insect herbivory

    NASA Astrophysics Data System (ADS)

    Tanaka, Motonobu; Nakamura, Masahiro

    2015-10-01

    Within individual plants, cervid herbivory may cause positive or negative plant-mediated effects on insect herbivores, depending on where it occurs. Using a combination of field observations and artificial bark-stripping experiments in Hokkaido, Japan, we examined the plant-mediated effects of bark stripping by sika deer ( Cervus nippon yesoensis) on insect herbivory in two spatially distinct parts of willow ( Salix udensis) trees: resprouting leaves below bark-stripping wounds and canopy leaves above. Natural and artificial bark stripping stimulated resprouting from trunks below wounds. Resprouting leaves on bark-stripped trees had lower total phenolics, condensed tannin, and C/N ratios than did canopy leaves on control trees. Herbivory rates were higher in resprouting leaves on bark-stripped trees than in canopy leaves on controls. Conversely, above-wound canopy leaves on bark-stripped trees had higher total phenolics than did those on controls, while herbivory rates were lower in the canopy leaves of bark-stripped trees than in those on controls. These results demonstrate that plant-mediated effects of bark stripping diverge between plant tissues below and above wounds in individual willow trees. We submit that focusing on multiple plant parts can elucidate plant-mediated effects at the whole-plant scale.

  2. Comparing net ecosystem carbon dioxide exchange at adjacent commercial bioenergy and conventional cropping systems in Lincolnshire, United Kingdom

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Brooks, Milo; Evans, Jonathan; Finch, Jon; Rowe, Rebecca; Rylett, Daniel; McNamara, Niall

    2016-04-01

    The conversion of agricultural land to bioenergy plantations represents one option in the national and global effort to reduce greenhouse gas emissions whilst meeting future energy demand. Despite an increase in the area of (e.g. perennial) bioenergy crops in the United Kingdom and elsewhere, the biophysical and biogeochemical impacts of large scale conversion of arable and other land cover types to bioenergy cropping systems remain poorly characterised and uncertain. Here, the results of four years of eddy covariance (EC) flux measurements of net ecosystem CO2 exchange (NEE) obtained at a commercial farm in Lincolnshire, United Kingdom (UK) are reported. CO2 flux measurements are presented and compared for arable crops (winter wheat, oilseed rape, spring barely) and plantations of the perennial biofuel crops Miscanthus x. giganteus (C4) and short rotation coppice (SRC) willow (Salix sp.,C3). Ecosystem light and temperature response functions were used to analyse and compare temporal trends and spatial variations in NEE across the three land covers. All three crops were net in situ sinks for atmospheric CO2 but were characterised by large temporal and between site variability in NEE. Environmental and biological controls driving the spatial and temporal variations in CO2 exchange processes, as well as the influences of land management, will be analysed and discussed.

  3. Distribution and abundance of Least Bell’s Vireos (Vireo bellii pusillus) and Southwestern Willow Flycatchers (Empidonax traillii extimus) on the Middle San Luis Rey River, San Diego County, southern California—2017 data summary

    USGS Publications Warehouse

    Allen, Lisa D.; Howell, Scarlett L.; Kus, Barbara E.

    2018-04-20

    We surveyed for Least Bell’s Vireos (LBVI) (Vireo bellii pusillus) and Southwestern Willow Flycatchers (SWFL) (Empidonax traillii extimus) along the San Luis Rey River, between College Boulevard in Oceanside and Interstate 15 in Fallbrook, California (middle San Luis Rey River), in 2017. Surveys were conducted from April 13 to July 11 (LBVI) and from May 16 to July 28 (SWFL). We found 146 LBVI territories, at least 107 of which were occupied by pairs. Five additional transient LBVIs were detected. LBVIs used five different habitat types in the survey area: mixed willow, willow-cottonwood, willow-sycamore, riparian scrub, and upland scrub. Forty-four percent of the LBVIs occurred in habitat characterized as mixed willow and 89 percent of the LBVI territories occurred in areas with greater than 50 percent native plant cover. Of 16 banded LBVIs detected in the survey area, 8 had been given full color-band combinations prior to 2017. Four other LBVIs with single (natal) federal bands were recaptured and banded in 2017. Three LBVIs with single dark blue federal bands indicating that they were banded as nestlings on the lower San Luis Rey River and one LBVI with a single gold federal band indicating that it was banded as a nestling on Marine Corps Base Camp Pendleton (MCBCP) could not be recaptured for identification. One banded LBVI emigrated from the middle San Luis Rey River to the lower San Luis Rey River in 2017.One resident SWFL territory and one transient Willow Flycatcher of unknown subspecies (WIFL) were observed in the survey area in 2017. The resident SWFL territory, which was comprised of mixed willow habitat (5–50 percent native plant cover), was occupied by a single male from May 22 to June 21, 2017. No evidence of pairing or nesting activity was observed. The SWFL male was banded with a full color-combination indicating that he was originally banded as a nestling on the middle San Luis Rey River in 2014 and successfully bred in the survey area in 2016

  4. Effects of Flood Duration and Depth on Germination of Cherrybark, Post, Southern, White and Willow Oak Acorns

    Treesearch

    Yanfei Guo; Michael G. Shelton; Eric Heitzman

    2002-01-01

    Effects of flood duration (0, 10, 20, and 30 days) and depth (10 and 100 centimeters below a water surface) on acorn germination were tested for two bottomland oaks (cherrybark oak [Quercus pagoda Raf.] and willow oak [Q. phellos L.]) and three upland oaks (post oak [Q. stellata Wang.], southern red oak [

  5. Synthesis of carbon nanospheres using fallen willow leaves and adsorption of Rhodamine B and heavy metals by them.

    PubMed

    Qu, Jiao; Zhang, Qian; Xia, Yunsheng; Cong, Qiao; Luo, Chunqiu

    2015-01-01

    This paper focuses on the synthesis of carbon nanospheres (CNSs) using fallen willow leaves as a low-cost precursor. The scanning electron microscopy (SEM) image and transmission electron microscopy (TEM) image demonstrated that the structure of synthesized CNSs was spherical, with a diameter of 100 nm. The crystal structure and chemical information were characterized by Raman spectrum and energy-dispersive spectrum (EDS), respectively. BET results showed that the CNSs had a larger specific surface area of 294.32 m(2) g(-1), which makes it a potentially superior adsorbent. Rh-B and heavy metal ions such as Cu(2+), Zn(2+), and Cr(6+) were used as targets to investigate the adsorption capacity of the CNSs. The effects of adsorption parameters such as adsorption equilibrium time, dose of CNSs, adsorption kinetics, and effect factors were also studied. These findings not only established a cost-effective method of synthesizing CNSs using fallen willow leaves but also broadened the potential application range of these CNSs.

  6. Territoriality, site fidelity, and survivorship of willow flycatchers wintering in Costa Rica

    USGS Publications Warehouse

    Koronkiewicz, T.J.; Sogge, M.K.; van Riper, Charles; Paxton, E.H.

    2006-01-01

    We studied wintering Willow Flycatchers (Empidonax traillii) in two seasonal freshwater wetland habitats in northwestern Costa Rica during five boreal winters, to determine habitat occupancy, overwinter and between-year site and territory fidelity, and the degree to which the sexes maintain and defend winter territories. Both males and females used agonistic displays, song, and other vocalizations to maintain and defend mutually exclusive winter territories. Males were generally more abundant than females, but this varied by site and year. There was no significant difference in male and female territory size, nor any indication of sexual habitat segregation. Similarity in morphology and aggressiveness between the sexes may account for the lack of habitat segregation and the ability of females to maintain territories at wintering sites. Each year, 80%-92% of banded flycatchers that were present in midwinter remained at the site until late winter; of these, 86%-100% of individuals maintained the same territories throughout the entire period. We also observed nonterritorial floaters that subsequently established and held winter territories. Between-year site fidelity averaged 68%, and almost all returning birds established territories with boundaries similar to the previous year. Between-year apparent survivorship estimates ranged annually from 54%-72%, with no difference between sites but weak support for higher survivorship of males compared to females. Values for winter site and territory fidelity were generally higher than those reported for other species and for Willow Flycatchers on the breeding grounds; between-year survivorship estimates were similar to those reported for breeding flycatchers. ?? The Cooper Ornithological Society 2006.

  7. Evaluation of spectral light management on growth of container-grown willow oak, nuttall oak and summer red maple

    USDA-ARS?s Scientific Manuscript database

    Plant response to blue, red, gray or black shade cloth was evaluated with willow oak (Quercus phellos L.), Nuttall oak (Quercus nuttallii Palmer, Nuttall) and Summer Red maple (Acer rubrum L. ‘Summer Red’) liners. Light transmitted through the colored shade cloth had no influence on germination of ...

  8. Incorporating ecological and nonecological concerns in the restoration of a rare, high-elevation Bebb willow riparian community

    Treesearch

    Laura E. DeWald; Abe E. Springer

    2001-01-01

    Activities were initiated by The Nature Conservancy, the USDA Forest Service, and the Northern Arizona University School of Forestry and Department of Geology in 1996 to restore hydrologic and ecological function to a high-elevation Bebb willow (Salix bebbiana) and mixed grass riparian community in Hart Prairie, near Flagstaff, AZ. Initial restoration removed small...

  9. From plant extract to molecular panacea: a commentary on Stone (1763) ‘An account of the success of the bark of the willow in the cure of the agues’

    PubMed Central

    Wood, John N.

    2015-01-01

    The application of aspirin-like drugs in modern medicine is very broad, encompassing the treatment of inflammation, pain and a variety of cardiovascular conditions. Although anecdotal accounts of willow bark extract as an anti-inflammatory drug have occurred since written records began (for example by Hippocrates), the first convincing demonstration of a potent anti-pyretic effect of willow bark containing salicylates was made by the English cleric Edward Stone in the late eighteenth century. Here, we discuss the route to optimizing and understanding the mechanism of action of anti-inflammatory drugs that have their origins in Stone's seminal study, ‘An account of the success of the bark of the willow in the cure of agues’. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750237

  10. Isolation, identification, and quantification of potential defensive compounds in the viceroy butterfly and its larval host-plant, Carolina willow.

    PubMed

    Prudic, Kathleen L; Khera, Smriti; Sólyom, Anikó; Timmermann, Barbara N

    2007-06-01

    The viceroy-monarch and viceroy-queen butterfly associations are classic examples of mimicry. These relationships were originally classified as Batesian, or parasitic, but were later reclassified as Müllerian, or mutalistic, based on predator bioassays. The Müllerian reclassification implies that viceroy is unpalatable because it too is chemically defended like the queen and the monarch. However, unlike the queen and the monarch, the viceroy defensive chemistry has remained uncharacterized. We demonstrate that the viceroy butterfly (Limenitis archippus, Nymphalidae) not only sequesters nonvolatile defensive compounds from its larval host-plant, the Carolina willow (Salix caroliniana, Salicaceae), but also secretes volatile defensive compounds when disturbed. We developed liquid chromatography-mass spectrometry-mass spectrometry methods to identify a set of phenolic glycosides shared between the adult viceroy butterfly and the Carolina willow, and solid phase microextraction and gas chromatography-mass spectrometry methods to identify volatile phenolic compounds released from stressed viceroy butterflies. In both approaches, all structures were characterized based on their mass spectral fragmentation patterns and confirmed with authentic standards. The phenolics we found are known to deter predator attack in other prey systems, including other willow-feeding insect species. Because these compounds have a generalized defensive function at the concentrations we described, our results are consistent with the Müllerian reclassification put forth by other researchers based on bioassay results. It seems that the viceroy butterfly possesses chemical defenses different from its monarch and queen butterfly counterparts (phenolic glycosides vs. cardiac glycosides, respectively), an unusual phenomenon in mimicry warranting future study.

  11. Ability of LANDSAT-8 Oli Derived Texture Metrics in Estimating Aboveground Carbon Stocks of Coppice Oak Forests

    NASA Astrophysics Data System (ADS)

    Safari, A.; Sohrabi, H.

    2016-06-01

    The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics

  12. Production of willow oak acorns in an Arkansas greentree reservoir: an evaluation of regeneration and waterfowl forage potential

    Treesearch

    M. R. Guttery; A. W. Ezell; J. D. Hodges; A. J. Londo; R. P. Maiers

    2010-01-01

    Greentree reservoirs (GTRs) provide critical habitat for a broad suite of species. Unfortunately, many GTRs are mismanaged, leading to undesirable successional changes and possible habitat degradation. This study evaluates willow oak acorn production in terms of the potential for natural regeneration and waterfowl forage. During the fall and winter of 2004 and 2005,...

  13. Uptake, accumulation and metabolic response of ferricyanide in weeping willows.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2009-01-01

    The remediation potential and metabolic responses of plants to ferricyanide were investigated using pre-rooted weeping willows (Salix babylonica L.) grown hydroponically in growth chambers and treated with potassium ferricyanide. Positive responses were observed for the plants exposed to willows can take up

  14. Glyphosate-Dependent Inhibition of Photosynthesis in Willow.

    PubMed

    Gomes, Marcelo P; Le Manac'h, Sarah G; Hénault-Ethier, Louise; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2017-01-01

    We studied the physiological mechanisms involved in the deleterious effects of a glyphosate-based herbicide (Factor ® 540) on photosynthesis and related physiological processes of willow ( Salix miyabeana cultivar SX64) plants. Sixty-day-old plants grown under greenhouse conditions were sprayed with different rates (0, 1.4, 2.1, and 2.8 kg a.e ha -1 ) of the commercial glyphosate formulated salt Factor ® 540. Evaluations were performed at 0, 6, 24, 48, and 72 h after herbicide exposure. We established that the herbicide decreases chlorophyll, carotenoid and plastoquinone contents, and promotes changes in the photosynthetic apparatus leading to decreased photochemistry which results in hydrogen peroxide (H 2 O 2 ) accumulation. H 2 O 2 accumulation triggers proline production which can be associated with oxidative protection, NADP + recovery and shikimate pathway stimulation. Ascorbate peroxidase and glutathione peroxidase appeared to be the main peroxidases involved in the H 2 O 2 scavenging. In addition to promoting decreases of the activity of the antioxidant enzymes, the herbicide induced decreases in ascorbate pool. For the first time, a glyphosate-based herbicide mode of action interconnecting its effects on shikimate pathway, photosynthetic process and oxidative events in plants were presented.

  15. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared anmore » environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.« less

  16. Glyphosate-Dependent Inhibition of Photosynthesis in Willow

    PubMed Central

    Gomes, Marcelo P.; Le Manac’h, Sarah G.; Hénault-Ethier, Louise; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2017-01-01

    We studied the physiological mechanisms involved in the deleterious effects of a glyphosate-based herbicide (Factor® 540) on photosynthesis and related physiological processes of willow (Salix miyabeana cultivar SX64) plants. Sixty-day-old plants grown under greenhouse conditions were sprayed with different rates (0, 1.4, 2.1, and 2.8 kg a.e ha-1) of the commercial glyphosate formulated salt Factor® 540. Evaluations were performed at 0, 6, 24, 48, and 72 h after herbicide exposure. We established that the herbicide decreases chlorophyll, carotenoid and plastoquinone contents, and promotes changes in the photosynthetic apparatus leading to decreased photochemistry which results in hydrogen peroxide (H2O2) accumulation. H2O2 accumulation triggers proline production which can be associated with oxidative protection, NADP+ recovery and shikimate pathway stimulation. Ascorbate peroxidase and glutathione peroxidase appeared to be the main peroxidases involved in the H2O2 scavenging. In addition to promoting decreases of the activity of the antioxidant enzymes, the herbicide induced decreases in ascorbate pool. For the first time, a glyphosate-based herbicide mode of action interconnecting its effects on shikimate pathway, photosynthetic process and oxidative events in plants were presented. PMID:28261257

  17. Sequence polymorphism in candidate genes for differences in winter plumage between Scottish and Scandinavian Willow Grouse (Lagopus lagopus).

    PubMed

    Skoglund, Pontus; Höglund, Jacob

    2010-04-23

    Population variation in the degree of seasonal polymorphism is rare in birds, and the genetic basis of this phenomenon remains largely undescribed. Both sexes of Scandinavian and Scottish Willow grouse (Lagopus lagopus) display marked differences in their winter phenotypes, with Scottish grouse retaining a pigmented plumage year-round and Scandinavian Willow grouse molting to a white morph during winter. A widely studied pathway implicated in vertebrate pigmentation is the melanin system, for which functional variation has been characterised in many taxa. We sequenced coding regions from four genes involved in melanin pigmentation (DCT, MC1R, TYR and TYRP1), and an additional control involved in the melanocortin pathway (AGRP), to investigate the genetic basis of winter plumage in Lagopus. Despite the well documented role of the melanin system in animal coloration, we found no plumage-associated polymorphism or evidence for selection in a total of approximately 2.6 kb analysed sequence. Our results indicate that the genetic basis of alternating between pigmented and unpigmented seasonal phenotypes is more likely explained by regulatory changes controlling the expression of these or other loci in the physiological pathway leading to pigmentation.

  18. The potential for short rotation energy forestry on restored landfill caps.

    PubMed

    Nixon, D J; Stephens, W; Tyrrel, S F; Brierley, E D

    2001-05-01

    This review examines the potential for producing biomass on restored landfills using willow and poplar species in short rotation energy forestry. In southern England, the potential production may be about 20 t ha(-1) of dry stem wood annually. However, actual yields are likely to be constrained by detrimental soil conditions, including shallow depth, compaction, low water holding capacity and poor nutritional status. These factors will affect plant growth by causing drought, waterlogging, poor soil aeration and nutritional deficiencies. Practical solutions to these problems include the correct placement and handling of the agricultural cap material, soil amelioration using tillage and the addition of organic matter (such as sewage sludge), irrigation (possibly using landfill leachate), the installation of drainage and the application of inorganic fertilizers. The correct choice of species and clone, along with good site management are also essential if economically viable yields are to be obtained. Further investigations are required to determine the actual yields that can be obtained on landfill sites using a range of management inputs.

  19. Electrical Capacitance as a Predictor of Root Dry Weight in Shrub Willow ( Salix; Salicaceae) Parents and Progeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Craig H.; Smart, Lawrence B.

    Here, the root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow ( Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness inmore » allometric models for root and stem dry biomass. As a result, strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Here, this work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration.« less

  20. Electrical Capacitance as a Predictor of Root Dry Weight in Shrub Willow ( Salix; Salicaceae) Parents and Progeny

    DOE PAGES

    Carlson, Craig H.; Smart, Lawrence B.

    2016-08-19

    Here, the root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow ( Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness inmore » allometric models for root and stem dry biomass. As a result, strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Here, this work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration.« less

  1. Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids

    PubMed Central

    2014-01-01

    Background Genetic improvement of shrub willow (Salix), a perennial energy crop common to temperate climates, has led to the development of new cultivars with improved biomass yield, pest and disease resistance, and biomass composition suitable for bioenergy applications. These improvements have largely been associated with species hybridization, yet little is known about the genetic mechanisms responsible for improved yield and performance of certain willow species hybrids. Results The top performing genotypes in this study, representing advanced pedigrees compared with those in previous studies, were mostly triploid in nature and outperformed current commercial cultivars. Of the genotypes studied, the diploids had the lowest mean yield of 8.29 oven dry Mg ha−1 yr−1, while triploids yielded 12.65 Mg ha−1 yr−1, with the top five producing over 16 Mg ha−1 yr−1. Triploids had high stem area and height across all three years of growth in addition to greatest specific gravity. The lowest specific gravity was observed among the tetraploid genotypes. Height was the early trait most correlated with and the best predictor of third-year yield. Conclusions These results establish a paradigm for future breeding and improvement of Salix bioenergy crops based on the development of triploid species hybrids. Stem height and total stem area are effective traits for early prediction of relative yield performance. PMID:24661804

  2. Detection of Salicylic Acid in Willow Bark: An Addition to a Classic Series of Experiments in the Introductory Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clay, Matthew D.; McLeod, Eric J.

    2012-01-01

    Salicylic acid and its derivative, acetylsalicylic acid, are often encountered in introductory organic chemistry experiments, and mention is often made that salicylic acid was originally isolated from the bark of the willow tree. This biological connection, however, is typically not further pursued, leaving students with an impression that biology…

  3. Maintenance and operation of the multispectral data collection and reproduction facilities of the Willow Run Laboratories

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.; Stewart, S. R.

    1972-01-01

    The accomplishments in multispectral mapping during 1970 and (fiscal year) 1971 are presented. The mapping was done with the instrumented C-47 aircraft owned and operated by Willow Run Laboratories of The University of Michigan. Specific information for flight operations sponsored by NASA/MSC (Manned Spacecraft Center) in 1970 and fiscal year 1971 is presented, and a total listing of flights for 1968, 1969, 1970, and fiscal year 1971 is included in the appendices. The data-collection and reproduction facilities are described.

  4. Stump sprouting of northern pin oak on nutrient-poor sandy soils in central Wisconsin

    Treesearch

    Kevin M. Schwartz; Michael C. Demchik

    2013-01-01

    Coppice with two to three reserve trees per acre is the generally accepted practice (GAP) for rotating oak stands on nutrient-poor, sandy sites (colloquially called "scrub oak sites") in Wisconsin. The future stocking of the stand is therefore dependent predominantly on stump sprouts with varying levels of contribution from advance regeneration. Two groups of...

  5. Discovering the Factors Contributing to the Decline and Mortality of Willow Oaks in the D'Arbonne National Wildlife Refuge, LA.

    Treesearch

    Theodor D. Leininger

    1998-01-01

    Since the early 1990's, mature willow oaks (Quercus phellos L.) on certain sites in the D'Arbonne National Wildlife Refuge(DNWR), in northeast Louisiana, have shown crown dieback. The die back is progressive with some trees continuing to decline, eventually leading to death, within one to three years. This condition has caused the Refuge forester to...

  6. Soil fungal and bacterial responses to conversion of open land to short-rotation woody biomass crops

    DOE PAGES

    Xue, Chao; Penton, Christopher Ryan; Zhang, Bangzhou; ...

    2016-01-06

    Short-rotation woody biomass crops (SRWCs) have been proposed as an alternative feedstock for biofuel production in the northeastern US that leads to the conversion of current open land to woody plantations, potentially altering the soil microbial community structures and hence functions. We used pyrosequencing of 16S and 28S rRNA genes in soil to assess bacterial and fungal populations when ‘marginal’ grasslands were converted into willow (Salix spp.) and hybrid poplar (Populus spp.) plantations at two sites with similar soils and climate history in northern Michigan (Escanaba; ES) and Wisconsin (Rhinelander; RH). In only three growing seasons, the conversion significantly alteredmore » both the bacterial and fungal communities, which were most influenced by site and then vegetation. The fungal community showed greater change than the bacterial community in response to land conversion at both sites with substantial enrichment of putative pathogenic, ectomycorrhizal, and endophytic fungi associated with poplar and willow. Conversely, the bacterial community structures shifted, but to a lesser degree, with the new communities dissimilar at the two sites and most correlated with soil nutrient status. The bacterial phylum Nitrospirae increased after conversion and was negatively correlated to total soil nitrogen, but positively correlated to soil nitrate, and may be responsible for nitrate accumulation and the increased N 2O emissions previously reported following conversion at these sites. It was determined that the legacy effect of a much longer grassland history and a second dry summer at the ES site may have influenced the grassland (control) microbial community to remain stable while it varied at the RH site.« less

  7. Soil fungal and bacterial responses to conversion of open land to short-rotation woody biomass crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Chao; Penton, Christopher Ryan; Zhang, Bangzhou

    Short-rotation woody biomass crops (SRWCs) have been proposed as an alternative feedstock for biofuel production in the northeastern US that leads to the conversion of current open land to woody plantations, potentially altering the soil microbial community structures and hence functions. We used pyrosequencing of 16S and 28S rRNA genes in soil to assess bacterial and fungal populations when ‘marginal’ grasslands were converted into willow (Salix spp.) and hybrid poplar (Populus spp.) plantations at two sites with similar soils and climate history in northern Michigan (Escanaba; ES) and Wisconsin (Rhinelander; RH). In only three growing seasons, the conversion significantly alteredmore » both the bacterial and fungal communities, which were most influenced by site and then vegetation. The fungal community showed greater change than the bacterial community in response to land conversion at both sites with substantial enrichment of putative pathogenic, ectomycorrhizal, and endophytic fungi associated with poplar and willow. Conversely, the bacterial community structures shifted, but to a lesser degree, with the new communities dissimilar at the two sites and most correlated with soil nutrient status. The bacterial phylum Nitrospirae increased after conversion and was negatively correlated to total soil nitrogen, but positively correlated to soil nitrate, and may be responsible for nitrate accumulation and the increased N 2O emissions previously reported following conversion at these sites. It was determined that the legacy effect of a much longer grassland history and a second dry summer at the ES site may have influenced the grassland (control) microbial community to remain stable while it varied at the RH site.« less

  8. First-Year Survival and Growth of Bareroot and Container Water Oak and Willow Oak Seedlings Grown at Different Levels of Mineral Nutrition

    Treesearch

    Hans Williams; Matthew Stroupe

    2002-01-01

    Bareroot and container water oak (Quercus nigra) and willow oak (Quercus phellos) seedlings were treated with 3 different levels of nitrogen (N) mineral fertilizer applied during the growing season in the nursery. Comparisons were made between species, N treatments, and stock-types for seedling morphology, first-year survival and...

  9. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil.

    PubMed

    Gonzalez, Emmanuel; Brereton, Nicholas J B; Marleau, Julie; Guidi Nissim, Werther; Labrecque, Michel; Pitre, Frederic E; Joly, Simon

    2015-10-12

    High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.

  10. Inhibition of proinflammatory biomarkers in THP1 macrophages by polyphenols derived from chamomile, meadowsweet and willow bark.

    PubMed

    Drummond, Elaine M; Harbourne, Niamh; Marete, Eunice; Martyn, Danika; Jacquier, Jc; O'Riordan, Dolores; Gibney, Eileen R

    2013-04-01

    Antiinflammatory compounds in the diet can alleviate excessive inflammation, a factor in the pathogenesis of common diseases such as rheumatoid arthritis, atherosclerosis and diabetes. This study examined three European herbs, chamomile (Matricaria chamomilla), meadowsweet (Filipendula ulmaria L.) and willow bark (Salix alba L.), which have been traditionally used to treat inflammation and their potential for use as antiinflammatory agents. Aqueous herbal extracts and isolated polyphenolic compounds (apigenin, quercetin and salicylic acid, 0-100 μM) were incubated with THP1 macrophages, and interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-α) were measured. At concentrations of 10 μM, both apigenin and quercetin reduced IL-6 significantly ( p < 0.05). Apigenin at 10 μM and quercetin at 25 μM reduced TNF-α significantly ( p < 0.05). Amongst the herbal extracts, willow bark had the greatest antiinflammatory activity at reducing IL-6 and TNF-α production. This was followed by meadowsweet and then chamomile. The lowest effective antiinflammatory concentrations were noncytotoxic (MTT mitochondrial activity assay). The Comet assay, which was used to study the protective effect of the isolated phenols against oxidative damage, showed positive results for all three polyphenols. These are the first findings that demonstrate the antiinflammatory capacity of these herbal extracts. Copyright © 2012 John Wiley & Sons, Ltd.

  11. The Willow Hill Community Health Assessment: Assessing the Needs of Children in a Former Slave Community.

    PubMed

    Alfonso, Moya L; Jackson, Gayle; Jackson, Alvin; Hardy, DeShannon; Gupta, Akrati

    2015-10-01

    The overall purpose of this community needs assessment was to explore the perceptions of health and educational needs among youth residing in a rural Georgia community, document existing assets that could be utilized to meet those needs, and to identify socioeconomic barriers and facilitators in health education. A sequential mixed method design was used. Intercept surveys were conducted followed by individual, key informant interviews and a focus group. Survey data was entered into an Excel spreadsheet and SPSS for analysis and descriptive statistics including means and frequencies were calculated. For qualitative interviews, full transcripts were created from audio-recordings and uploaded into NVivo for content analysis. Several health issues were highlighted by the Willow Hill/Portal Georgia community members, including teachers, parents, youth and Willow Hill Heritage and Renaissance Center board members. Some of the health issues identified by youth in the community were low levels of physical activity, obesity, diabetes, lack of healthy food choices, and access to health care services. Including the issues identified by youth, the parents, teachers and board members identified additional health issues in the community such as asthma, hygiene and lack of dental and eye care facilities. Overall, there is a need for better infrastructure and awareness among community members. Utilizing identified assets, including active community leaders, involved faith-based organizations, commitment of community members, presence of land resources, and commitment to physical activity and sports, could modify the current community landscape.

  12. Geographic variation in the plumage coloration of willow flycatchers Empidonax traillii

    USGS Publications Warehouse

    Paxton, Eben H.; Sogge, Mark K.; Koronkiewicz, Thomas J.; McLeod, Mary Anne; Theimer, Tad C.

    2010-01-01

    The ability to identify distinct taxonomic groups of birds (species, subspecies, geographic races) can advance ecological research efforts by determining connectivity between the non-breeding and breeding grounds for migrant species, identifying the origin of migrants, and helping to refine boundaries between subspecies or geographic races. Multiple methods are available to identify taxonomic groups (e.g., morphology, genetics), and one that has played an important role for avian taxonomists over the years is plumage coloration. With the advent of electronic devices that can quickly and accurately quantify plumage coloration, the potential of using coloration as an identifier for distinct taxonomic groups, even when differences are subtle, becomes possible. In this study, we evaluated the degree to which plumage coloration differs among the four subspecies of the willow flycatcher Empidonax traillii, evaluated sources of variation, and considered the utility of plumage coloration to assign subspecies membership for individuals of unknown origin. We used a colorimeter to measure plumage coloration of 374 adult willow flycatchers from 29 locations across their breeding range in 2004 and 2005. We found strong statistical differences among the mean plumage coloration values of the four subspecies; however, while individuals tended to group around their respective subspecies' mean color value, the dispersion of individuals around such means overlapped. Mean color values for each breeding site of the three western subspecies clustered together, but the eastern subspecies' color values were dispersed among the other subspecies, rather than distinctly clustered. Additionally, sites along boundaries showed evidence of intergradation and intermediate coloration patterns. We evaluated the predictive power of colorimeter measurements on flycatchers by constructing a canonical discriminant model to predict subspecies origin of migrants passing through the southwestern U

  13. SRWC bioenergy productivity and economic feasibility on marginal lands.

    PubMed

    Ghezehei, Solomon B; Shifflett, Shawn D; Hazel, Dennis W; Nichols, Elizabeth Guthrie

    2015-09-01

    Evolving bioenergy markets necessitate consideration of marginal lands for woody biomass production worldwide particularly the southeastern U.S., a prominent wood pellet exporter to Europe. Growing short rotation woody crops (SRWCs) on marginal lands minimizes concerns about using croplands for bioenergy production and reinforces sustainability of wood supply to existing and growing global biomass markets. We estimated mean annual aboveground green biomass increments (MAIs) and assessed economic feasibility of various operationally established (0.5 ha-109 ha) SRWC stands on lands used to mitigate environmental liabilities of municipal wastewater, livestock wastewater and sludge, and subsurface contamination by petroleum and pesticides. MAIs (Mg ha(-1) yr(-1)) had no consistent relationship with stand density or age. Non-irrigated Populus, Plantanus occidentalis L. and Pinus taeda L. stands produced 2.4-12.4 Mg ha(-1) yr(-1). Older, irrigated Taxodium distchum L., Fraxinus pennsylvanica L., and coppiced P. occidentalis stands had higher MAIs (10.6-21.3 Mg ha(-1) yr(-1)) than irrigated Liquidambar styraciflua L. and non-coppiced, irrigated P. occidentalis (8-18 Mg ha(-1) yr(-1)). Natural hardwood MAIs at 20-60 years were less than hardwood and P. taeda productivities at 5-20 years. Unlike weed control, irrigation and coppicing improved managed hardwood productivity. Rotation length affected economic outcomes although the returns were poor due to high establishment and maintenance costs, low productivities and low current stumpage values, which are expected to quickly change with development of robust global markets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Physiological and proteomic responses of different willow clones (Salix fragilis x alba) exposed to dredged sediment contaminated by heavy metals.

    PubMed

    Evlard, Aricia; Sergeant, Kjell; Ferrandis, Salvador; Printz, Bruno; Renaut, Jenny; Guignard, Cedric; Paul, Roger; Hausman, Jean-Francois; Campanella, Bruno

    2014-01-01

    High biomass producing species are considered as tools for remediation of contaminated soils. Willows (Salix spp.) are prominent study subjects in this regard. In this study, different willow clones (Salix fragilis x alba) were planted on heavy-metal polluted dredging sludge. A first objective was assessment of the biomass production for these clones. Using a Gupta statistic, four clones were identified as high biomass producers (HBP). For comparison, a group of four clones with lowest biomass production were selected (LBP). A second objective was to compare metal uptake as well as the physiological and proteomic responses of these two groups. All these complementary data's allow us to have a better picture of the health of the clones that would be used in phytoremediation programs. Cd, Zn, and Ni total uptake was higher in the HBPs but Pb total uptake was higher in LBPs. Our proteomic and physiological results showed that the LBPs were able to maintain cellular activity as much as the HBPs although the oxidative stress response was more pronounced in the LBPs. This could be due to the high Pb content found in this group although a combined effect of the other metals cannot be excluded.

  15. Optimal management and productivity of Eucalyptus grandis on former phosphate mined and citrus lands in central and southern Florida: influence of genetics and spacing

    Treesearch

    Kyle W. Fabbro; Donald L. Rockwood

    2016-01-01

    Eucalyptus short rotation woody crops (SRWC) with superior genotypes are promising in central and south Florida due to their fast growth, freeze resilience, coppicing ability, and site tolerance. Four Eucalyptus grandis cultivars, E.nergy™ G1, G2, G3, and/or G5, were established in 2009 at varying planting densities on a...

  16. Female-biased sex ratio, polygyny, and persistence in the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus)

    USGS Publications Warehouse

    Kus, Barbara E.; Howell, Scarlett; Wood, Dustin A.

    2017-01-01

    Demographic changes in populations, such as skewed sex ratios, are of concern to conservationists, especially in small populations in which stochastic and other events can produce declines leading to extirpation. We documented a decline in one of the few remaining populations of Southwestern Willow Flycatcher (Empidonax traillii extimus) in southern California, USA, which dropped from 40 to 5 adults between 2000 and 2015. Declines were unequal between sexes (94% for males, 82% for females). Adult sex ratios were female-biased in 10 of 16 yr. The proportion of paired males that were polygynous ranged from 0% to 100%, depending on the ratio of females to males in the adult population. Some males paired with up to 5 females simultaneously. We investigated the role of nestling sex ratio in the female-biased adult sex ratio by using genetic techniques to determine sex from blood samples collected from 162 nestlings in 72 nests from 2002 to 2009. Both population-level and within-brood nestling sex ratios were female-biased, and were not influenced by nest order (first or subsequent), parental mating type (monogamous or polygynous), or year. Disproportionately more females than males were recruited into the breeding population, mirroring nestling and fledgling sex ratios. It thus appears that a skewed nestling sex ratio has contributed to a female-biased adult population, which in turn has influenced mating behavior. We propose that the capacity for polygyny, which generally occurs at low levels in Southwestern Willow Flycatchers, has allowed this population to persist through a decline that might otherwise have resulted in extinction.

  17. Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study

    Treesearch

    Marjana Regvar; Matevz Likar; Andrej Piltaver; Nives Kugonic; Jane E. Smith

    2010-01-01

    Goat willow (Salix caprea L.) was selected in a previous vegetation screening study as a potential candidate for the later-stage phytostabilisation efforts at a heavily metal polluted site in Slovenia. The aims of this study were to identify the fungi colonising roots of S. caprea along the gradient of vegetation succession and...

  18. PERMANENT GENETIC RESOURCES: Consensus primers of cyp73 genes discriminate willow species and hybrids (Salix, Salicaceae).

    PubMed

    Trung, Le Quang; VAN Puyvelde, Karolien; Triest, Ludwig

    2008-03-01

    Consensus primers, based on exon sequences of the cyp73 gene family coding for cinnamate 4-hydroxylase (C4H) of the lignin biosynthesis pathway, were designed for the tetraploid willow species Salix alba and Salix fragilis. Diagnostic alleles at species level were observed among introns of three cyp73 genes and allowed unambiguous detection of the first generation and introgressed hybrids in populations. Progeny analysis of a female S. alba with a male introgressed hybrid confirmed the codominant inheritance of each intron. Sequences of the diagnostic alleles of both species were similar to those found in the hybrids. © 2007 The Authors.

  19. 21st Session of the International Poplar Commission (IPC-2000): poplar and willow culture: meeting the needs of society and the environment; 200 September 24-28; Vancouver, WA.

    Treesearch

    J.G. Isebrands; J. Richardson

    2000-01-01

    Research results and ongoing research activities on poplar and willow breeding, diseases, insects, production, and utilization are described in 220 abstracts from the International Poplar Commission meeting in Vancouver, Washington, September 24-28, 2000.

  20. Phytoremediation potential of poplar and willow species in small scale constructed wetland for boron removal.

    PubMed

    Yıldırım, Kubilay; Kasım, Gözde Çıtır

    2018-03-01

    Boron (B) pollution is an expanding environmental problem throughout the world due to intensive mining practices and extensive usage of B in agricultural chemicals and industrial products in recent years. The purpose of this study was to investigate B removal performance of four poplar and four willow species in small scale Constructed Wetland (CW). Rooted cuttings of tested species were treated with simulated wastewater having five elevated B concentrations (0.5, 5, 10, 20 and 40 ppm). All the tested species could resist up to 20 ppm wastewater B supply and could regrow from their roots in the soil having maximum 15 mg/kg B content. The result of the study indicated that 65% ± 5.3 of B was removed from the wastewater in 5 ppm B treatment while the same efficiency decreased to 45% ± 4.6 at 40 ppm B supply. The average effect of sediment on B removal was found to be approximately 20% for all B treatments while the remaining part of the loaded B was removed from the CW within effluent (35-54%). Therefore, actual effects of plant species on B removal was ranged from 45% to 25% between 5 and 40 ppm B treatments. Mass B removal within plant body (phytextraction) comprised the 13-10% of total loaded B in CW while the remaining part of the loaded B (31-15%) was stabilized into the sediment with the effects of poplar and willow roots. These results presented clear understanding of effective B purification mechanisms in CWs. Boron phytextraction capacity of a plant species was less effective than its phytstabilization efficiency which increase filtering capacity of the sediment and stabilization of more B around the rhizosphere. In terms of their B removal ability, P.nigra and S.anatolica had the highest B removal capacities with phytextraction (20-11%) while S.alba, P.alba and S.babylonica had more phytstabilizaiton performance (40-15%) in CW. Disposal of B loaded plant material create another environmental costs for CW applications. Therefore, B loaded

  1. Site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii)

    USGS Publications Warehouse

    Sedgwick, James A.

    2004-01-01

    I investigated the causes and consequences of adult breeding-site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii) in southeastern Oregon over a 10-year period, testing the general hypothesis that fidelity and dispersal distances are influenced by previous breeding performance. Willow Flycatchers adhered to the generally observed tendencies of passerine birds for low natal philopatry and high breedingsite fidelity. Site fidelity (return to the study area) of adult males (52.0%) and females (51.3%), and median dispersal distances between seasons (16 m vs. 19 m) were similar. Previous breeding performance and residency (age-experience), but not study-site quality, explained site fidelity in females. Site fidelity of females rearing 4–5 young (64.4%) exceeded that of unsuccessful females (40.0%), breeding dispersal was less (successful: 15 m; unsuccessful: 33 m), and novice residents were more site-faithful than former residents. Probability of site fidelity was higher for previously successful females (odds ratio = 4.76), those with greater seasonal fecundity (odds ratio = 1.58), novice residents (odds ratio = 1.41), and unparasitized females (odds ratio = 2.76). Male site fidelity was not related to residency, site quality, or previous breeding performance. Territory fidelity (return to the previous territory) in females was best explained by previous breeding performance, but not by site quality or residency. Previously successful females were more likely to return to their territory of the previous season than either unsuccessful (odds ratio = 14.35) or parasitized birds (odds ratio = 6.38). Male territory fidelity was not related to residency, site quality, or previous breeding performance. Natal philopatry was low (7.8%) and similar for males and females. Site quality appeared to influence philopatry, given that no birds reared at a low-quality study site returned there to breed, and birds reared there dispersed

  2. Woody species for biomass production in Florida: Final report, 1983-1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockwood, D.L.; Dippon, D.R.; Lesney, M.S.

    1988-02-01

    From 1983 to 1988, this project's short rotation woody crop research enhanced the potential of Eucalyptus species in Florida. A fourth-generation E. grandis seed orchard could produce over 100 million seedlings annually for use in southern Florida. Seed from the 50 best trees in the orchard may double the average productivity in the preceding genetic base population. Three frost-resilient and rapid-growing E. grandis clones are being commercially propagated by tissue culture, and over 250 additional clonal candidates are under test. While rooted cuttings of selected clones could be mass produced in less than seven months, micropropagation may reduce the costmore » of vegetative propagation. Eucalyptus tereticornis and E. camaldulensis demonstrated vigor and frost-hardiness and may be suitable for sandhills sites in central Florida and wetter sites further south. For northern Florida, E. amplifolia had good frost-resilience and remained vigorous through four coppice rotations. Coppicing of other eucalypts, notably E. grandis, is very dependent on climatic factors. Biomass properties of the eucalypts vary due to genetics and age but appear suitable for certain fermentation and pulping processes. Economic analyses suggest that E. grandis and E. amplifolia may be profitably grown and that short rotation culture appears feasible for slash pine, but cannot yet be advised for sand pine. 126 refs., 24 figs., 67 tabs.« less

  3. Bio-Energy Retains Its Mitigation Potential Under Elevated CO2

    PubMed Central

    Bellassen, Valentin; Njakou Djomo, Sylvestre; Lukac, Martin; Calfapietra, Carlo; Janssens, Ivan A.; Hoosbeek, Marcel R.; Viovy, Nicolas; Churkina, Galina; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart

    2010-01-01

    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main Findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/Significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink. PMID:20657833

  4. Seasonal Variation in the Hormone Content of Willow: II. Effect of Photoperiod on Growth and Abscisic Acid Content of Trees under Field Conditions.

    PubMed

    Alvim, R

    1978-11-01

    Levels of abscisic acid were followed in the xylem sap, mature leaves, and apices of field-grown willow (Salix viminalis L.) during the summer months, under natural and artificially extended photoperiods. Although the long day treatment prevented the general onset of dormancy, the plants grown under natural daylengths showed lower concentration of abscisic acid than those kept under long days.

  5. Willow Fire Near Payson, Arizona

    NASA Technical Reports Server (NTRS)

    2004-01-01

    On July 3, 2004, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the Willow fire near Payson, Arizona. The image is being used by the United States Department of Agriculture's Forest Service Remote Sensing Applications Center (RSAC). The image combines data from the visible and infrared wavelength regions to highlight: the burned areas in dark red; the active fires in red-orange; vegetation in green; and smoke in blue.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. Science Team is located at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of

  6. New Rust Disease of Korean Willow (Salix koreensis) Caused by Melampsora yezoensis, Unrecorded Pathogen in Korea.

    PubMed

    Yun, Yeo Hong; Ahn, Geum Ran; Yoon, Seong Kwon; Kim, Hoo Hyun; Son, Seung Yeol; Kim, Seong Hwan

    2016-12-01

    During the growing season of 2015, leaf specimens with yellow rust spots were collected from Salix koreensis Andersson, known as Korean willow, in riverine areas in Cheonan, Korea. The fungus on S. koreensis was identified as the rust species, Melampsora yezoensis , based on the morphology of urediniospores observed by light and scanning electron microscopy, and the molecular properties of the internal transcribed spacer rDNA region. Pathogenicity tests confirmed that the urediniospores are the causal agent of the rust symptoms on the leaves and young stems of S. koreensis . Here, we report a new rust disease of S. koreensis caused by the rust fungus, M. yezoensis , a previously unrecorded rust pathogen in Korea.

  7. Vitamin C deficiency in growing willow ptarmigan (Lagopus lagopus lagopus).

    PubMed

    Hanssen, I; Grav, H J; Steen, J B; Lysnes, H

    1979-12-01

    Willow ptarmigan chicks raised on a diet containing 265 mg ascorbic acid/kg develop scury-like symptoms and die by 4 weeks of age. If blueberry plants are given as an ad libitum supplement to this diet, the malady is prevented. We have described the clinical, pathological and histological changes which accompany this malnutrition and conclude that they are in accord with the description of scurvy in guinea pig and man. Biochemical determination of ascorbic acid synthesis in the kidney of ptarmigan chicks indicated a rate of synthesis five times that found in livers of growing white rats. Blueberry plants and many other plants found in the natural diet of ptarmigan chicks contain 2,000 to 5,000 mg ascorbic acid/kg dry weight. Feeding experiments showed that the pathological signs were avoided and that already afflicted chicks recovered if the vitamin C content of the diet was raised to 750 mg/kg dry weight of food. Since the food intake of the chicks was 5 to 8 g/day the daily requirement of external vitamin C is about 150 mg/kg body weight. To our knowledge this is the first example of an animal which, while producing vitamin C itself, requires substantial amounts of external vitamin C to survive.

  8. Linkage mapping in tetraploid willows: segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba x Salix fragilis interspecific hybrids.

    PubMed

    Barcaccia, G; Meneghetti, S; Albertini, E; Triest, L; Lucchin, M

    2003-02-01

    Salix alba-Salix fragilis complex includes closely related dioecious polyploid species, which are obligate outcrossers. Natural populations of these willows and their hybrids are represented by a mixture of highly heterozygous genotypes sharing a common gene pool. Since nothing is known about their genomic constitution, tetraploidy (2n=4x=76) in willow species makes basic and applied genetic studies difficult. We have used a two-way pseudotestcross strategy and single-dose markers (SDMs) to construct the first linkage maps for both pistillate and staminate willows. A total of 242 amplified fragment length polymorphisms (AFLPs) and 50 selective amplifications of microsatellite polymorphic loci (SAMPL) markers, which showed 1:1 segregation in the F(1) mapping populations, were used in linkage analysis. In S. alba, 73 maternal and 48 paternal SDMs were mapped to 19 and 16 linkage groups covering 708 and 339 cM, respectively. In S. fragilis, 13 maternal and 33 paternal SDMs were mapped in six and 14 linkage groups covering 98 and 321 cM, respectively. For most cosegregation groups, a comparable number of markers linked in coupling and repulsion was identified. This finding suggests that most of chromosomes pair preferentially as occurs in allotetraploid species exhibiting disomic inheritance. The detection of 10 pairs of marker alleles from single parents showing codominant inheritance strengthens this hypothesis. The fact that, of the 1122 marker loci identified in the two male and female parents, the vast majority (77.5%) were polymorphic and as few as 22.5% were shared between parental species highlight that S. alba and S. fragilis genotypes are differentiated. The highly difference between S. alba- and S. fragilis-specific markers found in both parental combinations (on average, 65.3 vs 34.7%, respectively) supports the (phylogenetic) hypothesis that S. fragilis is derived from S. alba-like progenitors.

  9. Food habits of the southwestern willow flycatcher during the nesting season

    USGS Publications Warehouse

    Drost, Charles A.; Paxton, Eben H.; Sogge, Mark K.; Whitfield, Mary J.

    2003-01-01

    The food habits and prey base of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) are not well known. We analyzed prey remains in 59 fecal samples from an intensively-studied population of this flycatcher at the Kern River Preserve in southern California. These samples were collected during the nesting season in 1996 and 1997 from adults caught in mist nets, and from nestlings temporarily removed from the nest for banding. A total of 379 prey individuals were identified in the samples. Dominant prey taxa, both in total numbers and in percent occurrence, were true bugs (Hemiptera), flies (Diptera), and beetles (Coleoptera). Leafhoppers (Homoptera: Cicadellidae), spiders (Araneae), bees and wasps (Hymenoptera), and dragonflies and damselflies (Odonata) were also common items. Diet composition was significantly different between years, due to a large difference in the numbers of spiders between 1996 and 1997. There was also a significant difference between the diet of young and adults, with the diet of young birds having significantly higher numbers of odonates and beetles. There was a trend toward diet differences between males and females, but this was not significant at the P = 0.05 level.

  10. Accumulation and response of willow plants exposed to environmental relevant sulfonamide concentrations.

    PubMed

    Michelini, Lucia; Gallina, Guglielmo; Capolongo, Francesca; Ghisi, Rossella

    2014-01-01

    As a result of manure application to arable lands, agricultural ecosystems are often contaminated by veterinary antibiotics. In this study the aptitude of Salix fragilis L. to accumulate and tolerate sulfadimethoxine (SDM) was evaluated, together with the antibiotic effects on the plant development, with particular attention focused on roots. Results showed an antibiotic presence in root tissues, but not in leaves, after one month of SDM exposure to 0.01, 0.1, 1 and 10 mg l(-1). A hormetic growth of the hypogeal system was observed, however stress symptoms on the root development were only noticed after treatment to the highest dose. Results obtained from a second test, where new cuttings were exposed to 10 mg SDM l(-1) for different periods, suggested that willow tolerance to SDM increased with the exposure duration, probably because of the onset of particular acclimation mechanisms. Therefore, the present work indicates that this woody species could be utilized in the phytoremediation of sulfonamide antibiotics at doses comparable to that found in agricultural ecosystems once obtained appropriate confirmations through future studies at a laboratory and field scale.

  11. Bridging the gap between feedstock growers and users: the study of a coppice poplar-based biorefinery.

    PubMed

    Dou, Chang; Gustafson, Rick; Bura, Renata

    2018-01-01

    In the biofuel industry, land productivity is important to feedstock growers and conversion process product yield is important to the biorefinery. The crop productivity, however, may not positively correlate with bioconversion yield. Therefore, it is important to evaluate sugar yield and biomass productivity. In this study, 2-year-old poplar trees harvested in the first coppice cycle, including one low-productivity hybrid and one high-productivity hybrid, were collected from two poplar tree farms. Through steam pretreatment and enzymatic hydrolysis, the bioconversion yields of low- and high-productivity poplar hybrids were compared for both sites. The low-productivity hybrids had 9-19% higher sugar yields than the high-productivity hybrids, although they have the similar chemical composition. Economic calculations show the impact on the plantation and biorefinery of using the two feedstocks. Growing a high-productivity hybrid means the land owner would use 11-26% less land (which could be used for other crops) or collect $2.53-$3.46 MM/year extra revenue from the surplus feedstock. On the other side, the biorefinery would receive 5-10% additional revenue using the low-productivity hybrid. We propose a business model based on the integration of the plantation and the biorefinery. In this model, different feedstocks are assessed using a metric of product tonnage per unit land per year. Use of this new economic metric bridges the gap between feedstock growers and users to maximize the overall production efficiency.

  12. Investigation of the flavan-3-ol patterns in willow species during one growing-season.

    PubMed

    Wiesneth, Stefan; Aas, Gregor; Heilmann, Jörg; Jürgenliemk, Guido

    2018-01-01

    Flavonoids, proanthocyanidins (PAs) and salicylic alcohol derivatives are the main groups of ingredients in Salix needed as defensive tools and signal molecules, but have also pharmaceutical importance. The present study investigated total PA content, complete PA pattern, the oligomeric/total PAs quotient and the contents of catechin and epicatechin during one growing-season for the leaves and this year's sprouts in ten willows (Salix pentandra L. ♂, S. alba L. ♂, S. fragilis L. ♀, S. caprea L. ♂ & ♀, S. cinerea L. ♂, S. caprea x cinerea ♂, S. daphnoidesVill. ♂ & ♀ and S. purpurea L. ♀; all Salicaceae). Comparison of the different species revealed distinct seasonal fluctuations of the oligomeric and polymeric PA fractions, but the contents of both groups always developed in the same direction. All willows prefer the synthesis of PAs with DP-2 - DP-4 within the oligomeric fraction (DP-2 - DP-10) and species with rather low PA contents like S. purpurea (0.1-2.6 mg/g) as well as species with rather high PA contents like S. alba (3.8-14.7 mg/g) were found. Only slight gender specific differences could be observed for both sexes of S. daphnoides and S. caprea. The PA pattern of the hybrid S. caprea x cinerea seems to be influenced by both parents. Thus, the accumulation of the oligomeric PAs accorded to S. caprea and the polymeric PAs matched S. cinerea resulting in an overall depression of PAs in the sprouts and a varying seasonal trend in the leaves. In contrast, the content of catechin remained high and seemed to be not influenced in the hybrid. Although only one individual of each Salix species could be considered in this screening study, the present results demonstrate the variability of the flavan-3-ol pattern within the genus Salix but also some preliminary correlations could be observed. Future studies with more Salix species will provide more insights into chemotaxonomic correlations. Copyright © 2017 Elsevier Ltd. All rights

  13. Mental Rotation, Pictured Rotation, and Tandem Rotation in Depth

    DTIC Science & Technology

    1997-01-01

    field. Such an explanation by natural geometry conflates visual comparison with physical measurement. This application of geometry is called natural in...the theory of vision parasitic on geometry: it is unclear what could be meant by a ’mental operation of rotation’, except by reference to physical ...operation, a mental analogue of the physical operation of rotation in space. Since then the story of mental rotation has become far more complicated

  14. Rotator cuff tendon connections with the rotator cable.

    PubMed

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  15. Dimeric procyanidins: screening for B1 to B8 and semisynthetic preparation of B3, B4, B6, And B8 from a polymeric procyanidin fraction of white willow bark (Salix alba).

    PubMed

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2010-07-14

    Fifty-seven samples have been analyzed with regard to the occurrence of dimeric procyanidins B1-B8 as well as the composition of polymeric procyanidins. Fifty-two samples were found to contain polymeric procyanidins. In most of the samples, (-)-epicatechin was the predominant unit present. In white willow bark (Salix alba), however, large amounts of (+)-catechin (81.0%) were determined by means of phloroglucinolysis. White willow bark has therefore been used for the semisynthetic formation of dimeric procyanidins B3 [(+)-C-4alpha --> 8-(+)-C)], B4 [(+)-C-4alpha --> 8-(-)-EC)], B6 [(+)-C-4alpha --> 6-(+)-C)], and B8 [(+)-C-4alpha --> 6-(-)-EC)]. The reaction mixtures of the semisynthesis were successfully fractionated with high-speed countercurrent chromatography (HSCCC), and dimeric procyanidins B3, B4, B6, and B8 were obtained on a preparative scale.

  16. A Catskill Flora and Economic Botany, III: Apetalae. Including the Poplars, Willows, Hickories, Birches, Beeches, Oaks, Elms, Nettles, Sorrels, Docks, and Smartweeds. Bulletin No. 443, New York State Museum.

    ERIC Educational Resources Information Center

    Brooks, Karl L.

    This compendium deals with the ecology and economic importance of the poplars, willows, hickories, birches, beeches, oaks, elms, nettles, sorrels, docks, and smartweeds growing in New York's Catskills. Provided are keys for identifying each plant to species by flowers, foliage, or winter buds. A line drawing accompanies a summary of basic data…

  17. Rotational seismology

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  18. National Dam Safety Program. Willow Brook Dam (Inventory Number NY 35). Lower Hudson River Basin, Orange County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-14

    ia danger of l~>ee of huaar. . i f e fro« .arge flowa downatrea« of the daa Therefore Willow Brook De« is considered to be in the "high" hazard...and Surveyor (the application la included in Appendix G) 2 * Of WAT IOW RECORDS The «lids gats controlling dischargea ia opened approxi...lake ahors Once the lake lsvsl dropa to apillway lsvsl. the gsts ia cloaed The owner haa no procedures ’or regular dam inspectiona or regular

  19. Resprout and survival of willows (Salix purpurea and S. incana), Poplars (Populus nigra) and Tamaris (Tamarix gallica) cuttings in marly gullies with Southern aspect in a mountainous and Mediterranean climate (Southern Alps, France)

    NASA Astrophysics Data System (ADS)

    Rey, Freddy; Labonne, Sophie; Dangla, Laure; Lavandier, Géraud

    2014-05-01

    In the Southern French Alps under a mountainous and Mediterranean climate, a current strategy of bioengineering is developed for trapping sediment in marly gullies with surface area less than 1 ha. It is based on the use of structures in the form of brush layers and brush mats of cuttings on deadwood microdams. Purple and white Willows (Salix purpurea and S. incana) are recommended here as they proved their efficiency to resprout and survive in such environment. However, these species installed in Southern gullies did not survive in previous experiments, due to the too harsh conditions of solar radiation and drought. We thus decided to test other species, namely black Poplar (Populus nigra) and Tamaris (Tamarix gallica), which proved their resistance to drought conditions in other experiments. To this view, bioengineering structures have been built in 2010 in eroded marly gullies in the Roubines and Fontaugier catchments (Southern Alps, France). We tested two installation modalities: one in spring and a second in autumn. Seventy-eight bioengineering structures (50 in spring and 28 in autumn), among which 32 made with Poplar cuttings and 28 with Tamaris cuttings, as well as 11 structures with purple Willow and 7 with white Willow as controls, were built in 6 experimental gullies. After 3 observation years for each modality (2010 to 2012, and 2011 to 2013, respectively), results first revealed that Willow species succeeded in surviving in gullies in Southern aspect (76 % for the cuttings installed in spring and 52 % for those installed in autumn), which is in contradiction with previous results. Second, Poplar showed a good ability to survive (62 % for the cuttings installed in spring and 33 % for those installed in autumn). Tamaris obtained the worst score with 26 % and 38 % of survival for the cuttings installed in spring and autumn, respectively. Globally, excepted for Tamaris, survival rates were better for the cuttings installed in spring. The bioengineering

  20. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenbies, Mark; Volk, Timothy; Abrahamson, Lawrence

    Biomass for biofuels, bioproducts and bioenergy can be sourced from forests, agricultural crops, various residue streams, and dedicated woody or herbaceous crops. Short rotation woody crops (SRWC), like willow and hybrid poplar, are perennial cropping systems that produce a number of environmental and economic development benefits in addition to being a renewable source of biomass that can be produced on marginal land. Both hybrid poplar and willow have several characteristics that make them an ideal feedstock for biofuels, bioproducts, and bioenergy; these include high yields that can be obtained in three to four years, ease of cultivar propagation from dormantmore » cuttings, a broad underutilized genetic base, ease of breeding, ability to resprout after multiple harvests, and feedstock composition similar to other sources of woody biomass. Despite the range of benefits associated with SRWC systems, their deployment has been restricted by high costs, low market acceptance associated with inconsistent chip quality (see below for further explanation), and misperceptions about other feedstock characteristics (see below for further explanation). Harvesting of SRWC is the largest single cost factor (~1/3 of the final delivered cost) in the feedstock supply system. Harvesting is also the second largest input of primary fossil energy in the system after commercial N fertilizer, accounting for about one third of the input. Therefore, improving the efficiency of the harvesting system has the potential to reduce both cost and environmental impact. At the start of this project, we projected that improving the overall efficiency of the harvesting system by 25% would reduce the delivered cost of SRWC by approximately $0.50/MMBtu (or about $7.50/dry ton). This goal was exceeded over the duration of this project, as noted below.« less

  1. Geographic variation in the song of Willow Flycatchers: Differentiation between Empidonax traillii adastus and E. t. extimus

    USGS Publications Warehouse

    Sedgwick, J.A.

    2001-01-01

    The vocal signatures of the primary song form (“fitz-bew”) of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) and its northern counterpart, E. t. adastus, are distinctive. Songs of the extimus subspecies are longer (total song, note, internote) and frequencies at maximum amplitude are lower than those of adastus. I used vocal evidence to clarify the distributional limits of the Southwestern Willow Flycatcher and that of the geographically adjacent subspecies, E. t. adastus. Unweighted pair-group method using averaging (UPGMA) cluster analysis and canonical discriminant analysis revealed that (1) low elevation, southerly desert populations (Arizona, New Mexico, and southern Utah) have a unique vocal identity corresponding to populations in the range of E. t. extimus; (2) northerly song groups (Oregon, Colorado, and northern Utah) share a different song type corresponding to populations in the range of E. t. adastus; and (3) a departure from vocal and morphological congruence occurs for a population of high-elevation Arizona birds that, although in the currently accepted range of E. t. extimus, sings songs acoustically similar to more northern populations (E. t. adastus). Multiple regression of song distance on latitude and elevation, and a comparison of a matrix of song distances with a matrix of latitude and elevation dissimilarities, demonstrated that song populations sort out by both latitude and elevation: birds with the vocal identity of extimus occur as far north as 37°N if at low elevation, and those acoustically similar to adastus occur as far south as 33.7°N if at high elevation. The vocal background of northern New Mexico birds appears to be intermediate between that of extimus and adastus, suggesting that northern New Mexico is a zone of intermixing and intergradation between the subspecies. Pure forms of E. t. extimus apparently do not occur in Colorado because even the southernmost populations are acoustically similar to

  2. Effect of rotation on a rotating hot-wire sensor

    NASA Technical Reports Server (NTRS)

    Hah, C.; Lakshminarayana, B.

    1978-01-01

    An investigation was conducted to discern the effects of centrifugal and Coriolis forces on a rotating hot-wire. The probe was calibrated in a wind tunnel as well as in a rotating mode. The effect of rotation was found to be negligibly small. A small change in cold resistance (1.5%) was observed in the rotating wire. The rotation seems to have a negligible effect on the fluid mechanics, heat transfer and material characteristics of the wire. This is a significant conclusion in view of the potential application of the hot-wire probe in a rotating passage (such as turbomachinery).

  3. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiringmore » in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.« less

  4. Transpiration and metabolisation of TCE by willow plants - a pot experiment.

    PubMed

    Schöftner, Philipp; Watzinger, Andrea; Holzknecht, Philipp; Wimmer, Bernhard; Reichenauer, Thomas G

    2016-01-01

    Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1). Unplanted cylinders were set-up and spiked with nominal concentrations of 721 mg l(-1) TCE in the second year. Additionally, (13)C-enriched TCE solution (δ(13)C = 110.3 ‰) was used. Periodically, TCE content and metabolites were analyzed in water and plant biomass. The presence of TCE-degrading microorganisms was monitored via the measurement of the isotopic ratio of carbon ((13)C/(12)C) in TCE, and the abundance of (13)C-labeled microbial PLFAs (phospholipid fatty acids). More than 98% of TCE was lost via evapotranspiration from the planted pots within one month after adding TCE. Transpiration accounted to 94 to 78% of the total evapotranspiration loss. Almost 1% of TCE was metabolized in the shoots, whereby trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were dominant metabolites; less trichloroethanol (TCOH) and TCE accumulated in plant tissues. Microbial degradation was ruled out by δ(13)C measurements of water and PLFAs. TCE had no detected influence on plant stress status as determined by chlorophyll-fluorescence and gas exchange.

  5. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main

  6. Transcriptomic Response of Purple Willow (Salix purpurea) to Arsenic Stress

    PubMed Central

    Yanitch, Aymeric; Brereton, Nicholas J. B.; Gonzalez, Emmanuel; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.

    2017-01-01

    Arsenic (As) is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation), including willows. The present study assesses the potential of Salix purpurea cv. ‘Fish Creek’ for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect) toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider Salix ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production. PMID:28702037

  7. Rotational elasticity

    NASA Astrophysics Data System (ADS)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  8. A multiscaled model of southwestern willow flycatcher breeding habitat

    USGS Publications Warehouse

    Hatten, J.R.; Paradzick, C.E.

    2003-01-01

    The southwestern willow flycatcher (SWFL; Empidonax traillii extimus) is an endangered songbird whose habitat has declined dramatically over the last century. Understanding habitat selection patterns and the ability to identify potential breeding areas for the SWFL is crucial to the management and conservation of this species. We developed a multiscaled model of SWTL breeding habitat with a Geographic Information System (GIS), survey data, GIS variables, and multiple logistic regressions. We obtained presence and absence survey data from a riverine ecosystem and a reservoir delta in south-central Arizona, USA, in 1999. We extracted the GIS variables from satellite imagery and digital elevation models to characterize vegetation and floodplain within the project area. We used multiple logistic regressions within a cell-based (30 X 30 m) modeling environment to (1) determine associations between GIS variables and breeding-site occurrence at different spatial scales (0.09-72 ha), and (2) construct a predictive model. Our best model explained 54% of the variability in breeding-site occurrence with the following variables: vegetation density at the site (0.09 ha), proportion of dense vegetation and variability in vegetation density within a 4.5-ha neighborhood, and amount of floodplain or flat terrain within a 41-ha neighborhood. The density of breeding sites was highest in areas that the model predicted to be most suitable within the project area and at an external test site 200 km away. Conservation efforts must focus on protecting not only occupied patches, but also surrounding riparian forests and floodplain to ensure long-term viability of SWTL. We will use the multiscaled model to map SWTL breeding habitat in Arizona, prioritize future survey effort, and examine changes in habitat abundance and quality over time.

  9. Growth, physiological response and phytoremoval capability of two willow clones exposed to ibuprofen under hydroponic culture.

    PubMed

    Iori, Valentina; Zacchini, Massimo; Pietrini, Fabrizio

    2013-11-15

    Ibuprofen (IBU) is one of the most widespread pharmaceuticals in the aquatic ecosystem, despite the high removal rate that occurs in wastewater treatment plants. Phytoremediation represents a technology to improve the performance of existing wastewater treatment. This study was conducted under hydroponics to evaluate the ability of Salicaceae plants to tolerate and reduce IBU concentration in contaminated water. To this end, we combined growth, physiological and biochemical data to study the effects of different IBU concentrations on two clones of Salix alba L. Data demonstrated that clone SS5 was more tolerant and showed a higher ability to reduce IBU concentration in the solution than clone SP3. The high tolerance to IBU shown by SS5 was likely due to several mechanisms including the capacity to maintain an elevated photosynthetic activity and an efficient antioxidative defence. These results illustrate the remarkable potential of willow to phytoremediate IBU-contaminated waters in natural and constructed wetlands. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Fortified extract of red berry, Ginkgo biloba, and white willow bark in experimental early diabetic retinopathy.

    PubMed

    Bucolo, Claudio; Marrazzo, Giuseppina; Platania, Chiara Bianca Maria; Drago, Filippo; Leggio, Gian Marco; Salomone, Salvatore

    2013-01-01

    Diabetic retinopathy is a complex condition where inflammation and oxidative stress represent crucial pathways in the pathogenesis of the disease. Aim of the study was to investigate the effects of a fortified extract of red berries, Ginkgo biloba and white willow bark containing carnosine and α-lipoic acid in early retinal and plasma changes of streptozotocin-induced diabetic rats. Diabetes was induced by a single streptozotocin injection in Sprague Dawley rats. Diabetics and nondiabetic (control) rats were treated daily with the fortified extract for the ten days. Retina samples were collected and analyzed for their TNF-α and VEGF content. Moreover, plasma oxidative stress was evaluated by thiobarbituric acid reacting substances (TBARS). Increased TNF-α and VEGF levels were observed in the retina of diabetic rats. Treatment with the fortified extract significantly lowered retinal cytokine levels and suppressed diabetes-related lipid peroxidation. These data demonstrate that the fortified extract attenuates the degree of retinal inflammation and plasma lipid peroxidation preserving the retina in early diabetic rats.

  11. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  12. Ego-rotation and object-rotation in major depressive disorder.

    PubMed

    Chen, Jiu; Yang, Laiqi; Ma, Wentao; Wu, Xingqu; Zhang, Yan; Wei, Dunhong; Liu, Guangxiong; Deng, Zihe; Hua, Zhen; Jia, Ting

    2013-08-30

    Mental rotation (MR) performance provides a direct insight into a prototypical higher-level visuo-spatial cognitive operation. Previous studies suggest that progressive slowing with an increasing angle of orientation indicates a specific wing of object-based mental transformations in the psychomotor retardation that occurs in major depressive disorder (MDD). It is still not known, however, whether the ability of object-rotation is associated with the ability of ego-rotation in MDD. The present study was designed to investigate the level of impairment of mental transformation abilities in MDD. For this purpose we tested 33 MDD (aged 18-52 years, 16 women) and 30 healthy control subjects (15 women, age and education matched) by evaluating the performance of MDD subjects with regard to ego-rotation and object-rotation tasks. First, MDD subjects were significantly slower and made more errors than controls in mentally rotating hands and letters. Second, MDD and control subjects displayed the same pattern of response times to stimuli at various orientations in the letter task but not the hand task. Third, in particular, MDD subjects were significantly slower and made more errors during the mental transformation of hands than letters relative to control subjects and were significantly slower and made more errors in physiologically impossible angles than physiologically possible angles in the mental rotation hand task. In conclusion, MDD subjects present with more serious mental rotation deficits specific to the hand than the letter task. Importantly, deficits were more present during the mental transformation in outward rotation angles, thus suggesting that the mental imagery for hands and letters relies on different processing mechanisms which suggest a module that is more complex for the processing of human hands than for letters during mental rotation tasks. Our study emphasises the necessity of distinguishing different levels of impairment of action in MDD subjects

  13. Hydrodynamic interactions between a self-rotation rotator and passive particles

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenyu; Lin, Jian-Zhong; Ku, Xiaoke

    2017-10-01

    In this paper, we numerically investigate the hydrodynamic interaction between a self-rotation rotator and passive particles in a two-dimensional confined cavity at two typical Reynolds numbers according to the different flow features. Both the fluid-particle interaction and particle-particle interaction through fluid media are taken into consideration. The results show that from the case of a rotator and one passive particle to the case of a rotator and two passive particles, the system becomes much more complex because the relative displacement between the rotator and the passive particles and the velocity of passive particles are strongly dependent on the Reynolds number and the initial position of passive particles. For the system of two particles, the passive particle gradually departs from the rotator although its relative displacement to the rotator exhibits a periodic oscillation at the lower Reynolds number. Furthermore, the relative distance between the two particles and the rotator's rotational frequency are responsible for the oscillation amplitude and frequency of the passive particle's velocity. For the system of three particles, the passive particle's velocities exhibit a superposition of a large amplitude oscillation and a small amplitude oscillation at the lower Reynolds number, and the large amplitude oscillation will disappear at the higher Reynolds number. The change of the included angle of the two passive particles is dependent on the initial positions of the passive particles at the lower Reynolds number, whereas the included angle of the two passive particles finally approaches a fixed value at the higher Reynolds number. It is interesting that the two passive particles periodically approach and depart from each other when the included angle is not equal to π, while all the three particles (including the rotator) keep the positions in a straight line when the included angle is equal to π because the interference between two passive

  14. The response of the foliar antioxidant system and stable isotopes (δ(13)C and δ(15)N) of white willow to low-level air pollution.

    PubMed

    Wuytack, Tatiana; AbdElgawad, Hamada; Staelens, Jeroen; Asard, Han; Boeckx, Pascal; Verheyen, Kris; Samson, Roeland

    2013-06-01

    In this study we aimed to determine and elucidate the effect of ambient air pollution on the foliar antioxidant system and stable carbon and nitrogen isotopes of white willow (Salix alba L.). We grew white willow in uniform potting soil in the near vicinity of sixteen air quality monitoring stations in Belgium where nitrogen dioxide (NO2), ozone, sulfur dioxide and particulate matter concentrations were continuously measured. The trees were exposed to ambient air during six months (April-September 2011), and, thereafter, the degree of lipid peroxidation and foliar content of antioxidant molecules (ascorbate, glutathione, polyphenols, flavonoids), antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, peroxidase) and foliar stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes were measured. We found that lipid peroxidation was caused by air pollution stress, arising from high ambient NO2 concentrations, as shown by an increased amount of malondialdehyde. The antioxidant system was activated by increasing the amount of polyphenols at monitoring stations with a high atmospheric NO2 and low O3 concentration, while no increase of key enzymes (e.g., ascorbate, glutathione) was observed. The δ(13)C also decreased with increasing NO2 concentrations and decreasing O3 concentrations, probably reflecting a decreased net photosynthesis and/or a concomitant decrease of (13)CO2 in the atmosphere. Shade also influenced foliar δ(13)C and the content of leaf ascorbate and glutathione. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Genetic Diversity and Genetic Relationships of Purple Willow (Salix purpurea L.) from Natural Locations

    PubMed Central

    Prinz, Kathleen; Przyborowski, Jerzy A.

    2017-01-01

    In this study, the genetic diversity and structure of 13 natural locations of Salix purpurea were determined with the use of AFLP (amplified length polymorphism), RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeats). The genetic relationships between 91 examined S. purpurea genotypes were evaluated by analyses of molecular variance (AMOVA), principal coordinates analyses (PCoA) and UPGMA (unweighted pair group method with arithmetic mean) dendrograms for both single marker types and a combination of all marker systems. The locations were assigned to distinct regions and the analysis of AMOVA (analysis of molecular variance) revealed a high genetic diversity within locations. The genetic diversity between both regions and locations was relatively low, but typical for many woody plant species. The results noted for the analyzed marker types were generally comparable with few differences in the genetic relationships among S. purpurea locations. A combination of several marker systems could thus be ideally suited to understand genetic diversity patterns of the species. This study makes the first attempt to broaden our knowledge of the genetic parameters of the purple willow (S. purpurea) from natural location for research and several applications, inter alia breeding purposes. PMID:29301207

  16. In touch with mental rotation: interactions between mental and tactile rotations and motor responses.

    PubMed

    Lohmann, Johannes; Rolke, Bettina; Butz, Martin V

    2017-04-01

    Although several process models have described the cognitive processing stages that are involved in mentally rotating objects, the exact nature of the rotation process itself remains elusive. According to embodied cognition, cognitive functions are deeply grounded in the sensorimotor system. We thus hypothesized that modal rotation perceptions should influence mental rotations. We conducted two studies in which participants had to judge if a rotated letter was visually presented canonically or mirrored. Concurrently, participants had to judge if a tactile rotation on their palm changed direction during the trial. The results show that tactile rotations can systematically influence mental rotation performance in that same rotations are favored. In addition, the results show that mental rotations produce a response compatibility effect: clockwise mental rotations facilitate responses to the right, while counterclockwise mental rotations facilitate responses to the left. We conclude that the execution of mental rotations activates cognitive mechanisms that are also used to perceive rotations in different modalities and that are associated with directional motor control processes.

  17. Bioavailability of Metsulfuron and Sulfentrazone Herbicides in Soil as Affected by Amendment with Two Contrasting Willow Biochars.

    PubMed

    Szmigielski, Anna M; Hangs, Ryan D; Schoenau, Jeff J

    2018-02-01

    This study investigated the effect of two willow (Salix spp.) biochars, produced using either fast- or slow-pyrolysis, on the bioavailability of metsulfuron and sulfentrazone herbicides in soil. Five rates (0%, 1%, 2%, 3%, and 4%; w/w) of each biochar were used, along with varying rates of metsulfuron (0-3.2 µg ai kg -1 ) and sulfentrazone (0-200 µg ai kg -1 ), followed by a sugar beet bioassay. The fast-pyrolysis biochar had minimal effect, while the slow-pyrolysis biochar decreased the bioavailability of both herbicides. Despite using the same feedstock, the two biochars had different physical and chemical properties, of which specific surface area was most contrasting (3.0 and 175 m 2  g -1 for fast- and slow-pyrolysis biochar, respectively). Increased anionic herbicide adsorption associated with greater surface area of the slow-pyrolysis biochar is considered to be the primary mechanism responsible for reducing herbicide bioavailability with this biochar.

  18. Predictors of human rotation.

    PubMed

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  19. Rotator cuff problems

    MedlinePlus

    ... smooth layer) lining these tendons. A rotator cuff tear occurs when one of the tendons is torn ... Poor posture over many years Aging Rotator cuff tears TEARS Rotator cuff tears may occur in two ...

  20. Effects of shelter type, early environmental enrichment and weather conditions on free-range behaviour of slow-growing broiler chickens.

    PubMed

    Stadig, L M; Rodenburg, T B; Ampe, B; Reubens, B; Tuyttens, F A M

    2017-06-01

    Free-range use by broiler chickens is often limited, whereas better use of the free-range area could benefit animal welfare. Use of free-range areas could be stimulated by more appropriate shelter or environmental enrichment (by decreasing birds' fearfulness). This study aimed to assess the effects of shelter type, early environmental enrichment and weather conditions on free-range use. Three production rounds with 440 slow-growing broiler chickens (Sasso T451) were carried out. Birds were housed indoors in four groups (two with males, two with females) from days 0 to 25, during which two of the groups received environmental enrichment. At day 23 birds' fearfulness was assessed with a tonic immobility (TI) test (n=100). At day 25 all birds were moved (in mixed-sex groups) to mobile houses, and provided with free-range access from day 28 onwards. Each group could access a range consisting for 50% of grassland with 21 artificial shelters (ASs, wooden A-frames) and for 50% of short rotation coppice (SRC) with willow (dense vegetation). Free-range use was recorded by live observations at 0900, 1300 and 1700 h for 15 to 21 days between days 28 and 63. For each bird observed outside the shelter type (AS or SRC), distance from the house (0 to 2, 2 to 5, >5 m) and its behaviour (only rounds 2 and 3) were recorded. Weather conditions were recorded by four weather stations. On average, 27.1% of the birds were observed outside at any given moment of observation. Early environmental enrichment did not decrease fearfulness as measured by the TI test. It only had a minor effect on the percentage of birds outside (0.4% more birds outside). At all distances from the house, SRC was preferred over AS. In AS, areas closer to the house were preferred over farther ones, in SRC this was less pronounced. Free-range use increased with age and temperature and decreased with wind speed. In AS, rainfall and decreasing solar radiation were related to finding more birds outside, whereas the

  1. Non-synchronous rotating damping effects in gyroscopic rotating systems

    NASA Astrophysics Data System (ADS)

    Brusa, Eugenio; Zolfini, Giacomo

    2005-03-01

    The effects of non-synchronous rotating damping, i.e., of energy dissipation in elements rotating at a speed different from that of the main rotor, on the dynamic behaviour of the latter have been already studied in a previous paper (J. Rotating Machinery 6 (6) (2000)) for the case of non-gyroscopic rotating systems. A planar model, namely the Jeffcott's rotor, was used. The present study is aimed at investigating, through analytical and numerical models, the behaviour of rotors having a non-negligible gyroscopic effect. The parameters of the system affecting the dynamic stability are identified and the threshold of instability is then computed. A sort of map of stability is provided to allow mechanical engineers predicting possibile range of instability for forward and backward whirling motions. An experimental validation on a simple test rig is presented in order to show the effectiveness of the proposed stability analysis. Non-synchronous rotating damping is implemented by using a non-synchronous electromagnetic damper based on eddy currents.

  2. Salicin from Willow Bark can Modulate Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Wölfle, Ute; Haarhaus, Birgit; Kersten, Astrid; Fiebich, Bernd; Hug, Martin J; Schempp, Christoph M

    2015-10-01

    Salicin from willow bark has been used throughout centuries in China and Europe for the treatment of pain, headache, and inflammatory conditions. Recently, it could be demonstrated that salicin binds and activates the bitter taste receptor TAS2R16. Studies on rodent tissues showed the general expression of bitter taste receptors (TAS2Rs) in rodent brain. Here, we demonstrate the expression of hTAS2R16 in human neuronal tissues and the neuroblastoma cell line SH-SY5Y. The functionality was analyzed in the neuroblastoma cell line SH-SY5Y after stimulation with salicin, a known TAS2R16 agonist. In this setting salicin induced in SH-SY5Y cells phosphorylation of ERK and CREB, the key transcription factor of neuronal differentiation. PD98059, an inhibitor of the ERK pathway, as well as probenecid, a TAS2R16 antagonist, inhibited receptor phosphorylation as well as neurite outgrowth. These data show that salicin might modulate neurite outgrowth by bitter taste receptor activation. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis

    PubMed Central

    Pucholt, Pascal; Wright, Alison E.; Conze, Lei Liu; Mank, Judith E.; Berlin, Sofia

    2017-01-01

    Abstract Sex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes. We detected no major sex differences in read coverage in the sex determination (SD) region, indicating that the W region has not significantly degenerated. However, single nucleotide polymorphism densities in the SD region are higher in females compared with males, indicating very recent recombination suppression, followed by the accumulation of sex-specific single nucleotide polymorphisms. Interestingly, we identified two female-specific scaffolds that likely represent W-chromosome-specific sequence. We show that genes located in the SD region display a mild excess of male-biased expression in sex-specific tissue, and we use allele-specific gene expression analysis to show that this is the result of masculinization of expression on the Z chromosome rather than degeneration of female-expression on the W chromosome. Together, our results demonstrate that insertion of small DNA fragments and accumulation of sex-biased gene expression can occur before the detectable decay of the sex-limited chromosome. PMID:28453634

  4. Pleiotropic Effects of White Willow Bark and 1,2-Decanediol on Human Adult Keratinocytes.

    PubMed

    Bassino, Eleonora; Gasparri, Franco; Munaron, Luca

    2018-01-01

    Acne vulgaris is a common skin defect, usually occurring during adolescence, but often it can persist in adults leaving permanent face scarring. Acne is usually treated with topical drugs, oral antibiotics, retinoids, and hormonal therapies, but medicinal plants are increasingly employed. To investigate the protective role of white willow bark (WWB) and 1,2-decanediol (DD) on the damage caused by lipopolysaccharides (LPS) on human adult keratinocytes (HaCaT). HaCaT were exposed to LPS alone or in association with WWB and DD. Epidermal viability, metabolic modulation, inflammatory activity, and cell migration were assessed with both common standardized protocols or high-throughput screening systems. The preincubation of HaCaT with WWB and DD (used separately or in combination) differently prevented the alterations induced by LPS on HaCaT in terms of growth factor release (IGF, EGF, VEGF), cytokine production (IL-1α, IL-6, IL-8), or expression of the transcription factor FOXO-I. Moreover, they partially restore wound repair lowered by LPS. These results suggest that both natural compounds were able to differently affect several functions of LPS-stressed keratinocytes suggesting their potential role for the prevention of acne vulgaris, without adverse effects. © 2017 S. Karger AG, Basel.

  5. Rotations

    Treesearch

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  6. Rotation sensor switch

    DOEpatents

    Sevec, John B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops comprises a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal.

  7. How drought severity constrains GPP and its partitioning among carbon pools in a Quercus ilex coppice?

    NASA Astrophysics Data System (ADS)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-06-01

    The partitioning of photosynthates toward biomass compartments has a crucial role in the carbon sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought prone forests. We analyzed the fate of GPP in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Gross and net carbon fluxes between the ecosystem and the atmosphere were measured with an eddy-covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy-covariance fluxes with annual productions we managed to close a C budget and derive values of autotrophic and heterotrophic respirations, NPP and carbon use efficiency (CUE, the ratio between NPP and GPP). Average values of yearly NEP, GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding ANPP components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems. Gross and net carbon exchange between the ecosystem and the atmosphere were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected, the stem growth, to the least affected, the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease more slightly in response to drought than GPP and NPP, probably due to drought-acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem and highlight the value of maintaining continuous experimental

  8. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is

  9. Surface dimpling on rotating work piece using rotation cutting tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less

  10. Controllable rotating behavior of individual dielectric microrod in a rotating electric field.

    PubMed

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Chen, Xiaoming

    2017-06-01

    We report herein controllable rotating behavior of an individual dielectric microrod driven by a background rotating electric field. By disposing or removing structured floating microelectrode, the rigid rod suspended in electrolyte solution accordingly exhibits cofield or antifield rotating motion. In the absence of the ideally polarizable metal surface, the dielectric rod rotates opposite to propagation of electric field, with the measured rotating rate much larger than predicted by Maxwell-Wager interfacial polarization theory incorporating surface conduction of fixed bond charge. Surprisingly, with floating electrode embedded, a novel kind of cofield rotation mode occurs in the presence of induced double-layer polarization, due to the action of hydrodynamic torque from rotating induced-charge electroosmosis. This method of achieving switchable spin modes of dielectric particles would direct implications in constructing flexible electrokinetic framework for analyzing 3D profile of on-chip biomicrofluidic samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rotation periods and photometric variability of rapidly rotating ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Miles-Páez, P. A.; Pallé, E.; Zapatero Osorio, M. R.

    2017-12-01

    We used the optical and near-infrared imagers located on the Liverpool, the IAC80, and the William Herschel telescopes to monitor 18 M7-L9.5 dwarfs with the objective of measuring their rotation periods. We achieved accuracies typically in the range ±1.5-28 mmag by means of differential photometry, which allowed us to detect photometric variability at the 2σ level in the 50 per cent of the sample. We also detected periodic modulation with periods in the interval 1.5-4.4 h in 9 out of 18 dwarfs that we attribute to rotation. Our variability detections were combined with data from the literature; we found that 65 ± 18 per cent of M7-L3.5 dwarfs with v sin i ≥ 30 km s-1 exhibit photometric variability with typical amplitudes ≤20 mmag in the I band. For those targets and field ultracool dwarfs with measurements of v sin i and rotation period we derived the expected inclination angle of their rotation axis, and found that those with v sin i ≥ 30 km s-1 are more likely to have inclinations ≳40 deg. In addition, we used these rotation periods and others from the literature to study the likely relationship between rotation and linear polarization in dusty ultracool dwarfs. We found a correlation between short rotation periods and large values of linear polarization at optical and near-infrared wavelengths.

  12. Metabolomic Investigation of Rat Serum Following Oral Administration of the Willow Bracket Medicinal Mushroom, Phellinus igniarius (Agaricomycetes), by UPLC-HDMS.

    PubMed

    Dong, Yu; He, Ying; Yu, Zhongming; Zhang, Yang; Wang, Nani; Shou, Dan; Li, Changyu

    2016-01-01

    The medicinal willow bracket mushroom, Phellinus igniarius, is a species that has been reported to possess antibacterial, antioxidative, antitumor, antidiabetic, and antihyperlipidemia activities. The aim of this study was to elucidate the changes in endogenous metabolites after oral administration of a decoction of Ph. Igniarius. Ultraperformance liquid chromatography (UPLC)/electrospray ionization synapt high-definition mass spectrometry (ESI-HDMS) combined with pattern recognition approaches, including principal component analysis and orthogonal partial least squares discriminant analysis, were integrated to discover differentiating metabolites. The current metabolomics approach identified 16 ions (5 in the negative mode, 11 in the positive mode) as "differentiating metabolites". The results illustrated that Ph. Igniarius is likely to increase the biosynthesis and secretion of bile acids that provide hypolipidemic activity and showed that robust UPLC/ESI-HDMS techniques are promising for profiling analysis of medicinal mushroom metabolites.

  13. Evaluation of biomass quality of selected woody species depending on the soil enrichment practice

    NASA Astrophysics Data System (ADS)

    Stolarski, Mariusz J.; Krzyżaniak, Michał; Załuski, Dariusz; Niksa, Dariusz

    2018-01-01

    Perennial energy crops are a source of the bio-mass used to generate energy. The aim of this study was to determine the chemical and thermophysical parameters of short rotation woody crops (black locust, poplar and willow), depending on soil enrichment practice (mineral fertilisation, lignin and mycorrhiza), in three- and four-year harvest cycles. In the study, the thermophysical properties and elemental composition of the biomass were determined. All analyses were performed in trip-licate according to the standards. The fresh black locust biomass had the lowest moisture content, which resulted in the best lower heating value (10.16 MJ kg-1, on average) in the four-year harvest cycle. The poplar biomass had the greatest higher heating value, fixed carbon, carbon and ash content, the highest concentrations of which were found in the biomass in which lignin was applied (2.00% d.m.). On the other hand, the willow biomass contained the lowest concentrations of ash and fixed carbon. Soil enrichment significantly differentiated the quality parameters of black locust, poplar and willow. This effect is of particular importance to those who grow and use biomass as a fuel.

  14. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  15. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis.

    PubMed

    Pucholt, Pascal; Wright, Alison E; Conze, Lei Liu; Mank, Judith E; Berlin, Sofia

    2017-08-01

    Sex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes. We detected no major sex differences in read coverage in the sex determination (SD) region, indicating that the W region has not significantly degenerated. However, single nucleotide polymorphism densities in the SD region are higher in females compared with males, indicating very recent recombination suppression, followed by the accumulation of sex-specific single nucleotide polymorphisms. Interestingly, we identified two female-specific scaffolds that likely represent W-chromosome-specific sequence. We show that genes located in the SD region display a mild excess of male-biased expression in sex-specific tissue, and we use allele-specific gene expression analysis to show that this is the result of masculinization of expression on the Z chromosome rather than degeneration of female-expression on the W chromosome. Together, our results demonstrate that insertion of small DNA fragments and accumulation of sex-biased gene expression can occur before the detectable decay of the sex-limited chromosome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Extreme drought alters frequency and reproductive success of floaters in Willow Flycatchers

    USGS Publications Warehouse

    Theimer, Tad; Sogge, Mark K.; Cardinal, Suzanne N.; Durst, Scott L.; Paxton, Eben H.

    2018-01-01

    Changes in habitat quality, including those caused by extreme events like droughts and floods, could alter costs and benefits of territoriality and thereby the prevalence and reproductive consequences for individuals capable of breeding that do not do so (floaters). We studied floating behavior in a population of Southwestern Willow Flycatchers (Empidonax traillii extimus) in central Arizona during one year of extreme drought, one year of lake inundation, and three years of near average precipitation. In all years, most floaters were second year (SY) males, and most subsequently settled outside of the patch where they were detected in the floating year, suggesting that floaters did not “queue” at high-quality territories in order to achieve higher reproductive success in subsequent years. Instead, cohorts that floated in non-drought years had lower apparent survival and lower reproductive success compared to territorial birds. In the extreme drought year, however, the number of floaters was 1.5 times greater than in all other years combined, more females floated, and apparent survival and mean annual productivity in subsequent years was higher for males that floated in that year than for those that were territorial. Inundation of habitat due to rising reservoir levels did not result in an increase in floaters because many birds nested in inundated areas where trees projected above the water so that the relative amount of available habitat was not reduced to the extent habitat models predicted. Overall, our results indicate that the prevalence and reproductive and demographic consequences of floating can change under extreme climatic events like severe drought.

  17. Porous graphitic carbon microtubes derived from willow catkins as a substrate of MnO2 for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohua; Zhang, Kang; Li, Hengxiang; Cao, Qing; Jin, Li'e.; Li, Ping

    2017-03-01

    Biomass is receiving considerable attention because of its significant advantages as a sustainable and renewable material. Willow catkins, which have a single-walled microtubular structure are used as both a template and a precursor for synthesizing porous graphitic carbon microtubes (PGCMT) induced by the simultaneous activation-graphitization of K4Fe(CN)6. In addition to providing low-resistant pathways and short ion diffusion channels, as-obtained PGCMT with tubular structure also serves as an ideal platform for anchoring MnO2. The PGCMT/MnO2 composite electrode obtained by MnO2 electrodeposition expressed excellent electrochemical performance, including a significantly enhanced specific capacitance (550.8 F g-1 for the mass of MnO2 at a current density of 2 A g-1), a high capacitance retention of 61.8% even at a high current density of 50 A g-1, and an excellent cycling stability of 89.6% capability retention after 5000 cycles. These findings offer a simple and environmentally friendly strategy for preparing advanced energy materials by utilizing the unique structure of biomass waste from nature.

  18. Internal rotation in halogenated toluenes: Rotational spectrum of 2,3-difluorotoluene

    NASA Astrophysics Data System (ADS)

    Nair, K. P. Rajappan; Herbers, Sven; Grabow, Jens-Uwe; Lesarri, Alberto

    2018-07-01

    The microwave rotational spectrum of 2,3-difluorotoluene has been studied by pulsed supersonic jet using Fourier transform microwave spectroscopy. The tunneling splitting due to the methyl internal rotation in the ground torsional state could be unambiguously identified and the three-fold (V3) potential barrier hindering the internal rotation of the methyl top was determined as 2518.70(15) J/mol. The ground-state rotational parameters for the parent and seven 13C isotopic species in natural abundance were determined with high accuracy, including all quartic centrifugal distortion constants. The molecular structure was derived using the substitution (rs) method. From the rotational constants of the different isotopic species the rs structure as well as the r0 structure was determined. Supporting ab initio (MP2) and DFT (B3LYP) calculations provided comparative values for the potential barrier and molecular parameters.

  19. Limited rotation of the mobile-bearing in a rotating platform total knee prosthesis.

    PubMed

    Garling, E H; Kaptein, B L; Nelissen, R G H H; Valstar, E R

    2007-01-01

    The hypothesis of this study was that the polyethylene bearing in a rotating platform total knee prosthesis shows axial rotation during a step-up motion, thereby facilitating the theoretical advantages of mobile-bearing knee prostheses. We examined 10 patients with rheumatoid arthritis who had a rotating platform total knee arthroplasty (NexGen LPS mobile, Zimmer Inc. Warsaw, USA). Fluoroscopic data was collected during a step-up motion six months postoperatively. A 3D-2D model fitting technique was used to reconstruct the in vivo 3D kinematics. The femoral component showed more axial rotation than the polyethylene mobile-bearing insert compared to the tibia during extension. In eight knees, the femoral component rotated internally with respect to the tibia during extension. In the other two knees the femoral component rotated externally with respect to the tibia. In all 10 patients, the femur showed more axial rotation than the mobile-bearing insert indicating the femoral component was sliding on the polyethylene of the rotating platform during the step-up motion. Possible explanations are a too limited conformity between femoral component and insert, the anterior located pivot location of the investigated rotating platform design, polyethylene on metal impingement and fibrous tissue formation between the mobile-bearing insert and the tibial plateau.

  20. Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors.

    PubMed

    Varley, Mark C; Markaki, Athina E; Brooks, Roger A

    2017-06-01

    Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s -1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05).

  1. Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors

    PubMed Central

    Varley, Mark C.; Markaki, Athina E.

    2017-01-01

    Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s−1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05). PMID:28125920

  2. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  3. Rotating reactor studies

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1991-01-01

    Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is

  4. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  5. Rotational response of superconductors: Magnetorotational isomorphism and rotation-induced vortex lattice

    NASA Astrophysics Data System (ADS)

    Babaev, Egor; Svistunov, Boris

    2014-03-01

    The analysis of nonclassical rotational response of superfluids and superconductors was performed by Onsager [Onsager, Nuovo Cimento, Suppl. 6, 279 (1949), 10.1007/BF02780991] and London [Superfluids (Wiley, New York, 1950)] and crucially advanced by Feynman [Prog. Low Temp. Phys. 1, 17 (1955), 10.1016/S0079-6417(08)60077-3]. It was established that, in the thermodynamic limit, neutral superfluids rotate by forming—without any threshold—a vortex lattice. In contrast, the rotation of superconductors at angular frequency Ω—supported by uniform magnetic field BL∝Ω due to surface currents—is of the rigid-body type (London law). Here we show that, neglecting the centrifugal effects, the behavior of a rotating superconductor is identical to that of a superconductor placed in a uniform fictitious external magnetic field H ˜=-BL. In particular, the isomorphism immediately implies the existence of two critical rotational frequencies in type-2 superconductors.

  6. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    PubMed

    Rousk, Kathrin; Michelsen, Anders

    2017-04-01

    Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N 2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss-associated N 2 fixation. We therefore aimed to estimate moss-associated N 2 fixation throughout the snow-free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N 2 fixation rates and soil moisture and soil temperature and used high-resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N 2 fixation. The modelled N 2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha -1 ) and birch litter addition plots (2.8 ± 0.2 kg N ha -1 ), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha -1 ). The control plots had intermediate rates (2.2 ± 0.2 kg N ha -1 ). Further, N 2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N 2 fixation was different between the climate change treatments, indicating a shift in the N 2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow-free period and increased temperatures in a future climate will likely lead to higher N 2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss-associated N 2 fixation due to shrub expansion in the Arctic will depend on the shrub species' litter traits. © 2016 John Wiley & Sons Ltd.

  7. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990-2007 in the US alone [1]. As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a non-rotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various nonrotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the pre-stress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in a

  8. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in

  9. Notes on rotating turbulence

    NASA Technical Reports Server (NTRS)

    Zeman, Otto

    1994-01-01

    This work investigates the turbulent constitutive relation when turbulence is subjected to solid body rotation. Laws regarding spectra and asymptotic decay of rotating homogeneous turbulence were confirmed through large-eddy simulation (LES) computations. Rotating turbulent flows exist in many industrial, geophysical, and astrophysical applications. From Lagrangian analysis a relation between turbulent stress and strain in rotating homogeneous turbulence was inferred. This relation was used to derive the spectral energy flux and, ultimately, the energy spectrum form. If the rotation wavenumber k(sub Omega) lies in the inertial subrange, then for wavenumbers less than k(sub Omega) the turbulence motions are affected by rotation and the energy spectrum slope is modified. Energy decay laws inferred in other reports and the present results suggest a modification of the epsilon model equation and eddy viscosity in k-epsilon models.

  10. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  11. Determining the impact of felling method and season of year on coppice regeneration

    Treesearch

    Daniel de Souza; Tom Gallagher; Dana Mitchell; Matthew Smidt; Tim McDonald; Jeff Wright

    2014-01-01

    There is an increasing interest in the establishment of plantations in the Southeast region with the objective of producing biomass for energy and fuel. Establishment of these plantations will require the development of a feasible way to harvest them. These types of plantations are called Short Rotation Woody Crops (SRWC). Popular SRWC species are Eucalypt (...

  12. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.

  13. Rotational properties of planetary satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1991-01-01

    Properties of satellite rotation that are observable in principle, include the rotation period, the orientation of the spin axis relative to the orbit plane, precession of the spin axis due to gravitational torques, nonprincipal axis rotation or wobble, and deviations from uniform principle axis rotation or libration. Considerable order is observed in current satellite rotation states, and it is of interest to ascertain how this order came about and why some satellites do not conform to the dominant norm. There is a strong coupling between the spin and orbital motions that is primarily responsible for maintaining the ordered rotation states in most cases, but this coupling is equally responsible for destroying any chance of orderly rotation for Saturn's satellite Hyperion. Understanding the processes which constrain current rotation states as well as those of an evolutionary nature which could have brought the individual satellites to their observed rotation and orbit states allows us to sometimes infer interior properties of some satellite or even of its primary planet, although, attempts to deduce primordial rotation states are usually frustrated. The observed rotational properties of the planetary satellites are summarized, and the understanding of the processes maintaining and those leading to the observed states are outlined. Some of the inferences that can be drawn about intrinsic properties of the bodies themselves are indicated.

  14. Stress field rotation or block rotation: An example from the Lake Mead fault system

    NASA Technical Reports Server (NTRS)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-01-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  15. Stress field rotation or block rotation: An example from the Lake Mead fault system

    NASA Astrophysics Data System (ADS)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-02-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  16. Units of rotational information

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  17. Trait variations along a regenerative chronosequence in the herb layer of submediterranean forests

    NASA Astrophysics Data System (ADS)

    Catorci, Andrea; Vitanzi, Alessandra; Tardella, Federico Maria; Hršak, Vladimir

    2012-08-01

    The aim of this paper is to assess the functional shifts of the herb layer in the submediterranean Ostrya carpinifolia coppiced forests (central Italy) along a coppicing rotation cycle. More specifically, the following questions were addressed: i) is there a pattern in functional trait composition of the herb layer along a regeneration chronosequence?; ii) which traits states differentiate each regeneration stage?; iii) are patterns of trait state variation related to the change of the environmental conditions? Species cover percentage was recorded in 54 plots (20 m × 20 m) with homogeneous ecological conditions. Relevés, ordered on the basis of the time since the last coppicing event and grouped into three age classes, were analysed with regard to trait variation, based on species absolute and relative abundance. Differences in light, temperature, soil moisture, and nutrients bioindicator values between consecutive regeneration stages were tested using the non-parametric Mann-Whitney U-test. Multi-response permutation procedures (MRPP) revealed statistically significant separation between young and intermediate-aged stands with regard to most traits. Indicator species analysis (ISA) highlighted indicator trait states, which were filtered, along the chronosequence, by changes in environmental conditions. Redundancy analysis (RDA) revealed that light intensity had the greatest effect on traits states variation from the first to the second regeneration stage, while variation from the second to the third age classes was affected by temperature. Young stands were differentiated by short cycle species with acquisitive strategies that only propagated by sexual reproduction, with light seeds, summer green and overwintering green leaves, and a long flowering duration. Intermediate-aged and mature stands were characterized by traits associated with early leaf and flower production, high persistence in time, and showing retentive strategies aimed at resource storage (e

  18. Visual information processing in the lion-tailed macaque (Macaca silenus): mental rotation or rotational invariance?

    PubMed

    Burmann, Britta; Dehnhardt, Guido; Mauck, Björn

    2005-01-01

    Mental rotation is a widely accepted concept indicating an image-like mental representation of visual information and an analogue mode of information processing in certain visuospatial tasks. In the task of discriminating between image and mirror-image of rotated figures, human reaction times increase with the angular disparity between the figures. In animals, tests of this kind yield inconsistent results. Pigeons were found to use a time-independent rotational invariance, possibly indicating a non-analogue information processing system that evolved in response to the horizontal plane of reference birds perceive during flight. Despite similar ecological demands concerning the visual reference plane, a sea lion was found to use mental rotation in similar tasks, but its processing speed while rotating three-dimensional stimuli seemed to depend on the axis of rotation in a different way than found for humans in similar tasks. If ecological demands influence the way information processing systems evolve, hominids might have secondarily lost the ability of rotational invariance while retreating from arboreal living and evolving an upright gait in which the vertical reference plane is more important. We therefore conducted mental rotation experiments with an arboreal living primate species, the lion-tailed macaque. Performing a two-alternative matching-to-sample procedure, the animal had to decide between rotated figures representing image and mirror-image of a previously shown upright sample. Although non-rotated stimuli were recognized faster than rotated ones, the animal's mean reaction times did not clearly increase with the angle of rotation. These results are inconsistent with the mental rotation concept but also cannot be explained assuming a mere rotational invariance. Our study thus seems to support the idea of information processing systems evolving gradually in response to specific ecological demands.

  19. Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process.

    PubMed

    Yost, William A; Zhong, Xuan; Najam, Anbar

    2015-11-01

    In four experiments listeners were rotated or were stationary. Sounds came from a stationary loudspeaker or rotated from loudspeaker to loudspeaker around an azimuth array. When either sounds or listeners rotate the auditory cues used for sound source localization change, but in the everyday world listeners perceive sound rotation only when sounds rotate not when listeners rotate. In the everyday world sound source locations are referenced to positions in the environment (a world-centric reference system). The auditory cues for sound source location indicate locations relative to the head (a head-centric reference system), not locations relative to the world. This paper deals with a general hypothesis that the world-centric location of sound sources requires the auditory system to have information about auditory cues used for sound source location and cues about head position. The use of visual and vestibular information in determining rotating head position in sound rotation perception was investigated. The experiments show that sound rotation perception when sources and listeners rotate was based on acoustic, visual, and, perhaps, vestibular information. The findings are consistent with the general hypotheses and suggest that sound source localization is not based just on acoustics. It is a multisystem process.

  20. Sex differences in mental rotation tasks: Not just in the mental rotation process!

    PubMed

    Boone, Alexander P; Hegarty, Mary

    2017-07-01

    The paper-and-pencil Mental Rotation Test (Vandenberg & Kuse, 1978) consistently produces large sex differences favoring men (Voyer, Voyer, & Bryden, 1995). In this task, participants select 2 of 4 answer choices that are rotations of a probe stimulus. Incorrect choices (i.e., foils) are either mirror reflections of the probe or structurally different. In contrast, in the mental rotation experimental task (Shepard & Metzler, 1971) participants judge whether 2 stimuli are the same but rotated or different by mirror reflection. The goal of the present research was to examine sources of sex differences in mental rotation, including the ability to capitalize on the availability of structure foils. In 2 experiments, both men and women had greater accuracy and faster reaction times (RTs) for structurally different compared with mirror foils in different versions of the Vandenberg and Kuse Mental Rotation Test (Experiment 1) and the Shepard and Metzler experimental task (Experiment 2). A significant male advantage in accuracy but not response time was found for both trial types. The male advantage was evident when all foils were structure foils so that mental rotation was not necessary (Experiment 3); however, when all foils were structure foils and participants were instructed to look for structure foils a significant sex difference was no longer evident (Experiment 4). Results suggest that the mental rotation process is not the only source of the sex difference in mental rotation tasks. Alternative strategy use is another source of sex differences in these tasks. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE PAGES

    Oliver, J. B.

    2017-06-12

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  2. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity.

    PubMed

    Oliver, J B

    2017-06-20

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. This systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  3. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J. B.

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  4. The Rise and Fall of Traditional Forest Management in Southern Moravia: A History of the Past 700 Years

    PubMed Central

    Müllerová, Jana; Szabó, Péter; Hédl, Radim

    2017-01-01

    European broadleaved forests have been influenced by humans for centuries. Historical management practices are related to environmental conditions but the role of socio-economic factors is also important. For the successful restoration of traditional management for conservation purposes, detailed knowledge on management history and on the driving forces of historical forest changes is necessary. In order to reconstruct long-term spatio-temporal dynamics in forest management, we chose the Pálava Protected Landscape Area, Czech Republic and analyzed archival sources spanning the past seven centuries. Forests in the study area comprise two relatively large woods (Děvín and Milovice) with different environmental conditions. Historical forest management in both woods was coppicing. The coppice cycle was lengthened from 7 years (14th century) to more than 30 years (19th century) with a fluctuating density of standards. After WWII, coppicing was completely abandoned. This led to pronounced changes in forest age structure accompanied by stand unification indicated by a sharp decrease in the Shannon index of age diversity. To study local attributes responsible for spatial patterns in coppice abandonment, we constructed a regression model with the date of abandonment as a dependent variable and three groups of explanatory variables: i) remoteness of forest parcels, (ii) morphometric environmental factors and iii) site productivity. In Děvín Wood, coppicing was abandoned gradually with the pattern of abandonment related significantly to slope steepness and forest productivity. Poorly accessible upper slopes and low productive forest sites were abandoned earlier. By contrast, in Milovice Wood, where no clear topographic gradient is present, the abandonment of coppicing was not related to any of the variables we studied. Our study brings insights into the history and consequences of past management practices, and can be used in current attempts to re-establish coppice

  5. Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure

    NASA Astrophysics Data System (ADS)

    Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.

    1995-05-01

    The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.

  6. Rotationally Vibrating Electric-Field Mill

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  7. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  8. Water-quality data for the Ohio River from Willow Island Dam to Belleville Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mile upstream from Willow Island Dam) to river mile 203.6 (0.3 mile upstream from Belleville Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was monitored by a combination of synoptic field measurements, laboratory analyses, and continuous- record monitoring. Field measurements of water- quality characteristics were made along a longitudinal transect with 24 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at six of these sites. Water-quality measurements also were made at six sites located on the back-channel (West Virginia) sides of Marietta, Muskingum, and Blennerhassett Islands. At each longitudinal-transect and back- channel sampling site, measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration were made at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected at three depths in the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at phytoplankton- pigment-sampling locations whenever light and river-surface conditions were appropriate. Each synoptic sampling event was completed in 2 days or less. The entire network was sampled 10 times from May 24 to October 27, 1993. Continuous-record monitoring of water quality consisted of hourly measurments of specific conductance, pH, water temperature, and

  9. Rotating stars in relativity.

    PubMed

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  10. The role of rotational hand movements and general motor ability in children's mental rotation performance.

    PubMed

    Jansen, Petra; Kellner, Jan

    2015-01-01

    Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0-8.3 and 9.0-10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.

  11. Modeling of Prosthetic Limb Rotation Control by Sensing Rotation of Residual Arm Bone

    PubMed Central

    Kuiken, Todd A.

    2011-01-01

    We proposed a new approach to improve the control of prosthetic arm rotation in amputees. Arm rotation is sensed by implanting a small permanent magnet into the distal end of the residual bone, which produces a magnetic field. The position of the bone rotation can be derived from magnetic field distribution detected with magnetic sensors on the arm surface, and then conveyed to the prosthesis controller to manipulate the rotation of the prosthesis. Proprioception remains intact for residual limb skeletal structures; thus, this control system should be natural and easy-to-use. In this study, simulations have been conducted in an upper arm model to assess the feasibility and performance of sensing the voluntary rotation of residual humerus with an implanted magnet. A sensitivity analysis of the magnet size and arm size was presented. The influence of relative position of the magnet to the magnetic sensors, orientation of the magnet relative to the limb axis, and displacement of the magnetic sensors on the magnetic field was evaluated. The performance of shielding external magnetostatic interference was also investigated. The simulation results suggest that the direction and angle of rotation of residual humerus could be obtained by decoding the magnetic field signals with magnetic sensors built into a prosthetic socket. This pilot study provides important guidelines for developing a practical interface between the residual bone rotation and the prosthesis for control of prosthetic rotation. PMID:18713682

  12. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  13. Coherent perfect rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Dawson, Nathan J.; Andrews, James H.

    2012-09-01

    Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence in perfect mode conversion and thus informs the optimization of active multiport optical devices.

  14. KEPLER RAPIDLY ROTATING GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surfacemore » rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.« less

  15. Rotated balance in humans due to repetitive rotational movement.

    PubMed

    Zakynthinaki, M S; Milla, J Madera; De Durana, A López Diaz; Martínez, C A Cordente; Romo, G Rodríguez; Quintana, M Sillero; Molinuevo, J Sampedro

    2010-03-01

    We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.

  16. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2016-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy with higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by the unpredictable climate change currently going on. The goal of this project is to develop a comprehensive model that covers high impact, policy relevant ecosystem services at a Continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC) with willow, poplar, eucalyptus and other broadleaf species and Short Rotation Forestry (SRF), is currently being modelled using ECOSSE, DayCent, SalixFor and MiscanFor, and ecosystem models will be used to examine the impacts of these crops on ecosystem services. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be utilised. Research will focus on optimisation of land use change feedbacks on above named ecosystem services, impact on food security, land management practices and impacts from climate change. We will present results for GHG emissions and soil organic carbon change after different land use change scenarios (e.g. arable to Miscanthus, forest to SRF), and

  17. Rotational wind indicator enhances control of rotated displays

    NASA Technical Reports Server (NTRS)

    Cunningham, H. A.; Pavel, Misha

    1991-01-01

    Rotation by 108 deg of the spatial mapping between a visual display and a manual input device produces large spatial errors in a discrete aiming task. These errors are not easily corrected by voluntary mental effort, but the central nervous system does adapt gradually to the new mapping. Bernotat (1970) showed that adding true hand position to a 90 deg rotated display improved performance of a compensatory tracking task, but tracking error rose again upon removal of the explicit cue. This suggests that the explicit error signal did not induce changes in the neural mapping, but rather allowed the operator to reduce tracking error using a higher mental strategy. In this report, we describe an explicit visual display enhancement applied to a 108 deg rotated discrete aiming task. A 'wind indicator' corresponding to the effect of the mapping rotation is displayed on the operator-controlled cursor. The human operator is instructed to oppose the virtual force represented by the indicator, as one would do if flying an airplane in a crosswind. This enhancement reduces spatial aiming error in the first 10 minutes of practice by an average of 70 percent when compared to a no enhancement control condition. Moreover, it produces adaptation aftereffect, which is evidence of learning by neural adaptation rather than by mental strategy. Finally, aiming error does not rise upon removal of the explicit cue.

  18. New potassium-argon data on the age of mineralization and metamorphism in the Willow Creek mining district, southern Talkeetna Mountains, Alaska: A section in The United States Geological Survey in Alaska: Accomplishments during 1977

    USGS Publications Warehouse

    Silberman, Miles L.; Csejtey, Bela; Smith, James G.; Lanphere, Marvin A.; Wilson, Frederic H.

    1978-01-01

    The now largely abandoned Willow Creek mining district, southern Talkeetna Mountains, Alaska, produced nearly $18,000,000 in gold and minor silver between 1909 and the early 1950's. Mineralized quartz veins, which contain gold and silver along with minor quantities of base metals (in pyrite, galena, chalcopyrite, sphalerite, molybdenite, and arsenopyrite), cut Late Cretaceous and early Tertiary tonalite and quartzmica schist of probable Jurassic age (Ray, 1954; Silberman and others, 1976; Bela Csejtey, Jr., unpub. data, 1978).

  19. Coherent Perfect Rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Dawson, Nathan; Andrews, James

    2012-04-01

    Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. In analogy with coherent perfect absorption, where counterpropagating light fields are controllably converted into other degrees of freedom, we show that in a linear-conservative medium only time-odd (Faraday) rotation is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. This highlights the necessity of time reversal odd processes (not just absorption) and coherence in perfect mode conversion and may inform device design.

  20. Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing

    NASA Astrophysics Data System (ADS)

    He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin

    In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds

  1. Pre-registration house officer rotations incorporating general practice: does the order of rotation matter?

    PubMed

    Williams, C; Cantillon, P; Cochrane, M

    2001-06-01

    In relation to pre-registration house officer (PRHO) rotations incorporating general practice, previous research has recommended that where possible, no PRHO should undertake general practice as the first placement, because of the difficulties encountered. It was recognized that logistically, this could make such schemes almost unworkable. Within the context of a larger qualitative evaluation comparing how 24 PRHOs learned in hospital and general practice settings, the issue of rotation order was explored. In-depth semistructured interviews were conducted with the 12 PRHOs who were involved in general practice rotations. They were interviewed at the beginning and end of the PRHO year, and following their return to hospital work after the general practice placement. Each rotation order had both advantages and disadvantages, with no particular rotation order being obviously better or worse for the PRHOs involved. This small qualitative evaluation has highlighted a number of advantages and disadvantages specific to each rotation order, and makes some practical recommendations to help alleviate the problems encountered. It is important that future evaluations of similar schemes consider this issue, as there are conflicting reports about the significance of the rotation order.

  2. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, Courtney R.; Pinsonneault, Marc H., E-mail: epstein@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with amore » range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.« less

  3. Visuomotor mental rotation of a saccade: The contingent negative variation scales to the angle of rotation.

    PubMed

    Heath, Matthew; Colino, Francisco L; Chan, Jillian; Krigolson, Olave E

    2018-02-01

    The visuomotor mental rotation (VMR) of a saccade requires a response to a region of space that is dissociated from a stimulus by a pre-specified angle, and work has shown a monotonic increase in reaction times as a function of increasing oblique angles of rotation. These results have been taken as evidence of a continuous process of rotation and have generated competing hypotheses. One hypothesis asserts that rotation is mediated via frontoparietal structures, whereas a second states that a continuous shift in the activity of direction-specific neurons in the superior colliculus (SC) supports rotation. Research to date, however, has not examined the neural mechanisms underlying VMR saccades and both hypotheses therefore remain untested. The present study measured the behavioural data and event-related brain potentials (ERP) of standard (i.e., 0° of rotation) and VMR saccades involving 35°, 70° and 105° of rotation. Behavioural results showed that participants adhered to task-based rotation demands and ERP findings showed that the amplitude of the contingent negative variation (CNV) linearly decreased with increasing angle of rotation. The cortical generators of the CNV are linked to frontoparietal structures supporting movement preparation. Although our ERP design does not allow us to exclude a possible role of the SC in the rotation of a VMR saccade, they do demonstrate that such actions are supported by a continuous and cortically based rotation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The role of rotational hand movements and general motor ability in children’s mental rotation performance

    PubMed Central

    Jansen, Petra; Kellner, Jan

    2015-01-01

    Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0–8.3 and 9.0–10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability. PMID:26236262

  5. A compact rotating dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Fear, M. J.; Walmsley, P. M.; Chorlton, D. A.; Zmeev, D. E.; Gillott, S. J.; Sellers, M. C.; Richardson, P. P.; Agrawal, H.; Batey, G.; Golov, A. I.

    2013-10-01

    We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 10-3 rad s-1 up to angular velocities in excess of 2.5 rad s-1. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

  6. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del [Livermore, CA; Klunder, Gregory L [Oakland, CA

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  7. Factors affecting rotator cuff healing.

    PubMed

    Mall, Nathan A; Tanaka, Miho J; Choi, Luke S; Paletta, George A

    2014-05-07

    Several studies have noted that increasing age is a significant factor for diminished rotator cuff healing, while biomechanical studies have suggested the reason for this may be an inferior healing environment in older patients. Larger tears and fatty infiltration or atrophy negatively affect rotator cuff healing. Arthroscopic rotator cuff repair, double-row repairs, performing a concomitant acromioplasty, and the use of platelet-rich plasma (PRP) do not demonstrate an improvement in structural healing over mini-open rotator cuff repairs, single-row repairs, not performing an acromioplasty, or not using PRP. There is conflicting evidence to support postoperative rehabilitation protocols using early motion over immobilization following rotator cuff repair.

  8. Dynamic Electrorheological Effects of Rotating Particles:

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Gu, G. Q.; Huang, J. P.; Xiao, J. J.

    Particle rotation leads to a steady-state which is different from the equilibrium state in the absence of rotational motion. The change of the polarization of the particle due to the rotational motion is called the dynamic electrorheological effect (DER). There are three cases to be considered: rotating particles in a dc field, particle rotation due to a rotating field and spontaneous rotation of particle in dc field (Quincke rotation). In the DER of rotating particles, the particle rotational motion generally reduces the interparticle force between the particles. The effect becomes pronounced when the frequency is on the order of the relaxation rate of the surface charges. In the electrorotation of particles, the mutual interaction between approaching particles will change the electrorotation spectrum significantly. The electrorotation spectrum depends strongly on the medium conductivity as well as the conductivity contrast between the particle and the medium. In the collective behaviors of Quincke rotors, the mutual interactions between the individual rotors lead to the assembly of chain-like structures which make an angle with the applied field. This has an implication of a new class of material.

  9. Rotating Connection for Electrical Cables

    NASA Technical Reports Server (NTRS)

    Manges, D. R.

    1986-01-01

    Cable reel provides electrical connections between fixed structure and rotating one. Reel carries power and signal lines while allowing rotating structure to turn up to 360 degrees with respect to fixed structure. Reel replaces sliprings. Can be used to electrically connect arm of robot with body. Reel releases cable to rotating part as it turns and takes up cable as rotating part comes back to its starting position, without tangling, twisting, or kinking.

  10. Impact of rotation angle on crawling and non-crawling 9-month-old infants' mental rotation ability.

    PubMed

    Gerhard, Theresa M; Schwarzer, Gudrun

    2018-06-01

    The current study investigated whether 9-month-old infants' mental rotation performance was influenced by the magnitude of the angle of object rotation and their crawling ability. A total of 76 infants were tested; of these infants, 39 had been crawling for an average of 9.0 weeks. Infants were habituated to a video of a simplified Shepard-Metzler object (Shepard & Metzler, 1971), always rotating forward through a 180° angle around the horizontal axis of the object. After habituation, in two different test conditions, infants were presented with test videos of the same object rotating farther forward through a previously unseen 90° angle and with a test video of its mirror image. The two test conditions differed in the magnitude of the gap between the end of the habituation rotations and the beginning of the test rotations. The gaps were 0° and 54°. The results revealed that the mental rotation performance was influenced by the magnitude of the gaps only for the crawling infants. Their response showed significant transition from a preference for the mirror object rotations toward a preference for the familiar habituation object rotations. Thus, the results provide first evidence that it is easier for 9-month-old crawling infants to mentally rotate an object along a small angle compared with a large one. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Anatomical glenohumeral internal rotation deficit and symmetric rotational strength in male and female young beach volleyball players.

    PubMed

    Saccol, Michele Forgiarini; Almeida, Gabriel Peixoto Leão; de Souza, Vivian Lima

    2016-08-01

    Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student's t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (p<0.05), but only 6 athletes presented pathological GIRD. For strength variables, no significant differences for external or internal rotation were evident. Young beach volleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Infant perception of the rotating Kanizsa square.

    PubMed

    Yoshino, Daisuke; Idesawa, Masanori; Kanazawa, So; Yamaguchi, Masami K

    2010-04-01

    This study examined the perception of the rotating Kanizsa square by using a fixed-trial familiarization method. If the Kanizsa square is rotated across the pacmen, adult observers perceive not only a rotating illusory square, but also an illusory expansion/contraction motion of this square. The phenomenon is called a "rotational dynamic illusion". In experiments 1 and 2, we investigated whether infants perceived the rotational dynamic illusion, finding that 3-8-month-old infants perceived the rotational dynamic illusion as a simple rotation of the Kanizsa square. In experiment 3, we investigated whether infants perceived the rotational dynamic illusion as a rotation of the Kanizsa square or as a deformation of shape, finding that 3-4-month-old infants did perceive the rotational dynamic illusion as a rotation of the Kanizsa square. Our results show that while 3-8-month-old infants perceive the rotating Kanizsa square, however, it is difficult for the infants to extract expansion/contraction motion from the rotational dynamic illusion. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Controllable High-Speed Rotation of Nanowires

    NASA Astrophysics Data System (ADS)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.

    2005-06-01

    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  14. Rotatable non-circular forebody flow controller

    NASA Technical Reports Server (NTRS)

    Moskovitz, Cary A. (Inventor)

    1991-01-01

    The invention is a rotatable, non-circular forebody flow controller. The apparatus comprises a small geometric device located at a nose of a forebody of an aircraft and a non-circular cross-sectional area that extends toward the apex of the aircraft. The device is symmetrical about a reference plane and preferably attaches to an axle which in turn attaches to a rotating motor. The motor rotates the device about an axis of rotation. Preferably, a control unit connected to an aircraft flight control computer signals to the rotating motor the proper rotational positioning of the geometric device.

  15. Visual perception of axes of head rotation

    PubMed Central

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is

  16. SMAP Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  17. [Rotator cuff tear athropathy prevalence].

    PubMed

    Guerra-Soriano, F; Encalada-Díaz, M I; Ruiz-Suárez, M; Valero-González, F S

    2017-01-01

    Glenohumeral arthritis secondary to massive rotator cuff tear presents with a superior displacement and femoralization of the humeral head with coracoacromial arch acetabularization. The purpose of this study was to establish prevalence of rotator cuff tear artropathy (CTA) at our institution. Four hundred electronic records were reviewed from which we identified 136 patients with rotator cuff tears. A second group was composed with patients with massive cuff tears that were analized and staged by the Seebauer cuff tear arthropathy classification. Thirty four patients with massive rotator cuff tears were identified, 8 male and 26 female (age 60.1 ± 10.26 years). Massive rotator cuff tear prevalence was 25%. CTA prevalence found in the rotator cuff group was 19 and 76% in the massive cuff tears group. Patients were staged according to the classification with 32% in stage 1a, 11% 1b, 32% 2a and 0% 2b. CTA prevalence in patients with rotator cuff tears and massive cuff tears is higher than the one reported in American population. We consider that a revision of the Seebauer classification to be appropriate to determine its reliability.

  18. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  19. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  20. Patellofemoral pain and asymmetrical hip rotation.

    PubMed

    Cibulka, Michael T; Threlkeld-Watkins, Julie

    2005-11-01

    Patellofemoral joint problems are the most common overuse injury of the lower extremity, and altered femoral or hip rotation may play a role in patellofemoral pain. The purpose of this case report is to describe the evaluation of and intervention for a patient with asymmetrical hip rotation and patellofemoral pain. The patient was a 15-year-old girl with an 8-month history of anterior right knee pain, without known trauma or injury. Prior to intervention, her score on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was 24%. Right hip medial (internal) rotation was less than left hip medial rotation, and manual muscle testing showed weakness of the right hip internal rotator and abductor muscles. The intervention was aimed at increasing right hip medial rotation, improving right hip muscle strength (eg, the muscle force exerted by a muscle or a group of muscles to overcome a resistance), and eliminating anterior right knee pain. After 6 visits (14 days), passive left and right hip medial rotations were symmetrical, and her right hip internal rotator and abductor muscle grades were Good plus. Her WOMAC score was 0%. The patient had right patellofemoral pain and an uncommon pattern of asymmetrical hip rotation, with diminished hip medial rotation and excessive hip lateral (external) rotation on the right side. The patient's outcomes suggest that femoral or hip joint asymmetry may be related to patellofemoral joint pain.

  1. Lunar Rotation, Orientation and Science

    NASA Astrophysics Data System (ADS)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  2. Short-rotation plantations

    Treesearch

    Philip E. Pope; Jeffery O. Dawson

    1989-01-01

    Short-rotation plantations offer several advantages over longer, more traditional rotations. They enhance the natural productivity of better sites and of tree species with rapid juvenile growth. Returns on investment are realized in a shorter period and the risk of loss is reduced compared with long term investments. Production of wood and fiber can be maximized by...

  3. Instability of counter-rotating stellar disks

    NASA Astrophysics Data System (ADS)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  4. Disentangling rotational velocity distribution of stars

    NASA Astrophysics Data System (ADS)

    Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra

    2017-11-01

    Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.

  5. Rotational Spectrum of Sarin

    NASA Astrophysics Data System (ADS)

    Walker, A. R. Hight; Suenram, R. D.; Samuels, Alan; Jensen, James; Ellzy, Michael W.; Lochner, J. Michael; Zeroka, Daniel

    2001-05-01

    As part of an effort to examine the possibility of using molecular-beam Fourier-transform microwave spectroscopy to unambiguously detect and monitor chemical warfare agents, we report the first observation and assignment of the rotational spectrum of the nerve agent Sarin (GB) (Methylphosphonofluoridic acid 1-methyl-ethyl ester, CAS #107-44-8) at frequencies between 10 and 22 GHz. Only one of the two low-energy conformers of this organophosphorus compound (C4H10FO2P) was observed in the rotationally cold (Trot<2 K) molecular beam. The experimental asymmetric-rotor ground-state rotational constants of this conformer are A=2874.0710(9) MHz, B=1168.5776(4) MHz, C=1056.3363(4) MHz (Type A standard uncertainties are given, i.e., 1σ), as obtained from a least-squares analysis of 74 a-, b-, and c-type rotational transitions. Several of the transitions are split into doublets due to the internal rotation of the methyl group attached to the phosphorus. The three-fold-symmetry barrier to internal rotation estimated from these splittings is 677.0(4) cm-1. Ab initio electronic structure calculations using Hartree-Fock, density functional, and Moller-Plesset perturbation theories have also been made. The structure of the lowest-energy conformer determined from a structural optimization at the MP2/6-311G** level of theory is consistent with our experimental findings.

  6. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.

    PubMed

    Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Constantineau, Simon; Munro, Lara; Labrecque, Michel

    2017-06-03

    The phytoextraction of the trace elements (TEs) As, Cd, Cu, Ni, Pb, and Zn by willow cultivars (Fish Creek, SV1 and SX67) was measured during a 3-year field trial in a mildly contaminated soil. Biomass ranged from 2.8 to 4.4 Mg/ha/year at 30,000 plants/ha. Shoots (62%) were the main component followed by leaves (23%) and roots (15%). Biomass was positively linked to soluble soil dissolved organic carbon, K, and Mg, while TEs, not Cd and Zn, had a negative effect. The TE concentration ranking was: Zn > Cu > Cd > Ni, Pb > As, and distribution patterns were: (i) minima in shoots (As, Ni), (ii) maxima in leaves (Cd, Zn), or (iii) maxima in roots (Cu, Pb). Correlations between soil and plant TE were significant for the six TEs in roots. The amounts extracted were at a maximum for Zn, whereas Fish Creek and SV1 extracted more TE than SX67. More than 60% (91-94% for Cd and Zn) of the total TE was in the aboveground parts. Uptake increased with time because of higher biomass. Fertilization, the selection of cultivars, and the use of complementary plants are required to improve productivity and Cd and Zn uptake.

  7. Separating "Rotators" from "Nonrotators" in the Mental Rotations Test: A Multigroup Latent Class Analysis

    ERIC Educational Resources Information Center

    Geiser, Christian; Lehmann, Wolfgang; Eid, Michael

    2006-01-01

    Items of mental rotation tests can not only be solved by mental rotation but also by other solution strategies. A multigroup latent class analysis of 24 items of the Mental Rotations Test (MRT) was conducted in a sample of 1,695 German pupils and students to find out how many solution strategies can be identified for the items of this test. The…

  8. Quantifying above- and below-ground growth responses of the western Australian oil mallee, Eucalyptus kochii subsp. plenissima, to contrasting decapitation regimes.

    PubMed

    Wildy, Dan T; Pate, John S

    2002-08-01

    Resprouting in the oil mallee, Eucalyptus kochii Maiden & Blakely subsp. plenissima Gardner (Brooker), involves generation of new shoots from preformed meristematic foci on the lignotuber. Numbers of such foci escalated from 200 per lignotuber in trees aged 1 year to 3,000 on 4- to 5-year-old trees. Removal of shoot biomass by decapitation 5 cm above ground in summer (February) or spring (October) resulted in initiation of 140-170 new shoots, but approx. 400 shoots were induced to form if crops of new shoots were successively removed until sprouting ceased and rootstocks senesced. Initially, the new shoot biomass of regenerating coppices increased slowly and the root biomass failed to increase appreciably until 1.7-2.5 years after cutting. Newly cut trees showed loss of fine root biomass, and structural roots failed to secondarily thicken to the extent shown by uncut trees. After 2 years, the biomass of shoots of coppiced plants was only one-third that of uncut control trees and shoot:root dry mass ratios of coppiced plants were still low (1.5-2.0) compared with those of the controls (average ratio of 3.1). Spring cutting promoted quicker and greater biomass recovery than summer cutting. Starch in below-ground biomass fell quickly following decapitation and remained low for a 12-18 month period. Utilization of starch reserves in naturally regenerating coppices was estimated to provide only a small proportion of the dry matter accumulated in new shoots. Results are discussed in relation to their impact on coppicing ability of the species under natural conditions or when successively coppiced for shoot biomass production.

  9. Rotating plug bearing and seal

    DOEpatents

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  10. Staff rotation: implications for occupational therapy.

    PubMed

    Taylor, A; Andriuk, M L; Langlois, P; Provost, E

    1995-10-01

    Occupational therapy departments of tertiary care hospitals can provide staff with opportunities to gain diverse clinical experience if they rotate through the various services such as surgery, medicine, geriatrics, plastic surgery and orthopaedics. The system of rotation offers both advantages and disadvantages for the staff and the institution. The Royal Victoria Hospital in Montreal, a large university teaching hospital, had traditionally offered staff the opportunity to rotate. Changes in staffing and their needs however, resulted in rotation becoming an important issue within the department. This article presents the pros and the cons of rotation and non-rotation systems as identified by therapists and administrators across Canada. Staff rotation was found to have an effect on job satisfaction and a therapist's career orientation. Given these findings, administrators may want to reconsider the role of the generalist and specialist in their facilities.

  11. Adaptive traits to fluvial systems of native tree European black Poplar (Populus nigra L.) population in Southern Italy

    NASA Astrophysics Data System (ADS)

    Saulino, Luigi; Pasquino, Vittorio; Todaro, Luigi; Rita, Angelo; Villani, Paolo; Battista Chirico, Giovanni; Saracino, Antonio

    2015-04-01

    This work focuses on the morphological and biomechanical traits developed by the European black poplar (Populus nigra) to cope with the hydraulic force and prolonged submersion periods during floods. Two riverine environments of the Cilento sub-region (Southern Italy) have been selected for this experimental study. The two sites have the same climatic and hydrological regimes. The first site is located along the Ripiti stream, characterized by a braided channel with longitudinal and transverse bars and eroding banks. The second site is located along the Badolato stream, an entrenched meandering riffle/pool channel, with low gradients and high width/depth. P. nigra mixed with Salix alba and along the Badolato stream also Platanus orientalis, is the dominant wooden riparian vegetation in both sites. Cuttings from adult P. nigra trees originated by seeds were collected and planted in the 'Azienda Sperimentale Regionale Improsta' (Eboli-Salerno, Campania region). The experimental plantation was managed according to a multi-stem short rotation coppice with low external energy input and high disturbance regime generated by a 3 years rotation coppicing. The two sample stool sets exhibit statistically similar morphological traits, but different values of Young elasticity module of the shoots. A functional evaluation of the biomechanical differences was performed by measuring the bending of the individual stems under the hypothesis of complete submergence within a flow of different mean velocities, using a numerical model that predicts the bending of woody vegetation beams allowing for large deflections. The results suggest that plants with the same gene pool but coming from morphologically different riverine environments, may reflect different dominant biomechanical properties, which might be relevant for designing local sustainable management and restoration plans of rivers and riparian systems.

  12. Precision grip responses to unexpected rotational perturbations scale with axis of rotation.

    PubMed

    De Gregorio, Michael; Santos, Veronica J

    2013-04-05

    It has been established that rapid, pulse-like increases in precision grip forces ("catch-up responses") are elicited by unexpected translational perturbations and that response latency and strength scale according to the direction of linear slip relative to the hand as well as gravity. To determine if catch-up responses are elicited by unexpected rotational perturbations and are strength-, axis-, and/or direction-dependent, we imposed step torque loads about each of two axes which were defined relative to the subject's hand: the distal-proximal axis away from and towards the subject's palm, and the grip axis which connects the two fingertips. Precision grip responses were dominated initially by passive mechanics and then by active, unimodal catch-up responses. First dorsal interosseous activity, marking the start of the catch-up response, began 71-89 ms after the onset of perturbation. The onset latency, shape, and duration (217-231 ms) of the catch-up response were not affected by the axis, direction, or magnitude of the rotational perturbation, while strength was scaled by axis of rotation and slip conditions. Rotations about the grip axis that tilted the object away from the palm and induced rotational slip elicited stronger catch-up responses than rotations about the distal-proximal axis that twisted the object between the digits. To our knowledge, this study is the first to investigate grip responses to unexpected torque loads and to show characteristic, yet axis-dependent, catch-up responses for conditions other than pure linear slip. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The impact of cattle and goats grazing on vegetation in oak stands of varying coppicing age

    NASA Astrophysics Data System (ADS)

    Papachristou, Thomas G.; Platis, Panayiotis D.

    2011-01-01

    The effects of cattle and goats grazing on oak shoot growth and herbaceous vegetation in three oak forest stands with different coppicing age (1, 4 and 7 yrs after the clear cutting) were investigated. In April 1997, an experimental area was chosen with three forest stands, which were clear cut in 1996 (CL1996), 1993 (CL1993), and 1990 (CL1990). All stands were grazed by cattle and goats after they were clear cut. In each forest stand, five 10 m × 10 m paired plots were located, which represented grazed and protected patches. Herbage biomass within protected and grazed plots was measured four times each year (spring: May-June, summer: July-August, autumn: September-October, and winter: November-December). Behavioural observations on grazing animals were conducted in the same periods. In both protected and open plots the height and basal diameter of all oak shoots on 5 preselected stumps were measured at the end of five growing periods from 1997 to 2001. All forest stands carried a similar amount of available herbage (averaged over forest stands and growing season, 2614 kg/ha). Grazing animals removed on average 1057 kg/ha throughout the growing period. Cattle mainly consumed herbage (97% of bites) while goats consumed a mixture of oak browse (41% bites), herbaceous species (34% bites), and other woody species browse (25% bites). The height, diameter and volume of oak shoots were affected by grazing. The three forest stands had similar shoot heights in the protected plots in 2001 after 5 years of grazing protection. The volume of oak shoots of the grazed plots were 146.7 cm3 for CL1996, 232.9 cm3 for CL1993, and 239.1 cm3 for CL1990 in 2001 (i.e. 5, 8, and 11 years grazing after the clear cuttings, respectively). The protected plots carried greater volumes of oak shoots, CL1996: 496.0 cm3 (few months grazing before protection), CL1993: 690.0 cm3 (4 years grazing before protection), and CL1990: 344.0 cm3 (7 years grazing before protection). In conclusion, almost

  14. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  15. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Groebner, R J; Kaplan, D H

    2012-10-01

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  16. How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a Quercus ilex coppice?

    NASA Astrophysics Data System (ADS)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-12-01

    The partitioning of photosynthates toward biomass compartments plays a crucial role in the carbon (C) sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought-prone forests. We analyzed the fate of gross primary production (GPP) in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Carbon fluxes between the ecosystem and the atmosphere were measured with an eddy covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns, and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy covariance fluxes with annual net primary productions (NPP), we managed to close a C budget and derive values of autotrophic, heterotrophic respirations and carbon-use efficiency (CUE; the ratio between NPP and GPP). Average values of yearly net ecosystem production (NEP), GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding aboveground net primary production (ANPP) components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems, respectively. NEP, GPP and Reco were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected - the stem growth - to the least affected - the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease less drastically in response to drought than GPP and NPP did, probably due to drought acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem, and

  17. Sleep disturbance associated with rotator cuff tear: correction with arthroscopic rotator cuff repair.

    PubMed

    Austin, Luke; Pepe, Matthew; Tucker, Bradford; Ong, Alvin; Nugent, Robert; Eck, Brandon; Tjoumakaris, Fotios

    2015-06-01

    Sleep disturbance is a common complaint of patients with a rotator cuff tear. Inadequate and restless sleep, along with pain, is often a driving symptom for patients to proceed with rotator cuff repair. To date, no studies have examined sleep disturbance in patients undergoing rotator cuff repair, and there is no evidence that surgery improves sleep disturbance. Sleep disturbance is prevalent in patients with a symptomatic rotator cuff tear, and sleep disturbance improves after arthroscopic rotator cuff repair. Case series; Level of evidence, 4. A total of 56 patients undergoing arthroscopic rotator cuff repair for full-thickness tears were enrolled in a prospective study. Patients were surveyed preoperatively and postoperatively at intervals of 2, 6, 12, 18, and 24 weeks. Patient outcomes were scored using the Pittsburgh Sleep Quality Index (PSQI), Simple Shoulder Test (SST), visual analog scale for pain (VAS), and single assessment numeric evaluation (SANE). Demographic and surgical factors were also collected for analysis. Preoperative PSQI scores indicative of sleep disturbance were reported in 89% of patients. After surgery, a statistically significant improvement in PSQI was achieved at 3 months (P = .0012; 91% follow-up) and continued through 6 months (P = .0179; 93% follow-up). Six months after surgery, only 38% of patients continued to have sleep disturbance. Multivariable linear regression of all surgical and demographic factors versus PSQI was performed and demonstrated that preoperative and prolonged postoperative narcotic use negatively affected sleep. Sleep disturbance is common in patients undergoing rotator cuff repair. After surgery, sleep disturbance improves to levels comparable with those of the general public. Preoperative and prolonged postoperative use of narcotic pain medication negatively affects sleep. © 2015 The Author(s).

  18. Rotation Flaps-Principles and Locations.

    PubMed

    LoPiccolo, Matteo C

    2015-10-01

    The rotation flap is a classic method of tissue rearrangement. It is a simple yet effective tool for recruiting tissue from areas of laxity and redirecting vectors of tension to reconstruct wounds not amenable to primary closure. This article presents the basic design principles and specific applications of the rotation flap in dermatologic surgery. A Medline search of articles describing rotation flaps published prior to April 1, 2015 was performed, and several prominent texts in dermatologic surgery were reviewed. Information gathered from the above sources is combined with the clinical experience of the author and editors to present surgeons with a guide for planning and executing various rotation flaps. Mastering the technique of the rotation flap will allow a surgeon to repair a wide variety of cutaneous defects.

  19. Rotating-disk sorptive extraction: effect of the rotation mode of the extraction device on mass transfer efficiency.

    PubMed

    Jachero, Lourdes; Ahumada, Inés; Richter, Pablo

    2014-05-01

    The extraction device used in rotating-disk sorptive extraction consists of a Teflon disk in which a sorptive phase is fixed on one of its surfaces. Depending on the configuration, the rotation axis of the disk device can be either perpendicular or parallel to its radius, giving rise to two different mass transfer patterns when rotating-disk sorptive extraction is applied in liquid samples. In the perpendicular case (configuration 1), which is the typical configuration, the disk contains an embedded miniature stir bar that allows the disk rotation to be driven using a common laboratory magnetic stirrer. In the parallel case (configuration 2), the disk is driven by a rotary rod connected to an electric stirrer. In this study, triclosan and its degradation product methyl triclosan were used as analyte models to demonstrate the significant effect of the rotation configuration of the disk on the efficiency of analyte mass transfer from water to a sorptive phase of polydimethylsiloxane. Under the same experimental conditions and at a rotation velocity of 1,250 rpm, extraction equilibrium was reached at 80 min when the disk was rotated in configuration 1 and at 30 min when the disk was rotated in configuration 2. The extraction equilibration time decreased to 14 min when the rotation velocity was increased to 2,000 rpm in configuration 2. Because the rotation pattern affects the mass transfer efficiency, each rotation configuration was characterized through the Reynolds number; Re values of 6,875 and 16,361 were achieved with configurations 1 and 2, respectively, at 1,250 rpm.

  20. Rotational Spectrum and Internal Rotation Barrier of 1-Chloro-1,1-difluoroethane

    NASA Astrophysics Data System (ADS)

    Alonso, José L.; López, Juan C.; Blanco, Susana; Guarnieri, Antonio

    1997-03-01

    The rotational spectra of 1-chloro-1,1-difluoroethane (HCFC-142b) has been investigated in the frequency region 8-115 GHz with Stark, waveguide Fourier transform (FTMW), and millimeter-wave spectrometers. Assignments in large frequency regions with the corresponding frequency measurements have been made for the ground andv18= 1 (CH3torsion) vibrational states of the35Cl isotopomer and for the ground state of the37Cl species. Accurate rotational, quartic centrifugal distortion, and quadrupole coupling constants have been determined from global fits considering all these states. SmallA-Einternal rotation splittings have been observed for thev18= 1 vibrational state using FTMW spectroscopy. The barrier height for the internal rotation of the methyl group has been determined to be 3751 (4) cal mol-1, in disagreement with the previous microwave value of 4400 (100) cal mol-1reported by G. Graner and C. Thomas [J. Chem. Phys.49,4160-4167 (1968)].

  1. Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect

    NASA Astrophysics Data System (ADS)

    Chen, Xinlin; Xiao, Guangzong; Xiong, Wei; Yang, Kaiyong; Luo, Hui; Yao, Baoli

    2018-03-01

    The angular velocity of a vaterite microsphere spinning in the optical trap is measured using rotational Doppler effect. The perfectly spherical vaterite microspheres are synthesized via coprecipitation in the presence of silk fibroin nanospheres. When trapped by a circularly polarized beam, the vaterite microsphere is uniformly rotated in the trap center. The probe beams containing two Laguerre-Gaussian beams of opposite topological charge l = ± 7, l = ± 8, and l = ± 9 are illuminated on the spinning vaterite. By analyzing the backscattered light, a frequency shift is observed scaling with the rotation rate of the vaterite microsphere. The multiplicative enhancement of the frequency shift proportion to the topological charge has greatly improved the measurement precision. The reliability and practicability of this approach are verified through varying the topological charge of the probe beam and the trapping laser power. In consideration of the excellent measurement precision of the rotation frequency, this technique might be generally applicable in studying the torsional properties of micro-objects.

  2. Rotational Spectrum of Sarin.

    PubMed

    Walker, A. R. Hight; Suenram, R. D.; Samuels, Alan; Jensen, James; Ellzy, Michael W.; Lochner, J. Michael; Zeroka, Daniel

    2001-05-01

    As part of an effort to examine the possibility of using molecular-beam Fourier-transform microwave spectroscopy to unambiguously detect and monitor chemical warfare agents, we report the first observation and assignment of the rotational spectrum of the nerve agent Sarin (GB) (Methylphosphonofluoridic acid 1-methyl-ethyl ester, CAS #107-44-8) at frequencies between 10 and 22 GHz. Only one of the two low-energy conformers of this organophosphorus compound (C(4)H(10)FO(2)P) was observed in the rotationally cold (T(rot)<2 K) molecular beam. The experimental asymmetric-rotor ground-state rotational constants of this conformer are A=2874.0710(9) MHz, B=1168.5776(4) MHz, C=1056.3363(4) MHz (Type A standard uncertainties are given, i.e., 1sigma), as obtained from a least-squares analysis of 74 a-, b-, and c-type rotational transitions. Several of the transitions are split into doublets due to the internal rotation of the methyl group attached to the phosphorus. The three-fold-symmetry barrier to internal rotation estimated from these splittings is 677.0(4) cm(-1). Ab initio electronic structure calculations using Hartree-Fock, density functional, and Moller-Plesset perturbation theories have also been made. The structure of the lowest-energy conformer determined from a structural optimization at the MP2/6-311G(**) level of theory is consistent with our experimental findings. Copyright 2001 Academic Press.

  3. Rigid rotators. [deriving the time-independent energy states associated with rotational motions of the molecule

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.

  4. Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Gullapalli, Atchyut

    2016-11-01

    Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].

  5. On the Product of Rotations

    ERIC Educational Resources Information Center

    Trenkler, G.; Trenkler, D.

    2008-01-01

    Using the elementary tools of matrix theory, we show that the product of two rotations in the three-dimensional Euclidean space is a rotation again. For this purpose, three types of rotation matrices are identified which are of simple structure. One of them is the identity matrix, and each of the other two types can be uniquely characterized by…

  6. Chaotic rotation of Hyperion?

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  7. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  8. Acoustic controlled rotation and orientation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)

    1989-01-01

    Acoustic energy is applied to a pair of locations spaced about a chamber, to control rotation of an object levitated in the chamber. Two acoustic transducers applying energy of a single acoustic mode, one at each location, can (one or both) serve to levitate the object in three dimensions as well as control its rotation. Slow rotation is achieved by initially establishing a large phase difference and/or pressure ratio of the acoustic waves, which is sufficient to turn the object by more than 45 deg, which is immediately followed by reducing the phase difference and/or pressure ratio to maintain slow rotation. A small phase difference and/or pressure ratio enables control of the angular orientation of the object without rotating it. The sphericity of an object can be measured by its response to the acoustic energy.

  9. Global Analysis of Broadband Rotation and Vibration-Rotation Spectra of Sulfur Dicyanide

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Winnewissser, Manfred; Winnewisser, Brenda P.; De Lucia, Frank C.; Tokaryk, Dennis W.; Billinghurst, Brant E.

    2013-06-01

    The successful analysis of the quantum monodromy induced features in the rotational spectrum of the NCNCS molecule prompted a quest for similar behaviour in its vibration-rotation spectrum and several high-resolution FT-IR spectra were recorded on the IFS125HR interferometer at the Canadian Light Source. The sulfur dicyanide, S(CN)_2, molecule is a precursor to NCNCS and the analysis of its spectrum proved to be a prerequisite to a search for the elusive NCNCS transitions. The CLS spectra provided the opportunity to augment the previous extensive analysis of the FASSST rotational spectrum of S(CN)_2 with vibration-rotation data, in particular from the ν_4 fundamental at 121 cm^{-1} and its related hot-band series. A global fit of the two data sets allowed retaining the detailed analysis of the previously reported perturbations in the 3ν_4 triad and 4ν_4 tetrad of states, while allowing for determination of precise energies of all low-lying vibrational states of S(CN)_2. In this way we have determined wavenumbers for five lowest fundamentals of this experimentally difficult molecule and obtained an extensive set of benchmark data for calibration of anharmonic force field calculations of such quantities as the vibration-rotation changes in rotational constants, and anharmonicity coefficients. Comparisons with results of several such calculations are presented. B.P.Winnewisser, et al., Phys. Chem. Chem. Phys. {12}, 8158 (2010). M.Winnewisser et al., 67^th OSU Symposium on Molecular Spectroscopy, The Ohio State University, Ohio 2012, TF-01. Z.Kisiel et al., J. Mol. Spectrosc. {246}, 39 (2007).

  10. High-Current Rotating Contactor

    NASA Technical Reports Server (NTRS)

    Hagan, David W.; Wolff, Edwin D.

    1996-01-01

    Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.

  11. Trirotron: triode rotating beam radio frequency amplifier

    DOEpatents

    Lebacqz, Jean V.

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  12. Commission Review of a Proposal by the State Center Community College District to Establish the Willow-International Community College Center: A Report to the Governor and Legislature in Response to a Request from the Board of Governors of the California Community Colleges. Commission Report 03-05

    ERIC Educational Resources Information Center

    California Postsecondary Education Commission, 2003

    2003-01-01

    This report reviews a proposal by the State Center Community College District to establish a State-approved education center in the city of Fresno. The center would be named the Willow-International Community College Center, and it would replace an existing Clovis operational outreach center that is considered by the district to be insufficient…

  13. A phenomenological treatment of rotating turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1995-01-01

    The strong similarity between the magnetohydrodynamic (MHD) turbulence and initially isotropic turbulence subject to rotation is noted. We then apply the MHD phenomenologies of Kraichnan and Matthaeus & Zhou to rotating turbulence. When the turbulence is subject to a strong rotation, the energy spectrum is found to scale as E(k) = C(sub Omega)(Omega(sub epsilon))(sup 1/2)k(sup -2), where Omega is the rotation rate, k is the wavenumber, and epsilon is the dissipation rate. This spectral form is consistent with a recent letter by Zeman. However, here the constant C(sub Omega) is found to be related to the Kolmogorov constant and is estimated in the range 1.22 - 1.87 for the typical values of the latter constant. A 'rule' that relates spectral transfer times to the eddy turnover time and the time scale for decay of the triple correlations is deduced. A hypothesis for the triple correlation decay rate leads to the spectral law which varies between the '-5/3' (without rotation) and '-2' laws (with strong rotation). For intermediate rotation rates, the spectrum varies according to the value of a dimensionless parameter that measures the strength of the rotation wavenumber k(sub Omega) = (Omega(sup 3)/epsiolon)(sup 1/2) relative to the wavenumber k. An eddy viscosity is derived with an explicit dependence on the rotation rate.

  14. Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chjan

    Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-bodymore » flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.« less

  15. Effective Rotations: Action Effects Determine the Interplay of Mental and Manual Rotations

    ERIC Educational Resources Information Center

    Janczyk, Markus; Pfister, Roland; Crognale, Michael A.; Kunde, Wilfried

    2012-01-01

    The last decades have seen a growing interest in the impact of action on perception and other concurrent cognitive processes. One particularly interesting example is that manual rotation actions facilitate mental rotations in the same direction. The present study extends this research in two fundamental ways. First, Experiment 1 demonstrates that…

  16. Opioid Rotation in Cancer Pain Treatment.

    PubMed

    Schuster, Michael; Bayer, Oliver; Heid, Florian; Laufenberg-Feldmann, Rita

    2018-03-02

    Rotating several different WHO level III opioid drugs is a therapeutic option for patients with chronic cancer-related pain who suffer from inadequate analgesia and/or intolerable side effects. The evidence favoring opioid rotation is controversial, and the current guidelines in Germany and other countries contain only weak recommendations for it. This review is based on pertinent publications retrieved by a systematic review of the literature on opioid rotation for adult patients with chronic cancerrelated pain who are regularly taking WHO level III opioids by the oral or trans - dermal route. 9 individual studies involving a total of 725 patients were included in the analysis, and 3 previous systematic reviews of studies involving a total of 2296 patients were also analyzed. Morphine, oxycodone, fentanyl, hydromorphone, and buprenorphine were used as first-line opioid drugs, and hydromorphone, bupre - norphine, tapentadol, fentanyl, morphine, oxymorphone, and methadone were used as second-line opioid drugs. In all of the studies, pain control was achieved for 14 days after each rotation. In most of them, the dose of the new drug introduced in each rotation needed to be increased above the dose initially calculated from a rotation ratio, with the exception of rotations to methadone. The frequency of side effects was only rarely lessened, but patients largely considered the result of opioid rotation to be positive. No particular opioid drug was found to be best. Opioid rotation can improve analgesia and patient satisfaction. The success of opioid rotation appears to depend on the magnitude of the initial dose, among other factors. Tables of equianalgesic doses should be considered no more than a rough guide for determining the dose of the new drug. Rotations to methadone should be carried out under clinical supervision in experienced hands.

  17. Comprehensive analysis of commercial willow bark extracts by new technology platform: combined use of metabolomics, high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy and high-resolution radical scavenging assay.

    PubMed

    Agnolet, Sara; Wiese, Stefanie; Verpoorte, Robert; Staerk, Dan

    2012-11-02

    Here, proof-of-concept of a new analytical platform used for the comprehensive analysis of a small set of commercial willow bark products is presented, and compared with a traditional standardization solely based on analysis of salicin and salicin derivatives. The platform combines principal component analysis (PCA) of two chemical fingerprints, i.e., HPLC and (1)H NMR data, and a pharmacological fingerprint, i.e., high-resolution 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(+)) reduction profile, with targeted identification of constituents of interest by hyphenated HPLC-solid-phase extraction-tube transfer NMR, i.e., HPLC-SPE-ttNMR. Score plots from PCA of HPLC and (1)H NMR fingerprints showed the same distinct grouping of preparations formulated as capsules of Salix alba bark and separation of S. alba cortex. Loading plots revealed this to be due to high amount of salicin in capsules and ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba cortex, respectively. PCA of high-resolution radical scavenging profiles revealed clear separation of preparations along principal component 1 due to the major radical scavengers (+)-catechin and ampelopsin. The new analytical platform allowed identification of 16 compounds in commercial willow bark extracts, and identification of ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba bark extract is reported for the first time. The detection of the novel compound, ethyl 1-hydroxy-6-oxocyclohex-2-enecarboxylate, is also described. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Rotating samples in FT-RAMAN spectrometers

    NASA Astrophysics Data System (ADS)

    De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.

    1997-11-01

    It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.

  19. Studies on dynamic behavior of rotating mirrors

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie

    2005-02-01

    A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.

  20. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  1. Femoral component rotation in patellofemoral joint replacement.

    PubMed

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Current status of rotational atherectomy.

    PubMed

    Tomey, Matthew I; Kini, Annapoorna S; Sharma, Samin K

    2014-04-01

    Rotational atherectomy facilitates percutaneous coronary intervention for complex de novo lesions with severe calcification. A strategy of routine rotational atherectomy has not, however, conferred reduction in restenosis or major adverse cardiac events. As it is technically demanding, rotational atherectomy is also uncommon. At this 25-year anniversary since the introduction of rotational atherectomy, we sought to review the current state-of-the-art in rotational atherectomy technique, safety, and efficacy data in the modern era of drug-eluting stents, strategies to prevent and manage complications, including slow-flow/no-reflow and burr entrapment, and appropriate use in the context of the broader evolution in the management of stable ischemic heart disease. Fundamental elements of optimal technique include use of a single burr with burr-to-artery ratio of 0.5 to 0.6-rotational speed of 140,000 to 150,000 rpm, gradual burr advancement using a pecking motion, short ablation runs of 15 to 20 s, and avoidance of decelerations >5,000 rpm. Combined with meticulous technique, optimal antiplatelet therapy, vasodilators, flush solution, and provisional use of atropine, temporary pacing, vasopressors, and mechanical support may prevent slow-flow/no-reflow, which in contemporary series is reported in 0.0% to 2.6% of cases. On the basis of the results of recent large clinical trials, a subset of patients with complex coronary artery disease previously assigned to rotational atherectomy may be directed instead to medical therapy alone or bypass surgery. For patients with de novo severely calcified lesions for which rotational atherectomy remains appropriate, referral centers of excellence are required. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Rotational joint assembly and method for constructing the same

    NASA Technical Reports Server (NTRS)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)

    2012-01-01

    A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.

  4. Advances in Rotational Seismic Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Robert; Laughlin, Darren; Brune, Robert

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is onmore » induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.« less

  5. Synchronization in counter-rotating oscillators.

    PubMed

    Bhowmick, Sourav K; Ghosh, Dibakar; Dana, Syamal K

    2011-09-01

    An oscillatory system can have opposite senses of rotation, clockwise or anticlockwise. We present a general mathematical description of how to obtain counter-rotating oscillators from the definition of a dynamical system. A type of mixed synchronization emerges in counter-rotating oscillators under diffusive scalar coupling when complete synchronization and antisynchronization coexist in different state variables. We present numerical examples of limit cycle van der Pol oscillator and chaotic Rössler and Lorenz systems. Stability conditions of mixed synchronization are analytically obtained for both Rössler and Lorenz systems. Experimental evidences of counter-rotating limit cycle and chaotic oscillators and mixed synchronization are given in electronic circuits.

  6. High performance rotational vibration isolator

    NASA Astrophysics Data System (ADS)

    Sunderland, Andrew; Blair, David G.; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  7. High performance rotational vibration isolator.

    PubMed

    Sunderland, Andrew; Blair, David G; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  8. Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation

    NASA Technical Reports Server (NTRS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1998-01-01

    The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence

  9. Rotational movements of mandibular two-implant overdentures.

    PubMed

    Kimoto, Suguru; Pan, Shaoxia; Drolet, Nicolas; Feine, Jocelyne S

    2009-08-01

    Clinicians have reported that their patients complain that their mandibular two-implant overdentures (IOD) rotate. Therefore, we studied the frequency and severity of rotation of IODs with two-ball attachments, how rotation may influence perceived satisfaction ratings of chewing ability, and the factors that are involved in the rotation of IODs. Seventy-nine participants were recruited and asked to rate their general satisfaction of their IODs, as well as their ability to chew foods, the existence of any mandibular denture rotation, and to what degree denture rotation bothered them. Data on participant sociodemographic, anatomical, and prosthesis characteristics were also collected. Student's t-test and logistic regression analyses were performed to analyze the differences between participants who did (R group) and did not report (NR group) denture rotation. Thirty-seven of 79 participants were aware of rotational movement in their IODs. These patients were significantly less satisfied with their chewing ability than those who felt no rotation (69.1 mm R group vs. 82.9 mm), and discomfort caused by the rotation bothered them moderately (39/100 mm). The multivariate logistic regression analysis revealed that the arrangement of the anterior teeth and the length of the denture are significantly associated with awareness of denture rotation. Thirty-eight percent in the R group and 31% in the NR group had non-scheduled visits. Rotational movement with a mandibular two-IOD has a negative effect on perceived chewing ability and is associated with anterior tooth arrangement and denture length.

  10. A common-garden study of resource-island effects on a native and an exotic, annual grass after fire

    USGS Publications Warehouse

    Hoover, Amber N.; Germino, Matthew J.

    2012-01-01

    Plant-soil variation related to perennial-plant resource islands (coppices) interspersed with relatively bare interspaces is a major source of heterogeneity in desert rangelands. Our objective was to determine how native and exotic grasses vary on coppice mounds and interspaces (microsites) in unburned and burned sites and underlying factors that contribute to the variation in sagebrush-steppe rangelands of the Idaho National Lab, where interspaces typically have abiotic crusts. We asked how the exotic cheatgrass (Bromus tectorum L.) and native bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve) were distributed among the microsites and measured their abundances in three replicate wildfires and nearby unburned areas. We conducted a common-garden study in which soil cores from each burned microsite type were planted with seed of either species to determine microsite effects on establishment and growth of native and exotic grasses. We assessed soil physical properties in the common-garden study to determine the intrinsic properties of each microsite surface and the retention of microsite soil differences following transfer of soils to the garden, to plant growth, and to wetting/drying cycles. In the field study, only bluebunch wheatgrass density was greater on coppice mounds than interspaces, in both unburned and burned areas. In the common-garden experiment, there were microsite differences in soil physical properties, particularly in crust hardness and its relationship to moisture, but soil properties were unaffected by plant growth. Also in the experiment, both species had equal densities yet greater dry mass production on coppice-mound soils compared to interspace soils, suggesting microsite differences in growth but not establishment (likely related to crust weakening resulting from watering). Coppice-interspace patterning and specifically native-herb recovery on coppices is likely important for postfire resistance of this rangeland to cheatgrass.

  11. Quantifying Above‐ and Below‐ground Growth Responses of the Western Australian Oil Mallee, Eucalyptus kochii subsp. plenissima, to Contrasting Decapitation Regimes

    PubMed Central

    WILDY, DAN T.; PATE, JOHN S.

    2002-01-01

    Resprouting in the oil mallee, Eucalyptus kochii Maiden & Blakely subsp. plenissima Gardner (Brooker), involves generation of new shoots from preformed meristematic foci on the lignotuber. Numbers of such foci escalated from 200 per lignotuber in trees aged 1 year to 3000 on 4‐ to 5‐year‐old trees. Removal of shoot biomass by decapitation 5 cm above ground in summer (February) or spring (October) resulted in initiation of 140–170 new shoots, but approx. 400 shoots were induced to form if crops of new shoots were successively removed until sprouting ceased and rootstocks senesced. Initially, the new shoot biomass of regenerating coppices increased slowly and the root biomass failed to increase appreciably until 1·7–2·5 years after cutting. Newly cut trees showed loss of fine root biomass, and structural roots failed to secondarily thicken to the extent shown by uncut trees. After 2 years, the biomass of shoots of coppiced plants was only one‐third that of uncut control trees and shoot : root dry mass ratios of coppiced plants were still low (1·5–2·0) compared with those of the controls (average ratio of 3·1). Spring cutting promoted quicker and greater biomass recovery than summer cutting. Starch in below‐ground biomass fell quickly following decapitation and remained low for a 12–18 month period. Utilization of starch reserves in naturally regenerating coppices was estimated to provide only a small proportion of the dry matter accumulated in new shoots. Results are discussed in relation to their impact on coppicing ability of the species under natural conditions or when successively coppiced for shoot biomass production. PMID:12197516

  12. Viscoelastic flow in rotating curved pipes

    NASA Astrophysics Data System (ADS)

    Chen, Yitung; Chen, Huajun; Zhang, Jinsuo; Zhang, Benzhao

    2006-08-01

    Fully developed viscoelastic flows in rotating curved pipes with circular cross section are investigated theoretically and numerically employing the Oldroyd-B fluid model. Based on Dean's approximation, a perturbation solution up to the secondary order is obtained. The governing equations are also solved numerically by the finite volume method. The theoretical and numerical solutions agree with each other very well. The results indicate that the rotation, as well as the curvature and elasticity, plays an important role in affecting the friction factor, the secondary flow pattern and intensity. The co-rotation enhances effects of curvature and elasticity on the secondary flow. For the counter-rotation, there is a critical rotational number RΩ', which can make the effect of rotation counteract the effect of curvature and elasticity. Complicated flow behaviors are found at this value. For the relative creeping flow, RΩ' can be estimated according to the expression RΩ'=-4Weδ. Effects of curvature and elasticity at different rotational numbers on both relative creeping flow and inertial flow are also analyzed and discussed.

  13. Practising Mental Rotation Using Interactive Desktop Mental Rotation Trainer (iDeMRT)

    ERIC Educational Resources Information Center

    Rafi, Ahmad; Samsudin, Khairulanuar

    2009-01-01

    An experimental study involving 30 undergraduates (mean age = 20.5 years) in mental rotation (MR) training was conducted in an interactive Desktop Mental Rotation Trainer (iDeMRT). Stratified random sampling assigned students into one experimental group and one control group. The former trained in iDeMRT and the latter trained in conventional…

  14. Flow past a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  15. Plants and ventifacts delineate late Holocene wind vectors in the Coachella Valley, USA

    USGS Publications Warehouse

    Griffiths, P.G.; Webb, R.H.; Fisher, M.; Muth, Allan

    2009-01-01

    Strong westerly winds that emanate from San Gorgonio Pass, the lowest point between Palm Springs and Los Angeles, California, dominate aeolian transport in the Coachella Valley of the western Sonoran Desert. These winds deposit sand in coppice dunes that are critical habitat for several species, including the state and federally listed threatened species Uma inornata, a lizard. Although wind directions are generally defined in this valley, the wind field has complex interactions with local topography and becomes more variable with distance from the pass. Local, dominant wind directions are preserved by growth patterns of Larrea tridentata (creosote bush), a shrub characteristic of the hot North American deserts, and ventifacts. Exceptionally long-lived, Larrea has the potential to preserve wind direction over centuries to millennia, shaped by the abrasive pruning of windward branches and the persistent training of leeward branches. Wind direction preserved in Larrea individuals and clones was mapped at 192 locations. Compared with wind data from three weather stations, Larrea vectors effectively reflect annual prevailing winds. Ventifacts measured at 24 locations record winds 10° more westerly than Larrea and appear to reflect the direction of the most erosive winds. Based on detailed mapping of local wind directions as preserved in Larrea, only the northern half of the Mission-Morongo Creek floodplain is likely to supply sand to protected U. inornata habitat in the Willow Hole ecological reserve.

  16. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  17. Rotational rate sensor

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  18. An all-reflective polarization rotator

    NASA Astrophysics Data System (ADS)

    Bohus, J.; Budai, Judit; Kalashnikov, M.; Osvay, K.

    2017-05-01

    The conceptual design and proof of principle experimental results of a polarization rotator based on mirrors are presented. The device is suitable for any-angle, online rotation of the plane of polarization of high peak intensity ultrashort laser pulses. Controllable rotation of the polarization vector of short laser pulses with a broad bandwidth requires achromatic retarding plates which have a limited scalability and the substantial plate thickness can lead to pulse broadening and inaccurate polarization rotation. Polarization rotators based on reflective optical elements are preferable alternatives to wave plates especially when used in high average power or high peak intensity ultra-short laser systems. The control of the polarization state is desirable in many laser-matter interaction experiments e.g., high harmonic and attosecond pulse generation, electron, proton and ion acceleration, electron-positron pair creating, vacuum nonlinear polarization effect. The device can also serve as a beam attenuator, in combination with a linear polarizer.

  19. Rotatable seal assembly. [Patent application; rotating targets

    DOEpatents

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  20. Rotating Detonation Engine Operation (Preprint)

    DTIC Science & Technology

    2012-01-01

    MdotH2 = mass flow of hydrogen MdotAir = mass flow of air PCB = Piezoelectric Pressure Sensor PDE = Pulsed Detonation Engine RDE = Rotating ...and unsteady thrust output of PDEs . One of the new designs was the Rotating Detonation Engine (RDE). An RDE operates by exhausting an initial...AFRL-RZ-WP-TP-2012-0003 ROTATING DETONATION ENGINE OPERATION (PREPRINT) James A. Suchocki and Sheng-Tao John Yu The Ohio State