Science.gov

Sample records for rotation willow coppice

  1. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils.

    PubMed

    Ruttens, Ann; Boulet, Jana; Weyens, Nele; Smeets, Karen; Adriaensen, Kristin; Meers, Erik; Van Slycken, Stijn; Tack, Filip; Meiresonne, Linda; Thewys, Theo; Witters, Nele; Carleer, Robert; Dupae, Joke; Vangronsveld, Jaco

    2011-01-01

    Phytoremediation, more precisely phytoextraction, has been placed forward as an environmental friendly remediation technique, that can gradually reduce increased soil metal concentrations, in particular the bioavailable fractions. The aim of this study was to investigate the possibilities of growing willows and poplars under short rotation coppice (SRC) on an acid, poor, sandy metal contaminated soil, to combine in this way soil remediation by phytoextraction on one hand, and production of biomass for energy purposes on the other. Above ground biomass productivities were low for poplars to moderate for willows, which was not surprising, taking into account the soil conditions that are not very favorable for growth of these trees. Calculated phytoextraction efficiency was much longer for poplars than these for willows. We calculated that for phytoextraction in this particular case it would take at least 36 years to reach the legal threshold values for cadmium, but in combination with production of feedstock for bioenergy processes, this type of land use can offer an alternative income for local farmers. Based on the data of the first growing cycle, for this particular case, SRC of willows should be recommended.

  2. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils.

    PubMed

    Van Slycken, Stijn; Witters, Nele; Meiresonne, Linda; Meers, Erik; Ruttens, Ann; Van Peteghem, Pierre; Weyens, Nele; Tack, Filip M G; Vangronsveld, Jaco

    2013-01-01

    Short rotation coppice (SRC) of willow and poplar might be a promising phytoremediation option since it uses fast growing, high biomass producing tree species with often a sufficient metal uptake. This study evaluates growth, metal uptake and extraction potentials of eight willow clones (Belders, Belgisch Rood, Christina, Inger, Jorr, Loden, Tora and Zwarte Driebast) on a metal-contaminated agricultural soil, with total cadmium (Cd) and zinc (Zn) concentrations of 6.5 +/- 0.8 and 377 +/- 69 mg kg(-1) soil, respectively. Although, during the first cycle, on average generally low productivity levels (3.7 ton DM (dry matter) ha(-1) y(-1)) were obtained on this sandy soil, certain clones exhibited quite acceptable productivity levels (e.g. Zwarte Driebast 12.5 ton DM ha(-1) y(-1)). Even at low biomass productivity levels, SRC of willow showed promising removal potentials of 72 g Cd and 2.0 kg Zn ha(-1) y(-1), which is much higher than e.g. energy maize or rapeseed grown on the same soil Cd and Zn removal can be increased by 40% if leaves are harvested as well. Nevertheless, nowadays the wood price remains the most critical factor in order to implement SRC as an acceptable, economically feasible alternative crop on metal-contaminated agricultural soils.

  3. Short rotation willow coppice in Wales: High production under adverse environmental conditions?

    SciTech Connect

    Slater, F.M.; Hodson, R.W.; Randerson, P.F.

    1995-11-01

    The production of short rotation willow coppice in central Wales was once regarded as a vain hope rather than a distinct possibility. Research at the University of Wales, Cardiff, Field Station at Llysdinam in mid-Wales over the last four years has proven that it is possible to produce a commercially viable crop on very poor upland soils and at an altitude of almost 300m provided that lime and inorganic fertilizers are added. Because of the national need to find new routes for the disposal of sewage sludge, its addition to short rotation coppice serves the dual purpose of disposal and nutrient addition. Over the first two years of the sludging experiment, it was found that the addition of 300 m{sup 3}ha{sup -1} of digested sewage sludge significantly increased crop weight, at least in the first year. Unfortunately, the crop yields did not reach those obtained using inorganic fertilizers at the same site but it is suggested that a repeated application regime might improve overall crop yield.

  4. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK.

    PubMed

    Aylott, Matthew J; Casella, E; Tubby, I; Street, N R; Smith, P; Taylor, Gail

    2008-01-01

    Limited information on likely supply and spatial yield of bioenergy crops exists for the UK. Here, productivities are reported of poplar (Populus spp.) and willow (Salix spp.) grown as short-rotation coppice (SRC), using data from a large 49-site yield trial network. A partial least-squares regression technique was used to upscale actual field trial observations across England and Wales. Spatial productivity was then assessed under different land-use scenarios. Mean modelled yields ranged between 4.9 and 10.7 oven-dry tonnes (odt) ha(-1) yr(-1). Yields were generally higher in willow than in poplar, reflecting the susceptibility of older poplar genotypes to rust and their tendency for single stem dominance. Replacing 10% of arable land, 20% of improved grassland and 100% of set-aside grassland in England and Wales with the three most productive genotypes would yield 13 Modt of biomass annually (supplying 7% of UK electricity production or 48% of UK combined heat and power (CHP) production). Results show existing SRC genotypes have the immediate potential to be an important component of a mixed portfolio of renewables and that, in future, as new and improved genotypes become available, higher yields could extend this potential further.

  5. Volatile organic compound emissions from Miscanthus and short rotation coppice willow bioenergy crops

    NASA Astrophysics Data System (ADS)

    Copeland, Nichola; Cape, J. Neil; Heal, Mathew R.

    2012-12-01

    Miscanthus × giganteus and short rotation coppice (SRC) willow (Salix spp.) are increasingly important bioenergy crops. Above-canopy fluxes and mixing ratios of volatile organic compounds (VOCs) were measured in summer for the two crops at a site near Lincoln, UK, by proton transfer reaction mass spectrometry (PTR-MS) and virtual disjunct eddy covariance. The isoprene emission rate above willow peaked around midday at ˜1 mg m-2 h-1, equivalent to 20 μg gdw-1 h-1 normalised to 30 °C and 1000 μmol m-2 s-1 PAR, much greater than for conventional arable crops. Average midday peak isoprene mixing ratio was ˜1.4 ppbv. Acetone and acetic acid also showed small positive daytime fluxes. No measurable fluxes of VOCs were detected above the Miscanthus canopy. Differing isoprene emission rates between different bioenergy crops, and the crops or vegetation cover they may replace, means the impact on regional air quality should be taken into consideration in bioenergy crop selection.

  6. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but

  7. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.

    PubMed

    Gommers, A; Gäfvert, T; Smolders, E; Merckx, R; Vandenhove, H

    2005-01-01

    The feasibility of willow short rotation coppice (SRC) for energy production as a revaluation tool for severely radiocaesium-contaminated land was studied. The effects of crop age, clone and soil type on the radiocaesium levels in the wood were assessed following sampling in 14 existing willow SRC fields, planted on radiocaesium-contaminated land in Sweden following Chernobyl deposition. There was only one plot where willow stands of different maturity (R6S2 and R5S4: R, root age and S, shoot age) and clone (Rapp and L78183 both of age category R5S4) were sampled and no significant differences were found. The soils differed among others in clay fraction (3-34%), radiocaesium interception potential (515-6884 meq kg(-1)), soil solution K (0.09-0.95 mM), exchangeable K (0.58-5.77 meq kg(-1)) and cation exchange capacity (31-250 meq kg(-1)). The soil-to-wood transfer factor (TF) of radiocaesium differed significantly between soil types. The TF recorded was generally small (0.00086-0.016 kg kg(-1)), except for willows established on sandy soil (0.19-0.46 kg kg(-1)). Apart from the weak yet significant exponential correlation between the Cs-TF and the solid/liquid distribution coefficient (R2 = 0.54) or the radiocaesium interception potential, RIP (R2 = 0.66), no single significant correlations between soil characteristics and TF were found. The wood-soil solution 137Cs concentration factor (CF) was significantly related to the potassium concentration in the soil solution. A different relation was, however, found between the sandy Trödje soils (CF = 1078.8 x m(K)(-1.83), R2 = 0.99) and the other soils (CF = 35.75 x m(K)(-0.61), R2 =0.61). Differences in the ageing rate of radiocaesium in the soil (hypothesised fraction of bioavailable caesium subjected to fast ageing for Trödje soils only 1% compared to other soils), exchangeable soil K (0.8-1.8 meq kg(-1) for Trödje soils and 1.5-5.8 meq kg(-1) for the other soils) and the ammonium concentration in the soil solution

  8. Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice.

    PubMed

    Dimitriou, I; Eriksson, J; Adler, A; Aronsson, P; Verwijst, T

    2006-07-01

    Short-rotation willow coppice (SRWC), grown on farmland in Sweden for energy-biomass production, was fertilised with sewage sludge and wood-ash mixtures on the basis of the permitted annual phosphorus supply. Two identical experiments were conducted in central Sweden, on two newly harvested commercial SRWC fields. The maximum legally permitted amount of the sludge-ash mixture, sludge only, ash only, and twice the maximum permitted sludge-ash amount, were applied. The aim was to assess the effect of pH changes following treatment, on the ability of SRWC to take up large amounts of Cd and other metals. The remediation effect of SRWC was also studied. Under the experimental conditions applied, uptake by SRWC was unaffected by pH changes. The differences between the amounts of metals experimentally applied, less the uptake by SRWC after a potential harvest, were broadly within the permitted limits. For Cd, a reduction of total amounts in soil was observed.

  9. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England.

    PubMed

    Glithero, Neryssa J; Wilson, Paul; Ramsden, Stephen J

    2013-07-01

    Biomass will play a role in the UK meeting EU targets on renewable energy use. Short Rotation Coppice (SRC) and miscanthus are potential biomass feedstocks; however, supply will rely on farmer willingness to grow these crops. Despite attractive crop establishment grants for dedicated energy crops (DECs) in the UK, uptake remains low. Drawing on results from an on-farm survey with 244 English arable farmers, 81.6% (87.7%) of farmers would not consider growing miscanthus (SRC), while respectively, 17.2% (11.9%) would consider growing and 1.2% (0.4%) were currently growing these crops. Farmer age, location, land ownership, farm type, farm size and farmer education level were not significant factors in determining acceptance of DECs. The main reasons cited for not growing DECs were impacts on land quality, lack of appropriate machinery, commitment of land for a long period of time, time to financial return and profitability. Reasons cited for willingness to grow DECs included land quality, ease of crop management, commitment of land for a long period of time, and profitability. Farmers cited a range of 'moral' (e.g. should not be using land for energy crops when there is a shortage of food), land quality, knowledge, profit and current farming practice comments as reasons for not growing DECs, while those willing to grow DECs cited interest in renewable energy, willingness to consider new crops, and low labour needs as rationale for their interest. Farm business objectives indicated that maximising profit and quality of life were most frequently cited as very important objectives. Previous research in the UK indicates that farmers in arable areas are unlikely to convert large areas of land to DECs, even where these farmers have an interest and willingness to grow them. Assuming that those farmers interested in growing DECs converted 9.29% (average percentage of arable land set-aside between 1996 and 2005) of their utilised agricultural area to these crops, 50,700

  10. Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter.

    PubMed

    Guidi, Werther; Piccioni, Emiliano; Bonari, Enrico

    2008-07-01

    Ten-day evapotranspiration (ETc) and crop coefficient (k(c)) of willow and poplar SRC used as vegetation filter and grown under fertilised (F) and unfertilised (NF) conditions, were determined for two successive growing seasons using volumetric lysimeters. During the first growing season, total ETc observed was, respectively, 620 (NF)-1190 (F)mm in willow and 590 (NF)-725 (F) in poplar. During the second growing season, ETc showed a general increase, mainly in fertilised lysimeters where it ranged between 890 (NF)-1790 mm (F) in willow and 710 (NF)-1100 mm (NF) in poplar. kc reached in both years its maximum between the end of August and the beginning of September. In 2004 maximum kc ranged from 1.25-2.84 in willow and 1.06-1.90 in poplar, whereas in 2005 it ranged from 1.97-5.30 in willow and 1.71-4.28 in poplar. ETc seemed to be strongly correlated to plant development and mainly dependent on its nutritional status rather than on the differences between the species.

  11. Correspondence of ectomycorrhizal diversity and colonisation of willows (Salix spp.) grown in short rotation coppice on arable sites and adjacent natural stands.

    PubMed

    Hrynkiewicz, Katarzyna; Toljander, Ylva K; Baum, Christel; Fransson, Petra M A; Taylor, Andy F S; Weih, Martin

    2012-11-01

    Willows (Salix spp.) are mycorrhizal tree species sometimes cultivated as short rotation coppice (SRC) on arable sites for energy purposes; they are also among the earliest plants colonising primary successional sites in natural stands. The objective of this study was to analyse the degree of colonisation and diversity of ectomycorrhizal (EM) communities on willows grown as SRC in arable soils and their adjacent natural or naturalized stands. Arable sites usually lack ectomycorrhizal host plants before the establishment of SRC, and adjacent natural or naturalized willow stands were hypothesized to be a leading source of ectomycorrhizal inoculum for the SRC. Three test sites including SRC stands (Salix viminalis, Salix dasyclados, and Salix schwerinii) and adjacent natural or naturalized (Salix caprea, Salix fragilis, and Salix × mollissima) stands in central Sweden were investigated on EM colonisation and morphotypes, and the fungal partners of 36 of the total 49 EM fungi morphotypes were identified using molecular tools. The frequency of mycorrhizas in the natural/naturalized stands was higher (two sites) or lower (one site) than in the corresponding cultivated stands. Correspondence analysis revealed that some EM taxa (e.g. Agaricales) were mostly associated with cultivated willows, while others (e.g. Thelephorales) were mostly found in natural/naturalized stands. In conclusion, we found strong effects of sites and willow genotype on EM fungi formation, but poor correspondence between the EM fungi abundance and diversity in SRC and their adjacent natural/naturalized stands. The underlying mechanism might be selective promotion of some EM fungi species by more effective spore dispersal.

  12. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    PubMed

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.

  13. The impacts of land-use change from grassland to bioenergy Short Rotation Coppice (SRC) Willow on the crop and ecosystem greenhouse gas balance

    NASA Astrophysics Data System (ADS)

    Harris, Zoe M.; Alberti, Giorgio; Dondini, Marta; Smith, Pete; Taylor, Gail

    2014-05-01

    The aim of this research is to better understand the greenhouse gas balance of land-use transition to bioenergy cropping systems in a UK context. Given limited land availability, addressing the food-energy-water nexus remains a challenge, and it is imperative that bioenergy crops are sited appropriately and that competition with food crops is minimized. Here we present the results of a years' worth of soil and GHG data for a conversion from ex-set aside grassland to short rotation coppice (SRC) willow for bioenergy on a commercial scale. Initial results indicate that willow was a net sink for CO2 in comparison to grassland which was a net source of CO2. This provides evidence that the GHG balance of transitions to SRC bioenergy crops will potentially result in increased soil carbon. The empirical findings from this study have been combined with modelled estimates for the site to both test and validate the ECOSSE model. Initial comparisons show that the model is able to accurately predict the respiration occurring at the field site, suggesting that it is a valuable approach for up-scaling from point sites such as this to wider geographical areas and for considering future climate scenarios. The modelling output will also provide a user-friendly tool for land owners which will determine the GHG and soil carbon effects of changing land to bioenergy for UK. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). This work was also jointly funded by the Carbo Biocrop Project.

  14. Genetic structure and population dynamics of a heteroecious plant pathogen Melampsora larici-epitea in short-rotation coppice willow plantations.

    PubMed

    Bayon, Carlos; Pei, Ming H; Ruiz, Carmen; Hunter, Tom; Karp, Angela; Tubby, Ian

    2009-07-01

    Complex life strategies are common among plant pathogens belonging to rust fungi (Uredinales). The heteroecious willow rust Melampsora larici-epitea produces five spore stages and alternates on larch (Larix). To shed light on the epidemiology of this pathogen, amplified fragment length polymorphisms (AFLPs) were used to determine the genetic diversity and genetic structure of rust samples collected from coppice willow (Salix) plantations at three UK sites (LA, CA and MC) over three sampling dates (September 2000, July 2001 and September 2001). Of the total of 819 isolates, 465 were unique AFLP phenotypes and there was a shift in genotype diversity between the two seasons (0.67 in 2000 and 0.87-0.89 in 2001). No phenotypes were common between the two seasons within a site, suggesting that the rust did not overwinter as an asexual stage within plantations. A temporal analysis detected large amounts of genetic drift (F(S) = 0.15-0.26) between the two seasons and very small effective population sizes (N(e) = 2-3) within sites. These results all point to a new colonization of the plantations by the rust in the second season (2001). The F(ST)-analogue values were Phi(CT) = 0.121, Weir and Cockerham's theta = 0.086 and the Bayesian estimate theta(B) = 0.087-0.096. The results suggest that the sources of inoculum were somewhat localized and the same sources were mainly responsible for disease epidemics in LA and CA over the two seasons. The relatively low F(ST)-values among sites (0.055-0.13) suggest the existence of significant gene flow among the three sampled sites.

  15. The impacts of land-use change from grassland to bioenergy Short Rotation Coppice (SRC) willow on the crop and ecosystem greenhouse gas balance

    NASA Astrophysics Data System (ADS)

    Harris, Z. M.; Taylor, G.; Alberti, G.; Dondini, M.; Smith, P.

    2014-12-01

    The aim of this research is to better understand the greenhouse gas balance of land-use transition to bioenergy cropping systems in a UK context. Given limited land availability, addressing the food-energy-water nexus remains a challenge, and it is imperative that bioenergy crops are sited appropriately and that competition with food crops is minimised. Initial analyses included an extensive literature review and meta-analysis with a focus on the effects of land-use change to bioenergy on soil carbon and GHGs. This data mining exercise allowed us to understand the current state of the literature and identify key areas of research which needed to be addressed. Significant knowledge gaps were identified, with particular uncertainty around transitions from grasslands and transitions to short rotation forestry. A paired site experiment was established on a commercial SRC willow plantation and grassland to measure soil and ecosystem respiration. Initial results indicate that willow was a net sink for CO2 in comparison to grassland which was a net source of CO2. This provides evidence that the GHG balance of transition to SRC bioenergy willow will potentially result in increased soil carbon, in the long-term. The empirical findings from this study have been combined with modelled estimates for the site to both test and validate the ECOSSE model. Initial comparisons show that the model is able to accurately predict the respiration occurring at the field site, suggesting that it is a valuable approach for up-scaling from point sites such as this to wider geographical areas, and for considering future climate scenarios. The spatial modelling outputs will be used to build a modelling tool for non-specialist users which will determine the GHG and soil carbon effects of changing land to bioenergy for UK. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI).

  16. Development of a sink-source interaction model for the growth of short-rotation coppice willow and in silico exploration of genotype×environment effects.

    PubMed

    Cerasuolo, M; Richter, G M; Richard, B; Cunniff, J; Girbau, S; Shield, I; Purdy, S; Karp, A

    2016-02-01

    Identifying key performance traits is essential for elucidating crop growth processes and breeding. In Salix spp., genotypic diversity is being exploited to tailor new varieties to overcome environmental yield constraints. Process-based models can assist these efforts by identifying key parameters of yield formation for different genotype×environment (G×E) combinations. Here, four commercial willow varieties grown in contrasting environments (west and south-east UK) were intensively sampled for growth traits over two 2-year rotations. A sink-source interaction model was developed to parameterize the balance of source (carbon capture/mobilization) and sink formation (morphogenesis, carbon allocation) during growth. Global sensitivity analysis consistently identified day length for the onset of stem elongation as most important factor for yield formation, followed by various 'sink>source' controlling parameters. In coastal climates, the chilling control of budburst ranked higher compared with the more eastern climate. Sensitivity to drought, including canopy size and rooting depth, was potentially growth limiting in the south-east and west of the UK. Potential yields increased from the first to the second rotation, but less so for broad- than for narrow-leaved varieties (20 and 47%, respectively), which had established less well initially (-19%). The establishment was confounded by drought during the first rotation, affecting broad- more than narrow-leaved canopy phenotypes (-29%). The analysis emphasized quantum efficiency at low light intensity as key to assimilation; however, on average, sink parameters were more important than source parameters. The G×E pairings described with this new process model will help to identify parameters of sink-source control for future willow breeding. PMID:26663471

  17. Development of a sink–source interaction model for the growth of short-rotation coppice willow and in silico exploration of genotype×environment effects

    PubMed Central

    Cerasuolo, M.; Richter, G. M.; Richard, B.; Cunniff, J.; Girbau, S.; Shield, I.; Purdy, S; Karp, A.

    2016-01-01

    Identifying key performance traits is essential for elucidating crop growth processes and breeding. In Salix spp., genotypic diversity is being exploited to tailor new varieties to overcome environmental yield constraints. Process-based models can assist these efforts by identifying key parameters of yield formation for different genotype×environment (G×E) combinations. Here, four commercial willow varieties grown in contrasting environments (west and south-east UK) were intensively sampled for growth traits over two 2-year rotations. A sink–source interaction model was developed to parameterize the balance of source (carbon capture/mobilization) and sink formation (morphogenesis, carbon allocation) during growth. Global sensitivity analysis consistently identified day length for the onset of stem elongation as most important factor for yield formation, followed by various ‘sink>source’ controlling parameters. In coastal climates, the chilling control of budburst ranked higher compared with the more eastern climate. Sensitivity to drought, including canopy size and rooting depth, was potentially growth limiting in the south-east and west of the UK. Potential yields increased from the first to the second rotation, but less so for broad- than for narrow-leaved varieties (20 and 47%, respectively), which had established less well initially (–19%). The establishment was confounded by drought during the first rotation, affecting broad- more than narrow-leaved canopy phenotypes (–29%). The analysis emphasized quantum efficiency at low light intensity as key to assimilation; however, on average, sink parameters were more important than source parameters. The G×E pairings described with this new process model will help to identify parameters of sink–source control for future willow breeding. PMID:26663471

  18. Development of a sink-source interaction model for the growth of short-rotation coppice willow and in silico exploration of genotype×environment effects.

    PubMed

    Cerasuolo, M; Richter, G M; Richard, B; Cunniff, J; Girbau, S; Shield, I; Purdy, S; Karp, A

    2016-02-01

    Identifying key performance traits is essential for elucidating crop growth processes and breeding. In Salix spp., genotypic diversity is being exploited to tailor new varieties to overcome environmental yield constraints. Process-based models can assist these efforts by identifying key parameters of yield formation for different genotype×environment (G×E) combinations. Here, four commercial willow varieties grown in contrasting environments (west and south-east UK) were intensively sampled for growth traits over two 2-year rotations. A sink-source interaction model was developed to parameterize the balance of source (carbon capture/mobilization) and sink formation (morphogenesis, carbon allocation) during growth. Global sensitivity analysis consistently identified day length for the onset of stem elongation as most important factor for yield formation, followed by various 'sink>source' controlling parameters. In coastal climates, the chilling control of budburst ranked higher compared with the more eastern climate. Sensitivity to drought, including canopy size and rooting depth, was potentially growth limiting in the south-east and west of the UK. Potential yields increased from the first to the second rotation, but less so for broad- than for narrow-leaved varieties (20 and 47%, respectively), which had established less well initially (-19%). The establishment was confounded by drought during the first rotation, affecting broad- more than narrow-leaved canopy phenotypes (-29%). The analysis emphasized quantum efficiency at low light intensity as key to assimilation; however, on average, sink parameters were more important than source parameters. The G×E pairings described with this new process model will help to identify parameters of sink-source control for future willow breeding.

  19. Treatment of landfill leachate by irrigation of willow coppice--plant response and treatment efficiency.

    PubMed

    Aronsson, Pär; Dahlin, Torleif; Dimitriou, Ioannis

    2010-03-01

    Landfill leachates usually need to be treated before discharged, and using soil-plant systems for this has gained substantial interest in Sweden and in the UK. A three-year field study was conducted in central Sweden to quantify plant response, treatment efficiency and impact on groundwater quality of landfill leachate irrigation of short-rotation willow coppice (Salix). Two willow varieties were tested and four irrigation regimes in sixteen 400-m2 plots. The willow plants did not react negatively, despite very high annual loads of nitrogen (willow varieties tested, relative leaf length accurately predicted growth rate. Irrigation resulted in elevated groundwater concentrations of all elements applied. Treatment efficiency varied considerably for different elements, but was adequate when moderate loads were applied.

  20. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene.

    PubMed

    Salmon, Jemma; Ward, Sally P; Hanley, Steven J; Leyser, Ottoline; Karp, Angela

    2014-05-01

    Willows (Salix spp.) are important biomass crops due to their ability to grow rapidly with low fertilizer inputs and ease of cultivation in short-rotation coppice cycles. They are relatively undomesticated and highly diverse, but functional testing to identify useful allelic variation is time-consuming in trees and transformation is not yet possible in willow. Arabidopsis is heralded as a model plant from which knowledge can be transferred to advance the improvement of less tractable species. Here, knowledge and methodologies from Arabidopsis were successfully used to identify a gene influencing stem number in coppiced willows, a complex trait of key biological and industrial relevance. The strigolactone-related More AXillary growth (MAX) genes were considered candidates due to their role in shoot branching. We previously demonstrated that willow and Arabidopsis show similar response to strigolactone and that transformation rescue of Arabidopsis max mutants with willow genes could be used to detect allelic differences. Here, this approach was used to screen 45 SxMAX1, SxMAX2, SxMAX3 and SxMAX4 alleles cloned from 15 parents of 11 mapping populations varying in shoot-branching traits. Single-nucleotide polymorphism (SNP) frequencies were locus dependent, ranging from 29.2 to 74.3 polymorphic sites per kb. SxMAX alleles were 98%-99% conserved at the amino acid level, but different protein products varying in their ability to rescue Arabidopsis max mutants were identified. One poor rescuing allele, SxMAX4D, segregated in a willow mapping population where its presence was associated with increased shoot resprouting after coppicing and colocated with a QTL for this trait.

  1. Short Rotation Coppice in Austria - Management and Producticivity

    NASA Astrophysics Data System (ADS)

    Hochbichler, E.; Hofmann, H.; Bellos, N.; Zeitlinger, C.; Liebhard, P.

    2012-04-01

    In Austria energy wood production in short rotation coppice systems (SRC) becomes increasingly important to meet the demands of the growing bio-energy sector. In order to successfully develop the SRC market, the achievement of high and constant yields in SRC management is just as important as a reliable harvesting technology, which facilitates the production of high quality wood chips. Yield models and site-specific knowledge about productivity are needed with respect to clones, site factors and management alternatives. Therefore in the years 2007 and 2008 experimental plots (Marchfeld; 16 poplar clones and 19 willow clones) and a network of demonstration plots (different regions in Lower Austria; 7 poplar clones, 4 willow clones) were established. Single shoot surveys and biomass functions in combination with stand inventories form the general basis for estimating yield and productivity. They also help to optimize yield and rotation length by taking the maximum harvestable tree diameter into account, which is determined by harvesting techniques. For optimizing the yield estimation of SRC stands, preliminary clone specific yield functions for poplar and willow clones were developed. These specific yield functions were based on common yield estimation functions with respect to the newly used clones (e.g. faster growth, lower wood density), using a regression analytical approach. Standard stand surveys were carried out in autumn 2007, 2008, 2009 and 2010. We were able to show a high variety in biomass production of poplar and willow clones on the specific site. For the first and second rotation cycle the mean productivity of poplar clones was within a range of 4 - 12 t/y/ha and for willow clones within a range of 3 - 17 t/y/ha. These results were compared with the productivity of older experimental plots in Austria. Based on the preliminary results of productivity of poplar and willow clones for various site factors and management alternatives (planting design

  2. Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail.

    PubMed

    Dickinson, Nicholas M; Pulford, Ian D

    2005-05-01

    A substantial body of evidence has now accumulated that raises expectations that clean-up of Cd-contaminated land can be achieved through cultivation and harvest of selected clones of short-rotation coppice willow within a realistic crop lifecycle. Cd uptake rates into Salix are high compared to other trace elements and to other plant species. Effective phytoextraction would require (i) careful targeting of hotspots, (ii) repeated harvest prior to leaf fall and (iii) final removal of the root bole.

  3. An economic analysis of leachate purification through willow-coppice vegetation filters.

    PubMed

    Rosenqvist, Håkan; Ness, Barry

    2004-09-01

    In this study an economic analysis of the purification of integrated solid waste treatment facility leachates through a willow-coppice (Salix) vegetation filter in southern Sweden was carried out. Calculations were based on the use of two computer models that were initially used in estimating a pump-and-pipe irrigation system for a 36-ha willow-coppice plantation to purify an average annual quantity of 195,000 m(3) of leachate with an average nitrogen content of 24 g/m(3). Results showed that facility leachates could be purified at US dollars 0.34/m(3) compared with US dollars 0.62/m(3) for that of conventional leachate treatment at a wastewater treatment plant. Furthermore, results revealed that the increased income from willow growing and sale of the biomass chips represented only a small factor in the overall cost of the purification technique--decreasing purification costs to US dollars 0.326/m(3). Sensitivity analyses also demonstrated that, because of the large leachate holding pond expense, only a fraction of facility leachate should be treated through a vegetation filter.

  4. A physiological and biophysical model of coppice willow (Salix spp.) production yields for the contiguous USA in current and future climate scenarios.

    PubMed

    Wang, Dan; Jaiswal, Deepak; LeBauer, David S; Wertin, Timothy M; Bollero, Germán A; Leakey, Andrew D B; Long, Stephen P

    2015-09-01

    High-performance computing has facilitated development of biomass production models that capture the key mechanisms underlying production at high spatial and temporal resolution. Direct responses to increasing [CO2 ] and temperature are important to long-lived emerging woody bioenergy crops. Fast-growing willow (Salix spp.) within short rotation coppice (SRC) has considerable potential as a renewable biomass source, but performance over wider environmental conditions and under climate change is uncertain. We extended the bioenergy crop modeling platform, BioCro, to SRC willow by adding coppicing and C3 photosynthesis subroutines, and modifying subroutines for perennation, allocation, morphology, phenology and development. Parameterization with measurements of leaf photosynthesis, allocation and phenology gave agreement of modeled with measured yield across 23 sites in Europe and North America. Predictions for the continental USA suggest yields of ≥17 Mg ha(-1)  year(-1) in a 4 year rotation. Rising temperature decreased predicted yields, an effect partially ameliorated by rising [CO2 ]. This model, based on over 100 equations describing the physiological and biophysical mechanisms underlying production, provides a new framework for utilizing mechanism of plant responses to the environment, including future climates. As an open-source tool, it is made available here as a community resource for further application, improvement and adaptation.

  5. A physiological and biophysical model of coppice willow (Salix spp.) production yields for the contiguous USA in current and future climate scenarios.

    PubMed

    Wang, Dan; Jaiswal, Deepak; LeBauer, David S; Wertin, Timothy M; Bollero, Germán A; Leakey, Andrew D B; Long, Stephen P

    2015-09-01

    High-performance computing has facilitated development of biomass production models that capture the key mechanisms underlying production at high spatial and temporal resolution. Direct responses to increasing [CO2 ] and temperature are important to long-lived emerging woody bioenergy crops. Fast-growing willow (Salix spp.) within short rotation coppice (SRC) has considerable potential as a renewable biomass source, but performance over wider environmental conditions and under climate change is uncertain. We extended the bioenergy crop modeling platform, BioCro, to SRC willow by adding coppicing and C3 photosynthesis subroutines, and modifying subroutines for perennation, allocation, morphology, phenology and development. Parameterization with measurements of leaf photosynthesis, allocation and phenology gave agreement of modeled with measured yield across 23 sites in Europe and North America. Predictions for the continental USA suggest yields of ≥17 Mg ha(-1)  year(-1) in a 4 year rotation. Rising temperature decreased predicted yields, an effect partially ameliorated by rising [CO2 ]. This model, based on over 100 equations describing the physiological and biophysical mechanisms underlying production, provides a new framework for utilizing mechanism of plant responses to the environment, including future climates. As an open-source tool, it is made available here as a community resource for further application, improvement and adaptation. PMID:25963097

  6. Short rotation coppice for revaluation of contaminated land.

    PubMed

    Vandenhove, H; Thiry, Y; Gommers, A; Goor, F; Jossart, J M; Holm, E; Gäfvert, T; Roed, J; Grebenkov, A; Timofeyev, S; Gäufert, T

    2001-01-01

    When dealing with large-scale environmental contamination, as following the Chernobyl accident, changed land use such that the products of the land are radiologically acceptable and sustain an economic return from the land is a potentially sustainable remediation option. In this paper, willow short rotation coppice (SRC) is evaluated on radiological, technical and economic grounds for W. European and Belarus site conditions. Radiocaesium uptake was studied in a newly established and existing SRC. Only for light-texture soils with low soil potassium should cultivation be restricted to soils with contamination levels below 100-370 kBq m-2 given the TFs on these soils (5 x 10(-4) and 2 x 10(-3) m2 kg-1) and considering the Belarus exemption limit for firewood (740 Bq kg-1). In the case of high wood contamination levels (> 1000 Bq kg-1), power plant personnel working in the vicinity of ash conveyers should be subjected to radiation protection measures. For appropriate soil conditions, potential SRC yields are high. In Belarus, most soils are sandy with a low water retention, for which yield estimates are too low to make production profitable without irrigation. The economic viability should be thoroughly calculated for the prevailing conditions. In W. Europe, SRC production or conversion is not profitable without price incentives. For Belarus, the profitability of SRC on the production side largely depends on crop yield and price of the delivered bio-fuel. Large-scale heat conversion systems seem the most profitable and revenue may be considerable. Electricity routes are usually unprofitable. It could be concluded that energy production from SRC is potentially a radiologically and economically sustainable land use option for contaminated agricultural land.

  7. Short rotation coppice as alternative land use for Chernobyl-contaminated areas of Belarus.

    PubMed

    Vandenhove, Hildegarde; Goor, François; Timofeyev, Sergey; Grebenkov, Alexander; Thiry, Yves

    2004-01-01

    Field experiments were conducted in the Chernobyl-affected area to assess if short rotation coppice (SRC) for energy production is a feasible alternative for contaminated land. Four willow clones were planted on sandy and peaty soil and the radiocaesium (137Cs) and radiostrontium (90Sr) transfer factors (TF) and yield relevant parameters were recorded during four growing seasons. The 137Cs and 90Sr soil-to-willow wood TF on sandy soil (second growing season) were on average 1.40+/-1.06 x 10(-3) m2 kg(-1) and 130+/-74 x 10(-3) m2 kg(-1), respectively. The 137Cs TF recorded for the peaty soil (fourth growing season or end of the first rotation cycle) was on average 5.17+/-1.59 x 10(-3) m2 kg(-1). The 90Sr-TF was on average 2.61+/-0.44 x 10(-3) m2 kg(-1). No significant differences between clones for the 137Cs and 90Sr-TF were observed. Given the high TFs and the high deposition levels, Belarus exemption levels for fuel wood were highly exceeded. The annual average biomass production for one rotation cycle on the peaty soil ranged from 7.8 to 16.0 t ha(-1) y(-1) for one of the clones, comparable with average annual yield figures obtained for western Europe. On the sandy soils, first-year yields were 0.25 t ha(-1) y(-1). These soils are not suitable for SRC production and should better be dedicated to pine forests or drought-resistant grasses. PMID:15328980

  8. Short rotation coppice as alternative land use for Chernobyl-contaminated areas of Belarus.

    PubMed

    Vandenhove, Hildegarde; Goor, François; Timofeyev, Sergey; Grebenkov, Alexander; Thiry, Yves

    2004-01-01

    Field experiments were conducted in the Chernobyl-affected area to assess if short rotation coppice (SRC) for energy production is a feasible alternative for contaminated land. Four willow clones were planted on sandy and peaty soil and the radiocaesium (137Cs) and radiostrontium (90Sr) transfer factors (TF) and yield relevant parameters were recorded during four growing seasons. The 137Cs and 90Sr soil-to-willow wood TF on sandy soil (second growing season) were on average 1.40+/-1.06 x 10(-3) m2 kg(-1) and 130+/-74 x 10(-3) m2 kg(-1), respectively. The 137Cs TF recorded for the peaty soil (fourth growing season or end of the first rotation cycle) was on average 5.17+/-1.59 x 10(-3) m2 kg(-1). The 90Sr-TF was on average 2.61+/-0.44 x 10(-3) m2 kg(-1). No significant differences between clones for the 137Cs and 90Sr-TF were observed. Given the high TFs and the high deposition levels, Belarus exemption levels for fuel wood were highly exceeded. The annual average biomass production for one rotation cycle on the peaty soil ranged from 7.8 to 16.0 t ha(-1) y(-1) for one of the clones, comparable with average annual yield figures obtained for western Europe. On the sandy soils, first-year yields were 0.25 t ha(-1) y(-1). These soils are not suitable for SRC production and should better be dedicated to pine forests or drought-resistant grasses.

  9. Assessing the potential of short rotation coppice (SRC) for cleanup of radionuclide-contaminated sites.

    PubMed

    Dutton, M V; Humphreys, P N

    2005-01-01

    A small-scale greenhouse investigation was undertaken using Goat willow (Salix caprea) and aspen (Populus tremula) to evaluate the potential of short rotation coppice for remediation of 137Cs- and 90Sr-contaminated sites. Results showed that both species were able to accumulate these radionuclides from a representative disposal soil (aged) and a spiked soil S. caprea accumulating greater levels of 137Cs than P. tremula, with no difference between species for 90Sr accumulation. For each radionuclide, the distribution in both species was similar, with 137Cs accumulation greatest in the roots, whereas 90Sr accumulation was greatest in the leaves. It was also evident that the soil-to-plant transfer factor (Tf) values for 90Sr were greater than for 137Cs, agreeing with differences in the reported bioavailailablity of these radionuclides in soil Based on the Tf values for S. caprea (conservative), estimated remediation times were 92 and 56 yr, for 137Cs and 90Sr, respectively. It is suggested that the selection of Salix species grown in a system of SRC provides a significant opportunity for removal of both 137Cs and 90Sr, primarily due to its higher biomass production. However, for 137Cs phytoremediation investigations into the appropriate use of soil amendments for increasing bioavailability are required.

  10. Soil organic carbon stock change by short rotation coppice cultivation on croplands

    NASA Astrophysics Data System (ADS)

    Walter, Katja; Don, Axel; Flessa, Heinz

    2013-04-01

    Bioenergy is a means to climate mitigation if the overall greenhouse gas balance of the respective crop is better than that of the replaced fossil fuel. The change in soil organic carbon (SOC) by land use change to bioenergy has to be integrated into the greenhouse gas balance. One promising way to provide biomass for energy purposes is the cultivation of fast growing trees in short rotation coppices (SRC), because their energy input is low compared to their energy output. Moreover, due to high litter input and no-till management we hypothesize that SOC is accumulating in SRC on the long term. To study this long term effect 18 old poplar and willow SRC plantations and adjacent croplands with the same land use history were sampled throughout Germany using a standardized sampling protocol with a sampling depth down to 80 cm. The age of SRC ranged from 8 to 35 years and they were harvested every 3 to 15 years. Soil organic carbon content, bulk density, pH value and texture were determined. The SOC stocks were calculated and corrected for equivalent soil masses. In the top 10 cm, SOC increased under poplar and willow plantations at all sites by 4.8 +/- 3.2 Mg ha-1, which is an accumulation rate of 0.3 Mg ha-1 a-1. Regarding the whole profile to 80 cm depth, the SOC change was not significant with 0.8 +/- 13.5 Mg ha-1. At 8 sites SOC stocks increased compared to the respective cropland, at 10 sites SOC stocks decreased (-18 Mg C ha-1 to +30 Mg C ha-1). The litter accumulation was low compared to afforestations, ranging from 0.4 Mg C ha-1 to 3.2 Mg C ha-1 which is a litter C accumulation rate of 0.2 Mg ha-1 a-1. Including the respective litter carbon, the average SOC accumulation rate was 0.1 ± 0.8 Mg C ha-1 a-1. Taking into account the large scatter of SOC stock changes among different sites, the hypothesis of long-term SOC accumulation by SRC cannot generally be confirmed. Nevertheless, SRC may substantially increase SOC if installed on carbon depleted croplands and

  11. The Energy Efficiency Of Willow Biomass Production In Poland - A Comparative Study

    NASA Astrophysics Data System (ADS)

    Szczukowski, Stefan; Tworkowski, Józef; Stolarski, Mariusz J.; Krzyżaniak, Michał

    2015-01-01

    Field experiments with willow (Salix L.) coppice cultivation and Eko-Salix systems have been conducted at the University of Warmia and Mazury since 1992. In that wider context, the aim of the work described here was to compare energy inputs involved in setting up a plantation and producing biomass, and to assess the efficiency of willow-chips production under the coppice and Eko-Salix systems. The energy gain determined in the experiments was several to more than twenty times as great as the inputs needed to operate the plantation and to harvest willow biomass, this leaving both systems of willow cultivation under study attractive where setting up short-rotation coppices is concerned.

  12. Background CH4 and N2O fluxes in low-input short rotation coppice

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Zenone, Terenzio; Ceulemans, Reinhart

    2016-04-01

    Extensively managed short rotation coppice systems are characterized by low fluxes of CH4 and N2O. However due to the large global warming potential of these trace gases (GWP100: CH4: 34, N2O: 298), such background fluxes can still significantly contribute to offsetting the CO2 uptake of short rotation coppice systems. Recent technological advances in fast-response CH4 and N2O analysers have improved our capability to capture these background fluxes, but their quantification still remains a challenge. As an example, we present here CH4 and N2O fluxes from a short-rotation bioenergy plantation in Belgium. Poplars have been planted in a double-row system on a loamy sand in 2010 and coppiced in the beginning of 2012 and 2014 (two-year rotation system). In 2013 (June - November) and 2014 (April - August), the plantation's CH4 and N2O fluxes were measured in parallel with an eddy covariance tower (EC) and an automated chamber system (AC). The EC had a detection limit of 13.68 and 0.76 μmol m‑2 h‑1 for CH4 and N2O, respectively. The median detection limit of the AC was 0.38 and 0.08 μmol m‑2 h‑1 for CH4 and N2O, respectively. The EC picked up a few high CH4 emission events with daily averages >100 μmol m‑2 h‑1, but a large proportion of the measured fluxes were within the EC's detection limit. The same was true for the EC-derived N2O fluxes where the daily average flux was often close to the detection limit. Sporadically, some negative (uptake) fluxes of N2O were observed. On the basis of the EC data, no clear link was found between CH4 and N2O fluxes and environmental variables. The problem with fluxes within the EC detection limit is that a significant amount of the values can show the opposite sign, thus "mirroring" the true flux. Subsequently, environmental controls of background trace gas fluxes might be disguised in the analysis. As a next step, it will be tested if potential environmental drivers of background CH4 and N2O fluxes at the plantation

  13. Background CH4 and N2O fluxes in low-input short rotation coppice

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Zenone, Terenzio; Ceulemans, Reinhart

    2016-04-01

    Extensively managed short rotation coppice systems are characterized by low fluxes of CH4 and N2O. However due to the large global warming potential of these trace gases (GWP100: CH4: 34, N2O: 298), such background fluxes can still significantly contribute to offsetting the CO2 uptake of short rotation coppice systems. Recent technological advances in fast-response CH4 and N2O analysers have improved our capability to capture these background fluxes, but their quantification still remains a challenge. As an example, we present here CH4 and N2O fluxes from a short-rotation bioenergy plantation in Belgium. Poplars have been planted in a double-row system on a loamy sand in 2010 and coppiced in the beginning of 2012 and 2014 (two-year rotation system). In 2013 (June - November) and 2014 (April - August), the plantation's CH4 and N2O fluxes were measured in parallel with an eddy covariance tower (EC) and an automated chamber system (AC). The EC had a detection limit of 13.68 and 0.76 μmol m-2 h-1 for CH4 and N2O, respectively. The median detection limit of the AC was 0.38 and 0.08 μmol m-2 h-1 for CH4 and N2O, respectively. The EC picked up a few high CH4 emission events with daily averages >100 μmol m-2 h-1, but a large proportion of the measured fluxes were within the EC's detection limit. The same was true for the EC-derived N2O fluxes where the daily average flux was often close to the detection limit. Sporadically, some negative (uptake) fluxes of N2O were observed. On the basis of the EC data, no clear link was found between CH4 and N2O fluxes and environmental variables. The problem with fluxes within the EC detection limit is that a significant amount of the values can show the opposite sign, thus "mirroring" the true flux. Subsequently, environmental controls of background trace gas fluxes might be disguised in the analysis. As a next step, it will be tested if potential environmental drivers of background CH4 and N2O fluxes at the plantation can be

  14. Environmental assessment of different harvesting solutions for Short Rotation Coppice plantations.

    PubMed

    Bacenetti, Jacopo; Pessina, Domenico; Fiala, Marco

    2016-01-15

    Although several studies have been carried out on Short Rotation Coppice (SRC) plantations and on their environmental performances, there is a lack of information about the environmental impact of the harvesting operations. In this study, using LCA approach, the environmental performance of two different harvesting solutions for Short Rotation Coppice plantations was evaluated. In more details, for 2-years cutting time poplar plantations, harvesting with a self-propelled forager equipped with a specific header was compared in terms of environmental impact with a tractor-based solution. The LCI was built with experimental data collected during field tests carried out over about 70 ha of SRC plantation in Northern Italy. The following nine impact potentials were evaluated according to the selected method: climate change (CC), ozone depletion (OD), particulate matter (PM), photochemical ozone formation (POF), acidification (TA), freshwater eutrophication (FE), terrestrial eutrophication (TE), marine eutrophication (ME) and mineral, fossil and renewable resource depletion (MFRD). Although harvesting with self-propelled foragers requires higher power and higher diesel consumption, it achieves better environmental performances respect to the harvest with the tractor-based solution. The tractor-based option is characterized by lower operative field capacity (about - 70% for all the evaluated impact categories except for MFRD, which is - 94% compared to the first option). The environmental differences are mainly related to the different machine productivity. From an environmental point of view, respect to the harvesting with self-propelled foragers, the tractor-based solution can achieve a lower environmental impact only in small SRC plantations (<1-2 ha).

  15. Effect of reduced soil water availability on productivity of short rotation coppice

    NASA Astrophysics Data System (ADS)

    Orság, Matěj; Fischer, Milan; Mani Tripathi, Abhishek; Trnka, Miroslav

    2015-04-01

    "Wood, in fact, is the unsung hero of the technological revolution that has brought us from a stone and bone culture to our present age.'' Perlin and Journey (1991). Given its high-energy content and versatile use, biomass in a form of wood has been used for energy purposes since millennia and through times has been preferred source of biomass. Ever since, the production and use of woody biomass resources expands globally. Main drivers for its use as a source of energy are diversification and the mitigation of energy related greenhouse gas (GHG) emissions through partial substitution of fossil fuels. An alternative option for wood biomass sourcing from natural forests is short rotation woody coppice. Its productivity is largely dependent on the environment in terms of climatic conditions. Especially drought is the major constraint of woody biomass production involving serious economic consequences. In the central Europe, increased global radiation and air temperature together with decreased relative humidity increases the reference evapotranspiration resulting in an increased demand for soil water during growing season. For that reason, our field experiment was designed to evaluate impact of decreased soil water availability on productivity of poplar based short rotation coppice plantation during multiple growing seasons. Throughfall exclusion system based on plastic roof strips placed under the canopy was used to drain up to 70 % of the incoming rain water. Usual methods were used to assess the annual above ground biomass increment expressed in dry matter content. Not surprisingly our results show systematic decline in the productivity of plots subjected to decreased soil water availability but also considerable resilience of the drought-stressed trees which will be also discussed. This study was supported by project "Building up a multidisciplinary scientific team focused on drought", No. CZ.1.07/2.3.00/20.0248 and PASED - project supported by Czech program

  16. Environmental assessment of different harvesting solutions for Short Rotation Coppice plantations.

    PubMed

    Bacenetti, Jacopo; Pessina, Domenico; Fiala, Marco

    2016-01-15

    Although several studies have been carried out on Short Rotation Coppice (SRC) plantations and on their environmental performances, there is a lack of information about the environmental impact of the harvesting operations. In this study, using LCA approach, the environmental performance of two different harvesting solutions for Short Rotation Coppice plantations was evaluated. In more details, for 2-years cutting time poplar plantations, harvesting with a self-propelled forager equipped with a specific header was compared in terms of environmental impact with a tractor-based solution. The LCI was built with experimental data collected during field tests carried out over about 70 ha of SRC plantation in Northern Italy. The following nine impact potentials were evaluated according to the selected method: climate change (CC), ozone depletion (OD), particulate matter (PM), photochemical ozone formation (POF), acidification (TA), freshwater eutrophication (FE), terrestrial eutrophication (TE), marine eutrophication (ME) and mineral, fossil and renewable resource depletion (MFRD). Although harvesting with self-propelled foragers requires higher power and higher diesel consumption, it achieves better environmental performances respect to the harvest with the tractor-based solution. The tractor-based option is characterized by lower operative field capacity (about - 70% for all the evaluated impact categories except for MFRD, which is - 94% compared to the first option). The environmental differences are mainly related to the different machine productivity. From an environmental point of view, respect to the harvesting with self-propelled foragers, the tractor-based solution can achieve a lower environmental impact only in small SRC plantations (<1-2 ha). PMID:26410696

  17. Effect of composting on the Cd, Zn and Mn content and fractionation in feedstock mixtures with wood chips from a short-rotation coppice and bark.

    PubMed

    Vandecasteele, B; Willekens, K; Zwertvaegher, A; Degrande, L; Tack, F M G; Du Laing, G

    2013-11-01

    Micronutrient content and availability in composts may be affected by the addition of wood chips or tree bark as a bulking agent in the compost feedstock. In the first part of this study, micronutrient levels were assessed in bark and wood of poplar and willow clones in a short-rotation coppice. Large differences between species were observed in bark concentrations for Cd, Zn and Mn. In the second part of the study, we aimed to determine the effect of feedstock composition and composting on Cd, Zn and Mn concentrations and availability. By means of three composting experiments we examined the effect of (a) bark of different tree species, (b) the amount of bark, and (c) the use of bark versus wood chips. In general, compost characteristics such as pH, organic matter and nutrient content varied due to differences in feedstock mixture and composting process. During the composting process, the availability of Cd, Zn and Mn decreased, although the use of willow and poplar bark or wood chips resulted in elevated total Cd, Zn or Mn concentrations in the compost. Cd concentrations in some composts even exceeded legal criteria. Cd and Zn were mainly bound in the reducible fraction extracted with 0.5M NH2OH⋅HCl. A higher acid-extractable fraction for Mn than for Cd and Zn was found. Higher Cd concentrations in the compost due to the use of bark or wood chips did not result in higher risk of Cd leaching. The results of the pH-stat experiment with gradual acidification of composts illustrated that only a strong pH decline in the compost results in higher availability of Cd, Zn and Mn. PMID:23860497

  18. Effect of composting on the Cd, Zn and Mn content and fractionation in feedstock mixtures with wood chips from a short-rotation coppice and bark.

    PubMed

    Vandecasteele, B; Willekens, K; Zwertvaegher, A; Degrande, L; Tack, F M G; Du Laing, G

    2013-11-01

    Micronutrient content and availability in composts may be affected by the addition of wood chips or tree bark as a bulking agent in the compost feedstock. In the first part of this study, micronutrient levels were assessed in bark and wood of poplar and willow clones in a short-rotation coppice. Large differences between species were observed in bark concentrations for Cd, Zn and Mn. In the second part of the study, we aimed to determine the effect of feedstock composition and composting on Cd, Zn and Mn concentrations and availability. By means of three composting experiments we examined the effect of (a) bark of different tree species, (b) the amount of bark, and (c) the use of bark versus wood chips. In general, compost characteristics such as pH, organic matter and nutrient content varied due to differences in feedstock mixture and composting process. During the composting process, the availability of Cd, Zn and Mn decreased, although the use of willow and poplar bark or wood chips resulted in elevated total Cd, Zn or Mn concentrations in the compost. Cd concentrations in some composts even exceeded legal criteria. Cd and Zn were mainly bound in the reducible fraction extracted with 0.5M NH2OH⋅HCl. A higher acid-extractable fraction for Mn than for Cd and Zn was found. Higher Cd concentrations in the compost due to the use of bark or wood chips did not result in higher risk of Cd leaching. The results of the pH-stat experiment with gradual acidification of composts illustrated that only a strong pH decline in the compost results in higher availability of Cd, Zn and Mn.

  19. Genetic strategies for dissecting complex traits in biomass willows (Salix spp.).

    PubMed

    Hanley, Steven J; Karp, Angela

    2014-11-01

    Willows are highly diverse catkin-bearing trees and shrubs of the genus Salix. They occur in many growth forms, from tall trees to creeping alpines, and successfully occupy a wide variety of ecological niches. Shrubby willows (sub-genus Vetrix) have many characteristics that render them suited to cultivation in much faster growth cycles than conventional forestry. They respond well to coppicing, can be propagated vegetatively as cuttings and achieve rapid growth with low fertilizer inputs. As a result, willows grown as short rotation coppice are now among the leading commercially grown biomass crops in temperate regions. However, although willows have a long history of cultivation for traditional uses, their industrial use is relatively recent and, compared with major arable crops, they are largely undomesticated. Breeding programmes initiated to improve willow as a biomass crop achieved a doubling of yields within a period of <15 years. These advances were made by selecting for stem characteristics (height and diameter) and coppicing response (shoot number and shoot vigour), as well as resistance to pests, diseases and environmental stress, with little or no knowledge of the genetic basis of these traits. Genetics and genomics, combined with extensive phenotyping, have substantially improved our understanding of the basis of biomass traits in willow for more targeted breeding via marker-assisted selection. Here, we present the strategy we have adopted in which a genetic-based approach was used to dissect complex traits into more defined components for molecular breeding and gene discovery.

  20. Effect of drought on fine roots productivity in poplar-based short rotation coppice

    NASA Astrophysics Data System (ADS)

    Mani Tripathi, Abhishek; Fischer, Milan; Berhongaray, Gonzalo; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    Short rotation woody crops (SRWC) are alternative source of bioenergy, which apart from their 'carbon neutrality' have potential to store carbon (C) into soil and mitigate the increasing CO2 emission. Studies of below ground biomass of trees are divided into two types according to root diameter - analysis of fine roots (less than 2 mm) and coarse roots (more than 2 mm). Trees roots are spatially highly heterogeneous and it requires large number of samples to obtain a representative estimate of belowground biomass. For this study we used hybrid poplar clone J-105 (Populus nigra x P. maximowiczii) grown under short rotation coppice system in the region of Bohemian-Moravian Highland (49o32'N, 16o15'E and altitude 530 m a.s.l.) since April 2000. The plantation with planting density of 9,216 trees ha-1 was established on the former agricultural land and the length of the rotation cycle was set to 6-8 years. While mean annual rainfall was 609 mm with mean annual temperature 7.2oC during 1981-2013 significant increase of temperature and more frequent droughts are expected. In 2011, we established drought experiment based on throughfall exclusion system, reducing up to 70 % of throughfall precipitation. Thus 2 treatments with normal and lowered soil moisture levels were introduced. In January and February 2014, we cored 18 places including drought and control using root bipartite auger. The main goal of the study is to assess the response of fine roots productivity and fine roots vertical distribution on the reduced soil water availability. Results will be presented at the conference. Acknowledgements: This study was funded by research project IGA Mendel University 2014 "Study of below ground biomass in short rotation poplar coppice (J-105) in the Czech-Moravian Highlands", project PASED (KONTAKT II LH12037 ʺDevelopment of models for the assessment of abiotic stresses in selected energy woody plantsʺ and "Building up a multidisciplinary scientific team focused on drought

  1. Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice

    NASA Astrophysics Data System (ADS)

    Sabbatini, S.; Arriga, N.; Bertolini, T.; Castaldi, S.; Chiti, T.; Consalvo, C.; Njakou Djomo, S.; Gioli, B.; Matteucci, G.; Papale, D.

    2016-01-01

    The production of bioenergy in Europe is one of the strategies conceived to reduce greenhouse gas (GHG) emissions. The suitability of the land use change from a cropland (REF site) to a short-rotation coppice plantation of hybrid poplar (SRC site) was investigated by comparing the GHG budgets of these two systems over 24 months in Viterbo, Italy. This period corresponded to a single rotation of the SRC site. The REF site was a crop rotation between grassland and winter wheat, i.e. the same management of the SRC site before the conversion to short-rotation coppice. Eddy covariance measurements were carried out to quantify the net ecosystem exchange of CO2 (FCO2), whereas chambers were used to measure N2O and CH4 emissions from soil. The measurements began 2 years after the conversion of arable land to SRC so that an older poplar plantation was used to estimate the soil organic carbon (SOC) loss due to SRC establishment and to estimate SOC recovery over time. Emissions from tractors and from production and transport of agricultural inputs (FMAN) were modelled. A GHG emission offset, due to the substitution of natural gas with SRC biomass, was credited to the GHG budget of the SRC site. Emissions generated by the use of biomass (FEXP) were also considered. Suitability was finally assessed by comparing the GHG budgets of the two sites. CO2 uptake was 3512 ± 224 g CO2 m-2 at the SRC site in 2 years, and 1838 ± 107 g CO2 m-2 at the REF site. FEXP was equal to 1858 ± 240 g CO2 m-2 at the REF site, thus basically compensating for FCO2, while it was 1118 ± 521 g CO2 m-2 at the SRC site. The SRC site could offset 379.7 ± 175.1 g CO2eq m-2 from fossil fuel displacement. Soil CH4 and N2O fluxes were negligible. FMAN made up 2 and 4 % in the GHG budgets of SRC and REF sites respectively, while the SOC loss was 455 ± 524 g CO2 m-2 in 2 years. Overall, the REF site was close to neutrality from a GHG perspective (156 ± 264 g CO2eq m-2), while the SRC site was a net sink of

  2. Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere.

    PubMed

    Madhana Sekhar, Kalva; Rachapudi, Venkata Sreeharsha; Mudalkar, Shalini; Reddy, Attipalli Ramachandra

    2014-08-01

    Current study was undertaken to elucidate the responses of short rotation coppice (SRC) mulberry under elevated CO2 atmosphere (550μmolmol(-1)). Throughout the experimental period, elevated CO2 grown mulberry plants showed significant increase in light saturated photosynthetic rates (A') by increasing intercellular CO2 concentrations (Ci) despite reduced stomatal conductance (gs). Reduced gs was linked to decrease in transpiration (E) resulting in improved water use efficiency (WUE). There was a significant increase in carboxylation efficiency (CE) of Rubisco, apparent quantum efficiency (AQE), light and CO2 saturated photosynthetic rates (AMAX), photosynthetic nitrogen use efficiency (PNUE), chlorophyll a fluorescence characteristics (FV/FM and PIABS), starch and other carbohydrates in high CO2 grown plants which clearly demonstrate no photosynthetic acclimation in turn resulted marked increase in above and below ground biomass. Our results strongly suggest that short rotation forestry (<1year) with mulberry plantations should be effective to mitigate raising CO2 levels as well as for the production of renewable bio-energy.

  3. Increasing the biomass production of short rotation coppice forests. Progress report

    SciTech Connect

    Steinbeck, K.; Brown, C. L.

    1980-09-01

    The objective of the project is to increase biomass yields from coppice forests by admixing tree species (Alnus glutinosa, Robinia pseudoacacia and others) to plantations of Platanus occidentalis and Liquidambar styraciflua. Yield increases due to intensive cultivation, especially fertilization and irrigation, will be documented. A genetic improvement program of promising candidate species both through the identification of superior genotypes and mass cloning with tissue culture is also included. Three plantings have been established successfully to screen candidate species on various sites and to test the effects of weed control, fertilization and irrigation on short rotation forests. Two plantations in Georgia are in their 2nd and 3rd growing seasons while one in South Carolina is in its 1st growing season. A two acre plantation has been established to test development of geographic seed source material for sycamore. A nursery is in operation to develop seedling production methods for new species and to grow and maintain genetic material. Mass cloning of selected material by tissue culture techniques has produced material for testing in outplantings.

  4. Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE).

    PubMed

    Liberloo, Marion; Dillen, Sophie Y; Calfapietra, Carlo; Marinari, Sara; Luo, Zhi Bin; De Angelis, Paolo; Ceulemans, Reinhart

    2005-02-01

    We investigated the individual and combined effects of elevated CO2 concentration and fertilization on aboveground growth of three poplar species (Populus alba L. Clone 2AS-11, P. nigra L. Clone Jean Pourtet and P. x euramericana Clone I-214) growing in a short-rotation coppice culture for two growing seasons after coppicing. Free-air carbon dioxide enrichment (FACE) stimulated the number of shoots per stool, leaf area index measured with a fish-eye-type plant canopy analyzer (LAIoptical), and annual leaf production, but did not affect dominant shoot height or canopy productivity index. Comparison of LAIoptical with LAI estimates from litter collections and from allometric relationships showed considerable differences. The increase in biomass in response to FACE was caused by an initial stimulation of absolute and relative growth rates, which disappeared after the first growing season following coppicing. An ontogenetic decline in growth in the FACE treatment, together with strong competition inside the dense plantation, may have caused this decrease. Fertilization did not influence aboveground growth, although some FACE responses were more pronounced in fertilized trees. A species effect was observed for most parameters.

  5. Carbon pools and temporal dynamics along a rotation period in sessile oak dominated high forest and coppice with standards stands

    NASA Astrophysics Data System (ADS)

    Bruckman, V. J.; Yan, S.; Hochbichler, E.; Glatzel, G.

    2012-04-01

    Carbon pools in two Quercus petraea (sessile oak) dominated chronosequences under different forest management (high forest and coppice with standards) were investigated. The objective was to study temporal carbon dynamics, in particular carbon sequestration in the soil and woody biomass production, in common forest management systems in eastern Austria along with stand development. The chronosequence approach was used to substitute time-for-space to enable coverage of a full rotation period in each system. Carbon content was determined in the following compartments: aboveground biomass, litter, soil to a depth of 50 cm, living root biomass and decomposing residues in the mineral soil horizons. Biomass carbon pools, except fine roots and residues, were estimated using species-specific allometric functions. Total carbon pools were on average 143 Mg ha-1 in the high forest stand (HF) and 213 Mg ha-1 in the coppice with standards stand (CS). The mean share of the total organic carbon pool (TOC) which is soil organic carbon (SOC) differs only marginally between HF (43.4%) and CS (42.1%), indicating the dominance of site factors, particularly climate, in controlling this ratio. While there was no significant change in O-layer and SOC stores over stand development, we found clear relationships between living biomass (aboveground and belowground) pools and C:N ratio in topsoil horizons with stand age. SOC pools seem to be very stable and an impact of silvicultural interventions was not detected with the applied method. Rapid decomposition and mineralization of litter, indicated by low O-horizon pools with wide C:N ratios of residual woody debris at the end of the vegetation period, suggests high rates of turnover in this fraction. CS, in contrast to HF benefits from rapid resprouting after coppicing and hence seems less vulnerable to conditions of low rainfall and drying topsoil. Keywords: carbon dynamics; soil carbon; chronosequence; Quercus petraea; coppice; high forest

  6. Evaluation of Water Use Efficiency of Short Rotation Poplar Coppice at Bohemian-Moravian Highlands

    NASA Astrophysics Data System (ADS)

    Hlaváčová, Marcela; Fischer, Milan; Mani Tripathi, Abhishek; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    The water availability of the locality constitutes one of the main constraint for short rotation coppices grown on arable land. As a convenient characteristic assessing how the water use is coupled with the biomass yields, so called water use efficiency (WUE) is proposed. One method of water use efficiency determination is presented within this study. The study was carried out at short rotation poplar coppice (poplar clone J-105) at the Test Station Domanínek, Ltd. at Bohemian-Moravian Highlands during the growing season 2013. Diameters at breast height (DBH) were measured for 16 sample trees where sap flow measuring systems (Granier's Thermal Dissipation Probe, TDP) were installed. TDP outputs are expressed as temperature differences (ΔT) between the heated and non-heated probes. Estimation of sap flux density (Fd) by the Granier method relies on the measurement of temperature difference (ΔT). Determination of maximum temperature difference (ΔTmax) is fundamental for sap flux density (Fd) calculation. Although ΔTmax can be theoretically defined as ΔT at Fd = 0, many factors may prevent the occurrence of the zero flow state, such as night-time water movement for new growth (vegetative or reproductive) or water loss from the canopy due to high vapour pressure deficit (VPD). Therefore, the VPD condition was established for determination of ΔTmax. VPD condition was established as follows: VPD reaching values 0.2 at least 6 hours during night (from 21 p. m. to 3 a. m. and when the condition was fullfilled, the value at 3 a. m. was taken) because it is a supposed time after that the tree has no transpiration. The programmable part of Mini 32 software (www.emsbrno.cz) was used for application of the script establishing ΔTmax values under this VPD condition. Nevertheless, another script was applied on ΔT data set to determination of ΔTmax values for every night at 3 a. m. (as this is when ΔT should be at its daily maximum) without VPD condition restriction for

  7. Influence of Robinia pseudoacacia short rotation coppice on soil physical properties

    NASA Astrophysics Data System (ADS)

    Xavier, Morvan; Isabelle, Bertrand; Gwenaelle, Gibaud

    2015-04-01

    Human activities can lead to the degradation of soil physical properties. For instance, machinery traffic across the land can induce the development of compacted areas at the wheel tracks. It leads to a decrease in porosity which results in a decrease of the hydraulic conductivity, and therefore, prevents water infiltration and promotes surface runoff. Land use, soil management and soil cover also have a significant influence on soil physical properties (Kodesova et al., 2011). In the arable land, surface runoff and soil erosion are enhanced by the absence of soil cover for part of the year and by the decrease of aggregate stability due to a decline of soil organic matter. In that context, few studies focused on the effects of a Robinia pseudoacacia short rotation coppice (SRC) on soil physical properties. Therefore, this study aims to determine the effect of the conversion of a grassland in a SRC on soil physical properties. These properties have also been compared to those of arable land and natural forest. For that, in several plots of the experimental farm of Grignon (30 km west of Paris, France), different measurements were performed: i) soil water retention on a pressure plate apparatus for 7 water potential between 0 and 1500 kPa, ii) bulk density using the method for gravelly and rocky soil recommended by the USDA, iii) aggregate stability using the method described in Le Bissonnais (1996), and iv) soil hydraulic conductivity using a Guelph permeameter. All these measurements were performed on the same soil type and on different land uses: arable land (AL), grassland (GL), natural forest (NF) and short rotation coppice (SRC) of Robinia pseudoacacia planted 5 years ago. Soil water retention measurements are still under progress and will be presented in congress. Bulk density measurements of the AL, GL and SRC are not significantly different. They ranged from 1.32 to 1.42. Only the NF measurements are significantly lower than the other (0.97). Aggregate

  8. Biochar stability and priming effect on SOM decomposition in two European short rotation coppices

    NASA Astrophysics Data System (ADS)

    Ventura, Maurizio; Alberti, Giorgio; Viger, Maud; Jenkins, Joe; Girardin, Cyril; Baronti, Silvia; Zaldei, Alessandro; Taylor, Gail; Miglietta, Franco; Tonon, Giustino

    2014-05-01

    Biochar application to agricultural soils has been proposed as a promising strategy for carbon (C) sequestration and climate change mitigation. However, most of the knowledge on biochar stability is based on short-term lab incubation experiments, as field studies are scarce. Therefore, little is known about the interactions between biochar and roots and the related effects on biochar stability in field conditions. In two (Italy and UK) short rotation coppice systems (SRCs) the present study aimed to asses, through continuous soil respiration monitoring and δ13C periodic measurements, the stability of biochar in field conditions, the effect of plant roots on biochar stability, the effect of biochar on original soil organic matter (SOM) decomposition. The percentage of biochar-derived soil respiration (fB) varied according to the site and sampling date: at the Italian site, it was between 7% and 37%; at the UK site, it varied between 12% and 32%. At both sites, fB was generally higher in the presence of roots (Rtot) than in trenched plots (Rh) where the root growth was excluded. This suggests a positive priming effect of roots on biochar decomposition. On the other hand, a decreased decomposition rate of original SOM after soil biochar addition (-10% and -14% at Italian and UK site, respectively) was observed, suggesting a protective effect of biochar on SOM. In summary, regardless of the experimental site, biochar showed a slow decomposition and a protective effect on original SOM, confirming the carbon mitigation potential of this technology. However, the mechanisms that are behind the observed results deserve to be investigated more deeply in a long-term perspective, in order to understand the real potential of biochar as a strategy for soil C sequestration.

  9. Successional changes of phytodiversity on a short rotation coppice plantation in Oberschwaben, Germany.

    PubMed

    Birmele, Janine; Kopp, Gabriele; Brodbeck, Frank; Konold, Werner; Sauter, Udo H

    2015-01-01

    To allow for information on successional changes in phytodiversity over time and space, as well as information on differences between clones and treatments, phytodiversity was monitored on a poplar short rotation coppice plantation in Oberschwaben, Southwest Germany, in four consecutive years. The investigated plantation was divided into two core areas, one planted with poplar clone Max4, the other with Monviso; each core area was divided into two blocks with alternating treatments: (i) irrigation and fertilization; (ii) irrigation; and (iii) no treatment. All vascular plant species of the ground vegetation were recorded in 72 permanent sampling plots of 25 m(2) each during vegetation periods using the Braun-Blanquet scale. Results showed that total number of species increased in first 2 years and declined after harvest of the SRC-trees. Total vegetation cover decreased during the 4 years of study. Especially for the two clones there was an opposed trend: grass layer had a high cover on Monviso plots, but low cover on Max4 plots; herb layer the very reverse. However, there was no significant difference between the three treatments compared within each year. Perennial species were dominating over all years, as well as light-demanding species, but their proportion decreased steadily. Our results confirm the conclusion of previous studies which indicate that plant community succession takes place in ground vegetation of SRC and imply that species composition is age-dependent. The selection of clones for SRC can influence ground vegetation; some floristic changes for example caused by different treatments may be visible only when monitored over a longer period of time.

  10. Successional changes of phytodiversity on a short rotation coppice plantation in Oberschwaben, Germany

    PubMed Central

    Birmele, Janine; Kopp, Gabriele; Brodbeck, Frank; Konold, Werner; Sauter, Udo H.

    2015-01-01

    To allow for information on successional changes in phytodiversity over time and space, as well as information on differences between clones and treatments, phytodiversity was monitored on a poplar short rotation coppice plantation in Oberschwaben, Southwest Germany, in four consecutive years. The investigated plantation was divided into two core areas, one planted with poplar clone Max4, the other with Monviso; each core area was divided into two blocks with alternating treatments: (i) irrigation and fertilization; (ii) irrigation; and (iii) no treatment. All vascular plant species of the ground vegetation were recorded in 72 permanent sampling plots of 25 m2 each during vegetation periods using the Braun-Blanquet scale. Results showed that total number of species increased in first 2 years and declined after harvest of the SRC-trees. Total vegetation cover decreased during the 4 years of study. Especially for the two clones there was an opposed trend: grass layer had a high cover on Monviso plots, but low cover on Max4 plots; herb layer the very reverse. However, there was no significant difference between the three treatments compared within each year. Perennial species were dominating over all years, as well as light-demanding species, but their proportion decreased steadily. Our results confirm the conclusion of previous studies which indicate that plant community succession takes place in ground vegetation of SRC and imply that species composition is age-dependent. The selection of clones for SRC can influence ground vegetation; some floristic changes for example caused by different treatments may be visible only when monitored over a longer period of time. PMID:25806036

  11. How to predict hydrological effects of local land use change: how the vegetation parameterisation for short rotation coppices influences model results

    NASA Astrophysics Data System (ADS)

    Richter, F.; Döring, C.; Jansen, M.; Panferov, O.; Spank, U.; Bernhofer, C.

    2015-01-01

    Among the different bioenergy sources short rotation coppices (SRC) with poplar and willow trees are one of the mostly promising options in Europe. SRC not only provide woody biomass, but often additional ecosystem services. One known shortcoming is the possible negative effect on groundwater recharge, caused by potentially higher rates of evapotranspiration compared to annual crops. An assessment of land use change by means of hydrological models and taking into account the changing climate can help to minimize negative and maximize positive ecological effects at regional and local scales, e.g. to regional climate and/or to adjacent ecosystems. The present study implemented the hydrological model system WaSim for such assessment. The hydrological analysis requires the adequate description of the vegetation cover to simulate the processes like soil evaporation, interception evaporation and transpiration. The uncertainties in the vegetation parameterisations might result in implausible model results. The present study shows that leaf area index (LAI), stomatal resistance (Rsc) as well as the beginning and length of the growing season are the sensitive parameters when investigating the effects of an enhanced cultivation of SRC on water budget or on groundwater recharge. Mostly sensitive is the description of the beginning of the growing season. When this estimation is wrong, the accuracy of LAI and Rsc description plays a minor role. The analyses done here illustrate that the use of locally measured vegetation parameters like maximal LAI and meteorological variables like air temperature, to estimate the beginning of the growing season, produce better results than literature data or data from remote network stations. However the direct implementation of locally measured or literature data on e.g. stomatal resistance is not always advisable. The adjustment of locally vegetation parameterisation shows the best model evaluation. Additionally the adjusted course of LAI

  12. Genetic improvement of willow for bioenergy and biofuels.

    PubMed

    Karp, Angela; Hanley, Steve J; Trybush, Sviatlana O; Macalpine, William; Pei, Ming; Shield, Ian

    2011-02-01

    Willows (Salix spp.) are a very diverse group of catkin-bearing trees and shrubs that are widely distributed across temperate regions of the globe. Some species respond well to being grown in short rotation coppice (SRC) cycles, which are much shorter than conventional forestry. Coppicing reinvigorates growth and the biomass rapidly accumulated can be used as a source of renewable carbon for bioenergy and biofuels. As SRC willows re-distribute nutrients during the perennial cycle they require only minimal nitrogen fertilizer for growth. This results in fuel chains with potentially high greenhouse gas reductions. To exploit their potential for renewable energy, willows need to be kept free of pests and diseases and yields need to be improved without significantly increasing the requirements for fertilizers and water. The biomass composition needs to be optimized for different end-uses. Yields also need to be sustainable on land less productive for food crops to reduce conflicts over land use. Advances in understanding the physiology and growth of willow, and in the identification of genes underlying key traits, are now at the stage where they can start to be used in breeding programs to help achieve these goals.

  13. GHGs balance in a land use change process from grassland to short rotation coppice of poplar

    NASA Astrophysics Data System (ADS)

    Sabbatini, Simone; Arriga, Nicola; Baiocco, Andrea; Boschi, Alessio; Castaldi, Simona; Consalvo, Claudia; Gioli, Beniamino; Matteucci, Giorgio; Tomassucci, Michele; Zaldei, Alessandro; Papale, Dario

    2013-04-01

    At present one of the fastest spreading renewable energy sources are bioenergy cultivations. Millions of hectares of traditional crops all over the Europe are expected to be converted in energy crops in the near future, in order to produce green energy and contrast global warming. Last year, in the context of the GHG-Europe FP7 project we set up an experiment to verify the effects on the green-house gases balance of a land use change from traditional agriculture to short rotation coppice of poplar clones in central Italy. CO2 fluxes measured during the last growing season through three Eddy Covariance masts - two on poplar plantations of different ages and one over a reference site (grassland) - have been analysed. We also monitored CO2, CH4 and N2O fluxes from soil measured using chambers in order to better understand the contribution of other GHGs. The two poplar plantations showed a similar uptake of Carbon, 368 g C m-2 year-1 and 358 g C m-2 year-1, while the grassland absorbed 220 g C m-2 year-1 during the same period. Soil respiration in average was higher for the youngest plantation of poplar and for the grassland, lower for the oldest one, where soil is undisturbed from more time. In all the sites we measured low emissions during the winter (between 80 and 150 mg CO2 m-2 h-1), progressively higher in the spring and early summer with growing temperatures (up to 650 mg CO2 m-2 h-1), quite low during the summer because of a strong drought, while the highest values were recorded in September (ca. 1100 mg CO2 m-2 h-1 in the grassland and youngest poplar) after important rain events. Fluxes of N2O and CH4 from soil are very low: little absorption of CH4 in the grassland (values between 0 and -18.75 μg m-2 h-1), with peak after fertilization; in the SRC little absorption or emission with no clear seasonal pattern. Insignificant fluxes of N2O in all crops (even in the grassland after fertilization). The carbon fluxes measured are strongly related to the particular

  14. Greenhouse gas balance of cropland conversion to bioenergy poplar short rotation coppice

    NASA Astrophysics Data System (ADS)

    Sabbatini, S.; Arriga, N.; Bertolini, T.; Castaldi, S.; Chiti, T.; Consalvo, C.; Njakou Djomo, S.; Gioli, B.; Matteucci, G.; Papale, D.

    2015-05-01

    The production of bioenergy in Europe is one of the strategies conceived to reduce greenhouse gas (GHG) emissions. The suitability of the land use change from a cropland (REF site) to a short rotation coppice plantation of hybrid poplar (SRC site) was investigated by comparing the GHG budgets of these two systems over 24 months in Viterbo, Italy. Eddy covariance measurements were carried out to quantify the net ecosystem exchange of CO2 (FCO2), whereas chambers were used to measure N2O and CH4 emissions from soil. Soil organic carbon (SOC) of an older poplar plantation was used to estimate via a regression the SOC loss due to SRC establishment. Emissions from tractors and from production and transport of agricultural inputs (FMAN) were modelled and GHG emission offset due to fossil fuel substitution was credited to the SRC site considering the C intensity of natural gas. Emissions due to the use of the biomass (FEXP) were also considered. The suitability was finally assessed comparing the GHG budgets of the two sites. FCO2 was the higher flux in the SRC site (-3512 ± 224 g CO2 eq m-2 in two years), while in the REF site it was -1838 ± 107 g CO2 m-2 in two years. FEXP was equal to 1858 ± 240 g CO2 m-2 in 24 months in the REF site, thus basically compensating FCO2, while it was 1118 ± 521 g CO2 eq m-2 in 24 months in the SRC site. This latter could offset -379.7 ± 175.1 g CO2 eq m-2 from fossil fuel displacement. Soil CH4 and N2O fluxes were negligible. FMAN weighed 2 and 4% in the GHG budgets of SRC and REF sites respectively, while the SOC loss weighed 455 ± 524 g CO2 m-2 in two years. Overall, the REF site was close to neutrality in a GHG perspective (156 ± 264 g CO2 eq m-2), while the SRC site was a net sink of -2202 ± 792 g CO2 eq m-2. In conclusion the experiment led to a positive evaluation of the conversion of cropland to bioenergy SRC from a GHG viewpoint.

  15. Landfill leachate treatment with willows and poplars--efficiency and plant response.

    PubMed

    Dimitriou, I; Aronsson, P

    2010-11-01

    Irrigation of willow and poplar short-rotation coppice with landfill leachate is an increasingly interesting treatment option. Minimal leaching to groundwater and disturbance to plant growth must be ensured, but in such systems, where various site-specific factors interact, a case-specific approach is needed to determine potential hazards. This paper compares the effect of leachate irrigation on willow grown in clay lysimeters and poplar grown in sand lysimeters. Leachate irrigation increased willow biomass production, but not that of poplar. Near-zero nitrate-N concentrations were found in drainage water for both species after 2 years of irrigation. Ability to retain total N and P, and TOC was relatively high for willow, taking into account the large amounts supplied, and better than for poplar. To reduce environmental risks the irrigation load should be reduced, but if leachate concentrations are reduced, the irrigation load can be as high as 6mm/day.

  16. Using Arabidopsis to study shoot branching in biomass willow.

    PubMed

    Ward, Sally P; Salmon, Jemma; Hanley, Steven J; Karp, Angela; Leyser, Ottoline

    2013-06-01

    The success of the short-rotation coppice system in biomass willow (Salix spp.) relies on the activity of the shoot-producing meristems found on the coppice stool. However, the regulation of the activity of these meristems is poorly understood. In contrast, our knowledge of the mechanisms behind axillary meristem regulation in Arabidopsis (Arabidopsis thaliana) has grown rapidly in the past few years through the exploitation of integrated physiological, genetic, and molecular assays. Here, we demonstrate that these assays can be directly transferred to study the control of bud activation in biomass willow and to assess similarities with the known hormone regulatory system in Arabidopsis. Bud hormone response was found to be qualitatively remarkably similar in Salix spp. and Arabidopsis. These similarities led us to test whether Arabidopsis hormone mutants could be used to assess allelic variation in the cognate Salix spp. hormone genes. Allelic differences in Salix spp. strigolactone genes were observed using this approach. These results demonstrate that both knowledge and assays from Arabidopsis axillary meristem biology can be successfully applied to Salix spp. and can increase our understanding of a fundamental aspect of short-rotation coppice biomass production, allowing more targeted breeding.

  17. Nitrate losses from fertilised short rotation willow - a preliminary evaluation of two years data

    SciTech Connect

    Reynolds, S.E.; Riddell-Block, D.M.

    1995-11-01

    The contamination of surface and ground waters arising from fertiliser use and livestock husbandry is arousing increasing concern and legislative controls on nitrogen application in vulnerable areas are being applied across the European Union. The production of wood on agricultural land is increasing as farmers diversify away from food crops. One crop which is attracting significant interest amongst farmers is the production of fuel from intensively planted willow and poplar grown on short rotations, referred to as short rotation forestry (SRF). The management of these crops is substantially less intensive than that employed in traditional agriculture. However, concerns over the potential environmental impact of the large-scale development of SRF have prompted the investigation of its water usage and influence on water quality. The opportunity was taken to conduct a preliminary investigation of nitrate leaching losses from intensively planted willow through the monitoring of a trial established to examine the fertiliser response of the crop. Two years data are reported in the poster presentation. Soil pore water samples were collected over two winters using porous ceramic suction samples installed vertically to a depth of 0.75 m beneath 18 month old stools of Salix dasyclados to which 172m{sup -3} ha{sup -1} equivalent of sewage sludge was applied in May 1993. Samplers were also installed in unfertilised control plots. Stools were spaced to give stocking densities of 20,000, 10,000 and 6,600 ha{sup -1}. Sampling commenced in November 1993 and continued at two to four week intervals until the end of May 1994. The process was repeated over the winter of 1994/95. Nitrate concentrations in soil pore water was significantly higher in the fertilised plots than under the unfertilised control in both years. However, differences were no longer significant at the end of the sampling period in either year.

  18. Biochar mineralization and priming effect on SOM decomposition. Results from a field trial in a short rotation coppice in Italy

    NASA Astrophysics Data System (ADS)

    Ventura, Maurizio; Alberti, Giorgio; Panzacchi, Pietro; Delle Vedove, Gemini; Miglietta, Franco; Tonon, Giustino

    2016-04-01

    Biochar application to soil has been proposed as a promising strategy for carbon (C) sequestration and climate change mitigation, helping at the same time to maintain soil fertility. However, most of the knowledge on biochar stability is based on short-term lab incubation experiments, as field studies are scarce. Therefore, little is known about the interactions between biochar and roots and the related effects on biochar stability in field conditions. The present study aimed to assess the stability of biochar, its effect on original soil organic matter (SOM) decomposition, and the effect of plant roots on biochar stability in field conditions in Northern Italy, for a three-year monitoring period within the EuroChar project. The experiment was conducted in a poplar short rotation coppice (SRC). Biochar produced from maize (δ13C = -13.8‰) silage pellets in a gasification plant was applied in a poplar short rotation coppice (SRC) plantation in Northern Italy. Root exclusion subplots were established using the trenching method to measure heterotrophic respiration. Total (Rtot) and heterotrophic (Rh) respiration were measured every 2 hours in control and biochar-treated soil, with a closed dynamic soil respiration system. δ13C of the soil-emited CO2 was periodically measured using the Keeling plot method. The percentage of biochar-derived soil respiration (fB), was calculated using an isotopic mass balance. Results showed that fB varied between 7% and 37% according to the sampling date, and was generally higher in the presence of roots than in trenched plots where the root growth was excluded. Without roots, only the 14% of the carbon originally added with biochar was decomposed. In the presence of roots, this percentage increased to 21%, suggesting a positive priming effect of roots on biochar decomposition. On the other hand, biochar decreased the decomposition of original SOM by about 17%, suggesting a protective effect of biochar on SOM.

  19. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    PubMed

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste. PMID:20724061

  20. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    PubMed

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste.

  1. How to predict hydrological effects of local land use change: how the vegetation parameterisation for short rotation coppices influences model results

    NASA Astrophysics Data System (ADS)

    Richter, F.; Döring, C.; Jansen, M.; Panferov, O.; Spank, U.; Bernhofer, C.

    2015-08-01

    Among the different bioenergy sources, short rotation coppices (SRC) with poplar and willow trees are one of the promising options in Europe. SRC provide not only woody biomass but also additional ecosystem services. However, a known shortcoming is the potentially lower groundwater recharge caused by the potentially higher evapotranspiration demand compared to annual crops. The complex feedbacks between vegetation cover and water cycle can be only correctly assessed by application of well-parameterised and calibrated numerical models. In the present study, the hydrological model system WaSim (Wasserhaushalts-Simulations-Model) is implemented for assessment of the water balance. The focus is the analysis of simulation uncertainties caused by the use of guidelines or transferred parameter sets from scientific literature compared to "actual" parameterisations derived from local measurements of leaf area index (LAI), stomatal resistance (Rsc) and date of leaf unfolding (LU). The analysis showed that uncertainties in parameterisation of vegetation lead to implausible model results. LAI, Rsc and LU are the most sensitive plant physiological parameters concerning the effects of enhanced SRC cultivation on water budget or groundwater recharge. Particularly sensitive is the beginning of the growing season, i.e. LU. When this estimation is wrong, the accuracy of LAI and Rsc description plays a minor role. Our analyses illustrate that the use of locally measured vegetation parameters, like maximal LAI, and meteorological variables, like air temperature, to estimate LU give better results than literature data or data from remote network stations. However, the direct implementation of locally measured data is not always advisable or possible. Regarding Rsc, the adjustment of local measurements gives the best model evaluation. For local and accurate studies, measurements of model sensitive parameters like LAI, Rsc and LU are valuable information. The derivation of these model

  2. A comparison of the suitability of different willow varieties to treat on-site wastewater effluent in an Irish climate.

    PubMed

    Curneen, S J; Gill, L W

    2014-01-15

    Short rotation coppiced willow trees can be used to treat on-site wastewater effluent with the advantage that, if planted in a sealed basin and sized correctly, they produce no effluent discharge. This paper has investigated the evapotranspiration rate of four different willow varieties while also monitoring the effects of three different effluent types on each variety. The willow varieties used are all cultivars of Salix viminalis. The effluents applied were primary (septic tank) effluent, secondary treated effluent and rain water (control). The results obtained showed that the addition of effluent had a positive effect on the evapotranspiration. The willows were also found to uptake a high proportion of the nitrogen and phosphorus from the primary and secondary treated effluents added during the first year. The effect of the different effluents on the evapotranspiration rate has been used to design ten full scale on-site treatment systems which are now being monitored.

  3. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.

    PubMed

    Bauen, A W; Dunnett, A J; Richter, G M; Dailey, A G; Aylott, M; Casella, E; Taylor, G

    2010-11-01

    Biomass from lignocellulosic energy crops can contribute to primary energy supply in the short term in heat and electricity applications and in the longer term in transport fuel applications. This paper estimates the optimal feedstock allocation of herbaceous and woody lignocellulosic energy crops for England and Wales based on empirical productivity models. Yield maps for Miscanthus, willow and poplar, constrained by climatic, soil and land use factors, are used to estimate the potential resource. An energy crop supply-cost curve is estimated based on the resource distribution and associated production costs. The spatial resource model is then used to inform the supply of biomass to geographically distributed demand centres, with co-firing plants used as an illustration. Finally, the potential contribution of energy crops to UK primary energy and renewable energy targets is discussed.

  4. First results from the UK network to establish the greenhouse gas balance of land conversion to second generation bioenergy willow, Miscanthus and short rotation forestry

    NASA Astrophysics Data System (ADS)

    Harris, Zoe M.; Bottoms, Emily; Massey, Alice; McCalmont, Jon; Yamulki, Sirwan; Drewer, Julia; McNamara, Niall; Finch, Jon; Donnison, Ian; Perks, Mike; Smith, Pete; Taylor, Gail

    2013-04-01

    ELUM is UK consortium project with 7 partners, funded by a joint incentive of public and private investment from the Energies Technology Institute (ETI). The aim of this project is to assess the impact of land conversion to second generation non-food bioenergy crops on greenhouse gas balance for several land use transitions, including from arable and grassland. A network of 6 sites has been established across the UK to assess these processes underpinning GHG balance and to provide input data to a meta-model that will be used as a tool to assess the sustainability of our land use transitions. The planned outputs of this project include an assessment of our current understanding of land use change and bioenergy cropping systems, the addition of greenhouse gas (GHG) data to national inventories and development of novel technologies to monitor GHG. Here we focus on the results of the soil GHG flux data (CO2, N2O and CH4) which are being collected at 5 sites and transitions, gaining good spatial coverage of the UK including Scotland, Wales, northern and southern England. These sites cover the following transitions: grassland to short rotation forestry, grassland to Miscanthus, arable to short rotation coppice (SRC) willow, arable to Miscanthus and grassland to SRC willow. A year of data capturing has been collected at these sites revealing the seasonal variability with increased CO2 fluxes, representing total soil respiration, in the summer months, irrespective of site. The importance of non-CO2 GHGs is also being considered and monthly measurements of CH4 and N2O using static chambers, provide no evidence that these gases contribute significantly to the overall carbon footprint of the bioenergy crops, in contrast to recent reports on SRC poplar. There were, however, some occasional large unexplained fluxes in these gases suggesting they may play a lesser part in some bioenergy cropping systems and are more complicated to evaluate. As well as this experiment, data will

  5. Tree and stand water fluxes of hybrid poplar clone (Populus nigra x P. maximowiczii) in short rotation coppice culture

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Trnka, M.; Kucera, J.; Zalud, Z.

    2010-09-01

    This study reports on evapotranspiration and tree water use in short rotation coppice culture of hybrid poplar (Populus nigra x P. maximowiczii) for biomass energy in the Czech Republic. The high density poplar plantation (10 000 trees per ha) was established in 2003 on arable land in Czech-Moravian Highland (49°32´ N, 16°15´ E, 530 m a.s.l.) and has been coppiced in rotation period of 7 years. Firstly, evapotranspiration of the stand has been estimated by applying the Bowen ratio-energy budget method, which is considered as reliable, robust, quite simple and inexpensive technique with comparable results to eddy covariance and lysimeters. The gaps in evapotranspiration diurnal patterns caused by limitation of the bowen ratio method were filled with simple linear regression model based on relation between potential and actual evapotranspiration with regard to soil water availability and leaf area index and thus the daily, monthly and seasonal totals could be calculated. The amount of evapotranspiration during the growing season 2009 (1 March - 31 October) was 593 mm with highest monthly total 116 mm in June. Mean daily water loss over the season reached 2.43 mm per day. During the hot summer day, the maximal value 5.73 mm per day, which presented 89 % of potential evapotranspiration calculated by Penman equation, was recorded with a peak rate 0.94 mm per hour. Secondly, the transpiration was measured by sap flow tissue heat balance techniques on four individual trees with greatest stem diameters (11 - 12 cm d.b.h.) and height of 12 - 12.5 m. Relatively high transpiration values by the poplars were found during the measured part of growing season (18 June - 31 October), with maximum and mean daily transpiration of 44.41 dm3 and 16.69 dm3 per day, respectively. The seasonal transpiration of the most vigorous from the investigated individuals amounted 2542 dm3. Because in this study we didńt evaluate the transpiration of thinner trees (technical features of sap

  6. Short rotation coppice improve the phosphorus (P) supply of arable land through translocation of P from subsoil to topsoil

    NASA Astrophysics Data System (ADS)

    Doering, K.; Kaupenjohann, M.

    2011-12-01

    Even if the agricultural use of P will not increase during the next decades, the stock of phosphorous (P) in global mineral deposits is predicted to last for only less than 50 to 100 years. This will cause a much more severe problem than the shortage of fossil energy because P as an element essential to all life is not substitutable through any other material. Thus, efforts have to be made to close the P-cycle and it will in the near future be no more justifiable to disperse P or dump it at places where it cannot be recovered from. Additionally, new resources of P have to be explored to cover increasing P demand and to compensate for inevitable losses. Subsoil, which is hardly explored by arable crops may contain such P reserves. Deep rooting perennial plants like trees have access to these P resources and may be used to introduce subsoil P into the agricultural P cycle. Using literature data we followed the question to what extent the introduction of short rotation coppice of energy - Populus, Salix and Robinia into the agricultural crop rotation could support the P supply to annual food crops. Leaf litter of Populs, Salix and Robinia will transfer 3 to 13, 5 to 12 and 5 to 12 kg P and ha-1 a-1 to the soil surface, respectively. The large variation is mainly explained by site conditions (soil and climate). Assuming that 30 % of the nutrient requirement of the trees is assimilated from the subsoil, 1 to 5 kg of P ha-1 a-1 may be translocated to the topsoil. The knowledge about root content of P of the three tree species is very scarce. Based on information about other broadleaf trees, we consider that root litter may transfer amounts of P to the topsoil similar to leaf litter. Thus, in total the annual translocation of subsoil-P to the topsoil may range between 2 to 10 kg ha-1 in short rotation plantations. These amounts are far below the annual P removal from soils through food crops which may range from 20 to 40 kg P ha-1 a-1. Therefore subsoil P cannot replace P

  7. Melampsora rust species on biomass willows in central and north-eastern Germany.

    PubMed

    Bubner, Ben; Wunder, Sebastian; Zaspel, Irmtraut; Zander, Matthias; Gloger, Jan; Fehrenz, Steffen; Ulrichs, Christian

    2014-11-01

    Melampsora willow rusts are the most important fungal pathogens in short rotation coppices of biomass willows. In the past, breeding programmes for rust resistant biomass willows concentrated on the distinction of races within the forma specialis Melampsora larici-epitea f. sp. larici-epitea typica that colonized Salix viminalis and related clones. In a new breeding program that is based on a wider range of willow species it is necessary to identify further Melampsora species and formae specialis that are pathogens of willow species other than S. viminalis. Therefore, three stock collections with Salix daphnoides, Salix purpurea, and other shrub willow species (including S. viminalis) species were sampled in north-eastern Germany. A fourth stock collection in central Germany contributed rusts of tree willows (Salix fragilis and Salix alba) and the large shrub Salix caprea. Out of 156 rust samples, 149 were successfully sequenced for ITS rDNA. A phylogenetic analysis combining Neighbour-Joining, Maximum-Likelihood and Bayesian analysis revealed six species: Melampsora ribesii-purpureae, Melampsora allii-salicis-albae, Melampsora sp. aff. allii-fragilis, Melampsora larici-pentandrae, Melampsora larici-caprearum, and Melampsora larici-epitea. The first four species were found exclusively on the expected hosts. Melampsora larici-caprearum had a wider host range comprising S. caprea and S. viminalis hybrids. Melampsora larici-epitea can be further differentiated into two formae speciales. The forma specialis larici-epitea typica (59 samples) colonized Salix viminalis clones, Salix purpurea, Salix×dasyclados, and Salix×aquatica. In contrast to this relatively broad host range, f. sp. larici-daphnoides (65 samples) was found exclusively on Salix daphnoides. With the distinction and identification of the rust species/formae speciales it is now possible to test for race-specific resistances in a more targeted manner within the determined pairings of rust and willow

  8. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions.

    PubMed

    Schulze, Jule; Frank, Karin; Priess, Joerg A; Meyer, Markus A

    2016-01-01

    Meeting the world's growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape. This

  9. Soil trace gas emissions (CH4 and N2O) offset the CO2 uptake in poplar short rotation coppice

    NASA Astrophysics Data System (ADS)

    Zenone, Terenzio; Zona, Donatella; Gelfand, Iya; Gielen, Bert; camino serrano, Marta; Ceulemans, Reinhart

    2015-04-01

    The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast-growing biomass crops across Europe. Among them poplar (Populus spp) is the most widely planted as short rotation coppice (SRC) and an increase in the surface area of large-scale SRC poplar plantations might thus be expected. In this study we report the greenhouse gas fluxes (GHG) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) measured using the eddy covariance technique in a SRC plantation for bioenergy production during the period 2010-2013. The plantation was established in April 2010 on 18.4 ha of former agricultural land with a density of 8000 plants ha-1; the above-ground biomass was harvested on February 2012 and 2014.The whole GHG balance of the four years of the study was 1.90 (± 1.37) Mg CO2eq ha-1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O almost equally contributed to offset the CO2 uptake of -5.28 (±0.67) Mg CO2eq ha-1 with an overall emission of 3.56 (± 0.35) Mg CO2eq ha-1 of N2O and of 3.53 (± 0.85) Mg CO2eq ha-1 of CH4. N2O emissions mostly occurred during a single peak a few months after the site was converted into SRC and represented 44% of the entire N2O loss during the entire study. Accurately capturing these emission events proved to be critical for correct estimates of the GHG balance. The self-organizing map (SOM) technique graphically showed the relationship between the CO2 fluxes and the principal environmental variables but failed to explain the variability of the soil trace gas emissions. The nitrogen content in the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4 respectively. This study underlines the importance of the "non-CO2 GHG" on the overall balance as well as the impact of the harvest on the CO2 uptake rate. Further long-term investigations of soil trace gas emissions should also monitor the N

  10. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions.

    PubMed

    Schulze, Jule; Frank, Karin; Priess, Joerg A; Meyer, Markus A

    2016-01-01

    Meeting the world's growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape. This

  11. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions

    PubMed Central

    Schulze, Jule; Frank, Karin; Priess, Joerg A.; Meyer, Markus A.

    2016-01-01

    Meeting the world’s growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape

  12. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE PAGES

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    2016-05-02

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  13. Willow Bark

    MedlinePlus

    ... this combination.Talk with your health provider.Choline Magnesium Trisalicylate (Trilisate)Willow bark contains chemicals that are similar to choline magnesium trisalicylate (Trilisate). Taking willow bark along with choline ...

  14. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    PubMed Central

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. PMID:26339128

  15. Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany - Model development and application.

    PubMed

    Quinkenstein, A; Jochheim, H

    2016-03-01

    In the temperate zone short rotation coppice systems for the production of woody biomass (SRC) have gained great interest as they offer a pathway to both sustainable bioenergy production and the potential sequestration of CO2 within the biomass and the soil. This study used the carbon model SHORTCAR to assess the carbon cycle of a poplar (Populus suaveolens Fisch. x Populus trichocarpa Torr. et Gray cv. Androscoggin) and a black locust (Robinia pseudoacacia L.) SRC. The model was calibrated using data from established SRC plantations on reclaimed mine sites in northeast Germany and validated through the determination of uncertainty ranges of selected model parameters and a sensitivity analysis. In addition to a 'reference scenario', representing the actual site conditions, 7 hypothetical scenarios, which varied in climate conditions, rotation intervals, runtimes, and initial soil organic carbon (SOC) stocks, were defined for each species. Estimates of carbon accumulation within the biomass, the litter layer, and the soil were compared to field data and previously published results. The model was sensitive to annual stem growth and initial soil organic carbon stocks. In the reference scenario net biome production for SRC on reclaimed sites in Lusatia, Germany amounted to 64.5 Mg C ha(-1) for R. pseudoacacia and 8.9 Mg C ha(-1) for poplar, over a period of 36 years. These results suggest a considerable potential of SRC for carbon sequestration at least on marginal sites.

  16. Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany - Model development and application.

    PubMed

    Quinkenstein, A; Jochheim, H

    2016-03-01

    In the temperate zone short rotation coppice systems for the production of woody biomass (SRC) have gained great interest as they offer a pathway to both sustainable bioenergy production and the potential sequestration of CO2 within the biomass and the soil. This study used the carbon model SHORTCAR to assess the carbon cycle of a poplar (Populus suaveolens Fisch. x Populus trichocarpa Torr. et Gray cv. Androscoggin) and a black locust (Robinia pseudoacacia L.) SRC. The model was calibrated using data from established SRC plantations on reclaimed mine sites in northeast Germany and validated through the determination of uncertainty ranges of selected model parameters and a sensitivity analysis. In addition to a 'reference scenario', representing the actual site conditions, 7 hypothetical scenarios, which varied in climate conditions, rotation intervals, runtimes, and initial soil organic carbon (SOC) stocks, were defined for each species. Estimates of carbon accumulation within the biomass, the litter layer, and the soil were compared to field data and previously published results. The model was sensitive to annual stem growth and initial soil organic carbon stocks. In the reference scenario net biome production for SRC on reclaimed sites in Lusatia, Germany amounted to 64.5 Mg C ha(-1) for R. pseudoacacia and 8.9 Mg C ha(-1) for poplar, over a period of 36 years. These results suggest a considerable potential of SRC for carbon sequestration at least on marginal sites. PMID:26696606

  17. Spatial assessment of the economic feasibility of short rotation coppice on radioactively contaminated land in Belarus, Ukraine, and Russia. I. Model description and scenario analysis.

    PubMed

    Perk Mv, Marcel van der; Burema, Jiske; Vandenhove, Hildegarde; Goor, François; Timofeyev, Sergei

    2004-09-01

    The economic feasibility of short rotation coppice (SRC) production and energy conversion in areas contaminated by Chernobyl-derived (137)Cs was evaluated taking the spatial variability of environmental conditions into account. Two sequential GIS-embedded submodels were developed for a spatial assessment, which allow for spatial variation in soil contamination, soil type, and land use. These models were applied for four SRC production and four energy conversion scenarios for the entire contaminated area of Ukraine, Belarus, and Russia and for a part of the Bragin district, Belarus. It was concluded that in general medium-scale SRC production using local machines is most profitable. The areas near Chernobyl are not suitable for SRC production since the contamination levels in SRC wood exceed the intervention limit. Large scale SRC production is not profitable in areas where dry and sandy soils predominate. If the soil contamination does not exceed the intervention limit and sufficient SRC wood is available, all energy conversion scenarios are profitable. PMID:15294354

  18. Spatial assessment of the economic feasibility of short rotation coppice on radioactively contaminated land in Belarus, Ukraine, and Russia. I. Model description and scenario analysis.

    PubMed

    Perk Mv, Marcel van der; Burema, Jiske; Vandenhove, Hildegarde; Goor, François; Timofeyev, Sergei

    2004-09-01

    The economic feasibility of short rotation coppice (SRC) production and energy conversion in areas contaminated by Chernobyl-derived (137)Cs was evaluated taking the spatial variability of environmental conditions into account. Two sequential GIS-embedded submodels were developed for a spatial assessment, which allow for spatial variation in soil contamination, soil type, and land use. These models were applied for four SRC production and four energy conversion scenarios for the entire contaminated area of Ukraine, Belarus, and Russia and for a part of the Bragin district, Belarus. It was concluded that in general medium-scale SRC production using local machines is most profitable. The areas near Chernobyl are not suitable for SRC production since the contamination levels in SRC wood exceed the intervention limit. Large scale SRC production is not profitable in areas where dry and sandy soils predominate. If the soil contamination does not exceed the intervention limit and sufficient SRC wood is available, all energy conversion scenarios are profitable.

  19. Spatial assessment of the economic feasibility of short rotation coppice on radioactively contaminated land in Belarus, Ukraine, and Russia. II. Monte Carlo analysis.

    PubMed

    Van Der Perk, Marcel; Burema, Jiske; Vandenhove, Hildegarde; Goor, François; Timofeyev, Sergei

    2004-09-01

    A Monte Carlo analysis of two sequential GIS-embedded submodels, which evaluate the economic feasibility of short rotation coppice (SRC) production and energy conversion in areas contaminated by Chernobyl-derived (137)Cs, was performed to allow for variability of environmental conditions that was not contained in the spatial model inputs. The results from this analysis were compared to the results from the deterministic model presented in part I of this paper. It was concluded that, although the variability in the model results due to within-gridcell variability of the model inputs was considerable, the prediction of the areas where SRC and energy conversion is potentially profitable was robust. If the additional variability in the model input that is not contained in the input maps is also taken into account, the SRC production and energy conversion appears to be potentially profitable at more locations for both the small scale and large scale production scenarios than the model predicted using the deterministic model.

  20. ORCHIDEE-SRC v1.0: an extension of the land surface model ORCHIDEE for simulating short rotation coppice poplar plantations

    NASA Astrophysics Data System (ADS)

    De Groote, T.; Zona, D.; Broeckx, L. S.; Verlinden, M. S.; Luyssaert, S.; Bellassen, V.; Vuichard, N.; Ceulemans, R.; Gobin, A.; Janssens, I. A.

    2015-05-01

    Modelling biomass production and the environmental impact of short rotation coppice (SRC) plantations is necessary for planning their deployment, as they are becoming increasingly important for global energy production. This paper describes the modification of the widely used land surface model ORCHIDEE for stand-scale simulations of SRC plantations. The model uses weather data, soil texture and species-specific parameters to predict the aboveground (harvestable) biomass production, as well as carbon and energy fluxes of an SRC plantation. Modifications to the model were made to the management, growth, and allocation modules of ORCHIDEE. The modifications presented in this paper were evaluated using data from two Belgian poplar-based SRC sites, for which multiple measurements and meteorological data were available. Biomass yield data were collected from 23 other sites across Europe and compared to 22 simulations across a comparable geographic range. The simulations show that the model predicts very well aboveground (harvestable) biomass production (within measured ranges), ecosystem photosynthesis (R2 = 0.78, NRMSE = 0.064, PCC = 0.89) and ecosystem respiration (R2 = 0.95, NRMSE = 0.078 PCC = 0.91). Also soil temperature and soil moisture are simulated adequately, but due to the simplicity of the soil moisture simulation, there are some discrepancies, which also influence the simulation of the latent heat flux. Overall, the extended model, ORCHIDEE-SRC, proved to be a tool suitable for predicting biomass production of SRC plantations.

  1. ORCHIDEE-SRC v1.0: an extension of the land surface model ORCHIDEE for simulating short rotation coppice poplar plantations

    NASA Astrophysics Data System (ADS)

    De Groote, T.; Zona, D.; Broeckx, L. S.; Verlinden, M. S.; Luyssaert, S.; Bellassen, V.; Vuichard, N.; Ceulemans, R.; Gobin, A.; Janssens, I. A.

    2014-06-01

    Modelling biomass production and the environmental impact of short rotation coppice (SRC) plantations is necessary for planning their deployment, as they are becoming increasingly important for global energy production. This paper describes the modification of the widely used land surface model ORCHIDEE for stand scale simulations of SRC plantations. The model uses weather data, soil texture and species-specific parameters to predict the aboveground (harvestable) biomass production, as well as carbon and energy fluxes of an SRC plantation. Modifications to the model were made to the management, growth, and allocation modules of ORCHIDEE. The modifications presented in this paper were evaluated using data from two poplar based SRC sites. The simulations show that the model performs very well to predict aboveground (harvestable) biomass production (within measured ranges), ecosystem photosynthesis (R2 = 0.78, NRMSE = 0.064, PCC = 0.89) and ecosystem respiration (R2 = 0.95, NRMSE = 0.081, PCC = 0.91). Overall, the extended model, ORCHIDEE-SRC, proved to be a tool suitable for predicting biomass production of SRC plantations.

  2. Phytoremediation of groundwater contaminated with pesticides using short-rotation willow crops: A case study of an apple orchard.

    PubMed

    Lafleur, Benoit; Sauvé, Sébastien; Duy, Sung Vo; Labrecque, Michel

    2016-11-01

    The occurrence of pesticides in groundwater represents an important health issue, notably for population whose drinking water supply source is located in agricultural areas. However, few solutions have been considered with regard to this issue. We tested the efficacy of a vegetal filtering system made of shrub willows planted at a high density (16,000 plants ha(-1)) to filter or degrade pesticides found in the groundwater flowing out of an apple orchard. Ethylene urea (EU), ethylene thiourea (ETU), tetrahydrophthalimide (THPI), atrazine, and desethylatrazine were monitored in the soil solution in willow and control plots over one growing season. ETU and atrazine concentrations were lower in the willow plots relative to the control plots, whereas desethylatrazine concentration was higher in the willow plots. No significant difference was detected for EU and THPI. Furthermore, pesticide concentrations displayed complex temporal patterns. These results suggest that willow filter systems can filter or degrade pesticides, notably ETU and atrazine, and could be used for phytoremediation purposes. Yet, this potential remains to be quantified with further studies using experimental settings allowing more estimation in time and space.

  3. Phytoremediation of groundwater contaminated with pesticides using short-rotation willow crops: A case study of an apple orchard.

    PubMed

    Lafleur, Benoit; Sauvé, Sébastien; Duy, Sung Vo; Labrecque, Michel

    2016-11-01

    The occurrence of pesticides in groundwater represents an important health issue, notably for population whose drinking water supply source is located in agricultural areas. However, few solutions have been considered with regard to this issue. We tested the efficacy of a vegetal filtering system made of shrub willows planted at a high density (16,000 plants ha(-1)) to filter or degrade pesticides found in the groundwater flowing out of an apple orchard. Ethylene urea (EU), ethylene thiourea (ETU), tetrahydrophthalimide (THPI), atrazine, and desethylatrazine were monitored in the soil solution in willow and control plots over one growing season. ETU and atrazine concentrations were lower in the willow plots relative to the control plots, whereas desethylatrazine concentration was higher in the willow plots. No significant difference was detected for EU and THPI. Furthermore, pesticide concentrations displayed complex temporal patterns. These results suggest that willow filter systems can filter or degrade pesticides, notably ETU and atrazine, and could be used for phytoremediation purposes. Yet, this potential remains to be quantified with further studies using experimental settings allowing more estimation in time and space. PMID:27196962

  4. Reaction wood – a key cause of variation in cell wall recalcitrance in willow

    PubMed Central

    2012-01-01

    Background The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was considered. Results A pot trial was designed to test if the ‘RW response’ varies between willow genotypes and contributes to the differences observed in cell wall recalcitrance to enzymatic saccharification in field-grown trees. Biomass composition was measured via wet chemistry and used with glucose release yields from enzymatic saccharification to determine cell wall recalcitrance. The levels of glucose release found for pot-grown control trees showed no significant correlation with glucose release from mature field-grown trees. However, when a RW phenotype was induced in pot-grown trees, glucose release was strongly correlated with that for mature field-grown trees. Field studies revealed a 5-fold increase in glucose release from a genotype grown at a site exposed to high wind speeds (a potentially high RW inducing environment) when compared with the same genotype grown at a more sheltered site. Conclusions Our findings provide evidence for a new concept concerning variation in the recalcitrance to enzymatic hydrolysis of the stem biomass of different, field-grown willow genotypes (and potentially other angiosperms). Specifically, that genotypic differences in the ability to produce a response to RW inducing conditions (a ‘RW response’) indicate that this RW response is a primary determinant of the variation observed in cell wall glucan accessibility. The identification of the importance of this RW response trait in willows, is likely to be valuable in selective breeding strategies in willow (and other angiosperm) biofuel crops and, with further work to dissect the nature of RW

  5. Increasing the biomass production of short rotation coppice forestry. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Steinbeck, K.

    1980-04-04

    The objective of this project is to determine means of increasing the biomass yield of short rotation hardwood forests through certain species admixtures, irrigation, fertilization and intensive cultural practices and the development of techniques for cloning in sterile culture of superior sycamore and other hardwood strains and the identification and propagation of individual hardwoods with superior growth and other characteristics.

  6. Genetic variation of the bud and leaf phenology of seventeen poplar clones in a short rotation coppice culture.

    PubMed

    Pellis, A; Laureysens, I; Ceulemans, R

    2004-01-01

    Leaf phenology of 17 poplar ( Populus spp.) clones, encompassing spring phenology, length of growth period and end-of-year phenology, was examined over several years of different rotations. The 17 poplar clones differed in their latitude of origin (45 degrees 30'N to 51 degrees N) and were studied on a short rotation experimental field plantation, situated in Boom (province of Antwerpen, Belgium; 51 degrees 05'N, 04 degrees 22'E). A similar, clear pattern of bud burst was observed during the different years of study for all clones. Clones Columbia River, Fritzi Pauley, Trichobel (Populus trichocarpa) and Balsam Spire (Populus trichocarpa x Populus balsamifera) from 45 degrees 30'N to 49 degrees N reached bud burst (expressed as day of the year or degree day sums) almost every year earlier than clones Wolterson (Populus nigra), Gaver, Gibecq and Primo (Populus deltoides x Populus nigra) (50 degrees N to 51 degrees N). This observation could not be generalised to end-of-season phenology, for which a yearly returning pattern for all clones was lacking. Late bud burst and early leaf fall of some clones (Beaupré, Boelare, IBW1, IBW2, IBW3) was brought about by increasing rust incidence during the years of observation. For these clones, the variability in leaf phenology was reflected in high coefficients of variation among years. The patterns of genetic variation in leaf phenology have implications for short rotation intensive culture forestry and management of natural populations. Moreover, the variation in phenology reported here is relevant with regard to the genetic mapping of poplar.

  7. Soils organic C sequestration under poplar and willow agroforestry systems

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Tariq, Azeem; Lamersdorf, Norbert

    2015-04-01

    Short rotation coppices (SRC) as monocultures or as agroforestry (AF) applications (e.g. alley cropping) are two techniques to implement forest into agricultural practices. Despite afforestation promotes soil carbon (C) accumulation, age and type of the tree stand can affect the C accumulation in different degrees. Here, we studied the impact of afforestation on C accumulation for: i) pure SCR of willow (Salix viminalis x Salix schwerinii) and poplar (Populus nigra x Populus maximowiczii) and ii) AF cropping system with willow. Forest systems have been established within the BEST agroforestry project in Germany. Adjacent agricultural field have been used as a control. Soil samples were collected in 2014, three years after plantation establishment, from three soil depths: 0-3, 3-20, and 20-30 cm. Total organic C, labile C (incubation of 20 g soil during 100 days with measuring of CO2) and aggregate structure were analysed. Additionally, density fractionation of the samples from 0-3 cm was applied to separate particulate organic matter (POM) and mineral fractions. Aggregates and density fractions were analyzed for C content. High input of plant litter as well as root exudates have led to increases of organic C in AF and SRC plots compare to cropland, mainly in the top 0-3 cm. The highest C content was found for willow SRC (18.2 g kg-1 soil), followed by willow-AF (15.6 g kg-1 soil), and poplar SRC (13.7 g kg-1 soil). Carbon content of cropland was 12.5 g kg-1 soil. Absence of ploughing caused increase portion of macroaggregates (>2000 μm) under SRC and AF in all soil layers as well as the highest percentage of C in that aggregate size class (70-80%). In contrast, C in cropland soil was mainly accumulated in small macroaggregates (250-2000 μm). Intensive mineralisation of fresh litter and old POM, taking place during first years of trees development, resulted to similar portions of free POM for willow AF, willow SRC and cropland (8%), and even lower ones for poplar

  8. Fast-growing willow shrub named `Canastota`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-15

    A distinct male cultivar of Salix sachalinensis.times.S. miyabeana named `Canastota`, characterized by rapid stem growth producing greater than 2.7-fold more woody biomass than its female parent (Salix sachalinensis `SX61`), 28% greater woody biomass yield than its male parent (Salix miyabeana `SX64`), and 20% greater woody biomass yield than a standard production cultivar, Salix dasyclados `SV1` when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Canastota` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. `Canastota` displays a low incidence of rust disease or damage by willow sawfly.

  9. Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow.

    PubMed

    Brereton, Nicholas J B; Pitre, Frederic E; Shield, Ian; Hanley, Steven J; Ray, Michael J; Murphy, Richard J; Karp, Angela

    2014-11-01

    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and (15)N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2-3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production.

  10. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    PubMed

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  11. Farm-gate budget of energy crops: an experiment to assess changes in GHGs balance due to a land use change from grassland to short rotation coppice of poplar

    NASA Astrophysics Data System (ADS)

    Sabbatini, S.; Arriga, N.; Baiocco, A.; Boschi, A.; Castaldi, S.; Consalvo, C.; Gioli, B.; Matteucci, G.; Tomassucci, M.; Zaldei, A.; Papale, D.

    2012-04-01

    Over the last decades the rising in the prices of oil pushed many farmers all over the Europe to exploit part of their fields to produce biomass for energy. Government funding promoted this trend in order to contrast global warming and Green-House Gases (GHG) emissions. Nevertheless energy crops entail, in addition to a land use change, a sum of treatments that leads again to emissions of GHG. In the context of the GHG-Europe FP7 project we set-up an experiment to study a case of land use change from grassland to Short Rotation Coppice (SRC) of poplar clones in central Italy. Through the Eddy Covariance (EC) technique, we measure carbon and energy fluxes over two different poplar SRC with different ages, and over a reference site (grassland) representing the original land use. Furthermore, we measured additional fluxes such as soil respiration, CH4 and N2O fluxes using chambers. To compute the Farm-Gate Budget (FGB) of both the grassland and the poplar plantations, we collect also additional data that contribute to GHG budget such as management (tillage, fertilizations, irrigations, harvesting) and disturbances. In this poster we present the experiment set-up and the first results resulting from the measurements.

  12. Living Willow Huts

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2007-01-01

    Living Willow Huts are inexpensive to make, fun to plant, easy to grow, and make beautiful spaces for children. They involve planting dormant willow shoots in the ground and weaving them into shapes that will sprout and grow over time. People have been creating similar living architecture throughout the world for centuries in the forms of living…

  13. Blue Willow Story Plates

    ERIC Educational Resources Information Center

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  14. Measured and modelled carbon and water fluxes in hybrid willows grown for biofuel production

    NASA Astrophysics Data System (ADS)

    Wertin, T. M.; LeBauer, D.; Volk, T.; Long, S.; Leakey, A. D.

    2014-12-01

    Biofuels have the potential to meet future energy needs. Worldwide, up to 75% of biofuels produced are derived from woody sources. Coppiced hybrid willow is among the most promising woody biofuel sources due to its ability to rapidly regenerate after cutting, high biomass yields, low nutrient requirements and ability to be grown on marginal land, abandoned land and land easily erodible under annual cultivation. However, models used to assess the potential viability and sustainability of commercial biomass production by willow in the northeastern, northern and northwestern USA remain unsophisticated and lack key parameterization data. Most significantly, models do not explicitly represent the coppiced growth form. This study tests the ability of a canopy model to predict carbon and water fluxes in two highly productive, but structurally distinct hybrid willows (Salix miyabeana and Salix purpurea) grown in central NY. S. miyaneana has only a few, large diameter stems per stool prior to harvest, while S. purpurea maintains numerous, small diameter stems until harvest. Canopy structure also varies substantially within a growing season. For example, in S. miyabeana stem number decreased by 40% while total basal area increased by 50% within year 2 of the third coppice cycle. Model predictions of water use are compared with stand transpiration measured by sap flow. Model predictions of biomass production are compared to destructive harvest data. Sensitivity of predicted fluxes to variation between genotypes in key physiological parameters is also tested.

  15. The environmental and economic sustainability of potential bioethanol from willow in the UK.

    PubMed

    Stephenson, A L; Dupree, P; Scott, S A; Dennis, J S

    2010-12-01

    Life cycle assessment has been used to investigate the environmental and economic sustainability of a potential operation in the UK in which bioethanol is produced from the hydrolysis and subsequent fermentation of coppice willow. If the willow were grown on idle arable land in the UK, or, indeed, in Eastern Europe and imported as wood chips into the UK, it was found that savings of greenhouse gas emissions of 70-90%, when compared to fossil-derived gasoline on an energy basis, would be possible. The process would be energetically self-sufficient, as the co-products, e.g. lignin and unfermented sugars, could be used to produce the process heat and electricity, with surplus electricity being exported to the National Grid. Despite the environmental benefits, the economic viability is doubtful at present. However, the cost of production could be reduced significantly if the willow were altered by breeding to improve its suitability for hydrolysis and fermentation. PMID:20727740

  16. Willow plant name 'Preble'

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2014-06-10

    A distinct female cultivar of Salix viminalis.times.(Salix sachalinensis.times.Salix miyabeana) named `Preble`, characterized by rapid stem growth producing 29% more woody biomass than the average of three current production cultivars (Salix.times.dasyclados `SV1` (unpatented), Salix sachalinensis `SX61` (unpatented), and Salix miyabeana `SX64` (unpatented)) when grown in the same field for the same length of time (three growing seasons after coppice) in two different trials in Constableville, N.Y. and Middlebury, Vt. `Preble` can be planted from dormant stem cuttings, produces multiple stems after coppice and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Preble` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  17. Five willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance

    PubMed Central

    Berthod, Nicolas; Brereton, Nicholas J. B.; Pitre, Frédéric E.; Labrecque, Michel

    2015-01-01

    Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured to evaluate growth performance of the cultivars according to the diverse pedoclimatic conditions. Each cultivar showed very specific responses to its environment. While no significant variation in lignin content was observed between sites, there was variation between cultivars. Surprisingly, the pattern of substantial genotype variability in stem density was maintained across all sites. However, wood anatomy did differ between sites in a cultivar (producing high and low density wood), suggesting a probable response to an abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50% of secondary xylem, were also found in the high density wood, a finding with potential to bring higher value to the lignocellulosic bioethanol industry. PMID:26583024

  18. Five willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance.

    PubMed

    Berthod, Nicolas; Brereton, Nicholas J B; Pitre, Frédéric E; Labrecque, Michel

    2015-01-01

    Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured to evaluate growth performance of the cultivars according to the diverse pedoclimatic conditions. Each cultivar showed very specific responses to its environment. While no significant variation in lignin content was observed between sites, there was variation between cultivars. Surprisingly, the pattern of substantial genotype variability in stem density was maintained across all sites. However, wood anatomy did differ between sites in a cultivar (producing high and low density wood), suggesting a probable response to an abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50% of secondary xylem, were also found in the high density wood, a finding with potential to bring higher value to the lignocellulosic bioethanol industry.

  19. A comparison of growth, photosynthetic capacity and water stress in Eucalyptus globulus coppice regrowth and seedlings during early development.

    PubMed

    Drake, Paul L; Mendham, Daniel S; White, Don A; Ogden, Gary N

    2009-05-01

    Eucalyptus globulus Labill., a globally significant plantation species, is grown commercially in a multiple rotation framework. Second and subsequent crops of E. globulus may be established either by allowing the cut stumps to resprout (commonly referred to as coppice) or by replanting a new crop of seedlings. Currently, long-term growth data comparing coppice and seedling productivity in second or later rotations in southern Australia is limited. The capacity to predict productivity using these tools is dependent on an understanding of the physiology of seedlings and coppice in response to light, water and nutrient supply. In this study, we compared the intrinsic (independent of the immediate environment) and native (dependent on the immediate environment) physiology of E. globulus coppice and second-generation seedlings during their early development in the field. Coppice not only grew more rapidly, but also used more water and drew on stored soil water to a depth of at least 4.5 m during the first 2 years of growth, whereas the seedlings only accessed the top 0.9 m of the soil profile. During the same period, there was no significant difference between coppice and seedlings in either their stomatal response to leaf-to-air vapour pressure difference (D) or intrinsic water-use efficiency; CO(2)- and light-saturated rates of photosynthesis were greater in seedlings than that in coppice as were the quantum yield of photosynthesis and total leaf chlorophyll content. Thus, at a leaf scale, seedlings are potentially more productive per unit leaf area than coppice during early development, but this is not realised under ambient conditions. The underlying cause of this inherent difference is discussed in the context of the allocation of resources to above- and below-ground organs during early development.

  20. Comparison of growth response to thinning in oak forests managed as coppice with standards and high forest

    NASA Astrophysics Data System (ADS)

    Gautam, S.; Hasenauer, H.; Pietsch, S. A.

    2009-04-01

    The BIOME-BGC model integrates the main physical, biological and physiological processes based on current understanding of ecophysiology to assess forest ecosystem dynamics. This study evaluates the application of the model to assess the thinning effects on coppiced oak forests in Austria. We analyze the growth response, i.e. growth efficiency (GE), nitrogen use efficiency (NUE), water use efficiency (WUE) and radiation use efficiency (RUE) of oak forests to thinning. The results of coppice with standards and high forests simulations are analysed for differences in simulated growth response after thinning. The forest field data of the year 2006 and the respective model runs are used to evaluate model application. Strong positive relationship (r2 = 0.90) with unbiased results and statistically insignificant differences between predicted and observed volume allows the use of the model as a diagnostic tool to assess management effects. Results indicate that the coppice with standards exhibits a significantly higher yield by 2.97% (i.e. 10 cubic meters per hectare in one rotation), a higher harvest (49.9%) but a lower growing stock (19.69%) than the high forests. The higher growing stock and the lower extraction in the high forests confirm that the high forest sequestrates significantly more carbon than the coppice with standards. Results show that thinning leads to an increase in the GE, the NUE and the WUE, and to a decrease in the RUE. Although the coppice with standards forest ecosystem exhibits higher values in all studied growth parameters, only the difference in the NUE was statistically significant. This verifies that the difference in the yield between the coppice with standards and the high forests is mainly governed by the NUE difference in stands after thinning. The coppice with standards system produces an equal amount of net primary production while consuming significantly less nitrogen (16%) compared to the high forest system. In the coppice with

  1. The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea.

    PubMed

    Goodger, Jason Q D; Woodrow, Ian E

    2010-02-01

    A micropropagation protocol was recently developed for Eucalyptus polybractea R.T. Baker, a commercially important eucalypt grown in short-rotation coppice cultivation and harvested for its foliar 1,8-cineole oil. Micropropagation of elite E. polybractea trees has resulted in selection gains for foliar oil traits, but decreased above-ground biomass accumulation has been observed in clones compared to related half-sibling families. This study aims to use a greenhouse study to investigate if micropropagation induces somaclonal variation that can account for the reduction in above-ground biomass in E. polybractea clones. Secondly, the study aims to compare the coppicing ability of micropropagated clones with related half-sibling seedlings using de-topped plantation-grown saplings. The results of the greenhouse study suggest that micropropagation of E. polybractea induces somaclonal variation that manifests in more mature leaf morphologies such as increased foliar oil concentrations and lower specific leaf area (SLA), attributable to an isobilateral arrangement of increased palisade mesophyll layers. Lower SLA, rather than differences in root allocation, is likely to be a key contributor to the lower relative growth rates observed in early sapling growth of micropropagated clones. In the field study, all micropropagated and seedling-derived E. polybractea saplings coppiced vigorously in the 12 months after de-topping. The coppice growth was so vigorous in the 12 months after de-topping that total above-ground biomass equalled that of the 27-month-old saplings, irrespective of propagation source. The morphological distinction between leaves of micropropagated and seed-derived plants was no longer evident in the coppice regrowth. The results presented here suggest that the micropropagated leaf morphology and the resultant growth reduction is transient and micropropagated plants coppice just as vigorously as seed-derived plants. Therefore, micropropagation is unlikely to

  2. The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea.

    PubMed

    Goodger, Jason Q D; Woodrow, Ian E

    2010-02-01

    A micropropagation protocol was recently developed for Eucalyptus polybractea R.T. Baker, a commercially important eucalypt grown in short-rotation coppice cultivation and harvested for its foliar 1,8-cineole oil. Micropropagation of elite E. polybractea trees has resulted in selection gains for foliar oil traits, but decreased above-ground biomass accumulation has been observed in clones compared to related half-sibling families. This study aims to use a greenhouse study to investigate if micropropagation induces somaclonal variation that can account for the reduction in above-ground biomass in E. polybractea clones. Secondly, the study aims to compare the coppicing ability of micropropagated clones with related half-sibling seedlings using de-topped plantation-grown saplings. The results of the greenhouse study suggest that micropropagation of E. polybractea induces somaclonal variation that manifests in more mature leaf morphologies such as increased foliar oil concentrations and lower specific leaf area (SLA), attributable to an isobilateral arrangement of increased palisade mesophyll layers. Lower SLA, rather than differences in root allocation, is likely to be a key contributor to the lower relative growth rates observed in early sapling growth of micropropagated clones. In the field study, all micropropagated and seedling-derived E. polybractea saplings coppiced vigorously in the 12 months after de-topping. The coppice growth was so vigorous in the 12 months after de-topping that total above-ground biomass equalled that of the 27-month-old saplings, irrespective of propagation source. The morphological distinction between leaves of micropropagated and seed-derived plants was no longer evident in the coppice regrowth. The results presented here suggest that the micropropagated leaf morphology and the resultant growth reduction is transient and micropropagated plants coppice just as vigorously as seed-derived plants. Therefore, micropropagation is unlikely to

  3. Detecting Coppice Legacies from Tree Growth.

    PubMed

    Müllerová, Jana; Pejcha, Vít; Altman, Jan; Plener, Tomáš; Dörner, Petr; Doležal, Jiří

    2016-01-01

    In coppice-with-standards, once a common type of management in Central European lowland forests, selected trees (standards) were left to grow mature among the regularly harvested coppice stools to obtain construction wood. After the underwood was harvested, the forest canopy opened rapidly, giving standard trees an opportunity to benefit from reduced competition. Although this silvicultural system virtually disappeared after WWII, historical management cycles can still be traced in the tree-rings of remaining standards. Our research aims at answering the question whether tree-ring series of standard trees can be used to reconstruct past management practices. The study was carried out on 117 oak standard trees from five sites situated in formerly coppiced calcareous oak-hornbeam and acidophilous oak forests in the Bohemian Karst Protected Landscape Area, Czech Republic. The evaluation was based on the analysis of growth releases representing the response of the standards to coppicing events, and comparison to the archival records of coppice events. Our results showed that coppicing events can be successfully detected by tree-ring analysis, although there are some limitations. Altogether 241 releases were identified (49% of major releases). Large number of releases could be related to historical records, with the major ones giving better results. The overall probability of correct detection (positive predictive power) was 58%, ranging from 50 to 67%, probability for major releases was 78%, ranging from 63 to 100% for different sites. The ability of individual trees to mirror past coppice events was significantly affected by competition from neighboring trees (their number and the sum of distance-weighted basal areas). A dendro-ecological approach to the study of forest management history can serve as an input for current attempts of coppice reintroduction and for conservation purposes.

  4. Detecting Coppice Legacies from Tree Growth

    PubMed Central

    Müllerová, Jana; Pejcha, Vít; Altman, Jan; Plener, Tomáš; Dörner, Petr; Doležal, Jiří

    2016-01-01

    In coppice-with-standards, once a common type of management in Central European lowland forests, selected trees (standards) were left to grow mature among the regularly harvested coppice stools to obtain construction wood. After the underwood was harvested, the forest canopy opened rapidly, giving standard trees an opportunity to benefit from reduced competition. Although this silvicultural system virtually disappeared after WWII, historical management cycles can still be traced in the tree-rings of remaining standards. Our research aims at answering the question whether tree-ring series of standard trees can be used to reconstruct past management practices. The study was carried out on 117 oak standard trees from five sites situated in formerly coppiced calcareous oak-hornbeam and acidophilous oak forests in the Bohemian Karst Protected Landscape Area, Czech Republic. The evaluation was based on the analysis of growth releases representing the response of the standards to coppicing events, and comparison to the archival records of coppice events. Our results showed that coppicing events can be successfully detected by tree-ring analysis, although there are some limitations. Altogether 241 releases were identified (49% of major releases). Large number of releases could be related to historical records, with the major ones giving better results. The overall probability of correct detection (positive predictive power) was 58%, ranging from 50 to 67%, probability for major releases was 78%, ranging from 63 to 100% for different sites. The ability of individual trees to mirror past coppice events was significantly affected by competition from neighboring trees (their number and the sum of distance-weighted basal areas). A dendro-ecological approach to the study of forest management history can serve as an input for current attempts of coppice reintroduction and for conservation purposes. PMID:26784583

  5. Competition favors elk over beaver in a riparian willow ecosystem

    USGS Publications Warehouse

    Baker, B.W.; Peinetti, H.R.; Coughenour, M.C.; Johnson, T.L.

    2012-01-01

    Beaver (Castor spp.) conservation requires an understanding of their complex interactions with competing herbivores. Simulation modeling offers a controlled environment to examine long-term dynamics in ecosystems driven by uncontrollable variables. We used a new version of the SAVANNA ecosystem model to investigate beaver (C. Canadensis) and elk (Cervus elapses) competition for willow (Salix spp.). We initialized the model with field data from Rocky Mountain National Park, Colorado, USA, to simulate a 4-ha riparian ecosystem containing beaver, elk, and willow. We found beaver persisted indefinitely when elk density was or = 30 elk km_2. The loss of tall willow preceded rapid beaver declines, thus willow condition may predict beaver population trajectory in natural environments. Beaver were able to persist with slightly higher elk densities if beaver alternated their use of foraging sites in a rest-rotation pattern rather than maintained continuous use. Thus, we found asymmetrical competition for willow strongly favored elk over beaver in a simulated montane ecosystem. Finally, we discuss application of the SAVANNA model and mechanisms of competition relative to beaver persistence as metapopulations, ecological resistance and alternative state models, and ecosystem regulation.

  6. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar

    PubMed Central

    de Jong, Femke; Hanley, Steven J.; Beale, Michael H.; Karp, Angela

    2015-01-01

    Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow. PMID:26070140

  7. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar.

    PubMed

    de Jong, Femke; Hanley, Steven J; Beale, Michael H; Karp, Angela

    2015-09-01

    Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow.

  8. Hydrological behaviour of first generation coppiced bluegum plantations in the Nilgiri sub-watersheds

    NASA Astrophysics Data System (ADS)

    Sharda, V. N.; Samraj, P.; Samra, J. S.; Lakshmanan, V.

    1998-11-01

    The bluegum ( Eucalyptus globulus) has been widely grown in different parts of the world for multiple purposes. However, the possible adverse effect of converting natural forest watersheds into bluegum plantations on surface and sub-surface hydrology has been a major concern for researchers and planners. This paper critically evaluates the implications of coppiced bluegum plantations on hydrological behaviour during the 10 years of the second rotation using the paired watershed technique in a montane temperate humid climate. The coppiced bluegum growth (1982-91) on 59% of the catchment area reduced the mean annual total runoff by 25.4% and base flow by 27% over the natural grassland as compared with 16% and 15%, respectively, during the first rotation of 10 years. Regression relationships between observed and computed monthly values indicated a relatively higher reduction in the total as well as base flow during the first coppiced growth as compared with the first rotation. Reduction in runoff was at a maximum during July to October, which was ascribed to greater availability of rain water and hence its utilization during this period. The reduction during the dry period (January-April) is crucial for sustaining dry weather flow in the hydro-electric reservoirs. The increased utilization of water during the second rotation was as a result of the deep root system right from the earliest growth which produced 42% more biomass and 40% higher economic returns (at 1982-83 price level) than the first rotation. For the year following the harvest of bluegum trees of the first rotation, the hydrological behaviour was similar to the pre-treatment conditions. The maximum growth of the coppiced shoots height and diameter at breast height (DBH) was noticed during second to fifth year as compared with fourth year onward in the first rotation. Moisture extraction from deeper soil layers by coppice growth was significant (α=0.01) which was not true for the first rotation. Direct

  9. Energy dissipation of rockfalls by coppice structures

    NASA Astrophysics Data System (ADS)

    Ciabocco, G.; Boccia, L.; Ripa, M. N.

    2009-06-01

    The objective of this work is to develop elements to improve understanding of the behaviour of a coppice in relation to the phenomenon of falling boulders. The first section proposes an amendment to the equation for calculating the index which describes the probability of impact between a rock and plants in managed coppice forests. A study was carried out, using models to calculate the kinetic energy of a falling boulder along a slope considering the kinetic energy dissipated during the impact with the structure of forest plants managed by coppice. The output of the simulation models were then compared with the real dynamics of falling boulders in field tests using digital video. It emerged from an analysis of the results of this comparison that a modification to the 1989 Gsteiger equation was required, in order to calculate the "Average Distance between Contacts" (ADC). To this purpose, the concept of "Structure of Interception", proposed in this paper, was developed, valid as a first approach for describing the differences in the spatial distribution of stems between coppice and forest. This study also aims to provide suggestions for forestry management, in order to maintain or increase the protective capacity of a coppice managed with conventional techniques for the area studied, modifying the dendrometric characteristics.

  10. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    PubMed

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  11. Willow: a uniform search interface.

    PubMed Central

    Ketchell, D S; Freedman, M M; Jordan, W E; Lightfoot, E M; Heyano, S; Libbey, P A

    1996-01-01

    The objective of the Willow Project is to develop a uniform search interface that allows a diverse community of users to retrieve information from heterogeneous network-based information resources. Willow separates the user interface from the database management or information retrieval system. It provides a graphic user interface to a variety of information resources residing on diverse hosts, and using different search engines and idiomatic query languages through networked-based client-server and Transmission Control Protocol/Internet Protocol (TCP/IP) protocols. It is based on a "database driver'' model, which allows new database hosts to be added without altering Willow itself. Willow employs a multimedia extension mechanism to launch external viewers to handle data in almost any form. Drivers are currently available for a local BRS/SEARCH system and the Z39.50 protocol. Students, faculty, clinicians, and researchers at the University of Washington are currently offered 30 local and remote databases via Willow. They conduct more than 250,000 sessions a month in libraries, medical centers and clinics, laboratories, and offices, and from home. The Massachusetts Institute of Technology is implementing Willow as its uniform search interface to Z39.50 hosts. PMID:8750388

  12. A method for describing the canopy architecture of coppice poplar with allometric relationships.

    PubMed

    Casella, Eric; Sinoquet, Hervé

    2003-12-01

    A multi-scale biometric methodology for describing the architecture of fast-growing short-rotation woody crops is used to describe 2-year-old poplar clones during the second rotation. To allow for expressions of genetic variability observed within this species (i.e., growth potential, leaf morphology, coppice and canopy structure), the method has been applied to two clones: Ghoy (Gho) (Populus deltoides Bartr. ex Marsh. x Populus nigra L.) and Trichobel (Tri) (Populus trichocarpa Torr. & A. Gray x Populus trichocarpa). The method operates at the stool level and describes the plant as a collection of components (shoots and branches) described as a collection of metameric elements, themselves defined as a collection of elementary units (internode, petiole, leaf blade). Branching and connection between the plant units (i.e., plant topology) and their spatial location, orientation, size and shape (i.e., plant geometry) describe the plant architecture. The methodology has been used to describe the plant architecture of 15 selected stools per clone over a 5-month period. On individual stools, shoots have been selected from three classes (small, medium and large) spanning the diameter distribution range. Using a multi-scale approach, empirical allometric relationships were used to parameterize elementary units of the plant, topological relationships and geometry (e.g., distribution of shoot diameters on stool, shoot attributes from shoot diameter). The empirical functions form the basis of the 3-D Coppice Poplar Canopy Architecture model (3-D CPCA), which recreates the architecture and canopy structure of fast-growing coppice crops at the plot scale. Model outputs are assessed through visual and quantitative comparisons between actual photographs of the coppice canopy and simulated images. Overall, results indicate a good predictive ability of the 3-D CPCA model.

  13. Willow biomass-bioenergy industry development in New York: Sustainability and environmental benefits

    SciTech Connect

    White, E.H.; Robison, D.J.; Abrahamson, L.P.

    1996-12-31

    Biomass-for-bioenergy cropping and production systems based on willow (and poplar) planted and managed at high densities and short (3 to 4 year) coppice harvest cycles, providing fuel for co-firing with coal (or other types of energy conversion) can be economically, ecologically and environmentally sustainable. All of these areas are crucial to the successful commercialization of this biomass-bioenergy system. Current knowledge and ongoing research and development indicate that the production and utilization systems involved are environmentally and ecologically acceptable. Therefore two of the primary constraints to commercialization have been met. The remaining constraint is economic viability based on cost of production and use, the value of environmental externalities (such as atmospheric emissions), and potential government public policy actions to promote this system of providing a locally produced and renewable farm crop and fuel. Developments needed to overcome the economic constraints are known, and should be bolstered by the environmental and ecological quality of the system.

  14. Living Willow Huts--Part 2: Constructing a Living Willow Hut

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2008-01-01

    This article presents a step-by-step "how-to" guide on the basics of living willow hut construction. While there certainly are time-tested techniques for building willow structures, the best advice the author has is to experiment. He also suggests that varieties of "salix vimnalis" can be an ideal type of willow to be used for constructing a…

  15. Musings on Willower's "Fog": A Response.

    ERIC Educational Resources Information Center

    English, Fenwick

    1998-01-01

    Professor Willower complains about the "fog" encountered in postmodernist literature and the author's two articles in "Journal of School Leadership." On closer examination, this miasma is simply the mildew on Willower's Cartesian glasses. Educational administration continues to substitute management and business fads for any real effort to create…

  16. Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow, Salix psammophila

    PubMed Central

    Li, Jianbo; Jia, Huixia; Han, Xiaojiao; Zhang, Jin; Sun, Pei; Lu, Mengzhu; Hu, Jianjun

    2016-01-01

    Salix psammophila is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover, S. psammophila is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs) for quantitative real-time polymerase chain reaction (qRT-PCR) constrain the study on normalization of gene expression in S. psammophila until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt, and drought treatments. After calculation of PCR efficiencies, three different software, NormFinder, geNorm, and BestKeeper were employed to analyze systematically the qRT-PCR data, and the outputs were merged by RankAggreg software. The optimal RGs selected for gene expression analysis were EF1α (Elongation factor-1 alpha) and OTU (OTU-like cysteine protease family protein) for different tissue types, UBC (Ubiquitin-conjugating enzyme E2) and LTA4H (Leukotriene A-4 hydrolase homolog) for heat treatment, HIS (Histone superfamily protein H3) and ARF2 (ADP-ribosylation factor 2) for cold treatment, OTU and ACT7 (Actin 7) for salt treatment, UBC and LTA4H for drought treatment. The expression of UBC, ARF2, and VHAC (V-type proton ATPase subunit C) varied the least across tissue types and under abiotic stresses. Furthermore, the relative genes expression profiles of one tissue-specific gene WOX1a (WUSCHEL-related homeobox 1a), and four stress-inducible genes, including Hsf-A2 (Heat shock transcription factors A2), CBF3 (C-repeat binding factor 3), HKT1 (High-Affinity K+ Transporter 1), and GST (Glutathione S-transferase), were conducted to confirm the validity of the RGs in this study. These results provided an important RGs application guideline for gene expression characterization in S. psammophila. PMID:27761137

  17. Primary song by a juvenile willow flycatcher

    USGS Publications Warehouse

    Sogge, M.K.

    1997-01-01

    The timing of song development in suboscines, in which song appears not to be learned from other adults is poorly known. The Willow Flycatcher (Empidonax traillii) is a suboscine with a primary song typically referred to as fitz-bew. I report here an instance of very early singing by a 6-8-wk-old Willow Flycatcher, which sang in an aggressive context in response to a recording of adult flycatcher song. This is exceptionally early development of primary song, even among suboscines. Early song development may assist in the defense of winter territories.

  18. Willow Fire Near Payson, Arizona

    NASA Technical Reports Server (NTRS)

    2004-01-01

    On July 3, 2004, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the Willow fire near Payson, Arizona. The image is being used by the United States Department of Agriculture's Forest Service Remote Sensing Applications Center (RSAC). The image combines data from the visible and infrared wavelength regions to highlight: the burned areas in dark red; the active fires in red-orange; vegetation in green; and smoke in blue.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. Science Team is located at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of

  19. The effect of chestnut coppice forests abandon on slope stability: a case study

    NASA Astrophysics Data System (ADS)

    Vergani, Chiara; Bassanelli, Chiara; Rossi, Lorenzo; Chiaradia, Enrico Antonio; Battista Bischetti, Gian

    2013-04-01

    Sweet chestnut has been fundamental for Italian mountainous economies for many centuries. This kind of forest was traditionally managed by coppicing in shortly rotation (15-20 years) to rapidly produce wood biomass until half of XX century. In the last decades these forests were in large part abandoned due to change in economy which made coppiced forest management unprofitable, especially in steeper slopes and where forest viability is scarce. As a consequence most of them are over aged and very dense, leading to an observed increasing in localized slope instability, primary because of the uprooting of stools (Vogt et al., 2006). In this work the effect of the abandon of chestnut coppice on slope stability was analyzed, focusing on shallow landslides triggering. The mechanical contribution to soil shear strength of differently managed chestnut stand was estimated and compared in terms of additional root cohesion. The study area is located in the Valcuvia Valley (Lombardy Prealps - Northern Italy) at an elevation about 600 m a.s.l., where two different stands, one managed and the other abandoned (over 40 year aged), were chosen. The two sampling stands are on cohesionless slopes (quaternary moraine deposits) and are homogeneous with regard to the substrate, exposure and elevation. Slope steepness influences heavily forestry practices and steeper stands are more frequently abandoned than stands on gentler terrain: in fact in the abandoned coppice the slope was higher (35 degrees against 13 in the managed stand) and no stands completely homogeneous can be found. In each site the main characteristics of the stand were surveyed and a trench in each stand was excavated to analyze root diameter and number distribution with depth; root specimens were also collected for the tensile force determination through laboratory tensile tests. Root distribution and force were then used to estimate root cohesion values through a Fiber Boundle Model (Pollen and Simon, 2005). Results

  20. Lighting the way to willow biomass production.

    PubMed

    Cunniff, Jennifer; Cerasuolo, Marianna

    2011-08-15

    Biofuels produced from willow could help reduce our dependence on fossil fuels. To maximise yields per hectare light interception and utilisation of the plant canopy need to be optimised. Jennifer Cunniff and Marianna Cerasuolo explain how this target can be reached by integrating morphological field measurements and modelling techniques.

  1. Quantifying water savings from willow removal in Australian streams.

    PubMed

    Doody, Tanya; Benyon, Richard

    2011-03-01

    Willows (Salix Spp.), while not endemic to Australia, form dense stands in many stream locations. Australia has been experiencing a long-term drought and potential water extraction by willows is considered a significant problem, although little global scientific evidence exists to support such concerns. The extent of willow occupation in Australian streams has been deemed large enough to warrant investigation of their evapotranspiration rates and quantification of potential water savings from willow removal. Willows situated in-stream (permanent water) and on stream banks (semi-permanent water) were monitored over three summers from August 2005 to May 2008 employing heat pulse velocity sap flux sensors and field measurement of water balance components. A comparative study of native riparian River Red Gum trees was also undertaken. Differences in transpiration flux rates between willows with permanent and semi-permanent access to water were substantial, with peak transpiration of 15.2 mm day(-1) and 2.3 mm day(-1) respectively. Water balance calculations over the three year period indicate that an average potential net water saving of 5.5 ML year(-1)ha(-1) of crown projected area is achievable by removal of in-stream willows with permanent access to water. On stream banks, replacement of willows with native riparian vegetation will have no net impact on site water balances. Results also indicate that under the influence of natural environmental events such as drought, heat stress and willow sawfly infestation, evapotranspiration rates from in-stream willows remain greater than that from open water. These results will have important implications in environmental management of willows and in future water resource allocation and planning in Australia. PMID:21106290

  2. Quantifying water savings from willow removal in Australian streams.

    PubMed

    Doody, Tanya; Benyon, Richard

    2011-03-01

    Willows (Salix Spp.), while not endemic to Australia, form dense stands in many stream locations. Australia has been experiencing a long-term drought and potential water extraction by willows is considered a significant problem, although little global scientific evidence exists to support such concerns. The extent of willow occupation in Australian streams has been deemed large enough to warrant investigation of their evapotranspiration rates and quantification of potential water savings from willow removal. Willows situated in-stream (permanent water) and on stream banks (semi-permanent water) were monitored over three summers from August 2005 to May 2008 employing heat pulse velocity sap flux sensors and field measurement of water balance components. A comparative study of native riparian River Red Gum trees was also undertaken. Differences in transpiration flux rates between willows with permanent and semi-permanent access to water were substantial, with peak transpiration of 15.2 mm day(-1) and 2.3 mm day(-1) respectively. Water balance calculations over the three year period indicate that an average potential net water saving of 5.5 ML year(-1)ha(-1) of crown projected area is achievable by removal of in-stream willows with permanent access to water. On stream banks, replacement of willows with native riparian vegetation will have no net impact on site water balances. Results also indicate that under the influence of natural environmental events such as drought, heat stress and willow sawfly infestation, evapotranspiration rates from in-stream willows remain greater than that from open water. These results will have important implications in environmental management of willows and in future water resource allocation and planning in Australia.

  3. Environmental assessment of energy production based on long term commercial willow plantations in Sweden.

    PubMed

    González-García, Sara; Mola-Yudego, Blas; Dimitriou, Ioannis; Aronsson, Pär; Murphy, Richard

    2012-04-01

    The present paper analyzed the environmental assessment of short rotation willow plantations in Sweden based on the standard framework of Life Cycle Assessment (LCA) from the International Standards Organisation. The analysis is focused on two alternative management regimes for willow plantations dedicated to biomass production for energy purposes. The data used included the averages of a large sample of commercial plantations. One of the scenarios is carried out under nitrogen based fertilized conditions and the other under non-fertilized management with total biomass yields (dry weight) of 140t/ha and 86t/ha over a 21 and 22-year life time respectively. The environmental profile was analyzed in terms of the potentials for abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, photochemical oxidant formation, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. In addition, an energy analysis was performed using the cumulative energy demand method (CED). The application of nitrogen based fertilizers allows an increase in the biomass yield per ha of up to 40% although the contributions to almost all impact categories, particularly the eutrophication potential and toxicity potential impact categories are also considerably higher. Conversely, due to the higher biomass yields achieved with fertilization of these willow plantations, that regime presents a better overall environmental profile in terms of energy yield and global warming potential. PMID:22369863

  4. Environmental assessment of energy production based on long term commercial willow plantations in Sweden.

    PubMed

    González-García, Sara; Mola-Yudego, Blas; Dimitriou, Ioannis; Aronsson, Pär; Murphy, Richard

    2012-04-01

    The present paper analyzed the environmental assessment of short rotation willow plantations in Sweden based on the standard framework of Life Cycle Assessment (LCA) from the International Standards Organisation. The analysis is focused on two alternative management regimes for willow plantations dedicated to biomass production for energy purposes. The data used included the averages of a large sample of commercial plantations. One of the scenarios is carried out under nitrogen based fertilized conditions and the other under non-fertilized management with total biomass yields (dry weight) of 140t/ha and 86t/ha over a 21 and 22-year life time respectively. The environmental profile was analyzed in terms of the potentials for abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, photochemical oxidant formation, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. In addition, an energy analysis was performed using the cumulative energy demand method (CED). The application of nitrogen based fertilizers allows an increase in the biomass yield per ha of up to 40% although the contributions to almost all impact categories, particularly the eutrophication potential and toxicity potential impact categories are also considerably higher. Conversely, due to the higher biomass yields achieved with fertilization of these willow plantations, that regime presents a better overall environmental profile in terms of energy yield and global warming potential.

  5. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential.

    PubMed

    Laureysens, I; De Temmerman, L; Hastir, T; Van Gysel, M; Ceulemans, R

    2005-02-01

    Short rotation coppice cultures (SRC) are intensively managed, high-density plantations of multi-shoot trees. In April 1996, an SRC field trial with 17 different poplar clones was established in Boom (Belgium) on a former waste disposal site. In December 1996 and January 2001, all shoots were cut back to a height of 5 cm to create a coppice culture. For six clones, wood and bark were sampled at the bottom, middle and top of a shoot in August and November 2002. No significant height effect of metal concentration was found, but for wood, metal concentrations generally increased toward the top of the shoot in August, and decreased toward the top of the shoot in November. Phytoextraction potential of a clone was primarily determined by metal concentration and by biomass production. Shoot size and number of shoots per stool were less important, as a high biomass production could be achieved by producing a few large shoots or many smaller shoots. Clone Fritzi Pauley accumulated 1.4 kg ha(-1) of Al over two years; Wolterson and Balsam Spire showed a relatively high accumulation of Cd and Zn, i.e. averaging, respectively 47 and 57 g ha(-1) for Cd and 2.4 and 2.0 kg ha(-1) for Zn over two years.

  6. Fast-growing willow shrub named `Millbrook`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-04-24

    A distinct female cultivar of Salix purpurea.times.Salix miyabeana named `Millbrook`, characterized by rapid stem growth producing 9% more woody biomass than one of its parents (`SX64`) and 2% more biomass than a current production cultivar (`SV1`). `Millbrook` produced greater than 2-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Millbrook` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Millbrook` displays a low incidence of rust disease.

  7. Fast-growing willow shrub named `Oneida`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-01

    A distinct male cultivar of Salix purpurea.times.S. miyabeana named `Oneida`, characterized by rapid stem growth producing 2.7-times greater woody biomass than one of its parents (`SX67`) and greater than 36% more biomass than current production cultivars (`SV1` and `SX64`). `Oneida` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Oneida` displays a low incidence of rust disease or damage by beetles or sawflies.

  8. Fast-growing shrub willow named `Owasco`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-07-03

    A distinct female cultivar of Salix viminalis.times.Salix miyabeana named `Owasco`, characterized by rapid stem growth producing greater than 49% more woody biomass than one of its parents (`SX64`) and 39% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.7-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Owasco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Owasco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  9. Fast-growing willow shrub named `Otisco`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-09-11

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Otisco`, characterized by rapid stem growth producing greater than 42% more woody biomass than one of its parents (`SX64`) and 33% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.5-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Otisco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Otisco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  10. Winter distribution of willow flycatcher subspecies

    USGS Publications Warehouse

    Paxton, E.H.; Unitt, P.; Sogge, M.K.; Whitfield, M.; Keim, P.

    2011-01-01

    Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies. ?? The Cooper Ornithological Society 2011.

  11. Bioenergy from willow. 1995 Annual report, November 1987--December 1995

    SciTech Connect

    White, E.H.; Abrahamson, L.P.

    1997-07-01

    Experiments were established at Tully, New York, by the State University of New York College of Environmental Science and Forestry, in cooperation with the University of Toronto and the Ontario Ministry of Natural Resources, to assess the potential of willows for wood biomass production. Specific objectives included determining the effects of clone type, fertilization, spacing, cutting cycle, and irrigation on biomass production. Production was high, with willow clone SV1 yielding nearly 32 oven dry tons per acre (odt ac{sup -1}) with three-year harvest cycle, irrigation, and fertilization. Clone type, fertilization, spacing, cutting cycle, and irrigation all significantly affected biomass production. Willow clone-site trials planted at Massena, and Tully, NY in 1993 grew well during 1994 and 1995, but some clones in the Massena trial were severely damaged by deer browse. Several new cooperators joined the project, broadening the funding base, and enabling establishment of additional willow plantings. Willow clone-site trials were planted at Himrod, King Ferry, Somerset, and Tully, NY, during 1995. A willow cutting orchard was planted during 1995 at the NYS Department of Environmental Conservation Saratoga Tree Nursery in Saratoga, NY. Plans are to begin site preparation for a 100+ acre willow bioenergy demonstration farm in central New York, and additional clone-site trials, in 1996.

  12. Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment.

    PubMed

    Liberloo, Marion; Lukac, Martin; Calfapietra, Carlo; Hoosbeek, Marcel R; Gielen, Birgit; Miglietta, Franco; Scarascia-Mugnozza, Giuseppe E; Ceulemans, Reinhart

    2009-01-01

    A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar (Populus) plantation to 6 yr of free air CO(2) enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO(2) concentrations ([CO(2)]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO(2)]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO(2)] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO(2)] to above-ground pools, as fine root biomass declined and its [CO(2)] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO(2)] during the 6 yr experiment. However, elevated [CO(2)] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO(2)] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.

  13. Tree-Rings Mirror Management Legacy: Dramatic Response of Standard Oaks to Past Coppicing in Central Europe

    PubMed Central

    Altman, Jan; Hédl, Radim; Szabó, Péter; Mazůrek, Petr; Riedl, Vladan; Müllerová, Jana; Kopecký, Martin; Doležal, Jiří

    2013-01-01

    Background Coppicing was one of the most important forest management systems in Europe documented in prehistory as well as in the Middle Ages. However, coppicing was gradually abandoned by the mid-20th century, which has altered the ecosystem structure, diversity and function of coppice woods. Methodology/Principal Findings Our aim was to disentangle factors shaping the historical growth dynamics of oak standards (i.e. mature trees growing through several coppice cycles) in a former coppice-with-standards in Central Europe. Specifically, we tried to detect historical coppicing events from tree-rings of oak standards, to link coppicing events with the recruitment of mature oaks, and to determine the effects of neighbouring trees on the stem increment of oak standards. Large peaks in radial growth found for the periods 1895–1899 and 1935–1939 matched with historical records of coppice harvests. After coppicing, the number of newly recruited oak standards markedly grew in comparison with the preceding or following periods. The last significant recruitment of oak standards was after the 1930s following the last regular coppicing event. The diameter increment of oak standards from 1953 to 2003 was negatively correlated with competition indices, suggesting that neighbouring trees (mainly resprouting coppiced Tilia platyphyllos) partly suppressed the growth of oak standards. Our results showed that improved light conditions following historical coppicing events caused significant increase in pulses of radial growth and most probably maintained oak recruitment. Conclusions/Significance Our historical perspective carries important implications for oak management in Central Europe and elsewhere. Relatively intense cutting creating open canopy woodlands, either as in the coppicing system or in the form of selective cutting, is needed to achieve significant radial growth in mature oaks. It is also critical for the successful regeneration and long-term maintenance of oak

  14. Transpiration by two poplar varieties grown as coppice for biomass production.

    PubMed

    Allen, Simon J.; Hall, Robin L.; Rosier, Paul T. W.

    1999-07-01

    Fast-growing tree clones selected for biomass plantations are highly productive and therefore likely to use more water than the agricultural crops they replace. We report field measurements of transpiration through the summer of 1994 from two poplar clones, Beaupré (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh.) and Dorschkamp (P. deltoides x P. nigra L.), grown as unirrigated short-rotation coppice in southern England. Stand transpiration was quantified by scaling up from sap flow measurements made with the heat balance method in a sample of stems. Leaf conductances, leaf area development, meteorological variables and soil water deficit were also measured to investigate the response of the trees to the environment. High rates of transpiration were found for Beaupré. In June, when soil water was plentiful, the mean (+/- SD) transpiration rate over an 18-day period was 5.0 +/- 1.8 mm day(-1), reaching a maximum of 7.9 mm day(-1). Transpiration rates from Dorschkamp were lower, as a result of its lower leaf area index. High total leaf conductances were measured for both Beaupré (0.34 +/- 0.17 mol m(-2) s(-1)) and Dorschkamp (0.39 +/- 0.16 mol m(-2) s(-1)). Leaf conductance declined slightly with increasing atmospheric vapor pressure deficit in both clones, but only in Beaupré did leaf conductance decrease as soil water deficit increased.

  15. 8. Inverted siphon structure carrying ditch flow under Willow Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Inverted siphon structure carrying ditch flow under Willow Creek, looking southwest - Natomas Ditch System, Blue Ravine Segment, Juncture of Blue Ravine & Green Valley Roads, Folsom, Sacramento County, CA

  16. 7. Inverted siphon structure carrying ditch flow under Willow Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Inverted siphon structure carrying ditch flow under Willow Creek, looking east - Natomas Ditch System, Blue Ravine Segment, Juncture of Blue Ravine & Green Valley Roads, Folsom, Sacramento County, CA

  17. 7. VIEW OF OLD ENTRANCE ROAD (NOW WILLOW FLATS ROAD) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF OLD ENTRANCE ROAD (NOW WILLOW FLATS ROAD) FACING EAST INTO PARK. - Arches National Park Main Entrance Road, Beginning at U.S. Highway 191, approximately 6 miles north of Moab, Moab, Grand County, UT

  18. 76 FR 13524 - Radio Broadcasting Services; Willow Creek, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...The Audio Division, at the request of Miriam Media, Inc., allots FM Channel 258A at Willow Creek, California. Channel 258A can be allotted at Willow Creek, consistent with the minimum distance separation requirements of the Commission's rules, at coordinates 40- 57-29 NL and 123-42-23 WL, with a site restriction of 6.7 km (4.2 miles) west of the community See SUPPLEMENTARY INFORMATION...

  19. Describing Willow Flycatcher habitats: scale perspectives and gender differences

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    We compared habitat characteristics of nest sites (female-selected sites) and song perch sites (male-selected sites) with those of sites unused by Willow Flycatchers (Empidonax traillii) at three different scales of vegetation measurement: (1) microplot (central willow [Salix spp.] bush and four adjacent bushes); (2) mesoplot (0.07 ha); and, (3) macroplot (flycatcher territory size). Willow Flycatchers exhibited vegetation preferences at all three scales. Nest sites were distinguished by high willow density and low variability in willow patch size and bush height. Song perch sites were characterized by large central shrubs, low central shrub vigor, and high variability in shrub size. Unused sites were characterized by greater distances between willows and willow patches, less willow coverage, and a smaller riparian zone width than either nest or song perch sites. At all scales, nest sites were situated farther from unused sites in multivariate habitat space than were song perch sites, suggesting (1) a correspondence among scales in their ability to describe Willow Flycatcher habitat, and (2) females are more discriminating in habitat selection than males. Microhabitat differences between male-selected (song perch) and female-selected (nest) sites were evident at the two smaller scales; at the finest scale, the segregation in habitat space between male-selected and female-selected sites was greater than that between male-selected and unused sites. Differences between song perch and nest sites were not apparent at the scale of flycatcher territory size, possibly due to inclusion of (1) both nest and song perch sites, (2) defended, but unused habitat, and/or (3) habitat outside of the territory, in larger scale analyses. The differences between nest and song perch sites at the finer scales reflect their different functions (e.g., nest concealment and microclimatic requirements vs. advertising and territorial defense, respectively), and suggest that the exclusive use

  20. Climatic and management influence on the carbon sequestration capacity of a deciduous oak coppice forest in Italy

    NASA Astrophysics Data System (ADS)

    Belelli Marchesini, L.; Rey Simó, A.; Papale, D.; Valentini, R.

    2010-12-01

    Recent updated estimates of the carbon balance of European forests based on a suite of ecological inventories and models confirmed their active role as sink (Ciais at al. 2008, Luyssaert et al. 2010), determined primarily by the management applied in the last decades with wood removals being lower than Net Primary Productivity (NPP). Eddy covariance (EC) continuous measurements of CO2 fluxes can detect responses of the carbon dynamics to environmental or management factors in the short term, overcoming the limitation of inventories representing a snapshot of the carbon pools typically at temporal resolution of several years or decades. However the majority of EC studies, so far performed mostly on middle-aged or mature stands, still have poorly investigated the role of actively managed forest types such as coppices, the changes in the Net Ecosystem Produtivity (NEP) over long chronosequence data and ultimately their capacity to store the uptaken atmospheric carbon in the long term. In the framework of the Carbo-Extreme EU project, we present an analysis of Net Ecosystem Exchange (NEE) of a deciduous oak (Quercus cerris L.) coppice forest in central Italy (Roccarespampani site) monitored during the years 2000-2008 over two differently aged forest stands covering almost all the stages of the 20 years rotation period. After coppicing the forest ecosystem turned into a net C source for 1 year only, then it intensified its sink strength along with stand age (R2=0.66; P<0.001) up to a maximum observed NEE of -1077.9 gC m-2 yr-1. This trend was explained by a decreasing ratio between Ecosystem Respiration (Reco) and Gross Primary Productivity (GPP)(R2=0.70; P<0.001), underlying the noticeable effect of the harvesting on the enhancement of soil CO2 effluxes, partly because of altered microclimatic conditions but also due to changes in the availability of decomposable substrate and nutrients, as witnessed by a negative correlation of temperature independent basal

  1. Songbird response to increased willow (Salix spp.) growth in Yellowstone's northern range.

    PubMed

    Baril, Lisa M; Hansen, Andrew J; Renkin, Roy; Lawrence, Rick

    2011-09-01

    After nearly a century of height suppression, willows (Salix spp.) in the northern range of Yellowstone National Park, U.S.A., are increasing in height growth as a possible consequence of wolf (Canis lupus) restoration, climate change, or other factors. Regardless of the drivers, the recent release of this rare but important habitat type could have significant implications for associated songbirds that are exhibiting declines in the region. Our objective was to evaluate bird response to releasing willows by comparing willow structure and bird community composition across three willow growth conditions: height suppressed, recently released, and previously tall (i.e., tall prior to the height increase of released willows). Released and previously tall willows exhibited high and similar vertical structure, but released willows were significantly lower in horizontal structure. Suppressed willows were significantly shorter and lower in horizontal cover than released or previously tall willows. Bird richness increased along a gradient from lowest in suppressed to highest in previously tall willows, but abundance and diversity were similar between released and previously tall willows, despite lower horizontal cover in the released condition. Common Yellowthroat (Geothlypis trichas) and Lincoln's Sparrow (Melospiza lincolnii) were found in all three growth conditions; however, Yellow Warbler (Dendroica petechia), Warbling Vireo (Vireo gilvus), Willow Flycatcher (Empidonax traillii), and Song Sparrow (Melospiza melodii) were present in released and previously tall willows only. Wilson's Warbler (Wilsonia pusilla) was found in previously tall willows only, appearing to specialize on tall, dense willows. The results of our a priori habitat models indicated that foliage height diversity was the primary driver of bird richness, abundance, and diversity. These results indicate that vertical structure was a more important driver of bird community variables than horizontal

  2. Bottom-up factors influencing riparian willow recovery in Yellowstone National Park

    USGS Publications Warehouse

    Tercek, M.T.; Stottlemyer, R.; Renkin, R.

    2010-01-01

    After the elimination of wolves (Canis lupis L.) in the 1920s, woody riparian plant communities on the northern range of Yellowstone National Park (YNP) declined an estimated 50%. After the reintroduction of wolves in 19951996, riparian willows (Salix spp.) on YNP's northern range showed significant growth for the first time since the 1920s. However, the pace of willow recovery has not been uniform. Some communities have exceeded 400 cm, while others are still at pre-1995 levels of 250 cm max. height) willow sites where willows had escaped elk (Cervus elaphus L.) browsing with "short" willow sites that could still be browsed. Unlike studies that manipulated willow height with fences and artificial dams, we examined sites that had natural growth differences in height since the reintroduction of wolves. Tall willow sites had greater water availability, more-rapid net soil nitrogen mineralization, greater snow depth, lower soil respiration rates, and cooler summer soil temperatures than nearby short willow sites. Most of these differences were measured both in herbaceous areas adjacent to the willow patches and in the willow patches themselves, suggesting that they were not effects of varying willow height recovery but were instead preexisting site differences that may have contributed to increased plant productivity. Our results agree with earlier studies in experimental plots which suggest that the varying pace of willow recovery has been influenced by abiotic limiting factors that interact with top-down reductions in willow browsing by elk. ?? 2010 Western North American Naturalist.

  3. Temporal variability and drivers of net ecosystem production of a Turkey oak forest in Italy under coppice management

    NASA Astrophysics Data System (ADS)

    Belelli Marchesini, Luca; Rey, Ana; Papale, Dario; Valentini, Riccardo

    2010-05-01

    The progress in the understanding of the carbon exchange between forests and the atmosphere has been dramatic over the last few years, yet largely based on observations of middle-aged or mature stands in the temperate and boreal region while quite a few studies report on the temporal dynamics of carbon balance in forest stand chronosequences taking into account the effect of forest management (Law et al., 2003; Kowalski et al., 2003; Kolari et al, 2004; Zha et al., 2009). In order to quantify the temporal variability of CO2 fluxes at ecosystem level following coppicing, we analyze eddy covariance data of a deciduous oak (Quercus cerris L.) coppice forest in central Italy (Roccarespampani, VT) collected over two differently aged forest stands in the period 2000-2006 and covering most of the rotation period (0-6; 11-15 years). Data processing was performed evenly for whole data-set according to the CarboEurope database standard (Papale et al., 2006). The inter-annual variability and seasonal dynamics of net ecosystem exchange (NEE), partitioned into ecosystem respiration (Reco) and gross primary production (GPP), were analyzed looking at the relationships with the main structural (biomass) and environmental drivers (air and soil temperature, precipitation, soil water content, vapour pressure deficit, global radiation) to understand which factors control the carbon dynamics of these intensively managed forests After harvesting the forest acted as a carbon source of 69 gC m-2, while in the following years NEE ranged from -18.9 (stand age: 2 years) to -1077.9 g C m-2yr-1 (stand age: 15 years). Evidently the ecosystem promptly recovers its carbon sink capacity already in the years shortly after the harvest and increases its carbon sequestration capacity with stand age (R2= 0.75, P

  4. Efficacy and Safety of White Willow Bark (Salix alba) Extracts.

    PubMed

    Shara, Mohd; Stohs, Sidney J

    2015-08-01

    Willow bark extract has been used for thousands of years as an anti-inflammatory, antipyretic, and analgesic. In spite of its long history of use, relatively few human and animal studies have been published that confirm anecdotal observations. A small number of clinical studies have been conducted that support the use of willow bark extracts in chronic lower back and joint pain and osteoarthritis. Willow bark extracts also are widely used in sports performance and weight loss products presumably because of anti-inflammatory and analgesic activities, although no human studies have been published that specifically and directly document beneficial effects. In recent years, various in vitro and animal studies have demonstrated that the anti-inflammatory activity of willow bark extract is associated with down regulation of the inflammatory mediators tumor necrosis factor-α and nuclear factor-kappa B. Although willow bark extracts are generally standardized to salicin, other ingredients in the extracts including other salicylates as well as polyphenols, and flavonoids may also play prominent roles in the therapeutic actions. Adverse effects appear to be minimal as compared to non-steroidal anti-inflammatory drugs including aspirin. The primary cause for concern may relate to allergic reactions in salicylate-sensitive individuals.

  5. Interplant volatile signaling in willows: revisiting the original talking trees.

    PubMed

    Pearse, Ian S; Hughes, Kathy; Shiojiri, Kaori; Ishizaki, Satomi; Karban, Richard

    2013-07-01

    The importance of interplant volatile signaling in plant-herbivore interactions has been a contentious issue for the past 30 years. We revisit willows as the system in which evidence for interplant signaling was originally found, but then questioned. We established three well-replicated experiments with two willow species (Salix exigua and Salix lemmonii) to address whether the receipt of an interplant signal from a neighboring willow reduces herbivore damage. Additionally we tested whether this signal is volatile in nature, and whether plants signal better to themselves than they do to other individuals. In all three experiments, we found evidence that cues from a damaged neighbor reduce subsequent herbivory experienced by willows. In one experiment, we showed that bagging of clipped tissue, which prevents the exchange of volatile signals, removed the effect of neighbor wounding. This was consistent with results from the other two experiments, in which clipping potted neighbors connected only through airborne volatile cues reduced damage of receivers. In one year, we found evidence that the perception of volatile signals from genetically identical clones was more effective at reducing foliar damage to a neighbor than signals from a genetically different individual. However, this trend was not significant in the following year. In three well-replicated experiments, we found strong evidence for the importance of interplant volatile cues in mediating herbivore interactions with willows. PMID:23576105

  6. 75 FR 56520 - Information on Surplus Land at a Military Installation Designated for Disposal: NASJRB Willow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... Willow Grove, PA AGENCY: Department of the Navy, DoD. ACTION: Notice. SUMMARY: This notice provides information on the surplus property at Naval Air Station Joint Reserve Base (NASJRB) Willow Grove located in... INFORMATION: In 2005, NASJRB Willow Grove, PA was designated for closure under the authority of the...

  7. Fast-growing willow shrub named `Tully Champion`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-08-28

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Tully Champion`, characterized by rapid stem growth producing greater than 25% more woody biomass than two current production clones (Salix dasyclados `SV1` and Salix miyabeana `SX64`), more than 2.5-fold greater biomass than one of its parents (Salix miyabeana `SX67`), and nearly 3-fold more biomass than another production clone (Salix sacchalinensis, `SX61`) when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Tully Champion` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Tully Champion` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  8. Wind in the Willows--Theatre Activity Packet.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    Part of the New York City Board of Education's Early Stages program, and intended for elementary and secondary school teachers who wish to include a unit on theater in their classes, this guide offers suggestions for lessons and activities to accompany viewing a performance of "Wind in the Willows" at the Nederlander Theater. Part one of the guide…

  9. 75 FR 63431 - Radio Broadcasting Services; Willow Creek, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Willow Creek, CA AGENCY: Federal Communications... 47 CFR Part 73 Radio, Radio broadcasting. For the reasons discussed in the preamble, the Federal Communications Commission proposes to amend 47 CFR part 73 as follows: PART 73--RADIO BROADCAST SERVICES 1....

  10. Willow on Yellowstone's northern range: evidence for a trophic cascade?

    PubMed

    Beyer, Hawthorne L; Merrill, Evelyn H; Varley, Nathan; Boyce, Mark S

    2007-09-01

    Reintroduction of wolves (Canis lupus) to Yellowstone National Park in 1995-1996 has been argued to promote a trophic cascade by altering elk (Cervus elaphus) density, habitat-selection patterns, and behavior that, in turn, could lead to changes within the plant communities used by elk. We sampled two species of willow (Salix boothii and S. geyeriana) on the northern winter range to determine whether (1) there was quantitative evidence of increased willow growth following wolf reintroduction, (2) browsing by elk affected willow growth, and (3) any increase in growth observed was greater than that expected by climatic and hydrological factors alone, thereby indicating a trophic cascade caused by wolves. Using stem sectioning techniques to quantify historical growth patterns we found an approximately twofold increase in stem growth-ring area following wolf reintroduction for both species of willow. This increase could not be explained by climate and hydrological factors alone; the presence of wolves on the landscape was a significant predictor of stem growth above and beyond these abiotic factors. Growth-ring area was positively correlated with the previous year's ring area and negatively correlated with the percentage of twigs browsed from the stem during the winter preceding growth, indicating that elk browse impeded stem growth. Our results are consistent with the hypothesis of a behaviorally mediated trophic cascade on Yellowstone's northern winter range following wolf reintroduction. We suggest that the community-altering effects of wolf restoration are an endorsement of ecological-process management in Yellowstone National Park.

  11. Root growth studies of willow cuttings using Rhizoboxes

    NASA Astrophysics Data System (ADS)

    Omarova, Dinara; Lammeranner, Walter; Florineth, Florin

    2014-05-01

    Riparian forests (Tugay forests) in Central Asia (Kazakhstan) play a significant in soil protection. However, unadapted forest use leads to damage and loss of these fragile ecosystems. Willows have a crucial function in the ecosystem of these riparian forests. Willows facilitate the colonization with other important tree species and furthermore they protect the soil from wind and water erosion. To propagate willows and to estimate the beneficial effects of these plants it is important to know the root growth development. The research design is planned as model experiment with rhizoboxes. Rhizoboxes are non-invasive investigation methods which offer the possibility to survey the root system growth dynamics in time and space. A total of 33 rhizoboxes in size of 50cm x 75 cm x 5 cm will be constructed. The rhizoboxes will be tilted by 45 degrees using the gravitropism of the roots. The willow cuttings (Salix purpurea) will be planted in three different soil types. Each test series (growth period) will take three months. Investigated parameters will be root architecture, dynamic of root growth and above and below ground biomass allocation. Data will be drawn from photographic surveys which will be performed once a week. The contribution will present the methodology of these rhizobox investigations.

  12. "The Wind in the Willows" and the Style of Romance

    ERIC Educational Resources Information Center

    Gill, R. B.

    2012-01-01

    The style of Kenneth Grahame's "The Wind in the Willows" arises from an alternative vision and choice of values characteristic of romance. Romance seeks fulfillment beyond the consequences of everyday relationships and the constrictions of ordinary life. Causal relationships give way to lists of independent items, unmotivated outcomes, and…

  13. Willow on Yellowstone's northern range: evidence for a trophic cascade?

    PubMed

    Beyer, Hawthorne L; Merrill, Evelyn H; Varley, Nathan; Boyce, Mark S

    2007-09-01

    Reintroduction of wolves (Canis lupus) to Yellowstone National Park in 1995-1996 has been argued to promote a trophic cascade by altering elk (Cervus elaphus) density, habitat-selection patterns, and behavior that, in turn, could lead to changes within the plant communities used by elk. We sampled two species of willow (Salix boothii and S. geyeriana) on the northern winter range to determine whether (1) there was quantitative evidence of increased willow growth following wolf reintroduction, (2) browsing by elk affected willow growth, and (3) any increase in growth observed was greater than that expected by climatic and hydrological factors alone, thereby indicating a trophic cascade caused by wolves. Using stem sectioning techniques to quantify historical growth patterns we found an approximately twofold increase in stem growth-ring area following wolf reintroduction for both species of willow. This increase could not be explained by climate and hydrological factors alone; the presence of wolves on the landscape was a significant predictor of stem growth above and beyond these abiotic factors. Growth-ring area was positively correlated with the previous year's ring area and negatively correlated with the percentage of twigs browsed from the stem during the winter preceding growth, indicating that elk browse impeded stem growth. Our results are consistent with the hypothesis of a behaviorally mediated trophic cascade on Yellowstone's northern winter range following wolf reintroduction. We suggest that the community-altering effects of wolf restoration are an endorsement of ecological-process management in Yellowstone National Park. PMID:17913123

  14. Impact of phosphate on glyphosate uptake and toxicity in willow.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Moingt, Matthieu; Smedbol, Elise; Paquet, Serge; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-03-01

    Phosphate (PO4(3-)) has been shown to increase glyphosate uptake by willow, a plant species known for its phytoremediation potential. However, it remains unclear if this stimulation of glyphosate uptake can result in an elevated glyphosate toxicity to plants (which could prevent the use of willows in glyphosate-remediation programs). Consequently, we studied the effects of PO4(3-) on glyphosate uptake and toxicity in a fast growing willow cultivar (Salix miyabeana SX64). Plants were grown in hydroponic solution with a combination of glyphosate (0, 0.001, 0.065 and 1 mg l(-1)) and PO4(3-) (0, 200 and 400 mg l(-1)). We demonstrated that PO4(3-) fertilization greatly increased glyphosate uptake by roots and its translocation to leaves, which resulted in increased shikimate concentration in leaves. In addition to its deleterious effects in photosynthesis, glyphosate induced oxidative stress through hydrogen peroxide accumulation. Although it has increased glyphosate accumulation, PO4(3-) fertilization attenuated the herbicide's deleterious effects by increasing the activity of antioxidant systems and alleviating glyphosate-induced oxidative stress. Our results indicate that in addition to the glyphosate uptake, PO4(3-) is involved in glyphosate toxicity in willow by preventing glyphosate induced oxidative stress. PMID:26561751

  15. Impact of phosphate on glyphosate uptake and toxicity in willow.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Moingt, Matthieu; Smedbol, Elise; Paquet, Serge; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-03-01

    Phosphate (PO4(3-)) has been shown to increase glyphosate uptake by willow, a plant species known for its phytoremediation potential. However, it remains unclear if this stimulation of glyphosate uptake can result in an elevated glyphosate toxicity to plants (which could prevent the use of willows in glyphosate-remediation programs). Consequently, we studied the effects of PO4(3-) on glyphosate uptake and toxicity in a fast growing willow cultivar (Salix miyabeana SX64). Plants were grown in hydroponic solution with a combination of glyphosate (0, 0.001, 0.065 and 1 mg l(-1)) and PO4(3-) (0, 200 and 400 mg l(-1)). We demonstrated that PO4(3-) fertilization greatly increased glyphosate uptake by roots and its translocation to leaves, which resulted in increased shikimate concentration in leaves. In addition to its deleterious effects in photosynthesis, glyphosate induced oxidative stress through hydrogen peroxide accumulation. Although it has increased glyphosate accumulation, PO4(3-) fertilization attenuated the herbicide's deleterious effects by increasing the activity of antioxidant systems and alleviating glyphosate-induced oxidative stress. Our results indicate that in addition to the glyphosate uptake, PO4(3-) is involved in glyphosate toxicity in willow by preventing glyphosate induced oxidative stress.

  16. Phylogenetic relationships of American willows (Salix L., Salicaceae).

    PubMed

    Lauron-Moreau, Aurélien; Pitre, Frédéric E; Argus, George W; Labrecque, Michel; Brouillet, Luc

    2015-01-01

    Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns.

  17. Phylogenetic relationships of American willows (Salix L., Salicaceae).

    PubMed

    Lauron-Moreau, Aurélien; Pitre, Frédéric E; Argus, George W; Labrecque, Michel; Brouillet, Luc

    2015-01-01

    Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns. PMID:25880993

  18. Phylogenetic Relationships of American Willows (Salix L., Salicaceae)

    PubMed Central

    Lauron-Moreau, Aurélien; Pitre, Frédéric E.; Argus, George W.; Labrecque, Michel; Brouillet, Luc

    2015-01-01

    Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns. PMID:25880993

  19. Phytotoxicity of landfill leachate on willow--Salix amygdalina L.

    PubMed

    Bialowiec, Andrzej; Randerson, Peter F

    2010-01-01

    Because of low investment and operational costs, interest is increasing in the use of willow plants in landfill leachate disposal. Toxic effects of leachate on the plants should be avoided in the initial period of growth and phytotoxicological testing may be helpful to select appropriate leachate dose rates. The aim of this study was to determine the phytotoxicity of landfill leachate on young willow (Salix amygdalina L.) cuttings, as a criterion for dose rate selection in the early phase of growth. Over a test period of 6 weeks plants were exposed to six concentrations of landfill leachate solutions (0%; 6.25%; 12.5%; 25%; 50% and 100%), under two different regimes. In regime A willow plants were cultivated in leachate solution from the beginning, whereas in regime B they were grown initially in clean water for 4 weeks, after which the water was exchanged for leachate solutions. The lowest effective concentration causing toxic effects (LOEC) was calculated (p<0.05). In regime A LOEC was between 5.44% and 6.50% of leachate concentration, but slightly higher in regime B (5.32-6.59%). Willow plants were able to survive in landfill leachate solutions with electrical conductivity (EC) values up to 5.0 mS/cm in regime A, whereas in regime B plants were killed when EC exceeded 3.0 mS/cm. This indicates an ability of willow plants to tolerate higher strengths of landfill leachate if they are cultivated in such concentrations from the beginning.

  20. Effect of water table on willows grown in amended mine tailing.

    PubMed

    Bourret, M M; Brummer, J E; Leininger, W C; Heil, D M

    2005-01-01

    Survival and growth characteristics of two montane riparian willow species, Geyer willow (Salix geyeriana Andersson) and mountain willow (Salix monticola Bebb), grown in amended fluvial mine tailing were investigated in a greenhouse study. Willow stem cuttings were planted in lysimeters that simulated a 60-cm amended tailing profile with three static water depths (20, 40, and 60 cm) and a fluctuating water table for a total of four water table treatments. Species and water table treatments affected plant biomass and chemical composition of the soil and plant tissue. Mountain willow leaf, stem, and root biomass were 62, 95, and 164% greater, respectively, than for Geyer willow. Averaging across species, the fluctuating water table negatively affected leaf and stem biomass compared with the 20- and 60-cm water table treatments. Manganese was the only metal in plant tissue to strongly respond to water table treatments. Manganese concentrations in mountain willow leaf tissue were approximately twofold higher in the two most saturated water table treatments (20 cm and fluctuating) than in the least saturated water table treatment (60 cm). This trend was consistent with chemical analyses of the growth media, which reflected higher bioavailable Mn in the saturated tailing profile compared with the unsaturated profile. Results from this study indicate that mountain willow is a more vigorous and possibly more metal-tolerant species than Geyer willow when grown in amended mine tailing and that a fluctuating water table negatively affects willow growth.

  1. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations.

    PubMed

    Laureysens, I; Blust, R; De Temmerman, L; Lemmens, C; Ceulemans, R

    2004-10-01

    The use of plants to decontaminate soils polluted by heavy metals has received considerable attention in recent years as a low-cost technique. Poplars (Populus spp.) can accumulate relatively high levels of certain metals, and have the added advantage of producing biomass that can be used for energy production. A short rotation coppice culture with 13 poplar clones was established on a former waste disposal site, which was moderately polluted with heavy metals. Total content of metals in leaves, wood and bark were determined in August and October/November. Significant clonal differences in accumulation were found for most metals, although clones with the highest concentration of all metals were not found. Cadmium, zinc and aluminium were most efficiently taken up. The lowest concentration was found in wood; the highest concentrations were generally found in senescing leaves, making removal and treatment of fallen leaves necessary.

  2. [Consumption of ligneous resources at an oak coppice by sheep in the summer].

    PubMed

    Lecrivain, E; Leclerc, B; Hauwuy, A

    1990-01-01

    In a coppice, under conditions of low grass availability and high stocking rate (300 ewes.ha-1) the time spent eating bushes reaches 60% of grazing time and increases with flock size (stocking rates of 50 ewes.ha-1 vs 150 ewes.ha-1).

  3. Hexavalent chromium induced stress and metabolic responses in hybrid willows.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong; Huang, Shen-Zhuo

    2007-04-01

    Metabolic responses to hexavalent chromium (Cr(6+)) stress and the uptake and translocation of Cr(6+ )were investigated using pre-rooted hybrid willows (Salix matsudana Koidz x Salix alba L.) exposed to hydroponic solution spiked with K(2)CrO(4) at 24.0 +/- 1 degrees C for 192 h. Various physiological parameters of the plants were monitored to determine toxicity from Cr(6+ )exposure. At Cr(6+) treatments of 50% higher than that of the non-treated control plants. As Cr concentrations were increased further, a slight increase in the transpiration rate was also observed compared with the controls. Negligible difference in the chlorophyll contents in leaves between the treated and the non-treated control plants was measured, except for willows exposed to 1.05 mg Cr/l. The response of soluble proteins in leaves of willows to Cr treatments was remarkable. Cr-induced toxicity appeared in all treatments resulting in reduced activities of catalase (CAT) and peroxidase (POD) compared to the controls. Superoxide dismutases (SOD) activity in the leaf cells showed a positive increase after Cr exposure. Of all selected parameters, soluble proteins in leaves were the most sensitive to Cr(6+ )doses, showing a significant linear correlation negatively (R (2) = 0.931). Uptake of Cr(6+) by willows grown in flasks was found to increase linearly with the added Cr(6+ )(a zero order kinetics), as indicated by the high R (2) (0.9322). Recovery of Cr in different parts of plant materials varied significantly with roots being the dominant site of Cr accumulation. Although the translocation to shoots was detected, the amount of Cr translocated to shoots was considerably small. The capacity of willows to assimilate Cr(6+ )was also evaluated using detached leaves and roots in sealed glass vessels in vivo. Uptake of Cr by roots was mediated possibly through an active transport mechanism, whereas the cuticle of leaves was the major obstacle

  4. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis.

    PubMed

    Dudits, Dénes; Török, Katalin; Cseri, András; Paul, Kenny; Nagy, Anna V; Nagy, Bettina; Sass, László; Ferenc, Györgyi; Vankova, Radomira; Dobrev, Petre; Vass, Imre; Ayaydin, Ferhan

    2016-03-01

    The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity. PMID:26729798

  5. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis.

    PubMed

    Dudits, Dénes; Török, Katalin; Cseri, András; Paul, Kenny; Nagy, Anna V; Nagy, Bettina; Sass, László; Ferenc, Györgyi; Vankova, Radomira; Dobrev, Petre; Vass, Imre; Ayaydin, Ferhan

    2016-03-01

    The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity.

  6. Short rotation woody crops as a source of energy

    SciTech Connect

    Ranney, J.W.; Cushman, J.H.

    1982-06-01

    Short rotation intensive culture (SRIC) is a management approach with special advantages for producing wood for energy when land is in short supply. It has as its objective producing the maximum sustainable amount of wood per unit of land each year. The Short Rotation Woody Crops Program (SRWCP) is designed to answer major questions about SRIC. A 125% improvement in productivity can be acheived with genetic selection, disease resistance, weed control, fertilizers, spacing of trees and timing of harvest, and coppice growth. The economics and the risks of SRIC are reviewed. A list of work to be done concludes the study.

  7. Mixed, short rotation culture of red alder and black cottonwood: growth, coppicing, nitrogen fixation, and allelopathy

    SciTech Connect

    Heilman, P.; Stettler, R.F.

    1985-01-01

    Alnus rubra seedlings were grown in a 1:1 mixture at a spacing of 1.2 x 1.2 m with 28 Populus clones (25 clones pf P. trichocarpa, 2 of P. deltoides x P. trichocarpa, and one P. deltoides x P. nigra) in a study established in W. Washington in March 1979. Trees were harvested at 4 yr old. At harvest, average heights were: pure Populus, 10.2 m; Populus in the mixed stand 11.0 m; and alder 8.4 m. Most Populus sprouted satisfactorily after harvest (6.6 shoots/plant when pure, 7.6 shoots/plant in the mixture), but alder sprouted poorly (3.6 shoots/plant). Above-ground biomass at harvest was 15.9 t/ha p.a. for the mixture and 16.7 t/ha p.a. for pure Populus, although the mixture had been more productive at 2 yr. Nitrogenase activity (nitrogen fixation as measured by acetylene reduction) of alder declines in the 4th season; competition was the most important factor influencing this decline. Soil N content had no effect on fixation. A pot study showed that ground Populus leaf and litter material inhibited the growth of red alder seedlings, although soil collected from Populus plots had no effect. Results indicated that allelopathy is probably a minor factor under field conditions, at most, and that growing mixed stands may, on balance, be beneficial. 20 references.

  8. Wolf presence and increased willow consumption by Yellowstone elk: implications for trophic cascades.

    PubMed

    Creel, Scott; Christianson, David

    2009-09-01

    Recent increases in the height and growth ring width of willow (Salix spp.) and other woody plants in the Greater Yellowstone Ecosystem (GYE) have been attributed to a behaviorally mediated trophic cascade from wolves (Canis lupus) to elk (Cervus elaphus) to willows. This hypothesis predicts that individual elk consume less willow in response to the presence of wolves, but this prediction has not been directly tested with data from elk. We collected 727 fecal samples from elk in the Gallatin Canyon portion of the GYE over three winters and used microhistological methods to quantify the proportion of willow in each sample. We then tested the effect of wolf presence on willow consumption by elk, controlling for the effects of snow conditions, sex, and habitat type. During the period of study, 8-17 wolves occupied the study area, and wolves were locally present on 49% of 260 sampling days, stratified at two-week intervals across three drainages. Over the three years combined, willow consumption was related to snow conditions, wolf presence, and a wolf X sex interaction. As expected, willow consumption increased with deeper and less penetrable snow, and this effect was strong. Contrary to expectation, willow consumption increased in the presence of wolves. As with other aspects of antipredator behavior, wolves had different effects on willow consumption by males and females. Finally, we aggregated the data to estimate winter-long mean willow consumption within each drainage; at this broader scale, willow consumption again increased as predation risk increased. In summary, willow consumption was more strongly affected by snow conditions than by the presence of wolves. Interactions between elk and willow were affected by wolves, but not as predicted by the hypothesis that wolf presence favors willow release through a reduction in the selection of willow by individual elk. If a trophic cascade is operating, our results suggest that a decline in the size of the elk

  9. Willow Flycatcher nonbreeding territory defense behavior in Costa Rica

    USGS Publications Warehouse

    Sogge, M.K.; Koronkiewicz, T.J.; van Riper, Charles; Durst, S.L.

    2007-01-01

    We studied the intraspecific territorial defense behavior of wintering Willow Flycatchers (Empidonax traillii) in Costa Rica using a randomized playback experiment that exposed male and female birds to recordings of Willow Flycatcher songs and calls, Lesser Ground Cuckoo (Morococcyx erythropygius) vocalizations, and random noise. Flycatchers of both sexes responded most strongly to simulated conspecific territory intrusion, and the agonistic behaviors that we observed were similar to those seen during natural intraspecific encounters in winter. Both males and females engaged in song and aggressive behaviors in defense of territories, and there was no significant difference between the sexes in scored agonistic responses. The similarity between the sexes in intraspecific territorial defense behaviors and aggressiveness may account for both sexes of flycatchers using the same habitats at our study sites in Costa Rica, and wintering females defending territories against males. The Willow Flycatcher, a sexually monomorphic species, differs in this way from a number of sexually dimorphic passerines, in which behaviorally dominant males occur in more optimal winter habitats. ?? The Cooper Ornithological Society 2007.

  10. The potential for phytoremediation of iron cyanide complex by willows.

    PubMed

    Yu, Xiao-Zhang; Zhou, Pu-Hua; Yang, Yong-Miao

    2006-07-01

    Hybrid willows (Salix matsudana Koidz x Salix alba L.), weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were exposed to potassium ferrocyanide to determine the potential of these plants to extract, transport and metabolize this iron cyanide complex. Young rooted cuttings were grown in hydroponic solution at 24.0 +/- 0.5 degrees C for 144 h. Ferrocyanide in solution, air, and aerial tissues of plants was analyzed spectrophotometrically. Uptake of ferrocyanide from the aqueous solution by plants was evident for all treatments and varied with plant species, ranging from 8.64 to 15.67% of initial mass. The uptake processes observed from hydroponic solution showed exponential disappearance kinetics. Very little amounts of the applied ferrocyanide were detected in all parts of plant materials, confirming passage of ferrocyanide through the plants. No ferrocyanide in air was found due to plant transpiration. Mass balance analysis showed that a large fraction of the reduction of initial mass in hydroponic solution was metabolized during transport within the plant materials. The difference in the metabolic rate of ferrocyanide between the three plant species was comparably small, indicating transport of ferrocyanide from hydroponic solution to plant materials and further transport within plant materials was a limiting step for assimilating this iron cyanide complex. In conclusion, phytoremediation of ferrocyanide by the plants tested in this study has potential field application.

  11. Phytoextraction of risk elements by willow and poplar trees.

    PubMed

    Kacálková, Lada; Tlustoš, Pavel; Száková, Jiřina

    2015-01-01

    To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4-2.0 mg Cd.kg(-1), 78-313 mg Zn.kg(-1), 21.3-118 mg Cu.kg(-1)). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg(-1), 909 mg Zn.kg(-1), and 17.7 mg Cu.kg(-1)) compared to Populus clones (maximum 2.06 mg Cd.kg(-1), 463 mg Zn.kg(-1), and 11.8 mg Cu.kg(-1)). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.

  12. Herbivores Influence the Growth, Reproduction, and Morphology of a Widespread Arctic Willow

    PubMed Central

    Christie, Katie S.; Ruess, Roger W.; Lindberg, Mark S.; Mulder, Christa P.

    2014-01-01

    Shrubs have expanded in Arctic ecosystems over the past century, resulting in significant changes to albedo, ecosystem function, and plant community composition. Willow and rock ptarmigan (Lagopus lagopus, L. muta) and moose (Alces alces) extensively browse Arctic shrubs, and may influence their architecture, growth, and reproduction. Furthermore, these herbivores may alter forage plants in such a way as to increase the quantity and accessibility of their own food source. We estimated the effect of winter browsing by ptarmigan and moose on an abundant, early-successional willow (Salix alaxensis) in northern Alaska by comparing browsed to unbrowsed branches. Ptarmigan browsed 82–89% of willows and removed 30–39% of buds, depending on study area and year. Moose browsed 17–44% of willows and browsed 39–55% of shoots. Browsing inhibited apical dominance and activated axillary and adventitious buds to produce new vegetative shoots. Ptarmigan- and moose-browsed willow branches produced twice the volume of shoot growth but significantly fewer catkins the following summer compared with unbrowsed willow branches. Shoots on browsed willows were larger and produced 40–60% more buds compared to unbrowsed shoots. This process of shoot production at basal parts of the branch is the mechanism by which willows develop a highly complex “broomed” architecture after several years of browsing. Broomed willows were shorter and more likely to be re-browsed by ptarmigan, but not moose. Ptarmigan likely benefit from the greater quantity and accessibility of buds on previously browsed willows and may increase the carrying capacity of their own habitat. Despite the observed tolerance of willows to browsing, their vertical growth and reproduction were strongly inhibited by moose and ptarmigan. Browsing by these herbivores therefore needs to be considered in future models of shrub expansion in the Arctic. PMID:25047582

  13. 75 FR 49527 - General Motors Company Formerly Known as General Motors Corporation, Willow Run Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... General Motors Company, formerly known as General Motors Corporation, Willow Run Transmission Plant, Ypsilanti, Michigan. The notice was published in the Federal Register on July 26, 2010. (75 FR 43558). At..., Willow Run Transmission Plant Including On-Site Leased Workers From Aerotek; Ypsilanti, MI;...

  14. Fast-growing willow shrub named `Fish Creek`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  15. Conversion of Mountain Beech Coppices into High Forest: An Example for Ecological Intensification.

    PubMed

    Mattioli, Walter; Ferrari, Barbara; Giuliarelli, Diego; Mancini, Leone Davide; Portoghesi, Luigi; Corona, Piermaria

    2015-11-01

    Converting beech coppices into high forest stands has been promoted in the last decades as a management goal to attenuate the negative effects that frequent clearcutting may have on soil, landscape, and biodiversity conservation. The silvicultural tool usually adopted is the gradual thinning of shoots during the long span of time required to complete the conversion, that also allows the owner to keep harvesting some wood. This research reports and discusses, in the light of the ecological intensification approach, the results achieved from an experimental test started more than 25 years ago in a 42-year-old beech (Fagus sylvatica L.) coppice with standards in central Italy. The effects of various thinning intensities (three treatments plus a control) on the stand growth and structure are assessed by successive forest inventories. Analyses are integrated by spatial indices to assess stem density and canopy cover. Converting beech coppices into high forest through gradual thinning of shoots proves to be an effective step down the road to silvicultural systems characterized by continuous forest cover, as a tool of ecological intensification suitable to guarantee both public and private interests. Thinning has led to stands with fewer but larger stems, thus accelerating the long conversion process while maintaining both wood harvesting capability and environmental services.

  16. Conversion of Mountain Beech Coppices into High Forest: An Example for Ecological Intensification

    NASA Astrophysics Data System (ADS)

    Mattioli, Walter; Ferrari, Barbara; Giuliarelli, Diego; Mancini, Leone Davide; Portoghesi, Luigi; Corona, Piermaria

    2015-11-01

    Converting beech coppices into high forest stands has been promoted in the last decades as a management goal to attenuate the negative effects that frequent clearcutting may have on soil, landscape, and biodiversity conservation. The silvicultural tool usually adopted is the gradual thinning of shoots during the long span of time required to complete the conversion, that also allows the owner to keep harvesting some wood. This research reports and discusses, in the light of the ecological intensification approach, the results achieved from an experimental test started more than 25 years ago in a 42-year-old beech ( Fagus sylvatica L.) coppice with standards in central Italy. The effects of various thinning intensities (three treatments plus a control) on the stand growth and structure are assessed by successive forest inventories. Analyses are integrated by spatial indices to assess stem density and canopy cover. Converting beech coppices into high forest through gradual thinning of shoots proves to be an effective step down the road to silvicultural systems characterized by continuous forest cover, as a tool of ecological intensification suitable to guarantee both public and private interests. Thinning has led to stands with fewer but larger stems, thus accelerating the long conversion process while maintaining both wood harvesting capability and environmental services.

  17. Southwestern Willow Flycatcher Breeding Site and Territory Summary - 2007

    USGS Publications Warehouse

    Durst, Scott L.; Sogge, Mark K.; Stump, Shay D.; Walker, Hira A.; Kus, Barbara E.; Sferra, Susan J.

    2008-01-01

    The Southwestern willow flycatcher (Empidonax traillii extimus; hereafter references to willow flycatcher and flycatcher refer to E.t. extimus, except where specifically noted) is an endangered bird that breeds only in dense riparian habitats in parts of six Southwestern states (Arizona, New Mexico, southern California, extreme southern Nevada, southern Utah, and southwestern Colorado). Since 1993, hundreds of Southwestern willow flycatcher surveys have been conducted each year, and many new flycatcher breeding sites located. This document synthesizes the most current information available on all known Southwestern willow flycatcher breeding sites. This rangewide data synthesis was designed to meet two objectives: (1) identify all known Southwestern willow flycatcher breeding sites and (2) assemble data to estimate population size, location, habitat, and other information for all breeding sites, for as many years as possible, from 1993 through 2007. This report provides data summaries in terms of the number of flycatcher sites and the number of territories. When interpreting and using this information, it must be kept in mind that a 'site' is a geographic location where one or more willow flycatchers establishes a territory. Sites with unpaired territorial males are considered breeding sites, even if no nesting attempts were documented. A site is often a discrete patch of riparian habitat but may also be a cluster of riparian patches; there is no standardized definition for site, and its use varies within and among states. For example, five occupied habitat patches along a 10-km stretch of river might be considered five different sites in one state but only a single site in another state. This lack of standardization makes comparisons based on site numbers problematic. Researchers for this report generally deferred to statewide summary documents or to local managers and researchers when delineating a site for inclusion in the database. However, to avoid inflating

  18. Elucidating spatially explicit behavioral landscapes in the Willow Flycatcher

    USGS Publications Warehouse

    Bakian, Amanda V.; Sullivan, Kimberly A.; Paxton, Eben H.

    2012-01-01

    Animal resource selection is a complex, hierarchical decision-making process, yet resource selection studies often focus on the presence and absence of an animal rather than the animal's behavior at resource use locations. In this study, we investigate foraging and vocalization resource selection in a population of Willow Flycatchers, Empidonax traillii adastus, using Bayesian spatial generalized linear models. These models produce “behavioral landscapes” in which space use and resource selection is linked through behavior. Radio telemetry locations were collected from 35 adult Willow Flycatchers (n = 14 males, n = 13 females, and n = 8 unknown sex) over the 2003 and 2004 breeding seasons at Fish Creek, Utah. Results from the 2-stage modeling approach showed that habitat type, perch position, and distance from the arithmetic mean of the home range (in males) or nest site (in females) were important factors influencing foraging and vocalization resource selection. Parameter estimates from the individual-level models indicated high intraspecific variation in the use of the various habitat types and perch heights for foraging and vocalization. On the population level, Willow Flycatchers selected riparian habitat over other habitat types for vocalizing but used multiple habitat types for foraging including mountain shrub, young riparian, and upland forest. Mapping of observed and predicted foraging and vocalization resource selection indicated that the behavior often occurred in disparate areas of the home range. This suggests that multiple core areas may exist in the home ranges of individual flycatchers, and demonstrates that the behavioral landscape modeling approach can be applied to identify spatially and behaviorally distinct core areas. The behavioral landscape approach is applicable to a wide range of animal taxa and can be used to improve our understanding of the spatial context of behavior and resource selection.

  19. (Workshop on Willow Breeding and Biotechnology Development Activities)

    SciTech Connect

    Layton, P.A.

    1988-10-12

    P.A. Layton attended a workshop on Willow Breeding and Biotechnology Development Activities,'' which was organized by the International Energy Agency/Bioenergy Agreement (IEA/BA) Task II. The traveler spent 1 d prior to the meeting to visit scientists and administrators of Shell Research Limited. Physiology and Biological Chemistry Division to discus their interest in biomass production research as well as their other research interests in tissue culture, biotechnology, and management of forests and agricultural crops that are pertinent to the Department of Energy's (DOE's) Biomass Production program.

  20. AmeriFlux US-WCr Willow Creek

    SciTech Connect

    Desai, Ankur

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-WCr Willow Creek. Site Description - Upland decduous broadleaf forest. Mainly sugar maple, also basswood. Uniform stand atop a very modest hill. Clearcut approximately 80 years ago. Chosen to be representative of the upland deciduous broadleaf forests within the WLEF tall tower flux footprint. It appears to be more heavily forested and more productive than most of the upland deciduous broadleaf forests in the WLEF flux footprint (see publications for more details). It is also important that SE winds are screened from the flux data (see Cook et al, 2004 for details). Propane generator power.

  1. Nestling sex ratios in the southwestern willow flycatcher

    USGS Publications Warehouse

    Paxton, E.H.; Sogge, M.K.; McCarthey, Tracy; Keim, Paul

    2002-01-01

    Using molecular-genetic techniques, we determined the gender of 202 Southwestern Willow Flycatcher (Empidonax traillii extimus) nestlings from 95 nests sampled over a five-year period. Overall nestling sex ratio did not vary significantly from 50:50 among years, by clutch order, or by mating strategy (monogamous vs. polygamous pairings). However, we did observe significant differences among the four sites sampled, with sex ratios biased either toward males or females at the different sites. Given the small population sizes and geographic isolation of many of the endangered subspecies' breeding populations, sex-ratio differences may have localized negative impacts.

  2. Nestling sex ratio in the Southwestern Willow Flycatcher

    USGS Publications Warehouse

    Paxton, E.H.; Sogge, M.K.; McCarthey, T.D.; Keim, P.

    2002-01-01

    Using molecular-genetic techniques, we determined the gender of 202 Southwestern Willow Flycatcher (Empidonax traillii extimus) nestlings from 95 nests sampled over a five-year period. Overall nestling sex ratio did not vary significantly from 50:50 among years, by clutch order, or by mating strategy (monogamous vs. polygamous pairings). However, we did observe significant differences among the four sites sampled, with sex ratios biased either toward males or females at the different sites. Given the small population sizes and geographic isolation of many of the endangered subspecies' breeding populations, sex-ratio differences may have localized negative impacts. ?? The Cooper Ornithological Society 2002.

  3. Reclamation of coppice forests in order to increase the potential of woody biomass in Serbia

    NASA Astrophysics Data System (ADS)

    Bjelanovic, I.; Krstic, M.

    2012-04-01

    Biomass makes 63% of the total renewable energy potential of Serbia. Here, the biomass from forests together with wood processing industry waste represent the second most important renewable source for energy production. The Action Plan for Biomass of Serbia (2010) shows that the technically exploitable biomass in the Republic of Serbia amounts annually 2.7 Mtoe. Here, the woody biomass (fuelwood, forest residue, wood processing industry residue, wood from trees outside the forest) accounts for 1.0 Mtoe while the rest originates from agricultural sources. According to the national forest inventory (2008), forest cover in Serbia accounts for 29% of the country area, having standing volume of 362.5 mil. m3 and annual increment of 9.1 mil. m3. More than half is state-owned and the rest 47% is in the private ownership. Coppice forests dominate in the forest stock (65%). According to Glavonjić (2010), northeastern and southwestern Serbia are the regions with greatest spatial forest distribution. The general forest condition is characterised by insufficient production volume, unsatisfactory stock density and forest cover, high percentage of degraded forests, unfavorable age structure, unfavorable health condition and weeded areas. Herewith, the basic measures for the improvement of forest fund (Forestry Development Strategy for Serbia, 2006) represent conversion of coppice forests, increase of forest cover and productivity of forest ecosystems by the ecologically, economically and socially acceptable methods. The actions include reclamation of degraded forests, re- and afforestation activities on abandoned agricultural, degraded and other treeless lands. The average standing volume of high forests is 254 m3·ha-1 with an annual increment of 5.5 m3·ha-1. On the contrary, coppice forests dispose 124 m3·ha-1 of standing volume, having an annual increment of 3.1 m3·ha-1. Here, estimated losses from coppice forests amount up to 3.5 mil. m3 wood annually. These data

  4. Water tables constrain height recovery of willow on Yellowstone's northern range.

    PubMed

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  5. Water tables constrain height recovery of willow on Yellowstone's northern range.

    PubMed

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  6. Extracellular enzyme activity in a willow sewage treatment system.

    PubMed

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  7. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  8. Genetic variation in the endangered Southwestern Willow Flycatcher

    USGS Publications Warehouse

    Busch, Joseph; Miller, Mark P.; Paxton, E.H.; Sogge, M.K.; Keim, Paul

    2000-01-01

    The Southwestern Willow Flycatcher(Empidonax trailii extimus) is an endangered Neotropical migrant that breeds in isolated remnants of dense riparian habitat in the southwestern United States. We estimated genetic variation at 20 breedings sites of the Southwestern Willow Flycatcher(290 individuals) using 38 amplified fragment length polymorphisms(AFLPs). Our results suggest that considerable genetic diversity exists within the subspecies and within local breeding sites. Statistical analyses of genetic variation revealed only slight, although significant, differentiation among breeding sites( Mantel's r = 0.0705, P < 0.0005; 0 = 0.0816, 95% CI = 0.0608 to 0.1034; a??sr = 0.0458, P < 0.001). UPGMA cluster analysis of the AFLP markers indicates that extensive gene flow has occurred among breeding sites. No one site stood out as being genetically unique or isolated. Therefore the small level of genetic structure that we detected may not be biologically significant. Ongoing field studies are consistent with this conclusion. Of the banded birds that were resighted or recaptured in Arizona during the 1996 to 1998 breeding seasons, one-third moved between breeding sites and two-thirds were philopatric. Low differentiation maybe the result of historically high rangewide diversity followed by recent geographic isolation of breeding sites, although observational data indicate that gene flow is a current phenomenon. Our data suggest that breeding groups of E. t. extimus act as a metapopulation.

  9. Injury due to leg bands in willow flycatchers

    USGS Publications Warehouse

    Sedgwick, J.A.; Klus, R.J.

    1997-01-01

    We report an apparently unusually high incidence of leg injury in Willow Flycatchers (Empidonax traillii) as a result of banding and color banding. Color bands and U.S. Fish and Wildlife Service (USFWS) bands applied to Willow Flycatchers from 1988-1995 resulted in an overall leg injury rate of 9.6% to birds returning to our study areas in subsequent years. Most injuries occurred on legs with only color band(s) (58.3%) or on legs with both a USFWS band and a color band (35%); only 6.7% of injuries (4/60) were due to USFWS bands alone, yielding an overall USFWS band injury rate of only 0.6%. Injuries ranged from severe (swollen, bleeding legs; a missing foot) to relatively minor (irritations on the tarsus). Amputation of the foot occurred in 33.9% of the cases. Return rates of adult injured birds in the year(s) following injury were significantly lower than for the population at large.

  10. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  11. Ungulate herbivory on alpine willow in the Sangre de Cristo Mountains of Colorado

    USGS Publications Warehouse

    Zeigenfuss, L.C.; Schoenecker, K.A.; Amburg, L.K.V.

    2011-01-01

    In many areas of the Rocky Mountains, elk (Cervus elaphus) migrate from low-elevation mountain valleys during spring to high-elevation subalpine and alpine areas for the summer. Research has focused on the impacts of elk herbivory on winter-range plant communities, particularly on woody species such as willow and aspen; however, little information is available on the effects of elk herbivory on alpine willows. In the Sangre de Cristo Mountains of south central Colorado, select alpine areas appear to receive high levels of summer elk herbivory, while other areas are nearly unbrowsed. In 2005 and 2008, we measured willow height, cover, and utilization on sites that appeared to be used heavily by elk, as well as on sites that appeared to be used lightly, to determine differences between these communities over time. We found less willow cover and shorter willows at sites that received higher levels of browsing compared to those that had lower levels of browsing. Human recreational use was greater at lightly browsed sites than at highly browsed sites. From 2005 to 2008, willow utilization declined, and willow cover and height increased at sites with heavy browsing, likely owing to ownership change of adjacent valley land which led to (1) removal of grazing competition from, cattle at valley locations and (2) increased human use in alpine areas, which displaced elk. We discuss the implications of increased human use and climate change on elk use of these alpine habitats. ?? 2011.

  12. Impact of Willow Invasion on Vegetation Water and Carbon Exchange in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Budny, M. L.; Benscoter, B.

    2014-12-01

    Southern coastal willow (Salix caroliniana) is native to the Florida Everglades, commonly found on drier landforms like levees and tree islands. Shortened periods of inundation due to water management have led to the encroachment and expansion of these shrubs in sawgrass (Cladium jamaicense) marsh communities. The broadleaf willow is morphologically and physiologically different from the graminoid sedge sawgrass, with possible consequence for microhabitat conditions and ecosystem function. Willow is often assumed to have greater rates of transpiration, thereby affecting wetland water management, and may have concurrent differences in photosynthesis and carbon exchange. However, the ecophysiological impact of the willow invasion has not been quantified. We assessed differences in plant water and carbon exchange between willow and sawgrass at Blue Cypress Conservation Area, an impounded sawgrass peatland within the St. John's River Water Management District (SJRWMD). Plant transpiration and net CO2 exchange (photosynthesis and autotrophic respiration) were measured on fully expanded, non-damaged leaves of sawgrass and willow using a portable infrared gas analyzer (LI-6400XT, LI-COR, Lincoln, NE, U.S.A.). The results obtained from this study will provide a better understanding of ecophysiological changes that occur within marsh communities with shrub expansion, which will have cascading impacts on soil accretion and turnover, microclimate, and water quality Understanding the implications of willow expansion will improve landscape models of wetland water and carbon exchange as well as inform water management decisions.

  13. Sand and sandbar willow: a feedback loop amplifies environmental sensitivity at the riparian interface.

    PubMed

    Rood, Stewart B; Goater, Lori A; Gill, Karen M; Braatne, Jeffrey H

    2011-01-01

    Riparian or streamside zones support dynamic ecosystems with three interacting components: flowing water, alluvia (river-transported sediments), and vegetation. River damming influences all three, and subsequent responses can provide insight into underlying processes. We investigated these components along the 315-km Hells Canyon corridor of the Snake River that included reaches upstream, along, and downstream from three large dams and reservoirs, and along the Salmon River, a free-flowing tributary. Sandbar willow was generally the woody plant at the lowest bank position and was abundant along upstream reaches (53, 45, 67% of transects), sparse along reservoirs (11, 12, 0%), and sparse along the Snake River downstream (11%). It was prolific along the undammed Salmon River (83%) and intermediate along the Snake River below the Salmon inflow (27%), indicating partial recovery with the contribution of water and sediments. Along these rivers, it commonly occurred on sandy substrates, especially on shallow-sloped surfaces, and emerged from interstitial sands between cobbles on steeper surfaces. However, along the Snake River below the dams, sandbars have eroded and willows were sparse on remnant, degrading sand surfaces. We conclude that a feedback loop exists between sands and sandbar willow. Sand favors willow colonization and clonal expansion, and reciprocally the extensively branched willows create slack-water zones that protect and trap sands. This feedback may sustain surface sands and sandbar willows along free-flowing river systems and it amplifies their mutual vulnerability to river damming. Following damming, sediment-depleted water is released downstream, eroding surface sands and reducing willow colonization and expansion. With willow decline, sands are further exposed and eroded, compounding these impacts. From this feedback, we predict the coordinated depletion of surface sands and riparian willows along dammed rivers throughout the Northern Hemisphere.

  14. Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome

    PubMed Central

    Yergeau, Etienne; Bell, Terrence H.; Champagne, Julie; Maynard, Christine; Tardif, Stacie; Tremblay, Julien; Greer, Charles W.

    2015-01-01

    Plants interact closely with microbes, which are partly responsible for plant growth, health, and adaptation to stressful environments. Engineering the plant-associated microbiome could improve plant survival and performance in stressful environments such as contaminated soils. Here, willow cuttings were planted into highly petroleum-contaminated soils that had been gamma-irradiated and subjected to one of four treatments: inoculation with rhizosphere soil from a willow that grew well (LA) or sub-optimally (SM) in highly contaminated soils or with bulk soil in which the planted willow had died (DE) or no inoculation (CO). Samples were taken from the starting inoculum, at the beginning of the experiment (T0) and after 100 days of growth (TF). Short hypervariable regions of archaeal/bacterial 16S rRNA genes and the fungal ITS region were amplified from soil DNA extracts and sequenced on the Illumina MiSeq. Willow growth was monitored throughout the experiment, and plant biomass was measured at TF. CO willows were significantly smaller throughout the experiment, while DE willows were the largest at TF. Microbiomes of different treatments were divergent at T0, but for most samples, had converged on highly similar communities by TF. Willow biomass was more strongly linked to overall microbial community structure at T0 than to microbial community structure at TF, and the relative abundance of many genera at T0 was significantly correlated to final willow root and shoot biomass. Although microbial communities had mostly converged at TF, lasting differences in willow growth were observed, probably linked to differences in T0 microbial communities. PMID:26733977

  15. Sand and sandbar willow: a feedback loop amplifies environmental sensitivity at the riparian interface.

    PubMed

    Rood, Stewart B; Goater, Lori A; Gill, Karen M; Braatne, Jeffrey H

    2011-01-01

    Riparian or streamside zones support dynamic ecosystems with three interacting components: flowing water, alluvia (river-transported sediments), and vegetation. River damming influences all three, and subsequent responses can provide insight into underlying processes. We investigated these components along the 315-km Hells Canyon corridor of the Snake River that included reaches upstream, along, and downstream from three large dams and reservoirs, and along the Salmon River, a free-flowing tributary. Sandbar willow was generally the woody plant at the lowest bank position and was abundant along upstream reaches (53, 45, 67% of transects), sparse along reservoirs (11, 12, 0%), and sparse along the Snake River downstream (11%). It was prolific along the undammed Salmon River (83%) and intermediate along the Snake River below the Salmon inflow (27%), indicating partial recovery with the contribution of water and sediments. Along these rivers, it commonly occurred on sandy substrates, especially on shallow-sloped surfaces, and emerged from interstitial sands between cobbles on steeper surfaces. However, along the Snake River below the dams, sandbars have eroded and willows were sparse on remnant, degrading sand surfaces. We conclude that a feedback loop exists between sands and sandbar willow. Sand favors willow colonization and clonal expansion, and reciprocally the extensively branched willows create slack-water zones that protect and trap sands. This feedback may sustain surface sands and sandbar willows along free-flowing river systems and it amplifies their mutual vulnerability to river damming. Following damming, sediment-depleted water is released downstream, eroding surface sands and reducing willow colonization and expansion. With willow decline, sands are further exposed and eroded, compounding these impacts. From this feedback, we predict the coordinated depletion of surface sands and riparian willows along dammed rivers throughout the Northern Hemisphere

  16. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests.

    PubMed

    Košulič, Ondřej; Michalko, Radek; Hula, Vladimír

    2016-01-01

    Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40%) and red-listed threatened species (26%). The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small-scale improvements

  17. Forest operations in coppice: Environmental assessment of two different logging methods.

    PubMed

    Laschi, Andrea; Marchi, Enrico; González-García, Sara

    2016-08-15

    Wood is a renewable resource and it actively contributes to enhance energy production under a sustainable perspective. However, harvesting, transport and use of wood imply several consequences and impacts on environment. There are different ways for managing forests dedicated to wood production and a sustainable approach is fundamental to preserve the resource. In this context, Life Cycle Assessment (LCA) is a useful tool for estimating the environmental impacts related to renewable resources. Traditional coppice is a common approach for forest management in several areas, including southern Europe and, specifically, Italy, Spain and the Balkans. Due to different terrain conditions, different types of forest operations are considered for wood extraction from coppices, where the main product is firewood used in domestic heating. The aim of this work was to compare the main common systems for firewood production in two different terrain conditions ('flat/low steep' and 'steep/very steep' terrains), in a representative environment for Mediterranean area, located in central Italy, by means of LCA. Seven different impact categories were evaluated in a cradle-to-gate perspective taking into account all the operations carried out from the trees felling to the firewood storage at factory. Results showed that the extraction phase was the most important in terms of environmental burdens in firewood production and the use of heavy and high-power machines negatively influenced the emissions compared with manual operations. Finally, considering the general low-inputs involved in wood production in coppice, the transport of workers by car to the work site resulted on consistent contributions into environmental burdens. An additional analysis about the modifications of CH4 and N2O exchanges between soil and atmosphere, due to soil compaction in the extraction phase, was made and based on bibliographic information. Results showed a sensible difference between disturbed and

  18. Forest operations in coppice: Environmental assessment of two different logging methods.

    PubMed

    Laschi, Andrea; Marchi, Enrico; González-García, Sara

    2016-08-15

    Wood is a renewable resource and it actively contributes to enhance energy production under a sustainable perspective. However, harvesting, transport and use of wood imply several consequences and impacts on environment. There are different ways for managing forests dedicated to wood production and a sustainable approach is fundamental to preserve the resource. In this context, Life Cycle Assessment (LCA) is a useful tool for estimating the environmental impacts related to renewable resources. Traditional coppice is a common approach for forest management in several areas, including southern Europe and, specifically, Italy, Spain and the Balkans. Due to different terrain conditions, different types of forest operations are considered for wood extraction from coppices, where the main product is firewood used in domestic heating. The aim of this work was to compare the main common systems for firewood production in two different terrain conditions ('flat/low steep' and 'steep/very steep' terrains), in a representative environment for Mediterranean area, located in central Italy, by means of LCA. Seven different impact categories were evaluated in a cradle-to-gate perspective taking into account all the operations carried out from the trees felling to the firewood storage at factory. Results showed that the extraction phase was the most important in terms of environmental burdens in firewood production and the use of heavy and high-power machines negatively influenced the emissions compared with manual operations. Finally, considering the general low-inputs involved in wood production in coppice, the transport of workers by car to the work site resulted on consistent contributions into environmental burdens. An additional analysis about the modifications of CH4 and N2O exchanges between soil and atmosphere, due to soil compaction in the extraction phase, was made and based on bibliographic information. Results showed a sensible difference between disturbed and

  19. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests

    PubMed Central

    Košulič, Ondřej; Michalko, Radek; Hula, Vladimír

    2016-01-01

    Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40%) and red-listed threatened species (26%). The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small-scale improvements

  20. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests.

    PubMed

    Košulič, Ondřej; Michalko, Radek; Hula, Vladimír

    2016-01-01

    Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40%) and red-listed threatened species (26%). The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small-scale improvements

  1. Short rotation Wood Crops Program

    SciTech Connect

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  2. Spatial Patterns of Soil Organic Carbon and Total Nitrogen in Mesquite Coppice Dunes

    NASA Astrophysics Data System (ADS)

    Ebbs, L. M.; Throop, H. L.

    2008-12-01

    Woody encroachment, an increase in woody plant abundance in formerly grass-dominated ecosystems, has occurred in semi-arid and arid systems worldwide over the past century. Woody encroachment has emerged as a potentially important, but highly uncertain, component of the North American carbon sink. The effects of woody plant encroachment on soil organic carbon (SOC) and total nitrogen (TN) relative to Prosopis velutina have been explored in the Sonoran Desert, where strong spatial patterns in SOC and TN based on shrub size and subcanopy location exist. Encroachment of Prosopis glandulosa in sandy soils in the Chihuahuan Desert leads to coppice dune formation. We applied spatially-intensive soil sampling methods around P. glandulosa dunes in the Chihuahuan Desert to see how spatial patterns differed from patterns in the Sonoran Desert, where dunes do not form. Approximately 15 soil cores were taken from within and around each of 13 dunes and analyzed for bulk density, SOC, and TN. The aboveground biomass of P. glandulosa in coppice dunes was also collected for a comparison of aboveground biomass and SOC pools. Intercanopy soils had greater bulk density than soils within dunes (P<0.05), although bulk density did not vary predictably with dune size or with spatial position within each dune. No predictable within-dune SOC or TN patterns were found. Within-dune SOC and TN concentrations were significantly greater than intercanopy values (P<0.001 for both SOC and TN). There was a strong positive linear relationship between dune area and aboveground biomass (R2=0.662, P<0.007). These relationships can be used to predict SOC, TN, and aboveground biomass in coppice dunes. In contrast to patterns in the Sonoran Desert with P. velutina, predicting SOC and TN in the P. glandulosa coppice dunes does not require information on individual dune size or spatial position. The differences in SOC and TN accumulation patterns beneath P. velutina and P. glandulosa may result from

  3. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems.

    PubMed

    Luo, Jie; Qi, Shihua; Peng, Li; Xie, Xianming

    2015-03-01

    The objective of this research was to determine the phytoremediation potential of Eucalyptus globulus in Cd contaminated soil through two different harvest methods. Although replanting is more expensive than coppicing and produces less aboveground biomass, more Cd can be removed from the soil with roots removal at each harvest as the E. globulus absorbs vast majority of heavy metals in non-metabolically active parts like roots. Despite the higher cost of replanting in a single harvest, when phytoremediation efficiency and total duration are considered as important factors, the replanting treatment should be recommended as an appropriate method which can decrease the phytoremediation time obviously.

  4. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems.

    PubMed

    Luo, Jie; Qi, Shihua; Peng, Li; Xie, Xianming

    2015-03-01

    The objective of this research was to determine the phytoremediation potential of Eucalyptus globulus in Cd contaminated soil through two different harvest methods. Although replanting is more expensive than coppicing and produces less aboveground biomass, more Cd can be removed from the soil with roots removal at each harvest as the E. globulus absorbs vast majority of heavy metals in non-metabolically active parts like roots. Despite the higher cost of replanting in a single harvest, when phytoremediation efficiency and total duration are considered as important factors, the replanting treatment should be recommended as an appropriate method which can decrease the phytoremediation time obviously. PMID:25543544

  5. Effect of browsing on willow in the Steel Creek grazing allotment

    USGS Publications Warehouse

    Keigley, R.B.; Gale, Gil

    2000-01-01

    View upstream from the study area. Salix geyerriana is the dominant willow species. Salix drummondiana and S. Boothii are less common; older individuals of both species grow to about 2-m tall. Salix bebbiana is much less common, and where present, is browsed close to ground level. The carcass of an old Bebb willow that had attained typical stature is located near the study area. Beaver are absent. The remains of relic beaver dams indicate that beaver were once an important hydrologic influence.

  6. The controlling of landfill leachate evapotranspiration from soil-plant systems with willow: Salix amygdalina L.

    PubMed

    Białowiec, Andrzej; Wojnowska-Baryła, Irena; Hasso-Agopsowicz, Marek

    2007-02-01

    The use of willows (Salix amygdalina L) to manage landfill leachate disposal is an effective and cost-effective method due to the high transpiration ability of the willow plants. A 2-year lysimetric experiment was performed to determine an optimum leachate hydraulic loading rate to achieve high evapotranspiration but exert no harmful influence on the plants. The evapotranspiration rate of a soil-plant system planted with the willow was 1.28-5.12-fold higher than the rate measured on a soil surface lacking vegetation, suggesting that soil-willow systems with high volatilization rates are a viable landfill leachate treatment method. Of the soil-willow systems, the one with willow growing on sand amended with sewage sludge soil at an hydraulic loading rate of 1 mm day(-1) performed best, with evapotranspiration ranging from 2.25 to 3.02 mm day(-1) and a biomass yield of 8.0-9.85 Mg dry matter ha(-1). The organic fraction of the soil increased as much as 2.5% of dry matter, due to the sewage sludge input, which exerted a positive effect on the biomass yield as well as on transpiration and evaporation. It was observed that the plants in the sand-and-sewage sludge soil systems displayed higher resistance to toxic effects from the applied landfill leachate relative to plants in the sand-soil systems.

  7. The controlling of landfill leachate evapotranspiration from soil-plant systems with willow: Salix amygdalina L.

    PubMed

    Białowiec, Andrzej; Wojnowska-Baryła, Irena; Hasso-Agopsowicz, Marek

    2007-02-01

    The use of willows (Salix amygdalina L) to manage landfill leachate disposal is an effective and cost-effective method due to the high transpiration ability of the willow plants. A 2-year lysimetric experiment was performed to determine an optimum leachate hydraulic loading rate to achieve high evapotranspiration but exert no harmful influence on the plants. The evapotranspiration rate of a soil-plant system planted with the willow was 1.28-5.12-fold higher than the rate measured on a soil surface lacking vegetation, suggesting that soil-willow systems with high volatilization rates are a viable landfill leachate treatment method. Of the soil-willow systems, the one with willow growing on sand amended with sewage sludge soil at an hydraulic loading rate of 1 mm day(-1) performed best, with evapotranspiration ranging from 2.25 to 3.02 mm day(-1) and a biomass yield of 8.0-9.85 Mg dry matter ha(-1). The organic fraction of the soil increased as much as 2.5% of dry matter, due to the sewage sludge input, which exerted a positive effect on the biomass yield as well as on transpiration and evaporation. It was observed that the plants in the sand-and-sewage sludge soil systems displayed higher resistance to toxic effects from the applied landfill leachate relative to plants in the sand-soil systems. PMID:17346008

  8. Factors influencing nest success of songbirds in aspen and willow riparian areas in the Great Basin

    USGS Publications Warehouse

    Heltzel, J.M.; Earnst, S.L.

    2006-01-01

    Recent studies have examined the effects of livestock grazing, agriculture, and human habitation on nest predation and brood parasitism in riparian areas in the western United States. However, we know little about factors influencing nest success in riparian areas lacking such anthropogenic influences, in part because the influences are so pervasive. We studied riparian bird communities in a 115 000 ha wildlife refuge where livestock grazing was discontinued > 10 years ago, and which has little nearby agriculture or human habitation. We monitored nests on 24 aspen (Populus tremuloides) and 10 willow (Salix spp.) plots. Brood parasitism rates were substantially lower than at other western sites and did not differ between aspen and willow habitats. Nest success in aspen was relatively high compared to that reported for other western sites and higher than in willow. Predators may have been able to find nests more efficiently in willow than in aspen because territory densities were higher in willow (40 versus 30 pairs per ha, respectively), because willow had less structural heterogeneity, or both. We did not find strong evidence that nest success was influenced by aspen patch size or distance to riparian edge, indicating that even small aspen patches provide valuable nesting habitat. Weather was an important cause of nest failure, particularly at higher elevations during late-spring snowstorms. Our results indicate that riparian areas without major anthropogenic impacts, especially aspen stands, constitute high-quality breeding habitat and warrant conservation focus. ?? The Cooper Ornithological Society 2006.

  9. Salt intrusion in tidal wetlands: European willow species tolerate oligohaline conditions

    NASA Astrophysics Data System (ADS)

    Markus-Michalczyk, Heike; Hanelt, Dieter; Ludewig, Kristin; Müller, David; Schröter, Brigitte; Jensen, Kai

    2014-01-01

    Tidal wetlands experience salt intrusion due to the effects of climate change. This study clarifies that the European flood plain willows species Salix alba and Salix viminalis tolerate oligohaline conditions. Salix alba L. and Salix viminalis L. are distributed on flood plains up to transitional waters of the oligohaline to the mesohaline estuarine stretch in temperate climates. They experience spatial and temporal variations in flooding and salinity. In the past, willows dominated the vegetation above the mean high water line, attenuated waves and contributed to sedimentation. In recent centuries, human utilization reduced willow stands. Today, the Elbe estuary - a model system for an estuary in temperate zones - exhibits increasing flooding and salinity due to man-induced effects and climatic changes. Willows were described as having no salinity tolerance. In contrast, our soil water salinity measurements at willows in tidal wetlands prove that mature Salix individuals tolerate oligohaline conditions. To assess immature plant salinity tolerance, we conducted a hydroponic greenhouse experiment. Vegetative propagules originating from a freshwater and an oligohaline site were treated in four salinities. Related to growth rates and biomass production, we found interspecific similarities and a salinity tolerance up to salinity 2. Vitality and chlorophyll fluorescence indicated an acclimation of Salix viminalis to oligohaline conditions. We conclude, that the survival of S. alba and S. viminalis and the restoration of willow stands in estuarine flood plains - with regard to wave attenuation and sedimentation - might be possible, despite increasing salinity in times of climate change.

  10. Effects of soil conditions on survival and growth of black willow cuttings.

    PubMed

    Schaff, Steven D; Pezeshki, S Reza; Shields, F Douglas

    2003-06-01

    Current streambank restoration efforts focus on providing bank stability, enhancing water quality, and improving woody habitat using native vegetation rather than traditional engineering techniques. However, in most cases harsh site conditions limit restoration success. A two-year field study was conducted at Twentymile Creek, in northern Mississippi, investigating edaphic factors governing the survival of black willow (Salix nigra) cuttings used for streambank restoration. Low height growth, above-ground biomass production, and average leaf area were observed in willow cuttings grown in plots subjected to moisture deficits. However, sediment texture emerged as the dominant factor determining willow post growth, health, and survival. Shoot biomass, leaf biomass, and total above-ground biomass were 15-, 10-, and 14-fold greater for large willow cuttings (posts) grown in plots with sandy sediments relative to those grown in plots with similar moisture and soil redox potential but with silt and clay sediments. Average leaf size, average leaf mass and specific leaf area were all lower in fine textured plots. Under moisture conditions present at our sites, coarse-grained sediment (sand) was more conducive to willow growth, biomass production, and survival than were fine-grained sediments (silt/clay). Our results strongly suggest that soil texture and moisture conditions can determine restoration success. Therefore, it is critical that site conditions are factored into the selection of project locations prior to the initiation of willow planting restoration projects.

  11. Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven-year-old coppiced shoots from thirteen species of native and non-native trees and shrubs were harvested, dried, and were pyrolyzed to produce biochars for potential use in horticultural substrates. Several chemical and physical characteristics of the biochars were determined. There were slight...

  12. Simulation modeling to understand how selective foraging by beaver can drive the structure and function of a willow community

    USGS Publications Warehouse

    Peinetti, H.R.; Baker, B.W.; Coughenour, M.B.

    2009-01-01

    Beaver-willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m-2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.

  13. Aboveground and belowground competition between willow Salix caprea its understory

    NASA Astrophysics Data System (ADS)

    Mudrák, Ondřej; Hermová, Markéta; Frouz, Jan

    2016-04-01

    The effects of aboveground and belowground competition with the willow S. caprea on its understory plant community were studied in unreclaimed post-mining sites. Belowground competition was evaluated by comparing (i) frames inserted into the soil that excluded woody roots (frame treatment), (ii) frames that initially excluded woody root growth but then allowed regrowth of the roots (open-frame treatment), and (iii) undisturbed soil (no-frame treatment). These treatments were combined with S. caprea thinning to assess the effect of aboveground competition. Three years after the start of the experiment, aboveground competition from S. caprea (as modified by thinning of the S. caprea canopy) had not affected understory biomass or species number but had affected species composition. In contrast, belowground competition significantly affected both the aboveground and belowground biomass of the understory. The aboveground biomass of the understory was greater in the frame treatment (which excluded woody roots) than in the other two treatments. The belowground biomass of the understory was greater in the frame than in the open-frame treatment. Unlike aboveground competition (light availability), belowground competition did not affect understory species composition. Our results suggest that S. caprea is an important component during plant succession on post-mining sites because it considerably modifies its understory plant community. Belowground competition is a major reason for the low cover and biomass of the herbaceous understory in S. caprea stands on post-mining sites.

  14. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  15. Salix transect of Europe: latitudinal patterns in willow diversity from Greece to arctic Norway

    PubMed Central

    Ruzzier, Enrico; Belyaeva, Irina; Percy, Diana

    2015-01-01

    Abstract Background Willows (Salix spp.) are ecosystem "foundation species" that are hosts to large numbers of associated insects. Determining their patterns of distribution across Europe is therefore of interest for understanding the spatial distribution of associated fauna. The aim of this study was to record species composition at multiple sites on a long latitudinal gradient (megatransect) across Europe as a baseline for the future detailed analysis of insect fauna at these sites. In this way we used willow stands as comparable mesocosms in which to study floristic and faunistic changes with latitude across Europe. New information To determine spatial patterning of  an ecologically important group on a latitudinal gradient across Europe, we sampled willows at the stand level in 42 sites, approximately 100 km apart, from the Aegean (38.8°N) to the Arctic Ocean (70.6°N), but at a similar longitude (21.2 to 26.1°E). The sites were predominantly lowland (elevations 1 to 556 metres amsl, median = 95 m) and wet (associated with rivers, lakes, drainage ditches or wet meadows). The median number of willow taxa (species and hybrids) per stand was four, and varied from one to nine. There is a progressive increase in willow diversity from south to north with the median number of taxa per stand in southern Europe being three, and in northern Europe six. A total of 20 willow species were recorded, along with 12 hybrids. The most widespread willow in the transect was Salix alba L. (occurring in 20 sites out of 42) followed by S. triandra L. (15 sites), S. caprea L., S. phylicifolia L. (14 sites) and S. myrsinifolia Salisb., Salix ×fragilis L. (13 sites). Voucher specimens from this study are deposited in the herbaria of the Natural History Museum (BM) and the Royal Botanic Gardens Kew (K). These samples provide a "snapshot" of willow diversity along a latitudinal gradient and an indication of the geographically changing taxonomic diversity that is

  16. Interactions between willows and insect herbivores under enhanced ultraviolet-B radiation.

    PubMed

    Veteli, T O; Tegelberg, R; Pusenius, J; Sipura, M; Julkunen-Tiitto, R; Aphalo, P J; Tahvanainen, J

    2003-10-01

    We studied the effects of elevated ultraviolet-B radiation on interactions between insect herbivores and their host plants by exposing two species of phytochemically different willows, Salix myrsinifolia and S. phylicifolia, to a modulated increase in ultraviolet radiation in an outdoor experiment and monitoring the colonisation of insect herbivores on these willows. We examined the effect of increased ultraviolet-B (UV-B) radiation on (1) the quality of willow leaves, (2) the distribution and abundance of insect herbivores feeding on these willows, (3) the resulting amount of damage, and (4) the performance of insect larvae feeding on the exposed plant tissue. Six clones of each of the two willow species were grown in eight blocks for 12 weeks in the UV-B irradiation field. The clones were exposed to a constant 50% increase in UV-B radiation (simulating 20-25% ozone depletion), to a small increase in UV-A radiation or to ambient solar irradiation. We allowed colonisation on the willows by naturally occurring insects, but also introduced adults of a leaf beetle, Phratora vitellinae, a specialist herbivore on S. myrsinifolia. Increased UV-B radiation did not affect any of the measured indices of plant quality. However, numbers of P. vitellinae on S. myrsinifolia were higher in plants with UV-B treatment compared with UV-A and shade controls. In laboratory tests, growth of the second-instar larva of P. vitellinae was not affected by UV-B treatment of S. myrsinifolia, but was retarded on UV-B treated leaves of S. phylicifolia. In addition, naturally occurring insect herbivores were more abundant on willows exposed to elevated UV-B radiation compared to those grown under control treatments. In spite of the increased abundance of insect herbivores, willows treated with elevated UV-B did not suffer more herbivore damage than willows exposed to ambient solar radiation (shade control). The observed effects of UV-B on herbivore abundance, feeding and growth varied

  17. Root produced DHZR-, ZR- and IPA-like cytokinins in xylem sap in relation to coppice shoot initiation and growth in cloned trees of Betula pubescens.

    PubMed

    Rinne, P; Saarelainen, A

    1994-10-01

    Six-year-old cloned Betula pubescens Ehrh. trees, grown outdoors at 65 degrees 01' N, were cut on six dates during the growing season to study coppice shoot development in relation to root-produced cytokinin-like compounds. Bleeding sap was collected over timed intervals for two days after cutting, and endogenous cytokinin-like compounds were measured by ELISA assay in HPLC-purified fractions of xylem sap. Initiation and development of coppice shoots on the clonally propagated plants were comparable to those in seedlings. Coppice shoot initiation was affected by the time of cutting, diminishing significantly after June. Of the cytokinin-like compounds detected in the xylem sap, zeatin riboside-like (ZR) compounds were present in the highest concentrations, and the concentrations of dihydrozeatin riboside-like (DHZR) and isopentenyladenoside-like (IPA) compounds were approximately one third and one eighth of the ZR concentrations, respectively. The concentration of cytokinin-like compounds was positively correlated with xylem sap flow rate. The export of cytokinin-like compounds, especially DHZR- and ZR-types, was positively correlated with the initiation and elongation rate of coppice shoots, the number of lateral branches, and the radial growth of the more slowly growing coppice shoots. The export of cytokinin-like compounds collected immediately after cutting may represent the basal value for each tree. This value is probably affected by the size and activity of the root system and may be a relevant estimate for predicting the success of coppicing.

  18. Lead uptake and translocation by willows in pot and field experiments.

    PubMed

    Zhivotovsky, Olena P; Kuzovkina, Yulia A; Schulthess, Cristian P; Morris, Tom; Pettinelli, Dawn

    2011-09-01

    Plant growth and lead (Pb) uptake by seven willow varieties were investigated in pot and field experiments to assess the suitability of willows for phytoremediation of Pb at heavily contaminated sites such as skeet ranges. Differences in uptake and translocation of Pb in Salix were observed between pot and field experiments. In the pot experiment, willows grown in Pb-contaminated field soil for 6 months showed tolerance to very high soil Pb concentration (21,360 mg kg(-1)), and with the addition of EDTA were able to take up and translocate more than 1000 mg kg(-1) Pb into above-ground tissues. In the field experiment, all willow varieties showed tolerance to heterogeneously high soil Pb concentrations. Plants were also able to take up and translocate Pb into above-ground tissues. However, after 4.5 months, the lead concentration in the above-ground tissues of willows grown in soil amended with EDTA was less than 200 mg kg(-1). The results from the pot experiment suggest that Salix varieties have the potential to take up and translocate significant amounts of Pb into above-ground tissues using EDTA. However, to verify the phytoextraction abilities of Salix in the field, additional research is needed.

  19. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.

    PubMed

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-01-01

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the "salicoid" duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants. PMID:27352946

  20. Available data support protection of the Southwestern Willow Flycatcher under the Endangered Species Act

    USGS Publications Warehouse

    Theimer, Tad C.; Smith, Aaron D.; Mahoney, Sean M.; Ironside, Kirsten E.

    2016-01-01

    Zink (2015) argued there was no evidence for genetic, morphological, or ecological differentiation between the federally endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) and other Willow Flycatcher subspecies. Using the same data, we show there is a step-cline in both the frequency of a mtDNA haplotype and in plumage variation roughly concordant with the currently recognized boundary between E. t. extimus and E. t adastus, the subspecies with which it shares the longest common boundary. The geographical pattern of plumage variation is also concordant with previous song analyses differentiating those 2 subspecies and identified birds in one low-latitude, high-elevation site in Arizona as the northern subspecies. We also demonstrate that the ecological niche modeling approach used by Zink yields the same result whether applied to the 2 flycatcher subspecies or to 2 unrelated species, E. t. extimus and Yellow Warbler (Setophaga petechia). As a result, any interpretation of those results as evidence for lack of ecological niche differentiation among Willow Flycatcher subspecies would also indicate no differentiation among recognized species and would therefore be an inappropriate standard for delineating subspecies. We agree that many analytical techniques now available to examine genetic, morphological, and ecological differentiation would improve our understanding of the distinctness (or lack thereof) of Willow Flycatcher subspecies, but we argue that currently available evidence supports protection of the Southwestern Willow Flycatcher under the Endangered Species Act.

  1. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral “Salicoid” Genome Duplication

    PubMed Central

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-01-01

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the “salicoid” duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants. PMID:27352946

  2. Clearcutting effects on streamflow in coppiced Eucalyptus globulus stands in Portugal

    NASA Astrophysics Data System (ADS)

    David, J. S.; Henriques, M. O.; David, T. S.; Tomé, J.; Ledger, D. C.

    1994-10-01

    Two Eucalyptus globulus catchments in Central Portugal were instrumented to gain some understanding of the hydrological effects of coppicing forest stands of this fast-growing species. Suspected increases in total flow, quick flow and delayed flow after clearcutting were tested statistically using the R-Student statistic for outlier detection. Under normal climatic conditions, significant annual flow increases were found only during the water-year immediately after clearcutting. However, when the water-year following harvesting was extremely dry, no flow increase occurred during that year although flow increases were found during the second water-year. Nevertheless, owing to the rapid regrowth of the stands, the hydrological effects of clearcutting were always short lived. Depending on the dominant runoff-generating processes, increases in total flow were due to increases in both the quick and delayed flow components or to increases only in the quick flow component.

  3. Browse quality in quaking Aspen (Populus tremuloides): effects of genotype, nutrients, defoliation, and coppicing.

    PubMed

    Lindroth, Richard L; Donaldson, Jack R; Stevens, Michael T; Gusse, Adam C

    2007-05-01

    The consequences of interactions among genetic, ontogenetic, and environmental factors for the quality of winter-dormant tissues as food for browsing herbivores is poorly understood. We conducted two sequential common garden studies to assess the impacts of intraspecific genetic variation, nutrient availability, prior defoliation, and ontogenetic stage on the chemical quality of winter-dormant tissue in quaking aspen (Populus tremuloides Michx.). In the first study, saplings of 12 aspen genotypes were grown under low and high soil nutrient conditions, with or without two successive seasons of defoliation. Quantity and quality of current year's twig growth were assessed. Twig production varied among genotypes and declined under low nutrient availability, but showed little response to prior defoliation. Chemical quality of sapling twigs varied substantially among genotypes, and in response to nutrient availability and prior defoliation. Overall, browse quality improved (nitrogen levels increased while phenolic glycoside and condensed tannin levels decreased) after defoliation. Growth and chemical variables exhibited low to moderate clonal repeatability (broad sense heritability) values. Our second study employed the same 12 genotypes, grown under high-nutrient conditions and with or without two seasons of defoliation. The trees were coppiced to produce root sprouts, which were chemically assessed 1 yr later. Rejuvenation via coppicing led to increased levels of nitrogen, phenolic glycosides (salicortin), and tannins in root sprouts, and the magnitude of change varied among aspen genotypes. Signatures of defoliation nearly 2 yr earlier persisted in terms of elevated levels of phenolic glycosides in root sprouts of previously defoliated trees. Aspen forests likely present browsing herbivores with chemically heterogeneous environments because of the interactions of genetic, ontogenetic, and environmental factors that vary over space and time.

  4. Genotypic differences and prior defoliation affect re-growth and phytochemistry after coppicing in Populus tremuloides.

    PubMed

    Stevens, Michael T; Gusse, Adam C; Lindroth, Richard L

    2012-03-01

    Although considerable research has explored how tree growth and defense can be influenced by genotype, the biotic environment, and their interaction, little is known about how genotypic differences, prior defoliation, and their interactive effects persist in trees that re-grow after damage that severs their primary stem. To address these issues, we established a common garden consisting of twelve genotypes of potted aspen (Populus tremuloides) trees, and subjected half of the trees to defoliation in two successive years. At the beginning of the third year, all trees were severed at the soil surface (coppiced) and allowed to regenerate for five months. Afterwards, we counted the number of root and stump sprouts produced and measured the basal diameter (d) and height (h) of the tallest ramet in each pot. We collected leaves one and two years after the second defoliation and assessed levels of phenolic glycosides, condensed tannins, and nitrogen. In terms of re-growth, we found that the total number of sprouts produced varied by 3.6-fold among genotypes, and that prior defoliation decreased total sprout production by 24%. The size (d(2)h) of ramets, however, did not differ significantly among genotypes or defoliation classes. In terms of phytochemistry, we observed genotypic differences in concentrations of all phytochemicals assessed both one and two years after the second defoliation. Two years after defoliation, we observed effects of prior defoliation in a genotype-by-defoliation interaction for condensed tannins. Results from this study demonstrate that genotypic differences and impacts of prior defoliation persist to influence growth and defense traits in trees even after complete removal of above-ground stems, and thus likely influence productivity and plant-herbivore interactions in forests affected by natural disturbances or actively managed through coppicing.

  5. Is thinning adequate for adapting old Quercus ilex coppices to climate change?

    NASA Astrophysics Data System (ADS)

    Rodriguez-Calcerrada, Jesus; Perez-Ramos, Ignacio-Manuel; Ourcival, Jean-Marc; Limousin, Jean-Marc; Misson, Laurent; Joffre, Richard; Rambal, Serge; Martin, Nicolas

    2010-05-01

    Future climatic scenarios call for an increasing involvement of management for forest preservation, but little is known on how forestry practices will benefit stands in facing variation of climatic components. We investigated how thinning affected tree responses to six years of continued throughfall reduction in a Mediterranean Quercus ilex stand formerly managed as a coppice. Thinned plots (≈33% basal area removal) and unthinned plots were subsequently subject to either throughfall exclusion (≈28% throughfall reduction) or normal rainfall. Stem-diameter growth, stem survival and seed production were monitored over the following six years; the presence, abundance and growth of new sprouts were measured in the last year. In the absence of thinning, throughfall exclusion accelerated the mortality of small stems, reduced the production of viable acorns and stimulated the emergence of new sprouts. Throughfall exclusion did not have any effect on stem growth. Rather, trees responded to the imposed reduction on throughfall by decreasing the leaf area and thus by minimizing the risk of xylem cavitation. Thinning reduced the mortality of stems, enhanced the diameter growth of residual stems and caused a profuse emission of resprouts. Thinning also increased total seed production but the crop had a large proportion of aborted seeds. Overall, the results point out to a better disposition of thinned Q. ilex coppice stands to cope with future (probably longer and more intense) droughts, at least in the short term. The reduction in standing dead biomass reduces the probability of occurrence of wildfires while the increase in growth and probably carbon reserves may help trees to overcome dry summers where CO2 assimilation is strongly limited. The mere felling of dominated and diseased stems, however, will probably not result in any longer-term advantage derived from seed regeneration without any further silvicultural treatment that promote seedling recruitment.

  6. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction*

    PubMed Central

    Yang, Wei-dong; Wang, Yu-yan; Zhao, Feng-liang; Ding, Zhe-li; Zhang, Xin-cheng; Zhu, Zhi-qiang; Yang, Xiao-e

    2014-01-01

    Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study compares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 μmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu. PMID:25183033

  7. A high incidence of brown-headed cowbird parasitism of willow flycatchers

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1988-01-01

    Brown-headed Cowbirds (Molothrus ater) parasitize both Willow (Empidonax traillii) and Alder (E. alnorum) flycatchers (Friedmann et al. 1977, Friedmann and Kiff 1985). These two flycatchers were considered a single species until 1973 (AOU 1973), which has masked information about the frequency with which each is parasitized. Whereas several studies of the superspecies (Traill's Flycatcher) have focused on or included details of cowbird parasitism, most were of eastern populations, and most reported frequencies of parasitism ≤21% (Hicks 1934, Berger 1951, Berger and Parmalee 1952, Walkinshaw 1966, Holcomb 1972). Friedmann et al. (1977:13) suggested that western populations (Willow Flycatchers) are parasitized only about half as much (ca. 10%) as eastern populations (Traill's Flycatcher superspecies). This note described a high rate of cowbird parasitism within a population of Willow Flycatchers in northcentral Colorado. We include details of responses to parasitism and host vs. cowbird fledgling success.

  8. Treatment of log yard run-off by irrigation of grass and willows.

    PubMed

    Jonsson, Maria; Dimitriou, Ioannis; Aronsson, Pär; Elowson, Torbjörn

    2006-01-01

    Log yard run-off is a potential environmental risk, among other things because it creates an oxygen deficiency in receiving watercourses. This study was conducted to investigate the purification efficiency of soil-plant systems with couchgrass (Elymus repens) and willows (Salix sp.) when intensively irrigated with run-off from an open sprinkling system at a Norway spruce (Picea abies) log yard. The purification efficiency was determined both at the field scale (couchgrass) and in 68-L lysimeters (couchgrass and willows). Groundwater in the field and drainage water from the lysimeters were analysed for Total Organic Carbon (TOC), distillable phenols, total P, and total N. Retention of TOC, phenols and P occurred but no difference between couchgrass and willows was observed. The system had better purification capacity at the field scale than in the lysimeters.

  9. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction.

    PubMed

    Yang, Wei-dong; Wang, Yu-yan; Zhao, Feng-liang; Ding, Zhe-li; Zhang, Xin-cheng; Zhu, Zhi-qiang; Yang, Xiao-e

    2014-09-01

    Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study compares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 μmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu. PMID:25183033

  10. Flood of May 6, 2007, Willow Creek, west-central Iowa

    USGS Publications Warehouse

    Fischer, Edward E.; Eash, David A.

    2008-01-01

    Major flooding occurred May 6, 2007, in the Willow Creek drainage basin in Harrison County following severe thunderstorm activity over west-central Iowa. More than 7 inches of rain were recorded for the 72-hour period ending 7 a.m., May 6, at the Logan, Iowa weather station. The peak discharge in Willow Creek at Medford Avenue near Missouri Valley, Iowa, was 17,000 cubic feet per second. The recurrence interval of the flood is 160 years, which was estimated using regional regression equations. Information about the basin, the storms, the flooding, and a profile of high-water marks measured at 10 locations along Willow Creek between the mouth at the Boyer River and State Highway 37 in Monona County, a distance of almost 33 river miles, are presented in this report.

  11. Model tests of living brush mattresses made of shrub and tree willows as bank protection at navigable waters

    NASA Astrophysics Data System (ADS)

    Sokopp, Manuel

    2014-05-01

    The embankment stability at navigable waters suffers from hydraulic loads, like strong ship induced waves, resulting hydropeaking and strong water-level fluctuations. Willow brush mattresses can reduce erosion at the embankments of rivers and increase bank stability. Due to experiences gained in the project "Alternative Technical-Biological Bank Protection on Inland Water-ways" the Federal Waterways Engineering and Research Institute commissioned a more detailed investigation of protective functions of willow brush mattresses respectively the differences between brush mattresses made of pure shrub (Salix viminalis) or tree willows (Salix alba) at water ways with high ship-induced hydraulic loads. This paper shows the upcoming research methods of the years 2014 to 2016. The protective functions of two different willow brush mattresses and the congruence between soil, hydraulics and willow sprouts movement will be investigated in a wave basin by measuring flow velocity with ADVs (Acoustic Doppler Velocimeters) installed near the soil surface and in different embankment areas, the pore water pressure with probes in different soil layers, the wave height with ultrasound probes and the willow movements with permanently installed cameras while flooding the basin as well as measuring the erosion afterwards. These flooding test series will be conducted two times during the vegetation period. The shear strength of the tree willow rooted soil will be examined in different soil layers with a shear load frame. The results will be compared with the data of shear strength tests of same aged brush mattresses made of shrub willows, which have already been carried out by the Federal Waterways Engineering and Research Institute. The filtering capability of the soil covering branches and the near surface willow roots will be investigated by growing willow brush mattresses in sample boxes. Those can be repeatedly moved up and down into a diving pool while measuring pore water pressure

  12. A multiscaled model of southwestern willow flycatcher breeding habitat

    USGS Publications Warehouse

    Hatten, J.R.; Paradzick, C.E.

    2003-01-01

    The southwestern willow flycatcher (SWFL; Empidonax traillii extimus) is an endangered songbird whose habitat has declined dramatically over the last century. Understanding habitat selection patterns and the ability to identify potential breeding areas for the SWFL is crucial to the management and conservation of this species. We developed a multiscaled model of SWTL breeding habitat with a Geographic Information System (GIS), survey data, GIS variables, and multiple logistic regressions. We obtained presence and absence survey data from a riverine ecosystem and a reservoir delta in south-central Arizona, USA, in 1999. We extracted the GIS variables from satellite imagery and digital elevation models to characterize vegetation and floodplain within the project area. We used multiple logistic regressions within a cell-based (30 X 30 m) modeling environment to (1) determine associations between GIS variables and breeding-site occurrence at different spatial scales (0.09-72 ha), and (2) construct a predictive model. Our best model explained 54% of the variability in breeding-site occurrence with the following variables: vegetation density at the site (0.09 ha), proportion of dense vegetation and variability in vegetation density within a 4.5-ha neighborhood, and amount of floodplain or flat terrain within a 41-ha neighborhood. The density of breeding sites was highest in areas that the model predicted to be most suitable within the project area and at an external test site 200 km away. Conservation efforts must focus on protecting not only occupied patches, but also surrounding riparian forests and floodplain to ensure long-term viability of SWTL. We will use the multiscaled model to map SWTL breeding habitat in Arizona, prioritize future survey effort, and examine changes in habitat abundance and quality over time.

  13. The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2008-04-01

    Effects of the synthetic chelator ethylenediamine tetraacetate (EDTA) on uptake and internal translocation of hexavalent and trivalent chromium by plants were investigated. Two different concentrations of EDTA were studied for enhancing the uptake and translocation of Cr from the hydroponic solution spiked with K(2)CrO(4) or CrCl(3) maintained at 24.0 +/- 1 degrees C. Faster removal of Cr(3+) than Cr(6+) by hybrid willows (Salix matsudana Koidz x Salix alba L.) from the plant growth media was observed. Negligible effect of EDTA on the uptake of Cr(6+) was found, but significant decrease of the Cr concentration in roots was measured. Although the translocation of Cr(6+) within plant materials was detected in response to EDTA concentration, the amount of Cr(6+) translocated to the lower stems was considerably small. EDTA in the nutrient media showed a negative effect on the uptake of Cr(3+ )by hybrid willows; the removal rates of Cr(3+ )were significantly decreased. Translocation of Cr(3+) into the stems and leaves was undetectable, but roots were the exclusive sink for Cr(3+) accumulation. Weeping willows (Salix babylonica L.) showed lower removal rates for both chemical forms of Cr than hybrid willows. Although EDTA had a minor effect on Cr(6+ )uptake by weeping willows, positive effect on Cr(6+ )translocation within plant materials was observed. It was also determined that EDTA in plant growth media significantly decreased the amount of Cr(3+) taken up by plants, but significantly increased Cr(3+) mobilization from roots to stems. Results indicated that EDTA was unable to increase the uptake of Cr(6+) by both plant species, but translocation of Cr(6+)-EDTA within plant materials was possible. Addition of EDTA in the nutrient media showed a strong influence on the uptake and translocation of Cr(3+) in both willows. Cr(3+)-EDTA in tissues of weeping willows was more mobile than that in hybrid willows. The information has important implications for the use of metal

  14. Offshore marine observation of Willow Ptarmigan, including water landings, Kuskokwim Bay, Alaska

    USGS Publications Warehouse

    Zimmerman, C.E.; Hillgruber, N.; Burril, S.E.; St., Peters; Wetzel, J.D.

    2005-01-01

    We report an observation of Willow Ptarmigan (Lagopus lagopus) encountered 8 to 17 km from the nearest shoreline on Kuskokwim Bay, Alaska, on 30 August 2003. The ptarmigan were observed flying, landing on our research vessel, and landing and taking off from the water surface. We also report on one other observation of ptarmigan sitting on the water surface and other marine observations of ptarmigan from the North Pacific Pelagic Seabird Database. These observations provide evidence that Willow Ptarmigan are capable of dispersing across large bodies of water and landing and taking off from the water surface.

  15. Overmature periurban Quercus-Carpinus coppice forests in Austria and Japan: a comparison in view of carbon stocks, stand characteristics and conversion to high forest

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor; Terada, Toru; Fukuda, Kenji; Yamamoto, Hirokazu; Hochbichler, Eduard

    2016-04-01

    Periurban coppice forests have a long history and tradition in Austria, as well as in Japan. Although developed in a slightly different context, such forests faced nearly the same fate during the last century. While these once served biomass almost exclusively as a feedstock for thermal energy, their significance decreased with the increasing use of fossil fuels and coppice management was consequently abandoned and the area developed, or these forests were converted into high forests with different management aims. This study tries to assess the status of periurban forests that were previously managed as coppice in a comparative approach between Austria and Japan. The focus is stand structure, biomass and C stocks, as well as a comparison with high forest. In Japan, we further directly assessed the consequences of coppice to high forest conversion on soil chemistry. We found remarkable similarities in species distribution and total C stocks. While lower diameter classes are dominated by Carpinus, Quercus is only found in larger diameter classes, indicating the overmature character of both stands due to the lapse from a recognized system of coppice management with occasional fuelwood harvesting in the past decades. Total C stocks are comparable, but SOC is significantly higher in Japanese Andosols. The conversion of coppice to high forest in the 1960's in Japan had a notable impact on soil chemistry. This concerns especially the N cycle and we also observed fewer phenolic compounds in mineral soil after conversion. The authors find that there may be multiple benefits for restoring coppice management to these periurban forests. This includes increased biomass production capabilities and carbon sequestration as well as a better habitat provision and a higher biodiversity.

  16. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  17. Rotational moulding.

    PubMed

    Crawford, R J; Kearns, M P

    2003-10-01

    Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714

  18. The sequestration of trace elements by willow (Salix purpurea)--which soil properties favor uptake and accumulation?

    PubMed

    Cloutier-Hurteau, Benoît; Turmel, Marie-Claude; Mercier, Catherine; Courchesne, François

    2014-03-01

    The effect of soil properties on trace element (TE) extraction by the Fish Creek willow cultivar was assessed in a 4-month greenhouse experiment with two contrasted soils and two mycorrhizal treatments (Rhizophagus irregularis and natives). Aboveground tissues represented more than 82 % of the willow biomass and were the major sink for TE. Cadmium and Zn were concentrated in leaves, while As, Cu, Ni, and Pb were mostly found in roots. Willow bioconcentration ratios were below 0.20 for As, Cu, Ni, and Pb and reached 10.0 for Cd and 1.97 for Zn. More significant differences in willow biomass, TE concentrations, and contents were recorded between soil types than between mycorrhizal treatments. A slight significant increase in Cu extraction by willow in symbiosis with Rhizophagus irregularis was observed and was linked to increased shoot biomass. Significant regression models between TE in willow and soil properties were found in leaves (As, Ni), shoots (As, Cd, Cu, Ni), and roots (As, Cu, Pb). Most of the explanation was shared between soil water-soluble TE and fertility variables, indicating that TE phytoextraction is related to soil properties. Managing interactions between TE and major nutrients in soil appeared as a key to improve TE phytoextraction by willows.

  19. Phytoremediation of soils contaminated with phenanthrene and cadmium by growing willow (Salix × aureo-pendula CL 'j1011').

    PubMed

    Sun, Y Y; Xu, H X; Li, J H; Shi, X Q; Wu, J C; Ji, R; Guo, H Y

    2016-01-01

    To assess the phytoremediation potential of an autochthonous willow (Salix × aureo-pendula CL 'J1011') for phenanthrene (PHE)-contaminated soils and PHE-cadmium (PHE-Cd) co-contaminated soils, we conducted field experiments in the lower reaches of the Yangtze River, China. Ethylenediaminetetraacetic acid (EDTA) and ethyl lactate were tested for individual and combined effects on the phytoremediation efficiency. For PHE-contaminated soils, willow plus ethyl lactate resulted in significant removal of PHE from soils after 45 days, and the PHE concentration in the shoots was significantly higher with than without ethyl lactate. For PHE-Cd co-contaminated soils, both willow plus EDTA and willow plus EDTA and ethyl lactate led to a significant decrease in the concentrations of PHE and Cd in the soils after 45 days, whereas willow alone did not. The PHE and Cd concentrations in the willow shoots were significantly enhanced in the presence of EDTA alone and with ethyl lactate, except for the PHE concentration in stems with EDTA alone. Under the same treatment, the presence of Cd had no significant influence on the PHE removal from soils. The results indicate the feasibility of using this willow together with both EDTA and ethyl lactate for the simultaneous removal of PHE and Cd from soils.

  20. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.).

    PubMed

    Wuytack, Tatiana; Verheyen, Kris; Wuyts, Karen; Kardel, Fatemeh; Adriaenssens, Sandy; Samson, Roeland

    2010-12-01

    In this study, we assess the potential of white willow (Salix alba L.) as bioindicator for monitoring of air quality. Therefore, shoot biomass, specific leaf area, stomatal density, stomatal pore surface, and stomatal resistance were assessed from leaves of stem cuttings. The stem cuttings were introduced in two regions in Belgium with a relatively high and a relatively low level of air pollution, i.e., Antwerp city and Zoersel, respectively. In each of these regions, nine sampling points were selected. At each sampling point, three stem cuttings of white willow were planted in potting soil. Shoot biomass and specific leaf area were not significantly different between Antwerp city and Zoersel. Microclimatic differences between the sampling points may have been more important to plant growth than differences in air quality. However, stomatal pore surface and stomatal resistance of white willow were significantly different between Zoersel and Antwerp city. Stomatal pore surface was 20% lower in Antwerp city due to a significant reduction in both stomatal length (-11%) and stomatal width (-14%). Stomatal resistance at the adaxial leaf surface was 17% higher in Antwerp city because of the reduction in stomatal pore surface. Based on these results, we conclude that stomatal characteristics of white willow are potentially useful indicators for air quality.

  1. Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake.

    PubMed

    Purdy, Jason J; Smart, Lawrence B

    2008-01-01

    Shrub willows have demonstrated potential in many types of phytoremediation applications. Hydroponic culture was used to assess arsenic (As) tolerance and uptake by four shrub willow clones and to determine the effects of phosphate on As accumulation. After 4 weeks of growth in the absence of As, plants received one of four treatments: 0.25X Hoagland's minus P (-P), 0.25X Hoagland's minus P plus 100 microM arsenate (As100(-P)), 0.25X Hoagland's minus P plus 250 microM arsenate (As250(-P)), and 0.25X Hoagland's plus 250 IM arsenate (As250(+P)). Except for treatment As250(+P), phosphate was excluded due to its tendency to interfere with As uptake. After 3 weeks of treatment, plants were separated into root, leaf, and stem tissues. Biomass production and transpiration were used to quantify As tolerance. There was wide variation among clones in As tolerance and uptake. The presence of phosphate in solution alleviated the negative impacts of As on biomass and transpiration and also increased above ground As accumulation, suggesting that phosphate may play a role in reducing toxicity and enhancing As uptake by willow shrubs. These findings offer insight into As tolerance and uptake in Salix spp. and add to the growing body of evidence supporting the use of shrub willow for phytoremediation.

  2. Cellulase production based on hemicellulose hydrolysate from steam-pretreated willow

    SciTech Connect

    Szengyel, Z.; Zacchi, G.; Reczey, K.

    1997-12-31

    The production cost of cellulolytic enzymes is a major contributor to the high cost of ethanol production from lignocellulosics using enzymatic hydrolysis. The aim of the present study was to investigate the cellulolytic enzyme production of Trichoderma reesei Rut C 30, which is known as a good cellulose secreting micro-organism, using willow as the carbon source. The willow, which is a fast-growing energy crop in Sweden, was impregnated with 1-4% SO{sub 2} and steam-pretreated for 5 min at 206{degrees}C. The pretreated willow was washed and the wash water, which contains several soluble sugars from the hemicellulose, was supplemented with fibrous pretreated willow and used for enzyme production. In addition to sugars, the liquid contains degradation products such as acetic acid, furfural, and 5-hydroxy-methylfurfural, which are inhibitory for microorganisms. The results showed that 50% of the cellulose can be replaced with sugars from the wash water. The highest enzyme activity, 1.79 FPU/mL and yield, 133 FPU/g carbohydrate, was obtained at pH 6.0 using 20 g/L carbon source concentration. At lower pHs, a total lack of growth and enzyme production was observed, which probably could be explained by furfural inhibition. 15 refs., 5 figs., 4 tabs.

  3. 76 FR 44258 - Removal of Class D and E Airspace; Willow Grove, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034; February 26, 1979); and (3) does...: Authority: 49 U.S.C. 106(g); 40103, 40113, 40120; E.O. 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389... Federal Aviation Administration 14 CFR Part 71 Removal of Class D and E Airspace; Willow Grove, PA...

  4. 75 FR 76038 - General Motors Company Formerly Known as General Motors Corporation Willow Run Transmission Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Register on July 26, 2010 (75 FR 43558). The notice was amended on July 30, 2010 to include on-site leased workers from Aerotek. The notice was published in the Federal Register on August 13, 2010 (75 FR 49527... Willow Run Transmission Plant Including On-Site Leased Workers From Aerotek, Securitas, Knight...

  5. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. PMID:27155486

  6. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants.

  7. Confirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage Analysis

    PubMed Central

    Fang, Lecheng; Li, Xiaoping; Yin, Tongming

    2016-01-01

    In this study, we constructed high-density genetic maps of Salix suchowensis and mapped the gender locus with an F1 pedigree. Genetic maps were separately constructed for the maternal and paternal parents by using amplified fragment length polymorphism (AFLP) markers and the pseudo-testcross strategy. The maternal map consisted of 20 linkage groups that spanned a genetic distance of 2333.3 cM; whereas the paternal map contained 21 linkage groups that covered 2260 cM. Based on the established genetic maps, it was found that the gender of willow was determined by a single locus on linkage group LG_03, and the female was the heterogametic gender. Aligned with mapped SSR markers, linkage group LG_03 was found to be associated with chromosome XV in willow. It is noteworthy that marker density in the vicinity of the gender locus was significantly higher than that expected by chance alone, which indicates severe recombination suppression around the gender locus. In conclusion, this study confirmed the findings on the single-locus sex determination and female heterogamety in willow. It also provided additional evidence that validated the previous studies, which found that different autosomes evolved into sex chromosomes between the sister genera of Salix (willow) and Populus (poplar). PMID:26828940

  8. Fine-root carbon and nitrogen concentration of European beech (Fagus sylvatica L.) in Italy Prealps: possible implications of coppice conversion to high forest.

    PubMed

    Terzaghi, Mattia; Montagnoli, Antonio; Di Iorio, Antonino; Scippa, Gabriella S; Chiatante, Donato

    2013-01-01

    Fine-root systems represent a very sensitive plant compartment to environmental changes. Gaining further knowledge about their dynamics would improve soil carbon input understanding. This paper investigates C and N concentrations in fine roots in relation to different stand characteristics resulting from conversion of coppiced forests to high forests. In order to evaluate possible interferences due to different vegetative stages of vegetation, fine-root sampling was repeated six times in each stand during the same 2008 growing season. Fine-root sampling was conducted within three different soil depths (0-10; 10-20; and 20-30 cm). Fine-root traits were measured by means of WinRHIZO software which enable us to separate them into three different diameter classes (0-0.5, 0.5-1.0 and 1.0-2.0 mm). The data collected indicate that N concentration was higher in converted stands than in the coppiced stand whereas C concentration was higher in the coppiced stand than in converted stands. Consequently the fine-root C:N ratio was significantly higher in coppiced than in converted stands and showed an inverse relationship with fine-root turnover rate, confirming a significant change of fine-root status after the conversion of a coppice to high forest.

  9. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.

    PubMed

    Hultine, K R; Bush, S E; Ehleringer, J R

    2010-03-01

    Riparian cottonwood/willow forest assemblages are highly valued in the southwestern United States for their wildlife habitat, biodiversity, and watershed protection. Yet these forests are under considerable threat from climate change impacts on water resources and land-use activities to support human enterprise. Stream diversions, groundwater pumping, and extended drought have resulted in the decline of cottonwood/willow forests along many riparian corridors in the Southwest and, in many cases, the replacement of these forests with less desirable invasive shrubs and trees. Nevertheless, ecophysiological responses of cottonwood and willow, along with associated ecohydrological feedbacks of soil water depletion, are not well understood. Ecophysiological processes of mature Fremont cottonwood and coyote willow stands were examined over four consecutive growing seasons (2004-2007) near Salt Lake City, Utah, USA. The tree stands occurred near the inlet of a reservoir that was drained in the spring of 2005 and remained empty until mid-summer of 2006, effectively removing the primary water source for most of two growing seasons. Stem sap flux density (Js) in cottonwood was highly correlated with volumetric soil moisture (theta) in the upper 60 cm and decreased sevenfold as soil moisture dropped from 12% to 7% after the reservoir was drained. Conversely, Js in willow was marginally correlated with 0 and decreased by only 25% during the same period. Opposite patterns emerged during the following growing season: willow had a lower whole-plant conductance (kt) in June and higher leaf carbon isotope ratios (delta13C) than cottonwood in August, whereas k(t) and delta13C were otherwise similar between species. Water relations in both species recovered quickly from soil water depletion, with the exception that sapwood area to stem area (As:Ast) was significantly lower in both species after the 2007 growing season compared to 2004. Results suggest that cottonwood has a greater

  10. White willow sexual regeneration capacity under estuarine conditions in times of climate change

    NASA Astrophysics Data System (ADS)

    Markus-Michalczyk, Heike; Hanelt, Dieter; Denstorf, Julian; Jensen, Kai

    2016-10-01

    Tidal wetlands provide both habitats for coastal populations and wildlife, and ecosystem services for human welfare. Building with nature regarding cost-effective coastal protection is of increasing interest. Much research has been carried out on plant reproduction capacities in mangroves and salt marshes, but less is known on this issue in tidal freshwater wetlands. Willows are being successfully used for bank stabilization in riverine habitats, however, today white willow softwood forests in tidal wetlands are highly fragmented, and restoration is required e.g. by the European Habitats Directive. Recently, tolerance to increasing salinity and tidal flooding was found for vegetative propagules of floodplain willows. However, the establishment of autochthonous sexual recruits is necessary to conserve the genetic diversity of local populations, and thus may be preferable in restoration. The germination and early seedling establishment of Salix alba (white willow) was experimentally studied under simulated estuarine conditions. The species tolerance to increasing salinity (0, 0.5, 1, 1.5, and 2) was tested in a climate chamber, and its tolerance to flooding at different tidal treatments (control, spring tide, daily tide 15 min and 2 h flooding) in the greenhouse. Germination was neither affected by increasing salinity nor by tidal flooding. Salix seedlings established up to salinity 1.5, but cotyledon performance and radicle growth was largely reduced at salinity 2. Under tidal flooding, seedling growth was similar in all treatments. However, in the treatments with daily tides seedling anchorage in the substrate took more than two weeks, and fewer seedlings reached a suitable length to approach the high water line. We assess S. alba sexual regeneration under estuarine conditions as generally possible. Further studies are needed on the effects of sedimentation-erosion processes on willow establishment in the field, especially on feedbacks between Salix survival and

  11. Physiological and morphological responses of pine and willow saplings to post-fire salvage logging

    NASA Astrophysics Data System (ADS)

    Millions, E. L.; Letts, M. G.; Harvey, T.; Rood, S. B.

    2015-12-01

    With global warming, forest fires may be increasing in frequency, and post-fire salvage logging may become more common. The ecophysiological impacts of this practice on tree saplings remain poorly understood. In this study, we examined the physiological and morphological impacts of increased light intensity, due to post-fire salvage logging, on the conifer Pinus contorta (pine) and deciduous broadleaf Salix lucida (willow) tree and shrub species in the Crowsnest Pass region of southern Alberta. Photosynthetic gas-exchange and plant morphological measurements were taken throughout the summer of 2013 on approximately ten year-old saplings of both species. Neither species exhibited photoinhibition, but different strategies were observed to acclimate to increased light availability. Willow saplings were able to slightly elevate their light-saturated rate of net photosynthesis (Amax) when exposed to higher photosynthetic photon flux density (PPFD), thus increasing their growth rate. Willow also exhibited increased leaf inclination angles and leaf mass per unit area (LMA), to decrease light interception in the salvage-logged plot. By contrast, pine, which exhibited lower Amax and transpiration (E), but higher water-use efficiency (WUE = Amax/E) than willow, increased the rate at which electrons were moved through and away from the photosynthetic apparatus in order to avoid photoinhibition. Acclimation indices were higher in willow saplings, consistent with the hypothesis that species with short-lived foliage exhibit greater acclimation. LMA was higher in pine saplings growing in the logged plot, but whole-plant and branch-level morphological acclimation was limited and more consistent with a response to decreased competition in the logged plot, which had much lower stand density.

  12. G-fibre cell wall development in willow stems during tension wood induction.

    PubMed

    Gritsch, Cristina; Wan, Yongfang; Mitchell, Rowan A C; Shewry, Peter R; Hanley, Steven J; Karp, Angela

    2015-10-01

    Willows (Salix spp.) are important as a potential feedstock for bioenergy and biofuels. Previous work suggested that reaction wood (RW) formation could be a desirable trait for biofuel production in willows as it is associated with increased glucose yields, but willow RW has not been characterized for cell wall components. Fasciclin-like arabinogalactan (FLA) proteins are highly up-regulated in RW of poplars and are considered to be involved in cell adhesion and cellulose biosynthesis. COBRA genes are involved in anisotropic cell expansion by modulating the orientation of cellulose microfibril deposition. This study determined the temporal and spatial deposition of non-cellulosic polysaccharides in cell walls of the tension wood (TW) component of willow RW and compared it with opposite wood (OW) and normal wood (NW) using specific antibodies and confocal laser scanning microscopy and transmission electron microscopy. In addition, the expression patterns of an FLA gene (SxFLA12) and a COBRA-like gene (SxCOBL4) were compared using RNA in situ hybridization. Deposition of the non-cellulosic polysaccharides (1-4)-β-D-galactan, mannan and de-esterified homogalacturonan was found to be highly associated with TW, often with the G-layer itself. Of particular interest was that the G-layer itself can be highly enriched in (1-4)-β-D-galactan, especially in G-fibres where the G-layer is still thickening, which contrasts with previous studies in poplar. Only xylan showed a similar distribution in TW, OW, and NW, being restricted to the secondary cell wall layers. SxFLA12 and SxCOBL4 transcripts were specifically expressed in developing TW, confirming their importance. A model of polysaccharides distribution in developing willow G-fibre cells is presented.

  13. Reduced Population Control of an Insect Pest in Managed Willow Monocultures

    PubMed Central

    Dalin, Peter; Kindvall, Oskar; Björkman, Christer

    2009-01-01

    Background There is a general belief that insect outbreak risk is higher in plant monocultures than in natural and more diverse habitats, although empirical studies investigating this relationship are lacking. In this study, using density data collected over seven years at 40 study sites, we compare the temporal population variability of the leaf beetle Phratora vulgatissima between willow plantations and natural willow habitats. Methodology/Principal Findings The study was conducted in 1999–2005. The density of adult P. vulgatissima was estimated in the spring every year by a knock-down sampling technique. We used two measures of population variability, CV and PV, to compare temporal variations in leaf beetle density between plantation and natural habitat. Relationships between density and variability were also analyzed to discern potential underlying processes behind stability in the two systems. The results showed that the leaf beetle P. vulgatissima had a greater temporal population variability and outbreak risk in willow plantations than in natural willow habitats. We hypothesize that the greater population stability observed in the natural habitat was due to two separate processes operating at different levels of beetle density. First, stable low population equilibrium can be achieved by the relatively high density of generalist predators observed in natural stands. Second, stable equilibrium can also be imposed at higher beetle density due to competition, which occurs through depletion of resources (plant foliage) in the natural habitat. In willow plantations, competition is reduced mainly because plants grow close enough for beetle larvae to move to another plant when foliage is consumed. Conclusion/Significance To our knowledge, this is the first empirical study confirming that insect pest outbreak risk is higher in monocultures. The study suggests that comparative studies of insect population dynamics in different habitats may improve our ability to

  14. Secondary cell wall composition and candidate gene expression in developing willow (Salix purpurea) stems.

    PubMed

    Wan, Yongfang; Gritsch, Cristina; Tryfona, Theodora; Ray, Mike J; Andongabo, Ambrose; Hassani-Pak, Keywan; Jones, Huw D; Dupree, Paul; Karp, Angela; Shewry, Peter R; Mitchell, Rowan A C

    2014-05-01

    The properties of the secondary cell wall (SCW) in willow largely determine the suitability of willow biomass feedstock for potential bioenergy and biofuel applications. SCW development has been little studied in willow and it is not known how willow compares with model species, particularly the closely related genus Populus. To address this and relate SCW synthesis to candidate genes in willow, a tractable bud culture-derived system was developed in Salix purpurea, and cell wall composition and RNA-Seq transcriptome were followed in stems during early development. A large increase in SCW deposition in the period 0-2 weeks after transfer to soil was characterised by a big increase in xylan content, but no change in the frequency of substitution of xylan with glucuronic acid, and increased abundance of putative transcripts for synthesis of SCW cellulose, xylan and lignin. Histochemical staining and immunolabeling revealed that increased deposition of lignin and xylan was associated with xylem, xylem fibre cells and phloem fibre cells. Transcripts orthologous to those encoding xylan synthase components IRX9 and IRX10 and xylan glucuronyl transferase GUX1 in Arabidopsis were co-expressed, and showed the same spatial pattern of expression revealed by in situ hybridisation at four developmental stages, with abundant expression in proto-xylem, xylem fibre and ray parenchyma cells and some expression in phloem fibre cells. The results show a close similarity with SCW development in Populus species, but also give novel information on the relationship between spatial and temporal variation in xylan-related transcripts and xylan composition.

  15. G-fibre cell wall development in willow stems during tension wood induction

    PubMed Central

    Gritsch, Cristina; Wan, Yongfang; Mitchell, Rowan A. C.; Shewry, Peter R.; Hanley, Steven J.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) are important as a potential feedstock for bioenergy and biofuels. Previous work suggested that reaction wood (RW) formation could be a desirable trait for biofuel production in willows as it is associated with increased glucose yields, but willow RW has not been characterized for cell wall components. Fasciclin-like arabinogalactan (FLA) proteins are highly up-regulated in RW of poplars and are considered to be involved in cell adhesion and cellulose biosynthesis. COBRA genes are involved in anisotropic cell expansion by modulating the orientation of cellulose microfibril deposition. This study determined the temporal and spatial deposition of non-cellulosic polysaccharides in cell walls of the tension wood (TW) component of willow RW and compared it with opposite wood (OW) and normal wood (NW) using specific antibodies and confocal laser scanning microscopy and transmission electron microscopy. In addition, the expression patterns of an FLA gene (SxFLA12) and a COBRA-like gene (SxCOBL4) were compared using RNA in situ hybridization. Deposition of the non-cellulosic polysaccharides (1–4)-β-D-galactan, mannan and de-esterified homogalacturonan was found to be highly associated with TW, often with the G-layer itself. Of particular interest was that the G-layer itself can be highly enriched in (1–4)-β-D-galactan, especially in G-fibres where the G-layer is still thickening, which contrasts with previous studies in poplar. Only xylan showed a similar distribution in TW, OW, and NW, being restricted to the secondary cell wall layers. SxFLA12 and SxCOBL4 transcripts were specifically expressed in developing TW, confirming their importance. A model of polysaccharides distribution in developing willow G-fibre cells is presented. PMID:26220085

  16. Uptake of ferrocyanide in willow and poplar trees in a long term greenhouse experiment.

    PubMed

    Dimitrova, Tsvetelina; Repmann, Frank; Raab, Thomas; Freese, Dirk

    2015-04-01

    Phytoremediation of sites contaminated with iron cyanides can be performed using poplar and willow trees. Poplar and willow trees were grown in potting substrate spiked with ferrocyanide concentrations of up to 2,000 mg kg(-1) for 4 and 8 weeks respectively. Soil solution and leaf tissue of different age were sampled for total cyanide analysis every week. Chlorophyll content in the leaves was determined to quantify cyanide toxicity. Results showed that cyanide in the soil solution of spiked soils differed between treatments and on weekly basis and ranged from 0.5 to 1,200 mg l(-1). The maximum cyanide content in willow and poplar leaves was 518 mg kg(-1) fresh weight (FW) and 148 mg kg(-1) FW respectively. Cyanide accumulated in the leaves increased linearly with increasing cyanide concentration in the soil solution. On the long term, significantly more cyanide was accumulated in old leaf tissue than in young tissue. Chlorophyll content in poplar decreased linearly with increasing cyanide in the soil solution and in leaf tissue, and over time. The inhibitory concentration (IC50) value for poplars after 4 weeks of exposure was 173 mg l(-1) and for willow after 8 weeks of exposure-768 mg l(-1). Results show that willows tolerate much more cyanide and over a longer period than poplars, making them very appropriate for remediating sites highly contaminated with iron cyanides.

  17. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings. PMID:27638070

  18. Growth and carbohydrate status of coppice shoots of hybrid poplar following shoot pruning.

    PubMed

    Tschaplinski, T J; Blake, T J

    1995-05-01

    Fifteen, 1-year-old Populus maximowiczii Henry x P. nigra L. 'MN9' trees were decapitated and allowed to sprout. After 8 weeks, all had 6 to 10 coppice shoots. All shoots, except the tallest (dominant) shoot, were removed from five of the trees (pruned treatment), and shoot growth, gas exchange and carbohydrate status were compared in the pruned and unpruned trees. Although photosynthetic rate of recently mature leaves of pruned trees was approximately 50% greater than that of leaves on the dominant shoot of unpruned trees, and the dry weight of leaves of pruned trees was 37% greater than that of the leaves on the dominant shoot of unpruned trees, the shoot dry matter relative growth rate did not differ between treatments. Concentrations of water-soluble carbohydrates and starch in the uppper stem and leaves of the dominant shoot were similar in pruned and unpruned trees. However, relative to that of the dominant shoot in unpruned trees, the lower stem in pruned trees was depleted in both soluble carbohydrates and starch. Starch deposition, assessed as the quantity of (14)C-starch in tissues 24 h after a fully expanded source leaf was labeled with (14)CO(2), was 3.9 times greater in roots of pruned trees than in roots of unpruned trees. We conclude that early removal of all but the dominant shoot reduces the carbohydrate status of the roots and the lower portion of the stem by eliminating the excised shoots as a source of photosynthate.

  19. Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil.

    PubMed

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Fraraccio, Serena; McFarlin, Kelly; Kottara, Anastasia; Glover, Catherine; Macek, Tomas; Leigh, Mary Beth

    2016-01-01

    Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders. PMID:27313574

  20. Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil

    PubMed Central

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Fraraccio, Serena; McFarlin, Kelly; Kottara, Anastasia; Glover, Catherine; Macek, Tomas; Leigh, Mary Beth

    2016-01-01

    Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders. PMID:27313574

  1. Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil.

    PubMed

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Fraraccio, Serena; McFarlin, Kelly; Kottara, Anastasia; Glover, Catherine; Macek, Tomas; Leigh, Mary Beth

    2016-01-01

    Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders.

  2. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient.

    PubMed

    Erlandson, Sonya R; Savage, Jessica A; Cavender-Bares, Jeannine M; Peay, Kabir G

    2016-01-01

    Influences of soil environment and willow host species on ectomycorrhizal fungi communities was studied across an hydrologic gradient in temperate North America. Soil moisture, organic matter and pH strongly predicted changes in fungal community composition. In contrast, increased fungal richness strongly correlated with higher plant-available phosphorus. The 93 willow trees sampled for ectomycorrhizal fungi included seven willow species. Host identity did not influence fungal richness or community composition, nor was there strong evidence of willow host preference for fungal species. Network analysis suggests that these mutualist interaction networks are not significantly nested or modular. Across a strong environmental gradient, fungal abiotic niche determined the fungal species available to associate with host plants within a habitat.

  3. Short- and longer-term effects of the willow root system on metal extractability in contaminated dredged sediment.

    PubMed

    Vervaeke, P; Tack, F M G; Lust, N; Verloo, M

    2004-01-01

    Willow (Salix spp.) stands are often proposed as vegetation covers for the restoration and stabilization of contaminated and derelict land. Planting willows on dredged sediment disposal sites for biomass production can be an alternative to traditional capping techniques. However, with the introduction of willow stands on dredged sediment disposal sites, the possibility of increased contaminant availability in the root zone must be acknowledged as it can increase the risk of leaching. Two trials investigated the availability of Cd, Zn, Cu, and Pb in the root zones of willows grown on contaminated sediment. To assess the effects of willow root growth on metal extractability and mobility, bulk and rhizosphere sediment samples were extracted with deionized water, ammonium acetate at pH 7, and ammonium acetate-EDTA at pH 4.65. A rhizobox experiment was used to investigate the short-term effect of willow roots on metal availability in oxic and anoxic sediment. Longer-term effects were assessed in a field trial. The rhizobox trial showed that Cd, Zn, and Cu extractability in the rhizosphere increased while the opposite was observed for Pb. This was attributed to the increased willow-induced oxidation rate in the root zone as a result of aeration and evapotranspiration, which masked the direct chemical and biological influences of the willow roots. The field trial showed that Cu and Pb, but not Cd, were more available in the root zone after water and ammonium acetate (pH 7) extraction compared with the bulk sediment. Sediment in the root zone was better structured and aggregated and thus more permeable for downward water flows, causing leaching of a fraction of the metals and significantly lower total contents of Cd, Cu, and Pb. These findings indicate that a vegetation cover strategy to stabilize sediments can increase metal availability in the root zone and that potential metal losses to the environment should be considered. PMID:15224934

  4. Collembola populations under sclerophyllous coppices in Provence (France): comparison between two types of vegetation, Quercus ilex L. and Quercus coccifera L.

    NASA Astrophysics Data System (ADS)

    Cortet, Jérôme; Poinsot-Balaguer, Nicole

    1998-10-01

    A comparative analysis of soil Collembola using two types of sclerophyllous vegetation ( Quercus ilex and Quercus coccifera) was performed at a calcareous site in Provence (France). Collembola populations were examined over a one-year period (11 successive months) in three different soil layers. Although no statistically significant differences could be observed for Collembola abundance and diversity, multivariate analyses (FCA) differentiated the two coppices. Phenologies of some species showed specific responses to the microclimate induced by edaphic conditions. Even though the two coppices were sclerophyllous, the structure of each vegetation, the quantity and quality of litter, which were different, could influence environmental conditions and thus the dynamics of collembolan populations.

  5. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    PubMed

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to <15% of initial values. A flushing treatment to remove excess salts was therefore not necessary. Irrigation had an impact on biosolids attributes such as salinity and pH, and that this had an influence on metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a

  6. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  7. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies

    PubMed Central

    Nyman, Tommi; Julkunen-Tiitto, Riitta

    2000-01-01

    The ability to induce galls on plants has evolved independently in many insect orders, but the adaptive significance and evolutionary consequences of gall induction are still largely unknown. We studied these questions by analyzing the concentrations of various plant defense compounds in willow leaves and sawfly galls. We found that the galls are probably nutritionally beneficial for the sawfly larvae, because the concentrations of most defensive phenolics are substantially lower in gall interiors than in leaves. More importantly, changes in chemistry occur in a similar coordinated pattern in all studied willow species, which suggests that the insects control the phenolic biosynthesis in their hosts. The resulting convergence of the chemical properties of the galls both within and between host species indicates that the role of plant chemistry in the evolution of host shifts may be fundamentally less significant in gallers than in other phytophagous insects. PMID:11078506

  8. How drought severity constrains GPP and its partitioning among carbon pools in a Quercus ilex coppice?

    NASA Astrophysics Data System (ADS)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-06-01

    The partitioning of photosynthates toward biomass compartments has a crucial role in the carbon sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought prone forests. We analyzed the fate of GPP in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Gross and net carbon fluxes between the ecosystem and the atmosphere were measured with an eddy-covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy-covariance fluxes with annual productions we managed to close a C budget and derive values of autotrophic and heterotrophic respirations, NPP and carbon use efficiency (CUE, the ratio between NPP and GPP). Average values of yearly NEP, GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding ANPP components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems. Gross and net carbon exchange between the ecosystem and the atmosphere were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected, the stem growth, to the least affected, the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease more slightly in response to drought than GPP and NPP, probably due to drought-acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem and highlight the value of maintaining continuous experimental

  9. The Study of Interactions between Active Compounds of Coffee and Willow (Salix sp.) Bark Water Extract

    PubMed Central

    Durak, Agata; Gawlik-Dziki, Urszula

    2014-01-01

    Coffee and willow are known as valuable sources of biologically active phytochemicals such as chlorogenic acid, caffeine, and salicin. The aim of the study was to determine the interactions between the active compounds contained in water extracts from coffee and bark of willow (Salix purpurea and Salix myrsinifolia). Raw materials and their mixtures were characterized by multidirectional antioxidant activities; however, bioactive constituents interacted with each other. Synergism was observed for ability of inhibition of lipid peroxidation and reducing power, whereas compounds able to scavenge ABTS radical cation acted antagonistically. Additionally, phytochemicals from willow bark possessed hydrophilic character and thermostability which justifies their potential use as an ingredient in coffee beverages. Proposed mixtures may be used in the prophylaxis or treatment of some civilization diseases linked with oxidative stress. Most importantly, strong synergism observed for phytochemicals able to prevent lipids against oxidation may suggest protective effect for cell membrane phospholipids. Obtained results indicate that extracts from bark tested Salix genotypes as an ingredient in coffee beverages can provide health promoting benefits to the consumers; however, this issue requires further study. PMID:25013777

  10. Establishment, sex structure and breeding system of an exotic riparian willow, Salix X rubens

    USGS Publications Warehouse

    Shafroth, Patrick B.; Scott, Michael L.; Friedman, Jonathan M.; Laven, Richard D.

    1994-01-01

    Several Eurasian tree willows (Salix spp.) have become naturalized in riparian areas outside of their native range. Salix x rubens is a Eurasian willow that is conspicuous along streams in the high plains of Colorado. We examined establishment of seedlings and cuttings, the sex structure and the breeding system of S. x rubens. An experiment was conducted on establishment and growth of seedlings and cuttings under a range of hydrologic conditions. Seedlings became established under all conditions except when flooded, although many fewer seedlings became established where soil surface conditions were relatively dry. Cuttings became established under all experimental conditions, but most frequently where soil moisture was highest. The sex structure of S. x rubens was determined along several streams in the Colorado high plains. Of 2175 trees surveyed, >99% (2172) were female. Salix x rubens produce viable seed apparently as a result of hybridization with another Eurasian willow, S. alba var. vitellina. Salix x rubens often reproduces vegetatively, which, combined with low hybrid seedling survival in the field, may explain the unusual sex structure. Salix x rubens will likely continue to spread vegetatively in high plains riparian areas, and the potential for spread through hybridization could increase if males of compatible Salix spp. are planted near extant S. x rubens.

  11. Using fractal geometry to determine phytotoxicity of landfill leachate on willow.

    PubMed

    Bialowiec, Andrzej; Randerson, Peter F; Kopik, Monika

    2010-04-01

    Phytotoxicological tests were conducted during 6weeks on the willow Salix amygdalina using six concentrations of landfill leachate. Plants were exposed to landfill leachate solutions using two regimes: (A) - the willow shoots were watered by leachate solution from the beginning of the test; (B) - the willow shoots were cultivated in pots with clean water during 4weeks, then water was exchanged for leachate solutions. The tolerance of plants to prepared leachate concentration was determined by observations of morphological parameters of leaves including their fractal dimension. The lowest effective concentration (LOEC) was calculated. Results showed that in regime A, all measured parameters indicated similar response of plants to phytotoxic compounds in leachate. The LOEC was in the range 4.69-5.63% of leachate concentration. In regime B, only such parameters as leaf length and fractal dimension indicated a marked response (LOEC was much lower for other parameters, 0.8% and 1.84% respectively). Leaf length and, especially, fractal dimension are shown to be good indicators of plant response to toxicants in their environment.

  12. Vegetative reproduction capacities of floodplain willows--cutting response to competition and biomass loss.

    PubMed

    Radtke, A; Mosner, E; Leyer, I

    2012-03-01

    While several studies on regeneration in Salicaceae have focused on seedling recruitment, little is known about factors controlling their vegetative reproduction. In two greenhouse experiments, we studied the response of floodplain willows (Salix fragilis, S. viminalis, S. triandra) to competition with Poa trivialis, and to shoot and root removal when planted as vegetative cuttings. In the first experiment, growth performance variables were analysed in relation to full competition, shoot competition, root competition and control, taking into account two different water levels. After 9 weeks, shoots were removed and the resprouting capacity of the bare cuttings was recorded. In the second experiment, the cutting performance of the three floodplain and an additional two fen willow species (S. cinerea, S. aurita) was compared when grown in three different soil compositions and with two different water levels. After 9 weeks, shoot and root biomass was removed and the bare cuttings were replanted to test their ability to resprout. Cutting performance and secondary resprouting were negatively affected by full and shoot competition while root competition had no or weak effects. The floodplain species performed better than the fen species in all soil types and water levels. Secondary resprouting capacity was also higher in the floodplain species, which showed an additional strong positive response to the previous waterlogging treatment. The results contribute to understanding of the vegetative regeneration ecology of floodplain willows, and suggest that the use of vegetative plantings in restoration plantings could be an effective strategy for recovering floodplain forests.

  13. Polymorphism and Divergence in Two Willow Species, Salix viminalis L. and Salix schwerinii E. Wolf

    PubMed Central

    Berlin, Sofia; Fogelqvist, Johan; Lascoux, Martin; Lagercrantz, Ulf; Rönnberg-Wästljung, Ann Christin

    2011-01-01

    We investigated species divergence, present and past gene flow, levels of nucleotide polymorphism, and linkage disequilibrium in two willows from the plant genus Salix. Salix belongs together with Populus to the Salicaceae family; however, most population genetic studies of Salicaceae have been performed in Populus, the model genus in forest biology. Here we present a study on two closely related willow species Salix viminalis and S. schwerinii, in which we have resequenced 33 and 32 nuclear gene segments representing parts of 18 nuclear loci in 24 individuals for each species. We used coalescent simulations and estimated the split time to around 600,000 years ago and found that there is currently limited gene flow between the species. Mean intronic nucleotide diversity across gene segments was slightly higher in S. schwerinii (πi = 0.00849) than in S. viminalis (πi = 0.00655). Compared with other angiosperm trees, the two willows harbor intermediate levels of silent polymorphisms. The decay of linkage disequilibrium was slower in S. viminalis compared with S. schwerinii, and we speculate that this is due to different demographic histories as S. viminalis has been partly domesticated in Europe. PMID:22384349

  14. The study of interactions between active compounds of coffee and willow (Salix sp.) bark water extract.

    PubMed

    Durak, Agata; Gawlik-Dziki, Urszula

    2014-01-01

    Coffee and willow are known as valuable sources of biologically active phytochemicals such as chlorogenic acid, caffeine, and salicin. The aim of the study was to determine the interactions between the active compounds contained in water extracts from coffee and bark of willow (Salix purpurea and Salix myrsinifolia). Raw materials and their mixtures were characterized by multidirectional antioxidant activities; however, bioactive constituents interacted with each other. Synergism was observed for ability of inhibition of lipid peroxidation and reducing power, whereas compounds able to scavenge ABTS radical cation acted antagonistically. Additionally, phytochemicals from willow bark possessed hydrophilic character and thermostability which justifies their potential use as an ingredient in coffee beverages. Proposed mixtures may be used in the prophylaxis or treatment of some civilization diseases linked with oxidative stress. Most importantly, strong synergism observed for phytochemicals able to prevent lipids against oxidation may suggest protective effect for cell membrane phospholipids. Obtained results indicate that extracts from bark tested Salix genotypes as an ingredient in coffee beverages can provide health promoting benefits to the consumers; however, this issue requires further study. PMID:25013777

  15. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows

    NASA Astrophysics Data System (ADS)

    Forbes, B. C.; Macias Fauria, M.; Zetterberg, P.

    2009-12-01

    Growth in arctic vegetation is generally expected to increase under a warming climate, particularly among deciduous shrubs. We analyzed annual ring growth for an abundant and nearly circumpolar erect willow (Salix lanata L.) from the coastal zone of the northwest Russian Arctic (Nenets Autonomous Okrug). The resulting chronology is strongly related to summer temperature for the period 1942-2005. Remarkably high correlations occur at long distances (>1600 km) across the tundra and taiga zones of West Siberia and Eastern Europe. We also found a clear relationship with photosynthetic activity for upland vegetation at a regional scale for the period 1981-2005, confirming a parallel ‘greening’ trend reported for similarly warming North American portions of the tundra biome. The standardized growth curve suggests a significant increase in shrub willow growth over the last six decades. These findings are in line with field and remote sensing studies that have assigned a strong shrub component to the reported greening signal since the early 1980s. Furthermore, the growth trend agrees with qualitative observations by nomadic Nenets reindeer herders of recent increases in willow size in the region. The quality of the chronology as a climate proxy is exceptional. Given its wide geographic distribution and the ready preservation of wood in permafrost, S. lanata L. has great potential for extended temperature reconstructions in remote areas across the Arctic.

  16. Contrasting drought survival strategies of sympatric willows (genus: Salix): consequences for coexistence and habitat specialization.

    PubMed

    Savage, Jessica A; Cavender-Bares, Jeannine M

    2011-06-01

    Many willow species (genus: Salix) co-occur within habitats (α-diversity) and across the landscape (β-diversity) throughout North America. This high diversity is challenging to explain because closely related species often share similar functional traits and thus experience heightened competition and shared pest and pathogen susceptibility. To investigate whether traits related to drought survival are important in maintaining diversity, we conducted an experimental dry-down on six willow species in a greenhouse. We compared species' growth rates, stem and leaf hydraulics, leaf function and dieback and examined potential associations between their drought responses and habitat affinities. Habitat affinities were characterized based on species occurrence in randomly established field plots in central Minnesota. Overall, species that occur in drier, more seasonally variable habitats tended to have higher water-use efficiency, and faster growth rates than species from wetter habitats. However, the greatest difference in drought survival strategies was found between two species with similar habitat affinities. We conclude that differences in willow species could be important in both driving habitat differentiation and permitting temporal differentiation in resource utilization within habitats. Therefore, species' water-use strategies could be important in maintaining both α- and β-diversity across the landscape.

  17. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.).

    PubMed

    Pucholt, P; Rönnberg-Wästljung, A-C; Berlin, S

    2015-06-01

    Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover.

  18. The study of interactions between active compounds of coffee and willow (Salix sp.) bark water extract.

    PubMed

    Durak, Agata; Gawlik-Dziki, Urszula

    2014-01-01

    Coffee and willow are known as valuable sources of biologically active phytochemicals such as chlorogenic acid, caffeine, and salicin. The aim of the study was to determine the interactions between the active compounds contained in water extracts from coffee and bark of willow (Salix purpurea and Salix myrsinifolia). Raw materials and their mixtures were characterized by multidirectional antioxidant activities; however, bioactive constituents interacted with each other. Synergism was observed for ability of inhibition of lipid peroxidation and reducing power, whereas compounds able to scavenge ABTS radical cation acted antagonistically. Additionally, phytochemicals from willow bark possessed hydrophilic character and thermostability which justifies their potential use as an ingredient in coffee beverages. Proposed mixtures may be used in the prophylaxis or treatment of some civilization diseases linked with oxidative stress. Most importantly, strong synergism observed for phytochemicals able to prevent lipids against oxidation may suggest protective effect for cell membrane phospholipids. Obtained results indicate that extracts from bark tested Salix genotypes as an ingredient in coffee beverages can provide health promoting benefits to the consumers; however, this issue requires further study.

  19. An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows

    PubMed Central

    Corol, Delia I.; Harflett, Claudia; Beale, Michael H.; Ward, Jane L.

    2014-01-01

    Future improvement of woody biomass crops such as willow and poplar relies on our ability to select for metabolic traits that sequester more atmospheric carbon into biomass, or into useful products to replace petrochemical streams. We describe the development of metabotyping screens for willow, using combined 1D 1H-NMR-MS. A protocol was developed to overcome 1D 1H-NMR spectral alignment problems caused by variable pH and peak broadening arising from high organic acid levels and metal cations. The outcome was a robust method to allow direct statistical comparison of profiles arising from source (leaf) and sink (stem) tissues allowing data to be normalised to a constant weight of the soluble metabolome. We also describe the analysis of two willow biomass varieties, demonstrating how fingerprints from 1D 1H-NMR-MS vary from the top to the bottom of the plant. Automated extraction of quantitative data of 56 primary and secondary metabolites from 1D 1H-NMR spectra was realised by the construction and application of a Salix metabolite spectral library using the Chenomx software suite. The optimised metabotyping screen in conjunction with automated quantitation will enable high-throughput screening of genetic collections. It also provides genotype and tissue specific data for future modelling of carbon flow in metabolic networks. PMID:25353313

  20. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.)

    PubMed Central

    Pucholt, P; Rönnberg-Wästljung, A-C; Berlin, S

    2015-01-01

    Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover. PMID:25649501

  1. Rotational Energy.

    ERIC Educational Resources Information Center

    Lockett, Keith

    1988-01-01

    Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)

  2. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  3. An Integrated Spatially Dynamic Disturbance and Forest Soil Carbon Model: Preliminary Results from Willow Creek Experimental Forest

    NASA Astrophysics Data System (ADS)

    Scheller, R. M.; Hua, D.; Bolstad, P. V.

    2008-12-01

    Total forest carbon (C) storage is determined by forest succession, multiple interacting disturbances, climate and the edaphic properties of a site or region, including soil texture and depth. How these complex processes interact will determine forest carbon dynamics at landscape and regional scales. We have developed a new succession extension for the LANDIS-II forest landscape simulation model that incorporates the belowground soil C dynamics of the Century soil model. This extension simulates three primary soil organic matter (SOM) pools (fast, slow, passive), litter dynamics, and nitrogen (N) feedbacks to overstory production. The extension was validated against data from the Willow Creek experimental forest in Wisconsin, USA. We subsequently initialized the full model to simulate forest dynamics of 10,000 ha of the surrounding forest landscape. We simulated a representative harvest regime and a historic wind throw regime (50 year wind rotation period, including light, moderate, and extreme events), two common disturbances in mesic forests of the Lake States. We also simulated forest change and total C storage assuming no atmospheric N deposition and N deposition equivalent to 2008 rates. Our results indicate a strong feedback from harvesting to litter C and the fast and slow SOM pools. The passive SOM pool was not significantly altered. Wind disturbance had a negligible effect on all pools. Simulations without N deposition significantly underestimated contemporary forest productivity and the system was more sensitive to disturbances when N deposition was excluded. In conclusion, we have developed a robust model of above and belowground C and N cycling that can readily plug into an existing forest modeling framework to simulate landscape and regional scale forest dynamics and the interactions among forest disturbances, climate change, and soil processes.

  4. An Apparent Trade-Off between Direct and Signal-Based Induced Indirect Defence against Herbivores in Willow Trees

    PubMed Central

    Yoneya, Kinuyo; Uefune, Masayoshi; Takabayashi, Junji

    2012-01-01

    Signal-based induced indirect defence refers to herbivore-induced production of plant volatiles that attract carnivorous natural enemies of herbivores. Relationships between direct and indirect defence strategies were studied using tritrophic systems consisting of six sympatric willow species, willow leaf beetles (Plagiodera versicolora), and their natural predators, ladybeetles (Aiolocaria hexaspilota). Relative preferences of ladybeetles for prey-infested willow plant volatiles, indicating levels of signal-based induced indirect defence, were positively correlated with the vulnerability of willow species to leaf beetles, assigned as relative levels of direct defence. This correlation suggested a possible trade-off among the species, in terms of resource limitation between direct defence and signal-based induced indirect defence. However, analyses of volatiles from infested and uninfested plants showed that the specificity of infested volatile blends (an important factor determining the costs of signal-based induced indirect defence) did not affect the attractiveness of infested plant volatiles. Thus, the suggested trade-off in resource limitation was unlikely. Rather, principal coordinates analysis showed that this ‘apparent trade-off’ between direct and signal-based induced indirect defence was partially explained by differential preferences of ladybeetles to infested plant volatiles of the six willow species. We also showed that relative preferences of ladybeetles for prey-infested willow plant volatiles were positively correlated with oviposition preferences of leaf beetles and with the distributions of leaf beetles in the field. These correlations suggest that ladybeetles use the specificity of infested willow plant volatiles to find suitable prey patches. PMID:23251559

  5. Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites.

    PubMed

    Vandecasteele, Bart; De Vos, Bruno; Tack, Filip M G

    2002-11-01

    Salix species and Sambucus nigra L. (elder) naturally invade dredged sediment landfills and are commonly encountered on substrates contaminated with heavy metals. Foliar concentrations of Cd and Zn in four Salix species and elder were explored in the field. Metal contents in dredged sediment derived soils were elevated compared to baseline concentration levels reported for Flanders. To evaluate foliar concentrations, reference data were compiled from observations in nurseries, young plantations and unpolluted sites with volunteer willow vegetation. Willows grown on polluted dredged sediment landfills showed elevated foliar Cd and Zn concentrations (>6.6 mg Cd/kg DW and >700 mg Zn/kg DW). This was not the case for elder. For willow, a significant relation was found between soil total Zn or Cd and foliar Zn or Cd, regardless of age, species, or clone. Willows proved to be useful bioindicators. Results indicated a possible threat in long-term habitat development of willow brushwood from transfer of Cd and Zn to the food web.

  6. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  7. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism.

    PubMed

    Yu, X-Z; Gu, J-D

    2007-05-01

    The metabolic response of plants to exogenous supply and bioaccumulation of trivalent chromium (Cr(3+) ) was investigated. Pre-rooted young hybrid willows (Salix matsudana Koidz x alba L.) were exposed to hydroponic solution spiked with CrCl(3) at 24.0 degrees C +/- 1 degrees C for 192 hours. Various physiologic parameters of the plants were monitored to determine toxicity from Cr exposure. The transpiration rate of willows exposed to 2.5 mg Cr/L was 49% higher than that of the untreated control plants, but it was decreased by 17% when exposed to 30.0 mg Cr/L. Significant decrease (> or =20%) of soluble protein in young leaves of willows was detected in the treatment group with > or =7.5 mg Cr/L. The measured chlorophyll contents in leaves of treated plants varied with the dose of Cr, but a linear correlation could not be established. The contents of chlorophyll in leaves of willows exposed to > or =7.5 mg Cr/L were higher than that of the untreated plants but lower at 30.0 mg Cr/L. Superoxide dismutase activity (SOD) in leaves between the treated and untreated willows did not show any significant difference, but activities of both catalase (CAT) and peroxidase (POD) in leaf cells of all treated plants were higher than those in the untreated willows. The correlation between the concentration of Cr and CAT activity in leaf cells was the highest of all toxicity assays (R ( 2 ) = 0.9096), indicating that CAT activity was most sensitive to the change in Cr(3+) doses compared with the other selected parameters. Results from the Cr uptake study showed that significant removal of Cr from hydroponic solution was observed in the presence of hybrid willows without showing detectable phytotoxicity, even at high does of Cr. More than 90% of the applied Cr(3+) was removed from the aqueous solution by willows at concentrations up to 7.5 mg Cr/L. Approximately 70% of the initial Cr was recovered in the plant materials. At the low-Cr(3+) treatment (2.5 mg Cr/L), Cr accumulation by

  8. Trophic cascade effects of avian predation on a willow in an urban wetland.

    PubMed

    Wu, Pei-Chen; Shaner, Pei-Jen L

    2016-01-01

    Trophic cascades play a crucial role in ecosystem functioning. In this study, we tested the effects of avian predation on willows (Salix warburgii) and associated arthropods in an urban wetland. We excluded birds by netting around willow branches for 20 months from September-November 2010 to June 2012. We compared the leaf count, leaf area, leaf biomass, bud count, catkin (flower) count and herbivory from pairs of bird-exclusion and no-exclusion branches on 11 trees. Simultaneously, we compared herbivorous and predatory arthropod abundances associated with bird-exclusion and no-exclusion branches. Another nine trees were used as reference branches to assess whether the bird exclusion impacted other branches of the same trees (i.e., no-exclusion branches). Bird exclusion resulted in increased herbivory 1 year after the treatment, followed by a reduced leaf count, leaf area, leaf biomass, bud count and catkin count in the second year. The bird-exclusion branches exhibited greater spider abundance than the no-exclusion branches. However, herbivorous arthropod abundances were similar between the branch types. The reference branches had similar values in all plant traits and for all arthropod abundances to those of the no-exclusion branches. This study demonstrated the branch-level effects of trophic cascades on willows via the exclusion of birds and a resulting reduction in herbivory. However, whether and how the arthropods mediate such effects require further investigation. This study adds to the limited empirical data demonstrating the effects of trophic cascades on plant reproduction. Our findings highlight the importance of bird conservation in urban wetlands. PMID:26391382

  9. Effect of temperature on phytoextraction of hexavalent and trivalent chromium by hybrid willows.

    PubMed

    Yu, Xiao-Zhang; Peng, Xiao-Ying; Xing, Li-Qun

    2010-01-01

    The removal of hexavalent and trivalent chromium from hydroponic solution by plants to changes in temperature was investigated. Pre-rooted hybrid willows (Salix matsudana Koidz x alba L.) were exposed to a nutrient solution spiked with potassium chromate (K(2)CrO(4)) or chromium chloride (CrCl(3)) for 4 days. Ten different temperatures were tested ranging from 11 to 32 degrees C. Total Cr in solutions and in plant materials were all analyzed quantitatively. The results revealed that large amounts of the applied Cr were removed from the hydroponic solution in the presence of the plants. Significantly faster removal of Cr(III) than Cr(VI) was achieved by hybrid willows from the hydroponic solutions at all temperatures (P < 0.01). The removal rates of both chemical forms of Cr by plants increased linearly with the increase of temperatures. The highest removal rate of Cr(VI) was found at 32 degrees C with a value of 1.99 microg Cr/g day, whereas the highest value of Cr(III) was 3.55 microg Cr/g day at the same temperature. Roots were the main sink for Cr accumulation in plants at all temperatures. Translocation of both chemical forms of Cr from roots to lower stems was only found at temperatures > or = 24 degrees C. The temperature coefficient values (Q(10)) were 2.41 and 1.42 for Cr(VI) and Cr(III), respectively, indicating that the removal of Cr(VI) by hybrid willows was much more susceptible to changes in temperature than that of Cr(III). This information suggests that changes in temperature have a substantial influence on the uptake and accumulation of both chemical forms of Cr by plants.

  10. Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis).

    PubMed

    Ucisik, Ahmed Suheyl; Trapp, Stefan

    2006-09-01

    Phenol is an intermediate in the metabolism of plants, but it also is a high-volume production compound frequently found in the environment. The relation between removal, uptake, accumulation, and toxicity of phenol in willow trees (Salix viminalis) was determined. Willows were exposed to phenol levels up to 1000 mg/L in hydroponic solution and sand, respectively. The change on water transpiration of the trees was used to determine toxic effects. In both hydroponic solution and sand, only small inhibition of transpiration was detected up to phenol concentrations of 250 mg/L. For concentrations of 500 mg/L or greater, transpiration fell to 50% or less, and the trees wilted. The trees exposed to 1000 mg/L wilted and eventually died. For initial nominal concentrations of 1000 mg/L, a significantly higher amount of phenol remained at the end of the experiment compared to the amount remaining with all other concentrations. Phenol loss was approximately 90% for the trees that survived, except for trees exposed to the lowest concentration (10 mg/L). The loss of phenol was only 15 to 18% in experiments performed without trees. The results demonstrate a clear relation between removal, accumulation, and toxic effects of phenol in trees. Phenol levels of less than 250 mg/L could be degraded by "in planta" metabolism; therefore, no significant buildup of phenol nor any toxic effects in plants occurred. With higher levels, phenol was still degraded quickly, but an accumulation in trees accompanied by severe toxic effects occurred. Phytoremediation of phenol would be best with concentrations in water or soil solution of less than 250 mg/L, at which the degradation of phenol by willows or associated bacteria is rapid and efficient and the toxic effects on trees are negligible.

  11. Evaporative losses from a common reed-dominated peachleaf willow and cottonwood riparian plant community

    NASA Astrophysics Data System (ADS)

    Kabenge, Isa; Irmak, Suat

    2012-09-01

    Our study is one of the first to integrate and apply within-canopy radiation physics parameters and scaling-up leaf-level stomatal resistace (rL) to canopy resistance (rc) approach to quantify hourly transpiration (TRP) rates of individual riparian plant species—common reed (Phragmites australis), peachleaf willow (Salix amygdaloides), and cottonwood (Populus deltoides)— in a mixed riparian plant community in the Platte River Basin in central Nebraska. Two experimental years (2009 and 2010) were contrasted by warmer air temperature and presence of flood water in 2010. The seasonal average rc values for common reed, peachleaf willow, and cottonwood in 2009 were 76, 70, and 107 s m-1, respectively. The corresponding rc values in the flood year (2010) were 70, 66, and 105 s m-1 for the same species, respectively. In 2009, the seasonal total TRP for common reed, peachleaf willow, and cottonwood were 483, 522, and 431 mm, respectively. Corresponding TRP values in 2010 were greater as 550, 655, and 496 mm, respectively. In 2009, TRP accounted for 64% of ETa during June-September, and the proportion varied between 41% and 69% for most of the season. In 2010, TRP accounted for 61% of ETa during June-September, and the proportion varied between 41% and 65% for most of the season. The average surface evaporation rate of the riparian zone was 0.81 mm d-1 in 2009 and 1.70 mm d-1 in 2010. Seasonal evaporation was 160 mm in 2009 and 312 mm in 2010. The study provides a basis for understanding the dynamics of transpiration for riparian vegetation in response to the environmental conditions and provides valuable water use data for more complete water balance analyses by accounting for the water use of riparian vegetation species.

  12. Uptake, metabolism, and toxicity of methyl tert-butyl ether (MTBE) in weeping willows.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2006-10-11

    Methyl tert-butyl ether (MTBE) is a high volume production chemical and the most commonly used gasoline oxygenate. Uptake, metabolism and toxicity of MTBE in trees were investigated in this study. Pre-rooted weeping willows (Salix babylonica L.) were exposed to hydroponic solution spiked with MTBE and incubated at 25.0+/-1 degrees C for 168 h. The normalized relative transpiration (NRT) rate of weeping willows was used to determine toxicity. MTBE and possible intermediate tert-butyl alcohol (TBA) in solution, tissues of aerial parts of plants, and air were analyzed. Results from the toxicity test showed that severe signs of toxicity (the reduction of the NRT >or=35%) were only found at the treatment group with high doses of MTBE 400 mg L(-1). Neither chlorosis of leaves nor large reduction in the NRT was observed at MTBE exposure to weeping willows

  13. Uptake, metabolism, and toxicity of methyl tert-butyl ether (MTBE) in weeping willows.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2006-10-11

    Methyl tert-butyl ether (MTBE) is a high volume production chemical and the most commonly used gasoline oxygenate. Uptake, metabolism and toxicity of MTBE in trees were investigated in this study. Pre-rooted weeping willows (Salix babylonica L.) were exposed to hydroponic solution spiked with MTBE and incubated at 25.0+/-1 degrees C for 168 h. The normalized relative transpiration (NRT) rate of weeping willows was used to determine toxicity. MTBE and possible intermediate tert-butyl alcohol (TBA) in solution, tissues of aerial parts of plants, and air were analyzed. Results from the toxicity test showed that severe signs of toxicity (the reduction of the NRT >or=35%) were only found at the treatment group with high doses of MTBE 400 mg L(-1). Neither chlorosis of leaves nor large reduction in the NRT was observed at MTBE exposure to weeping willows

  14. Transcriptome Analysis of the Differentially Expressed Genes in the Male and Female Shrub Willows (Salix suchowensis)

    PubMed Central

    Liu, Jingjing; Yin, Tongming; Ye, Ning; Chen, Yingnan; Yin, Tingting; Liu, Min; Hassani, Danial

    2013-01-01

    Background The dioecious system is relatively rare in plants. Shrub willow is an annual flowering dioecious woody plant, and possesses many characteristics that lend it as a great model for tracking the missing pieces of sex determination evolution. To gain a global view of the genes differentially expressed in the male and female shrub willows and to develop a database for further studies, we performed a large-scale transcriptome sequencing of flower buds which were separately collected from two types of sexes. Results Totally, 1,201,931 high quality reads were obtained, with an average length of 389 bp and a total length of 467.96 Mb. The ESTs were assembled into 29,048 contigs, and 132,709 singletons. These unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 291 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified 806 differentially expressed genes between the male and female flower buds. And 33 of them located on the incipient sex chromosome of Salicaceae, among which, 12 genes might involve in plant sex determination empirically. These genes were worthy of special notification in future studies. Conclusions In this study, a large number of EST sequences were generated from the flower buds of a male and a female shrub willow. We also reported the differentially expressed genes between the two sex-type flowers. This work provides valuable information and sequence resources for uncovering the sex determining genes and for future functional genomics analysis of Salicaceae spp. PMID:23560075

  15. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales) on Willows in China.

    PubMed

    Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto

    2015-01-01

    The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was

  16. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales) on Willows in China

    PubMed Central

    Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto

    2015-01-01

    The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was

  17. Nitrogen removal from landfill leachate in constructed wetlands with reed and willow: redox potential in the root zone.

    PubMed

    Białowiec, Andrzej; Davies, Laura; Albuquerque, Antonio; Randerson, Peter F

    2012-04-30

    This study investigated the effects of reed and willow on bioremediation of landfill leachate in comparison with an unplanted control by measuring redox potential levels in the rhizosphere of microcosm systems in a greenhouse. Plants had a significant influence on redox potential relative to the plant-less system. Redox potential in the reed rhizosphere was anoxic (mean -102±85 mV), but it was the least negative, being significantly higher than in the willow (mean -286±118 mV), which had the lowest Eh. Redox potential fluctuated significantly in the willow rhizosphere during daylight hours, with large decreases in the morning. Levels of NH(4)(+) decreased significantly in the first day of the experiment and remained at similar low levels in all three variants for the next four weeks of the experiment. Following this removal of ammonia significant peaks in NO(2)(-) occurred in the control and reed tanks on the 1st day, and again on 14th day in the control tank up to 13 mg/dm(3). In the willow tank there was also one significant peak of NO(2)(-) in the first week, but only up to 0.5 mg/dm(3). Significant accumulation, within 21 days of NO(3)(-) in all variants was observed, but in tanks with reed and willow the concentration of NO(3)(-) remained significantly lower (<4 mg/dm(3)) than in the unplanted tank (∼35 mg/dm(3)). Final levels of total-nitrogen, nitrate and chemical oxygen demand were considerably lower in the reed and willow tank than in the unplanted tank.

  18. The impact of dense willow stands (Salix purpurea L.) on the hydrology and soil stability of heavily compacted soils

    NASA Astrophysics Data System (ADS)

    Lammeranner, Walter; Obriejetan, Michael; Florineth, Florin

    2010-05-01

    Willows are often used in soil bioengineering techniques for stabilizing heavily compacted soils (e.g. embankments, landfills, levees etc.). Beyond reinforcing and anchoring effects by their root matrix, plants enhance soil stability by decreasing pore-water pressure due to evapotranspiration. In the common praxis of soil bioengineering, it is taken for granted that willow stands have higher evapotranspiration rates than grass-herb (turf) vegetation. But the positive effect of dense willow stands on pore water pressure from the soil bioengineering point of view is insufficiently studied and therefore difficult to quantify. Hence, the study investigates the effect of willow stands on evapotranspiration and seepage compared to grass-herb vegetation using a lysimeter-like setup. The weighable lysimeters are composed of two planted barrels (one with a dense willow stand grown from brush mattresses; one with turf vegetation) and one unplanted barrel. The fill material used is a mineral silt-sand-gravel classified as silty sand compacted to 97% Proctor [DPr], meaning a dry density [ρD] of 1.97 g/cm³. Each barrel is equipped with two soil moisture sensors, four tensiometers and seepage measurement devices. Furthermore the relevant meteorological parameters as precipitation, air temperature, air moisture wind speed and radiation are measured. Plant parameters such as biomass, leaf area index and root growth are observed in 17 additional barrels. The talk is going to deal with methodology and setup of the lysimeter investigations, showing the results of the first growing season of these two vegetation types compared to bare soil. As result of the first growing season, evapotranspiration rates of the willow stands were significantly higher than those found with grass-herb vegetation, whereas seepage was significantly lower.

  19. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales) on Willows in China.

    PubMed

    Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto

    2015-01-01

    The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was

  20. PERMANENT GENETIC RESOURCES: Consensus primers of cyp73 genes discriminate willow species and hybrids (Salix, Salicaceae).

    PubMed

    Trung, Le Quang; VAN Puyvelde, Karolien; Triest, Ludwig

    2008-03-01

    Consensus primers, based on exon sequences of the cyp73 gene family coding for cinnamate 4-hydroxylase (C4H) of the lignin biosynthesis pathway, were designed for the tetraploid willow species Salix alba and Salix fragilis. Diagnostic alleles at species level were observed among introns of three cyp73 genes and allowed unambiguous detection of the first generation and introgressed hybrids in populations. Progeny analysis of a female S. alba with a male introgressed hybrid confirmed the codominant inheritance of each intron. Sequences of the diagnostic alleles of both species were similar to those found in the hybrids.

  1. A Natural History Summary and Survey Protocol for the Southwestern Willow Flycatcher

    USGS Publications Warehouse

    Sogge, Mark K.; ,; Ahlers, Darrell; ,; Sferra, Susan J.; ,

    2010-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus) has been the subject of substantial research, monitoring, and management activity since it was listed as an endangered species in 1995. When proposed for listing in 1993, relatively little was known about the flycatcher's natural history, and there were only 30 known breeding sites supporting an estimated 111 territories rangewide (Sogge and others, 2003a). Since that time, thousands of presence/absences surveys have been conducted throughout the historical range of the flycatcher, and many studies of its natural history and ecology have been completed. As a result, the ecology of the flycatcher is much better understood than it was just over a decade ago. In addition, we have learned that the current status of the flycatcher is better than originally thought: as of 2007, the population was estimated at approximately 1,300 territories distributed among approximately 280 breeding sites (Durst and others, 2008a). Concern about the Southwestern Willow Flycatcher on a rangewide scale was brought to focus by Unitt (1987), who described declines in flycatcher abundance and distribution throughout the Southwest. E. t. extimus populations declined during the 20th century, primarily because of habitat loss and modification from activities, such as dam construction and operation, groundwater pumping, water diversions, and flood control. In 1991, the U.S. Fish and Wildlife Service (USFWS) designated the Southwestern Willow Flycatcher as a candidate category 1 species (U.S. Fish and Wildlife Service, 1991). In July 1993, the USFWS proposed to list E. t. extimus as an endangered species and to designate critical habitat under the Act (U.S. Fish and Wildlife Service, 1993). A final rule listing E. t. extimus as endangered was published in February 1995 (U.S. Fish and Wildlife Service, 1995); critical habitat was designated in 1997 (U.S. Fish and Wildlife Service, 1997). The USFWS Service released a Recovery Plan for

  2. Maintenance and operation of the multispectral data collection and reproduction facilities of the Willow Run Laboratories

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.; Stewart, S. R.

    1972-01-01

    The accomplishments in multispectral mapping during 1970 and (fiscal year) 1971 are presented. The mapping was done with the instrumented C-47 aircraft owned and operated by Willow Run Laboratories of The University of Michigan. Specific information for flight operations sponsored by NASA/MSC (Manned Spacecraft Center) in 1970 and fiscal year 1971 is presented, and a total listing of flights for 1968, 1969, 1970, and fiscal year 1971 is included in the appendices. The data-collection and reproduction facilities are described.

  3. The Willow Hill Community Health Assessment: Assessing the Needs of Children in a Former Slave Community.

    PubMed

    Alfonso, Moya L; Jackson, Gayle; Jackson, Alvin; Hardy, DeShannon; Gupta, Akrati

    2015-10-01

    The overall purpose of this community needs assessment was to explore the perceptions of health and educational needs among youth residing in a rural Georgia community, document existing assets that could be utilized to meet those needs, and to identify socioeconomic barriers and facilitators in health education. A sequential mixed method design was used. Intercept surveys were conducted followed by individual, key informant interviews and a focus group. Survey data was entered into an Excel spreadsheet and SPSS for analysis and descriptive statistics including means and frequencies were calculated. For qualitative interviews, full transcripts were created from audio-recordings and uploaded into NVivo for content analysis. Several health issues were highlighted by the Willow Hill/Portal Georgia community members, including teachers, parents, youth and Willow Hill Heritage and Renaissance Center board members. Some of the health issues identified by youth in the community were low levels of physical activity, obesity, diabetes, lack of healthy food choices, and access to health care services. Including the issues identified by youth, the parents, teachers and board members identified additional health issues in the community such as asthma, hygiene and lack of dental and eye care facilities. Overall, there is a need for better infrastructure and awareness among community members. Utilizing identified assets, including active community leaders, involved faith-based organizations, commitment of community members, presence of land resources, and commitment to physical activity and sports, could modify the current community landscape. PMID:26264907

  4. Testing the growth-differentiation balance hypothesis: dynamic responses of willows to nutrient availability.

    PubMed

    Glynn, Carolyn; Herms, Daniel A; Orians, Colin M; Hansen, Robert C; Larsson, Stig

    2007-01-01

    Here, the growth-differentiation balance hypothesis (GDBH) was tested by quantifying temporal variation in the relative growth rate (RGR), net assimilation rate (NAR), and phenylpropanoid concentrations of two willow species (Salix sericea and Salix eriocephala) across five fertility levels. Initially, RGR increased and total phenylpropanoids declined (although every individual phenolic did not) as fertility increased, but NAR was unaffected. Subsequently, NAR and phenylpropanoids declined in the low fertility treatment, generating a quadratic response of secondary metabolism across the nutrient gradient. As above- and below-ground growth rates equilibrated, NAR and phenylpropanoids increased in the low fertility treatment, re-establishing a negative linear effect of fertility on secondary metabolism. A transient quadratic response of secondary metabolism is predicted when GDBH is integrated with models of optimal phenotypic plasticity, occurring when low NAR imposes carbon constraints on secondary metabolism in low nutrient environments. Once plants acclimate to nutrient limitation, the equilibrium allocation state is predicted to be a negative correlation between growth and secondary metabolism. Although both willow species generally responded according to GDBH, the complexity observed suggests that prediction of the effects of nutrient availability on secondary metabolism (and other plastic responses) in specific cases requires a priori knowledge of the physiological status of the plant and soil nutrient availability.

  5. The Ecology of the Southwestern Willow Flycatcher inCentral Arizona - A 10-Year Synthesis Report

    USGS Publications Warehouse

    Paxton, Eben H.; Sogge, Mark K.; Durst, Scott L.; Theimer, Tad C.; Hatten, James R.

    2007-01-01

    BACKGROUND From 1996 to 2005, the U.S. Geological Survey (USGS) conducted a demographic study of the Southwestern Willow Flycatcher (Empidonax traillii extimus) in Arizona in collaboration with the Arizona Game and Fish Department (AGFD). The study was begun the year following the listing of the Southwestern Willow Flycatcher as an endangered species. At the time of the listing, very little was known about the biology and threats to the flycatcher, and one of the main objectives of the study was to gather detailed long-term information on the biology of the flycatcher. This report is organized into eight chapters. Following the introductory chapter, we deal with specific aspects of flycatcher ecology and habitat use in each of six separate chapters. We end with a concluding chapter that synthesizes information into broad topical themes that address key management issues. Each of the core chapters (chapters 2 through 7) conclude with a list of management considerations derived from the findings of the respective chapter.

  6. Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production.

    PubMed

    Serapiglia, Michelle J; Humiston, Michele C; Xu, Haowen; Hogsett, David A; de Orduña, Ramón M; Stipanovic, Arthur J; Smart, Lawrence B

    2013-01-01

    In the conversion of woody biomass feedstocks into liquid fuel ethanol, the pretreatment process is the most critical and costly step. Variations in biomass composition based on genetic differences or environmental effects have a significant impact on the degree of accessibility accomplished by pretreatment and subsequent sugar release by enzymatic hydrolysis. To evaluate this, biomass from 10 genetically diverse, genotypes of shrub willow (Salix spp.) was pretreated with a hot-water process at two levels of severity, hydrolyzed using a combination of two commercial enzyme cocktails, and the release of hexose and pentose monomers was quantified by high-performance liquid chromatography. Among the genotypes selected for analysis, cellulose content ranged from 39 to 45% (w/w) and lignin content ranged from 20 to 23% (w/w) at harvest. Differences in the effectiveness of the pretreatment process were observed among the various willow genotypes. Correlations were identified between total sugar release and % cellulose and % lignin content. There was a significant effect of pretreatment severity on polysaccharide accessibility, but the response to pretreatments was different among the genotypes. At the high severity pretreatment 'SV1' was the least recalcitrant with sugar release representing as much as 60% of total biomass. These results suggest that structural, as well as chemical characteristics of the biomass may influence pretreatment and hydrolytic efficiency.

  7. Spatially distinct responses within willow to bark stripping by deer: effects on insect herbivory

    NASA Astrophysics Data System (ADS)

    Tanaka, Motonobu; Nakamura, Masahiro

    2015-10-01

    Within individual plants, cervid herbivory may cause positive or negative plant-mediated effects on insect herbivores, depending on where it occurs. Using a combination of field observations and artificial bark-stripping experiments in Hokkaido, Japan, we examined the plant-mediated effects of bark stripping by sika deer ( Cervus nippon yesoensis) on insect herbivory in two spatially distinct parts of willow ( Salix udensis) trees: resprouting leaves below bark-stripping wounds and canopy leaves above. Natural and artificial bark stripping stimulated resprouting from trunks below wounds. Resprouting leaves on bark-stripped trees had lower total phenolics, condensed tannin, and C/N ratios than did canopy leaves on control trees. Herbivory rates were higher in resprouting leaves on bark-stripped trees than in canopy leaves on controls. Conversely, above-wound canopy leaves on bark-stripped trees had higher total phenolics than did those on controls, while herbivory rates were lower in the canopy leaves of bark-stripped trees than in those on controls. These results demonstrate that plant-mediated effects of bark stripping diverge between plant tissues below and above wounds in individual willow trees. We submit that focusing on multiple plant parts can elucidate plant-mediated effects at the whole-plant scale.

  8. Spatially distinct responses within willow to bark stripping by deer: effects on insect herbivory.

    PubMed

    Tanaka, Motonobu; Nakamura, Masahiro

    2015-10-01

    Within individual plants, cervid herbivory may cause positive or negative plant-mediated effects on insect herbivores, depending on where it occurs. Using a combination of field observations and artificial bark-stripping experiments in Hokkaido, Japan, we examined the plant-mediated effects of bark stripping by sika deer (Cervus nippon yesoensis) on insect herbivory in two spatially distinct parts of willow (Salix udensis) trees: resprouting leaves below bark-stripping wounds and canopy leaves above. Natural and artificial bark stripping stimulated resprouting from trunks below wounds. Resprouting leaves on bark-stripped trees had lower total phenolics, condensed tannin, and C/N ratios than did canopy leaves on control trees. Herbivory rates were higher in resprouting leaves on bark-stripped trees than in canopy leaves on controls. Conversely, above-wound canopy leaves on bark-stripped trees had higher total phenolics than did those on controls, while herbivory rates were lower in the canopy leaves of bark-stripped trees than in those on controls. These results demonstrate that plant-mediated effects of bark stripping diverge between plant tissues below and above wounds in individual willow trees. We submit that focusing on multiple plant parts can elucidate plant-mediated effects at the whole-plant scale.

  9. Rivers, dams, and willow flycatchers: a summary of their science and policy connections

    NASA Astrophysics Data System (ADS)

    Graf, William L.; Stromberg, Julie; Valentine, Brad

    2002-10-01

    The southwestern willow flycatcher ( Empidonax traillii extimus) is a riparian bird that spends winter months in Central and South America and summer breeding months in riparian zones of the American Southwest. Decline of the willow flycatcher population to less than 1000 breeding pairs prompted the Federal government to declare the species endangered, triggering a major recovery effort. The most important aspect of recovery is management and improvement of the riparian habitat of the bird population. Although the direct management of the species is primarily a biological issue, fluvial hydrology and geomorphology play an important role in understanding the dynamics of the present bird population and in designing a recovery plan because these physical systems are the substrates for the living communities which include the birds. Contributions of geomorphology and hydrology to the recovery plan include the use of watersheds and river basins as planning and evaluation units; understanding the connections between fluvial forms and riparian vegetation; implications for the bird population of the magnitude, frequency, duration, timing, and rate of change for various river discharges. The installation and operation of dams are the most important causes of hydro-geomorphic and ecological change in the region, so that management of these structures offers primary opportunities to improve the physical and biological conditions for the endangered species.

  10. Population genetic structure of native versus naturalized sympatric shrub willows (Salix; Salicaceae).

    PubMed

    Lin, Juan; Gibbs, James P; Smart, Lawrence B

    2009-04-01

    Vegetative propagation of an introduced species can contribute significantly to its ability to spread and become naturalized, potentially in competition with native species. This study focused on the naturalization of a willow shrub, Salix purpurea, which was introduced to the United States from Europe and is commonly sympatric with the native shrub willow, S. eriocephala. Both species are capable of vegetative and sexual reproduction, but little is known about their relative frequency, nor the impact of clonal propagation on population-level genetic diversity. We analyzed genotypes at several microsatellite loci in 993 individuals belonging to 30 subpopulations of S. eriocephala and 28 subpopulations of S. purpurea in areas of sympatry across three watersheds to compare their genetic diversity and genetic structure. Our results revealed six subpopulations of S. purpurea containing plants with identical multilocus genotypes, while clonal individuals were rare among S. eriocephala populations. These species are dioecious with relatively high levels of heterozygosity, but S. eriocephala had much higher allelic diversity and genotypic diversity than did S. purpurea. These results strongly suggest that vegetative propagation has contributed to the naturalization of S. purpurea and has resulted in higher levels of genetic differentiation among S. purpurea populations than among native S. eriocephala populations.

  11. Testing the growth-differentiation balance hypothesis: dynamic responses of willows to nutrient availability.

    PubMed

    Glynn, Carolyn; Herms, Daniel A; Orians, Colin M; Hansen, Robert C; Larsson, Stig

    2007-01-01

    Here, the growth-differentiation balance hypothesis (GDBH) was tested by quantifying temporal variation in the relative growth rate (RGR), net assimilation rate (NAR), and phenylpropanoid concentrations of two willow species (Salix sericea and Salix eriocephala) across five fertility levels. Initially, RGR increased and total phenylpropanoids declined (although every individual phenolic did not) as fertility increased, but NAR was unaffected. Subsequently, NAR and phenylpropanoids declined in the low fertility treatment, generating a quadratic response of secondary metabolism across the nutrient gradient. As above- and below-ground growth rates equilibrated, NAR and phenylpropanoids increased in the low fertility treatment, re-establishing a negative linear effect of fertility on secondary metabolism. A transient quadratic response of secondary metabolism is predicted when GDBH is integrated with models of optimal phenotypic plasticity, occurring when low NAR imposes carbon constraints on secondary metabolism in low nutrient environments. Once plants acclimate to nutrient limitation, the equilibrium allocation state is predicted to be a negative correlation between growth and secondary metabolism. Although both willow species generally responded according to GDBH, the complexity observed suggests that prediction of the effects of nutrient availability on secondary metabolism (and other plastic responses) in specific cases requires a priori knowledge of the physiological status of the plant and soil nutrient availability. PMID:17725548

  12. The Willow Hill Community Health Assessment: Assessing the Needs of Children in a Former Slave Community.

    PubMed

    Alfonso, Moya L; Jackson, Gayle; Jackson, Alvin; Hardy, DeShannon; Gupta, Akrati

    2015-10-01

    The overall purpose of this community needs assessment was to explore the perceptions of health and educational needs among youth residing in a rural Georgia community, document existing assets that could be utilized to meet those needs, and to identify socioeconomic barriers and facilitators in health education. A sequential mixed method design was used. Intercept surveys were conducted followed by individual, key informant interviews and a focus group. Survey data was entered into an Excel spreadsheet and SPSS for analysis and descriptive statistics including means and frequencies were calculated. For qualitative interviews, full transcripts were created from audio-recordings and uploaded into NVivo for content analysis. Several health issues were highlighted by the Willow Hill/Portal Georgia community members, including teachers, parents, youth and Willow Hill Heritage and Renaissance Center board members. Some of the health issues identified by youth in the community were low levels of physical activity, obesity, diabetes, lack of healthy food choices, and access to health care services. Including the issues identified by youth, the parents, teachers and board members identified additional health issues in the community such as asthma, hygiene and lack of dental and eye care facilities. Overall, there is a need for better infrastructure and awareness among community members. Utilizing identified assets, including active community leaders, involved faith-based organizations, commitment of community members, presence of land resources, and commitment to physical activity and sports, could modify the current community landscape.

  13. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.

    PubMed

    McBride, M B; Martinez, C E; Kim, B

    2016-12-01

    Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg(-1) Zn, 70 mg kg(-1) Cd and 10,000 mg kg(-1) S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.

  14. Identification of quorum sensing signal molecules and oligolignols associated with watermark disease in willow (Salix sp.).

    PubMed

    Huvenne, Hanneke; Goeminne, Geert; Maes, Martine; Messens, Eric

    2008-09-01

    The bacterium Brenneria salicis is the causal agent of watermark disease in willow. This work shows the importance of in situ studies and high-resolution separation of biological samples with ultrahigh performance liquid chromatography combined with ion trap mass spectrometry to unambiguously identify molecular compounds associated with this disease. Approximately 40 oligolignols accumulated in wood sap of watermark diseased willow, and are indicative for degradation of the xylem cell wall, of which 15 were structurally assigned based on an earlier study. Many bacteria are known to produce and release quorum sensing signal molecules that switch on the expression of specific, sometimes pathogenic functions. Two quorum sensing signal molecules, N-(3-oxohexanoyl)-l-homoserine lactone and N-(hexanoyl)-l-homoserine lactone, were present in 4/1 ratios in diseased wood and in high-density in vitro cultures of B. salicis at 0.13-1.2 microM concentrations, and absent in healthy wood and in low-density in vitro cultures of B. salicis. Although it is not a proof, it can be an indication for involvement of quorum sensing in B. salicis pathogenesis. Cyclic dipeptides were present at high concentrations in high-density in vitro cultures of B. salicis, but not in situ, and were found not to be involved in quorum sensing signaling, therefore, the attribution of quorum signal properties to cyclic dipeptides isolated from in vitro cultures of pathogenic bacteria should be reconsidered.

  15. Spatially distinct responses within willow to bark stripping by deer: effects on insect herbivory.

    PubMed

    Tanaka, Motonobu; Nakamura, Masahiro

    2015-10-01

    Within individual plants, cervid herbivory may cause positive or negative plant-mediated effects on insect herbivores, depending on where it occurs. Using a combination of field observations and artificial bark-stripping experiments in Hokkaido, Japan, we examined the plant-mediated effects of bark stripping by sika deer (Cervus nippon yesoensis) on insect herbivory in two spatially distinct parts of willow (Salix udensis) trees: resprouting leaves below bark-stripping wounds and canopy leaves above. Natural and artificial bark stripping stimulated resprouting from trunks below wounds. Resprouting leaves on bark-stripped trees had lower total phenolics, condensed tannin, and C/N ratios than did canopy leaves on control trees. Herbivory rates were higher in resprouting leaves on bark-stripped trees than in canopy leaves on controls. Conversely, above-wound canopy leaves on bark-stripped trees had higher total phenolics than did those on controls, while herbivory rates were lower in the canopy leaves of bark-stripped trees than in those on controls. These results demonstrate that plant-mediated effects of bark stripping diverge between plant tissues below and above wounds in individual willow trees. We submit that focusing on multiple plant parts can elucidate plant-mediated effects at the whole-plant scale. PMID:26253347

  16. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.

    PubMed

    McBride, M B; Martinez, C E; Kim, B

    2016-12-01

    Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg(-1) Zn, 70 mg kg(-1) Cd and 10,000 mg kg(-1) S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content. PMID:27216699

  17. Distribution and speciation of metals in annual rings of black willow.

    PubMed

    Punshon, Tracy; Lanzirotti, Antonio; Harper, Steve; Bertsch, Paul M; Burger, Joanna

    2005-01-01

    Information on the spatial distribution and speciation of metals in nonhyperaccumulator plants is lacking. This study used synchrotron X-ray fluorescence (SXRF) compositional imaging to investigate the spatial distribution of Ni, Mn, Cu, Zn, and Fe in annual rings of black willow (Salix nigra L.) collected from a metal-contaminated area, and used X-ray absorption spectroscopy (XAS) to investigate Ni and Mn speciation in regions of the annual rings with elevated Ni concentrations. Annual rings were recollected in early 2003 from an individual known to be enriched with Ni from previous studies. Compositional imaging showed Ni and associated co-contaminants conservatively located in an annual ring. When compared with a corresponding photomicrograph, SXRF compositional images showed that metals were sharply constrained by the boundaries of the annual ring, indicating a sudden onset and cessation of uptake, and a lack of post-growth mobility of the metals. There was a particularly strong correlation between Ni and Mn in the metal-enriched annual ring (r = 0.8822), which suggested similar transport and binding behavior of these elements. X-ray absorption spectroscopy showed Ni and Mn to be present in the 2+ oxidation state. X-ray absorption near edge structure spectroscopy (XANES) fingerprinting of localized, highly Ni-enriched regions within the lumen of willow xylem vessels found similarities with Ni-pectic acid complexes, Ni-histidine, and NiSO4.

  18. Cadmium and copper uptake and translocation in five willow (Salix L.) species.

    PubMed

    Kuzovkina, Yulia A; Knee, Michael; Quigley, Martin F

    2004-01-01

    The efficacy for phytoremediation of five willow species was tested by experimental copper and cadmium uptake in a greenhouse hydroponic system. Five treatments included two concentrations (5 and 25 microM for each metal) and a control. Metal concentrations in solution as well as solution uptake were monitored. Metal resistance was assessed through effects on the dry weight of roots and shoots. The willow species tested were generally resistant of increased Cu and Cd content. Metal accumulation was found in all plant organs of all species. Growth and transpiration were not decreased by 5 microM of copper and 25 microM of cadmium in the solution for most species. 25 microM copper caused injury and reduced the dry weight for all species after 21 d. Salix nigra was highly resistant of both Cu and Cd and accumulated more metals than other species. Future field study should be conducted to confirm the findings and feasibility of the phytoremediation technology using those species.

  19. Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1H NMR spectroscopy metabolite profiling

    PubMed Central

    Aliferis, Konstantinos A.; Chamoun, Rony; Jabaji, Suha

    2015-01-01

    The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and 1H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib.research.mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs. PMID:26042135

  20. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

    PubMed Central

    Tardif, Stacie; Yergeau, Étienne; Tremblay, Julien; Legendre, Pierre; Whyte, Lyle G.; Greer, Charles W.

    2016-01-01

    The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology. PMID:27660624

  1. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

    PubMed Central

    Tardif, Stacie; Yergeau, Étienne; Tremblay, Julien; Legendre, Pierre; Whyte, Lyle G.; Greer, Charles W.

    2016-01-01

    The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology.

  2. Evaluation of spectral light management on growth of container-grown willow oak, nuttall oak and summer red maple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant response to blue, red, gray or black shade cloth was evaluated with willow oak (Quercus phellos L.), Nuttall oak (Quercus nuttallii Palmer, Nuttall) and Summer Red maple (Acer rubrum L. ‘Summer Red’) liners. Light transmitted through the colored shade cloth had no influence on germination of ...

  3. 76 FR 44602 - Notice of Temporary Closure of Roads and Trails on Public Lands Adjacent to Big Willow Creek in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... Bureau of Land Management Notice of Temporary Closure of Roads and Trails on Public Lands Adjacent to Big Willow Creek in Payette County, ID AGENCY: Bureau of Land Management, Interior. ACTION: Notice of... in effect on public lands administered by the Four Rivers Field Office, Bureau of Land...

  4. 77 FR 2603 - Public Notice for Waiver of Aeronautical Land-Use Assurance; Willow Run Airport; Detroit, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Federal Aviation Administration Public Notice for Waiver of Aeronautical Land-Use Assurance; Willow Run... released for non-aeronautical use. There are no requirements to retain the land for airport use. There are... land is not needed for aeronautical use. Approval does not constitute a commitment by the FAA...

  5. Eriosomatine aphids (Hemiptera, Aphididae, Eriosomatinae) associated with moss and roots of conifer and willow in forests of the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apterous adult morphs of eriosomatine aphids (Hemiptera, Aphididae, Eriosomatinae) associated with moss and/or roots of conifer or willow in forests of the Pacific Northwest including Alaska are described, illustrated, and keyed. In total, seven species (Clydesmithia canadensis Danielsson, Melaphis ...

  6. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects.

    PubMed

    Tardif, Stacie; Yergeau, Étienne; Tremblay, Julien; Legendre, Pierre; Whyte, Lyle G; Greer, Charles W

    2016-01-01

    The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology. PMID:27660624

  7. History of late Holocene earthquakes at the Willow Creek site on the Nephi segment, Wasatch fault zone, Utah

    USGS Publications Warehouse

    Crone, Anthony J.; Personius, Stephen F.; Duross, Christopher; Machette, Michael N.; Mahan, Shannon

    2014-01-01

    This 43-page report presents new data from the Willow Creek site that provides well-defined and narrow bounds on the times of the three youngest earthquakes on the southern strand of the Nephi segment, Wasatch Fault zone, and refines the time of the youngest earthquake to about 200 years ago. This is the youngest surface rupture on the entire Wasatch fault zone, which occurred about a century or less before European settles arrived in Utah. Two trenches at the Willow Creek site exposed three scarp-derived colluvial wedges that are evidence of three paleoearthquakes. OxCal modeling of ages from Willow Creek indicate that paleoearthquake WC1 occurred at 0.2 ± 0.1 ka, WC2 occurred at 1.2 ± 0.1 ka, and WC3 occurred at 1.9 ± 0.6 ka. Stratigraphic constraints on the time of paleoearthquake WC4 are extremely poor, so OxCal modeling only yields a broadly constrained age of 4.7 ± 1.8 ka. Results from the Willow Creek site significantly refine the times of late Holocene earthquakes on the Southern strand of the Nephi segment, and this result, when combined with a reanalysis of the stratigraphic and chronologic information from previous investigations at North Creek and Red Canyon, yield a stronger basis of correlating individual earthquakes between all three sites.

  8. The extracts of Japanese willow tree species are effective forapoptotic desperation or differentiation of acute myeloid leukemia cells

    PubMed Central

    Fujita, Kounosuke; Nomura, Yuji; Sawajiri, Masahiko; Mohapatra, Pravat K.; El-Shemy, Hany A.; Nguyen, Nguyen T.; Hosokawa, Masashi; Miyashita, Kazuo; Maeda, Teruo; Saneoka, Hirofumi; Fujita, Shohei; Fujita, Takayuki

    2014-01-01

    Background: The antileukemic activity of hot water extract of plant parts of some Japanese willow tree species grown at different levels of nitrogen were examined. Materials and Methods: Water extracts of willow leaves were prepared for this studies in different level of nitrogen nutrition. Results: The extracts obtained from the leaves and stem exhibited anti-leukemic activities prominently. The crude hot water extracts of the young growing parts including apex, matured leaves and stem, killed the blasts of acute myeloid leukemia (AML) cells, (HL60 and NB4) after 48h incubation, however, such desperation was far less in the root extract. Similar to the plant parts, response of extracts obtained from different willow species was not identical; the proportion of dead cells relative to whole cells of the culture medium ranged from 21% to 93% among the species. Leaf extracts obtained from the responsive willow species decreased the live cell percentage and increased the dead cell percentage at higher level of nitrogen nutrition. The mode of desperation of leaf extract treated AML cells in such species appeared to be cell apoptosis as shown by binding with fluorescein isothiocyanate (FITC) -labeled Annexin V. Conclusion: Differentiation of alive AML cells continued unabated and apoptosis was poor when extract of an unresponsive species added to the culture medium. PMID:24914277

  9. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-07-01

    During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  10. Both Volatiles and Cuticular Plant Compounds Determine Oviposition of the Willow Sawfly Nematus oligospilus on Leaves of Salix spp. (Salicaceae).

    PubMed

    Braccini, Celina L; Vega, Andrea S; Coll Aráoz, M Victoria; Teal, Peter E; Cerrillo, Teresa; Zavala, Jorge A; Fernandez, Patricia C

    2015-11-01

    Plant volatile organic compounds play a role in selection of host plants by herbivorous insects. Once the insect reaches the plant, contact cues determine host acceptance. Although the willow sawfly Nematus oligospilus (Hymenoptera: Tenthredinidae) can differentiate among willow genotypes, no knowledge is available on the cues used by this insect to seek and accept the host plant. In this study, we recorded behavioral orientation in a Y-tube olfactometer of willow sawfly females to volatiles of the highly preferred genotype Salix nigra and the non-preferred genotype S. viminalis. The volatiles released by undamaged willows of each genotype were analyzed by coupled gas chromatography-mass spectrometry. Contact cues were evaluated first by oviposition preference bioassays after selective leaf wax removal, and then by studying the micromorphology of abaxial and adaxial leaf surfaces and their chemical composition. Willow sawfly females oriented preferentially to S. nigra volatiles, which contained more than 3 times the amount of volatiles than that collected from S. viminalis. Analysis of volatiles showed significant differences in amounts of (Z) and (E)-β-ocimene, undecane, decanal, and β-caryophyllene. The adaxial leaf surface of S. nigra was less preferred after wax removal, suggesting a role of cuticular waxes for oviposition acceptance. No differences were found among the micromorphology of leaf surfaces between preferred and non-preferred genotypes. The chemical analysis of cuticular waxes showed that the abaxial leaf surface of S. viminalis, which is completely avoided for oviposition, possessed 97% of alkanes. The accepted leaf surfaces contained a more diverse wax profile including alcohols, acids, and esters. Thus, non-alkane wax compounds might be related to oviposition. In sum, our study suggests that several cues act in concert to provide oviposition cues for the sawfly N. oligospilus: females are attracted to volatiles from a distance, and once

  11. Landscape heterogeneity controls growth variability of alder, willow, and birch shrubs in response to observed increases in temperature and snow

    NASA Astrophysics Data System (ADS)

    Tape, K. D.; Hallinger, M.; Buras, A.; Wilmking, M.

    2013-12-01

    Over the last decade, evidence has emerged for a circumarctic trend of increasing shrub cover in tundra regions. On the Alaskan tundra, repeat photography has shown spatial differences in shrub patch dynamics: since 1950, most patches expanded while some remained stable. In this study we explore the underpinnings of this landscape heterogeneity by sampling the three dominant shrubs of the Alaskan tundra--alder, willow and birch--and creating shrub ring width chronologies to determine the influence of climate variability on shrub growth. Shrubs of expanding patches of all three species grew at higher rates than shrubs of stable patches. Alder and willow shrubs in expanding patches exhibited mainly positive growth trends, while their counterparts in stable patches exhibited mainly negative growth trends. Birch shrub growth declined in expanding and stable patches. Alder and willow shrub growth rates and responses to climate were controlled more by soil characteristics than by their genus; expanding alder and willow shrubs showed significant positive correlations with spring and summer temperatures, whereas alder and willow shrubs of stable patches were negatively influenced by winter precipitation. The widely-scattered stable shrub patches sampled here are considered ';moist tussock tundra,' which covers 13.4% of the low arctic landscape. In moist tussock tundra, and presumably also wet tussock tundra, the negative influence of deeper snow on shrubs outweighed the positive influence of deeper snow on ground temperature and nutrient stocks articulated by the snow-shrub-microbe hypothesis. Thus, while shrubs of expanding patches have generally profited from warmer summers, shrubs of stable patches have suffered from increased soil moisture resulting from increased snowmelt water. These results underscore the spatial and temporal complexity in shrub-climate dynamics, which will require considerable finesse to appropriately integrate into modeling efforts.

  12. Detectability of landscape effects on recolonization increases with regional population density.

    PubMed

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2015-07-01

    Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level. PMID:26257881

  13. Detectability of landscape effects on recolonization increases with regional population density.

    PubMed

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2015-07-01

    Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level.

  14. Detectability of landscape effects on recolonization increases with regional population density

    PubMed Central

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2015-01-01

    Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level. PMID:26257881

  15. Ability of LANDSAT-8 Oli Derived Texture Metrics in Estimating Aboveground Carbon Stocks of Coppice Oak Forests

    NASA Astrophysics Data System (ADS)

    Safari, A.; Sohrabi, H.

    2016-06-01

    The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics

  16. Short Rotation Woody Crops Program. Quarterly progress report, March 1-May 31, 1985. [Sycamore, alders, black locust, larch, poplars, saltbush

    SciTech Connect

    Wright, L.L.; Perlack, R.D.; Wenzel, C.R.; Trimble, J.L.; Ranney, J.W.

    1985-08-01

    This report covers the progress of the Short Rotation Woody Crops Program (SRWCP) during the third quarter of fiscal year 1985. This report summarizes ORNL management activities, technical activities at ORNL and subcontract institutions, and the technology transfer that is occurring as a result of subcontractor and ORNL activities. Third-year results of a nutrient utilization study confirmed that there were no benefits to quarterly fertilization with urea nitrogen. Testing of one prototype short-rotation intensive culture harvester was conducted on a sycamore plantation on Scott Paper Company land in southern Alabama. Coppice yields of European black alder reported by Iowa State University indicate potential productivity of about 7.2 dry Mg . ha/sup -1/ . year/sup -1/ if the best trees are selected. Coppice yields were more than double first-rotation yields. About 31,000 black locust and larch trees were established in 12 genetic tests at 4 sites in Michigan. Seedling rotation productivity rates of 4-year-old hybrid poplar, based on harvest data, were reported by Pennsylvania State University. Rates varied from 4.8 dry Mg . ha/sup -1/ . year/sup -1/ to 10.7 dry Mg . ha/sup -1/ . year/sup -1/, depending on site, management strategy, and planting year. An efficient method for in vitro micropropagation of elite genotypes of fourwing saltbush was developed by Plant Resources Institute. A new study to evaluate yield/density relationships was established by the USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. Dissertation research on the crown geometry of plantation-grown American sycamore was completed.

  17. Growth, physiological response and phytoremoval capability of two willow clones exposed to ibuprofen under hydroponic culture.

    PubMed

    Iori, Valentina; Zacchini, Massimo; Pietrini, Fabrizio

    2013-11-15

    Ibuprofen (IBU) is one of the most widespread pharmaceuticals in the aquatic ecosystem, despite the high removal rate that occurs in wastewater treatment plants. Phytoremediation represents a technology to improve the performance of existing wastewater treatment. This study was conducted under hydroponics to evaluate the ability of Salicaceae plants to tolerate and reduce IBU concentration in contaminated water. To this end, we combined growth, physiological and biochemical data to study the effects of different IBU concentrations on two clones of Salix alba L. Data demonstrated that clone SS5 was more tolerant and showed a higher ability to reduce IBU concentration in the solution than clone SP3. The high tolerance to IBU shown by SS5 was likely due to several mechanisms including the capacity to maintain an elevated photosynthetic activity and an efficient antioxidative defence. These results illustrate the remarkable potential of willow to phytoremediate IBU-contaminated waters in natural and constructed wetlands.

  18. Caecal decomposition of uric acid in captive and free ranging willow ptarmigan (Lagopus lagopus lagopus).

    PubMed

    Mortensen, A; Tindall, A R

    1981-02-01

    Urine entering the caeca of birds contains significant amounts of uric acid. The discovery of great numbers of bacteria utilizing uric acid in the caeca has encouraged the discussion about nitrogen recycling in birds. In this work caecal decomposition of uric acid in wild and captive willow ptarmigan has been investigated using radioactively labelled uric acid injected directly into one of the caeca. The appearance of radioactive CO2 in the expired air was taken as an indication of uric acid breakdown. The decomposition occurred at a rate corresponding to a half-life of 26 min (11-36 min). The results are in accordance with the previously reported observations of huge numbers of uric acid utilizing bacteria in the caeca of a variety of birds, and also with the nitrogen recycling theory. However, no conclusion concerning the nitrogen recycling can be drawn. PMID:7282388

  19. Territoriality, site fidelity, and survivorship of willow flycatchers wintering in Costa Rica

    USGS Publications Warehouse

    Koronkiewicz, T.J.; Sogge, M.K.; van Riper, Charles; Paxton, E.H.

    2006-01-01

    We studied wintering Willow Flycatchers (Empidonax traillii) in two seasonal freshwater wetland habitats in northwestern Costa Rica during five boreal winters, to determine habitat occupancy, overwinter and between-year site and territory fidelity, and the degree to which the sexes maintain and defend winter territories. Both males and females used agonistic displays, song, and other vocalizations to maintain and defend mutually exclusive winter territories. Males were generally more abundant than females, but this varied by site and year. There was no significant difference in male and female territory size, nor any indication of sexual habitat segregation. Similarity in morphology and aggressiveness between the sexes may account for the lack of habitat segregation and the ability of females to maintain territories at wintering sites. Each year, 80%-92% of banded flycatchers that were present in midwinter remained at the site until late winter; of these, 86%-100% of individuals maintained the same territories throughout the entire period. We also observed nonterritorial floaters that subsequently established and held winter territories. Between-year site fidelity averaged 68%, and almost all returning birds established territories with boundaries similar to the previous year. Between-year apparent survivorship estimates ranged annually from 54%-72%, with no difference between sites but weak support for higher survivorship of males compared to females. Values for winter site and territory fidelity were generally higher than those reported for other species and for Willow Flycatchers on the breeding grounds; between-year survivorship estimates were similar to those reported for breeding flycatchers. ?? The Cooper Ornithological Society 2006.

  20. Determinants of parasitoid communities of willow-galling sawflies: habitat overrides physiology, host plant and space.

    PubMed

    Nyman, Tommi; Leppänen, Sanna A; Várkonyi, Gergely; Shaw, Mark R; Koivisto, Reijo; Barstad, Trond Elling; Vikberg, Veli; Roininen, Heikki

    2015-10-01

    Studies on the determinants of plant-herbivore and herbivore-parasitoid associations provide important insights into the origin and maintenance of global and local species richness. If parasitoids are specialists on herbivore niches rather than on herbivore taxa, then alternating escape of herbivores into novel niches and delayed resource tracking by parasitoids could fuel diversification at both trophic levels. We used DNA barcoding to identify parasitoids that attack larvae of seven Pontania sawfly species that induce leaf galls on eight willow species growing in subarctic and arctic-alpine habitats in three geographic locations in northern Fennoscandia, and then applied distance- and model-based multivariate analyses and phylogenetic regression methods to evaluate the hierarchical importance of location, phylogeny and different galler niche dimensions on parasitoid host use. We found statistically significant variation in parasitoid communities across geographic locations and willow host species, but the differences were mainly quantitative due to extensive sharing of enemies among gallers within habitat types. By contrast, the divide between habitats defined two qualitatively different network compartments, because many common parasitoids exhibited strong habitat preference. Galler and parasitoid phylogenies did not explain associations, because distantly related arctic-alpine gallers were attacked by a species-poor enemy community dominated by two parasitoid species that most likely have independently tracked the gallers' evolutionary shifts into the novel habitat. Our results indicate that barcode- and phylogeny-based analyses of food webs that span forested vs. tundra or grassland environments could improve our understanding of vertical diversification effects in complex plant-herbivore-parasitoid networks.

  1. Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings.

    PubMed

    Li, Shuwen; Reza Pezeshki, S; Douglas Shields, F

    2006-04-01

    Black willow (Salix nigra) cuttings are used for streambank stabilization where they are subjected to a range of soil moisture conditions including flooding. Flooding has been shown to adversely impact cutting performance, and improved understanding of natural adaptations to flooding might suggest handling and planting techniques to enhance success. However, data assessing the root aeration in adventitious roots that are developed on cuttings of woody species are scant. In addition, it appears that no data are available regarding aeration of the root system under partially flooded conditions. This experiment was designed to examine the effects of continuous flooding (CF) and partial flooding (PF) on aerenchyma formation and radial oxygen loss (ROL) in black willow cuttings. Photosynthetic and growth responses to these conditions were also investigated. Under laboratory condition, replicated potted cuttings were subjected to three treatments: no flooding (control, C), CF, and PF. Water was maintained above the soil surface in CF and at 10 cm depth in PF. Results indicated that after the 28-d treatments, root porosity ranged between 28.6% and 33.0% for the CF and C plants but was greater for the PF plants (39.2% for the drained and 37.2% for the flooded portions). A similar response pattern was found for ROL. In addition, CF treatment led to decreases in final root biomass and root/shoot ratio. Neither CF nor PF had any detectable adverse effects on plant gas exchange or photosystem II functioning. Our results indicated that S. nigra cuttings exhibited avoidance mechanisms in response to flooding, especially the partially flooded condition which is the most common occurrence in riparian systems.

  2. A short-term study to evaluate the uptake and accumulation of arsenic in Asian willow (Salix sp.) from arsenic-contaminated water.

    PubMed

    Chen, Guangcai; Zou, Xiaoli; Zhou, Yuan; Zhang, Jianfeng; Owens, Gary

    2014-03-01

    Five Asian willow species (Salix jiangsuensis J172, Salix matsudana, Salix integra Yizhibi, Salix integra Weishanhu, and Salix mongolica) were evaluated for their potential for phytofiltration of arsenic (As) from synthetically contaminated waters. Arsenic accumulation, tolerance, uptake influx, and phytofiltration ability of the five willow species were examined under hydroponic conditions in a glasshouse. Short-term exposure (2 weeks) to solutions containing 80 μmol L(-1) arsenate (As(V)), resulted in significant accumulation of As in all willow species. Arsenic concentration in plant roots ranged from 322 mg kg(-1) dry weight (DW) for S. matsudana to 604 mg kg(-1) (DW) for S. integra Yizhibi. S. integra Yizhibi decreased As(V) concentration in water from 3.87 to 1.89 μmol L(-1) (290 to 142 μg L(-1)) over 168 h, which is 50 % of the total As(V) in the solution. The results suggested that even though Asian willow was not a traditional aquatic species, it still had significant potential for phytofiltration of As from contaminated waters. Of the five willow species studied, S. integra Yizhibi had the greatest capacity to remove As from As-contaminated waters. Thus, Asian willow has significant potential for the phytofiltration of As and may also be suitable for practical phytoremediation of As in highly water-logged areas.

  3. Rapid leaf development drives the seasonal pattern of volatile organic compound (VOC) fluxes in a 'coppiced' bioenergy poplar plantation.

    PubMed

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Terenzio, Zenone; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan A; Ceulemans, Reinhart

    2016-03-01

    Leaves of fast-growing, woody bioenergy crops often emit volatile organic compounds (VOC). Some reactive VOC (especially isoprene) play a key role in climate forcing and may negatively affect local air quality. We monitored the seasonal exchange of VOC using the eddy covariance technique in a 'coppiced' poplar plantation. The complex interactions of VOC fluxes with climatic and physiological variables were also explored by using an artificial neural network (Self Organizing Map). Isoprene and methanol were the most abundant VOC emitted by the plantation. Rapid development of the canopy (and thus of the leaf area index, LAI) was associated with high methanol emissions and high rates of gross primary production (GPP) since the beginning of the growing season, while the onset of isoprene emission was delayed. The highest emissions of isoprene, and of isoprene photo-oxidation products (Methyl Vinyl Ketone and Methacrolein, iox ), occurred on the hottest and sunniest days, when GPP and evapotranspiration were highest, and formaldehyde was significantly deposited. Canopy senescence enhanced the exchange of oxygenated VOC. The accuracy of methanol and isoprene emission simulations with the Model of Emissions of Gases and Aerosols from Nature increased by applying a function to modify their basal emission factors, accounting for seasonality of GPP or LAI.

  4. Rapid leaf development drives the seasonal pattern of volatile organic compound (VOC) fluxes in a 'coppiced' bioenergy poplar plantation.

    PubMed

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Terenzio, Zenone; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan A; Ceulemans, Reinhart

    2016-03-01

    Leaves of fast-growing, woody bioenergy crops often emit volatile organic compounds (VOC). Some reactive VOC (especially isoprene) play a key role in climate forcing and may negatively affect local air quality. We monitored the seasonal exchange of VOC using the eddy covariance technique in a 'coppiced' poplar plantation. The complex interactions of VOC fluxes with climatic and physiological variables were also explored by using an artificial neural network (Self Organizing Map). Isoprene and methanol were the most abundant VOC emitted by the plantation. Rapid development of the canopy (and thus of the leaf area index, LAI) was associated with high methanol emissions and high rates of gross primary production (GPP) since the beginning of the growing season, while the onset of isoprene emission was delayed. The highest emissions of isoprene, and of isoprene photo-oxidation products (Methyl Vinyl Ketone and Methacrolein, iox ), occurred on the hottest and sunniest days, when GPP and evapotranspiration were highest, and formaldehyde was significantly deposited. Canopy senescence enhanced the exchange of oxygenated VOC. The accuracy of methanol and isoprene emission simulations with the Model of Emissions of Gases and Aerosols from Nature increased by applying a function to modify their basal emission factors, accounting for seasonality of GPP or LAI. PMID:26386252

  5. Effects of atmosphere CO[sub 2] enrichment on regrowth of sour orange trees (Citrus aurantium; rutaceae) after coppicing

    SciTech Connect

    Idso, S.B.; Kimball, B.A. )

    1994-07-01

    Sixteen sour orange tree (Citrus aurantium L.) seedlings were grown out-of-doors at Phoenix, Arizona, in eight clear-plastic-wall open-top enclosures maintained at four different atmospheric CO[sub 2] concentrations for a period of 2 years. Over the last year of this period, the trees were coppiced five times. The amount of dry matter harvested at each of these cuttings was a linear function of the atmospheric CO[sub 2] concentration to which the trees were exposed. For a 75% increase in atmospheric CO[sub 2] from 400 to 700 microliter per liter ([mu]L liter[sup [minus]1]), total aboveground biomass rose, in the mean, by a factor of 3.19; while for a 400 to 800 [mu]L liter[sup [minus]1] doubling of the air's CO[sub 2] content, it rose by a factor of 3.92. The relative summer (mean air temperature of 32.8 C) response to CO[sub 2] was about 20% greater than the relative winter (mean air temperature of 16.4 C) response. 27 refs., 2 figs., 1 tab.

  6. Rotator Cuff Tears

    MedlinePlus

    ... doctors because of a rotator cuff problem. A torn rotator cuff will weaken your shoulder. This means ... or more of the rotator cuff tendons is torn, the tendon no longer fully attaches to the ...

  7. Willow growth in response to nutrients and moisture on a clay landfill cap soil. II: Water use.

    PubMed

    Martin, Peter J; Stephens, William

    2006-02-01

    Water use by willow (Salix viminalis L.) was studied in lysimeters containing clay landfill cap and sandy loam soils under different watering and amendment regimes. With plentiful water and amendments, seasonal ET increased annually and was highest in the sandy loam, increasing from 360 l plant(-1) in the establishment year to almost 1200 l plant(-1) in the third year. Seasonal ET was highly correlated with leaf area duration. Amendment of Oxford clay resulted in increases in plant leaf area, dry matter production and seasonal ET. Water stress reduced seasonal ET by 10-14% in the second year and 25-41% in the third. Water use efficiency was low for the un-amended clay treatment (1.4 g kg(-1)) but was similar in the amended clay (5.0 g kg(-1)) and sandy loam (4.9 g kg(-1)). This highlights the interdependence of water use and biomass production in willow.

  8. Isotope sourcing of prehistoric willow and tule textiles recovered from western Great Basin rock shelters and caves - proof of concept

    USGS Publications Warehouse

    Benson, L.V.; Hattori, E.M.; Taylor, H.E.; Poulson, S.R.; Jolie, E.A.

    2006-01-01

    Isotope and trace-metal analyses were used to determine the origin of plants used to manufacture prehistoric textiles (basketry and matting) from archaeological sites in the western Great Basin. Research focused on strontium (87Sr/86Sr) and oxygen (18O/16O) isotope ratios of willow (Salix sp.) and tule (Schoenoplectus sp.), the dominant raw materials in Great Basin textiles. The oxygen-isotope data indicated that the willow and tule used to produce the textiles were harvested from the banks of rivers or in marshes characterized by flowing water and not from lakes or sinks. The strontium-isotope data were useful in showing which plants came from the Humboldt River and which came from rivers headed in the Sierra Nevada.

  9. Can bioengineering structures made of willow cuttings trap sediment in eroded marly gullies in a Mediterranean mountainous climate?

    NASA Astrophysics Data System (ADS)

    Rey, Freddy; Burylo, Mélanie

    2014-01-01

    In the Southern French Alps, high sediment yields from marly catchments cause socio-economic and ecological problems downstream. Bioengineering structures made of willow cuttings could be used for efficient and sustainable sediment trapping in eroded gullies in order to decrease sediment yield at their outlets. However, little has been done to quantitatively assess the efficiency of such structures for trapping sediment or to improve their performance. The objectives of this study were to analyze the ability of bioengineering structures to enhance vegetation development and sediment trapping in marly gullies in the Southern French Alps, under a mountainous and Mediterranean climate. For five years after the restoration operations, we monitored 101 bioengineering structures using willow (Salix) cuttings, including 55 brush layers on wooden sills (BL) and 46 brush layers with brush mats on wooden sills (BLM), 1.2 m wide and 2 m long, installed on the floors of eight experimental marly gullies. The results showed that the ultimate survival of willow cuttings can be assessed after three years. Gully size and aspect appeared to be the most important factors influencing resprouting rates. By avoiding south-oriented gullies and those smaller than 1000 m2, 75% survival rates per structure may be achieved. The results also showed that BL trapped 0.18 m3 yr- 1 of sediment per structure on average and BLM 0.21 m3 yr- 1, but potential maximum values may reach 0.28 and 0.40 m3 yr- 1 over one year on BL and BLM, respectively. Therefore, bioengineering structures made of willow cuttings can be used to trap significant quantities of sediment from the first year onwards and efficiently restore eroded marly gullies under a Mediterranean mountainous climate. It also provides design criteria to guide future restoration actions and future investigations in the Southern French Alps.

  10. Minimum Irrigation Requirements for Cottonwood (Populus fremontii and P. deltoides) and Willow (Salix gooddingii) Grown in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Glenn, E. P.; Hartwell, S.; Morino, K.; Nagler, P. L.

    2009-12-01

    Native tree plots have been established in riverine irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the minimum effective irrigation requirements of the target species. We summarize preliminary (or unpublished) findings of a study or cottonwood (Populus spp.) and willow (Salix gooddingii) trees that were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona to determine plant water use. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three summer irrigation schedules: 6.2 mm d-1; 8.26 mm d-1 and 15.7 mm d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, but willows suffered partial die-back on this rate, and required 8.26 mm d-1 to maintain growth. These irrigation rates were required April 15 - September 15, but only 0.88 mm d-1 was required during the dormant periods of the year. Expressed as a fraction of reference crop evapotranspiration (ET/ETo), annual water requirements were 0.83 ETo for cottonwood and 1.01 ETo for willow, which includes irrigation plus precipitation. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use.

  11. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials.

    PubMed

    Watson, C; Pulford, I D; Riddell-Black, D

    2003-01-01

    The aim of this study was to ascertain whether metal resistance in willow (Salix) clones grown in a hydroponics screening test correlated with data from the same clones grown independently in a field trial. If so, results from a short-term, glasshouse-based system could be extrapolated to the field, allowing rapid identification of willows suitable for planting in metal-contaminated substrates without necessitating longterm field trials. Principal Components Analysis was used to show groups of clones and to assess the relative importance of the parameters measured in both the hydroponics system and the field; including plant response factors such as increase in stem height, as well as metal concentrations in plant tissues. The clones tested fell into two distinct groups. Salix viminalis clones and the basket willow Black Maul (S. triandra) were less resistant to elevated concentrations of heavy metals than a group of hardier clones, including S. burjatica 'Germany,' S.x dasyclados, S. candida and S. spaethii. The more resistant clones produced more biomass in the glasshouse and field, and had higher metal concentrations in the wood. The less resistant clones had greater concentrations of Cu and Ni in the bark, and produced less biomass in the glasshouse and field. Significant relationships were found between the response of the same clones grown the in short-term glasshouse hydroponics system and in the field.

  12. Phytochemical and physical-chemical analysis of Polish willow (Salix spp.) honey: identification of the marker compounds.

    PubMed

    Jerković, Igor; Kuś, Piotr Marek; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2014-02-15

    The case study of Polish Salix spp. honey was compared with published data on willow honey from other regions. GC-FID/MS (after HS-SPME and ultrasonic solvent extraction) and targeted HPLC-DAD were applied. Phenolic content, FRAP/DPPH assays and the colour coordinates were determined spectrophotometrically. Beside ubiquitous linalool derivatives, borneol (up to 10.9%), bicyclic monoterpenes with pinane skeleton (pinocarvone up to 10.6%, myrtenal up to 4.8% and verbenone up to 3.4%) and trans-β-damascenone (up to 13.0%) dominated in the headspace. The main compounds of the extractives were vomifoliol (up to 39.6%) and methyl syringate (up to 16.5%) along with not common 4-hydroxy-3-(1-methylethyl)benzaldehyde (up to 11.1%). Abscisic acid (ABA) was found (up to 53.7 mg/kg) with the isomeric ratio (Z,E)-ABA:(E,E)-ABA=1:2. The honey exhibited low antioxidant potential with pale yellow colour. The composition of Polish willow honey is similar to Mediterranean willow honeys with several relevant differences.

  13. Genetic evidence for three discrete taxa of Melampsora (Pucciniales) affecting willows (Salix spp.) in New York State.

    PubMed

    Kenaley, Shawn C; Smart, Lawrence B; Hudler, George W

    2014-08-01

    Rust fungi in the genus Melampsora (Pucciniales) are the most important pathogens of shrub willows (Salix spp.) cultivated for biomass in New York State and temperate regions worldwide. The taxonomy and species identification of these fungi historically have been problematic as they are morphologically indistinguishable on willow and often have complex life histories. Melampsora of Salix in North America, therefore, have been circumscribed to the collective species Melampsora epitea Thüm. and further delineated to formae speciales by aecial host. Ribosomal DNA (rDNA) data was obtained from 75 collections/isolates of Melampsora in NY State affecting either native and cultivated Salix spp. or suspected alternate hosts. Maximum likelihood (ML), maximum parsimony (MP), and Bayesian (BI) analyses were conducted on three data partitions (individual and concatenated): complete internal transcribed spacer (ITS) and partial large subunit (LSU) rDNA sequences for all collections. Analyses of the ITS and concatenated ITS-LSU sequences revealed that Melampsora on native and cultivated willows in NY State consisted of three phylogenetically delineable taxa (phylotaxa); monophyly for each phylotaxon was strongly supported by ML, MP, and BI credibility values. Phylotaxa were also delimited phylogenetically by aecial host: Alpine currant (Ribes alpinum), eastern larch (Larix laricina), or balsam fir (Abies balsamea).

  14. Geographic variation in the plumage coloration of willow flycatchers Empidonax traillii

    USGS Publications Warehouse

    Paxton, Eben H.; Sogge, Mark K.; Koronkiewicz, Thomas J.; McLeod, Mary Anne; Theimer, Tad C.

    2010-01-01

    The ability to identify distinct taxonomic groups of birds (species, subspecies, geographic races) can advance ecological research efforts by determining connectivity between the non-breeding and breeding grounds for migrant species, identifying the origin of migrants, and helping to refine boundaries between subspecies or geographic races. Multiple methods are available to identify taxonomic groups (e.g., morphology, genetics), and one that has played an important role for avian taxonomists over the years is plumage coloration. With the advent of electronic devices that can quickly and accurately quantify plumage coloration, the potential of using coloration as an identifier for distinct taxonomic groups, even when differences are subtle, becomes possible. In this study, we evaluated the degree to which plumage coloration differs among the four subspecies of the willow flycatcher Empidonax traillii, evaluated sources of variation, and considered the utility of plumage coloration to assign subspecies membership for individuals of unknown origin. We used a colorimeter to measure plumage coloration of 374 adult willow flycatchers from 29 locations across their breeding range in 2004 and 2005. We found strong statistical differences among the mean plumage coloration values of the four subspecies; however, while individuals tended to group around their respective subspecies' mean color value, the dispersion of individuals around such means overlapped. Mean color values for each breeding site of the three western subspecies clustered together, but the eastern subspecies' color values were dispersed among the other subspecies, rather than distinctly clustered. Additionally, sites along boundaries showed evidence of intergradation and intermediate coloration patterns. We evaluated the predictive power of colorimeter measurements on flycatchers by constructing a canonical discriminant model to predict subspecies origin of migrants passing through the southwestern U

  15. Habitat Evaluation Procedures (HEP) Report; Willow Creek, Technical Report 1993-1994.

    SciTech Connect

    Beilke, Susan

    1994-09-01

    The Willow Creek site is one of the most significant remaining areas of typical native Willamette Valley habitats, with a variety of wetlands, grasslands, and woodlands. A diverse array of native flora and fauna, with significant wildlife habitats, is present on the site. Wildlife diversity is high, and includes species of mammals, songbirds, raptors, reptiles, amphibians, and one rare invertebrate. Over 200 species of native plants have been identified (including populations of six rare, threatened, or endangered species), along with significant remnants of native plant communities. Willow Creek is located in Lane County, Oregon, on the western edge of the City of Eugene (see Figure 1). The city limit of Eugene passes through the site, and the site is entirely within the Eugene Urban Growth Boundary (UGB). At present, only lands to the east and northeast of the site are developed to full urban densities. Low density rural residential and agricultural land uses predominate on lands to the northwest and south. A partially completed light industrial/research office park is located to the northwest. Several informal trails lead south from West 18th at various points into the site. The area encompasses a total of approximately 349 acres under several ownerships, in sections 3 and 4 of Township 18 South, Range 4 West. wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Bonneville Power Administration's (BPA) Mitigation and Enhancement Plan for the Willamette River Basin. Under this Plan, mitigation goals were developed as a result of the loss of wildlife habitat due to the development and operation of Federal hydro-electric facilities in the Willamette River Basin. Results of the HEP will be used to: (1) determine the current status and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the

  16. To each its own: differential response of specialist and generalist herbivores to plant defence in willows.

    PubMed

    Volf, Martin; Hrcek, Jan; Julkunen-Tiitto, Riitta; Novotny, Vojtech

    2015-07-01

    Plant-insect food webs tend to be dominated by interactions resulting from diffuse co-evolution between plants and multiple lineages of herbivores rather than by reciprocal co-evolution and co-cladogenesis. Plants therefore require defence strategies effective against a broad range of herbivore species. In one extreme, plants could develop a single universal defence effective against all herbivorous insects, or tailor-made strategies for each herbivore species. The evolution and ecology of plant defence has to be studied with entire insect assemblages, rather than small subsets of pairwise interactions. The present study examines whether specialists and generalists in three coexisting insect lineages, forming the leaf-chewing guild, respond uniformly to plant phylogeny, secondary metabolites, nutrient content and mechanical antiherbivore defences of their hosts, thus permitting universal plant defence strategies against specialized and generalist folivorous insects from various taxa. The extensive data on folivorous assemblages comprising three insect orders and 193 species are linked with plant phylogeny, secondary chemistry (salicylates, flavonoids and tannins), leaf morphological traits [specific leaf area (SLA) and trichome coverage], nutrient (C : N) content and growth form of eight willow (Salix) and one aspen (Populus) species growing in sympatry. Generalists responded to overall host plant chemistry and trichomes, whilst specialists responded to host plant phylogeny and secondary metabolites that are unique to willows and that are capable of being utilized as an antipredator protection. We did not find any significant impact of other plant traits, that is SLA, C : N ratio, flavonoids, tannins and growth form, on the composition of leaf-chewing communities. Our results show that the response to plant traits is differential among specialists and generalists. This finding constrains the ability of plants to develop defensive traits universally effective

  17. How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a Quercus ilex coppice?

    NASA Astrophysics Data System (ADS)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-12-01

    The partitioning of photosynthates toward biomass compartments plays a crucial role in the carbon (C) sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought-prone forests. We analyzed the fate of gross primary production (GPP) in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Carbon fluxes between the ecosystem and the atmosphere were measured with an eddy covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns, and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy covariance fluxes with annual net primary productions (NPP), we managed to close a C budget and derive values of autotrophic, heterotrophic respirations and carbon-use efficiency (CUE; the ratio between NPP and GPP). Average values of yearly net ecosystem production (NEP), GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding aboveground net primary production (ANPP) components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems, respectively. NEP, GPP and Reco were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected - the stem growth - to the least affected - the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease less drastically in response to drought than GPP and NPP did, probably due to drought acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem, and

  18. The role of willow-birch forest in the surface energy balance at arctic treeline

    SciTech Connect

    Blanken, P.D. ); Rouse, W.R. )

    1994-11-01

    Continuous measurements of the energy balance components were made during the 1991 growing season over a willow-birch forest located near Churchill, Manitoba, Canada. On the basis of measurements of leaf area index, the growing season was divided into three distinct periods: growth, mature, and senescence. Changes in surface albedo were strongly correlated with changing leaf area index during the growth period with albedo increasing as leaf area increased. The latent heat flux density, Q[sub E], represented 74% of net radiation during the mature period compared to 55 and 54% during the growth and senescence periods, respectively. The greater Q[sub E] at plant maturity is due primarily to canopy transpiration. The sensitivity of Q[sub E] to net radiation was largest during the growth period. In contrast, the sensitivity of Q[sub E] to the surface resistance and aerodynamic resistance was the largest during the mature period. The implications of climate variability on the timing of leaf development and the surface energy and water balance are discussed. 28 refs., 8 figs., 1 tab.

  19. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment.

    PubMed

    Mertens, Jan; Vervaeke, Pieter; Meers, Erik; Tack, Filip M G

    2006-03-15

    Fast growing biomass plants such as Salix species are promising for use in phytoremediation of contaminated land. This study assessed the seasonal variations and changes with stand age in metal concentrations of S. fragilis L. and S. triandra L. grown in field conditions on contaminated dredged sediment substrates with comparable properties. A lesser proportion of total soil Cd was extractable by ammonium-acetate in the 6-year-old stand (6%) compared to the 1-year-old stand (17%). This suggests that the potential to remove metals from the site declines with tree age. Metal concentrations in willow biomass compartments decreased with stand age. Concentrations of Cd and Zn in leaves, wood, and bark increased toward the end of the growing season, irrespective of the species. Only Cd behavior offered limited prospects for targeting effective removal of the metal from the sediment through repeated harvest. The most efficient removal of Cd would require the combined harvest of stems and leaves; at the same time the risk of spreading Cd and Zn to the surroundings with leaf fall would be avoided.

  20. Evolution in situ: hybrid origin and establishment of willows (Salix L.) on alpine glacier forefields.

    PubMed

    Gramlich, S; Sagmeister, P; Dullinger, S; Hadacek, F; Hörandl, E

    2016-06-01

    Little attention has been paid to the evolutionary consequences of the colonizing dynamics and succession processes following glacier retreat. Here we studied hybrid populations that have recently formed and established on glacier forefields of the European Alps owing to secondary contact of a lowland colonizer with a subalpine species. We analyzed the composition of two hybrid populations between Salix purpurea and Salix helvetica with nine microsatellite markers by using Bayesian methods (structure and NewHybrids), and simulations. We also studied niche differentiation between the hybrids and the parental species based on indicator values, soil pH and water retention potential measurements. Allelic structure of hybrids confirms the assumed parentage and in situ origin of the crosses on two independent sites within the last decades. Both hybrid populations comprised F1 and later generation hybrids (F2 and backcrosses), confirming hybrid fertility. The parental species showed significant differences in niche characteristics for temperature, soil pH, nutrients and moisture. Remarkably, the hybrids exhibited a higher tolerance to cold temperatures, nutrient-poor and acidic soils than either parent. Our results show that willow hybrids originated after glacier retreat and have established persistent populations within a few decades. One factor contributing to hybrid establishment in sympatry with their parents is their ability to occupy more extreme niches than either parental species within a mosaic-like pattern of microhabitats on the forefield. Introgression and/or transgressive segregation may have resulted in novel genotypes that are able to expand the ecological spectrum of either parent.

  1. Mini-review of knowledge gaps in salt tolerance of plants applied to willows and poplars.

    PubMed

    Mirck, Jaconette; Zalesny, Ronald S

    2015-01-01

    Salt tolerance of agricultural crops has been studied since the 1940, but knowledge regarding salt tolerance of woody crops is still in its initial phase. Salt tolerance of agricultural crops has been expressed as the yield decrease due to a certain salt concentration within the root zone as compared to a non-saline control. The most well-known plant response curve to salinity has been a piece-wise linear regression relating crop yield to root zone salinity. This method used the hypothesis that crops tolerate salt up to a threshold after which their yield decreases approximately linearly. Critique to this method included its lack of sensitivity to dynamic factors such as weather conditions. As a result, other classification indices have been developed, but none is as well accepted as the threshold-slope model. In addition to a mini-review of the key salt tolerance studies, our objective was to classify salt tolerance levels of poplars and willows. Initial classification showed that salt tolerance of these genera ranged from sensitive to moderately tolerant.

  2. Chromium geochemistry of serpentinous sediment in the Willow core, Santa Clara County, California

    USGS Publications Warehouse

    Oze, Christopher J.; LaForce, Matthew J.; Wentworth, Carl M.; Hanson, Randall T.; Bird, Dennis K.; Coleman, Robert G.

    2003-01-01

    A preliminary investigation of Cr geochemistry in serpentinous sediment completed for a multiple-aquifer ground-water monitoring well (Willow core of Santa Clara County, CA) determined sediment at depths >225 meters contains Cr concentrations ranging from 195 to 1155 mg/kg. Serpentinous sediment from this site is a potential source of non-anthropogenic Cr contamination. Chromium-bearing minerals such as Cr-spinel appear to be the main source of Cr in the sediment; however, Cr-bearing silicates and clay minerals are additional Cr sources. Aqueous Cr concentrations in the sediment are <4.6 mg/L; however, the valence of Cr was not identified in the solutions or in the sediment. Although there is no indication of Cr(VI) contamination derived from the serpentinous sediment, elevated Cr concentrations in the sediment, the observed ‘dissolution’ textures of the Cr-bearing minerals, the estimated redox environment, and water chemistry indicate the formation of Cr(VI) is potentially favorable.

  3. Fortified Extract of Red Berry, Ginkgo biloba, and White Willow Bark in Experimental Early Diabetic Retinopathy

    PubMed Central

    Drago, Filippo

    2013-01-01

    Diabetic retinopathy is a complex condition where inflammation and oxidative stress represent crucial pathways in the pathogenesis of the disease. Aim of the study was to investigate the effects of a fortified extract of red berries, Ginkgo biloba and white willow bark containing carnosine and α-lipoic acid in early retinal and plasma changes of streptozotocin-induced diabetic rats. Diabetes was induced by a single streptozotocin injection in Sprague Dawley rats. Diabetics and nondiabetic (control) rats were treated daily with the fortified extract for the ten days. Retina samples were collected and analyzed for their TNF-α and VEGF content. Moreover, plasma oxidative stress was evaluated by thiobarbituric acid reacting substances (TBARS). Increased TNF-α and VEGF levels were observed in the retina of diabetic rats. Treatment with the fortified extract significantly lowered retinal cytokine levels and suppressed diabetes-related lipid peroxidation. These data demonstrate that the fortified extract attenuates the degree of retinal inflammation and plasma lipid peroxidation preserving the retina in early diabetic rats. PMID:23762874

  4. Model selection as a tool for phylogeographic inference: an example from the willow Salix melanopsis.

    PubMed

    Carstens, Bryan C; Brennan, Reid S; Chua, Vivien; Duffie, Caroline V; Harvey, Michael G; Koch, Rachel A; McMahan, Caleb D; Nelson, Bradley J; Newman, Catherine E; Satler, Jordan D; Seeholzer, Glenn; Posbic, Karine; Tank, David C; Sullivan, Jack

    2013-08-01

    Phylogeographic inference has typically relied on analyses of data from one or a few genes to provide estimates of demography and population histories. While much has been learned from these studies, all phylogeographic analysis is conditioned on the data, and thus, inferences derived from data that represent a small sample of the genome are unavoidably tenuous. Here, we demonstrate one approach for moving beyond classic phylogeographic research. We use sequence capture probes and Illumina sequencing to generate data from >400 loci in order to infer the phylogeographic history of Salix melanopsis, a riparian willow with a disjunct distribution in coastal and the inland Pacific Northwest. We evaluate a priori phylogeographic hypotheses using coalescent models for parameter estimation, and the results support earlier findings that identified post-Pleistocene dispersal as the cause of the disjunction in S. melanopsis. We also conduct a series of model selection exercises using IMa2, Migrate-n and ∂a∂i. The resulting ranking of models indicates that refugial dynamics were complex, with multiple regions in the inland regions serving as the source for postglacial colonization. Our results demonstrate that new sources of data and new approaches to data analysis can rejuvenate phylogeographic research by allowing for the identification of complex models that enable researchers to both identify and estimate the most relevant parameters for a given system.

  5. Transport and fate of dieldrin in poplar and willow trees analyzed by SPME.

    PubMed

    Skaates, Serena V; Ramaswami, Anu; Anderson, Larry G

    2005-09-01

    Dieldrin is a hydrophobic organochlorine insecticide that is persistent in the environment. The fate and transport of dieldrin in trees is important both in the context of potential remediation, as well as food chain impacts through dieldrin transport to shoots and leaves. Experiments were conducted to measure the degree of dieldrin partitioning to plant tissue and the potential for biodegradation of dieldrin in the microbe rich tree rhizosphere. Dieldrin was analyzed in water and plant tissue using headspace solid-phase microextraction (SPME) coupled with gas chromatography. Poplar and willow saplings planted in soil and watered with 10 microgl(-1) dieldrin for up to 9 months showed no adverse effects due to dieldrin exposure and no dieldrin was observed in plant shoots with a method detection limit (MDL) of 7 ngg(-1). One-week hydroponic tests of poplar saplings exposed to aqueous dieldrin also showed no detection of dieldrin in shoots, with an average of 66% of the dieldrin partitioned to the plant roots and an overall mass balance recovery of 76% in the plant-water system. The root concentration factor (RCF) was found to be 30+/-3 ml water g(-1) root. Biodegradation of dieldrin was not observed in an aqueous batch bioreactor containing 8 microgl(-1) dieldrin, nutrients and bacteria from the root zone of a poplar sapling that had been exposed to dieldrin for 9 months. These results show that planting trees is likely to be safe and potentially useful at sites containing low-levels of dieldrin in groundwater.

  6. Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline.

    PubMed

    Corseuil, H X; Moreno, F N

    2001-08-01

    Ethanol-blended gasoline has been used in Brazil for 20 years and, probably, is going to be more widely used in North America due to the MtBE environmental effects on groundwater. The potential impacts caused by the presence of ethanol in UST spills are related to the co-solvency effect and the preferential degradation of ethanol over the BTEX compounds. These interactions may increase the length of dissolved hydrocarbon plumes and the costs associated with site remediation. This study investigates the advantages of phytoremediation to overcome the problems associated with the presence of ethanol in groundwater contaminanted with gasoline-ethanol mixtures. Experiments were performed under lab conditions with cuttings of Willow tree (Salix babylonica) cultivated hydroponically. Results showed that the cuttings were able to reduce ethanol and benzene concentrations by more than 99% in less than a week. The uptake of both contaminants was confirmed by blank controls and was significantly related to cuttings transpiration capacity. Sorption onto roots biomass also markedly affected the behavior of contaminants in solution. Experiments to evaluate plants' toxicity to ethanol indicated that plants were only affected when aqueous ethanol concentration reached 2000mgl(-1). Results suggest that phytoremediation can be a good complement to intrinsic remediation in shallow aquifer sites contaminated with ethanol-blended gasoline spills.

  7. A National Assessment of Promising Areas for Switchgrass, Hybrid Poplar, or Willow Energy Crop Production

    SciTech Connect

    Graham, R.L.; Walsh, M.E.

    1999-02-01

    The objective of this paper is to systematically assess the cropland acreage that could support energy crops and the expected farm gate and delivered prices of energy crops. The assessment is based on output from two modeling approaches: (1) the Oak Ridge County-Level Energy Crop (ORECCL) database (1996 version) and (2) the Oak Ridge Integrated Bioenergy Analysis System (ORIBAS). The former provides county-level estimates of suitable acres, yields, and farmgate prices of energy crops (switchgrass, hybrid poplar, willow) for all fifty states. The latter estimates delivered feedstock prices and quantities within a state at a fine resolution (1 km2) and considers the interplay between transportation costs, farmgate prices, cropland density, and facility demand. It can be used to look at any type of feedstock given the appropriate input parameters. For the purposes of this assessment, ORIBAS has been used to estimate farmgate and delivered switchgrass prices in 11 states (AL, FL, GA, IA, M N, MO, ND, NE, SC, SD, and TN). Because the potential for energy crop production can be considered from several perspectives, and is evolving as policies, economics and our basic understanding of energy crop yields and production costs change, this assessment should be viewed as a snapshot in time.

  8. Transpiration and metabolisation of TCE by willow plants - a pot experiment.

    PubMed

    Schöftner, Philipp; Watzinger, Andrea; Holzknecht, Philipp; Wimmer, Bernhard; Reichenauer, Thomas G

    2016-01-01

    Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1). Unplanted cylinders were set-up and spiked with nominal concentrations of 721 mg l(-1) TCE in the second year. Additionally, (13)C-enriched TCE solution (δ(13)C = 110.3 ‰) was used. Periodically, TCE content and metabolites were analyzed in water and plant biomass. The presence of TCE-degrading microorganisms was monitored via the measurement of the isotopic ratio of carbon ((13)C/(12)C) in TCE, and the abundance of (13)C-labeled microbial PLFAs (phospholipid fatty acids). More than 98% of TCE was lost via evapotranspiration from the planted pots within one month after adding TCE. Transpiration accounted to 94 to 78% of the total evapotranspiration loss. Almost 1% of TCE was metabolized in the shoots, whereby trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were dominant metabolites; less trichloroethanol (TCOH) and TCE accumulated in plant tissues. Microbial degradation was ruled out by δ(13)C measurements of water and PLFAs. TCE had no detected influence on plant stress status as determined by chlorophyll-fluorescence and gas exchange.

  9. Efficacy and tolerability of a standardized willow bark extract in patients with osteoarthritis: randomized placebo-controlled, double blind clinical trial.

    PubMed

    Schmid, B; Lüdtke, R; Selbmann, H K; Kötter, I; Tschirdewahn, B; Schaffner, W; Heide, L

    2001-06-01

    This study assessed the clinical efficacy of a chemically standardized willow bark extract in the treatment of osteoarthritis. Willow bark extract, in a dose corresponding to 240 mg salicin/day, was compared with placebo in a 2-week, double-blind, randomized controlled trial. The primary outcome measure was the pain dimension of the WOMAC Osteoarthritis Index. Secondary outcome measures included the stiffness and physical function dimensions of the WOMAC, daily visual analogue scales (VAS) on pain and physical function, and final overall assessments by both patients and investigators. A total of 78 patients (39 willow bark extract, 39 placebo) participated in the trial. A statistically significant difference between the active treatment and the placebo group was observed in the WOMAC pain dimension (d = 6.5 mm, 95% C.I. = 0.2-12.7 mm, p = 0.047); the WOMAC pain score was reduced by 14% from the baseline level after 2 weeks of active treatment, compared with an increase of 2% in the placebo group. The patient diary VAS confirmed this result, and likewise the final overall assessments showed superiority of the willow bark extract over the placebo (patients' assessment, p = 0.0002; investigators' assessment, p = 0.0073). It is concluded that the willow bark extract showed a moderate analgesic effect in osteoarthritis and appeared to be well tolerated.

  10. Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Hui; Bai, Ying; Wu, Feng; Li, Yu; Wu, Chuan

    2015-01-01

    Budding willow branches shaped Na3V2(PO4)3/C nanofibers were successfully synthesized by a simple electrospinning technique with Poly(vinyl pyrrilidone) (PVP). The Na3V2(PO4)3/C nanoparticles that anchored on the nanofibers surface seemed like the willow buds; the inner core of the nanofibers, which composed Na3V2(PO4)3, looked like willow twig and the uniform carbon layer was same with willow bark. Such special morphology played a vital role in improving cycle stability and rate capability of the electrode due to the conductive network built up by nanofibers. The Na3V2(PO4)3/C nanofibers cathode exhibited an initial specific capacity of 106.8 mAh g-1 at a current density of 0.2C, still stabling at 107.2 mAh g-1 after 125 cycles with excellent cycle stability. Moreover, a capacity retention of 95.7% was obtained when Na3V2(PO4)3/C nanofibers cycled stepwise from 0.2 to 2C. Good electrochemical performance should be ascribed to both the special morphology and preferential growth of the (113) plane. The simple synthesis technique and good electrochemical performance suggests that this material with the special shape of budding willow branches is a promising cathode for sodium ion batteries.

  11. Microsatellite Markers of Willow Species and Characterization of 11 Polymorphic Microsatellites for Salix eriocephala (Salicaceae), a Potential Native Species for Biomass Production in Canada.

    PubMed

    Lauron-Moreau, Aurélien; Pitre, Frédéric E; Brouillet, Luc; Labrecque, Michel

    2013-03-27

    Biomass produced from dedicated plantations constitutes a source of renewable energy and is expected to play an important role in several countries in the coming decades. The cultivation of woody crops such as willows therefore raises several environmental issues. In North America, several native willows are potentially interesting for biomass producers. Willow trees are diverse but few species used for environmental applications have been the object of molecular genetic studies. Based on the sequenced poplar genome, 24 microsatellite markers were assayed on five native North American willow species: Salix amygdaloides, S. discolor, S. eriocephala, S. interior and S. nigra. Polymorphic microsatellite markers were used to characterize the allele data on the shrub Salix eriocephala, a North American species with economic potential. Eleven markers amplified and confirmed the potential of this species. Analysis of samples from six populations in eastern Canada showed that all markers were variable as well as polymorphic in at least one population. The number of alleles per locus ranged from 1 to 9 (mean 2.95) and showed that these microsatellite markers can be used to assess genetic diversity of North American willow species.

  12. Microsatellite Markers of Willow Species and Characterization of 11 Polymorphic Microsatellites for Salix eriocephala (Salicaceae), a Potential Native Species for Biomass Production in Canada

    PubMed Central

    Lauron-Moreau, Aurélien; Pitre, Frédéric E.; Brouillet, Luc; Labrecque, Michel

    2013-01-01

    Biomass produced from dedicated plantations constitutes a source of renewable energy and is expected to play an important role in several countries in the coming decades. The cultivation of woody crops such as willows therefore raises several environmental issues. In North America, several native willows are potentially interesting for biomass producers. Willow trees are diverse but few species used for environmental applications have been the object of molecular genetic studies. Based on the sequenced poplar genome, 24 microsatellite markers were assayed on five native North American willow species: Salix amygdaloides, S. discolor, S. eriocephala, S. interior and S. nigra. Polymorphic microsatellite markers were used to characterize the allele data on the shrub Salix eriocephala, a North American species with economic potential. Eleven markers amplified and confirmed the potential of this species. Analysis of samples from six populations in eastern Canada showed that all markers were variable as well as polymorphic in at least one population. The number of alleles per locus ranged from 1 to 9 (mean 2.95) and showed that these microsatellite markers can be used to assess genetic diversity of North American willow species. PMID:27137372

  13. Parameter optimization of image classification techniques to delineate crowns of coppice trees on UltraCam-D aerial imagery in woodlands

    NASA Astrophysics Data System (ADS)

    Erfanifard, Yousef; Stereńczak, Krzysztof; Behnia, Negin

    2014-01-01

    Estimating the optimal parameters of some classification techniques becomes their negative aspect as it affects their performance for a given dataset and reduces classification accuracy. It was aimed to optimize the combination of effective parameters of support vector machine (SVM), artificial neural network (ANN), and object-based image analysis (OBIA) classification techniques by the Taguchi method. The optimized techniques were applied to delineate crowns of Persian oak coppice trees on UltraCam-D very high spatial resolution aerial imagery in Zagros semiarid woodlands, Iran. The imagery was classified and the maps were assessed by receiver operating characteristic curve and other performance metrics. The results showed that Taguchi is a robust approach to optimize the combination of effective parameters in these image classification techniques. The area under curve (AUC) showed that the optimized OBIA could well discriminate tree crowns on the imagery (AUC=0.897), while SVM and ANN yielded slightly less AUC performances of 0.819 and 0.850, respectively. The indices of accuracy (0.999) and precision (0.999) and performance metrics of specificity (0.999) and sensitivity (0.999) in the optimized OBIA were higher than with other techniques. The optimization of effective parameters of image classification techniques by the Taguchi method, thus, provided encouraging results to discriminate the crowns of Persian oak coppice trees on UltraCam-D aerial imagery in Zagros semiarid woodlands.

  14. Dynamic light use and protection from excess light in upper canopy and coppice leaves of Nothofagus cunninghamii in an old growth, cool temperate rainforest in Victoria, Australia.

    PubMed

    Tausz, Michael; Warren, Charles R; Adams, Mark A

    2005-01-01

    Responses to simulated sunflecks were examined in upper canopy and coppice leaves of Nothofagus cunninghamii growing in an old-growth rainforest gully in Victoria, Australia. Shaded leaves were exposed to a sudden increase in irradiance from 20 to 1500 micromol m(-2) s(-1). Gas exchange and chlorophyll fluorescence were measured during a 10 min simulated sunfleck and, in the ensuing dark treatment, we examined the recovery of PS II efficiency and the conversion state of xanthophyll cycle pigments. Photosynthetic induction was rapid compared with tropical and northern hemisphere species. Stomatal conductance was relatively high in the shade and stomata did not directly control photosynthetic induction under these conditions. During simulated sunflecks, zeaxanthin was formed rapidly and photochemical efficiency was reduced. These processes were reversed within 30 min in coppice leaves, but this took longer in upper canopy leaves. Poor drought tolerance and achieving a positive carbon balance in a shaded canopy may be functionally related to high stomatal conductance in the shade in N. cunninghamii. The more persistent reduction in photochemical efficiency of upper canopy leaves, which means less efficient light use in subsequent shade periods, but stronger protection from high light, may be related to the generally higher irradiance and longer duration of sunflecks in the upper canopy, but potentially reduces carbon gain during shade periods by 30%.

  15. Rotational Preference in Gymnastics

    PubMed Central

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  16. Rotational preference in gymnastics.

    PubMed

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  17. Impact of elevated CO(2) and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation.

    PubMed

    Marinari, Sara; Calfapietra, Carlo; De Angelis, Paolo; Mugnozza, Giuseppe Scarascia; Grego, Stefano

    2007-06-01

    The experiment was carried out on a short rotation coppice culture of poplars (POP-EUROFACE, Central Italy), growing in a free air carbon dioxide enriched atmosphere (FACE). The specific objective of this work was to study whether elevated CO(2) and fertilization (two CO(2) treatments, elevated CO(2) and control, two N fertilization treatments, fertilized and unfertilized), as well as the interaction between treatments caused an unbalanced nutritional status of leaves in three poplar species (P. x euramericana, P. nigra and P. alba). Finally, we discuss the ecological implications of a possible change in foliar nutrients concentration. CO(2) enrichment reduced foliar nitrogen and increased the concentration of magnesium; whereas nitrogen fertilization had opposite effects on leaf nitrogen and magnesium concentrations. Moreover, the interaction between elevated CO(2) and N fertilization amplified some element unbalances such as the K/N-ratio.

  18. From plant extract to molecular panacea: a commentary on Stone (1763) 'An account of the success of the bark of the willow in the cure of the agues'.

    PubMed

    Wood, John N

    2015-04-19

    The application of aspirin-like drugs in modern medicine is very broad, encompassing the treatment of inflammation, pain and a variety of cardiovascular conditions. Although anecdotal accounts of willow bark extract as an anti-inflammatory drug have occurred since written records began (for example by Hippocrates), the first convincing demonstration of a potent anti-pyretic effect of willow bark containing salicylates was made by the English cleric Edward Stone in the late eighteenth century. Here, we discuss the route to optimizing and understanding the mechanism of action of anti-inflammatory drugs that have their origins in Stone's seminal study, 'An account of the success of the bark of the willow in the cure of agues'. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750237

  19. Greening of the Arctic: Partitioning Warming Versus Reindeer Herbivory for Willow Populations on Yamal Peninsula, Northwest Siberia

    NASA Astrophysics Data System (ADS)

    Forbes, B. C.; Macias-Fauria, M.; Zetterberg, P.; Kumpula, T.

    2012-12-01

    Arctic warming has been linked to observed increases in tundra shrub cover and growth in recent decades on the basis of significant relationships between deciduous shrub growth/biomass and temperature. These vegetation trends have been linked to Arctic sea-ice decline and thus to the sea-ice/albedo feedback known as Arctic amplification. However, the interactions between climate, sea ice, tundra vegetation and herbivores remain poorly understood. Recently we revealed a 50-year growth response over a >100,000 km2 area to a rise in summer temperature for willow (Salix lanata), one the most abundant shrub genera at and north of the continental treeline and an important source of reindeer forage in spring, summer and autumn. We demonstrated that whereas plant productivity is related to sea ice in late spring, the growing season peak responds to persistent synoptic-scale air masses over West Siberia associated with Fennoscandian weather systems through the Rossby wave train. Substrate was important for biomass accumulation, yet a strong correlation between growth and temperature encompasses all observed soil types. Vegetation was especially responsive to temperature in early summer. However, the role of herbivory was not addressed. The present data set explores the relationship between long-term herbivory and growth trends of shrubs experiencing warming in recent decades. Semi-domestic reindeer managed by indigenous Nenets nomads occur at high densities in summer on exposed ridge tops and graze heavily on prostrate and low erect willows. A few meters away in moderately sloped landslides tall willows remain virtually ungrazed as their canopies have grown above the browse line of ca. 180 cm. Here we detail the responses of neighboring shrub populations with and without intensive herbivory yet subject to the same decadal warming trend.

  20. Isolation, identification, and quantification of potential defensive compounds in the viceroy butterfly and its larval host-plant, Carolina willow.

    PubMed

    Prudic, Kathleen L; Khera, Smriti; Sólyom, Anikó; Timmermann, Barbara N

    2007-06-01

    The viceroy-monarch and viceroy-queen butterfly associations are classic examples of mimicry. These relationships were originally classified as Batesian, or parasitic, but were later reclassified as Müllerian, or mutalistic, based on predator bioassays. The Müllerian reclassification implies that viceroy is unpalatable because it too is chemically defended like the queen and the monarch. However, unlike the queen and the monarch, the viceroy defensive chemistry has remained uncharacterized. We demonstrate that the viceroy butterfly (Limenitis archippus, Nymphalidae) not only sequesters nonvolatile defensive compounds from its larval host-plant, the Carolina willow (Salix caroliniana, Salicaceae), but also secretes volatile defensive compounds when disturbed. We developed liquid chromatography-mass spectrometry-mass spectrometry methods to identify a set of phenolic glycosides shared between the adult viceroy butterfly and the Carolina willow, and solid phase microextraction and gas chromatography-mass spectrometry methods to identify volatile phenolic compounds released from stressed viceroy butterflies. In both approaches, all structures were characterized based on their mass spectral fragmentation patterns and confirmed with authentic standards. The phenolics we found are known to deter predator attack in other prey systems, including other willow-feeding insect species. Because these compounds have a generalized defensive function at the concentrations we described, our results are consistent with the Müllerian reclassification put forth by other researchers based on bioassay results. It seems that the viceroy butterfly possesses chemical defenses different from its monarch and queen butterfly counterparts (phenolic glycosides vs. cardiac glycosides, respectively), an unusual phenomenon in mimicry warranting future study.

  1. Cloning and Characterisation of Two H+ Translocating Organic Pyrophos-phatase Genes in Salix and Their Expression Differences in Two Willow Varieties with Different Salt Tolerances.

    PubMed

    Li, Min; Yu, Chunmei; Wang, Yaoyi; Li, Wentao; Wang, Ying; Yang, Yun; Liu, Huihui; Li, Yujuan; Tan, Feng; Zhang, Jian

    2014-10-01

    Willows are one of the most important tree species for landscaping, biofuel and raw timber. Screening salt-tolerant willow varieties is an effective approach to balance wood supply and demand. However, more salt-tolerant willow varieties are required and little is known regarding the mechanism of salt tolerance at the gene expression level. In this paper, two willow varieties were studies in terms of their differences in salt-tolerances and mechanism of salt tolerance at the level of VP1 gene expression. The results showed that Salix L0911 (L0911) had higher biomass than Salix matsudana (SM), and salt injuries were less severe in L0911 than in SM. The activities of peroxidase and superoxide dismutase, as well as the contents of soluble protein and proline, were higher in L0911 than in SM, whereas the contents of Na(+) and K(+), as well as the Na(+)/K(+) ratio, were lower in L0911 than in SM. Two VP1 genes (VP1.1 and VP1.2) cloned in L0911 and SM had similar sequences and structures. VP1.1 and VP1.2 belonged to different subgroups. Total expression levels of the VP1.1 gene in both roots and leaves of L0911 were higher than that in SM under normal conditions. Under salt stress, expression of VP1 in SM roots initially increased and then decreased, whereas the expression of VP1 in leaves of L0911 and SM, as well as in roots of L0911, decreased with increasing salt concentrations. This study increased our understanding of the salt-tolerance mechanism of willow and may facilitate the selection of salt-tolerant willow resources. PMID:25435797

  2. Cloning and Characterisation of Two H+ Translocating Organic Pyrophos-phatase Genes in Salix and Their Expression Differences in Two Willow Varieties with Different Salt Tolerances

    PubMed Central

    Li, Min; Yu, Chunmei; Wang, Yaoyi; Li, Wentao; Wang, Ying; Yang, Yun; Liu, Huihui; Li, Yujuan; Tan, Feng; Zhang, Jian

    2014-01-01

    Willows are one of the most important tree species for landscaping, biofuel and raw timber. Screening salt-tolerant willow varieties is an effective approach to balance wood supply and demand. However, more salt-tolerant willow varieties are required and little is known regarding the mechanism of salt tolerance at the gene expression level. In this paper, two willow varieties were studies in terms of their differences in salt-tolerances and mechanism of salt tolerance at the level of VP1 gene expression. The results showed that Salix L0911 (L0911) had higher biomass than Salix matsudana (SM), and salt injuries were less severe in L0911 than in SM. The activities of peroxidase and superoxide dismutase, as well as the contents of soluble protein and proline, were higher in L0911 than in SM, whereas the contents of Na+ and K+, as well as the Na+/K+ ratio, were lower in L0911 than in SM. Two VP1 genes (VP1.1 and VP1.2) cloned in L0911 and SM had similar sequences and structures. VP1.1 and VP1.2 belonged to different subgroups. Total expression levels of the VP1.1 gene in both roots and leaves of L0911 were higher than that in SM under normal conditions. Under salt stress, expression of VP1 in SM roots initially increased and then decreased, whereas the expression of VP1 in leaves of L0911 and SM, as well as in roots of L0911, decreased with increasing salt concentrations. This study increased our understanding of the salt-tolerance mechanism of willow and may facilitate the selection of salt-tolerant willow resources. PMID:25435797

  3. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  4. Rotator cuff problems

    MedlinePlus

    ... rotator cuff is a group of muscles and tendons that attach to the bones of the shoulder ... Rotator cuff tendinitis refers to irritation of these tendons and inflammation of the bursa (a normally smooth ...

  5. Evaluation of geophysical logs, Phase I, at Willow Grove Naval Air Station, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Conger, R.W.

    1997-01-01

    Between April and June 1997, the U.S. Navy contracted Brown and Root Environmental, Inc., to drill 20 monitor wells at the Willow Grove Naval Air Station in Horsham Township, Montgomery County, Pa. The wells were installed to monitor water levels and allow collection of water samples from shallow, intermediate, and deep water-bearing zones. Analysis of the samples will determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Eight wells were drilled near the Fire Training Area (Site 5), five wells near the 9th Street Landfill (Site 3), four wells at the Antenna Field Landfill (Site 2), and three wells near Privet Road Compound (Site 1). Depths range from 73 to 167 feet below land surface. The U.S. Geological Survey conducted borehole-geophysical and borehole-video logging to identify water-bearing zones so that appropriate intervals could be screened in each monitor well. Geophysical logs were run on the 20 monitor wells and 1 existing well. Video logs were run on 16 wells. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller's notes, all wells were screened such that water-level fluctuations could be monitored and discrete water samples collected from one or more shallow and intermediate water-bearing zones in each borehole.

  6. Evolution in situ: hybrid origin and establishment of willows (Salix L.) on alpine glacier forefields

    PubMed Central

    Gramlich, S; Sagmeister, P; Dullinger, S; Hadacek, F; Hörandl, E

    2016-01-01

    Little attention has been paid to the evolutionary consequences of the colonizing dynamics and succession processes following glacier retreat. Here we studied hybrid populations that have recently formed and established on glacier forefields of the European Alps owing to secondary contact of a lowland colonizer with a subalpine species. We analyzed the composition of two hybrid populations between Salix purpurea and Salix helvetica with nine microsatellite markers by using Bayesian methods (structure and NewHybrids), and simulations. We also studied niche differentiation between the hybrids and the parental species based on indicator values, soil pH and water retention potential measurements. Allelic structure of hybrids confirms the assumed parentage and in situ origin of the crosses on two independent sites within the last decades. Both hybrid populations comprised F1 and later generation hybrids (F2 and backcrosses), confirming hybrid fertility. The parental species showed significant differences in niche characteristics for temperature, soil pH, nutrients and moisture. Remarkably, the hybrids exhibited a higher tolerance to cold temperatures, nutrient-poor and acidic soils than either parent. Our results show that willow hybrids originated after glacier retreat and have established persistent populations within a few decades. One factor contributing to hybrid establishment in sympatry with their parents is their ability to occupy more extreme niches than either parental species within a mosaic-like pattern of microhabitats on the forefield. Introgression and/or transgressive segregation may have resulted in novel genotypes that are able to expand the ecological spectrum of either parent. PMID:26980342

  7. Effectiveness of leachate disposal by the young willow sprouts Salix amygdalina.

    PubMed

    Białowiec, Andrzej; Wojnowska-Baryła, Irena; Hasso-Agopsowicz, Marek

    2003-12-01

    The lysimeter experiment was conducted at the laboratory scale. Different water and leachate dilutions (0%, 25%, 50%, 100% of leachate) were supplied to the lysimeters to achieve the variation in pollutants concentration. The measure of leachate disposal effectiveness was the amount of evaporated leachate solution in evapotranspiration and transpiration. Analysis of evaporation dynamics and the impact of the plants on the leachate disposal effectiveness were determined. Correlation between biomass increase, transpiration and leachate concentration was observed. The highest evapotranspiration was obtained in the lysimeter with leachate concentration 25% and was on the level of 2.3 mm/day and for transpiration, 2.21 mm/day. The lowest values of evapotranspiration (0.55 mm/day) and transpiration (0.39 mm/day) were observed in the lysimeters supplied only by concentrated leachate. The highest leachate treatment efficiency 0.78 mm leachate/day was achieved in lysimeter K3-50% leachate concentration. There was an increase in transpiration participation in evapotranspiration in time. In the lysimeters supplied by the solutions with leachate concentrations, 25% and 50% transpiration participation in evapotranspiration ranged from 80% to 90%, in case of concentrated leachate from 60% to 70%. Evapotranspiration in all lysimeters was 3, 5-14 times higher than evaporation. It seems to be the result of plant impact on evaporation and confirms the possibility of this method being used for leachate treatment. Willows in lysimeter (K3-50% of leachate) had the most effective physiological fit to landfill leachate treatment.

  8. Intraspecific variation in the water relations of Salix arctica, an arctic-alpine dwarf willow.

    PubMed

    Dawson, T E; Bliss, L C

    1989-05-01

    The seasonal and diurnal water relations were investigated within arctic and alpine populations of the dwarf willow Salix arctica. Marked differences that were habitat dependent (e.g. xeric vs. mesic) occured both within and between the populations. The environmental variables that most affected plant water balance and the bulk tissue water relations were soil water potential (Ψsoil) and the leafto-air water vapor pressure gradient (Δw), however, low soil temperature (<4.0° C) also had a marked effect in the wet to mesic habitats. The effects of declining Ψsoil and increased ‡w were most pronounced in the plants growing in xiric habitats in both populations. Stomatal response to increased ‡w was two-fold greater in alpine versus arctic plants and is hypothesized to have arisen in response to more frequent exposure to the higher evaporative conditions of alpine existance. Seasonal fluctuations in the osmotic potential closely followed changes in Ψsoil, suggesting that these were active rather that passive changes. Additionally, plants from xeric habiats had a lower bulk tissue elastic modulus (more elastic tissues) in both arctic and alpine populations. The osmotic and elastic properties enhanced turgor maintenance over a broad range of leaf water potentials and during periods when ‡w was high. Turgor maintenance also correlated to continued transpiration despite fluctuations in soil and atmospherically induced water deficits. Arctic habitats have a shorter growing season, lower soil temperatures due to the presence of permafrost, but higher soil water potentials and lower leaf-to-air vapor pressure gradients than alpine habitats. The observed variation in patterns of stomatal conductance and in values of tissue water relations characteristics between arctic and alpine populations of S. arctica is hypothesized to have arisen in response to these different environmental regimes which represent different selective regimes that occur along the arctic

  9. Phytotoxicity of sodium fluoride and uptake of fluoride in willow trees.

    PubMed

    Clausen, Lauge Peter Westergaard; Karlson, Ulrich Gosewinkel; Trapp, Stefan

    2015-01-01

    The willow tree (Salix viminalis) toxicity test and a cress seed germination test (Lepidium sativum) were used to determine uptake of F and phytotoxicity of NaF. Concentrations in hydroponic solutions were 0-1000 mg F/L and 0-400 mg F/L in the preliminary and definitive test. A third test was done with soils collected from a fluoride-contaminated site at Fredericia, Denmark. The EC10, EC20 and EC50-values for inhibition of transpiration were determined to 38.0, 59.6 and 128.7 mg F/L, respectively. The toxicity test with soil showed strong inhibition for the sample with the highest fluoride concentration (405 mg free F per kg soil, 75 mg F per L soil solution). The seed germination and root elongation test with cress gave EC10, EC20 and EC50-values of 61.4, 105.0 and 262.8 mg F/L, respectively. At low external concentrations, fluoride was taken up more slowly than water and at high external concentrations at the same velocity. This indicates that an efflux pump becomes overloaded at concentrations above 210 mg F/L. Uptake kinetics were simulated with a non-linear mathematical model, and the Michaelis-Menten parameters were determined to half-saturation constant KM near 2 g F/L and maximum enzymatic removal rate vmax at 9 g/(kg d).

  10. A habitat overlap analysis derived from maxent for tamarisk and the south-western willow flycatcher

    NASA Astrophysics Data System (ADS)

    York, Patricia; Evangelista, Paul; Kumar, Sunil; Graham, James; Flather, Curtis; Stohlgren, Thomas

    2011-06-01

    Biologic control of the introduced and invasive, woody plant tamarisk ( Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher ( Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control, with the saltcedar leaf beetle ( Diorhabda elongate), began along the Virgin River, Utah, in 2006, enhancing the need for comprehensive understanding of the tamarisk-flycatcher relationship. We used maximum entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus within the studied watersheds. We used transformations of 2008 Landsat Thematic Mapper images and a digital elevation model as environmental input variables. Maxent models performed well for the flycatcher and tamarisk with Area Under the ROC Curve (AUC) values of 0.960 and 0.982, respectively. Classification of thresholds and comparison of the two Maxent outputs indicated moderate spatial overlap between predicted suitable habitat for E. traillii extimus and predicted locations with dense tamarisk stands, where flycatcher habitat will potentially change flycatcher habitats. Dense tamarisk habitat comprised 500 km2 within the study area, of which 11.4% was also modeled as potential habitat for E. traillii extimus. Potential habitat modeled for the flycatcher constituted 190 km2, of which 30.7% also contained dense tamarisk habitat. Results showed that both native vegetation and dense tamarisk habitats exist in the study area and that most tamarisk infestations do not contain characteristics that satisfy the habitat requirements of E. traillii extimus. Based on this study, effective biologic control of Tamarix spp. may, in the short term, reduce suitable habitat available to E. traillii extimus, but also has the potential

  11. Habitat and sex differences in physiological condition of breeding Southwestern Willow Flycatchers (Empidonax traillii extimus)

    USGS Publications Warehouse

    Owen, J.C.; Sogge, M.K.; Kern, M.D.

    2005-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus; hereafter "flycatcher") is a federally listed endangered species that breeds in densely vegetated riparian habitats dominated by native and exotic plants, including introduced monotypic saltcedar (Tamarix ramosissima). Some workers have theorized that saltcedar is unsuitable habitat for the flycatcher, primarily because it generally supports a smaller and less diverse invertebrate community (the flycatcher's food base) than native habitats (e.g. Salix spp.). However, differences in insect communities between native and saltcedar habitats are not proof that saltcedar habitats are inferior. The only way to evaluate whether the habitats differ in dietary or energetic quality is to document actual food limitation or its manifestations. Measurements of an individual's body condition and metabolic state can serve as indicators of environmental stressors, such as food limitation and environmental extremes. We captured 130 flycatchers breeding in native and saltcedar habitats in Arizona and New Mexico and measured 12 variables of physiological condition. These variables included body mass, fat level, body condition index, hematocrit, plasma triglycerides, plasma free fatty acids and glycerol, plasma glucose and beta-hydroxybutyrate, plasma uric acid, total leukocyte count, and heterophil-to-lymphocyte ratio. We found substantial sex-based differences in the condition of male and female flycatchers. Ten of the 12 measures of physiological condition differed significantly between the sexes. In all cases where male and female condition differed (except mass), the differences suggest that males were in poorer condition than females. We found few habitat-based differences in flycatcher condition. Only 3 of the 12 physiological condition indices differed significantly between habitats. Our data show that, at least in some parts of the flycatcher's range, there is no evidence that flycatchers breeding in saltcedar

  12. How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies

    PubMed Central

    Orians, Colin M.; Fritz, Robert S.; Hochwender, Cris G.; Albrectsen, Benedicte R.; Czesak, Mary Ellen

    2013-01-01

    Background and Aims Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug, Arion subfuscus, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages. Methods Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), ‘selected’ and undamaged ‘control’ trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years. Key Results The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (Melampsora epitea), a native herbivorous beetle (Chrysomela knabi) and an exotic willow leaf beetle (Plagiodera versicolora). Conclusions This exotic

  13. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  14. Short Rotation Crops in the United States

    SciTech Connect

    Wright, L L

    1998-06-04

    The report is based primarily on the results of survey questions sent to approximately 60 woody and 20 herbaceous crop researchers in the United States and on information from the U.S. Department of Energy's Bioenergy Feedstock Development Program. Responses were received from 13 individuals involved in woody crops research or industrial commercialization (with 5 of the responses coming from industry). Responses were received from 11 individuals involved in herbaceous crop research. Opinions on market incentives, technical and non-technical barriers, and highest priority research and development areas are summarized in the text. Details on research activities of the survey responders are provided as appendices to the paper. Woody crops grown as single-stem systems (primarily Populus and Eucalyptus species) are perceived to have strong pulp fiber and oriented strand board markets, and the survey responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy's Bioenergy Feedstock Development Program are described in an appendix to the paper.

  15. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  16. Predictors of human rotation.

    PubMed

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  17. Preliminary Risk Assessment of the Southwestern Willow Flycatcher (Empidonax traillii extimus) at the Los Alamos National Laboratory

    SciTech Connect

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.; Mullen, M.A.; Foxx, T.S.

    1998-10-01

    The southwestern willow flycatcher (Empidonax traillii extimus) is the fourth threatened or endangered species to undergo a preliminary assessment for estimating potential risk from environmental contaminants at the Los Alamos National Laboratory. The assessments are being conducted as part of a three-year project to develop a habitat management plan for threatened and endangered species and species of concern at the Laboratory. For the preliminary assessment, estimated doses were compared against toxicity reference values to generate hazard indices (HIs). This assessment included a measure of cumulative effects from multiple contaminants (radionuclides, metals, and organic chemicals) to 100 simulated nest sites located within flycatcher potential habitat. Sources of contaminant values were 10,000-ft{sup 2} grid cells within an Ecological Exposure Unit (EEU). This EEU was estimated around the potential habitat and was based on the maximum home range for the fly catcher identified in the scientific literature. The tools used included a custom FORTRAN program, ECORSK5, and a geographic information system. Food consumption and soil ingestion contaminant pathways were addressed in the assessment. Using a four-category risk evaluation, HI results indicate no appreciable impact is expected to the southwestern willow flycatcher. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, flycatcher habitat, facility siting, and/or facility operations in order to maintain low levels of risk from contaminants.

  18. Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill.

    PubMed

    Bell, Terrence H; Cloutier-Hurteau, Benoît; Al-Otaibi, Fahad; Turmel, Marie-Claude; Yergeau, Etienne; Courchesne, François; St-Arnaud, Marc

    2015-08-01

    Although plants introduced for site restoration are pre-selected for specific traits (e.g. trace element bioaccumulation, rapid growth in poor soils), the in situ success of these plants likely depends on the recruitment of appropriate rhizosphere microorganisms from their new environment. We introduced three willow (Salix spp.) cultivars to a contaminated landfill, and performed soil chemical analyses, plant measurements, and Ion Torrent sequencing of rhizospheric fungal and bacterial communities at 4 and 16 months post-planting. The abundance of certain dominant fungi was linked to willow accumulation of Zn, the most abundant trace element at the site. Interestingly, total Zn accumulation was better explained by fungal community structure 4 months post-planting than 16 months post-planting, suggesting that initial microbial recruitment may be critical. In addition, when the putative ectomycorrhizal fungi Sphaerosporella brunnea and Inocybe sp. dominated the rhizosphere 4 months post-planting, Zn accumulation efficiency was negatively correlated with fungal diversity. Although field studies such as this rely on correlation, these results suggest that the soil microbiome may have the greatest impact on plant function during the early stages of growth, and that plant-fungus specificity may be essential.

  19. Synthesis of carbon nanospheres using fallen willow leaves and adsorption of Rhodamine B and heavy metals by them.

    PubMed

    Qu, Jiao; Zhang, Qian; Xia, Yunsheng; Cong, Qiao; Luo, Chunqiu

    2015-01-01

    This paper focuses on the synthesis of carbon nanospheres (CNSs) using fallen willow leaves as a low-cost precursor. The scanning electron microscopy (SEM) image and transmission electron microscopy (TEM) image demonstrated that the structure of synthesized CNSs was spherical, with a diameter of 100 nm. The crystal structure and chemical information were characterized by Raman spectrum and energy-dispersive spectrum (EDS), respectively. BET results showed that the CNSs had a larger specific surface area of 294.32 m(2) g(-1), which makes it a potentially superior adsorbent. Rh-B and heavy metal ions such as Cu(2+), Zn(2+), and Cr(6+) were used as targets to investigate the adsorption capacity of the CNSs. The effects of adsorption parameters such as adsorption equilibrium time, dose of CNSs, adsorption kinetics, and effect factors were also studied. These findings not only established a cost-effective method of synthesizing CNSs using fallen willow leaves but also broadened the potential application range of these CNSs.

  20. Physiological and proteomic responses of different willow clones (Salix fragilis x alba) exposed to dredged sediment contaminated by heavy metals.

    PubMed

    Evlard, Aricia; Sergeant, Kjell; Ferrandis, Salvador; Printz, Bruno; Renaut, Jenny; Guignard, Cedric; Paul, Roger; Hausman, Jean-Francois; Campanella, Bruno

    2014-01-01

    High biomass producing species are considered as tools for remediation of contaminated soils. Willows (Salix spp.) are prominent study subjects in this regard. In this study, different willow clones (Salix fragilis x alba) were planted on heavy-metal polluted dredging sludge. A first objective was assessment of the biomass production for these clones. Using a Gupta statistic, four clones were identified as high biomass producers (HBP). For comparison, a group of four clones with lowest biomass production were selected (LBP). A second objective was to compare metal uptake as well as the physiological and proteomic responses of these two groups. All these complementary data's allow us to have a better picture of the health of the clones that would be used in phytoremediation programs. Cd, Zn, and Ni total uptake was higher in the HBPs but Pb total uptake was higher in LBPs. Our proteomic and physiological results showed that the LBPs were able to maintain cellular activity as much as the HBPs although the oxidative stress response was more pronounced in the LBPs. This could be due to the high Pb content found in this group although a combined effect of the other metals cannot be excluded.

  1. Inhibition of proinflammatory biomarkers in THP1 macrophages by polyphenols derived from chamomile, meadowsweet and willow bark.

    PubMed

    Drummond, Elaine M; Harbourne, Niamh; Marete, Eunice; Martyn, Danika; Jacquier, Jc; O'Riordan, Dolores; Gibney, Eileen R

    2013-04-01

    Antiinflammatory compounds in the diet can alleviate excessive inflammation, a factor in the pathogenesis of common diseases such as rheumatoid arthritis, atherosclerosis and diabetes. This study examined three European herbs, chamomile (Matricaria chamomilla), meadowsweet (Filipendula ulmaria L.) and willow bark (Salix alba L.), which have been traditionally used to treat inflammation and their potential for use as antiinflammatory agents. Aqueous herbal extracts and isolated polyphenolic compounds (apigenin, quercetin and salicylic acid, 0-100 μM) were incubated with THP1 macrophages, and interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-α) were measured. At concentrations of 10 μM, both apigenin and quercetin reduced IL-6 significantly ( p < 0.05). Apigenin at 10 μM and quercetin at 25 μM reduced TNF-α significantly ( p < 0.05). Amongst the herbal extracts, willow bark had the greatest antiinflammatory activity at reducing IL-6 and TNF-α production. This was followed by meadowsweet and then chamomile. The lowest effective antiinflammatory concentrations were noncytotoxic (MTT mitochondrial activity assay). The Comet assay, which was used to study the protective effect of the isolated phenols against oxidative damage, showed positive results for all three polyphenols. These are the first findings that demonstrate the antiinflammatory capacity of these herbal extracts.

  2. Winter distribution of willow flycatcher subspecies (Distribución Invernal de las Subespecies de Empidonax traillii)

    USGS Publications Warehouse

    Paxton, Eben H.; Unitt, Philip; Sogge, Mark K.; Whitfield, Mary; Keim, Paul

    2011-01-01

    Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies.

  3. Electrical capacitance as a predictor of root dry weight in shrub willow (Salix; Salicaceae) parents and progeny1

    PubMed Central

    Carlson, Craig H.; Smart, Lawrence B.

    2016-01-01

    Premise of the study: Root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow (Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). Methods: The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness in allometric models for root and stem dry biomass. Results: Strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Discussion: This work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration. PMID:27610275

  4. Public health assessment for Willow Run Sludge Lagoon, Ypsilanti, Washtenaw County, Michigan, Region 5. Cerclis No. MID981089246

    SciTech Connect

    1996-08-26

    The Willow Run Sludge Lagoon site was proposed for the United States Environmental Protection Agency (U.S. EPA) National Priorities List (NPL) in January 1987, but a 1990 reevaluation of the site indicated that it did not qualify for the NPL. On September 30, 1988, the Agency for Toxic Substances and Disease Registry (ATSDR) prepared a Preliminary Health Assessment for the Fort Motor (Willow Run) Sludge Lagoon Site. ATSDR concluded that the site was of potential public health concern because of the possibility of exposure to hazardous substances via contaminated groundwater, surface soil, surface water, air and biota, with exposure potentially occurring through ingestion, inhalation, and dermal contact. In October 1993, the Michigan Department of Public Health (MDPH)2 prepared a consulation on the potential health hazards from the contamination in and near the creek. The consultation concluded that the contaminant levels in the sediments in the creek and the WRSL pose a public health threat through direct contact, that the individuals who may have been exposed to these sediments cannot be identified, and that there is insufficient data available to evaluate health threats through consumption of fish or contact with other surface materials on the site.

  5. Response of three shrub willow varieties (Salix spp.) to storm water treatments with different concentrations of salts.

    PubMed

    Mirck, Jaconette; Volk, Timothy A

    2010-05-01

    The effect of recycling storm water with high chloride concentrations on shrub willow growth was examined in a ten-week greenhouse study. Three willow varieties Salix miyabeana (SX64), Salix purpurea (9882-34), and Salix sachalinensisxSalix miyabeana (9870-40) were grown in organically-amended Solvay waste, and irrigated with five storm water concentrations containing 163, 325, 813, 1625, and 8125mgCl(-)L(-1) and a tap water control. Stomatal conductance values responded most rapidly to stress (after 4.5weeks), but height and leaf length measurements, which revealed signs of stress after 6 and 7weeks, might be more practical stress indicators for large-scale plantations. Even though variety 9870-40 was most sensitive with increasing concentrations of Solvay storm water, this variety had the greatest ET values during the ten-week trial. Storm water with concentrations up to 1625mgCl(-)L(-1) had no short-term effects on biomass accumulation and evapotranspiration.

  6. Willow growth in response to nutrients and moisture on a clay landfill cap soil. I. Growth and biomass production.

    PubMed

    Martin, Peter J; Stephens, William

    2006-02-01

    The growth and biomass production by willow (Salix viminalis L.) was studied in lysimeters containing Oxford clay landfill cap soil with different amendments, bulk densities and watering regimes. Three years from planting, stem biomass in well-watered plants was least (0.28 kg plant(-1)) with high bulk density soil (1480 kg m(-3)) and no nutritional amendment but was increased 10-fold (2.53 kg plant(-1)) by reducing soil bulk density (1200 kg m3) and adding amendments. In comparison, on a sandy loam soil it was 6.23 kg plant(-1). There were similar differences in number of stems plant(-1), stem basal area plant(-1) and plant leaf area which can be attributed to low nitrogen and phosphorus levels in Oxford clay. Water stress reduced stem biomass production by 26-37% and caused higher root:stem ratios. These were also higher on Oxford clay than on the sandy loam. Successful biomass production from willow on Oxford clay landfill caps will therefore require nutritional amendment.

  7. Phenotypic plasticity in a willow leaf beetle depends on host plant species: release and recognition of beetle odors.

    PubMed

    Austel, Nadine; Reinecke, Andreas; Björkman, Christer; Hilker, Monika; Meiners, Torsten

    2015-02-01

    Aggregation behavior of herbivorous insects is mediated by a wide range of biotic and abiotic factors. It has been suggested that aggregation behavior of the blue willow leaf beetle Phratora vulgatissima is mediated by both host plant odor and by odor released by the beetles. Previous studies show that the beetles respond to plant odors according to their prior host plant experiences. Here, we analyzed the effect of the host plant species on odor released and perceived by adult P. vulgatissima. The major difference between the odor of beetles feeding on salicin-rich and salicin-poor host plants was the presence of salicylaldehyde in the odor of the former, where both males and females released this compound. Electrophysiological studies showed that the intensity of responses to single components of odor released by beetles was sex specific and dependent on the host plant species with which the beetles were fed. Finally, behavioral studies revealed that males feeding on salicin-rich willows were attracted by salicylaldehyde, whereas females did not respond behaviorally to this compound, despite showing clear antennal responses to it. Finally, the ecological relevance of the influence of a host plant species on the plasticity of beetle odor chemistry, perception, and behavior is discussed.

  8. Inhibition of proinflammatory biomarkers in THP1 macrophages by polyphenols derived from chamomile, meadowsweet and willow bark.

    PubMed

    Drummond, Elaine M; Harbourne, Niamh; Marete, Eunice; Martyn, Danika; Jacquier, Jc; O'Riordan, Dolores; Gibney, Eileen R

    2013-04-01

    Antiinflammatory compounds in the diet can alleviate excessive inflammation, a factor in the pathogenesis of common diseases such as rheumatoid arthritis, atherosclerosis and diabetes. This study examined three European herbs, chamomile (Matricaria chamomilla), meadowsweet (Filipendula ulmaria L.) and willow bark (Salix alba L.), which have been traditionally used to treat inflammation and their potential for use as antiinflammatory agents. Aqueous herbal extracts and isolated polyphenolic compounds (apigenin, quercetin and salicylic acid, 0-100 μM) were incubated with THP1 macrophages, and interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-α) were measured. At concentrations of 10 μM, both apigenin and quercetin reduced IL-6 significantly ( p < 0.05). Apigenin at 10 μM and quercetin at 25 μM reduced TNF-α significantly ( p < 0.05). Amongst the herbal extracts, willow bark had the greatest antiinflammatory activity at reducing IL-6 and TNF-α production. This was followed by meadowsweet and then chamomile. The lowest effective antiinflammatory concentrations were noncytotoxic (MTT mitochondrial activity assay). The Comet assay, which was used to study the protective effect of the isolated phenols against oxidative damage, showed positive results for all three polyphenols. These are the first findings that demonstrate the antiinflammatory capacity of these herbal extracts. PMID:22711544

  9. Electrical capacitance as a predictor of root dry weight in shrub willow (Salix; Salicaceae) parents and progeny1

    PubMed Central

    Carlson, Craig H.; Smart, Lawrence B.

    2016-01-01

    Premise of the study: Root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow (Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). Methods: The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness in allometric models for root and stem dry biomass. Results: Strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Discussion: This work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration.

  10. Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year-old Populus clones in coppice culture.

    PubMed

    Casella, E; Ceulemans, R

    2002-12-01

    Spatial distributions of leaf characteristics relevant to photosynthesis were compared within high-density coppice canopies of Populus spp. of contrasting genetic origin. We studied three clones representative of the range in growth potential, leaf morphology, coppice and canopy structure: Clone Hoogvorst (Hoo) (Populus trichocarpa Torr. & Gray x Populus deltoides Bartr. & Marsh), Clone Fritzi Pauley (Fri) (Populus trichocarpa Torr. & Gray) and Clone Wolterson (Wol) (Populus nigra L.). Leaf area index ranged from 2.7 (Fri and Wol) to 3.8 (Hoo). The clones exhibited large vertical variation in leaf area density (0.02-1.42 m2 m-3). Leaf dry mass per unit leaf area (DM(A)) increased with increasing light in Clones Hoo and Fri, from about 56 g m-2 at the bottom of the canopy to 162 g m-2 at the top. In Clone Wol, DM(A) varied only from 65 to 100 g m-2, with no consistent relationship with respect to light. Conversely, nitrogen concentration on a mass basis was nearly constant (around 1.3-2.1%) within the canopies of Clones Hoo and Fri, but increased strongly with light in Clone Wol, from 1.4% at the bottom of the canopy to 4.1% at the top. As a result, nitrogen per unit leaf area (N(A)) increased with light in the canopies of all clones, from 0.9 g m-2 at the bottom to 2.9 g m-2 at the top. Although a single linear relationship described the dependence of maximum carboxylation rate (17-93 micromol CO2 m-2 s-1) or electron transport capacity (45-186 micromol electrons m-2 s-1) on N(A), for all clones, Clone Wol differed from Clones Hoo and Fri by exhibiting a higher dark respiration rate at low N(A) (1.8 versus 0.8 micromol CO2 m-2 s-1).

  11. Paleoseismology of the Nephi Segment of the Wasatch Fault Zone, Juab County, Utah - Preliminary Results From Two Large Exploratory Trenches at Willow Creek

    USGS Publications Warehouse

    Machette, Michael N.; Crone, Anthony J.; Personius, Stephen F.; Mahan, Shannon; Dart, Richard L.; Lidke, David J.; Olig, Susan S.

    2007-01-01

    In 2004, we identified a small parcel of U.S. Forest Service land at the mouth of Willow Creek (about 5 km west of Mona, Utah) that was suitable for trenching. At the Willow Creek site, which is near the middle of the southern strand of the Nephi segment, the WFZ has vertically displaced alluvial-fan deposits >6-7 m, forming large, steep, multiple-event scarps. In May 2005, we dug two 4- to 5-m-deep backhoe trenches at the Willow Creek site, identified three colluvial wedges in each trench, and collected samples of charcoal and A-horizon organic material for AMS (acceleration mass spectrometry) radiocarbon dating, and sampled fine-grained eolian and colluvial sediment for luminescence dating. The trenches yielded a stratigraphic assemblage composed of moderately coarse-grained fluvial and debris-flow deposits and discrete colluvial wedges associated with three faulting events (P1, P2, and P3). About one-half of the net vertical displacement is accommodated by monoclinal tilting of fan deposits on the hanging-wall block, possibly related to massive ductile landslide deposits that are present beneath the Willow Creek fan. The timing of the three surface-faulting events is bracketed by radiocarbon dates and results in a much different fault chronology and higher slip rates than previously considered for this segment of the Wasatch fault zone.

  12. Chemical composition of desert willow (Salix psammophila) grown in the Kubuqi Desert, Inner Mongolia, China: bark extracts associated with environmental adaptability.

    PubMed

    Kubo, Satoshi; Hashida, Koh; Makino, Rei; Magara, Kengo; Kenzo, Tanaka; Kato, Atsushi; Aorigele

    2013-12-18

    Bark of desert willow (Salix psammophila, Spsa) grown in Inner Mongolia was successively extracted with n-hexane, diethyl ether, acetone, methanol, and hot water to examine chemical components associated with its environmental adaptability to desert conditions. The yield of n-hexane extract (5.0% based on dry bark), mainly composed of wax, was higher than those of acetone and methanol extracts (3.7% and 4.2%, respectively), whereas the yields of n-hexane extract (1.4%) from willow bark grown in humid areas were much lower than those of acetone (17.4% and 19.9%) and methanol (12.5% and 14.0%) extracts. Unlike other willow bark samples, Spsa bark contained a certain amount of sugar alcohols. In particular, we identified arabinitol (0.21%), which has not previously been reported as a major component of extracts of willow bark. The high content of wax and sugar alcohol would be associated with the ability of Spsa to survive in desert conditions. Accumulation of wax on the outer bark surface would reduce water loss, while sugar alcohols might improve freezing tolerance.

  13. Detection of Salicylic Acid in Willow Bark: An Addition to a Classic Series of Experiments in the Introductory Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clay, Matthew D.; McLeod, Eric J.

    2012-01-01

    Salicylic acid and its derivative, acetylsalicylic acid, are often encountered in introductory organic chemistry experiments, and mention is often made that salicylic acid was originally isolated from the bark of the willow tree. This biological connection, however, is typically not further pursued, leaving students with an impression that biology…

  14. Global Rotation of Non-Rotating Origin

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2001-11-01

    At its 24th General Assembly held at Manchester last year, the IAU has adopted the Celestial Ephemeris Origin (CEO) as a new longitude origin of the celestial coordinate system (Capitaine et al. 2000, IAU 2001). The CEO is the application of Guinot's non-rotating origin (NRO) to the Earth's equator (Guinot 1979, Capitaine et al. 1986, Capitaine 1990). By using the current IAU precession/nutation theory, we integrated the global orbit of CEO. It is a slightly curved zigzag pattern of the amplitude of around 23o moving secularly along the ecliptic. Among its kinematical features, we note that CEO has a large secular component of rotation with respect to the inertial reference frame. The current speed of this global rotation is as large as around -4.15 ''/yr. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north celestial pole. Unfortunately this is a general property of NROs. On the other hand, such secular rotation does not exist for some geometrically-defined longitude origins like K, H, and Σ already discussed in Kovalevsky and McCarthy (1998). We think that the existence of a global secular rotaion means that the CEO, and NROs in general, is not appropriate to be specified as the x-axis of celestial coordinate systems.

  15. Asteroid rotation rates

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Harris, A. W.; Murray, C. D.

    1984-01-01

    A trend of increasing mean rotational frequency with increasing diameter is noted in asteroids with diameters greater than 120 km, irrespective of M-, S-, and C-type asteroid subset and family or nonfamily membership. This trend cannot be accounted for by observational selection. For asteroids with diameters smaller than 120 km mean rotational frequency increases with decreasing diameter, but within this group there is a subset with exceptionally long rotational periods. This marked change in the distribution at 120-km diameter could separate primordial asteroids from their collision products. It is also noted that, for asteroids of a given diameter, M asteroids rotate faster than S asteroids, which in turn rotate faster than C asteroids. For all types, family members rotate faster than nonfamily members.

  16. The spatial rotator.

    PubMed

    Rasmusson, A; Hahn, U; Larsen, J O; Gundersen, H J G; Jensen, E B Vedel; Nyengaard, J R

    2013-05-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases where over- and underprojection phenomena are not negligible, they should therefore be corrected for if the spatial rotator is to be applied. If such a correction is not possible, it is needed to avoid these phenomena by using microscopy with increased resolution in the focal plane. PMID:23488880

  17. Microbial Origin and Transformation of Dissolved Organic Matter in the Agricultural Willow Slough Watershed, California: Insights From Amino Sugars

    NASA Astrophysics Data System (ADS)

    Journet, S.; Pellerin, B. A.; Bergamaschi, B. A.; Hernes, P. J.

    2007-12-01

    Understanding the fundamental processes and land management practices affecting dissolved organic matter (DOM) cycling in agricultural watersheds is essential for managing drinking water quality and maintaining ecosystem health. Although dissolved organic nitrogen (DON) is increasingly recognized as a key component of DOM in disturbed watersheds, our knowledge of its origin and reactivity are limited due to multiple sources, microbial uptake, and secondary production. In particular, the effect of microbial processes on DON dynamics remains poorly understood at the watershed scale. The seasonal and spatial variations of DON concentrations in the surface waters of the Willow Slough watershed, a 425-km2 agriculturally-dominated catchment in the northern Central Valley of California, USA, were monitored weekly at 8 locations since January 2006. Amino sugars are specific microbial biomarkers and their unique distribution among groups of microorganisms such as bacteria, fungi, and algae allows the distinction between different sources of DOM. Although mean annual DON concentrations were lower at the headwaters (0.18 mg/L) than the outlet (0.45 mg/L), DON constituted up to 90% of the total dissolved nitrogen (TDN) at the headwaters, compared to only 15% of the TDN at the watershed outlet. During winter baseflows, DON concentrations at the outlet were low (0.2 mg/L), while they increased to about 1.2 mg/L during winter storms. Remarkably, DON concentrations increased and remained high at 0.6 mg/L during the summer irrigation season. Preliminary data suggests that winter storm runoff and summer irrigation flows are dominated by DON of terrestrial origin, whereas periods of winter baseflow are mainly composed of algal-derived DON. The concentration of total dissolved amino sugars in the Willow Slough surface waters and the contribution of amino sugars to the DON pool (% DON-AS) will be used to evaluate DON composition and degradation state. In addition, molar ratios of four

  18. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  19. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  20. The Weighted Oblimin Rotation.

    ERIC Educational Resources Information Center

    Lorenzo-Seva, Urbano

    2000-01-01

    Demonstrates that the weighting procedure proposed by E. Cureton and S. Mulaik (1975) can be applied to the Direct Oblimin approach of D. Clarkson and R. Jennrich (1988) to provide good results. The rotation method obtained is called Weighted Oblimin. Compared this method to other rotation methods with favorable results. (SLD)

  1. CONTROL ROD ROTATING MECHANISM

    DOEpatents

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  2. Serious rotator cuff injuries.

    PubMed

    Jobe, F W

    1983-07-01

    Usually, serious rotator cuff injuries can be operated upon and a high level of performance can be achieved afer surgery. This is not so for the substantial tears seen in baseball pitchers. However, a damaged rotator cuff can be rehabilitated and can recover from the threatened tear without surgery if detected early enough and given the proper treatment.

  3. Rotation sensor switch

    DOEpatents

    Sevec, John B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops comprises a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal.

  4. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  5. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana.

    PubMed

    Rao, Guodong; Sui, Jinkai; Zeng, Yanfei; He, Caiyun; Duan, Aiguo; Zhang, Jianguo

    2014-01-01

    Salix matsudana Koidz. is a deciduous, rapidly growing, and drought resistant tree and is one of the most widely distributed and commonly cultivated willow species in China. Currently little transcriptomic and small RNAomic data are available to reveal the genes involve in the stress resistant in S. matsudana. Here, we report the RNA-seq analysis results of both transcriptome and small RNAome data using Illumina deep sequencing of shoot tips from two willow variants(Salix. matsudana and Salix matsudana Koidz. cultivar 'Tortuosa'). De novo gene assembly was used to generate the consensus transcriptome and small RNAome, which contained 106,403 unique transcripts with an average length of 944 bp and a total length of 100.45 MB, and 166 known miRNAs representing 35 miRNA families. Comparison of transcriptomes and small RNAomes combined with quantitative real-time PCR from the two Salix libraries revealed a total of 292 different expressed genes(DEGs) and 36 different expressed miRNAs (DEMs). Among the DEGs and DEMs, 196 genes and 24 miRNAs were up regulated, 96 genes and 12 miRNA were down regulated in S. matsudana. Functional analysis of DEGs and miRNA targets showed that many genes were involved in stress resistance in S. matsudana. Our global gene expression profiling presents a comprehensive view of the transcriptome and small RNAome which provide valuable information and sequence resources for uncovering the stress response genes in S. matsudana. Moreover the transcriptome and small RNAome data provide a basis for future study of genetic resistance in Salix.

  6. De Novo Transcriptome and Small RNA Analysis of Two Chinese Willow Cultivars Reveals Stress Response Genes in Salix matsudana

    PubMed Central

    Zeng, Yanfei; He, Caiyun; Duan, Aiguo; Zhang, Jianguo

    2014-01-01

    Salix matsudana Koidz. is a deciduous, rapidly growing, and drought resistant tree and is one of the most widely distributed and commonly cultivated willow species in China. Currently little transcriptomic and small RNAomic data are available to reveal the genes involve in the stress resistant in S. matsudana. Here, we report the RNA-seq analysis results of both transcriptome and small RNAome data using Illumina deep sequencing of shoot tips from two willow variants(Salix. matsudana and Salix matsudana Koidz. cultivar ‘Tortuosa’). De novo gene assembly was used to generate the consensus transcriptome and small RNAome, which contained 106,403 unique transcripts with an average length of 944 bp and a total length of 100.45 MB, and 166 known miRNAs representing 35 miRNA families. Comparison of transcriptomes and small RNAomes combined with quantitative real-time PCR from the two Salix libraries revealed a total of 292 different expressed genes(DEGs) and 36 different expressed miRNAs (DEMs). Among the DEGs and DEMs, 196 genes and 24 miRNAs were up regulated, 96 genes and 12 miRNA were down regulated in S. matsudana. Functional analysis of DEGs and miRNA targets showed that many genes were involved in stress resistance in S. matsudana. Our global gene expression profiling presents a comprehensive view of the transcriptome and small RNAome which provide valuable information and sequence resources for uncovering the stress response genes in S. matsudana. Moreover the transcriptome and small RNAome data provide a basis for future study of genetic resistance in Salix. PMID:25275458

  7. Preference and performance of a willow-feeding leaf beetle: soil nutrient and flooding effects on host quality.

    PubMed

    Lower, Steven S; Kirshenbaum, Sheril; Orians, Colin M

    2003-08-01

    The distribution and abundance of herbivores on plants growing under different environmental conditions may depend upon preference and/or performance. Soil nutrients and water availability are key determinants of herbivore distribution, as both influence plant growth and tissue quality. However, the effects of water on plant quality may depend upon the availability of nutrients and vice versa. Surprisingly few studies have examined the interactions between the two. We investigated the effects of soil nutrient and water availability on (1) the growth and chemistry of the silky willow (Salix sericea Marshall), and (2) the preference and performance of the imported willow leaf beetle (Plagiodera versicolora Laichartig). We conducted two common garden experiments using a similar 2x2 fully factorial design with two levels of soil nutrients (low, high) and two levels of water availability (field capacity, flooded). In the first experiment (larval performance), larval development time and pupal weight were not influenced by nutrient or water availability to the plant. This occurred despite the fact that plants in the high nutrient treatments had higher protein concentration and lower foliar concentrations of the phenolic glycoside 2'-cinnamoylsalicortin. In the second experiment (adult preference), we caged four plants (one from each treatment) and released beetles into cages. We found that plant growth and leaf protein depended upon the interaction between nutrient and water availability. Plant growth was greatest in the high nutrient-field capacity treatment and leaf protein was greatest in the high nutrient-flooded treatment. In contrast, adults settled and oviposited preferentially on the high nutrient treatment under flooded conditions, but we found no evidence of interactions between nutrients and water on preference. Thus, at least under flooded conditions nutrients affect adult preference. We also found that foliar protein was correlated positively with adult

  8. High oxygen level in a soaking treatment improves early root and shoot development of black willow cuttings.

    PubMed

    Martin, L T; Pezeshki, S R; Shields Jr, F D

    2004-10-22

    Black willow (Salix nigra) stem cuttings are commonly used to stabilize eroded streambanks with survival dependent on rapid development of adventitious roots to maintain plant water balance, absorb nutrients, and provide anchorage and support especially during flood and drought events. Soaking cuttings in water prior to planting increases survival and growth rates, but it is not known whether oxygen content in the soaking water affects the rate of early root and shoot initiation and growth. A laboratory experiment tested the hypothesis that cuttings treated with high oxygen (>95% saturation, 8.62 mg O2 l(-1)) soaking exhibit more rapid initiation and growth of roots and shoots than cuttings treated with low oxygen (<15% saturation, 1.24 mg O2 l(-1)) soaking and control (unsoaked). Root initiation was enhanced in both high and low O2 soaking treatments compared to control (100, 93, and 41%, respectively, n = 27). High O2 soaking led to greater root length than low O2 soaking during the fourth week after planting (26.5 and 12.3 cm on day 22; 27.7 and 19.1 cm on day 27, respectively). Shoot growth was greater in high O2 compared to low O2 soaking on days 36 and 56 after planting (9.3 and 6.3 cm on day 36, 10.7 and 7.2 cm on day 56, respectively). Shoot and root biomass production was stimulated in both soaking treatments, with 200% more biomass production by day 59 compared to control. Results of this study demonstrated that a high oxygen soaking treatment has potential for improving early root and shoot growth, and survival in willow cuttings planted at riparian restoration sites.

  9. ROTATING GLOBULAR CLUSTERS

    SciTech Connect

    Bianchini, P.; Varri, A. L.; Bertin, G.; Zocchi, A.

    2013-07-20

    Internal rotation is thought to play a major role in the dynamics of some globular clusters. However, in only a few cases has internal rotation been studied by the quantitative application of realistic and physically justified global models. Here, we present a dynamical analysis of the photometry and three-dimensional kinematics of {omega} Cen, 47 Tuc, and M15, by means of a recently introduced family of self-consistent axisymmetric rotating models. The three clusters, characterized by different relaxation conditions, show evidence of differential rotation and deviations from sphericity. The combination of line-of-sight velocities and proper motions allows us to determine their internal dynamics, predict their morphology, and estimate their dynamical distance. The well-relaxed cluster 47 Tuc is interpreted very well by our model; internal rotation is found to explain the observed morphology. For M15, we provide a global model in good agreement with the data, including the central behavior of the rotation profile and the shape of the ellipticity profile. For the partially relaxed cluster {omega} Cen, the selected model reproduces the complex three-dimensional kinematics; in particular, the observed anisotropy profile, characterized by a transition from isotropy to weakly radial anisotropy and then to tangential anisotropy in the outer parts. The discrepancy found for the steep central gradient in the observed line-of-sight velocity dispersion profile and for the ellipticity profile is ascribed to the condition of only partial relaxation of this cluster and the interplay between rotation and radial anisotropy.

  10. Rotating reactor studies

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1991-01-01

    Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is

  11. Rotatable seal assembly. [Patent application; rotating targets

    DOEpatents

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  12. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  13. Chaotic rotation of Hyperion?

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  14. What does physical rotation reveal about mental rotation?

    PubMed

    Gardony, Aaron L; Taylor, Holly A; Brunyé, Tad T

    2014-02-01

    In a classic psychological science experiment, Shepard and Metzler (1971) discovered that the time participants took to judge whether two rotated abstract block figures were identical increased monotonically with the figures' relative angular disparity. They posited that participants rotate mental images to achieve a match and that mental rotation recruits motor processes. This interpretation has become central in the literature, but until now, surprisingly few researchers have compared mental and physical rotation. We had participants rotate virtual Shepard and Metzler figures mentally and physically; response time, accuracy, and real-time rotation data were collected. Results suggest that mental and physical rotation processes overlap and also reveal novel conclusions about physical rotation that have implications for mental rotation. Notably, participants did not rotate figures to achieve a match, but rather until they reached an off-axis canonical difference, and rotational strategies markedly differed for judgments of whether the figures were the same or different.

  15. The Rotating Mirror.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1981-01-01

    Discusses theory of the rotating mirror, its use in measuring the velocity of the electrical signal in wires, and the velocity of light. Concludes with a description of the manometric flame apparatus developed for analyzing sound waves. (SK)

  16. Rotating mobile launcher

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.

    1977-01-01

    Apparatus holds remotely piloted arm that accelerates until launching speed is reached. Then vehicle and counterweight at other end of arm are released simultaneously to avoid structural damage from unbalanced rotating forces.

  17. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  18. Robot Grasps Rotating Object

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  19. Rotating superfluid turbulence.

    PubMed

    Tsubota, Makoto; Araki, Tsunehiko; Barenghi, Carlo F

    2003-05-23

    Almost all studies of vortex states in helium II have been concerned with either ordered vortex arrays or disordered vortex tangles. This work numerically studies what happens in the presence of both rotation (which induces order) and thermal counterflow (which induces disorder). We find a new statistically steady state in which the vortex tangle is polarized along the rotational axis. Our results are used to interpret an instability that was discovered experimentally by Swanson et al. [Phys. Rev. Lett. 50, 190 (1983)

  20. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  1. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  2. Rotational rate sensor

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  3. Performance and evaluation of gas-engine-driven rooftop air conditioning equipment at the Willow Grove Naval Air Station. Final report (revised October 21, 1996)

    SciTech Connect

    Armstrong, P.R.; Katipamula, S.

    1996-10-01

    The performance was evaluated of a new US cooling technology that has been installed for the first time at a federal facility. The technology is a 15-ton natural gas-engine-driven rooftop air conditioning unit made by Thermo King. Two units were installed to serve the Navy Exchange at Willow Grove. The savings potential at Willow Grove is described and that in the federal sector estimated. Conditions for implementation are discussed. In summary, the new technology is generally cost-effective at sites where marginal electricity cost (per MBtu at the meter) is more than 4 times the marginal gas cost (per MBtu at the meter) and annual full-load-equivalent cooling hours exceed 2,000.

  4. Typhlodromus pyri and Euseius finlandicus (Acari: Phytoseiidae) as potential biocontrol agents against spider mites (Acari: Tetranychidae) inhabiting willows: laboratory studies on predator development and reproduction on four diets.

    PubMed

    Puchalska, Ewa K; Kozak, Marcin

    2016-01-01

    Typhlodromus pyri Scheuten and Euseius finlandicus (Oudemans) are important predators of phytophagous mites. The present laboratory study aimed to determine whether both species can develop and reach maturity feeding on spider mites occurring on willows, i.e., Schizotetranychus schizopus (Zacher), Schizotetranychus garmani Pritchard & Baker, and Tetranychus urticae Koch, and on Brassica napus L. pollen. The predators' development, reproduction and demographic parameters were significantly affected by diet. The data suggest that rape pollen can be useful in mass rearing of E. finlandicus but is completely unsuitable as alternative food for T. pyri. Short development time and high values of population parameters achieved by T. pyri feeding on larvae and protonymphs of S. schizopus and by E. finlandicus feeding on juvenile stages of S. garmani indicate great suitability of these preys as food for the phytoseiids, and make both predatory species promising biocontrol agents in spider mite control on willows.

  5. The Regional Geochemistry of Soils and Willow in a Metamorphic Bedrock Terrain, Seward Peninsula, Alaska, 2005, and Its Possible Relation to Moose

    USGS Publications Warehouse

    Gough, L.P.; Lamothe, P.J.; Sanzolone, R.F.; Drew, L.J.; Maier, J.A.K.

    2009-01-01

    In 2005 willow leaves (all variants of Salix pulchra) and A-, B-, and C-horizon soils were sampled at 10 sites along a transect near the Quarry prospect and 11 sites along a transect near the Big Hurrah mine for the purpose of defining the spatial variability of elements and the regional geochemistry of willow and soil over Paleozoic metamorphic rocks potentially high in cadmium (Cd). Willow, a favorite browse of moose (Alces alces), has been shown by various investigators to bioaccumulate Cd. Moose in this region show clinical signs of tooth wear and breakage and are declining in population for unknown reasons. A trace element imbalance in their diet has been proposed as a possible cause for these observations. Cadmium, in high enough concentrations, is one dietary trace element that potentially could produce such symptoms. We report both the summary statistics for elements in willow and soils and the results of an unbalanced, one-way, hierarchical analysis of variance (ANOVA) (general linear model, GLM), which was constructed to measure the geochemical variability in willow (and soil) at various distance scales across the Paleozoic geologic unit high in bioavailable Cd. All of the geochemical data are presented in the Appendices. The two locations are separated by approximately 80 kilometers (km); sites within a location are approximately 0.5 kilometers apart. Duplicate soil samples collected within a site were separated by 0.05 km or slightly less. Results of the GLM are element specific and range from having very little regional variability to having most of their variance at the top (greater than 80 km) level. For willow, a significant proportion of the total variance occurred at the 'between locations' level for ash yield, barium (Ba), Cd, calcium (Ca), cobalt (Co), nickel (Ni), and zinc (Zn). For soils, concentrations of elements in all three soil horizons were similar in that most of the variability in the geochemical data occurred at the 'between locations

  6. Typhlodromus pyri and Euseius finlandicus (Acari: Phytoseiidae) as potential biocontrol agents against spider mites (Acari: Tetranychidae) inhabiting willows: laboratory studies on predator development and reproduction on four diets.

    PubMed

    Puchalska, Ewa K; Kozak, Marcin

    2016-01-01

    Typhlodromus pyri Scheuten and Euseius finlandicus (Oudemans) are important predators of phytophagous mites. The present laboratory study aimed to determine whether both species can develop and reach maturity feeding on spider mites occurring on willows, i.e., Schizotetranychus schizopus (Zacher), Schizotetranychus garmani Pritchard & Baker, and Tetranychus urticae Koch, and on Brassica napus L. pollen. The predators' development, reproduction and demographic parameters were significantly affected by diet. The data suggest that rape pollen can be useful in mass rearing of E. finlandicus but is completely unsuitable as alternative food for T. pyri. Short development time and high values of population parameters achieved by T. pyri feeding on larvae and protonymphs of S. schizopus and by E. finlandicus feeding on juvenile stages of S. garmani indicate great suitability of these preys as food for the phytoseiids, and make both predatory species promising biocontrol agents in spider mite control on willows. PMID:26530991

  7. Optimal concentration of local well brine groundwater irrigation for Bamboo willow introduced to the arid areas in northern Xinjiang province, China

    NASA Astrophysics Data System (ADS)

    Han, Wei; Cao, Ling; Zhang, Ya; Cui, Kaiqiang; Wu, Shengli

    2015-04-01

    The adaptation and survive of introduced plants to local well brine groundwater irrigation is an important issue, while people introduce some plants to improve the local environment in the construction of urban greening oases in arid areas, north China. We measured some of the photosynthetic characteristics of introduced Bamboo willow irrigated by different local well brine groundwater in the wild controlled experiments, in May 2014 in Kelamayi city in north China, which to seek the most appropriate irrigation concentration of underground saline water, and to clarify the physiological ecological adaptation to the local habitat. The parameters, measured by Li-6400XT, a portable photosynthesis system, include the following ones, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), the internal CO2 concentration (Ci) and efficiency of water application (WUE) of one-year old introduced Bamboo willow irrigated by set salinity groundwater gradient, as 0 g/L, 5 g/L and 10 g/L. the results showed that (1) In each salt water concentration, the diurnal variation curve of net photosynthetic rate showed as "bimodal curve" style, and obvious "midday depression". (2) The parameter Pn of Bamboo willow irrigated by salt water of 5g/L was highest compared with the other two, and the value Pn irrigated by salt water concentration of 10g/L down. The net photosynthetic rate would increase in the salt concentration of 10g/L. In conclusion, the salt groundwater concentration of 10g/L was the optimal concentration of local well brine groundwater irrigation for Bamboo willow introduced to the arid areas in northern Xinjiang province, China.

  8. Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil.

    PubMed

    Adams, P; De-Leij, F A A M; Lynch, J M

    2007-08-01

    We investigated if the plant growth promoting fungus Trichoderma harzianum Rifai 1295-22 (also known as "T22") could be used to enhance the establishment and growth of crack willow (Salix fragilis) in a soil containing no organic or metal pollutants and in a metal-contaminated soil by comparing this fungus with noninoculated controls and an ectomycorrhizal formulation commercially used to enhance the establishment of tree saplings. Crack willow saplings were grown in a temperature-controlled growth room over a period of 5 weeks' in a garden center topsoil and over 12 weeks in a soil which had been used for disposal of building materials and sewage sludge containing elevated levels of heavy metals including cadmium (30 mg kg(-1)), lead (350 mg kg(-1)), manganese (210 mg kg(-1)), nickel (210 mg kg(-1)), and zinc (1,100 mg kg(-1)). After 5 weeks' growth in clean soil, saplings grown with T. harzianum T22 produced shoots and roots that were 40% longer than those of the controls and shoots that were 20% longer than those of saplings grown with ectomycorrhiza (ECM). T. harzianum T22 saplings produced more than double the dry biomass of controls and more than 50% extra biomass than the ECM-treated saplings. After 12 weeks' growth, saplings grown with T. harzianum T22 in the metal-contaminated soil produced 39% more dry weight biomass and were 16% taller than the noninoculated controls. This is the first report of tree growth stimulation by application of Trichoderma to roots, and is especially important as willow is a major source of wood fuel in the quest for renewable energy. These results also suggest willow trees inoculated with T. harzianum T22 could be used to increase the rate of revegetation and phytostabilization of metal-contaminated sites, a property of the fungus never previously demonstrated.

  9. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  10. Autumn migratory orientation and displacement responses of two willow warbler subspecies (Phylloscopus trochilus trochilus and P. t. acredula) in South Sweden.

    PubMed

    Ilieva, Mihaela; Toews, David P L; Bensch, Staffan; Sjöholm, Christoffer; Akesson, Susanne

    2012-11-01

    Topography and historical range expansion has formed a so-called migratory divide between two subspecies of willow warbler (Phylloscopus trochilus) in central Scandinavia. The autumn migratory directions of individuals assigned molecularly to both subspecies and possible hybrids were recorded using orientation cage experiments in southwest and southeast Sweden. We found pronounced differences in willow warblers' orientation in respect to genotype. The mean directions registered in the control experiments were in accordance with the ringing recoveries and analyses of stable isotopes for Scandinavian willow warblers. With the same individuals we performed displacement experiments between both sites. They resulted in non-significant orientation, which could be explained by the intermediate distance of the displacement or reactions to housing, transportation and location. On a separate set of birds we tested whether stress following transportation could explain the disorientation and found that orientation before and after transport was unchanged. Experimental studies of effects of intermediate displacements across longitudes and studies of orientation of hybrid individuals in the zones of migratory divides are crucial for understanding the mechanisms underlying orientation behaviour. Our work further stresses the importance of knowing the migration genotype of a particular bird under study, in order to correctly evaluate expected migration routes.

  11. On the irrigation requirements of cottonwood (Populus fremontii and Populus deltoides var. wislizenii) and willow (Salix gooddingii) grown in a desert environment

    USGS Publications Warehouse

    Hartwell, S.; Morino, K.; Nagler, P.L.; Glenn, E.P.

    2010-01-01

    Native tree plots have been established in river irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the effective irrigation requirements of the target species. Cottonwood (Populus spp.) and willow (Salix gooddingii) trees were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three daily summer irrigation schedules of 6.20??mm??d-1; 8.26??mm??d-1 and 15.7??mm??d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, while willows suffered considerable die-back on this rate in years six and seven. These irrigation rates were applied April 15-September 15, but only 0.88??mm??d-1 was applied during the dormant period of the year. Expressed as a fraction of reference crop evapotranspiration (ETo), recommended annual water applications plus precipitation (and including some deep drainage) were 0.83 ETo for cottonwood and 1.01 ETo for willow. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use. ?? 2010 Elsevier Ltd.

  12. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  13. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  14. Chiral rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  15. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}ȯ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  16. Water Renew systems: wastewater polishing using renewable energy crops.

    PubMed

    Sugiura, A; Tyrrel, S F; Seymour, I; Burgess, P J

    2008-01-01

    Macronutrients concentrations were measured during the establishment year of short rotation coppice of Salix viminalis, Populus trichocarpa, Eucalyptus gunnii irrigated with secondary treated effluent. Twenty four plots of 12.25 m2 located in Cranfield, Bedfordshire, UK on heavy fine clay were drip-irrigated in order to maintain their soil moisture at field capacity. Soil water was sampled at 30 cm and 60 cm with soil water suction cup samplers fortnightly. Willow and eucalyptus received more than 900 mm of effluent corresponding to more than 290 kg-N/ha, 30 kg-P/ha and 220 kg-K/ha. Poplar and unplanted plots received less than 190 kg-N/ha, 17 kg-P/ha and 120 kg-K/ha. For soil water nitrogen concentrations as for potassium concentrations, there was an irrigation effect only on eucalyptus planted plots. On all plots, there was no significant effect of tree presence or species. There was no phosphorus measurable in soil water samples. Groundwater chemistry was unaffected by irrigation. Thus, intensive irrigation of short rotation coppice during the establishment year should not be considered as a major threat to groundwater quality. Willows and eucalyptus can absorb almost a third more effluent than poplar and unplanted plots without having any significant effect on soil water chemistry.

  17. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  18. Rotating quantum states

    NASA Astrophysics Data System (ADS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2014-06-01

    We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski space-time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropriate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless fermion field, we derive analytic expressions for the thermal expectation values of the fermion current and stress-energy tensor. These expressions may provide qualitative insights into the behaviour of thermal rotating states on more complex space-time geometries.

  19. Rotating flexible drag mill

    DOEpatents

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  20. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  1. Rotation and vibration-rotation spectrum of FeH

    SciTech Connect

    Phillips, J.G.; Davis, S.P.

    1988-02-01

    The far-IR rotation and fundamental vibration-rotation spectra of the FeH molecule's 4Delta-4Delta system are calculated. The vibration-rotation band is in the middle of a band in the water spectrum, so that it will have to be searched for from outer space. In the case of the rotation spectrum, the feature to look for is the rotation line at 1411 GHz, which is produced by the transition between the two lowest rotational levels of the lowest (7/2) subband. This feature can be looked for from the ground. 14 references.

  2. A Comparative Analysis of Genetic Differentiation across Six Shared Willow Host Species in Leaf- and Bud-Galling Sawflies

    PubMed Central

    Leppänen, Sanna A.; Malm, Tobias; Värri, Kaisa; Nyman, Tommi

    2014-01-01

    Genetic divergence and speciation in plant-feeding insects could be driven by contrasting selection pressures imposed by different plant species and taxa. While numerous examples of host-associated differentiation (HAD) have been found, the overall importance of HAD in insect diversification remains unclear, as few studies have investigated its frequency in relation to all speciation events. One promising way to infer the prevalence and repeatability of HAD is to estimate genetic differentiation in multiple insect taxa that use the same set of hosts. To this end, we measured and compared variation in mitochondrial COI and nuclear ITS2 sequences in population samples of leaf-galling Pontania and bud-galling Euura sawflies (Hymenoptera: Tenthredinidae) collected from six Salix species in two replicate locations in northern Fennoscandia. We found evidence of frequent HAD in both species complexes, as individuals from the same willow species tended to cluster together on both mitochondrial and nuclear phylogenetic trees. Although few fixed differences among the putative species were found, hierarchical AMOVAs showed that most of the genetic variation in the samples was explained by host species rather than by sampling location. Nevertheless, the levels of HAD measured across specific pairs of host species were not correlated in the two focal galler groups. Hence, our results support the hypothesis of HAD as a central force in herbivore speciation, but also indicate that evolutionary trajectories are only weakly repeatable even in temporally overlapping radiations of related insect taxa. PMID:25551608

  3. Effects of flooding on leaf development, transpiration, and photosynthesis in narrowleaf cottonwood, a willow-like poplar.

    PubMed

    Rood, Stewart B; Nielsen, Julie L; Shenton, Leslee; Gill, Karen M; Letts, Matthew G

    2010-04-01

    The narrowleaf cottonwood, Populus angustifolia, occurs in occasionally flooded, low elevation zones along river valleys near the North American Rocky Mountains. This small poplar has narrow leaves and fine branching and thus resembles willows, which are commonly flood-tolerant. We investigated the flood response of narrowleaf cottonwoods and a related native hybrid, jackii cottonwood (P. x jackii = P. balsamifera x P. deltoides), by studying saplings of 24 clones in a greenhouse, with some pots being inundated to provide the flood treatment. Flooding slightly reduced leaf numbers (-10%), and leaf sizes were reduced by about 21% in female P. angustifolia versus a 50% reduction in the female hybrids. Flooding-reduced stomatal conductance and net photosynthetic rate, and reduced transpiration particularly in P. x jackii. The effects on foliar gas exchange declined over a 5-week interval, suggesting compensation. The moderate impact of flooding supports the hypothesis that narrowleaf cottonwoods are flood-tolerant, and we anticipate that these trees could provide traits to increase the flood tolerance of fast-growing hybrid poplars. The results further indicate that female cottonwoods may be more flood-tolerant than males, and females could be more successful in lower, flood-prone sites.

  4. Salicin from Willow Bark can Modulate Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Wölfle, Ute; Haarhaus, Birgit; Kersten, Astrid; Fiebich, Bernd; Hug, Martin J; Schempp, Christoph M

    2015-10-01

    Salicin from willow bark has been used throughout centuries in China and Europe for the treatment of pain, headache, and inflammatory conditions. Recently, it could be demonstrated that salicin binds and activates the bitter taste receptor TAS2R16. Studies on rodent tissues showed the general expression of bitter taste receptors (TAS2Rs) in rodent brain. Here, we demonstrate the expression of hTAS2R16 in human neuronal tissues and the neuroblastoma cell line SH-SY5Y. The functionality was analyzed in the neuroblastoma cell line SH-SY5Y after stimulation with salicin, a known TAS2R16 agonist. In this setting salicin induced in SH-SY5Y cells phosphorylation of ERK and CREB, the key transcription factor of neuronal differentiation. PD98059, an inhibitor of the ERK pathway, as well as probenecid, a TAS2R16 antagonist, inhibited receptor phosphorylation as well as neurite outgrowth. These data show that salicin might modulate neurite outgrowth by bitter taste receptor activation.

  5. Willow water uptake and shoot extension growth in response to nutrient and moisture on a clay landfill cap soil.

    PubMed

    Martin, Peter J; Stephens, William

    2008-09-01

    Extension growth of willow (Salix viminalis L.) and changes in soil water were measured in lysimeters containing clay and sandy loam soils with different amendment and watering treatments. No water uptake was found below 0.3m in the nutritionally poor unamended clay; amendment with organic matter to 0.4m depth resulted in water extraction down to 0.5m depth whereas in the sandy loam, there was greater extraction from all depths down to 0.6m. With water stress, wilting of plants occurred when the volumetric soil water content at 0.1m was about 31% in the clay and 22% in the sandy loam. Compared with shoots on plants in the amended clay, those in the unamended treatment showed reduced extension growth, little increase in stem basal area (SBA) and a small shoot leaf area, resulting from a reduced number of leaves shoot(-1) and a small average area leaf(-1). Water stress also reduced shoot extension growth, SBA gain and the leaf area on extension growth. Shoot growth rates were significantly correlated with air temperature and base temperatures between 2.0 and 7.6 degrees C were indicated for the different treatments. These studies have helped to explain some of the large treatment effects described previously on biomass production and plant leaf area.

  6. Effects of flooding on leaf development, transpiration, and photosynthesis in narrowleaf cottonwood, a willow-like poplar.

    PubMed

    Rood, Stewart B; Nielsen, Julie L; Shenton, Leslee; Gill, Karen M; Letts, Matthew G

    2010-04-01

    The narrowleaf cottonwood, Populus angustifolia, occurs in occasionally flooded, low elevation zones along river valleys near the North American Rocky Mountains. This small poplar has narrow leaves and fine branching and thus resembles willows, which are commonly flood-tolerant. We investigated the flood response of narrowleaf cottonwoods and a related native hybrid, jackii cottonwood (P. x jackii = P. balsamifera x P. deltoides), by studying saplings of 24 clones in a greenhouse, with some pots being inundated to provide the flood treatment. Flooding slightly reduced leaf numbers (-10%), and leaf sizes were reduced by about 21% in female P. angustifolia versus a 50% reduction in the female hybrids. Flooding-reduced stomatal conductance and net photosynthetic rate, and reduced transpiration particularly in P. x jackii. The effects on foliar gas exchange declined over a 5-week interval, suggesting compensation. The moderate impact of flooding supports the hypothesis that narrowleaf cottonwoods are flood-tolerant, and we anticipate that these trees could provide traits to increase the flood tolerance of fast-growing hybrid poplars. The results further indicate that female cottonwoods may be more flood-tolerant than males, and females could be more successful in lower, flood-prone sites. PMID:20013353

  7. Fall frost resistance in willows used for biomass production. II. Predictive relationships with sugar concentration and dry matter content.

    PubMed

    Ogren, Erling

    1999-09-01

    The accumulation of sugars and dry matter in stems in fall was examined in relation to frost hardening in eight willow clones (six clones of Salix viminalis L. and one clone each of S. viminalis x S. schwerenii E. Wolf and S. dasyclados Wimm.). Evidence is presented that three sources of variation in fall frost resistance among the eight clones could be assessed from an analysis of stem composition. First, the pre-hardening value of frost resistance could be assessed from the total sugar concentration. Second, the start of induction of apical growth cessation and hence frost hardening could be distinguished by a stepwise increase in sucrose-to-glucose ratio. Third, the progress of frost hardening during its first phase could be followed from a proportional rise in total sugar concentration and, even more accurately, from a proportional rise in dry-to-fresh weight ratio. In contrast, the second phase of frost hardening was largely uncoupled from sugar and dry matter accumulation. Raffinose and sucrose accumulation seemed to be under differential environmental controls. Sucrose accumulation started with the initiation of growth cessation controlled by photoperiod, whereas raffinose accumulation started with falling temperatures later on. Starch reserves that built up in stems in early fall were partially mobilized later on to support sugar accumulation. In contrast to stems, leaves did not exhibit a preferential accumulation of sucrose in fall. PMID:12651315

  8. Ground-water availability in the Hayes-Red Willow, Frenchman, and Meeker-Driftwood irrigation districts, Southwest Nebraska

    USGS Publications Warehouse

    Lappala, E.G.; Hemphill, P.F.; Booker, R.E.

    1978-01-01

    Surface-water supplies are diminishing in the Hayes-Red Willow and Frenchman Irrigation Districts in soutwest Nebraska. Stream depletions due to ground-water withdrawals upstream from Enders Reservoir have resulted in a shortage of about 8,700 acre-feet per year. The availability of ground water in two surficial aquifers was examined as a possible supplemental supply. The most productive aquifer comprises alluvial deposits in the valleys of the Republican River and Frenchman Creek. The Ogallala Formation, which underlies the remainder of the area is a less productive aquifer except locally. Water levels have risen as much as 20 feet north of the Republican River and as much as 40 feet south of the river. Ground water inflow to the Republican River has increased about 3 percent. A digital model of the aquifer system was used to assess the potential for providing supplemental supplies from two well configurations and from existing irrigation wells. The first well configuration could sustain a maximum of 25 percent of the 1976 deficit with maximum stream depletions of 11 percent to Frenchman Creek and 60 percent to Blackwood Creek. The second well configuration could sustain 25 percent of the 1976 deficit with stream depeletions of less than 5 percent at the end of 19 years. Existing wells are adequate to irrigate district lands on which they are located for at least 19 years.

  9. Waste water/storm water characterization survey, Willow Grove Air Reserve Facility, Pennsylvania. Final report, 15-26 Jul 91

    SciTech Connect

    McCoy, R.P.

    1992-03-01

    A wastewater characterization survey was conducted at Willow Grove Air Reserve Facility from 15-26 July 1991 by personnel from the Water Quality Function of Armstrong Laboratory. Quantitative data were also collected after a rain event to assess the quality of the water in the storm water holding pond. Sampling of the oil/water separators was also performed and recommendations were made concerning good management practices to implement to maintain the separators. Slight contamination of the wastewater discharged from the Facility was found, indicating the base is using good shop practices to minimize the disposal of industrial wastes through the sanitary sewer system. Results of the storm water sampling showed that the quality of the water in the holding pond was not greatly impacted by storm water runoff from the industrial areas on the Facility. A recommendation was made to install a pollution control device on the drain at the Bulk Fuels Storage Area. One oil/water separator was found to contain oil that had hazardous waste characteristics. All others had oil that was suitable for energy recovery.

  10. Disparity in population structuring of Southwestern Willow Flycatchers based on geographic distance, movement patterns, and genetic analyses.

    PubMed

    Stumpf, Katie J; Theimer, Tad C; McLeod, Mary Anne; Koronkiewicz, Thomas J

    2014-12-01

    Estimates of population connectivity often are based on demographic analysis of movements among subpopulations, but this approach may fail to detect rare migrants or overestimate the contribution of movements into populations when migrants fail to successfully reproduce. We compared movement data of endangered Southwestern Willow Flycatchers among isolated populations in Nevada and Arizona from 1997 to 2008 to genetic analyses of samples collected between 2004 and 2008 to determine the degree to which these two methods were concordant in their estimates of population structuring. Given that documented movements of 13 color-banded adults and 23 juveniles over 10 years indicated low rates of long-distance movements, we predicted that genetic analyses would show significant population structuring between a northern (Nevada) deme and a southern (Arizona) deme. We genotyped 93 adult individuals at seven microsatellite loci and used two Bayesian clustering programs, STRUCTURE and GENELAND, to predict population structure. Both clustering algorithms produced the same structuring pattern; a cluster containing birds breeding in Pahranagat National Wildlife Refuge, the northern-most Nevada site, and a cluster comprised of all other populations. These results highlight that estimates of subpopulation connectivity based on demographic analyses may differ from those based on genetics, suggesting either temporal changes in the pattern of movements, the importance of undetected movements, or differential contribution of migrants to the subpopulations they enter.

  11. Molecular and morphological characterization of the willow rust fungus, Melampsora epitea, from arctic and temperate hosts in North America.

    PubMed

    Smith, Jason A; Blanchette, Robert A; Newcombe, George

    2004-01-01

    Current taxonomy places all rust fungi that occur on willow (Salix spp.) in North America in one species complex, Melampsora epitea Thüm. Characteristics of M. epitea isolates from the Canadian arctic were compared to M. epitea isolates from temperate regions of North America. Sequences from internal transcribed spacer (ITS) regions of rDNA were obtained from urediniospores from rust-infected Salix leaves collected in the Canadian arctic and in Minnesota and compared. Phylogenetic analysis of nuclear ribosomal ITS regions indicated that arctic M. epitea samples were divergent from temperate M. epitea isolates, perhaps in part because all rusts examined diverged according to host species. Four urediniospore characteristics were examined: area, circularity (shape factor), major axis length and spine density. Statistically significant (P < 0.05) differences were observed for spine density among all host species except S. nigra and S. bebbiana. However major axis length differed between these species. These results represent the first evidence that arctic and temperate Melampsora species on Salix hosts in North America have evolved distinct molecular and morphological characters.

  12. Anisotropy in rotating drums

    NASA Astrophysics Data System (ADS)

    Povall, Timothy; McBride, Andrew; Govender, Indresan

    2015-11-01

    An anisotropic relationship between the stress and the strain rate has been observed in two-dimensional simulations of rotating drums. The objective of this work is to investigate the structure of the constitutive relation using three-dimensional discrete-element-method simulations of a rotating drum containing identical rigid spheres for a range of rotational speeds. Anisotropy is quantified from the alignment of the stress and strain rate tensors, with the strain rate computed using a least-squares fit. It is shown that in certain regions there is a strong anisotropic relationship, regardless of the speed of rotation. The effective friction coefficient is examined in order to determine the phase space in which the μ (I) rheology is valid. Lastly, a depth-averaged approach through the flowing layer is employed to determine the relationship between the velocity tangential to the equilibrium surface and the height of the flowing layer. A power-law relationship that approaches linear at high speeds is observed. Supported by NRF/DST Scarce Skills (South Africa).

  13. Rotating Saddle Paul Trap.

    ERIC Educational Resources Information Center

    Rueckner, Wolfgang; And Others

    1995-01-01

    Describes a demonstration in which a ball is placed in an unstable position on a saddle shape. The ball becomes stable when it is rotated above some threshold angular velocity. The demonstration is a mechanical analog of confining a particle in a "Paul Trap". (DDR)

  14. Rotational speed control

    NASA Technical Reports Server (NTRS)

    Bastin, Paul

    1990-01-01

    Viewgraphs on rotational speed control are presented. The Centrifuge Facility Systems Study - 2.5 m centrifuge is shown. A life sciences centrifuge is scheduled to fly aboard Space Station Freedom. Live animal and plant specimens will be carried on the rotor and compared with microgravity specimens in racks.

  15. Rotational Dynamics with Tracker

    ERIC Educational Resources Information Center

    Eadkhong, T.; Rajsadorn, R.; Jannual, P.; Danworaphong, S.

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia ("I") of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction ("b") for our system. By omitting the effect of such friction, we derive…

  16. Rotator cuff repair

    MedlinePlus

    ... torn rotator cuff is usually successful in relieving pain in the shoulder. The procedure may not always return strength to ... may not fully heal. Stiffness, weakness, and chronic pain may still be ... are not followed. Older patients (over age 65). Smoking.

  17. Rotator Cuff Injuries.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  18. Rotational waves in geodynamics

    NASA Astrophysics Data System (ADS)

    Gerus, Artyom; Vikulin, Alexander

    2015-04-01

    The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)

  19. Rotating Responsibility Reaps Rewards.

    ERIC Educational Resources Information Center

    Wilson, Barbara; Schullery, Nancy

    2000-01-01

    Describes a process used for group assignments in a business communication course which holds all group members accountable by using a structure of rotating responsibility. Discusses selecting assignments and implementing the process, noting how this structure requires equivalent advance preparation from all members and provides opportunities for…

  20. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  1. Troubleshooting rotating equipment

    SciTech Connect

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  2. Rotatable stem and lock

    DOEpatents

    Deveney, J.E.; Sanderson, S.N.

    1981-10-27

    A valve stem and lock is disclosed which includes a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  3. Rotatable stem and lock

    DOEpatents

    Deveney, Joseph E.; Sanderson, Stephen N.

    1984-01-01

    A valve stem and lock include a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  4. Rotation curves of ultralight BEC dark matter halos with rotation

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; Lora-Clavijo, F. D.

    2015-03-01

    We study the rotation curves of ultralight BEC dark matter halos. These halos are long lived solutions of initially rotating BEC fluctuations. In order to study the implications of the rotation characterizing these long-lived configurations we consider the particular case of a boson mass and no self-interaction. We find that these halos successfully fit samples of rotation curves of LSB galaxies.

  5. Wave-driven Rotation in Supersonically Rotating Mirrors

    SciTech Connect

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  6. On the rotating Letelier spacetime

    NASA Astrophysics Data System (ADS)

    Barbosa, D.; Bezerra, V. B.

    2016-11-01

    We construct the solution corresponding to a rotating black hole surrounded by a cloud of strings (Rotating Letelier spacetime) from its nonrotating counterpart (Letelier spacetime) by applying a method of coordinate complexification developed by Newman and Janis.

  7. Quantal radiation from macroscopic rotation

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.; Plujko, V.

    1988-09-01

    Macroscopic rotation of deformed excited nuclei may under certain conditions be accompanied by radiation of quasi-discrete gamma rays which resemble the cascade of transitions between nuclear rotational states.

  8. Rotational spectrum of tryptophan.

    PubMed

    Sanz, M Eugenia; Cabezas, Carlos; Mata, Santiago; Alonso, Josè L

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the (14)N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O-H···N hydrogen bond in the side chain and a N-H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  9. Rotatable seal assembly

    DOEpatents

    Logan, Clinton M.; Garibaldi, Jack L.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  10. Rotational spectrum of tryptophan

    SciTech Connect

    Sanz, M. Eugenia Cabezas, Carlos Mata, Santiago Alonso, Josè L.

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  11. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  12. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  13. Rotational Spectrum of Tryptophan

    NASA Astrophysics Data System (ADS)

    Sanz, M. Eugenia; Cabezas, Carlos; Mata, Santiago; Alonso, José L.

    2014-06-01

    The rotational spectrum of the natural amino acid tryptophan has been observed using a recently constructed LA-MB-FTMW spectrometer, specifically designed to optimize the detection of heavier molecules at a lower frequency range. Independent analyses of the rotational spectra of individual conformers have conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The experimental values of the 14N nuclear quadrupole coupling constants have been found capital in the discrimination of the conformers. Both observed conformers are stabilized by a O-H\\cdotsN hydrogen bond in the side chain and a N-H\\cdotsπ interaction forming a chain that reinforces the strength of hydrogen bonds through cooperative effects.

  14. Solar Internal Rotation

    NASA Astrophysics Data System (ADS)

    Schou, J.; SOE Internal Rotation Team

    With the flood of high quality helioseismic data from the instruments on the SOHO spacecraft (MDI/VIRGO/GOLF) and ground based instruments (eg. GONG and LOWL) we have been able to get increasingly detailed information on the rotation and other large scale flows in the solar interior. In this talk I will discuss some of the highlights of what we have learned so far and what we may expect to learn in the near future. Among the recent advances have been tighter constraints on the tachocline at the bottom of the convection zone, detection of details in the surface rotation rate similar to the torsional oscillations found in the surface Doppler shift and helioseismic evidence for meridional flows. The MDI project is supported by NASA contract NAG5-3077 at Stanford University.

  15. Earth rotation and geodynamics

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta

    2015-12-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.

  16. Intestinal Rotation Anomalies.

    PubMed

    Pelayo, Juan Carlos; Lo, Andrea

    2016-07-01

    Intestinal rotation abnormality (IRA) predisposes to lethal midgut volvulus. An understanding of intestinal development illustrates the process of normal intestinal rotation and fixation. An appreciation of the clinical presentation and consequences of missed IRA will enhance clinical suspicion and timely evaluation. Selecting the appropriate imaging modality to diagnose IRA requires an understanding of the benefits and limitations of each. The Ladd's procedure continues to be the appropriate surgical treatment for IRA with or without volvulus. Laparoscopy has emerged as an option for the diagnosis and treatment of IRA. Populations in which IRA is always associated, but a Ladd's procedure rarely required, include patients with congenital diaphragmatic hernia and abdominal wall defects. Prevalence of IRA is higher in children with congenital heart disease and heterotaxy syndrome; asymptomatic patien