Science.gov

Sample records for rotational arc radiation

  1. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  2. Steady rotation of the Cascade arc

    USGS Publications Warehouse

    Wells, Ray E.; McCaffrey, Robert

    2013-01-01

    Displacement of the Miocene Cascade volcanic arc (northwestern North America) from the active arc is in the same sense and at nearly the same rate as the present clockwise block motions calculated from GPS velocities in a North American reference frame. Migration of the ancestral arc over the past 16 m.y. can be explained by clockwise rotation of upper-plate blocks at 1.0°/m.y. over a linear melting source moving westward 1–4.5 km/m.y. due to slab rollback. Block motion and slab rollback are in opposite directions in the northern arc, but both are westerly in the southern extensional arc, where rollback may be enhanced by proximity to the edge of the Juan de Fuca slab. Similarities between post–16 Ma arc migration, paleomagnetic rotation, and modern GPS block motions indicate that the secular block motions from decadal GPS can be used to calculate long-term strain rates and earthquake hazards. Northwest-directed Basin and Range extension of 140 km is predicted behind the southern arc since 16 Ma, and 70 km of shortening is predicted in the northern arc. The GPS rotation poles overlie a high-velocity slab of the Siletzia terrane dangling into the mantle beneath Idaho (United States), which may provide an anchor for the rotations.

  3. Masking, persistence, and transfer in rotating arcs.

    PubMed

    Geremek, Adam; Stürzel, Frank; da Pos, Osvaldo; Spillmann, Lothar

    2002-10-01

    We demonstrate that the apparent length of a thin white arc on a black disk, rotating concentrically at 2.5 rps, varies with angular length and exposure duration. While short arcs (9-18 degrees ) gradually expand, long arcs (36-72 degrees ) first undergo a brief contraction, before they also expand. On average, perceived elongation asymptotes after 15 s equivalent to visual persistencies ranging from 68 to 170 ms. Using bi- and tri-colored arcs, we find that the apparent increase in length derives from the rear end of the rotating stimulus, while the initial shrinkage derives from contraction of the middle. After 15 s of adaptation, perceived length of the arc decays to actual stimulus length within an average of 6 s and, upon re-exposure of the arc, reaches its former value after only 5 s (priming). When the rotating arc is presented first to one eye and then to the other, apparent elongation transfers partially (46%), suggesting a contribution by the binocular cells in the visual cortex. A partial transfer (26%) also occurs from clockwise to counterclockwise rotation. When tested interocularly, the directional transfer is more pronounced (47%) and equals the interocular transfer under equidirectional conditions, suggesting that the directional transfer (cw versus ccw) might derive from non-directional cortical units. Whereas the initial contraction may be attributable to backward masking, the observed elongation likely reflects a cumulative build-up of after-discharge in cortical neurons over time.

  4. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  5. Thermal analysis of an arc heater electrode with a rotating arc foot

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Shepard, Charles E.

    1993-01-01

    A smoothly rotating arc foot and an arc foot that jumps between multiple sticking points were analyzed using analytic formulations and numerical solution procedures. For each case the temperature distribution for a copper electrode was obtained for the plausible range of operating conditions. It is shown that the smoothly rotating arc foot is an extremely safe mode of operation, whereas the jumping arc foot produces excessively high electrode surface temperatures which are not greatly alleviated by increasing the average rotational frequency of the arc foot. It is suggested to eliminate arc-foot rotation and rely on the distribution of fixed electrodes with stationary arc attachment to avoid electrode failure at high current.

  6. Arc-textured high emittance radiator surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1991-01-01

    High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.

  7. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  8. Radiation of long and high power arcs

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.

    2015-10-01

    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  9. Paleomagnetic rotations and the kinematics of the Gibraltar arc

    NASA Astrophysics Data System (ADS)

    Platzman, E. S.

    1992-04-01

    Paleomagnetic investigations of a Mesozoic limestone sequence around the Gibraltar arc show that there have been large systematic rotations about a vertical axis and imply that there must have been a significant component of westward motion within the Betic-Rif orogenic belt. Rotations of the Late Jurassic and Late Cretaceous limestones in the Betic Cordillera of southern Spain are clockwise, with the exception of the unrotated Sierra Gorda, whereas the Jurassic sites in the Rif Mountains of Morocco are rotated counterclockwise, except in the area around Tetuan. These data are generally consistent with formation of the arc either by a westward-moving Alboran microplate or by extensional collapse of a collisional mountain chain. The former model, however, fails to recognize the nonrigid, nonplate-like character of the Alboran domain and lacks a definable driving mechanism. A model of a collapsing east-west-elongated ridge that takes into account the obliquity of the convergence along the active margin may provide mechanisms both for the observed rotations and for the large westward component of motion, and therefore can explain the geometry of the Gibraltar are.

  10. Dynamic Collimator Angle Adjustments During Volumetric Modulated Arc Therapy to Account for Prostate Rotations

    SciTech Connect

    Boer, Johan de; Wolf, Anne Lisa; Szeto, Yenny Z.; Herk, Marcel van; Sonke, Jan-Jakob

    2015-04-01

    Purpose: Rotations of the prostate gland induce considerable geometric uncertainties in prostate cancer radiation therapy. Collimator and gantry angle adjustments can correct these rotations in intensity modulated radiation therapy. Modern volumetric modulated arc therapy (VMAT) treatments, however, include a wide range of beam orientations that differ in modulation, and corrections require dynamic collimator rotations. The aim of this study was to implement a rotation correction strategy for VMAT dose delivery and validate it for left-right prostate rotations. Methods and Materials: Clinical VMAT treatment plans of 5 prostate cancer patients were used. Simulated left-right prostate rotations between +15° and −15° were corrected by collimator rotations. We compared corrected and uncorrected plans by dose volume histograms, minimum dose (D{sub min}) to the prostate, bladder surface receiving ≥78 Gy (S78) and rectum equivalent uniform dose (EUD; n=0.13). Each corrected plan was delivered to a phantom, and its deliverability was evaluated by γ-evaluation between planned and delivered dose, which was reconstructed from portal images acquired during delivery. Results: On average, clinical target volume minimum dose (D{sub min}) decreased up to 10% without corrections. Negative left-right rotations were corrected almost perfectly, whereas D{sub min} remained within 4% for positive rotations. Bladder S78 and rectum EUD of the corrected plans matched those of the original plans. The average pass rate for the corrected plans delivered to the phantom was 98.9% at 3% per 3 mm gamma criteria. The measured dose in the planning target volume approximated the original dose, rotated around the simulated left-right angle, well. Conclusions: It is feasible to dynamically adjust the collimator angle during VMAT treatment delivery to correct for prostate rotations. This technique can safely correct for left-right prostate rotations up to 15°.

  11. Paleomagnetic rotations and the Cenozoic tectonics of the Cascade Arc, Washington, Oregon, and California

    USGS Publications Warehouse

    Wells, R.E.

    1990-01-01

    Paleomagnetic results from Cenozoic (62-12 Ma) volcanic rocks of the Cascade Arc and adjacent areas indicate that moderate to large clockwise rotations are an important component of the tectonic history of the arc, Two mechanisms of rotation are suggested. The progressive increase in rotation toward the coast in arc and forearc rocks results from distributed dextral shear, which is likely driven by oblique subduction of oceanic plates to the west. Simple shear rotation is accommodated in the upper crust by strike-slip faulting. A progressive eastward shift of the arc volcanic front with time in the rotated arc terrane is the result of the westward pivoting of the arc block in front of a zone of extension since Eocene time. Westward migration of bimodal Basin and Range volcanism since at least 16 Ma is tracking rotation of the frontal arc block and growth of the Basin and Range in its wake. -from Author

  12. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    NASA Astrophysics Data System (ADS)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  13. Paleomagnetic rotations and the Cenozoic tectonics of the Cascade Arc, Washington, Oregon, and California

    SciTech Connect

    Wells, R.E. )

    1990-11-10

    Paleomagnetic results from Cenozoic (62-12 Ma) volcanic rocks of the Cascade arc and adjacent indicate that moderate to large clockwise rotations are an important component of the tectonic history of the arc. Two mechanisms of rotation are suggested by the regional pattern of paleomagnetic rotations. The progressive increase in rotation toward the coast in arc and forearc rocks results from distributed dextral shear, which is likely driven by oblique subduction of oceanic plates to the west. Simple shear rotation is accommodated in the upper crust by strike-slip faulting. The right-lateral Mount St. Helens seismic zone may be an active manifestation of this process. Dextral shear probably obscures a subequal contribution to arc and forearc rotation that is driven by intraarc or backarc extension. This rotation is suggested by the average southward increase in continental margin rotations into the region outboard of the Basin and Range. The southward increase in rotation parallels a change in the arc tectonic regime from largely compressional in northern Washington to extensional in Oregon. Concomitant with this change is a southward increase in the volume of eruptive rocks and the number of basaltic vents in the arc. A progressive eastward shift of the arc volcanic front with time in the rotated arc terrane is the result of the westward pivoting of the arc block in front of a zone of extension since Eocene time. Westward migration of bimodal Basin and Range volcanism since at least 16 Ma is tracking westward rotation of the frontal arc block and growth of the Basin and Range in its wake.

  14. Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.

    1996-01-01

    Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.

  15. The ultimate arc: Differential displacement, oroclinal bending, and vertical axis rotation in the External Betic-Rif arc

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Allerton, S.; Kirker, A.; Mandeville, C.; Mayfield, A.; Platzman, E. S.; Rimi, A.

    2003-06-01

    The External Betic-Rif arc, which lies between the converging African and Iberian plates, is one of the tightest orogenic arcs on Earth. It is a thin-skinned fold and thrust belt formed in Miocene time around the periphery of the Alborán Domain, an older contractional orogen that underwent extensional collapse coevally with the formation of the thrust belt. Restoration of four sections across the thrust belt, together with kinematic and paleomagnetic analysis, allows a reconstruction of the prethrusting geometry of the Alborán Domain, and the identification of the following processes that contributed to the formation of the arc: (1) The Alborán Domain moved some 250 km westward relative to Iberia and Africa during the Miocene. This initiated the two limbs of the arc on its NW and SW margins, closing to the WSW in the region of Cherafat in northern Morocco. The overall convergence direction on the Iberian side of the arc was between 310° and 295°, and on the African side it was between 235° and 215°. The difference in convergence direction between the two sectors was primarily a result of the relative motion between Africa and Iberia. (2) Extensional collapse of the Alborán Domain during the Miocene modified the geometry of the western end of the arc: the Internal Rif rotated anticlockwise to form the present north trending sector of the arc, and additional components of displacement produced by extension were transferred into the external thrust belt along a series of strike-slip faults and shear zones. These allowed the limbs of the arc to rotate and extend, tightening the arc, and creating variations in the amounts and directions of shortening around the arc. The Betic sector of the arc rotated clockwise by 25° during this process, and the southern Rif rotated anticlockwise by ˜55°. (3) Oblique convergence on the two limbs of the arc, dextral in the Betics and sinistral in the southern Rif, resulted in strongly noncoaxial deformation. This had three

  16. Radiation directivity rotation by acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Zhang, Likun; Liang, Bin; Zou, Xin-ye; Cheng, Jian-chun

    2015-08-01

    We use a metamaterial-based scheme to rotate the radiation directivity of sound radiated by a source surrounded by the structure. The rotation is demonstrated through both numerical simulations and experiments. The performance persists within a broadband and is entirely independent of the location and pattern of source inside, suggesting great potential in various practical scenarios where both the signal frequency and source position may vary significantly. We have also investigated the possibility to realize versatile controls of radiation direction by tailoring the structural parameters. Our design with special directivity-steering capability may open route to loudspeaker and auditorium acoustics designs and medical ultrasound applications.

  17. Radiation directivity rotation by acoustic metamaterials

    SciTech Connect

    Jiang, Xue; Liang, Bin E-mail: jccheng@nju.edu.cn; Zou, Xin-ye; Cheng, Jian-chun E-mail: jccheng@nju.edu.cn; Zhang, Likun

    2015-08-31

    We use a metamaterial-based scheme to rotate the radiation directivity of sound radiated by a source surrounded by the structure. The rotation is demonstrated through both numerical simulations and experiments. The performance persists within a broadband and is entirely independent of the location and pattern of source inside, suggesting great potential in various practical scenarios where both the signal frequency and source position may vary significantly. We have also investigated the possibility to realize versatile controls of radiation direction by tailoring the structural parameters. Our design with special directivity-steering capability may open route to loudspeaker and auditorium acoustics designs and medical ultrasound applications.

  18. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    SciTech Connect

    Seco, Joao; Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  19. Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.

    2013-11-01

    Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.

  20. Time-varying Entry Heating Profile Replication with a Rotating Arc Jet Test Article

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Venkatapathy, Ethiraj; Noyes, Eric A.; Mach, Jeffrey J.; Empey, Daniel M.; White, Todd R.

    2014-01-01

    A new approach for arc jet testing of thermal protection materials at conditions approximating the time-varying conditions of atmospheric entry was developed and demonstrated. The approach relies upon the spatial variation of heat flux and pressure over a cylindrical test model. By slowly rotating a cylindrical arc jet test model during exposure to an arc jet stream, each point on the test model will experience constantly changing applied heat flux. The predicted temporal profile of heat flux at a point on a vehicle can be replicated by rotating the cylinder at a prescribed speed and direction. An electromechanical test model mechanism was designed, built, and operated during an arc jet test to demonstrate the technique.

  1. Electromagnetic radiation generated by arcing in low density plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.

    1996-01-01

    An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.

  2. Reforming of biogas to synthesis gas by a rotating arc plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chung, Woo-Jae; Park, Hyun-Woo; Liu, Jing-Lin; Park, Dong-Wha

    2015-09-01

    In order to produce synthesis gas, reforming of biogas composed with 60 percent for CH4 and 40 percent for CO2 was performed by a novel rotating arc plasma process. The effect of O2/CH4 ratio on the conversion, syngas composition and energy cost was investigated to evaluate the performance of proposed system compared with conventional gliding arc plasma process. When the O2/CH4 ratio was increased from 0.4 to 0.9, the conversions of CH4 and O2 increased up to 97.5 percent and 98.8 percent, respectively, while CO2 conversion was almost constant to be 38.6 percent. This is due to more enhance the partial oxidation of CH4 to CO and H2 than that of dry reforming by increasing the O2/CH4 ratio. In this work, energy cost of 32 kJ/mol was achieved with high syngas composition of 71 percent using pure O2 as oxidant reactant. These are lower than those of different arc plasma processes (energy cost of 122 - 1870 kJ/mol) such as spark, spark-shade and gliding arc plasma. Because, this rotating arc plasma can remain in a long arc length and a large volume of plasma with constant arc length mode.

  3. Reliability of Measurement of Glenohumeral Internal Rotation, External Rotation, and Total Arc of Motion in 3 Test Positions

    PubMed Central

    Kevern, Mark A.; Beecher, Michael; Rao, Smita

    2014-01-01

    Context: Athletes who participate in throwing and racket sports consistently demonstrate adaptive changes in glenohumeral-joint internal and external rotation in the dominant arm. Measurements of these motions have demonstrated excellent intrarater and poor interrater reliability. Objective: To determine intrarater reliability, interrater reliability, and standard error of measurement for shoulder internal rotation, external rotation, and total arc of motion using an inclinometer in 3 testing procedures in National Collegiate Athletic Association Division I baseball and softball athletes. Design: Cross-sectional study. Setting: Athletic department. Patients or Other Participants Thirty-eight players participated in the study. Shoulder internal rotation, external rotation, and total arc of motion were measured by 2 investigators in 3 test positions. The standard supine position was compared with a side-lying test position, as well as a supine test position without examiner overpressure. Results: Excellent intrarater reliability was noted for all 3 test positions and ranges of motion, with intraclass correlation coefficient values ranging from 0.93 to 0.99. Results for interrater reliability were less favorable. Reliability for internal rotation was highest in the side-lying position (0.68) and reliability for external rotation and total arc was highest in the supine-without-overpressure position (0.774 and 0.713, respectively). The supine-with-overpressure position yielded the lowest interrater reliability results in all positions. The side-lying position had the most consistent results, with very little variation among intraclass correlation coefficient values for the various test positions. Conclusions: The results of our study clearly indicate that the side-lying test procedure is of equal or greater value than the traditional supine-with-overpressure method. PMID:25188316

  4. Stabilized luminous arcs (rotating arcs) in nitrogen and carbon dioxide at pressures of one to forty atmospheres

    NASA Technical Reports Server (NTRS)

    Foitzik, R.

    1984-01-01

    The arcs were run in the axis of a rapidly rotating glass tube, at 1 to 20 atm. For pressures over 20 atm., a decrease of stability appeared and above 40 atm., the results were very unsatisfactory owing to turbulence. The voltage and longitudinal-field-strength curves for both gases had a descending character. The field strength was 1.5 to 2.0 times as high in CO2 as in N. Under 10 atm. of pressure approx. linear values obtained. In N the column diam. increased with pressure. C. d. increased with pressure in CO2. Good agreement with the Steenbeck minimum principle was in general obtained.

  5. Arc binary intensity modulated radiation therapy (AB IMRT)

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    The state of the art Intensity Modulate Radiation Therapy (IMRT) has been one of the most significant breakthroughs in the cancer treatment in the past 30 years. There are two types of IMRT systems. The first system is the binary-based tomotherapy, represented by the Peacock (Nomos Corp) and Tomo unit (TomoTherapy Inc.), adopting specific binary collimator leafs to deliver intensity modulated radiation fields in a serial or helical fashion. The other uses the conventional dynamic multileaf collimator (MLC) to deliver intensity modulated fields through a number of gantry positions. The proposed Arc Binary IMRT attempts to deliver Tomo-like IMRT with conventional dynamic MLC and combines the advantages of the two types of IMRT techniques: (1) maximizing the number of pencil beams for better dose optimization, (2) enabling conventional linear accelerator with dynamic MLC to deliver Tomo-like IMRT. In order to deliver IMRT with conventional dynamic MLC in a binary fashion, the slice-by-slice treatment with limited slice thickness has been proposed in the thesis to accommodate the limited MLC traveling speed. Instead of moving the patient to subsequent treatment slices, the proposed method offsets MLC to carry out the whole treatment, slice by slice sequentially, thus avoid patient position error. By denoting one arc pencil beam set as a gene, genetic algorithm (GA) is used as the searching engine for the dose optimization process. The selection of GA parameters is a crucial step and has been studied in depth so that the optimization process will converge with reasonable speed. Several hypothetical and clinical cases have been tested with the proposed IMRT method. The comparison of the dose distribution with other commercially available IMRT systems demonstrates the clear advantage of the new method. The proposed Arc Binary Intensity Modulated Radiation Therapy is not only theoretically sound but practically feasible. The implementation of this method would expand the

  6. Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers

    NASA Astrophysics Data System (ADS)

    Iordanidis, A. A.; Franck, C. M.

    2008-07-01

    An accurate and robust method for radiative heat transfer simulation for arc applications was presented in the previous paper (part I). In this paper a self-consistent mathematical model based on computational fluid dynamics and a rigorous radiative heat transfer model is described. The model is applied to simulate switching arcs in high voltage gas circuit breakers. The accuracy of the model is proven by comparison with experimental data for all arc modes. The ablation-controlled arc model is used to simulate high current PTFE arcs burning in cylindrical tubes. Model accuracy for the lower current arcs is evaluated using experimental data on the axially blown SF6 arc in steady state and arc resistance measurements close to current zero. The complete switching process with the arc going through all three phases is also simulated and compared with the experimental data from an industrial circuit breaker switching test.

  7. The origin of summit basins on the Aleutian Ridge: implications for block rotation of an arc massif ( Pacific).

    USGS Publications Warehouse

    Geist, E.L.; Childs, J. R.; Scholl, D. W.

    1988-01-01

    It is proposed that many summit basins along the Aleutian Arc form from the clockwise rotation of blocks of the arc massic. Summit basins are arc-parallel grabens or half-grabens formed within the arc massif and are commonly located near or along the axis of late Cenozoic volcanism. Geomorphically, the Aleutian Arc appears to consist of contiguous rhombic blocks of varying size, 10's to 100's of km in length. Presents a model for block rotation that involves translation of blocks parallel to an arc. It is suggested that block rotation, which appears to have accelerated in late Cenozoic time, is linked to: 1) a shift in the Euler pole for the Pacific plate; 2) the consequential start-up of late Cenozoic volcanism; 3) improved interplate coupling instigated by sediment flooding of the Aleutian Trench; and 4) westward subduction of NE striking segments of the inactive Kula-Pacific Ridge.-from Authors

  8. Critical Collapse of Rotating Radiation Fluids.

    PubMed

    Baumgarte, Thomas W; Gundlach, Carsten

    2016-06-03

    We present results from the first fully relativistic simulations of the critical collapse of rotating radiation fluids. We observe critical scaling both in subcritical evolutions-in which case the fluid disperses to infinity and leaves behind flat space-and in supercritical evolutions, which lead to the formation of black holes. We measure the mass and angular momentum of these black holes, and find that both show critical scaling with critical exponents that are consistent with perturbative results. The critical exponents are universal: they are not affected by angular momentum, and are independent of the direction in which the critical curve, which separates subcritical from supercritical evolutions in our two-dimensional parameter space, is crossed. In particular, these findings suggest that the angular momentum decreases more rapidly than the square of the mass, so that, as criticality is approached, the collapse leads to the formation of a nonspinning black hole. We also demonstrate excellent agreement of our numerical data with new closed-form extensions of power-law scalings that describe the mass and angular momentum of rotating black holes formed close to criticality.

  9. SU-E-T-187: Feasibility Study of Stereotactic Liver Radiation Therapy Using Multiple Divided Partial Arcs in Volumetric Modulated Arc Therapy

    SciTech Connect

    Lin, Y; Ozawa, S; Tsegmed, U; Nakashima, T; Shintaro, T; Ochi, Y; Kawahara, D; Kimura, T; Nagata, Y

    2014-06-01

    Purpose: To verify volumetric modulated arc therapy (VMAT) using flattening filter free (FFF) mode with jaw tracking (JT) feature for single breath hold as long as 15 s per arc in liver stereotactic body radiation therapy (SBRT) against intensity modulated radiation therapy (IMRT) FFF-JT. Methods: Ten hepatocellular carcinoma (HCC) cases were planned with 10 MV FFF using Pinnacle3 treatment planning system which delivered by TrueBeam to administer 48 Gy/ 4 fractions. Eight non-coplanar beams were assigned to IMRT using step-and-shoot technique. For VMAT, two or three non-coplanar partial arcs (up to 180 degrees) were further divided into subarcs with gantry rotation less than 80 degrees to limit delivery time within 15 s. Dose distributions were verified using OCTAVIUS II system and pass rates were evaluated using gamma analysis with criteria of 3%/3 mm at threshold of 5% to the maximum dose. The actual irradiation time was measured. Results: The VMAT-FFF-JT of partial-arcs with sub-divided arcs was able to produce a highly conformal plan as well as IMRT-FFF-JT. Isodose lines and DVH showed slight improvement in dosimetry when JT was employed for both IMRT and VMAT. Consequently, VMAT-FFF-JT was superior in reducing the dose to liver minus gross tumor volume. VMAT-FFF-JT has shorter total treatment time compared with 3D conformal radiation therapy (3D-CRT) FFF because the gantry was rotated simultaneously with the beam delivery in VMAT. Moreover, due to the small and regular shape of HCC, VMAT-FFF-JT offered less multileaf collimator motion, thus the interplay effect is expected to be reduced. The patient specific QA of IMRT and VMAT acquired the pass rates higher than 90%. Conclusion: VMAT-FFF-JT could be a promising technique for liver SBRT as the sub-divided arcs method was able to accommodate a single breath hold irradiation time of less than 15 s without deterioration of the dose distribution compared with IMRT-FFF-JT.

  10. Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations

    NASA Astrophysics Data System (ADS)

    Crespo-Blanc, Ana; Comas, Menchu; Balanyá, Juan Carlos

    2016-06-01

    We proposed a reconstruction of one of the tightest orogenic arcs on Earth: the Gibraltar Arc System. This reconstruction, which includes onshore and offshore data, is completed for approximately 9 Ma. The clues that lead us to draw it are based on a review in terms of structures and age of the superposed deformational events that took place during Miocene, with special attention to the external zones. This review and new structural data presented in this paper permit us to constrain the timing of vertical axis-rotations evidenced by previously published paleomagnetic data, and to identify homogeneous domains in terms of relationships between timing of deformation events, (re)magnetization and rotations. In particular, remagnetization in the Betics took place after the main shortening which produced the external fold-and-thrust belts (pre-upper Miocene), but was mostly previous to a contractive reorganization that affected the whole area; it should have occurred during lower Tortonian (between 9.9 and 11 Ma). From Tortonian to Present, block-rotations as high as 53° took place. Together with plate convergence, they accommodated a tightening and lengthening of the Gibraltar Arc System and drastically altered its geometry. As the orientation and position of any pre-9 Ma kinematic indicator or structural element is also modified, our reconstruction should be used as starting point for any pre-Tortonian model of the westernmost orogenic segment of the Alpine-Mediterranean system.

  11. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    SciTech Connect

    Riley, Craig; Yang, Yong Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc

  12. Continuous Arc Rotation of the Couch Therapy for the Delivery of Accelerated Partial Breast Irradiation: A Treatment Planning Analysis

    SciTech Connect

    Shaitelman, Simona F.; Kim, Leonard H.; Yan Di; Martinez, Alvaro A.; Vicini, Frank A.; Grills, Inga S.

    2011-07-01

    Purpose: We present a novel form of arc therapy: continuous arc rotation of the couch (C-ARC) and compare its dosimetry with three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT) for accelerated partial breast irradiation (APBI). C-ARC, like VMAT, uses a modulated beam aperture and dose rate, but with the couch, not the gantry, rotating. Methods and Materials: Twelve patients previously treated with APBI using 3D-CRT were replanned with (1) C-ARC, (2) IMRT, and (3) VMAT. C-ARC plans were designed with one medial and one lateral arc through which the couch rotated while the gantry was held stationary at a tangent angle. Target dose coverage was normalized to the 3D-CRT plan. Comparative endpoints were dose to normal breast tissue, lungs, and heart and monitor units prescribed. Results: Compared with 3D-CRT, C-ARC, IMRT, and VMAT all significantly reduced the ipsilateral breast V50% by the same amount (mean, 7.8%). Only C-ARC and IMRT plans significantly reduced the contralateral breast maximum dose, the ipsilateral lung V5Gy, and the heart V5%. C-ARC used on average 40%, 30%, and 10% fewer monitor units compared with 3D-CRT, IMRT, and VMAT, respectively. Conclusions: C-ARC provides improved dosimetry and treatment efficiency, which should reduce the risks of toxicity and secondary malignancy. Its tangent geometry avoids irradiation of critical structures that is unavoidable using the en face geometry of VMAT.

  13. Simultaneous couch and gantry dynamic arc rotation (CG-Darc) in the treatment of breast cancer with accelerated partial breast irradiation (APBI): a feasibility study.

    PubMed

    Popescu, Carmen C; Beckham, Wayne A; Patenaude, Veronica V; Olivotto, Ivo A; Vlachaki, Maria T

    2013-01-07

    The purpose of this study was to compare the dosimetry of CG-Darc with three-dimensional conformal radiation therapy (3D CRT) and volumetric-modulated arc therapy (RapidArc) in the treatment of breast cancer with APBI. CG-Darc plans were generated using two tangential couch arcs combined with a simultaneous noncoplanar gantry arc. The dynamic couch arc was modeled by consecutive IMRT fields at 10° intervals. RapidArc plans used a single partial arc with an avoidance sector, preventing direct beam exit into the thorax. CG-Darc and RapidArc plans were compared with 3D CRT in 20 patients previously treated with 3D CRT (group A), and in 15 additional patients who failed the dosimetric constraints of the Canadian trial and of NSABP B-39/RTOG 0413 for APBI (group B). CG-Darc resulted in superior target coverage compared to 3D CRT and RapidArc (V95%: 98.2% vs. 97.1% and 95.7%). For outer breast lesions, CG-Darc and RapidArc significantly reduced the ipsilateral breast V50% by 8% in group A and 15% in group B (p < 0.05) as compared with 3D CRT. For inner and centrally located lesions, CG-Darc resulted in significant ipsilateral lung V10% reduction when compared to 3D CRT and RapidArc (10.7% vs. 12.6% and 20.7% for group A, and 15.1% vs. 25.2% and 27.3% for group B). Similar advantage was observed in the dosimetry of contralateral breast where the percent maximum dose for CG-Darc, 3D CRT, and RapidArc were 3.9%, 6.3%, and 5.8% for group A and 4.3%, 9.2%, and 6.3% for group B, respectively (p < 0.05). CG-Darc achieved superior target coverage while decreasing normal tissue dose even in patients failing APBI dose constraints. Consequently, this technique has the potential of expanding the use of APBI to patients currently ineligible for such treatment. Modification of the RapidArc algorithm will be necessary to link couch and gantry rotation with variable dose rate and, therefore, enable the use of CG-Darc in clinical practice.

  14. Artificial Optical Radiation photobiological hazards in arc welding.

    PubMed

    Gourzoulidis, G A; Achtipis, A; Topalis, F V; Kazasidis, M E; Pantelis, D; Markoulis, A; Kappas, C; Bourousis, C A

    2016-08-01

    Occupational Health and Safety (OHS) is associated with crucial social, economic, cultural and technical issues. A highly specialized OHS sector deals with the photobiological hazards from artificial optical radiation (AOR), which is divided into visible light, UV and IR emitted during various activities and which is legally covered by European Directive 2006/25/EC. Among the enormous amount of sources emitting AOR, the most important non-coherent ones to consider for health effects to the whole optical range, are arcs created during metal welding. This survey presents the effort to assess the complicated exposure limits of the Directive in the controlled environment of a welding laboratory. Sensors covering the UV and blue light range were set to measure typical welding procedures reproduced in the laboratory. Initial results, apart from apparently justifying the use of Personal Protective Equipment (PPE) due to even subsecond overexposures measured, also set the basis to evaluate PPE's properties and support an integrated risk assessment of the complex welding environment. These results can also improve workers' and employer's information and training about radiation hazards, which is a crucial OHS demand.

  15. Natural gamma-radiation in the Aeolian volcanic arc.

    PubMed

    Chiozzi, P; Pasquale, V; Verdoya, M; Minato, S

    2001-11-01

    Pulse-height distributions of gamma-rays, obtained with a field NaI(Tl) scintillation spectrometer in numerous sites of the Lipari and Vulcano islands (Aeolian volcanic arc, Italy), were measured to determine the U, Th and K concentrations of the bedrock and the relative values of the air absorbed dose rate. U is spatially related to both Th and K and the Th/U ratio is on average 3.1-3.5. The magmatic evolution is reflected by the concentration of the three radioelements, as they are more abundant within the more felsic units of the volcanic series. The higher values of U (15.7-20.0 ppm) coincide with higher Th (48.3-65.9 ppm) and K (4.9-6.1%) concentrations associated with rhyolitic rocks of the third cycle (< 50 ky). The air absorbed dose rate varies from 20 to 470 nGy h(-1). The highest values (> 350 nGy h(-1)) are observed on outcrops of rhyolitic obsidian lava flows. The cosmic-ray contribution is also evaluated to estimate the total background radiation dose rate.

  16. Excited atoms in the free-burning Ar arc: treatment of the resonance radiation

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu; Kalanov, D.; Gortschakow, S.; Baeva, M.; Uhrlandt, D.

    2016-11-01

    The collisional-radiative model with an emphasis on the accurate treatment of the resonance radiation transport is developed and applied to the free-burning Ar arc plasma. This model allows for analysis of the influence of resonance radiation on the spatial density profiles of the atoms in different excited states. The comparison of the radial density profiles obtained using an effective transition probability approximation with the results of the accurate solution demonstrates the distinct impact of transport on the profiles and absolute densities of the excited atoms, especially in the arc fringes. The departures from the Saha-Boltzmann equilibrium distributions, caused by different radiative transitions, are analyzed. For the case of the DC arc, the local thermodynamic equilibrium (LTE) state holds close to the arc axis, while strong deviations from the equilibrium state on the periphery occur. In the intermediate radial positions the conditions of partial LTE are fulfilled.

  17. Fabricating Aluminum Bronze Rotating Band for Large-Caliber Projectiles by High Velocity Arc Spraying

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Fang, Ling-hui; Chen, Xiao-lei; Zou, Zhi-qiang; Yu, Xu-hua; Chen, Gang

    2014-02-01

    The necessity of finding new rotating band materials and developing corresponding joining technologies for large-caliber projectiles has been revealed by the recent increase in the ballistic performance of high loads. In this paper, aluminum bronze coatings were fabricated by the high velocity arc spraying (HVAS) technique. Microstructure and microhardness of the prepared coatings were investigated. Ring-on-disk dry sliding wear tests were conducted in an ambient condition to examine the tribological behavior of the coatings. Quasi-static engraving processes of rotating bands made of as-sprayed aluminum bronze coating and bulk copper were studied using rate-controlled push test methodology on an MTS 810 Material Testing System. The results show that the as-sprayed aluminum bronze coatings have a dense microstructure with porosity of about 1.6%. Meanwhile, the as-sprayed coating presents a higher microhardness than pure copper. The friction coefficient of coatings is about 0.2-0.3 in the steady state. Tribological mechanisms of the as-sprayed coatings were discussed. The engraving test results show that the aluminum bronze rotating band presents high bonding strength and good plasticity. The HVAS aluminum bronze coating should be a possible substitute for the state-of-the-art copper rotating band.

  18. Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Denisov, V. I.; Denisova, I. P.; Pimenov, A. B.; Sokolov, V. A.

    2016-11-01

    In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed.

  19. Strongly coupled radiative transfer and Joule heating in the cathode of an arc heater

    NASA Technical Reports Server (NTRS)

    Durgapal, P.; Palmer, Grant E.

    1993-01-01

    Radiation and Joule heating in the electrode region of an arc heater are discussed. Radiative transport equations for a true axisymmetric geometry are used. A subsonic code is developed to numerically solve the fluid equations with strongly coupled radiation and Joule heating representative of a high pressure and high current arc heater. Analytic expression for the divergence of radiative heat flux derived previously is used. Jacobians of the radiation term are derived. The Joule heating term is computed using a previously developed code. The equilibrium gas model consists of seven species. The fluxes are differenced using Van Leer flux splitting. Using this code, the effects of radiative cooling on the thermodynamic parameters of the arc core are discussed.

  20. Hawking radiation of a high-dimensional rotating black hole

    NASA Astrophysics Data System (ADS)

    Ren, Zhao; Lichun, Zhang; Huaifan, Li; Yueqin, Wu

    2010-01-01

    We extend the classical Damour-Ruffini method and discuss Hawking radiation spectrum of high-dimensional rotating black hole using Tortoise coordinate transformation defined by taking the reaction of the radiation to the spacetime into consideration. Under the condition that the energy and angular momentum are conservative, taking self-gravitation action into account, we derive Hawking radiation spectrums which satisfy unitary principle in quantum mechanics. It is shown that the process that the black hole radiates particles with energy ω is a continuous tunneling process. We provide a theoretical basis for further studying the physical mechanism of black-hole radiation.

  1. High powered arc electrodes. [producing solar simulator radiation

    NASA Technical Reports Server (NTRS)

    Hall, J. H.; Gettelman, C. C.; Pollack, J. L.; Goldman, G. C.; Decker, A. J. (Inventor)

    1973-01-01

    Nonconsumable metal electric arc electrodes are described capable of being operated in a variety of gases at various pressures, current, and powers. The cathode has a circular annulus tip to spread the emission area for improved cooling.

  2. Radiation spectrum of a high-dimensional rotating black hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Li, Huaifan; Zhang, Lichun; Wu, Yueqin

    2010-03-01

    This study extends the classical Damour-Ruffini method and discusses Hawking radiation in a ( n + 4)-dimensional rotating black hole. Under the condition that the total energy and angular momentum of spacetime are conservative, but angular momentum a = J/ M of unit mass of the black hole is variable, taking into consideration the reaction of the radiation of the particle to the spacetime, a new Tortoise coordinate transformation and discuss the black hole radiation spectrum is discussed. The radiation spectrum that satisfies the unitary principle in the general case is derived.

  3. Contribution for Iron Vapor and Radiation Distribution Affected by Current Frequency of Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Shimokura, Takuya; Mori, Yusuke; Iwao, Toru; Yumoto, Motoshige

    Pulsed GTA welding has been used for improvement of stability, weld speed, and heat input control. However, the temperature and radiation power of the pulsed arc have not been elucidated. Furthermore, arc contamination by metal vapor changes the arc characteristics, e.g. by increasing radiation power. In this case, the metal vapor in pulsed GTA welding changes the distribution of temperature and radiation power as a function of time. This paper presents the relation between metal vapor and radiation power at different pulse frequencies. We calculate the Fe vapor distribution of the pulsed current. Results show that the Fe vapor is transported at fast arc velocity during the peak current period. During the base current period, the Fe vapor concentration is low and distribution is diffuse. The transition of Fe vapor distribution does not follow the pulsed current; the radiation power density distribution differs for high frequencies and low frequencies. In addition, the Fe vapor and radiation distribution are affected by the pulsed arc current frequency.

  4. Simulation of Arc Rotation and Its Effects on Pressure of Expansion Volume in an Auto-Expansion SF6 Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Zhang, Junmin; Chi, Chengbin; Guan, Yonggang; Liu, Weidong; Wu, Junhui

    2016-03-01

    A 3D Magnetohydrodynamics (MHD) arc model in conjunction with an arc movement model is applied to simulate the arc rotation as well as to solve its effect on the pressure in an auto-expansion circuit breaker. The rotation of the arc driven by an external electromagnetic force is simulated in the case with 200 kA of the short circuit current and 16 ms of arc duration. The arc rotating process and the speed of arc rotation have been obtained in the simulation. A comparison of the pressure in the expansion volume with and without an external magnetic field has been carried out based on the calculation results of two cases. The results of the simulation reveal that the arc rotation, which causes more energy exchange between the arc and its surrounding gas, can evidently bring about the pressurization in the expansion volume, which would contribute to more effective arc quenching at current zero and further reducing operation power. supported by National Natural Science Foundation of China (Nos. 51177005 and 51477004)

  5. Light and short arc rubs in rotating machines: Experimental tests and modelling

    NASA Astrophysics Data System (ADS)

    Pennacchi, P.; Bachschmid, N.; Tanzi, E.

    2009-10-01

    Rotor-to-stator rub is a non-linear phenomenon which has been analyzed many times in rotordynamics literature, but very often these studies are devoted simply to highlight non-linearities, using very simple rotors, rather than to present reliable models. However, rotor-to-stator rub is actually one of the most common faults during the operation of rotating machinery. The frequency of its occurrence is increasing due to the trend of reducing the radial clearance between the seal and the rotor in modern turbine units, pumps and compressors in order to increase efficiency. Often the rub occurs between rotor and seals and the analysis of the phenomenon cannot set aside the consideration of the different relative stiffness. This paper presents some experimental results obtained by means of a test rig in which rub conditions of real machines are reproduced. In particular short arc rubs are considered and the shaft is stiffer than the obstacle. Then a model, suitable to be employed for real rotating machinery, is presented and the simulations obtained are compared with the experimental results. The model is able to reproduce the behaviour of the test rig.

  6. Hawking's radiation in non-stationary rotating de Sitter background

    NASA Astrophysics Data System (ADS)

    Ibohal, N.; Ibungochouba, T.

    2011-05-01

    Hawking's radiation effect of Klein-Gordon scalar field, Dirac particles and Maxwell's electromagnetic field in the non-stationary rotating de Sitter cosmological space-time is investigated by using a method of generalized tortoise co-ordinates transformation. The locations and the temperatures of the cosmological horizons of the non-stationary rotating de Sitter model are derived. It is found that the locations and the temperatures of the rotating cosmological model depend not only on the time but also on the angle. The stress-energy regularization techniques are applied to the two dimensional analog of the de Sitter metrics and the calculated stress-energy tensor contains the thermal radiation effect.

  7. Hawking radiation from rotating black holes and gravitational anomalies

    SciTech Connect

    Murata, Keiju; Soda, Jiro

    2006-08-15

    We study the Hawking radiation from Rotating black holes from the gravitational anomalies point of view. First, we show that the scalar field theory near the Kerr black hole horizon can be reduced to the 2-dimensional effective theory. Then, following Robinson and Wilczek, we derive the Hawking flux by requiring the cancellation of gravitational anomalies. We also apply this method to Hawking radiation from higher dimensional Myers-Perry black holes. In the appendix, we present the trace anomaly derivation of Hawking radiation to argue the validity of the boundary condition at the horizon.

  8. Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma

    PubMed Central

    Paik, Eun Kyung; Choi, Chul Won; Jang, Won Il; Lee, Sung Hyun; Choi, Sang Hyoun; Kim, Kum Bae; Lee, Dong Han

    2015-01-01

    Purpose To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters. Materials and Methods Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions. The dosimetric parameters of planning target volume (PTV) coverage and normal tissue sparing in the RapidArc and the CyberKnife plans were analyzed. Results The conformity index was 1.05 ± 0.02 for the CyberKnife plan, and 1.13 ± 0.10 for the RapidArc plan. The homogeneity index was 1.23 ± 0.01 for the CyberKnife plan, and 1.10 ± 0.03 for the RapidArc plan. For the normal liver, there were significant differences between the two plans in the low-dose regions of V1 and V3. The normalized volumes of V60 for the normal liver in the RapidArc plan were drastically increased when the mean dose of the PTVs in RapidArc plan is equivalent to the mean dose of the PTVs in the CyberKnife plan. Conclusion CyberKnife plans show greater dose conformity, especially in small-sized tumors, while RapidArc plans show good dosimetric distribution of low dose sparing in the normal liver and body. PMID:26484307

  9. Radiation from an accelerating neutral body: The case of rotation

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Arik, Metin; Kholmetskii, Alexander L.

    2013-11-01

    diatomic molecule, for instance). If the object reaches its final state in a given medium, say air, and "friction" is present, such as the case of a dental drill, then energy should keep being supplied to it, to overcome friction, which is present either inside the "inner mechanism of rotation" or in its surroundings. In other words, the object in the latter case, would be constantly subject to a friction force, countering its motion, and tending to make it fall to lower rotational energy states. Any fluctuations in the power supply, on the other hand, will slow down the rotating object, no matter how indiscernibly. The small decrease in the rotational velocity is yet reincreased by restoring the power supply, thus perpetually securing a stationary rotational motion. Thereby, the object in this final state, due to fluctuations in either friction or power supply, or both, shall further be expected to emit a radiation of energy , where is the final angular velocity of the object in rotation. What is more is that our team has very successfully measured what is predicted here, and they will report their experimental results in a subsequent article. The approach presented here seems to shed light on the mysterious sonoluminescence. It also triggers the possibility of sensing earthquakes due to radiation that should be emitted by the faults, on which the seismic stress keeps increasing until the crackdown. By the same token, also two colliding (neutral) objects are expected to emit radiation.

  10. Earth rotation and GNSS orbits from one-day and three-day arcs

    NASA Astrophysics Data System (ADS)

    Lutz, Simon; Schaer, Stefan; Dach, Rolf; Beutler, Gerhard; Steigenberger, Peter; Meindl, Michael; Jäggi, Adrian

    2014-05-01

    The Center for Orbit Determination in Europe (CODE) is one of the analysis centers of the International GNSS Service (IGS). It is estimating satellite orbits and consistent sets of Earth rotation parameters (ERPs) for the final, rapid, and ultra-rapid product lines of the IGS. The solutions are derived from a combined multi-system (GPS and GLONASS) analysis of the GNSS tracking data. Since September 2012 two series of final solutions are operationally generated and submitted to the IGS: the first is based on the observations from exactly one day (requirement of the IGS) and the second stacks the one-day normal equations of three consecutive days to get orbital arcs and piecewise linear Earth rotation parameters which are continuous at the boundaries of the middle day. The same two solution types were produced for the second reprocessing campaign of the IGS (covering the interval from 1994 to the end of 2013; GLONASS starts in 2002). The estimation of the polar motion rates reveals serious deficiencies in the case of the one-day solutions (probably due to interferences with the sub-daily ERPs). Suspicious signatures in the time series of the estimated parameters not visible in the three-day solutions are systematically disturbing the results of the one-day solutions. Artifacts with periods typical for the GLONASS constellation are clearly visible in the one-day solutions, but to a much lesser extent in the three-day solutions. This becomes even more evident in an alternative series generated as consistent (even regarding the station selection) GPS- and GLONASS-only products over four years (2007-2011).

  11. Dosimetric Impact of the Interplay Effect During Stereotactic Lung Radiation Therapy Delivery Using Flattening Filter-Free Beams and Volumetric Modulated Arc Therapy

    SciTech Connect

    Ong, Chin Loon; Dahele, Max; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2013-07-15

    Purpose: We investigated the dosimetric impact of the interplay effect during RapidArc stereotactic body radiation therapy for lung tumors using flattening filter-free (FFF) beams with different dose rates. Methods and Materials: Seven tumors with motion ≤20 mm, treated with 10-MV FFF RapidArc, were analyzed. A programmable phantom with sinusoidal longitudinal motion (30-mm diameter “tumor” insert; period = 5 s; individualized amplitude from planning 4-dimensional computed tomography) was used for dynamic dose measurements. Measurements were made with GafChromic EBT III films. Plans delivered the prescribed dose to 95% of the planning target volume, created by a 5-mm expansion of the internal target volume. They comprised 2 arcs and maximum dose rates of 400 and 2400 MU/min. For 2400 MU/min plans, measurements were repeated at 3 different initial breathing phases to model interplay over 2 to 3 fractions. For 3 cases, 2 extra plans were created using 1 full rotational arc (with contralateral lung avoidance sector) and 1 partial arc of 224° to 244°. Dynamic and convolved static measurements were compared by use of gamma analysis of 3% dose difference and 1 mm distance-to-agreement. Results: For 2-arc 2400 MU/min plans, maximum dose deviation of 9.4% was found in a single arc; 7.4% for 2 arcs (single fraction) and <5% and 3% when measurements made at 2 and 3 different initial breathing phases were combined, simulating 2 or 3 fractions. For all 7 cases, >99% of the area within the region of interest passed the gamma criteria when all 3 measurements with different initial phases were combined. Single-fraction single-arc plans showed higher dose deviations, which diminished when dose distributions were summed over 2 fractions. All 400 MU/min plans showed good agreement in a single fraction measurement. Conclusion: Under phantom conditions, single-arc and single-fraction 2400 MU/min FFF RapidArc lung stereotactic body radiation therapy is susceptible to interplay

  12. Jeans instability of rotating magnetized quantum plasma: Influence of radiation

    SciTech Connect

    Joshi, H.; Pensia, R. K.

    2015-07-31

    The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.

  13. GUP assisted Hawking radiation of rotating acoustic black holes

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Övgün, A.; Jusufi, K.

    2016-10-01

    Recent studies (Steinhauer in Nat. Phys. 10:864, 2014, Phys. Rev. D 92:024043, 2015) provide compelling evidences that Hawking radiation could be experimentally proven by using an analogue black hole. In this paper, taking this situation into account we study the quantum gravitational effects on the Hawking radiation of rotating acoustic black holes. For this purpose, we consider the generalized uncertainty principle (GUP) in the phenomenon of quantum tunneling. We firstly take the modified commutation relations into account to compute the GUP modified Hawking temperature when the massive scalar particles tunnel from this black hole. Then, we find a remarkably instructive expression for the GUP entropy to derive the quantum gravity corrected Hawking temperature of the rotating acoustic black hole.

  14. Carbon nanoparticles in the radiation field of the stationary arc discharge

    SciTech Connect

    Shneider, M. N.

    2015-07-15

    The paper considers a simple theoretical model of heating the nanoparticles, depending on their size and the parameters of the radiating arc and the surrounding gas. This problem is of interest to diagnostics and modeling of the dynamics of the nanoparticles formation and their local size distribution. Heating of nanoparticles by the radiation can affect the process of synthesis. The degree of heating of the particle is determined by its geometry, which opens, apparently, additional possibilities for nonintrusive optical diagnostics.

  15. Anomalies, Hawking radiations, and regularity in rotating black holes

    SciTech Connect

    Iso, Satoshi; Umetsu, Hiroshi; Wilczek, Frank

    2006-08-15

    This is an extended version of our previous letter [S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. Lett. 96, 151302 (2006).]. In this paper we consider rotating black holes and show that the flux of Hawking radiation can be determined by anomaly cancellation conditions and regularity requirement at the horizon. By using a dimensional reduction technique, each partial wave of quantum fields in a d=4 rotating black hole background can be interpreted as a (1+1)-dimensional charged field with a charge proportional to the azimuthal angular momentum m. From this and the analysis [S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 95, 011303 (2005), S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. Lett. 96, 151302 (2006).] on Hawking radiation from charged black holes, we show that the total flux of Hawking radiation from rotating black holes can be universally determined in terms of the values of anomalies at the horizon by demanding gauge invariance and general coordinate covariance at the quantum level. We also clarify our choice of boundary conditions and show that our results are consistent with the effective action approach where regularity at the future horizon and vanishing of ingoing modes at r={infinity} are imposed (i.e. Unruh vacuum)

  16. A comparison of three radiation models for the calculation of nozzle arcs

    NASA Astrophysics Data System (ADS)

    Dixon, C. M.; Yan, J. D.; Fang, M. T. C.

    2004-12-01

    Three radiation models, the semi-empirical model based on net emission coefficients (Zhang et al 1987 J. Phys. D: Appl. Phys. 20 386-79), the five-band P1 model (Eby et al 1998 J. Phys. D: Appl. Phys. 31 1578-88), and the method of partial characteristics (Aubrecht and Lowke 1994 J. Phys. D: Appl.Phys. 27 2066-73, Sevast'yanenko 1979 J. Eng. Phys. 36 138-48), are used to calculate the radiation transfer in an SF6 nozzle arc. The temperature distributions computed by the three models are compared with the measurements of Leseberg and Pietsch (1981 Proc. 4th Int. Symp. on Switching Arc Phenomena (Lodz, Poland) pp 236-40) and Leseberg (1982 PhD Thesis RWTH Aachen, Germany). It has been found that all three models give similar distributions of radiation loss per unit time and volume. For arcs burning in axially dominated flow, such as arcs in nozzle flow, the semi-empirical model and the P1 model give accurate predictions when compared with experimental results. The prediction by the method of partial characteristics is poorest. The computational cost is the lowest for the semi-empirical model.

  17. The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc

    SciTech Connect

    Benallal, R.; Liani, B.

    2008-09-23

    Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

  18. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    PubMed

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate.

  19. Acoustic wavefield and Mach wave radiation of flashing arcs in strombolian explosion measured by image luminance

    NASA Astrophysics Data System (ADS)

    Genco, Riccardo; Ripepe, Maurizio; Marchetti, Emanuele; Bonadonna, Costanza; Biass, Sebastien

    2014-10-01

    Explosive activity often generates visible flashing arcs in the volcanic plume considered as the evidence of the shock-front propagation induced by supersonic dynamics. High-speed image processing is used to visualize the pressure wavefield associated with flashing arcs observed in strombolian explosions. Image luminance is converted in virtual acoustic signal compatible with the signal recorded by pressure transducer. Luminance variations are moving with a spherical front at a 344.7 m/s velocity. Flashing arcs travel at the sound speed already 14 m above the vent and are not necessarily the evidence of a supersonic explosive dynamics. However, seconds later, the velocity of small fragments increases, and the spherical acousto-luminance wavefront becomes planar recalling the Mach wave radiation generated by large scale turbulence in high-speed jet. This planar wavefront forms a Mach angle of 55° with the explosive jet axis, suggesting an explosive dynamics moving at Mo = 1.22 Mach number.

  20. Feasibility study of a periodic arc compressor in the presence of coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.

    2016-01-01

    The advent of short electron bunches in high brightness linear accelerators has raised the awareness of the accelerator community to the degradation of the beam transverse emittance by coherent synchrotron radiation (CSR) emitted in magnetic bunch length compressors, transfer lines and turnaround arcs. Beam optics control has been proposed to mitigate that CSR effect. In this article, we enlarge on the existing literature by reviewing the validity of the linear optics approach in a periodic, achromatic arc compressor. We then study the dependence of the CSR-perturbed emittance to beam optics, mean energy, and bunch charge. The analytical findings are compared with particle tracking results. Practical considerations on CSR-induced energy loss and nonlinear particle dynamics are included. As a result, we identify the range of parameters that allows feasibility of an arc compressor for driving, for example, a free electron laser or a linear collider.

  1. Radiative flow due to stretchable rotating disk with variable thickness

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed

    Present article concerns with MHD flow of viscous fluid by a rotating disk with variable thickness. Heat transfer is examined in the presence of thermal radiation. Boundary layer approximation is applied to the partial differential equations. Governing equations are then transformed into ordinary differential equations by utilizing Von Karman transformations. Impact of physical parameters on velocity, temperature, skin friction coefficient and Nusselt number is presented and examined. It is observed that with an increase in disk thickness and stretching parameter the radial and axial velocities are enhanced. Prandtl number and radiation parameter have opposite behavior for temperature field. Skin friction decays for larger disk thickness index. Magnitude of Nusselt number enhances for larger Prandtl number.

  2. Radiative Interaction Between Driver and Driven Gases in an Arc-Driven Shock Tube

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Park, Chul

    2001-01-01

    An electric-arc driven shock tube was operated with hydrogen as the driven gas and either hydrogen or helium as the driver gas. Electron density was measured behind the primary shock wave spectroscopically from the width of the Beta line of hydrogen. The measured electron density values were many times greater than the values calculated by the Rankine - Hugoniot relations. By accounting for the radiative transfer from the driver gas to the driven gas, the measured electron density values were numerically recreated.

  3. A rotating two-phase gas/liquid flow for pressure reduction in underwater plasma arc welding

    SciTech Connect

    Steinkamp, H.; Creutz, M.; Mewes, D.; Bartzsch, J.

    1994-12-31

    Plasma arc welding processes are used in off-shore industry for the construction and maintenance in the wet surrounding of underwater structures and pipelines. In greater water depth the density of the plasma gas increase because of the greater hydrostatic pressure. This causes an increase of the conductive heat losses to the wet surrounding. To keep up the energy flux to the workpiece a pressure reduction is favorable against the surrounding. To keep up the energy flux to the workpiece a pressure reduction is favorable against the surrounding. The plasma arc has to burn in a locally dry area. This requirement can be fulfilled by a rotating disc placed above the workpiece. In the gap between the lower end of the cylinder and the workpiece a rotating two-phase flow is maintained. The flow around the rotating disc is experimentally investigated. The rotating disc is placed above the surface of the workpiece which is simulated by a flat plate. Water is forced out of the cylinder due to centrifugal forces set up by the rotating disc and flat plate. The velocity distribution in the flow is measured by Laser-Doppler-Anemometry. The phase distribution in the two-phase flow in the gap is measured by local electrical probes. The static pressure in the gaseous atmosphere is reduced in comparison to the hydrostatic pressure of the surrounding water. The pressure reduction is given by the void fraction, the phase distribution and the volume flow rates of both phases in the gap as well as by the speed of revolution and the design of the disc and the work surface. Apart from the investigations on the fluid dynamics, the method to reduce the pressure was technically proved. Experiments were carried out under water with a plasma MIG welder.

  4. Simulation of Fault Arc Based on Different Radiation Models in a Closed Tank

    NASA Astrophysics Data System (ADS)

    Li, Mei; Zhang, Junpeng; Hu, Yang; Zhang, Hantian; Wu, Yifei

    2016-05-01

    This paper focuses on the simulation of a fault arc in a closed tank based on the magneto-hydrodynamic (MHD) method, in which a comparative study of three radiation models, including net emission coefficients (NEC), semi-empirical model based on NEC as well as the P1 model, is developed. The pressure rise calculated by the three radiation models are compared to the measured results. Particularly when the semi-empirical model is used, the effect of different boundary temperatures of the re-absorption layer in the semi-empirical model on pressure rise is concentrated on. The results show that the re-absorption effect in the low-temperature region affects radiation transfer of fault arcs evidently, and thus the internal pressure rise. Compared with the NEC model, P1 and the semi-empirical model with 0.7<α<0.83 are more suitable to calculate the pressure rise of the fault arc, where is an adjusted parameter involving the boundary temperature of the re-absorption region in the semi-empirical model. supported by National Key Basic Research Program of China (973 Program) (No. 2015CB251002), National Natural Science Foundation of China (Nos. 51221005, 51177124), the Fundamental Research Funds for the Central Universities, the Program for New Century Excellent Talents in University and Shaanxi Province Natural Science Foundation of China (No. 2013JM-7010)

  5. Interaction of graphite and ablative materials with CO2-laser, carbon-arc, and xenon-arc radiation. M.S. Thesis - George Washington Univ., Washington, D. C.

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.

    1975-01-01

    The behavior of graphite and several charring ablators in a variety of high radiative heat flux environments was studied in various radiative environments produced by a CO2 laser and a carbon arc facility. Graphite was also tested in xenon arc radiation. Tests were conducted in air nitrogen, helium, and a mixture of CO2 and nitrogen, simulating the Venus atmosphere. The experimental results are compared with theoretical results obtained with a one dimensional charring ablator analysis and a two dimensional subliming ablator analysis. Photomicroscopy showed no significant differences in appearance or microstructure of the charring ablators or graphite after testing in the three different facilities, indicating that the materials respond fundamentally the same to the radiation of different frequencies. The performance of phenolic nylon and graphite was satisfactorily predicted with existing analyses and published material property data.

  6. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys.

    PubMed

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10-0.91 mW/cm(2) at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3-33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc.

  7. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys

    PubMed Central

    NAKASHIMA, Hitoshi; UTSUNOMIYA, Akihiro; FUJII, Nobuyuki; OKUNO, Tsutomu

    2015-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10–0.91 mW/cm2 at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3–33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc. PMID:26632121

  8. Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current

    NASA Astrophysics Data System (ADS)

    Hao, ZHANG; Fengsen, ZHU; Xiaodong, LI; Changming, DU

    2017-04-01

    The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated. The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge, particularly at flow rate = 2 l min‑1. When the current was lower than 140 mA, sinusoidal waveforms with regular variation periods of 13.5–17.0 ms can be observed (flow rate = 2 l min‑1). The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions. Increasing the flow rate from 8 to 12 l min‑1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120–200 V). For a given flow rate, the reduction of current resulted in a nearly linear increase of voltage.

  9. Particle image velocimetry analysis of the flow around circular cylinder induced by arc discharge rotating in magnetic field

    NASA Astrophysics Data System (ADS)

    Munhoz, D. S.; Bityurin, V. A.; Klimov, A. I.; Moralev, I. A.

    2016-11-01

    An experimental study of the flow around a circular cylinder model with magnetohydrodynamic (MHD) actuator was carried out in subsonic wind tunnels (M < 0.2). Combined (high frequency and pulsed-periodic) electrical discharge was used in this MHD actuator. This intense pulsed-periodic discharge had the following characteristics: voltage amplitude up to 15 kV, current amplitude up to 16 A and frequency up to 1 kHz. Permanent magnets with an induction of B = 0.1 T on the model surface were placed inside the cylindrical model. Annular electrodes were situated on the surface of the cylindrical model. The Lorentz force causes the rotation of the electric arc on the model surface. In turn, the movement of the arc discharge induces the rotation of the gas near the surface of the model. In this experiment were carried out the measurement of the flow velocity profile near the surface of the model on the following operational modes: with plasma and without plasma. A parametric study of the aerodynamic performance of the model was fulfilled with respect to the discharge parameters and the flow velocity. To measure the velocity profile was used particle image velocimetry method.

  10. Noise radiated from a rotating submerged elastic cylindrical thin shell

    NASA Astrophysics Data System (ADS)

    Caspall, Jayme J.; Yoda, Minami; Rogers, Peter H.

    2002-11-01

    Although the aeroacoustics of high Reynolds number boundary layers is reasonably well understood, less is known about the hydroacoustics of such flows, and the effect of fluid loading. The noise generated by the turbulent boundary layer around an elastic, thin-walled and cylindrical shell rotating in quiescent water was studied in the Georgia Tech. Underwater Acoustic Tank for Reynolds numbers up to 200000. The steel shell, which is filled with air, has a diameter D of 0.625 m, a wall thickness of 0.004D, and an aspect ratio of unity; the tank dimensions are 19D by 12D by 11D. Extraneous noise sources (e.g., bearing and motor vibration) were isolated from the net signal to estimate flow noise. Radiated noise power was calculated from hydrophone data under a diffuse field assumption. To our knowledge, these results are unique in both their structural acoustics and fluid mechanics scaling.

  11. Conditions for coherent-synchrotron-radiation-induced microbunching suppression in multibend beam transport or recirculation arcs

    NASA Astrophysics Data System (ADS)

    Tsai, C.-Y.; Di Mitri, S.; Douglas, D.; Li, R.; Tennant, C.

    2017-02-01

    The coherent synchrotron radiation (CSR) of a high-brightness electron beam traversing a series of dipoles, such as transport or recirculation arcs, may result in beam phase space degradation. On one hand, CSR can perturb electron transverse motion in dispersive regions along the beam line and possibly cause emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching instability. For transport arcs, several schemes have been proposed to suppress the CSR-induced emittance growth. Correspondingly, a few scenarios have been introduced to suppress CSR-induced microbunching instability, which however mostly aim for linac-based machines. In this paper we provide sufficient conditions for suppression of CSR-induced microbunching instability along transport or recirculation arcs. Examples are presented with the relevant microbunching analyses carried out by our developed semianalytical Vlasov solver [C.-Y. Tsai, D. Douglas, R. Li, and C. Tennant, Linear microbunching analysis for recirculation machines, Phys. Rev. ST Accel. Beams 19, 114401 (2016), 10.1103/PhysRevAccelBeams.19.114401]. The example lattices include low-energy (˜100 MeV ) and high-energy (˜1 GeV ) recirculation arcs, and medium-energy compressor arcs. Our studies show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. Beam current dependences of maximal CSR microbunching gains are also demonstrated, which should help outline a beam line design for different scales of nominal currents. We expect this analysis can shed light on the lattice design approach that aims to control the CSR-induced microbunching.

  12. A Radiative Transport Model for Heating Paints using High Density Plasma Arc Lamps

    SciTech Connect

    Sabau, Adrian S; Duty, Chad E; Dinwiddie, Ralph Barton; Nichols, Mark; Blue, Craig A; Ott, Ronald D

    2009-01-01

    The energy distribution and ensuing temperature evolution within paint-like systems under the influence of infrared radiation was studied. Thermal radiation effects as well as those due to heat conduction were considered. A complete set of material properties was derived and discussed. Infrared measurements were conducted to obtain experimental data for the temperature in the paint film. The heat flux of the incident radiation from the plasma arc lamp was measured using a heat flux sensor with a very short response time. The comparison between the computed and experimental results for temperature show that the models that are based on spectral four-flux RTE and accurate optical properties yield accurate results for the black paint systems.

  13. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ-ray pulsars (≲106 year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳106 year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L sd ≲ 1034 erg s‑1, non-dipole magnetic field components should be dominant at the emission region. For the γ-ray pulsars with L sd ≲ 1035 erg s‑1, observed γ-ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  14. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  15. Hawking radiation in a rotating Kaluza-Klein black hole with squashed horizons

    SciTech Connect

    Chen Songbai; Wang Bin; Su Rukeng

    2008-01-15

    We explore the signature of the extra dimension in the Hawking radiation in a rotating Kaluza-Klein black hole with squashed horizons. Comparing with the spherical case, we find that the rotating parameter brings richer physics. We obtain the appropriate size of the extra dimension which can enhance the Hawking radiation and may open a window to detect the extra dimensions.

  16. Gravitational radiation from rotating monopole-string systems

    SciTech Connect

    Babichev, E.; Dokuchaev, V.; Kachelriess, M.

    2005-02-15

    We study the gravitational radiation from a rotating monopole-antimonopole pair connected by a string. While at not too high frequencies the emitted gravitational spectrum is described asymptotically by P{sub n}{proportional_to}n{sup -1}, the spectrum is exponentially suppressed in the high-frequency limit, P{sub n}{proportional_to}exp(-n/n{sub cr}). Below n{sub cr}, the emitted spectrum of gravitational waves is very similar to the case of an oscillating monopole pair connected by a string, and we argue, therefore, that the spectrum found holds approximately for any moving monopole-string system. As an application, we discuss the stochastic gravitational wave background generated by monopole-antimonopole pairs connected by strings in the early Universe and gravitational wave bursts emitted at present by monopole-string networks. We confirm that advanced gravitational wave detectors have the potential to detect a signal for string tensions as small as G{mu}{approx}10{sup -13}.

  17. Convection in a differentially heated rotating spherical shell of Boussinesq fluid with radiative forcing

    NASA Astrophysics Data System (ADS)

    Babalola, David

    In this study we investigate the flow of a Boussinesq fluid contained in a rotating, differentially heated spherical shell. Previous work, on the spherical shell of Boussinesq fluid, differentially heated the shell by prescribing temperature on the inner boundary of the shell, setting the temperature deviation from the reference temperature to vary proportionally with -cos 2θ, from the equator to the pole. We change the model to include an energy balance equation at the earth's surface, which incorporates latitudinal solar radiation distribution and ice-albedo feedback mechanism with moving ice boundary. For the fluid velocity, on the inner boundary, two conditions are considered: stress-free and no-slip. However, the model under consideration contains only simple representations of a small number of climate variables and thus is not a climate model per se but rather a tool to aid in understanding how changes in these variables may affect our planet's climate. The solution of the model is followed as the differential heating is changed, using the pseudo arc-length continuation method, which is a reliable method that can successfully follow a solution curve even at a turning point. Our main result is in regards to hysteresis phenomenon that is associated with transition from one to multiple convective cells, in a differentially heated, co-rotating spherical shell. In particular, we find that hysteresis can be observed without transition from one to multiple convective cells. Another important observation is that the transition to multiple convective cells is significantly suppressed altogether, in the case of stress-free boundary conditions on the fluid velocity. Also, the results of this study will be related to our present-day climate.

  18. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    SciTech Connect

    Lee, Katrina Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  19. Measurement of rotational temperature by simulated spectra in a Ar-CO{sub 2} arc

    SciTech Connect

    Coitout, H.; Faure, G.

    1995-12-31

    It is well known that in a gas discharge plasma in mixture of CO{sub 2} with inert gas (Ar), a molecular carbon formation process occurs, characterised by the Swan band C{sub 2}(d{sup 3}{pi}{sub g}) {r_arrow} C{sub 2}(a{sup 3}{pi}{sub u}), located in the visible region of the spectrum. The rotational structure of this band of C{sub 2} is studied to determine the rotational temperature which can be approximated to the heavy particles temperature. The temperature determination is based on the comparison of experimental spectrum obtained by optical emission spectroscopy and synthetic spectra calculated for different temperatures.

  20. Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods.

    PubMed

    Koger, B; Kirkby, C

    2016-12-02

    As a recent area of development in radiation therapy, gold nanoparticle (GNP) enhanced radiation therapy has shown potential to increase tumour dose while maintaining acceptable levels of healthy tissue toxicity. In this study, the effect of varying photon beam energy in GNP enhanced arc radiation therapy (GEART) is quantified through the introduction of a dose scoring metric, and GEART is compared to a conventional radiotherapy treatment. The PENELOPE Monte Carlo code was used to model several simple phantoms consisting of a spherical tumour containing GNPs (concentration: 15 mg Au g(-1) tumour, 0.8 mg Au g(-1) normal tissue) in a cylinder of tissue. Several monoenergetic photon beams, with energies ranging from 20 keV to 6 MeV, as well as 100, 200, and 300 kVp spectral beams, were used to irradiate the tumour in a 360° arc treatment. A dose metric was then used to compare tumour and tissue doses from GEART treatments to a similar treatment from a 6 MV spectrum. This was also performed on a simulated brain tumour using patient computed tomography data. GEART treatments showed potential over the 6 MV treatment for many of the simulated geometries, delivering up to 88% higher mean dose to the tumour for a constant tissue dose, with the effect greatest near a source energy of 50 keV. This effect is also seen with the inclusion of bone in a brain treatment, with a 14% increase in mean tumour dose over 6 MV, while still maintaining acceptable levels of dose to the bone and brain.

  1. Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Koger, B.; Kirkby, C.

    2016-12-01

    As a recent area of development in radiation therapy, gold nanoparticle (GNP) enhanced radiation therapy has shown potential to increase tumour dose while maintaining acceptable levels of healthy tissue toxicity. In this study, the effect of varying photon beam energy in GNP enhanced arc radiation therapy (GEART) is quantified through the introduction of a dose scoring metric, and GEART is compared to a conventional radiotherapy treatment. The PENELOPE Monte Carlo code was used to model several simple phantoms consisting of a spherical tumour containing GNPs (concentration: 15 mg Au g-1 tumour, 0.8 mg Au g-1 normal tissue) in a cylinder of tissue. Several monoenergetic photon beams, with energies ranging from 20 keV to 6 MeV, as well as 100, 200, and 300 kVp spectral beams, were used to irradiate the tumour in a 360° arc treatment. A dose metric was then used to compare tumour and tissue doses from GEART treatments to a similar treatment from a 6 MV spectrum. This was also performed on a simulated brain tumour using patient computed tomography data. GEART treatments showed potential over the 6 MV treatment for many of the simulated geometries, delivering up to 88% higher mean dose to the tumour for a constant tissue dose, with the effect greatest near a source energy of 50 keV. This effect is also seen with the inclusion of bone in a brain treatment, with a 14% increase in mean tumour dose over 6 MV, while still maintaining acceptable levels of dose to the bone and brain.

  2. Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel

    PubMed Central

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Objectives: Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. Methods: We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO2 and 100% CO2. The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. Results: The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm2 at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. Conclusions: The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO2 is used as a shielding gas than when 100% CO2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous. PMID:27488036

  3. VUV shock layer radiation in an arc-jet wind tunnel experiment

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.; Palumbo, Giuseppe; Carrasco, Armando

    1994-01-01

    Measurements were made of the radiating gas cap of a blunt body in a NASA-Ames 20 MW arc-jet wind tunnel. The test gas was air. Spectra of the flux incident on a small aperture centered at the stagnation region were obtained. A helium-cooled, magnesium fluoride window transmitted the flux into an evacuated collimating system that focused the aperture onto the entrance slit of a spectrometer. Data were obtained with films and by photomultipliers. The spectral ranges covered were the vacuum ultraviolet, VUV, (120 nm to 200 nm) and the ultraviolet to near infrared (200 nm to 900 nm) with resolutions from 0.05 nm to 0.5 nm. This paper presents the preliminary VUV results from the experiment. Results from the 200 nm to 900 nm spectral range have been presented elsewhere. Representative spectral records from 120 nm to 200 nm are shown. The intense atomic oxygen and nitrogen lines which are of concern to hypersonic flight are measured. Carbon lines are are also seen. These results will be used to help develop and validate aerothermodynamic computational models of arc-jet wind tunnel performance and help to assess the importance of VUV heating to entering spacecraft.

  4. NOTE: Monte Carlo simulation of RapidArc radiotherapy delivery

    NASA Astrophysics Data System (ADS)

    Bush, K.; Townson, R.; Zavgorodni, S.

    2008-10-01

    RapidArc radiotherapy technology from Varian Medical Systems is one of the most complex delivery systems currently available, and achieves an entire intensity-modulated radiation therapy (IMRT) treatment in a single gantry rotation about the patient. Three dynamic parameters can be continuously varied to create IMRT dose distributions—the speed of rotation, beam shaping aperture and delivery dose rate. Modeling of RapidArc technology was incorporated within the existing Vancouver Island Monte Carlo (VIMC) system (Zavgorodni et al 2007 Radiother. Oncol. 84 S49, 2008 Proc. 16th Int. Conf. on Medical Physics). This process was named VIMC-Arc and has become an efficient framework for the verification of RapidArc treatment plans. VIMC-Arc is a fully automated system that constructs the Monte Carlo (MC) beam and patient models from a standard RapidArc DICOM dataset, simulates radiation transport, collects the resulting dose and converts the dose into DICOM format for import back into the treatment planning system (TPS). VIMC-Arc accommodates multiple arc IMRT deliveries and models gantry rotation as a series of segments with dynamic MLC motion within each segment. Several verification RapidArc plans were generated by the Eclipse TPS on a water-equivalent cylindrical phantom and re-calculated using VIMC-Arc. This includes one 'typical' RapidArc plan, one plan for dual arc treatment and one plan with 'avoidance' sectors. One RapidArc plan was also calculated on a DICOM patient CT dataset. Statistical uncertainty of MC simulations was kept within 1%. VIMC-Arc produced dose distributions that matched very closely to those calculated by the anisotropic analytical algorithm (AAA) that is used in Eclipse. All plans also demonstrated better than 1% agreement of the dose at the isocenter. This demonstrates the capabilities of our new MC system to model all dosimetric features required for RapidArc dose calculations.

  5. Monte Carlo simulation of RapidArc radiotherapy delivery.

    PubMed

    Bush, K; Townson, R; Zavgorodni, S

    2008-10-07

    RapidArc radiotherapy technology from Varian Medical Systems is one of the most complex delivery systems currently available, and achieves an entire intensity-modulated radiation therapy (IMRT) treatment in a single gantry rotation about the patient. Three dynamic parameters can be continuously varied to create IMRT dose distributions-the speed of rotation, beam shaping aperture and delivery dose rate. Modeling of RapidArc technology was incorporated within the existing Vancouver Island Monte Carlo (VIMC) system (Zavgorodni et al 2007 Radiother. Oncol. 84 S49, 2008 Proc. 16th Int. Conf. on Medical Physics). This process was named VIMC-Arc and has become an efficient framework for the verification of RapidArc treatment plans. VIMC-Arc is a fully automated system that constructs the Monte Carlo (MC) beam and patient models from a standard RapidArc DICOM dataset, simulates radiation transport, collects the resulting dose and converts the dose into DICOM format for import back into the treatment planning system (TPS). VIMC-Arc accommodates multiple arc IMRT deliveries and models gantry rotation as a series of segments with dynamic MLC motion within each segment. Several verification RapidArc plans were generated by the Eclipse TPS on a water-equivalent cylindrical phantom and re-calculated using VIMC-Arc. This includes one 'typical' RapidArc plan, one plan for dual arc treatment and one plan with 'avoidance' sectors. One RapidArc plan was also calculated on a DICOM patient CT dataset. Statistical uncertainty of MC simulations was kept within 1%. VIMC-Arc produced dose distributions that matched very closely to those calculated by the anisotropic analytical algorithm (AAA) that is used in Eclipse. All plans also demonstrated better than 1% agreement of the dose at the isocenter. This demonstrates the capabilities of our new MC system to model all dosimetric features required for RapidArc dose calculations.

  6. Modeling and Simulation of Radiative Compressible Flows in Aerodynamic Heating Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Bensassi, Khalil; Laguna, Alejandro A.; Lani, Andrea; Mansour, Nagi N.

    2016-01-01

    Numerical simulations of an arc heated flow inside NASA's 20 [MW] Aerodynamics heating facility (AHF) are performed in order to investigate the three-dimensional swirling flow and the current distribution inside the wind tunnel. The plasma is considered in Local Thermodynamics Equilibrium(LTE) and is composed of Air-Argon gas mixture. The governing equations are the Navier-Stokes equations that include source terms corresponding to Joule heating and radiative cooling. The former is obtained by solving an electric potential equation, while the latter is calculated using an innovative massively parallel ray-tracing algorithm. The fully coupled system is closed by the thermodynamics relations and transport properties which are obtained from Chapman-Enskog method. A novel strategy was developed in order to enable the flow solver and the radiation calculation to be preformed independently and simultaneously using a different number of processors. Drastic reduction in the computational cost was achieved using this strategy. Details on the numerical methods used for space discretization, time integration and ray-tracing algorithm will be presented. The effect of the radiative cooling on the dynamics of the flow will be investigated. The complete set of equations were implemented within the COOLFluiD Framework. Fig. 1 shows the geometry of the Anode and part of the constrictor of the Aerodynamics heating facility (AHF). Fig. 2 shows the velocity field distribution along (x-y) plane and the streamline in (z-y) plane.

  7. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    SciTech Connect

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing; Pawlik, Timothy M.; Tryggestad, Erik; Ford, Eric; Herman, Joseph M.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  8. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  9. The Dosimetric Impact of Prostate Rotations During Electromagnetically Guided External-Beam Radiation Therapy

    SciTech Connect

    Amro, Hanan; Hamstra, Daniel A.; Mcshan, Daniel L.; Sandler, Howard; Vineberg, Karen; Hadley, Scott; Litzenberg, Dale

    2013-01-01

    Purpose: To study the impact of daily rotations and translations of the prostate on dosimetric coverage during radiation therapy (RT). Methods and Materials: Real-time tracking data for 26 patients were obtained during RT. Intensity modulated radiation therapy plans meeting RTOG 0126 dosimetric criteria were created with 0-, 2-, 3-, and 5-mm planning target volume (PTV) margins. Daily translations and rotations were used to reconstruct prostate delivered dose from the planned dose. D{sub 95} and V{sub 79} were computed from the delivered dose to evaluate target coverage and the adequacy of PTV margins. Prostate equivalent rotation is a new metric introduced in this study to quantify prostate rotations by accounting for prostate shape and length of rotational lever arm. Results: Large variations in prostate delivered dose were seen among patients. Adequate target coverage was met in 39%, 65%, and 84% of the patients for plans with 2-, 3-, and 5-mm PTV margins, respectively. Although no correlations between prostate delivered dose and daily rotations were seen, the data showed a clear correlation with prostate equivalent rotation. Conclusions: Prostate rotations during RT could cause significant underdosing even if daily translations were managed. These rotations should be managed with rotational tolerances based on prostate equivalent rotations.

  10. Hawking radiation of scalar particles from accelerating and rotating black holes

    SciTech Connect

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K. E-mail: mudassar051@yahoo.com

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  11. Application of modified dynamic conformal arc (MDCA) technique on liver stereotactic body radiation therapy (SBRT) planning following RTOG 0438 guideline

    SciTech Connect

    Shi, Chengyu Chen, Yong; Fang, Deborah; Iannuzzi, Christopher

    2015-04-01

    Liver stereotactic body radiation therapy (SBRT) is a feasible treatment method for the nonoperable, patient with early-stage liver cancer. Treatment planning for the SBRT is very important and has to consider the simulation accuracy, planning time, treatment efficiency effects etc. The modified dynamic conformal arc (MDCA) technique is a 3-dimensional conformal arc planning method, which has been proposed for liver SBRT planning at our center. In this study, we compared the MDCA technique with the RapidArc technique in terms of planning target volume (PTV) coverage and sparing of organs at risk (OARs). The results show that the MDCA technique has comparable plan quality to RapidArc considering PTV coverage, hot spots, heterogeneity index, and effective liver volume. For the 5 PTVs studied among 4 patients, the MDCA plan, when compared with the RapidArc plan, showed 9% more hot spots, more heterogeneity effect, more sparing of OARs, and lower liver effective volume. The monitor unit (MU) number for the MDCA plan is much lower than for the RapidArc plans. The MDCA plan has the advantages of less planning time, no-collision treatment, and a lower MU number.

  12. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    NASA Astrophysics Data System (ADS)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  13. Transfer of PSR0531 rotation energy to the radiation of the Crab nebula

    NASA Astrophysics Data System (ADS)

    Machabeli, G.; Gogoberidze, G.; Shapakidze, D.; Midelashvili, E.

    2017-04-01

    This study focuses on the transfer of the Crab pulsar rotation energy to the electrostatic plasma waves of the pulsar magnetosphere by means of parametric instability. The energy of generated Langmuir waves is redistributed both to the pulsar radiation and the radiation of Crab nebula. It is shown that the power of the electrostatic waves transmitted to the Nebula is much greater than the power of Langmuir waves responsible for the generation of high frequency pulsar radiation.

  14. Progressive-arc- vs. strike-slip-related rotations in curved orogenic belts: a case study from the Northern Apennines (Italy).

    NASA Astrophysics Data System (ADS)

    Turtù, Antonio; Satolli, Sara; Maniscalco, Rosanna; Calamita, Fernando; Speranza, Fabio

    2013-04-01

    A detailed paleomagnetic study has been performed in the southern sector of the Olevano-Antrodoco-Sibillini (OAS) thrust front (i. e. the southern limb of the Northern Apennines, Italy). The oroclinal/progressive-arc vs. non rotational nature of the OAS thrust is still a matter of debate, as it has been interpreted in the literature as dextral strike-slip fault, dextral transpressive fault, or as a frontal to oblique ramp complex. We document the paleomagnetism of 52 sites from Jurassic to Eocene pelagic limestones and Messinian siliciclastic turbidites from both the OAS hanging wall and footwall. In the hanging wall, sampling was designed to follow two transects perpendicular to two thrust segments oriented roughly NE-SW and NNW-SSE. Paleomagnetic data have been integrated with biostratigraphical and structural data, in order to understand both the rotational nature of the OAS arc and the kinematics of the thrust front. All samples were paleomagnetically investigated by a 2G DC-SQUID cryogenic magnetometer at the INGV of Rome. Thermal cleaning was used throughout. A characteristic component of magnetization was successfully isolated in 39 (over 52) sites. The tilt-corrected directions were compared to the coeval directions expected for the Adriatic-African foreland, in order to calculate rotations due to Apennine orogenesis. On the basis of cluster analysis and tectonic constrains, we document a peculiar pattern of tectonic rotations along the OAS thrust with four rotational domains: 1. a strongly rotated clockwise (CW) domain (54.78° ±5.46° ) in the hanging wall, close to the NE-SW-trending segment of the thrust; 2. a less CW-rotated domain in the hanging wall (15.1° ±5.8° ) that includes both the NNW-SSE oriented thrust segment and sites far from the thrust; 3. a uniform counterclockwise (CCW) rotation (-30.79° ±4.73° ) in the footwall; 4. an approximately null rotation (-5.2° ±3.8° ) in the external footwall. The strong CW domain in the hanging wall

  15. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    NASA Astrophysics Data System (ADS)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction <3 1 1> is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  16. Understanding progressive-arc- and strike-slip-related rotations in curve-shaped orogenic belts: The case of the Olevano-Antrodoco-Sibillini thrust (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Turtã¹, Antonio; Satolli, Sara; Maniscalco, Rosanna; Calamita, Fernando; Speranza, Fabio

    2013-02-01

    We report on a paleomagnetic study of the southern sector of the Olevano-Antrodoco-Sibillini (OAS) thrust front, which corresponds to the southern limb of the Northern Apennines (Italy) orogenic salient. A lively debate has developed regarding the oroclinal/progressive-arc versus non-rotational nature of the OAS, which has been alternatively interpreted as a dextral strike-slip fault, dextral transpressive fault, or frontal to oblique ramp that reactivated pre-existing Jurassic normal faults. Here, we document the paleomagnetism, integrated with biostratigraphic and structural data, of 52 new sites from both the OAS hanging wall and footwall. On the basis of 39 retained sites, we find a peculiar pattern of tectonic rotations along the OAS thrust that evidences four rotational domains. The thrust footwall is characterized by a southern domain that undergoes an approximately 30° counterclockwise rotation with respect to the stable foreland, and an approximately non-rotated domain. The data from the hanging wall indicate the occurrence of a dextral strike-slip component along the southern sector of the OAS thrust supported by a strong clockwise rotation close to the NE-SW lateral ramp, which rapidly fades 1 km from the thrust front. A slight but significant CW rotation observed in the remaining sites from the hanging wall confirms the progressive nature of the OAS, and its structural position as the southern limb of the Northern Apennines salient. Our detailed paleomagnetic study is crucial in discriminating between progressive-arc- and strike-slip-related components in the main curved orogenic front of the Northern Apennines.

  17. Radiation-induced rotation of small celestial bodies

    NASA Technical Reports Server (NTRS)

    Misconi, N. Y.; Oliver, John; Mzariegos, Roberto

    1992-01-01

    The rotation was studied of particles in a simulated space environment via a technique known as Laser Particle Levitation. The combination of both a high vacuum and optical laser levitation to negate the effects of Earth's gravity, simulate the space environment. The rotation mechanism under study is known as the 'Windmill Effect,' which is a spin mechanism that suggests that the interaction of the photon field from a star with the surface irregularities of cosmic dust will cause them to spin due to the imbalance in the directionality of the scattered photons which necessitates a non-zero angular momentum. This conclusion is based on the random nature of the orientation of the sites of surface irregularities. The general object is to study the behavior of particles in orbits around the Earth, both natural and man made, as well as interplanetary and circumstellar particles. To meet this objective, an apparatus was constructed which was designed to allow optical levitation in a vacuum.

  18. Measured and calculated spectral radiation from a blunt body shock layer in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Babikian, Dikran S.; Palumbo, Giuseppe; Craig, Roger A.; Park, Chul; Palmer, Grant; Sharma, Surendra P.

    1994-01-01

    Spectra of the shock layer radiation incident on the stagnation point of a blunt body placed in an arc-jet wind tunnel were measured over the wavelength range from 600 nm to 880 nm. The test gas was a mixture of 80 percent air and 20 percent argon by mass, and the run was made in a highly nonequilibrium environment. The observed spectra contained contributions from atomic lines of nitrogen, oxygen, and argon, of bound-free and free-free continua, and band systems of N2 and N2(+). The measured spectra were compared with the synthetic spectra, which were obtained through four steps: the calculation of the arc-heater characteristics, of the nozzle flow, of the blunt-body flow, and the nonequilibrium radiation processes. The results show that the atomic lines are predicted approximately correctly, but all other sources are underpredicted by orders of magnitude. A possible explanation for the discrepancy is presented.

  19. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    SciTech Connect

    Sakalli, I.; Ovgun, A.

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  20. Large-scale block rotations from Late Tortonian to Present in the Gibraltar Arc System: input into the Messinian salinity crisis

    NASA Astrophysics Data System (ADS)

    Crespo-Blanc, Ana; Comas, Menchu; Balanyá, Juan Carlos

    2016-04-01

    We propose a reconstruction of one of the tightest orogenic arcs on Earth: the Gibraltar Arc System (GAS), which closes the Alpine-Mediterranean orogenic system to the west. This reconstruction, which includes onshore and offshore data, is completed for approximately 9 Ma, a few Ma before the Messinian Salinity Crisis (MSC). By that time a change in the direction of the Africa-Iberia convergence took place, the main shortening in the external wedge was accomplished, most of the low-angle normal fault systems that contribute to crustal-scale extension in the GAS ceased, and a significant emersion along the Africa and Iberia continental margins occurred, due to an overall contractive reorganization in the GAS. Our paleotectonic reconstruction is based on a review in terms of structures and age of the superposed deformational events that took place during the Miocene within the GAS, with special attention to the external zones of its northern branch. Our review and new structural data permit to constrain the timing of vertical axis-rotations evidenced by previously published paleomagnetic data, and to identify homogeneous domains in terms of relationships between timing of deformation events and block rotations. Block-rotations as high as 53° took place from 9 Ma to Present, which represents around 6°/Ma. The size of the rotated blocks reach 150 to 200 km long (measured along-strike). It implies that the rotations were accommodated by relatively rigid large-scale domains instead of smaller segments rotated progressively, which favors a model of vertical-axis block-rotations on top of crustal-scale decoupling levels. These rotations accommodated tightening and lengthening of the GAS and drastically altered its onshore and offshore geometry from 9 Ma onwards. In the back-arc Alboran Basin, this post-Miocene tightening produced inversion on Middle Miocene normal faults, wrench tectonics, the reactivation of shale diapirism and volcanism, and the uplift of the margins

  1. Dosimetric comparison of volumetric modulated arc therapy and intensity-modulated radiation therapy for pancreatic malignancies

    SciTech Connect

    Ali, Arif N.; Dhabaan, Anees H.; Jarrio, Christie S.; Siddiqi, Arsalan K.; Landry, Jerome C.

    2012-10-01

    Volumetric-modulated arc therapy (VMAT) has been previously evaluated for several tumor sites and has been shown to provide significant dosimetric and delivery benefits when compared with intensity-modulated radiation therapy (IMRT). To date, there have been no published full reports on the benefits of VMAT use in pancreatic patients compared with IMRT. Ten patients with pancreatic malignancies treated with either IMRT or VMAT were retrospectively identified. Both a double-arc VMAT and a 7-field IMRT plan were generated for each of the 10 patients using the same defined tumor volumes, organs at risk (OAR) volumes, dose, fractionation, and optimization constraints. The planning tumor volume (PTV) maximum dose (55.8 Gy vs. 54.4 Gy), PTV mean dose (53.9 Gy vs. 52.1 Gy), and conformality index (1.11 vs. 0.99) were statistically similar between the IMRT and VMAT plans, respectively. The VMAT plans had a statistically significant reduction in monitor units compared with the IMRT plans (1109 vs. 498, p < 0.001). In addition, the doses to the liver, small bowel, and spinal cord were comparable between the IMRT and VMAT plans. However, the VMAT plans demonstrated a statistically significant reduction in the mean left kidney V{sub 25} (9.4 Gy vs. 2.3 Gy, p = 0.018), mean right kidney V{sub 15} (53.4 Gy vs. 45.9 Gy, p = 0.035), V{sub 20} (32.2 Gy vs. 25.5 Gy, p = 0.016), and V{sub 25} (21.7 Gy vs. 14.9 Gy, p = 0.001). VMAT was investigated in patients with pancreatic malignancies and compared with the current standard of IMRT. VMAT was found to have similar or improved dosimetric parameters for all endpoints considered. Specifically, VMAT provided reduced monitor units and improved bilateral kidney normal tissue dose. The clinical relevance of these benefits in the context of pancreatic cancer patients, however, is currently unclear and requires further investigation.

  2. ENERGETIC GAMMA RADIATION FROM RAPIDLY ROTATING BLACK HOLES

    SciTech Connect

    Hirotani, Kouichi; Pu, Hung-Yi

    2016-02-10

    Supermassive black holes (BHs) are believed to be the central powerhouse of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to BH magnetospheres, we demonstrate that an electric field is exerted along the magnetic field lines near the event horizon of a rotating BH. In this particle accelerator (or a gap), electrons and positrons are created by photon–photon collisions and accelerated in the opposite directions by this electric field, efficiently emitting gamma-rays via curvature and inverse-Compton processes. It is shown that a gap arises around the null-charge surface formed by the frame-dragging effect, provided that there is no current injection across the gap boundaries. The gap is dissipating a part of the hole’s rotational energy, and the resultant gamma-ray luminosity increases with decreasing plasma accretion from the surroundings. Considering an extremely rotating supermassive BH, we show that such a gap reproduces the significant very-high-energy (VHE) gamma-ray flux observed from the radio galaxy IC 310, provided that the accretion rate becomes much less than the Eddington rate particularly during its flare phase. It is found that the curvature process dominates the inverse-Compton process in the magnetosphere of IC 310, and that the observed power-law-like spectrum in VHE gamma-rays can be explained to some extent by a superposition of the curvature emissions with varying curvature radius. It is predicted that the VHE spectrum extends into higher energies with increasing VHE photon flux.

  3. Acoustic Radiation From Rotating Blades: The Kirchhoff Method in Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    2000-01-01

    This paper reviews the current status of discrete frequency noise prediction for rotating blade machinery in the time domain. There are two major approaches both of which can be classified as the Kirchhoff method. These methods depend on the solution of two linear wave equations called the K and FW-H equations. The solutions of these equations for subsonic and supersonic surfaces are discussed and some important results of the research in the past years are presented. This paper is analytical in nature and emphasizes the work of the author and coworkers at NASA Langley Research Center.

  4. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  5. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 Angstroms, and the grain rotation rates are obtained by analyzing the low frequency (approximately 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  6. Void fraction and phase distribution of a rotating two-phase gas-liquid flow around a plasma arc under water

    SciTech Connect

    Steinkamp, H.; Mewes, D.

    1994-12-31

    Plasma arc welding processes are used in off-shore industry for construction and maintenance in the wet surrounding of underwater structures and pipelines. In greater water depth the density of the plasma gas increase because of the greater hydrostatic pressure. This causes the increase of conductive heat losses to the wet surrounding. To keep up the energy flux to the workpiece to be welded, the plasma arc has to burn in a local dry area with an inside pressure of 1 bar. This requirement can be fulfilled by a rotating cylinder with a liquid film flowing down the inner wall. The flow around the rotating cylinder to create a local dry area around the plasma arc under water is experimentally investigated. The rotating cylinder is placed above the work surface which is simulated by a flat plate. According to the centrifugal forces of the rotating flow inside the gap between the lower end of the cylinder and the flat plate the water is forced out of the cylinder. The velocity distribution in the flow is measured by Laser-Doppler anemometry. The phase distribution in the two-phase flow in the gap is measured by local electrical probes. The static pressure inside the gaseous atmosphere is reduced in comparison to the hydrostatic pressure of the surrounding water. The pressure reduction is given by the void fraction, the phase distribution and the volume flow rates of both phases in the gap as well as by the speed of revolution and the design of the cylinder and the work surface. The influence of these parameters on the heat transfer from the workpiece to the two-phase flow regime is also investigated.

  7. Arc-textured metal surfaces for high thermal emittance space radiators

    SciTech Connect

    Banks, B.A.; Rutledge, S.K.; Mirtich, M.J.; Behrend, T.; Hotes, D.; Kussmaul, M.; Barry, J.; Stidham, C.; Stueber, T.; DiFilippo, F.

    1994-09-01

    Carbon arc electrical discharges struck across the surfaces of metals such as Nb-1% Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 {mu}m were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. Ac arc texturing was found to increase the thermal emittance at 800 K from 0.05. to 0.70.

  8. Arc Testing of a Mockup Cable in a Simulated Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Schneider, T. A.; Vaughn, J. A.

    2007-01-01

    A mockup cable was irradiated with electrons of 25-100 keV energy in a vacuum chamber. The m'ockup cable consisted of insulated wires on a kapton substrate, overlaid with a metallized teonex shield. Voltages induced on the wires and shield by the electron beam during irradiation were monitored, and voltage changes were used, along with video, to detect arcs due to the charge built-up in the cable. The cable was also cooled with liquid nitrogen to very low temperatures, to simulate cables kept in the dark for long periods of time. Arcing was common at fluences typical of long space missions. Occasionally an arc would occur some time after the electron beam was turned off. The conductivity of the wires and shield was monitored as a function of temperature, and behaved as expected, with lower conductivities at lower temperatures. Arcs from the wires and shield to ground and from the wires to the shield were measured. Sympathetic arcs were also seen, wherein an arc from the shield to ground or from the wires to ground was followed in a short period of time by another arc of a different type. Implications of these results for real cables on long space missions will be discussed, and recommendations given for arc mitigation.

  9. Radiation Pressure Effects in the Oscillations of Compressible Rotating Homogeneous Spheroids

    NASA Astrophysics Data System (ADS)

    Chia, T. T.; Pung, S. Y.

    1993-09-01

    Earlier models of compressible, rotating, and homogeneous ellipsoids with gas pressure are generalized to include the presence of radiation pressure. Under the assumptions of a linear velocity field of the fluid and a bounded ellipsoidal surface, the dynamical behaviour of these models can be described by ordinary differential equations. These equations are used to study the finite oscillations of massive radiative models with masses 10M ⊙ and 30M ⊙ in which the effects of radiation pressure are expected to be important. Models with two different degrees of equilibrium are chosen: an equilibrium (i.e., dynamically stable) model with an initial asymmetric inward velocity, and a nonequilibrium model with a nonequilibrium central temperature and which falls inwards from rest. For each of these two degrees of equilibrium, two initial configurations are considered: rotating spheroidal and nonrotating spherical models. From the numerical integration of the differential equations for these models, we obtain the time evolution of their principal semi-diametersa 1 anda 3, and of their central temperatures, which are graphically displayed by making plots of the trajectories in the (a 1,a 3) phase space, and of botha 1 and the total central pressureP c against time. It is found that in all the equilibrium radiative models (in which radiation pressure is taken into account), the periods of the oscillations of botha 1 andP c are longer than those of the corresponding nonradiative models, while the reverse is true for the nonequilibrium radiative models. The envelopes of thea 1 oscillations of the equilibrium radiative models also have much longer periods; this result also holds for the nonequilibrium models whenever the envelope is well defined. Further, as compared to the nonradiative models, almost all the radiative models collapse to smaller volumes before rebouncing, with the more massive model undergoing a larger collapse and attaining a correspondingly larger peakP c

  10. Epid cine acquisition mode for in vivo dosimetry in dynamic arc radiation therapy

    NASA Astrophysics Data System (ADS)

    Fidanzio, Andrea; Mameli, Alessandra; Placidi, Elisa; Greco, Francesca; Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D'Angelillo, Rolando; Cellini, Francesco; Trodella, Lucio; Cilla, Savino; Grimaldi, Luca; D'Onofrio, Guido; Azario, Luigi; Piermattei, Angelo

    2008-02-01

    In this paper the cine acquisition mode of an electronic portal imaging device (EPID) has been calibrated and tested to determine the in vivo dose for dynamic conformal arc radiation therapy (DCAT). The EPID cine acquisition mode, that allows a frame acquisition rate of one image every 1.66 s, was studied with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, ±1% (2SD) evaluated during three months, signal reproducibility within ±0.8% (2SD) and linearity with dose and dose rate within ±1% (2SD) were obtained. The transit signal, St, (due to the transmitted beam below the phantom) measured by the EPID cine acquisition mode was used to determine, (i) a set of correlation functions, F(w,L), defined as the ratio between St and the dose at half thickness, Dm, measured in solid water phantoms of different thicknesses, w and with square fields of side L, (ii) a set of factors, f(d,L), that take into account the different X-ray scatter contribution from the phantom to the St signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, Diso, for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was tested with cylindrical and anthropomorphic phantoms and the results show that the reconstructed Diso values can be obtained with an accuracy within ±2.5% in cylindrical phantom and within ±3.4% for anthropomorphic phantom. In conclusion, the transit dosimetry by EPID was assessed to be adequate to perform DCAT in vivo dosimetry, that is not realizable with the other traditional techniques. Moreover, the method proposed here could be implemented to supply in vivo dose values in real time.

  11. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.

  12. Radiatively driven winds from magnetic, fast-rotating stars

    NASA Technical Reports Server (NTRS)

    Nerney, S.

    1986-01-01

    An analytical procedure is developed to solve the magnetohydrodynamic equations for the stellar wind problem in the strong-magnetic field, optically thick limit for hot stars. The slow-mode, Alfven, and fast-mode critical points are modified by the radiation terms in the force equation but in a manner that can be treated relatively easily. Once the velocities at the critical points and the distances to the points are known, the streamline constants are determined in a straight-forward manner. This allows the structure of the wind to be elucidated without recourse to complicated computational schemes.

  13. Asymptotically flat radiative space-times with boost-rotation symmetry: The general structure

    SciTech Connect

    Biicak, J.; Schmidt, B. )

    1989-09-15

    This paper deals for the first time with boost-rotation-symmetric space-times from a unified point of view. Boost-rotation-symmetric space-times are the only explicitly known exact solutions of the Einstein vacuum field equations which describe moving singularities or black holes, are radiative and asymptotically flat in the sense that they admit global, though not complete, smooth null infinity, as well as spacelike and timelike infinities. They very likely represent the exterior fields of uniformly accelerated sources in general relativity and may serve as tests of various approximation methods, as nontrivial illustrations of the theory of the asymptotic structure of radiative space-times, and as test beds in numerical relativity. Examples are the {ital C}-metric or the solutions of Bonnor and Swaminarayan. The space-times are defined in a geometrical manner and their global properties are studied in detail, in particular their asymptotic structure. It is demonstrated how one can construct any asymptotically flat boost-rotation-symmetric space-time starting from the boost-rotation-symmetric solution of the flat-space wave equation. The problem of uniformly accelerated sources in special relativity is also discussed. The radiative properties and specific examples of the boost-rotation-symmetric space-times will be analyzed in a following paper.

  14. Numerical study of thermal radiation and thermophoresis on peristalsis with rotational aspects

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Zahir, H.; Alsaedi, A.; Ahmad, B.

    The present work concentrates for the impact of thermal radiation on peristaltic transport of viscous fluid in a rotating channel. Both fluid and channel are in a state of rigid body rotation. The influences of thermophoresis and chemical reaction are taken into account. Convective conditions for heat and mass transfer in the formulation are adopted. In addition, the non-uniform heat source/sink effect is included in heat transfer analysis. Exact solutions for stream function and temperature are obtained. Numerical solution for concentration of the developed mathematical model are obtained by considering low Reynolds number and long wavelength. The effects of emerging physical parameters are analyzed through graphical illustrations. It is found that the influence of thermophoretic and thermal radiation parameters on the temperature and concentration are quite opposite. Further heat transfer coefficient decays when rotation is increased.

  15. The radiative zone of the Sun and the tachocline: stability of baroclinic patterns of differential rotation

    NASA Astrophysics Data System (ADS)

    Caleo, Andrea; Balbus, Steven A.

    2016-04-01

    Barotropic rotation and radiative equilibrium are mutually incompatible in stars. The issue is often addressed by allowing for a meridional circulation, but this is not devoid of theoretical complications. Models of rotation in the Sun which maintain strict radiative equilibrium, making use of the observation that the Sun is not in a state of barotropic rotation, have recently been suggested. To investigate the dynamical behaviour of these solutions, we study the local stability of stratified, weakly magnetized, differentially rotating fluids to non-axisymmetric perturbations. Finite heat conductivity, kinematic viscosity, and resistivity are present. The evolution of local embedded perturbations is governed by a set of coupled, ordinary differential equations with time-dependent coefficients. Two baroclinic models of rotation for the upper radiative zone and tachocline are studied: (i) an interpolation based on helioseismology data, (ii) a theoretical solution directly compatible with radiative equilibrium. The growth of the local Goldreich-Schubert-Fricke instability appears to be suppressed, largely because of the viscosity. An extensive exploration of wavenumber space is carried out, with and without a magnetic field. Although we easily find classical local instabilities when they ought formally to be present, for the Sun the analysis reveals neither unstable solutions, nor even solutions featuring a large transient growth. We have not ruled out larger scale or non-linear instabilities, nor have we rigorously proven local stability. But rotational configurations in close agreement with observations, generally thought to be vulnerable to the classic local Goldreich-Schubert-Fricke instability, do appear to be locally stable under rather general circumstances.

  16. Effect of rotation on Jeans instability of magnetized radiative quantum plasma

    NASA Astrophysics Data System (ADS)

    Joshi, H.; Pensia, R. K.

    2017-03-01

    The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.

  17. Assessing the Value of an Optional Radiation Oncology Clinical Rotation During the Core Clerkships in Medical School

    SciTech Connect

    Zaorsky, Nicholas G.; Malatesta, Theresa M.; Den, Robert B.; Wuthrick, Evan; Ahn, Peter H.; Werner-Wasik, Maria; Shi, Wenyin; Dicker, Adam P.; Anne, P. Rani; Bar-Ad, Voichita; Showalter, Timothy N.

    2012-07-15

    Purpose: Few medical students are given proper clinical training in oncology, much less radiation oncology. We attempted to assess the value of adding a radiation oncology clinical rotation to the medical school curriculum. Methods and Materials: In July 2010, Jefferson Medical College began to offer a 3-week radiation oncology rotation as an elective course for third-year medical students during the core surgical clerkship. During 2010 to 2012, 52 medical students chose to enroll in this rotation. The rotation included outpatient clinics, inpatient consults, didactic sessions, and case-based presentations by the students. Tests of students' knowledge of radiation oncology were administered anonymously before and after the rotation to evaluate the educational effectiveness of the rotation. Students and radiation oncology faculty were given surveys to assess feedback about the rotation. Results: The students' prerotation test scores had an average of 64% (95% confidence interval [CI], 61-66%). The postrotation test scores improved to an average of 82% (95% CI, 80-83%; 18% absolute improvement). In examination question analysis, scores improved in clinical oncology from 63% to 79%, in radiobiology from 70% to 77%, and in medical physics from 62% to 88%. Improvements in all sections but radiobiology were statistically significant. Students rated the usefulness of the rotation as 8.1 (scale 1-9; 95% CI, 7.3-9.0), their understanding of radiation oncology as a result of the rotation as 8.8 (95% CI, 8.5-9.1), and their recommendation of the rotation to a classmate as 8.2 (95% CI, 7.6-9.0). Conclusions: Integrating a radiation oncology clinical rotation into the medical school curriculum improves student knowledge of radiation oncology, including aspects of clinical oncology, radiobiology, and medical physics. The rotation is appreciated by both students and faculty.

  18. Implementation of a volumetric modulated arc therapy treatment planning solution for kidney and adrenal stereotactic body radiation therapy.

    PubMed

    Sonier, Marcus; Chu, William; Lalani, Nafisha; Erler, Darby; Cheung, Patrick; Korol, Renee

    2016-01-01

    To develop a volumetric modulated arc therapy (VMAT) treatment planning solution in the treatment of primary renal cell carcinoma and oligometastatic adrenal lesions with stereotactic body radiation therapy. Single-arc VMAT plans (n = 5) were compared with clinically delivered step-and-shoot intensity-modulated radiotherapy (IMRT) with planning target volume coverage normalized between techniques. Target volume conformity, organ-at-risk (OAR) dose, treatment time, and monitor units were compared. A VMAT planning solution, created from a combination of arc settings and optimization constraints, auto-generated treatment plans in a single optimization. The treatment planning solution was evaluated on 15 consecutive patients receiving kidney and adrenal stereotactic body radiation therapy. Treatment time was reduced from 13.0 ± 2.6 to 4.0 ± 0.9 minutes for IMRT and VMAT, respectively. The VMAT planning solution generated treatment plans with increased target homogeneity, improved 95% conformity index, and a reduced maximum point dose to nearby OARs but with increased intermediate dose to distant OARs. The conformity of the 95% isodose improved from 1.32 ± 0.39 to 1.12 ± 0.05 for IMRT and VMAT treatment plans, respectively. Evaluation of the planning solution showed clinically acceptable dose distributions for 13 of 15 cases with tight conformity of the prescription isodose to the planning target volume of 1.07 ± 0.04, delivering minimal dose to OARs. The introduction of a stereotactic body radiation therapy VMAT treatment planning solution improves the efficiency of planning and delivery time, producing treatment plans of comparable or superior quality to IMRT in the case of primary renal cell carcinoma and oligometastatic adrenal lesions.

  19. Reducing the low-dose lung radiation for central lung tumors by restricting the IMRT beams and arc arrangement

    SciTech Connect

    Rosca, Florin

    2012-10-01

    To compare the extent to which 7 different radiotherapy planning techniques for mediastinal lung targets reduces the lung volume receiving low doses of radiation. Thirteen non-small cell lung cancer patients with targets, including the mediastinal nodes, were identified. Treatment plans were generated to both 60- and 74-Gy prescription doses using 7 different planning techniques: conformal, hybrid conformal/intensity-modulated radiation treatment (IMRT), 7 equidistant IMRT beams, 2 restricted beam IMRT plans, a full (360 Degree-Sign ) modulated arc, and a restricted modulated arc plan. All plans were optimized to reduce total lung V5, V10, and V20 volumes, while meeting normal tissue and target coverage constraints. The mean values for the 13 patients are calculated for V5, V10, V20, V{sub ave}, V0-20, and mean lung dose (MLD) lung parameters. For the 74-Gy prescription dose, the mean lung V10 was 42.7, 43.6, 48.2, 56.6, 57, 55.8, and 54.1% for the restricted {+-}36 Degree-Sign IMRT, restricted modulated arc, restricted {+-}45 Degree-Sign IMRT, full modulated arc, hybrid conformal/IMRT, equidistant IMRT, and conformal plans, respectively. A similar lung sparing hierarchy was found for the 60-Gy prescription dose. For the treatment of central lung targets, the {+-}36 Degree-Sign restricted IMRT and restricted modulated arc planning techniques are superior in lowering the lung volume treated to low dose, as well as in minimizing MLD, followed by the {+-}45 Degree-Sign restricted IMRT plan. All planning techniques that allow the use of lateral or lateral/oblique beams result in spreading the low dose over a higher lung volume. The area under the lung dose-volume histogram curve below 20 Gy, V0-20, is proposed as an alternative to individual V{sub dose} parameters, both as a measure of lung sparing and as a parameter to be minimized during IMRT optimization.

  20. Coherent Synchrotron Radiation for Rotational Spectroscopy: Application to the Rotational Spectrum of Propynal in the 200-750 GHz Range

    NASA Astrophysics Data System (ADS)

    Barros, J.; Roy, P.; Appadoo, D.; Naughton, D. Mc; Robertson, E.; Manceron, L.

    2013-06-01

    In storage rings, short electron bunches can produce an intense THz radiation called Coherent Synchrotron Radiation (CSR). The flux of this emission between 250 and 750 GHz (in the mW range, up the 10000 times the regular synchrotron emission) is very advantageous for broad band absorption spectroscopy, using interferometric techniques. This source is, however, inherently difficult to stabilize, and intensity fluctuations lead to artifacts on the FT-based measurements, which strongly limit the use of CSR in particular for high-resolution measurements. At SOLEIL however, by screening different currents and bunch lengths, we defined stable CSR conditions for which the signal-to-noise ratio (S/N) allows for measurements at high resolution. Moreover, we developed an artifact correction system, based on a simultaneous detection of the input and the output signals of the interferometer, which allows to further improve the S/N. For this purpose, the optics and electronics of two bolometers were matched. The stable CSR combined with this ingenious technique allowed us to record for the first time high-resolution FT spectra in the sub-THz range, with a S/N of 100 in a few hours. This enables many applications such as broadband rotational spectra in the THz range, studies of molecules with low frequency torsional modes, absolute intensities determinations, or studies of unstable species. Results obtained on Propynal illustrate these possibilities and enabled to improve significantly the ground state spectroscopic constants.

  1. Hawking Radiation via Damour-Ruffini Method in Squashed Charged Rotating Kaluza-Klein Black Holes

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Wan; Wu, Jing-He; Liu, Xian-Ming

    2016-12-01

    Using the Damour-Ruffini method, Hawking radiation of charged particles from squashed charged rotating five-dimensional Kaluza-Klein black holes is investigated extensively. Under the generalized tortoise coordinate transformation, Hawking temperature of the black holes is calculated by using charged scalar particles and Dirac fermions respectively. We find that the obtained Hawking temperature for charged Dirac fermions is the same as for charged scalar particles. What's more, the spectrum of Hawking radiation contains the information of the size of the extra dimension, which could provide insight for further investigation of large extra dimensions in the future.

  2. Hawking Radiation via Damour-Ruffini Method in Squashed Charged Rotating Kaluza-Klein Black Holes

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Wan; Wu, Jing-He; Liu, Xian-Ming

    2017-02-01

    Using the Damour-Ruffini method, Hawking radiation of charged particles from squashed charged rotating five-dimensional Kaluza-Klein black holes is investigated extensively. Under the generalized tortoise coordinate transformation, Hawking temperature of the black holes is calculated by using charged scalar particles and Dirac fermions respectively. We find that the obtained Hawking temperature for charged Dirac fermions is the same as for charged scalar particles. What's more, the spectrum of Hawking radiation contains the information of the size of the extra dimension, which could provide insight for further investigation of large extra dimensions in the future.

  3. Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes

    SciTech Connect

    Wu Shuangqing; Peng Junjin

    2011-02-15

    We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planck distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.

  4. Evaluation of the trade-offs encountered in planning and treating locally advanced head and neck cancer: intensity-modulated radiation therapy vs dual-arc volumetric-modulated arc therapy

    PubMed Central

    Oliver, M; McConnell, D; Romani, M; McAllister, A; Pearce, A; Andronowski, A; Wang, X; Leszczynski, K

    2012-01-01

    Objective The primary purpose of this study was to assess the practical trade-offs between intensity-modulated radiation therapy (IMRT) and dual-arc volumetric-modulated arc therapy (DA-VMAT) for locally advanced head and neck cancer (HNC). Methods For 15 locally advanced HNC data sets, nine-field step-and-shoot IMRT plans and two full-rotation DA-VMAT treatment plans were created in the Pinnacle3 v. 9.0 (Philips Medical Systems, Fitchburg, WI) treatment planning environment and then delivered on a Clinac iX (Varian Medical Systems, Palo Alto, CA) to a cylindrical detector array. The treatment planning goals were organised into four groups based on their importance: (1) spinal cord, brainstem, optical structures; (2) planning target volumes; (3) parotids, mandible, larynx and brachial plexus; and (4) normal tissues. Results Compared with IMRT, DA-VMAT plans were of equal plan quality (p>0.05 for each group), able to be delivered in a shorter time (3.1 min vs 8.3 min, p<0.0001), delivered fewer monitor units (on average 28% fewer, p<0.0001) and produced similar delivery accuracy (p>0.05 at γ2%/2mm and γ3%/3mm). However, the VMAT plans took more planning time (28.9 min vs 7.7 min per cycle, p<0.0001) and required more data for a three-dimensional dose (20 times more, p<0.0001). Conclusions Nine-field step-and-shoot IMRT and DA-VMAT are both capable of meeting the majority of planning goals for locally advanced HNC. The main trade-offs between the techniques are shorter treatment time for DA-VMAT but longer planning time and the additional resources required for implementation of a new technology. Based on this study, our clinic has incorporated DA-VMAT for locally advanced HNC. Advances in knowledge DA-VMAT is a suitable alternative to IMRT for locally advanced HNC. PMID:22806619

  5. SU-E-T-62: Cardiac Toxicity in Dynamic Conformal Arc Therapy, Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy of Lung Cancers

    SciTech Connect

    Ming, X; Zhang, Y; Feng, Y; Zhou, L; Deng, J

    2014-06-01

    Purpose: The cardiac toxicity for lung cancer patients, each treated with dynamic conformal arc therapy (DAT), intensity-modulated radiation therapy (IMRT), or volumetric modulated arc therapy (VMAT) is investigated. Methods: 120 lung patients were selected for this study: 25 treated with DAT, 50 with IMRT and 45 with VMAT. For comparison, all plans were generated in the same treatment planning system, normalized such that the 100% isodose lines encompassed 95% of planning target volume. The plan quality was evaluated in terms of homogeneity index (HI) and 95% conformity index (%95 CI) for target dose coverage and mean dose, maximum dose, V{sub 30} Gy as well as V{sub 5} Gy for cardiac toxicity analysis. Results: When all the plans were analyzed, the VMAT plans offered the best target coverage with 95% CI = 0.992 and HI = 1.23. The DAT plans provided the best heart sparing with mean heart dose = 2.3Gy and maximum dose = 11.6Gy, as compared to 5.7 Gy and 31.1 Gy by IMRT as well as 4.6 Gy and 30.9 Gy by VMAT. The mean V30Gy and V5Gy of the heart in the DAT plans were up to 11.7% lower in comparison to the IMRT and VMAT plans. When the tumor volume was considered, the VMAT plans spared up to 70.9% more doses to the heart when the equivalent diameter of the tumor was larger than 4cm. Yet the maximum dose to the heart was reduced the most in the DAT plans with up to 139.8% less than that of the other two plans. Conclusion: Overall, the VMAT plans achieved the best target coverage among the three treatment modalities, and would spare the heart the most for the larger tumors. The DAT plans appeared advantageous in delivering the least maximum dose to the heart as compared to the IMRT and VMAT plans.

  6. SU-E-T-39: Analyses of Plan Quality Using Different Gantry Rotation Time On Volumetric Modulated Arc Therapy in Rectal Carcinoma

    SciTech Connect

    Chi, Z; Li, R; Qiu, R; Cao, Y; Han, C

    2014-06-01

    Purpose: To compare plan quality of volumetric modulated arc radiotherapy (VMAT) using different gantry rotation times. Methods: In ten rectal carcinoma patients, plans with different gantry rotation times were designed by Oncentra4.3 planning system, each of them was optimized by experienced planners using almost similar parameters and dose constraints except the different gantry rotation time. The gantry rotation time was increased from 30s to 150s by step of 30(30s, 60s, 90s, 120s, and 150s). Plans (VMAT30s, VMAT60s, VMAT90s, VMAT120s and VMAT150s) were normalized so that at least 95% of PTV would receive the prescription dose 50 Gray in 25 fractions. Dose-volume histograms and isodose distributions were evaluated. Conformity indices (CI), homogeneous indices (HI), monitor units (MUs), delivery time were also compared. Results: As the increasing of gantry rotation time, VMAT150s provided comparable organs at risk sparing and better target coverage and conformity than VMAT30s. In the normal tissue such as bladder and femurs, the VMAT plans show almost the same V30 and Dmean for them compared with IMRT plans, meanwhile the conformity indices (CI) was better than IMRT plans(p=0.021). However, there was no significant different among the VMAT60s, VMAT90s, VMAT120s and VMAT150s (p=0.054). VMAT150s increased delivery time and monitor units in plans without improving plan quality compared to VMAT60s, VMAT90s and VMAT120s. Conclusion: VMAT60s, VMAT90s, VMAT120s and VMAT150s achieved comparable treatment plans in rectal carcinoma. Slower gantry movement in VMAT150s only improves slight improvement than the others.

  7. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones

    2004-05-01

    The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.

  8. Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon

    DTIC Science & Technology

    2013-06-01

    chemistry used in non-equilibrium modelling of free-burning arc in argon. A simple chemistry model based on the approximation of prompt ionization, a...highlight of the model was the unified description of the whole plasma domain avoiding the division into sub-domains in which different models were used ...description. Therefore, the present work is aimed at the analysis of the plasma chemistry in a way that the model enables a deeper look into the polulations

  9. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180° continuous arc proton therapy and for 180° split arc proton therapy (two 90° arcs) using CT# profiles from the Pinnacle™ (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic

  10. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    NASA Technical Reports Server (NTRS)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  11. Emittance of RSI Coatings Determined from Radiation Measurements in Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Wakefield, R. M.; Stewart, D. A.

    1973-01-01

    Simultaneous measurements were made on three surface insulation coatings for total surface radiation and radiation at discrete wavelengths between 0.88 and 4.5 microns. The mullite coating radiated all the applied heat at convective heat rates of 204 and 295 kw/sq m. Radiation from the ceramic mullite fiber coating was 170 kw/sq m at a heat rate of 454 kw/sq m. Effective total emissivity and spectral emissivity values were evaluated; all three coatings were significantly non-grey. Effective total emissivity values were 0.79 for mullite, 0.50 for ceramic mullite fiber, and 0.78 for silica composite.

  12. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  13. On the rotational stability of nonspherical particles driven by the radiation torque

    NASA Astrophysics Data System (ADS)

    Borghese, Ferdinando; Denti, Paolo; Saija, Rosalba; Iati, Maria Antonia

    2007-07-01

    We calculate the radiation torque exerted by a monochromatic plane wave, either unpolarized or linearly polarized, on aggregates of spheres and investigate the stability of the resulting rotational motion. In fact, neglecting any braking momenta we calculate the component of the electromagnetic torque orthogonal to the principal axis of maximum moment of inertia through the center of mass (transverse torque), as a function of the direction of propagation of the incident field. The aggregates we study are composed of homogeneous spheres, possibly of different materials. The electromagnetic torque is calculated through the transition matrix approach along the lines of the theory reported in our recent paper [F. Borghese, P. Denti, R. Saija and M. A. Iatı, Opt. Express 14, 9508 (2006)]. When the transverse component of the electromagnetic torque is small or vanishes the rotational motion driven by the component along the principal axis of inertia may be nearly stable.

  14. An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)

    SciTech Connect

    Shen, Jin; Bender, Edward; Yaparpalvi, Ravindra; Kuo, Hsiang-Chi; Basavatia, Amar; Hong, Linda; Bodner, William; Garg, Madhur K.; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm{sup 3} ± 1.0 cm{sup 3} and 28.52 cm{sup 3} ± 3.22 cm{sup 3}, respectively. For the PTV, the average values of D{sub 2%} and D{sub 98%} were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D{sub 100%} mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met.

  15. Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer

    SciTech Connect

    Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.; Yoo, David S.; Yin, Fang-Fang; Cai, Jing

    2014-04-01

    To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {sub cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.

  16. Core Collapse Supernovae Using CHIMERA: Gravitational Radiation from Non-Rotating Progenitors

    SciTech Connect

    Yakunin, Konstantin; Marronetti, Pedro; Mezzacappa, Anthony; Bruenn, S. W.; Lee, Ching-Tsai; Chertkow, Merek A; Hix, William Raphael; Blondin, J. M.; Lentz, Eric J; Messer, Bronson; Yoshida, S.

    2011-01-01

    The CHIMERA code is a multi-dimensional multi-physics engine dedicated primarily to the simulation of core collapse supernova explosions. One of the most important aspects of these explosions is their capacity to produce gravitational radiation that is detectable by earth-based laser-interferometric gravitational wave observatories such as LIGO and VIRGO. We present here preliminary gravitational signatures of two-dimensional models with non-rotating progenitors. These simulations exhibit explosions, which are followed for more than half a second after stellar core bounce.

  17. Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy, and intensity-modulated radiation therapy for left-sided early breast cancer

    SciTech Connect

    Lin, Jia-Fu; Yeh, Dah-Cherng; Yeh, Hui-Ling; Chang, Chen-Fa; Lin, Jin-Ching

    2015-10-01

    To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results in dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.

  18. Intensity-modulated arc therapy to improve radiation dose delivery in the treatment of abdominal neuroblastoma.

    PubMed

    Gains, Jennifer E; Stacey, Christopher; Rosenberg, Ivan; Mandeville, Henry C; Chang, Yen-Ch'ing; D'Souza, Derek; Moroz, Veronica; Wheatley, Keith; Gaze, Mark N

    2013-03-01

    The standard European radiotherapy technique for children with neuroblastoma is a conventional parallel opposed pair. This frequently results in compromise on planning target volume coverage to stay within normal tissue tolerances. This study investigates the use of an intensity-modulated arc therapy (IMAT) technique to improve dose distribution and allow better protocol compliance. Among 20 previously treated patients, ten had received the full prescribed dose with conventional planning (protocol compliant) and ten had a compromise on planning target volume coverage (protocol noncompliant). All patients were replanned with IMAT. Dosimetric parameters of the conventional radiotherapy and IMAT were compared. The dose received by 98% of the planning target volume, homogeneity and conformity indices were all improved with IMAT (p < 0.001). IMAT would have enabled delivery of the full protocol dose in eight out of ten protocol-noncompliant patients. IMAT may improve outcomes through improved protocol compliance and better dose distributions.

  19. Orogen-Parallel and -Normal Extension at the Dinarides-Hellenides Junction during Clockwise Rotation and Radial Expansion of the Retreating Hellenic Arc-Trench System

    NASA Astrophysics Data System (ADS)

    Handy, M.; Fügenschuh, B.; Giese, J.; Le Breton, E.; Muceku, B.; Onuzi, K.; Pleuger, J.; Schmid, S. M.; Ustaszewski, K. M.

    2015-12-01

    Normal faults at the junction of the Dinarides and Hellenides in northern Albania trend both perpendicular and parallel to thrusts and fold axes. Most prominent is the SSE-dipping Skutari-Pec Normal Fault (SPNF), one of a system of normal faults that accommodate NW-SE-directed, orogen-parallel extension. Extensional throw along the SPNF increases from zero in northwestern Albania to at least 2 km near the Albania-Kosovo border, near where the brittle arm of the SPNF bounds the Mio-Pliocene Kosovo Basin. This differential orogen-parallel extension along the SPNF defines a vertical rotational axis in northwestern Albania that is interpreted to have accommodated 20-30° of clockwise motion of internal units on the southeastern (Hellenic) side of the fault with respect to the northwestern (Dinaric) side. Such rotation is in agreement with previously published paleomagnetic data and plate motion studies. The footwall of the SPNF exposes lower units of the Dinaric nappe stack that underwent vertical shortening and non-coaxial shearing during extensional exhumation. In the hangingwall of the SPNF, a system of orogen-parallel trending normal faults accommodate orogen-normal displacement of up to several km. Both orogen-parallel and -perpendicular systems of normal faults cut Late Cretaceous to Oligocene thrusts and folds, and are associated with pronounced Miocene paleo-relief. Most of this normal faulting is Miocene to Pliocene based on syn-extensional deposits in the Kosovo Basins and on thermal modelling of ZHe, AFT and AHe data, which suggest accelerated cooling at 18 Ma and between 4-6 Ma. Both fault systems also cut Holocene deposits, indicating ongoing extension. This corroborates published GPS data and earthquake focal mechanisms indicating active extension of the crust south and southeast of the SPNF. It is proposed that extension and clockwise rotation in this area were coeval and accommodated southwestward retreat and radial expansion of the Hellenic arc during

  20. SU-E-J-259: Quantification of Rotational Localization Offset in Radiation Therapy

    SciTech Connect

    Huang, Y; Nguyen, N; Lee, S; Liu, F

    2014-06-01

    Purpose: To verify the necessity of 6D localization detection and correction in radiation therapy. Methods: An anthropomorphic head and neck phantom was used to test the BrainLab ExacTrac x-ray imaging system. After initial positioning, both ExacTrac and the on-board kV CBCT were used to detect the offset at the same position, using both manual and automatic registration algorithms. Then 6D offset including rotational errors up to 5 degree were introduced. Both ExacTrac and CBCT were used to correct the offsets and the residual errors were evaluated. Finally, 6D offset detected by ExacTrac for a C-Spine patient was reported. Results: The differences in 3D offset detected by ExacTrac and CBCT were 1.5 ± 1.2(Lateral), 2.7 ± 2.7(Vertical), and 4.0 ± 6.3(longitudinal) mm with manual registration while the corresponding differences decreased to 0.6 ± 0.3, 1.0 ± 0.3, and 0.3 ± 0.3 when automatic registration were used. CBCT corrected the translational offset to within 0.5 mm but the rotational errors remained and detected by the ExacTrac system (Yaw=2.1, Roll=1.1, Pitch=1.4 degree). When similar offset was introduced and corrected using ExacTrac, the residual error detected by both CBCT and ExacTrac were within 0.5 mm / 0.5 degree. The average offset from the 112 ExacTrac x-ray corrections for the C-Spine patient was 0.6 ± 1.6 (lateral), 5.4 ± 8(vertical), 1.6±1.1(longitudinal) mm, and 0.7 ± 0.6 (pitch), 0.7 ± 0.4(roll), 1.2 ± 0.7 (yaw) degree. Larger rotational errors, with a maximum of 2.7 degree (corresponds to about 1.5 to 4.5 mm offset for a POI 10 to 30 cm away from the isocenter), were observed when couch rotational were involved. Conclusion: Rotational errors are common in patient localization, especially when couch rotation is involved. Both appropriate imaging system and 6D robotic couch are necessary to detect and correct the rotational localization errors.

  1. Reduced forms of the Wigner distribution function for the numerical analysis of rotationally symmetric synchrotron radiation.

    PubMed

    Gasbarro, Andrew; Bazarov, Ivan

    2014-03-01

    In an effort to provide a computationally convenient approach to the characterization of partially coherent synchrotron radiation in phase space, a thorough discussion of the minimum dimensionality of the Wigner distribution function for rotationally symmetric sources of arbitrary degrees of coherence is presented. It is found that perfectly coherent, perfectly incoherent and partially coherent sources may all be characterized by a three-dimensional reduced Wigner distribution function, and some special cases are discussed in which a two-dimensional reduced Wigner distribution function suffices. An application of the dimension-reducing formalism to the case of partially coherent radiation from a planar undulator and a circularly symmetric electron beam as can be found in linear accelerators is demonstrated. The photon distribution is convolved over a realistic electron bunch, and how the beta function, emittance and energy spread of the bunch affect the total degree of coherence of the radiation is inspected. Finally the cross spectral density is diagonalized and the eigenmodes of the partially coherent radiation are recovered.

  2. Comparative dosimetry of volumetric modulated arc therapy and limited-angle static intensity-modulated radiation therapy for early-stage larynx cancer

    SciTech Connect

    Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L.

    2013-04-01

    To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed as low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.

  3. Instability of magnetized and differentially rotating stellar radiation zones with high magnetic Mach number

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Schultz, M.; Kitchatinov, L. L.

    2016-03-01

    With applications to inner solar-type radiative zones, a linear theory is used to analyse the instability of a toroidal background field of dipolar parity, in the presence of density stratification, differential rotation and realistically small Prandtl numbers. The physical parameters are the Alfvén frequency ΩA, the global rotation rate Ω and the buoyancy frequency N with ΩA < Ω < N. Only the solutions for the wavelengths with the maximal growth rates are considered. If these scales are combined to estimate radial velocities, one finds that it hardly depends on the latitudinal shear and the magnetic Mach number. In the formulation of Schatzman the radial mixing of chemicals can be estimated as Re* = O(100) which indeed is necessary to dissipate the lithium in the solar tachocline with a time-scale of 1 Gyr. The calculated growth rates indicate a destabilization of the system for growing latitudinal shear except for small Mach numbers and antisolar shear. The ratio ε of the magnetic and the kinetic energy of the instability pattern only slightly depends on the shear but a strong dependence on the magnetic Mach number exists with ε ∝ Mm2. The effective magnetic Prandtl number reaches values O(103) so that for the stars with high magnetic Mach number the differential rotation decays much faster than the toroidal background field.

  4. Dosimetric and radiobiological comparison of Forward Tangent Intensity Modulated Radiation Therapy (FT-IMRT) and Volumetric Modulated Arc Therapy (VMAT) for early stage whole breast cancer

    NASA Astrophysics Data System (ADS)

    Moshiri Sedeh, Nader

    Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed.

  5. Computer simulations of processes in solid-state laser radiators and amplifiers with phototube pumping: Electric-discharge pumping sources. Arc discharges

    NASA Astrophysics Data System (ADS)

    Gradov, V. M.; Mak, A. A.; Kromskiy, G. I.; Sklizkov, G. V.; Fedotov, S. I.; Shcherbakov, A. A.

    1986-03-01

    Problems of modeling and computer simulation are analyzed in reference to the design of solid state laser devices with glow tube pumping. Electric pulse and arc discharges are considered specifically. A model was constructed for a cylindrically symmetric column in the diffusion approximation with the correspoinding system of differential equations put in a form for most efficient and accurate simulation of the processes. For most economical use of the computer, the radiation spectrum is optimally subdivided into intervals. It is necessary to validate the assumption of a plasma in the state of local thermodynamic equilibrium by first accounting for and then discounting the various factors which disturb that equilibrium, namely emission of radiation and temperature gradients, as well as diffusion of charged particles toward the walls. In the case of arc discharge, a theory and a model are constructed for determining the electrophysical characteristics and the radiation characteristics of such discharge in inert gases and in vapors of alkali metals.

  6. Measurement and analysis of nitric oxide radiation in an arc-jet flow

    NASA Technical Reports Server (NTRS)

    Babikian, Dikran S.; Gopaul, Nigel K. J. M.; Park, Chul

    1993-01-01

    On the bases of the centerline enthalpy value deduced from heat transfer measurements and the NOZNT code, it is possible to predict the freestream conditions in an arcjet wind tunnel flow. The translational-rotational and vibrational temperature of NO is nearly reproducible by NOZNT. Relative to the electron and electronic temperatures, the vibrational temperature of N2 and NO are significantly lower at enthalpies of less than 45 MJ/kg. The enthalpy deduced from spectroscopic measurements is in rough agreement with that deduced from heat transfer measurements.

  7. Direct plan comparison of RapidArc and CyberKnife for spine stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Choi, Young Eun; Kwak, Jungwon; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Cho, Byungchul

    2015-07-01

    We compared the treatment planning performance of RapidArc (RA) vs. CyberKnife (CK) for spinal stereotactic body radiation therapy (SBRT). Ten patients with spinal lesions who had been treated with CK were re-planned with RA, which consisted of two complete arcs. Computed tomography (CT) and volumetric dose data of CK, generated using the Multiplan (Accuray) treatment planning system (TPS) and the Ray-trace algorithm, were imported to Varian Eclipse TPS in Dicom format, and the data were compared with the RA plan by using an analytical anisotropic algorithm (AAA) dose calculation. The optimized dose priorities for both the CK and the RA plans were similar for all patients. The highest priority was to provide enough dose coverage to the planned target volume (PTV) while limiting the maximum dose to the spinal cord. Plan quality was evaluated with respect to PTV coverage, conformity index (CI), high-dose spillage, intermediate-dose spillage (R50% and D2cm), and maximum dose to the spinal cord, which are criteria recommended by the RTOG 0631 spine and 0915 lung SBRT protocols. The mean CI' SD values of the PTV were 1.11' 0.03 and 1.17' 0.10 for RA and CK ( p = 0.02), respectively. On average, the maximum dose delivered to the spinal cord in CK plans was approximately 11.6% higher than that in RA plans, and this difference was statistically significant ( p < 0.001). High-dose spillages were 0.86% and 2.26% for RA and CK ( p = 0.203), respectively. Intermediate-dose spillage characterized by D2cm was lower for RA than for CK; however, R50% was not statistically different. Even though both systems can create highly conformal volumetric dose distributions, the current study shows that RA demonstrates lower high- and intermediate-dose spillages than CK. Therefore, RA plans for spinal SBRT may be superior to CK plans.

  8. Critical Appraisal of Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Metastases to Abdominal Lymph Nodes

    SciTech Connect

    Bignardi, Mario; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Mancosu, Pietro; Navarria, Piera; Urso, Gaetano; Vigorito, Sabrina; Scorsetti, Marta

    2009-12-01

    Purpose: A planning study was performed comparing volumetric modulated arcs, RapidArc (RA), fixed beam IMRT (IM), and conformal radiotherapy (CRT) with multiple static fields or short conformal arcs in a series of patients treated with hypofractionated stereotactic body radiation therapy (SBRT) for solitary or oligo-metastases from different tumors to abdominal lymph nodes. Methods and Materials: Fourteen patients were included in the study. Dose prescription was set to 45 Gy (mean dose to clinical target volume [CTV]) in six fractions of 7.5 Gy. Objectives for CTV and planning target volume (PTV) were as follows: Dose{sub min} >95%, Dose{sub max} <107%. For organs at risk the following objectives were used: Maximum dose to spine <18 Gy; V{sub 15Gy} <35% for both kidneys, V{sub 36Gy} <1% for duodenum, V{sub 36Gy} <3% for stomach and small bowel, V{sub 15Gy} <(total liver volume - 700 cm{sup 3}) for liver. Dose-volume histograms were evaluated to assess plan quality. Results: Planning objectives on CTV and PTV were achieved by all techniques. Use of RA improved PTV coverage (V{sub 95%} = 90.2% +- 5.2% for RA compared with 82.5% +- 9.6% and 84.5% +- 8.2% for CRT and IM, respectively). Most planning objectives for organs at risk were met by all techniques except for the duodenum, small bowel, and stomach, in which the CRT plans exceeded the dose/volume constraints in some patients. The MU/fraction values were as follows: 2186 +- 211 for RA, 2583 +- 699 for IM, and 1554 +- 153 for CRT. Effective treatment time resulted as follows: 3.7 +- 0.4 min for RA, 10.6 +- 1.2 min for IM, and 6.3 +- 0.5 min for CRT. Conclusions: Delivery of SBRT by RA showed improvements in conformal avoidance with respect to standard conformal irradiation. Delivery parameters confirmed logistical advantages of RA, particularly compared with IM.

  9. Potential for Improved Intelligence Quotient Using Volumetric Modulated Arc Therapy Compared With Conventional 3-Dimensional Conformal Radiation for Whole-Ventricular Radiation in Children

    SciTech Connect

    Qi, X. Sharon; Stinauer, Michelle; Rogers, Brion; Madden, Jennifer R.; Wilkening, Greta N.; Liu, Arthur K.

    2012-12-01

    Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobe sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.

  10. High-RRR thin-films of NB produced using energetic condensation from a coaxial, rotating vacuum ARC plasma (CEDTM)

    SciTech Connect

    Enrique Francisco Valderrama, Colt James, Mahadevan Krishnan, Xin Zhao, Larry Phillips, Charles Reece, Kang Seo

    2012-07-01

    We have recently demonstrated unprecedentedly high values of RRR (up to 542) in thin-films of pure Nb deposited on a-plane sapphire and MgO crystal substrates. The Nb films were grown using a vacuum arc discharge struck between a reactor grade Nb cathode rod (RRR {approx} 30) and a coaxial, semi-transparent Mo mesh anode, with a heated substrate placed just outside it. The substrates were pre-heated for several hours prior to deposition at different temperatures. Low pre-heat temperatures (<300 C) and deposition temperatures (<300 C) give low RRR (<50) films, whereas higher pre-heat (700 C) and coating temperatures (500 C) give RRR=214 on a-sapphire and RRR=542 on MgO. XRD (Bragg-Brentano scans and Pole Figures), EBSD and SIMS data reveal several features: (1) on asapphire, higher temperatures show better 3D registry for epitaxial growth of Nb; the crystal structure evolves from textured, polycrystalline (with twins) to single-crystal; (2) on MgO, there is a transition from {l_brace}110{r_brace} planes to {l_brace}100{r_brace} as the temperature is increased beyond 500 C. The dramatic increase in RRR (from {approx}10 at <300 C to {approx}500 at >600 C) is correlated with better epitaxial crystal structure in both a-sapphire and MgO substrate grown films. However, the SIMS data reveal that the most important requirement for high-RRR Nb films on either substrate is the reduction of impurities in the film, especially hydrogen. The hydrogen content in the MgO grown films is 1000 times lower than in bulk Nb tested as a reference from SRF cavity grade Nb. This result has potential implications for SRF accelerators. Coating bulk Nb cavities with an MgO layer followed by our CEDTM deposited Nb films, might create superior SRF cavities that would avoid Q-slope and operate at higher peak fields.

  11. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    SciTech Connect

    Du, Weiliang; Gao, Song

    2011-08-15

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  12. A treatment-planning comparison of three beam arrangement strategies for stereotactic body radiation therapy for centrally located lung tumors using volumetric-modulated arc therapy

    PubMed Central

    Ishii, Kentaro; Okada, Wataru; Ogino, Ryo; Kubo, Kazuki; Kishimoto, Shun; Nakahara, Ryuta; Kawamorita, Ryu; Ishii, Yoshie; Tada, Takuhito; Nakajima, Toshifumi

    2016-01-01

    The purpose of this study was to determine appropriate beam arrangement for volumetric-modulated arc therapy (VMAT)-based stereotactic body radiation therapy (SBRT) in the treatment of patients with centrally located lung tumors. Fifteen consecutive patients with centrally located lung tumors treated at our institution were enrolled. For each patient, three VMAT plans were generated using two coplanar partial arcs (CP VMAT), two non-coplanar partial arcs (NCP VMAT), and one coplanar full arc (Full VMAT). All plans were designed to deliver 70 Gy in 10 fractions. Target coverage and sparing of organs at risk (OARs) were compared across techniques. PTV coverage was almost identical for all approaches. The whole lung V10Gy was significantly lower with CP VMAT plans than with NCP VMAT plans, whereas no significant differences in the mean lung dose, V5Gy, V20Gy or V40Gy were observed. Full VMAT increased mean contralateral lung V5Gy by 12.57% and 9.15% when compared with NCP VMAT and CP VMAT, respectively. Although NCP VMAT plans best achieved the dose–volume constraints for mediastinal OARs, the absolute differences in dose were small when compared with CP VMAT. These results suggest that partial-arc VMAT may be preferable to minimize unnecessary exposure to the contralateral lung, and use of NCP VMAT should be considered when the dose–volume constraints are not achieved by CP VMAT. PMID:26951076

  13. A Monte Carlo simulation for the radiation imaging technique based on the Hemispherical Rotational Modulation Collimator (H-RMC)

    NASA Astrophysics Data System (ADS)

    Le Bao, V.; Kim, G.

    2017-03-01

    The Rotational Modulation Collimator (RMC) is a simple and versatile tool for the radiation imaging system with low cost, makes it a reasonable selection for locating and tracking nuclear materials and radiation sources. In this paper, Monte Carlo simulation-based design studies for an alternative RMC which has an extended field-of-view will be presented. Modulation patterns for 5 different hemispherical RMC (H-RMC) designs were simulated for various source locations, and fundamental characteristics of rotational modulation patterns were investigated. Obtained patterns showed variations depending on the source location for most of the H-RMC designs, exhibiting promises for the future development of an omni-directional radiation imager based on a non-position sensitive radiation detector.

  14. Dosimetric Impact of Intrafraction Motion During RapidArc Stereotactic Vertebral Radiation Therapy Using Flattened and Flattening Filter-Free Beams

    SciTech Connect

    Ong, Chin Loon; Dahele, Max; Cuijpers, Johan P.; Senan, Suresh; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2013-07-01

    Purpose: To study the dosimetric impact of relatively short-duration intrafraction shifts during a single fraction of RapidArc delivery for vertebral stereotactic body radiation therapy (SBRT) using flattened (FF) and flattening filter-free (FFF) beams. Methods and Materials: The RapidArc plans, each with 2 to 3 arcs, were generated for 9 patients using 6-MV FF and 10-MV FFF beams with maximum dose rates of 1000 and 2400 MU/min, respectively. A total of 1272 plans were created to estimate the dosimetric consequences in target and spinal cord volumes caused by intrafraction shifts during one of the arcs. Shifts of 1, 2, and 3 mm for periods of 5, 10, and 30 seconds, and 5 mm for 5 and 10 seconds, were modelled during a part of the arc associated with high doses and steep dose gradients. Results: For FFF plans, shifts of 2 mm over 10 seconds and 30 seconds could increase spinal cord D{sub max} by up to 6.5% and 13%, respectively. Dosimetric deviations in FFF plans were approximately 2-fold greater than in FF plans. Reduction in target coverage was <1% for 83% and 96% of the FFF and FF plans, respectively. Conclusion: Even short-duration intrafraction shifts can cause significant dosimetric deviations during vertebral SBRT delivery, especially when using very high dose rate FFF beams and when the shift occurs in that part of the arc delivering high doses and steep gradients. The impact is greatest on the spinal cord and its planning-at-risk volume. Accurate and stable patient positioning is therefore required for vertebral SBRT.

  15. Clearance Analysis of CTC2 (on ELC4) to S-TRRJ HRS Radiator Rotation Envelope

    NASA Technical Reports Server (NTRS)

    Liddle, Donn

    2014-01-01

    In response to the planned retirement of the Space Shuttle Program, International Space Station (ISS) management began stockpiling spare parts on the ISS. Many of the larger orbital replacement units were stored on the Expedite the Processing of Experiments to Space Station (EXPRESS) Logistics Carriers (ELCs) mounted on the end of the S3 and P3 truss segments, immediately outboard of the Thermal Radiator Rotary Joints (TRRJs) and their attached radiators. In an August 2009 computer-aided design (CAD) assessment, it was determined that mounting the Cargo Transport Container (CTC) 2 on the inboard face of ELC4 as planned would create insufficient clearance between the CTC2 and the rotational envelope of the radiators when the TRRJs were rotated to a gamma angle of 35.0 degrees. The true clearance would depend on how the Unpressurized Cargo Carrier Attachment System (UCCAS) was mounted to the S3 truss and how the ELC4 was attached to it. If the plane of the UCCAS attachment points were tilted even slightly inboard, it would significantly change the clearance between CTC2 and the Starboard TRRJ (S-TRRJ) radiators. Additionally, since CTC2 would be covered in multilayer insulation (MLI), the true outer profile of CTC2 was not captured in the CAD models used for the clearance assessment. It was possible that, even if the S-TRRJ radiators cleared CTC2, they could snag the MLI covering. In the fall of 2010, the Image Science and Analysis Group (ISAG) was asked to perform an on-orbit clearance analysis to determine the location of CTC2 on ELC4 and the S-TRRJ radiators at the angle of closest approach so that a positive clearance could be assured. To provide the measurements as quickly as possible to aid in the assessment, it was decided that the clearance analysis would be broken into two phases. Phase I: The location and orientation of the UCCAS fittings, which support and hold the ELC4 in place, would be measured relative to the ISS Analytical Coordinate System (ISSACS

  16. Prostate Stereotactic Ablative Radiation Therapy Using Volumetric Modulated Arc Therapy to Dominant Intraprostatic Lesions

    SciTech Connect

    Murray, Louise J.; Lilley, John; Thompson, Christopher M.; Cosgrove, Vivian; Mason, Josh; Sykes, Jonathan; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2014-06-01

    Purpose: To investigate boosting dominant intraprostatic lesions (DILs) in the context of stereotactic ablative radiation therapy (SABR) and to examine the impact on tumor control probability (TCP) and normal tissue complication probability (NTCP). Methods and Materials: Ten prostate datasets were selected. DILs were defined using T2-weighted, dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Four plans were produced for each dataset: (1) no boost to DILs; (2) boost to DILs, no seminal vesicles in prescription; (3) boost to DILs, proximal seminal vesicles (proxSV) prescribed intermediate dose; and (4) boost to DILs, proxSV prescribed higher dose. The prostate planning target volume (PTV) prescription was 42.7 Gy in 7 fractions. DILs were initially prescribed 115% of the PTV{sub Prostate} prescription, and PTV{sub DIL} prescriptions were increased in 5% increments until organ-at-risk constraints were reached. TCP and NTCP calculations used the LQ-Poisson Marsden, and Lyman-Kutcher-Burman models respectively. Results: When treating the prostate alone, the median PTV{sub DIL} prescription was 125% (range: 110%-140%) of the PTV{sub Prostate} prescription. Median PTV{sub DIL} D50% was 55.1 Gy (range: 49.6-62.6 Gy). The same PTV{sub DIL} prescriptions and similar PTV{sub DIL} median doses were possible when including the proxSV within the prescription. TCP depended on prostate α/β ratio and was highest with an α/β ratio = 1.5 Gy, where the additional TCP benefit of DIL boosting was least. Rectal NTCP increased with DIL boosting and was considered unacceptably high in 5 cases, which, when replanned with an emphasis on reducing maximum dose to 0.5 cm{sup 3} of rectum (Dmax{sub 0.5cc}), as well as meeting existing constraints, resulted in considerable rectal NTCP reductions. Conclusions: Boosting DILs in the context of SABR is technically feasible but should be approached with caution. If this therapy is adopted, strict rectal

  17. The effect of oblateness and gravity darkening on the radiation driving in winds from rapidly rotating B stars

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Owocki, Stanley P.

    1995-01-01

    We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.

  18. Intensity modulated radiation therapy with field rotation--a time-varying fractionation study.

    PubMed

    Dink, Delal; Langer, Mark P; Rardin, Ronald L; Pekny, Joseph F; Reklaitis, Gintaras V; Saka, Behlul

    2012-06-01

    This paper proposes a novel mathematical approach to the beam selection problem in intensity modulated radiation therapy (IMRT) planning. The approach allows more beams to be used over the course of therapy while limiting the number of beams required in any one session. In the proposed field rotation method, several sets of beams are interchanged throughout the treatment to allow a wider selection of beam angles than would be possible with fixed beam orientations. The choice of beamlet intensities and the number of identical fractions for each set are determined by a mixed integer linear program that controls jointly for the distribution per fraction and the cumulative dose distribution delivered to targets and critical structures. Trials showed the method allowed substantial increases in the dose objective and/or sparing of normal tissues while maintaining cumulative and fraction size limits. Trials for a head and neck site showed gains of 25%-35% in the objective (average tumor dose) and for a thoracic site gains were 7%-13%, depending on how strict the fraction size limits were set. The objective did not rise for a prostate site significantly, but the tolerance limits on normal tissues could be strengthened with the use of multiple beam sets.

  19. Entrainment of polaritons in rotating ruby

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.; Gorelik, V. S.; Portnov, D. I.; Filatov, V. V.

    2016-08-01

    A luminescent trace has been observed in a ruby crystal (Al2O3: Cr3+) that rotates at a frequency of 2 to 200 Hz and is irradiated by 532-nm coherent electromagnetic radiation. A method has been proposed to determine the lifetime of the excited electronic state of chromium ions from the measurement of the length of an arc of the trajectory of a light spot on the surface of a rotating ruby single crystal. A "comet trace" formed at the passage of radiation through the rotating crystal near the absorption band of the material has been detected inside the ruby crystal. It has been shown that the theory based on the analysis of the motion of polaritons in the rotating reference frame is in satisfactory agreement with experimental results.

  20. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation

    PubMed Central

    Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4–water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690

  1. New method to test the gantry, collimator, and table rotation angles of a linear accelerator used in radiation therapy

    NASA Astrophysics Data System (ADS)

    Beaumont, Stéphane; Torfeh, Tarraf; Latreille, Romain; Ben Hdech, Yassine; Guedon, Jeanpierre

    2011-03-01

    The precision of a medical LINear ACcelerator (LINAC) gantry rotation angle is crucial for the radiation therapy process, especially in stereotactic radio surgery, given the expected precision of the treatment and in Image Guided Radiation Therapy (IGRT) where the mechanical stability is disturbed due to the additional weight of the kV x-ray tube and detector. We present in this paper an extension of the Winston and Lutz test initially dedicated to control the size and the position of the isocenter of the LINAC and here adapted to test the gantry rotation angle with no additional portal images. This new method uses a test-object patented by QualiFormeD5 and is integrated in the QUALIMAGIQ software platform developed to automatically analyze images acquired for quality control of medical devices.

  2. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  3. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  4. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  5. A dosimetric comparative study: Volumetric modulated arc therapy vs intensity-modulated radiation therapy in the treatment of nasal cavity carcinomas

    SciTech Connect

    Nguyen, Kham; Cummings, David; Lanza, Vincent C.; Morris, Kathleen; Wang, Congjun; Sutton, Jordan; Garcia, John

    2013-10-01

    The purpose of this study was to evaluate the differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of nasal cavity carcinomas. The treatment of 10 patients, who had completed IMRT treatment for resected tumors of the nasal cavity, was replanned with the Philips Pinnacle{sup 3} Version 9 treatment-planning system. The IMRT plans used a 9-beam technique whereas the VMAT (known as SmartArc) plans used a 3-arc technique. Both types of plans were optimized using Philips Pinnacle{sup 3} Direct Machine Parameter Optimization algorithm. IMRT and VMAT plans' quality was compared by evaluating the maximum, minimum, and mean doses to the target volumes and organs at risk, monitor units (MUs), and the treatment delivery time. Our results indicate that VMAT is capable of greatly reducing treatment delivery time and MUs compared with IMRT. The reduction of treatment delivery time and MUs can decrease the effects of intrafractional uncertainties that can occur because of patient movement during treatment delivery. VMAT's plans further reduce doses to critical structures that are in close proximity to the target volume.

  6. Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air

    NASA Astrophysics Data System (ADS)

    Chau, S. W.; Hsu, K. L.; Lin, D. L.; Tzeng, C. C.

    2007-04-01

    The cathode erosion rate, arc root velocity and output power of a well-type cathode (WTC), non-transferred plasma torch operating in air are studied experimentally in this paper. An external solenoid to generate a magnetically driven arc and a circular swirler to produce a vortex flow structure are equipped in the studied torch system, which is designed to reduce the erosion rate at the cathode. A least square technique is applied to correlate the system parameters, i.e. current, axial magnetic field and mass flow rate, with the cathode erosion rate, arc root velocity and system power output. In the studied WTC torch system, the cathode erosion has a major thermal erosion component and a minor component due to the ion-bombardment effect. The cathode erosion increases with the increase of current due to the enhancement in both Joule heating and ion bombardment. The axial magnetic field can significantly reduce the cathode erosion by reducing the thermal loading of cathode materials at the arc root and improving the heat transfer to gas near the cathode. But, the rise in the mass flow rate leads to the deterioration of erosion, since the ion-bombardment effect prevails over the convective cooling at the cathode. The most dominant system parameter to influence the arc root velocity is the axial magnetic field, which is mainly contributed to the magnetic force driving the arc. The growth in current has a negative impact on increasing the arc root velocity, because the friction force acting at the spot due to a severe molten condition becomes the dominant component counteracting the magnetic force. The mass flow rate also suppresses the arc root velocity, as a result of which the arc root moves in the direction against that of the swirled working gas. All system parameters such as current, magnetic field and gas flow rate increase with the increase in the torch output power. The experimental evidences suggest that the axial magnetic field is the most important parameter

  7. An approach for online evaluations of dose consequences caused by small rotational setup errors in intracranial stereotactic radiation therapy

    SciTech Connect

    Lu Bo; Li, Jonathan; Kahler, Darren; Yan Guanghua; Mittauer, Kathryn; Shi Wenyin; Okunieff, Paul; Liu, Chihray

    2011-11-15

    Purpose: The purpose of this work is to investigate the impact of small rotational errors on the magnitudes and distributions of spatial dose variations for intracranial stereotactic radiotherapy (SRT) treatment setups, and to assess the feasibility of using the original dose map overlaid with rotated contours (ODMORC) method as a fast, online evaluation tool to estimate dose changes (using DVHs) to clinical target volumes (CTVs) and organs-at-risks (OARs) caused by small rotational setup errors. Methods: Fifteen intracranial SRT cases treated with either three-dimensional conformal radiation therapy (3DCRT) or intensity-modulated radiation therapy (IMRT) techniques were chosen for the study. Selected cases have a variety of anatomical dimensions and pathologies. Angles of {+-}3 deg. and {+-}5 deg. in all directions were selected to simulate the rotational errors. Dose variations in different regions of the brain, CTVs, and OARs were evaluated to illustrate the various spatial effects of dose differences before and after rotations. DVHs accounting for rotations that were recomputed by the treatment planning system (TPS) and those generated by the ODMORC method were compared. A framework of a fast algorithm for multicontour rotation implemented by ODMORC is introduced as well. Results: The average values of relative dose variations between original dose and recomputed dose accounting for rotations were greater than 4.0% and 10.0% in absolute mean and in standard deviation, respectively, at the skull and adjacent regions for all cases. They were less than 1.0% and 2.5% in absolute mean and in standard deviation, respectively, for dose points 3 mm away from the skull. The results indicated that spatial dose to any part of the brain organs or tumors separated from the skull or head surface would be relatively stable before and after rotations. Statistical data of CTVs and OARs indicate the lens and cochleas have the large dose variations before and after rotations

  8. Spin-orbit and rotational couplings in radiative association of C(3P) and N(4S) atoms.

    PubMed

    Antipov, Sergey V; Gustafsson, Magnus; Nyman, Gunnar

    2011-11-14

    The role of spin-orbit and rotational couplings in radiative association of C((3)P) and N((4)S) atoms is investigated. Couplings among doublet electronic states of the CN radical are considered, giving rise to a 6-state model of the process. The solution of the dynamical problem is based on the L(2) method, where a complex absorbing potential is added to the Hamiltonian operator in order to treat continuum and bound levels in the same manner. Comparison of the energy-dependent rate coefficients calculated with and without spin-orbit and rotational couplings shows that the couplings have a strong effect on the resonance structure and low-energy baseline of the rate coefficient.

  9. Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

    SciTech Connect

    Studenski, Matthew T.; Shen, Xinglei; Yu, Yan; Xiao, Ying; Shi, Wenyin; Biswas, Tithi; Werner-Wasik, Maria; Harrison, Amy S.

    2013-04-01

    Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. For the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.

  10. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  11. Gravitational radiation and angular momentum flux from a slowly rotating dynamical black hole

    SciTech Connect

    Wu, Yu-Huei; Wang, Chih-Hung

    2011-04-15

    A four-dimensional asymptotic expansion scheme is used to study the next-order effects of the nonlinearity near a spinning dynamical black hole. The angular-momentum flux and energy flux formula are then obtained by constructing the reference frame in terms of the compatible constant spinors and the compatibility of the coupling leading-order Newman-Penrose equations. By using the slow rotation and small-tide approximation for a spinning black hole, the horizon cross-section we chose is spherical symmetric. It turns out the flux formula is rather simple and can be compared with the known results. Directly from the energy flux formula of the slow-rotating dynamical horizon, we find that the physically reasonable condition on requiring the positivity of the gravitational energy flux yields that the shear will monotonically decrease with time. Thus a slow-rotating dynamical horizon will asymptotically approach an isolated horizon during late time.

  12. Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!

    ERIC Educational Resources Information Center

    Waxman, Michael A.

    2010-01-01

    Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…

  13. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    NASA Astrophysics Data System (ADS)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  14. Beam controlled arc therapy-a delivery concept for stationary targets

    NASA Astrophysics Data System (ADS)

    Zhang, H. H.; Betzel, G. T.; Yi, B. Y.; D'Souza, W. D.

    2013-10-01

    Volumetric modulated arc therapy (VMAT) presupposes that it is beneficial to deliver radiation from all beam angles as the gantry rotates, requiring the multi-leaf collimator to maintain continuity in shape from one angle to another. In turn, radiation from undesirable beam angles could compromise the dose distribution. In this work, we challenge the notion that the radiation beam must be held on as the gantry rotates around the patient. We propose a new approach for delivering intensity-modulated arc therapy, beam-controlled arc therapy (BCAT), during which the radiation beam is controlled on or off and the dose rate is modulated while the gantry rotates around the patient. We employ linear-programming-based dose optimization to each aperture weight, resulting in some zero weight apertures. During delivery, the radiation beam is held off at control points with zero weights as the MLC shape transits to the next non-zero weight shape. This was tested on ten head and neck cases. Plan quality and delivery efficiency were compared with VMAT. Improvements of up to 17% (p-value 0.001) and 57% (p-value 0.018) in organ-at-risk sparing and target dose uniformity, respectively, were achieved. Compared to the fixed number of apertures used in single-arc and double-arc VMAT, the BCAT used 109 and 175 apertures on average, respectively. The difference in total MUs for VMAT and BCAT plans was less than 4%. Plan quality improvement was confirmed after delivery with γ analysis resulting in over 99% agreement, or 4 in 1099 points that failed.

  15. Analytical solutions in rotating linear dilaton black holes: Resonant frequencies, quantization, greybody factor, and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Sakalli, I.

    2016-10-01

    Charged massive scalar field perturbations are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein-Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we study the problems of resonant frequencies, entropy/area quantization, and greybody factor. We also analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black hole and derive its Hawking temperature via the Damour-Ruffini-Sannan method.

  16. SU-E-J-165: Dosimetric Impact of Liver Rotations in Stereotactic Body Radiation Therapy

    SciTech Connect

    Pinnaduwage, D; Paulsson, A; Sudhyadhom, A; Chen, J; Chang, A; Anwar, M; Gottschalk, A; Yom, S S.; Descovich, M

    2015-06-15

    Purpose: Often in liver stereotactic body radiotherapy a single fiducial is implanted near the tumor for image-guided treatment delivery. In such cases, rotational corrections are calculated based on the spine. This study quantifies rotational differences between the spine and liver, and investigates the corresponding dosimetric impact. Methods: Seven patients with 3 intrahepatic fiducials and 4DCT scans were identified. The planning CT was separately co-registered with 4 phases of the 4DCT (0%, 50%, 100% inhale and 50% exhale) by 1) rigid registration of the spine, and 2) point-based registration of the 3 fiducials. Rotation vectors were calculated for each registration. Translational differences in fiducial positions between the 2 registrations methods were investigated. Dosimetric impact due to liver rotations and deformations was assessed using critical structures delineated on the 4DCT phases. For dose comparisons, a single fiducial was translationally aligned following spine alignment to represent what is typically done in the clinic. Results: On average, differences between spine and liver rotations during the 0%, 50%, 100% inhale, and 50% exhale phases were 3.23°, 3.27°, 2.26° and 3.11° (pitch), 3.00°, 2.24°, 3.12° and 1.73° (roll), and 1.57°, 1.98°, 2.09° and 1.36° (yaw), respectively. The maximum difference in rotations was 12°, with differences of >3° seen in 14/28 (pitch), 10/28 (roll), and 6/28 (yaw) cases. Average fiducial displacements of 2.73 (craniocaudal), 1.04 (lateral) and 1.82 mm (vertical) were seen. Evaluating percent dose differences for 5 patients at the peaks of the respiratory cycle, the maximum dose to the duodenum, stomach, bowel and esophagus differed on average by 11.4%, 5.3%, 11.2% and 49.1% between the 2 registration methods. Conclusion: Lack of accounting for liver rotation during treatment might Result in clinically significant dose differences to critical structures. Both rotational and translational deviations

  17. SU-E-T-633: Preparation and Planning of a VMAT Multi - Arc Radiation Therapy Technique for Full Scalp Treatment

    SciTech Connect

    Araujo, C; Bardock, A; Berkelaar, S; Gillund, D; McGee, K; Mohamed, I; Lapointe, C

    2015-06-15

    Purpose: The target volume for angiosarcoma of the scalp encompasses the entire scalp. Full scalp radiotherapy (FSRT) requires careful design of required bolus, immobilization and marking of the field before the patient CT is acquired. A VMAT multi-arc technique was designed to deliver FSRT for a patient with angiosarcoma of the scalp to a dose of 6000cGy in 25 fractions. Methods: A custom bolus helmet was fabricated from a 0.5 cm thick sheet of aquaplast material, which was molded to the patient’s head. With the bolus helmet in place the patient was then positioned supine on a H&N immobilization board. A custom vaclock bag positioned on a standard headrest and a thermoplastic mask were used to immobilize the patient. Additional bolus to cover the remaining treatment area was attached to the mask. We acquired two CT scans of the patient’s head, one in treatment position and an additional scan without the immobilization mask with wires marking the treatment area that the oncologist had delineated on the patient’s skin. The second scan was registered to the first and used to define the treatment CTV. A four-arc VMAT treatment planned using Varian-Eclipse was optimized to cover the skin with a PTV margin while sparing the brain and limiting the dose to the optic apparatus and lacrimal glands. Daily treatment setup was verified using anterior and lateral kV on-board-imaging. To verify the treated dose, TLDs were positioned on the patient’s scalp during one fraction. Results: With full dose coverage to the PTV, the mean dose to the brain was less than 24 Gy. The dose measured by the TLDs (mean difference 1%, standard deviation 4%)showed excellent agreement with the treatment planning calculation. Conclusion: FSRT delivered with a bolus helmet and a VMAT multi-arc technique can be accurately delivered with high dose uniformity and conformality.

  18. The sensitivity of ArcCHECK-based gamma analysis to manufactured errors in helical tomotherapy radiation delivery.

    PubMed

    Templeton, Alistair K; Chu, James C H; Turian, Julius V

    2015-01-08

    Three-dimensional measurement arrays are an efficient means of acquiring a distribution of data for patient plan delivery QA. However, the tie between plan integrity and traditional gamma-based analysis of these data are not clear. This study explores the sensitivity of such analysis by creating errors in Helical Tomotherapy delivery and measuring the passing rates with an ArcCHECK cylindrical diode array. Errors were introduced in each of the couch speed, leaf open time, and gantry starting position in increasing magnitude while the resulting gamma passing rates were tabulated. The error size required to degrade the gamma passing rate to 90% or below was on average a 3% change in couch speed, 5° in gantry synchronization, or a 5 ms in leaf closing speed for a 3%/3 mm Van Dyk gamma analysis. This varied with plan type, with prostate plans exhibiting less sensitivity than head and neck plans and with gamma analysis criteria, but in all cases the error magnitudes were large compared to actual machine tolerances. These findings suggest that the sensitivity of ArcCHECK-based gamma analysis to single-mode errors in tomotherapy plans is dependent upon plan and analysis type and at traditional passing thresholds unable to detect small defects in the plan.

  19. A new radiative forcing data set comprising the major volcanic eruptions from the Central American Volcanic Arc for paleo climate studies

    NASA Astrophysics Data System (ADS)

    Metzner, D.; Krüger, K.; Timmreck, C.; Kutterolf, S.; Freundt, A.

    2009-04-01

    Of all the natural causes of climate change, major volcanic eruptions are most important as they have a significant impact on Earth's global climate system, especially on the stratosphere and troposphere, the atmospheric circulation and chemical composition. The direct injection of gases, aerosols and volcanic ash into the stratosphere has a strong and long lasting radiative influence, which leads to a global cooling of surface temperatures for several years, probably decades. In this study we will investigate the climate feedbacks of large Plinian eruptions from volcanoes at the Central American Arc within the last 200ka with the help of state of the art climate models. To evaluate the radiative forcing of the climate system, we need reliable estimates of the paleo volcanic stratospheric aerosol loading. Here we use a newly derived volcanic data set for Central America based on a) new eruptive mass estimations that are based on compositional land-sea correlations of widespread tephra layers and b) incoporation of measured degassed volatile fractions (S, Cl, F, Br, I) derived from those tephras by the "petrological method" into the mass calculations (Kutterolf et al. 2008a,b). This facilitates the consideration of large eruptions of the past for climate modelling. Using information about strength and height of the volcanic sulphur injection we create a new data set of aerosol optical depth comprising the major volcanic eruptions of Central American Volcanic Arc over the last 200ka. The poster will introduce the underlying steps to derive an aerosol optical depth set from the petrologic derived sulfate aerosol loading in more detail and discuss possible uncertainties. As soon as possible climate sensitivity studies will follow, in which different SO2 scenarios will be applied, for low, medium and large size SO2 eruptions. To assess the climate impact of past CAVA eruptions on a paleo time scale an earth system climate model of intermediate complexity will be

  20. Adaptive-passive control of noise radiation of gear-box systems using a pair of shunted piezo-based rotating inertial actuators

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Alujevic, N.; Depraetere, B.; Pinte, Gregory; Sas, P.

    2015-04-01

    In this paper, two Piezo-Based Rotating Inertial Actuators (PBRIAs) are considered for the suppression of the structureborne noise radiated from rotating machinery. Each inertial actuator comprises a piezoelectric stack element shunted with the Antoniou's gyrator circuit. This type of electrical circuit can be used to emulate a variable inductance. By varying the shunt inductance it is possible to realize two tuneable vibration neutralizers in order to suppress single frequency vibrations of a slowly rotating shaft. As a consequence, reductions in the sound radiated from the machine housing can be also achieved. First a theoretical study is performed using a simplified lumped parameter model of the system at hand. The simplified model consists of a rotating shaft and two perpendicularly mounted shunted PBRIAs. Secondly, the shunted PBRIA is tested on an experimental test bed comprising a rotating shaft mounted in a frame. The noise is radiated by a plate that is attached to the frame. The experimental results show that a reduction of 11 dB on the disturbance force transmitted from the rotating shaft through the bearing to the housing can be achieved. This also generates a reduction of 9 dB for the plate vibration and the radiated noise.

  1. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    SciTech Connect

    Sugimoto, Norihiko

    2015-12-15

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.

  2. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    NASA Astrophysics Data System (ADS)

    Sugimoto, Norihiko

    2015-12-01

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone-anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone-anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (˜2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone-anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.

  3. Chronic exposure to the ultraviolet radiation levels from arc welding does not result in obvious damage to the human corneal endothelium.

    PubMed

    Oblak, Emil; Doughty, Michael J

    2002-11-01

    Occupational exposure of the cornea to ultraviolet radiation (UVR, e.g. in welding) is a well-known cause of 'arc eye' (photo-keratoconjunctivitis), but has also been considered to be a risk for the development of alterations in the size (polymegethism) and shape (pleomorphism) of the deeper-lying human corneal endothelial cells. Human data are however limited and so a further study was undertaken, with a control group. Non-contact specular micrographs of the central region of the corneal endothelium were obtained from 40 white males aged between 32 and 63 years; 20 were arc welders with an average of 25 +/- 7 years job experience, while the others were office workers (n = 20). All the welders reported occupational exposure to UVR (i.e. welders 'flashes') and up to 3 times per year. None of the subjects had a history of contact lens wear, major eye disease or surgery. The endothelial image was scanned, projected onto an overlay and cell border marking carried out in a masked fashion. The overlay was independently analysed, by a customised semi-automated method, providing cell-border-adjusted data on cell areas and cell shape (sides) on 124 to 260 cells per image. The endothelial cell density (ECD) values were also calculated from individual cell area values. All corneas appeared to be healthy, and showed no fluorescein staining indicating damage to the surface epithelium. Central corneal thickness values were normal at 0.531 +/- 0.031 (mean +/- SD) and 0.527 +/- 0.036 mm in the welders and non-welders respectively. All endothelia appeared healthy, with no evidence of cell oedema. The group-mean endothelial cell area was 393 +/- 35 and 392 +/- 21 microm2, ECD values were 2855 +/- 224 cells mm(-2) and 2852 +/- 210 cells mm(-2), while the percentages of 6-sided cells were 60 +/- 5.2 and 59 +/- 4.1% respectively. Cell area distributions were statistically identical (p > or = 0.8), and cell area-side relationships were marginally, but not statistically different. This

  4. Experimental and Theoretical Investigation of Microwave Millimeter Radiation from Hollow, Rotating Electron Beams.

    DTIC Science & Technology

    1985-11-30

    project includes an Imagen laser printer and several graphics terminals. This facility has been installed in a separate shielded room in our high bay...of several experi- has an electron beam propagating in some cylindrical "- " mental studies on the University of Marland’s high-en- waveguide immersed...try FEL has been explored both theoretically and experi- trons rotate is added an azimuthally periodic wiggler field, mentally in a collaborative

  5. Heat transfer in GTA welding arcs

    NASA Astrophysics Data System (ADS)

    Huft, Nathan J.

    Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

  6. Volumetric modulated arc therapy planning for distal oesophageal malignancies

    PubMed Central

    Hawkins, M A; Bedford, J L; Warrington, A P; Tait, D M

    2012-01-01

    Objectives Volumetric modulated arc therapy (VMAT) is a novel form of intensity-modulated radiation therapy that allows the radiation dose to be delivered in a single gantry rotation using conformal or modulated fields. The capability of VMAT to reduce heart and cord dose, while maintaining lung receiving 20 Gy <20%, was evaluated for chemoradiation for oesophageal cancer. Methods An optimised forward-planned four-field arrangement was compared with inverse-planned coplanar VMAT arcs with 35 control points for 10 patients with lower gastro-oesophageal tumours prescribed 54 Gy in 30 fractions. Conformal (cARC) and intensity-modulated (VMATi) arcs were considered. Plans were assessed and compared using the planning target volume (PTV) irradiated to 95% of the prescription dose (V95), volumes of lung irradiated to 20 Gy (V20), heart irradiated to 30 Gy (V30), spinal cord maximum dose and van't Riet conformation number (CN). The monitor units per fraction and delivery time were recorded for a single representative plan. Results VMATi provided a significant reduction in the heart V30 (31% vs 55%; p=0.02) with better CN (0.72 vs 0.65; p=0.01) than the conformal plan. The treatment delivery was 1 min 28 s for VMAT compared with 3 min 15 s. Conclusion For similar PTV coverage, VMATi delivers a lower dose to organs at risk than conformal plans in a shorter time, and this has warranted clinical implementation. PMID:21427179

  7. Dosimetric effects of weight loss or gain during volumetric modulated arc therapy and intensity-modulated radiation therapy for prostate cancer

    SciTech Connect

    Pair, Matthew L.; Du, Weiliang; Rojas, Hector D.; Kanke, James E.; McGuire, Sean E.; Lee, Andrew K.; Kuban, Deborah A.; Kudchadker, Rajat J.

    2013-10-01

    Weight loss or gain during the course of radiation therapy for prostate cancer can alter the planned dose to the target volumes and critical organs. Typically, source-to-surface distance (SSD) measurements are documented by therapists on a weekly basis to ensure that patients' exterior surface and isocenter-to-skin surface distances remain stable. The radiation oncology team then determines whether the patient has undergone a physical change sufficient to require a new treatment plan. The effect of weight change (SSD increase or decrease) on intensity-modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) dosimetry is not well known, and it is unclear when rescanning or replanning is needed. The purpose of this study was to determine the effects of weight change (SSD increase or decrease) on IMRT or VMAT dose delivery in patients with prostate cancer and to determine the SSD change threshold for replanning. Whether IMRT or VMAT provides better dose stability under weight change conditions was also determined. We generated clinical IMRT and VMAT prostate and seminal vesicle treatment plans for varying SSDs for 10 randomly selected patients with prostate cancer. The differences due to SSD change were quantified by a specific dose change for a specified volume of interest. The target mean dose, decreased or increased by 2.9% per 1-cm SSD decrease or increase in IMRT and by 3.6% in VMAT. If the SSD deviation is more than 1 cm, the radiation oncology team should determine whether to continue treatment without modifications, to adjust monitor units, or to resimulate and replan.

  8. Shifting of infrared radiation using rotational raman resonances in diatomic molecular gases

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A device for shifting the frequency of infrared radiation from a CO.sub.2 laser by stimulated Raman scattering in either H.sub.2 or D.sub.2. The device of the preferred embodiment comprises an H.sub.2 Raman laser having dichroic mirrors which are reflective for 16 .mu.m radiation and transmittive for 10 .mu.m, disposed at opposite ends of an interaction cell. The interaction cell contains a diatomic molecular gas, e.g., H.sub.2, D.sub.2, T.sub.2, HD, HT, DT and a capillary waveguide disposed within the cell. A liquid nitrogen jacket is provided around the capillary waveguide for the purpose of cooling. In another embodiment the input CO.sub.2 radiation is circularly polarized using a Fresnel rhomb .lambda./4 plate and applied to an interaction cell of much longer length for single pass operation.

  9. Dosimetric and delivery characterizations of full-arc and half-arc volumetric-modulated arc therapy for maxillary cancer.

    PubMed

    Miura, Hideharu; Fujiwara, Masayuki; Tanooka, Masao; Doi, Hiroshi; Inoue, Hiroyuki; Takada, Yasuhiro; Kamikonya, Norihiko; Hirota, Shozo

    2012-09-01

    We compared the efficiency and accuracy of full-arc and half-arc volumetric-modulated arc therapy (VMAT) delivery for maxillary cancer. Plans for gantry rotation angles of 360° and 180° (full-arc and half-arc VMAT) were created for six maxillary cancer cases with the Monaco treatment planning system, and delivered using an Elekta Synergy linear accelerator. Full-arc and half-arc VMAT were compared with regard to homogeneity index (HI), conformity index (CI), mean dose to normal brain, total monitor units (MU), delivery times, root mean square (r.m.s.) gantry accelerations (°/s(2)), and r.m.s. gantry angle errors (°). The half-arc VMAT plans achieved comparable HI and CI to the full-arc plans. Mean doses to the normal brain and brainstem with the half-arc VMAT plans were on average 16% and 17% lower than those with the full-arc VMAT plans. For other organs at risk (OARs), no significant DVH differences were observed between plans. Half-arc VMAT resulted in 11% less total MU and 20% shorter delivery time than the full-arc VMAT, while r.m.s. gantry acceleration and r.m.s. gantry angle error during half-arc VMAT delivery were 30% and 23% less than those during full-arc VMAT delivery, respectively. Furthermore, the half-arc VMAT plans were comparable with the full-arc plans regarding dose homogeneity and conformity in maxillary cancer, and provided a statistical decrease in mean dose to OAR, total MU, delivery time and gantry angle error. Half-arc VMAT plans may be a suitable treatment option in radiotherapy for maxillary cancer.

  10. ROTATION AND STABILITY OF THE TOROIDAL MAGNETIC FIELD IN STELLAR RADIATION ZONES

    SciTech Connect

    Bonanno, Alfio; Urpin, Vadim E-mail: vadim.urpin@uv.es

    2013-03-20

    The stability of the magnetic field in radiation zones is of crucial importance for mixing and angular momentum transport in the stellar interior. We consider the stability properties of stars containing a predominant toroidal field in spherical geometry by means of a linear stability in the Boussinesq approximation taking into account the effect of thermal conductivity. We calculate the growth rate of instability and analyze in detail the effects of stable stratification and heat transport. We argue that the stabilizing influence of gravity can never entirely suppress the instability caused by electric currents in radiation zones. However, the stable stratification can essentially decrease the growth rate of instability.

  11. Clinical implementation of intensity-modulated arc therapy.

    PubMed

    Shepard, David M; Cao, Daliang

    2011-01-01

    Intensity-modulated arc therapy (IMAT) is a rotational approach to radiation therapy delivered on a conventional linear accelerator using a conventional multileaf collimator. There are 2 key advantages of IMAT. First, the rotational nature of the delivery provides great flexibility in shaping each dose distribution. As a result, IMAT can provide dosimetric advantages relative to fixed-field intensity-modulated radiation therapy (IMRT). The second advantage is the highly efficient nature of the delivery. For centers with an active IMRT program, the clinical implementation of IMAT should be relatively straightforward. For clinical implementation of IMAT, it is important to fully characterize the accuracy of the dose model used, and the performance of the quality assurance equipment.

  12. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    SciTech Connect

    Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.; Cherian, George; Buyyounouski, Mark K.; Chen, David Y.; Kutikov, Alexander; Johnson, Matthew E.; Ma, Chung-Ming Charlie; Horwitz, Eric M.

    2015-10-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.

  13. Experimental and Theoretical Investigation of Microwave and Millimeter Wave Radiation from Hollow, Rotating, Electron Beams.

    DTIC Science & Technology

    1981-11-01

    detection bands (X, Ku, K (a) produced by a rotating electron beam in a cylindrical drif t tube. 9- 600 (a a)400- ~200. 28 32 36 f (GHz) 600 (b) ~400...are plotted in an radii Rj,Ro, as shown in Fig. 2. o- k , diagram. At the interaction points indicated ( k -f ,a-) The stability of the system is examined...by linearizingw-kqs diaram Atd t5h. i ercto porbit indicaton ( k -naw -) and ( k ,’ ,w), we have "resopant interaction". If these are Eqs. (4) and (5

  14. Laboratory optical spectroscopy of the thiophenoxy radical and its profile simulation as a diffuse interstellar band based on rotational distribution by radiation and collisions

    SciTech Connect

    Araki, Mitsunori; Niwayama, Kei; Tsukiyama, Koichi

    2014-11-01

    The gas-phase optical absorption spectrum of the thiophenoxy radical (C{sub 6}H{sub 5}S), a diffuse interstellar band (DIB) candidate molecule, was observed in the discharge of thiophenol using a cavity ringdown spectrometer. The ground-state rotational constants of the thiophenoxy radical were theoretically calculated, and the excited-state rotational constants were determined from the observed rotational profile. The rotational profile of a near prolate molecule having C {sub 2v} symmetry was simulated on the basis of a rotational distribution model by radiation and collisions. Although the simulated profile did not agree with the observed DIBs, the upper limit of the column density for the thiophenoxy radical in the diffuse clouds toward HD 204827 was evaluated to be 2 × 10{sup 13} cm{sup –2}. The profile simulation indicates that rotational distribution by radiation and collisions is important to reproduce a rotational profile for a DIB candidate and that the near prolate C {sub 2v} molecule is a possible candidate for DIB with a band width variation dependent on the line of sight.

  15. Verification of Planning Target Volume Settings in Volumetric Modulated Arc Therapy for Stereotactic Body Radiation Therapy by Using In-Treatment 4-Dimensional Cone Beam Computed Tomography

    SciTech Connect

    Takahashi, Wataru; Yamashita, Hideomi; Kida, Satoshi; Masutani, Yoshitaka; Sakumi, Akira; Ohtomo, Kuni; Nakagawa, Keiichi; Haga, Akihiro

    2013-07-01

    Purpose: To evaluate setup error and tumor motion during beam delivery by using 4-dimensional cone beam computed tomography (4D CBCT) and to assess the adequacy of the planning target volume (PTV) margin for lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). Methods and Materials: Fifteen lung cancer patients treated by single-arc VMAT-SBRT were selected in this analysis. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on maximum inspiration and maximum expiration CT datasets from 4D CT respiratory sorting and merged into internal target volumes (ITVs). The PTV margin was isotropically taken as 5 mm. Registration was automatically performed using “pre-3D” CBCT. Treatment was performed with a D95 prescription of 50 Gy delivered in 4 fractions. The 4D tumor locations during beam delivery were determined using in-treatment 4D CBCT images acquired in each fraction. Then, the discrepancy between the actual tumor location and the ITV was evaluated in the lateral, vertical, and longitudinal directions. Results: Overall, 55 4D CBCT sets during VMAT-SBRT were successfully obtained. The amplitude of tumor motion was less than 10 mm in all directions. The average displacements between ITV and actual tumor location during treatment were 0.41 ± 0.93 mm, 0.15 ± 0.58 mm, and 0.60 ± 0.99 mm for the craniocaudal, left-right, and anteroposterior directions, respectively. The discrepancy in each phase did not exceed 5 mm in any direction. Conclusions: With in-treatment 4D CBCT, we confirmed the required PTV margins when the registration for moving target was performed using pre-3D CBCT. In-treatment 4D CBCT is a direct method for quantitatively assessing the intrafractional location of a moving target.

  16. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study

    PubMed Central

    2013-01-01

    Background Compared to static beam Intensity-Modulated Radiation Therapy (IMRT), the main advantage of Volumetric Modulated Arc Therapy (VMAT) is a shortened delivery time, which leads to improved patient comfort and possibly smaller intra-fraction movements. This study aims at a treatment planner-independent comparison of radiotherapy treatment planning of IMRT and VMAT for head-and-neck cancer performed by several institutes and based on the same CT- and contouring data. Methods Five institutes generated IMRT and VMAT plans for five oropharyngeal cancer patients using either Pinnacle3 or Oncentra Masterplan to be delivered on Elekta linear accelerators. Results Comparison of VMAT and IMRT plans within the same patient and institute showed significantly better sparing for almost all OARs with VMAT. The average mean dose to the parotid glands and oral cavity was reduced from 27.2 Gy and 39.4 Gy for IMRT to 25.0 Gy and 36.7 Gy for VMAT, respectively. The dose conformity at 95% of the prescribed dose for PTVboost and PTVtotal was 1.45 and 1.62 for IMRT and 1.37 and 1.50 for VMAT, respectively. The average effective delivery time was reduced from 13:15 min for IMRT to 5:54 min for VMAT. Conclusions Independently of institution-specific optimization strategies, the quality of the VMAT plans including double arcs was superior to step-and-shoot IMRT plans including 5–9 beam ports, while the effective treatment delivery time was shortened by ~50% with VMAT. PMID:23369221

  17. On the Anatomy of a Point-charge in Superluminal Rotation and Its Relevance to Pulsar Radiation

    NASA Astrophysics Data System (ADS)

    Schmidt, Andrea C.; Singleton, J.; Middleditch, J.; Ardavan, H.; Ardavan, A.

    2013-06-01

    Recent theoretical work and data gathered from ground-based astrophysics experiments have shown unambiguously that most salient features of pulsar emission can be explained in terms of superluminal (faster than light in vacuum) polarization currents whose distribution pattern follows a circular orbit. A generic, simplified model of this kind has been found to approximate quantitatively the spectrum of the Crab pulsar as well as a variety of other pulsars for which multi-wavelength observations are available over 16 to 18 orders of magnitude of frequency with very few adjustable parameters. Here, we study the emission of a localized charge, e.g., a polarization-current element of infinitesimal volume, in constant superluminal rotation to simulate a typical pulsar’s emitting region. We set out by applying basic methods introduced by Huyghens and Fresnel to gain phase information and find that radiation sources that travel not only faster than light, but are also subject to acceleration, possess a two-sheeted envelope and a cusp - a region of intense concentration of energy. Moreover, careful analysis of the relationship between emission and observation time reveals that this need not be monotonic and one-to-one, as multiple retarded times - or even extended periods of source time - can contribute to a single instant of reception. To introduce amplitude in addition to phase information, we derive and numerically evaluate the correct formulae for the Liénard-Wiechert potentials and fields excited by a point charge travelling arbitrarily fast along a given trajectory. Finally, we compare these findings to the radiation emitted by pulsars and find that virtually all of the enigmatic features of pulsar radiation - the polarization properties, image structure, apparent radiation temperature and peak spectral frequencies - can be explained using a single, elegant model with few input parameters and no external assumptions.

  18. On MHD rotational transport, instabilities and dynamo action in stellar radiation zones

    NASA Astrophysics Data System (ADS)

    Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.

    2009-04-01

    Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.

  19. Framing the features of Brownian motion and thermophoresis on radiative nanofluid flow past a rotating stretching sheet with magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mabood, F.; Ibrahim, S. M.; Khan, W. A.

    This article addresses the combined effects of chemical reaction and viscous dissipation on MHD radiative heat and mass transfer of nanofluid flow over a rotating stretching surface. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of heat source. Similarity transformation variables have been used to model the governing equations of momentum, energy, and nanoparticles concentration. Runge-Kutta-Fehlberg method with shooting technique is applied to solve the resulting coupled ordinary differential equations. Physical features for all pertinent parameters on the dimensionless velocity, temperature, skin friction coefficient, and heat and mass transfer rates are analyzed graphically. The numerical comparison has also presented for skin friction coefficient and local Nusselt number as a special case for our study. It is noted that fluid velocity enhances when rotational parameter is increased. Surface heat transfer rate enhances for larger values of Prandtl number and heat source parameter while mass transfer rate increases for larger values of chemical reaction parameter.

  20. SU-E-T-335: Dosimetric Investigation of An Advanced Rotating Gamma Ray System for Imaged Guided Radiation Therapy

    SciTech Connect

    Ma, C; Eldib, A; Chibani, O; Li, J; Chen, L; Li, C; Mora, G

    2015-06-15

    Purpose: Co-60 beams have unique dosimetric properties for cranial treatments and thoracic cancers. The conventional concern about the high surface dose is overcome by modern system designs with rotational treatment techniques. This work investigates a novel rotational Gamma ray system for image-guided, external beam radiotherapy. Methods: The CybeRT system (Cyber Medical Corp., China) consists of a ring gantry with either one or two treatment heads containing a Gamma source and a multileaf collimator (MLC). The MLC has 60 paired leaves, and the maximum field size is either 40cmx40cm (40 pairs of 0.5cm central leaves, 20 pairs of 1cm outer leaves), or 22cmx40cm (32 pairs of 0.25cm central leaves, 28 pairs of 0.5cm outer leaves). The treatment head(s) can swing 35° superiorly and 8° inferiorly, allowing a total of 43° non-coplanar beam incident. The treatment couch provides 6-degrees-of-freedom motion compensation and the kV cone-beam CT system has a spatial resolution of 0.4mm. Monte Carlo simulations were used to compute dose distributions and compare with measurements. A retrospective study of 98 previously treated patients was performed to compare CybeRT with existing RT systems. Results: Monte Carlo results confirmed the CybeRT design parameters including output factors and 3D dose distributions. Its beam penumbra/dose gradient was similar to or better than that of 6MV photon beams and its isocenter accuracy is 0.3mm. Co-60 beams produce lower-energy secondary electrons that exhibit better dose properties in low-density lung tissues. Because of their rapid depth dose falloff, Co-60 beams are favorable for peripheral lung tumors with half-arc arrangements to spare the opposite lung and critical structures. Superior dose distributions were obtained for head and neck, breast, spine and lung tumors. Conclusion: Because of its accurate dose delivery and unique dosimetric properties of C-60 sources, CybeRT is ideally suited for advanced SBRT as well as

  1. 21 cm maps of Jupiter's radiation belts from all rotational aspects

    NASA Technical Reports Server (NTRS)

    De Pater, I.

    1980-01-01

    Two-dimensional maps of the radio emission from Jupiter were made in December 1977 at a frequency of 1,412 MHz using the Westerbork telescope. Pictures in all four Stokes parameters have been obtained every 15 deg in longitude, each smeared over 15 deg of the planet's rotation. The maps have an E-W resolution of about 1/3 of the diameter of the disk and a N-S resolution 3 times less. The total intensity and linear polarization maps are accurate to 0.5% and the circularly polarized maps to 0.1% of the maximum intensities in I. The whole set of maps clearly shows the existence of higher order terms in the magnetic field of Jupiter.

  2. A retrospective planning analysis comparing intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) using two optimization algorithms for the treatment of early-stage prostate cancer

    SciTech Connect

    Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M

    2013-09-15

    The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with two arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time.

  3. Astrophysical Jets with Conical Wire Arrays: Radiative Cooling, Rotation and Deflection

    SciTech Connect

    Ampleford, D. J.; Jennings, C. A.; Lebedev, S. V.; Bland, S. N.; Hall, G. N.; Suzuki-Vidal, F.; Palmer, J. B. A.; Chittenden, J. P.; Ciardi, A.; Bott, S. C.

    2009-01-21

    Highly collimated outflows or jets are produced by a number of astrophysical objects including protostars. The morphology and collimation of these jets is thought to be strongly influenced by the effects of radiative cooling, angular momentum and the interstellar medium surrounding the jet. Astrophysically relevant experiments are performed with conical wire array z-pinches investigating each of these effects. It is possible in each case to enter the appropriate parameter regime, leading the way towards future experiments where these different techniques can be more fully combined.

  4. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    SciTech Connect

    Michalsky, J.; Harrison, L.

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  5. Similarity solution for a cylindrical shock wave in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Nath, G.

    2012-01-01

    The propagation of shock waves in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux, which has a variable azimuthally fluid velocity together with a variable axial fluid velocity, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston (or inner expanding surface). The fluid velocities in the ambient medium are assume to be vary and obey power laws. The density of the ambient medium is assumed to be constant, the heat conduction is express in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. In order to obtain the similarity solutions the angular velocity of the ambient medium is assume to be decreasing as the distance from the axis increases. The effects of the variation of the heat transfer parameter and non-idealness of the gas in the mixture are investigated. The effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are also investigated.

  6. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Nath, G.

    2010-04-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  7. GRAVITATIONAL RADIATION FROM HYDRODYNAMIC TURBULENCE IN A DIFFERENTIALLY ROTATING NEUTRON STAR

    SciTech Connect

    Melatos, A.; Peralta, C.

    2010-01-20

    The mean-square current quadrupole moment associated with vorticity fluctuations in high-Reynolds-number turbulence in a differentially rotating neutron star is calculated analytically, as are the amplitude and decoherence time of the resulting, stochastic gravitational wave signal. The calculation resolves the subtle question of whether the signal is dominated by the smallest or largest turbulent eddies: for the Kolmogorov-like power spectrum observed in superfluid spherical Couette simulations, the wave strain is controlled by the largest eddies, and the decoherence time approximately equals the maximum eddy turnover time. For a neutron star with spin frequency nu{sub s} and Rossby number Ro, at a distance d from Earth, the root mean square wave strain reaches h{sub rms} approx 3 x 10{sup -24} Ro{sup 3}(nu{sub s}/30 Hz){sup 3}(d/1 kpc){sup -1}. Ordinary rotation-powered pulsars (nu{sub s} approx< 30 Hz, Ro approx< 10{sup -4}) are too dim to be detected by the current generation of long-baseline interferometers. Millisecond pulsars are brighter; for example, an object born recently in a Galactic supernova or accreting near the Eddington rate can have nu{sub s} approx 1 kHz, Ro approx> 0.2, and hence h{sub rms} approx 10{sup -21}. A cross-correlation search can detect such a source in principle, because the signal decoheres over the timescale tau{sub c} approx 1 x 10{sup -3} Ro{sup -1}(nu{sub s}/30 Hz){sup -1} s, which is adequately sampled by existing long-baseline interferometers. Hence, hydrodynamic turbulence imposes a fundamental noise floor on gravitational wave observations of neutron stars, although its polluting effect may be muted by partial decoherence in the hectohertz band, where current continuous-wave searches are concentrated, for the highest frequency (and hence most powerful) sources. This outcome is contingent on the exact shape of the turbulent power spectrum, which is modified by buoyancy and anisotropic global structures, such as stratified

  8. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  9. The effect on radiated noise of non-zero propeller rotational plane attitude

    NASA Astrophysics Data System (ADS)

    Dobrzynski, W. M.

    1986-07-01

    Subsequent to CAEP's decision to introduce a new noise certification procedure, a joint attempt was made by the FAA and DFVLR to quantitatively determine the influence of a nonzero propeller-disk attitude on the resulting noise; tests were conducted with the German Dutch Wind Tunnel (DNW) in its aeroacoustic mode. It was found that the effect of propeller disk-plane attitude on maximum overall A-weighted noise levels can be related to a steady-state Mach number effect for the propeller operating at subsonic helical blade-tip (HBT) Mach-numbers exceeding a value of 0.7. For HBT Mach-numbers significantly below 0.7, additional noise radiation due to the unsteady flow properties within one propeller revolution dominate the overall A-weighted noise levels.

  10. EXTREMAL ENERGY SHIFTS OF RADIATION FROM A RING NEAR A ROTATING BLACK HOLE

    SciTech Connect

    Karas, VladimIr; Sochora, Vjaceslav

    2010-12-20

    Radiation from a narrow circular ring shows a characteristic double-horn profile dominated by photons having energy around the maximum or minimum of the allowed range, i.e., near the extremal values of the energy shift. The energy span of a spectral line is a function of the ring radius, black hole spin, and observer's viewing angle. We describe a useful approach to calculate the extremal energy shifts in the regime of strong gravity. Then we consider an accretion disk consisting of a number of separate nested annuli in the equatorial plane of a Kerr black hole, above the innermost stable circular orbit. We suggest that the radial structure of the disk emission could be reconstructed using the extremal energy shifts of the individual rings deduced from the broad wings of a relativistic spectral line.

  11. The radiation-induced rotation of cosmic dust particles: A feasibility study

    NASA Technical Reports Server (NTRS)

    Misconi, N. Y.; Ratcliff, K. F.

    1981-01-01

    A crossed beam, horizontal optical trap, used to achieve laser levitation of particles in an effort to determine how solar radiation produces high spin rate in interplanetary dust particles, is described. It is suggested that random variations in albedo and geometry give rise to a nonzero effective torque when the influence of a unidrectional source of radiaton (due to the Sun) over the surface of a interplanetary dust particle is averaged. This resultant nonzero torque is characterized by an asymmetry factor which is the ratio of the effective moment arm to the maximum linear dimension of the body and is estimated to be 5 X 10 to the minus four power. It is hoped that this symmetry factor, which stabilizes the nonstatistical response of the particle, can be measured in a future Spacelab experiment.

  12. Arc-based smoothing of ion beam intensity on targets

    DOE PAGES

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  13. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-15

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ('heavy-ion fusion'). Here, we consider an approach to such smoothing that is based on rapidly 'wobbling' each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  14. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  15. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    SciTech Connect

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-02-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the {gamma}-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and {gamma}-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient {gamma}-ray emitters. We divided the X-ray sample in a young ({tau}{sub c} < 1.7 x 10{sup 4} yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and {gamma}-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L{sub X}{proportional_to} P-dot{sup 3}/P{sup 6}. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency {eta}{identical_to}L{sub X}/ E-dot{sub rot}{approx}8x10{sup -5}. For the {gamma}-ray luminosity we confirm that L{sub {gamma}} {proportional_to} {radical}E-dot{sub rot}. We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  16. A Dosimetric Comparison of Tomotherapy and Volumetric Modulated Arc Therapy in the Treatment of High-Risk Prostate Cancer With Pelvic Nodal Radiation Therapy

    SciTech Connect

    Pasquier, David; Cavillon, Fabrice; Lacornerie, Thomas; Touzeau, Claire; Tresch, Emmanuelle; Lartigau, Eric

    2013-02-01

    Purpose: To compare the dosimetric results of volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT) in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy. Methods and Materials: Plans were generated for 10 consecutive patients treated for high-risk prostate cancer with prophylactic whole pelvic radiation therapy (WPRT) using VMAT and HT. After WPRT, a sequential boost was delivered to the prostate. Plan quality was assessed according to the criteria of the International Commission on Radiation Units and Measurements 83 report: the near-minimal (D98%), near-maximal (D2%), and median (D50%) doses; the homogeneity index (HI); and the Dice similarity coefficient (DSC). Beam-on time, integral dose, and several organs at risk (OAR) dosimetric indexes were also compared. Results: For WPRT, HT was able to provide a higher D98% than VMAT (44.3 {+-} 0.3 Gy and 43.9 {+-} 0.5 Gy, respectively; P=.032) and a lower D2% than VMAT (47.3 {+-} 0.3 Gy and 49.1 {+-} 0.7 Gy, respectively; P=.005), leading to a better HI. The DSC was better for WPRT with HT (0.89 {+-} 0.009) than with VMAT (0.80 {+-} 0.02; P=.002). The dosimetric indexes for the prostate boost did not differ significantly. VMAT provided better rectum wall sparing at higher doses (V70, V75, D2%). Conversely, HT provided better bladder wall sparing (V50, V60, V70), except at lower doses (V20). The beam-on times for WPRT and prostate boost were shorter with VMAT than with HT (3.1 {+-} 0.1 vs 7.4 {+-} 0.6 min, respectively; P=.002, and 1.5 {+-} 0.05 vs 3.7 {+-} 0.3 min, respectively; P=.002). The integral dose was slightly lower for VMAT. Conclusion: VMAT and HT provided very similar and highly conformal plans that complied well with OAR dose-volume constraints. Although some dosimetric differences were statistically significant, they remained small. HT provided a more homogeneous dose distribution, whereas VMAT enabled a shorter delivery time.

  17. SU-E-T-338: Dosimetric Study of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) for Stereotactic Body Radiation Therapy (SBRT) in Early Stage Lung Cancer

    SciTech Connect

    Ahmad, I; Quinn, K; Seebach, A; Wang, H; Yah, R

    2015-06-15

    Purpose: This study evaluates the dosimetric differences using volumetric modulated arc therapy (VMAT) in patients previously treated with intensity modulated radiation therapy IMRT for stereotactic body radiotherapy (SBRT) in early stage lung cancer. Methods: We evaluated 9 consecutive medically inoperable lung cancer patients at the start of the SBRT program who were treated with IMRT from November 2010 to October 2011. These patients were treated using 6 MV energy. The 9 cases were then re-planned with VMAT performed with arc therapy using 6 MV flattening filter free (FFF) energy with the same organs at risk (OARS) constraints. Data collected for the treatment plans included target coverage, beam on time, dose to OARS and gamma pass rate. Results: Five patients were T1N0 and four patients were T2N0 with all tumors less than 5 cm. The average GTV was 13.02 cm3 (0.83–40.87) and average PTV was 44.65 cm3 (14.06–118.08). The IMRT plans had a mean of 7.2 angles (6–9) and 5.4 minutes (3.6–11.1) per plan. The VMAT plans had a mean of 2.8 arcs (2–3) and 4.0 minutes (2.2–6.0) per plan. VMAT had slightly more target coverage than IMRT with average increase in D95 of 2.68% (1.24–5.73) and D99 of 3.65% (0.88–8.77). VMAT produced lower doses to all OARs. The largest reductions were in maximum doses to the spinal cord with an average reduction of 24.1%, esophagus with an average reduction of 22.1%, and lung with an average reduction in the V20 of 16.3% The mean gamma pass rate was 99.8% (99.2–100) at 3 mm and 3% for VMAT with comparable values for IMRT. Conclusion: These findings suggest that using VMAT for SBRT in early stage lung cancer is superior to IMRT in terms of dose coverage, OAR dose and a lower treatment delivery time with a similar gamma pass rate.

  18. Self-similar Solution of a Cylindrical Shock Wave under the Action of Monochromatic Radiation in a Rotational Axisymmetric Dusty Gas

    NASA Astrophysics Data System (ADS)

    Nath, G.; Sahu, P. K.

    2017-03-01

    A self-similar flow behind a cylindrical shock wave is studied under the action of monochromatic radiation in a rotational axisymmetric dusty gas. The dusty gas is taken to be a mixture of small solid particles and perfect gas, and solid particles are continuously distributed in the mixture. The similarity solutions are obtained and the effects of the variation of the radiation parameter, the ratio of the density of solid particles to the initial density of the gas, the mass concentration of solid particles in the mixture and the index for the time dependent energy law are investigated. It is observed that an increase in the radiation parameter has decaying effect on the shock waves; whereas the shock strength increases with an increase in the ratio of the density of solid particles to the initial density of the gas or the index for the time dependent energy law. Also, it is found that an increase in the radiation parameter has effect to decrease the flow variables except the density and the azimuthal component of fluid velocity. A comparison is also made between rotating and non-rotating cases.

  19. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  20. Statistical quality control for volumetric modulated arc therapy (VMAT) delivery by using the machine's log data

    NASA Astrophysics Data System (ADS)

    Cheong, Kwang-Ho; Lee, Me-Yeon; Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Kim, Haeyoung; Kim, Kyoung Ju; Han, Tae Jin; Bae, Hoonsik

    2015-07-01

    The aim of this study is to set up statistical quality control for monitoring the volumetric modulated arc therapy (VMAT) delivery error by using the machine's log data. Eclipse and a Clinac iX linac with the RapidArc system (Varian Medical Systems, Palo Alto, USA) are used for delivery of the VMAT plan. During the delivery of the RapidArc fields, the machine determines the delivered monitor units (MUs) and the gantry angle's position accuracy and the standard deviations of the MU ( σMU: dosimetric error) and the gantry angle ( σGA: geometric error) are displayed on the console monitor after completion of the RapidArc delivery. In the present study, first, the log data were analyzed to confirm its validity and usability; then, statistical process control (SPC) was applied to monitor the σMU and the σGA in a timely manner for all RapidArc fields: a total of 195 arc fields for 99 patients. The MU and the GA were determined twice for all fields, that is, first during the patient-specific plan QA and then again during the first treatment. The sMU and the σGA time series were quite stable irrespective of the treatment site; however, the sGA strongly depended on the gantry's rotation speed. The σGA of the RapidArc delivery for stereotactic body radiation therapy (SBRT) was smaller than that for the typical VMAT. Therefore, SPC was applied for SBRT cases and general cases respectively. Moreover, the accuracy of the potential meter of the gantry rotation is important because the σGA can change dramatically due to its condition. By applying SPC to the σMU and σGA, we could monitor the delivery error efficiently. However, the upper and the lower limits of SPC need to be determined carefully with full knowledge of the machine and log data.

  1. Spectroscopic Diagnostics and an Arc Jet Heated Air Plasma

    NASA Technical Reports Server (NTRS)

    Mack, Larry Howard, Jr.

    1996-01-01

    Spectral radiation measurements were made in the range of 200 to 900 nm across a section of the plenum of an arc jet wind tunnel using a series of optical fibers. The spectra contained line radiation from Oxygen and Nitrogen atoms and molecular radiation from N2(+), N2, and NO. Abel inversion technique is used to obtain radial distribution of the spectra. The analysis yielded radial profiles of the electronic excitation, vibrational and rotational temperatures of the flow field. Spectral fitting yielded branching ratios for different vibrational and rotational bands. Relatively mild flow conditions, i.e. enthalpy and mass flow rate, were used for prolonged measurements of up to and over two hours to establish the best experimental methods of temperature determinations. Signal to noise was improved by at least an order of magnitude enabling the molecular vibrational band heads of N2(+) (first negative system), N2 (second positive system), and NO (beta, gamma, delta, and epsilon systems) to be resolved in the lower ultraviolet wavelength regions. The increased signal to noise ratio also enabled partial resolution of the rotational lines of N2(+) and N2 in certain regions of minimal overlap. Comparison of the spectra with theoretical models such as the NEQAIR2 code are presented and show potential for fitting the spectra when reliable calibration is performed for the complete wavelength range.

  2. Earth zonal harmonics from rapid numerical analysis of long satellite arcs

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.

    1972-01-01

    A zonal geopotential is presented to degree 21 from evaluation of mean elements for 21 satellites including 2 of low inclination. Each satellite is represented by an arc of at least one apsidal rotation. The lengths range from 200 to 800 days. Differential correction of the initial elements in all of the arcs, together with radiation pressure and atmospheric drag coefficients, was accomplished simultaneously with the correction for the zonal harmonics. The satellite orbits and their variations are generated by numerical integration of the Lagrange equations for mean elements. Disturbances due to precession and nutation of the earth's pole, atmospheric drag, radiation pressure and luni-solar gravity are added at from 1- to 8-day intervals in the integrated orbits. The results agree well with recent solutions from other authors using different methods and different satellite sets.

  3. Commissioning and quality assurance of Dynamic WaveArc irradiation.

    PubMed

    Sato, Sayaka; Miyabe, Yuki; Takahashi, Kunio; Yamada, Masahiro; Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Yokota, Kenji; Kaneko, Shuji; Mizowaki, Takashi; Monzen, Hajime; Hiraoka, Masahiro

    2015-03-08

    A novel three-dimensional unicursal irradiation technique "Dynamic WaveArc" (DWA), which employs simultaneous and continuous gantry and O-ring rotation during dose delivery, has been implemented in Vero4DRT. The purposes of this study were to develop a commissioning and quality assurance procedure for DWA irradiation, and to assess the accuracy of the mechanical motion and dosimetric control of Vero4DRT. To determine the mechanical accuracy and the dose accuracy with DWA irradiation, 21 verification test patterns with various gantry and ring rotational directions and speeds were generated. These patterns were irradiated while recording the irradiation log data. The differences in gantry position, ring position, and accumulated MU (EG, ER, and EMU, respectively) between the planned and actual values in the log at each time point were evaluated. Furthermore, the doses delivered were measured using an ionization chamber and spherical phantom. The constancy of radiation output during DWA irradiation was examined by comparison with static beam irradiation. The mean absolute error (MAE) of EG and ER were within 0.1° and the maximum error was within 0.2°. The MAE of EMU was within 0.7 MU, and maximum error was 2.7 MU. Errors of accumulated MU were observed only around control points, changing gantry, and ring velocity. The gantry rotational range, in which EMU was greater than or equal to 2.0 MU, was not greater than 3.2%. It was confirmed that the extent of the large differences in accumulated MU was negligibly small during the entire irradiation range. The variation of relative output value for DWA irradiation was within 0.2%, and this was equivalent to conventional arc irradiation with a rotating gantry. In conclusion, a verification procedure for DWA irradiation was designed and implemented. The results demonstrated that Vero4DRT has adequate mechanical accuracy and beam output constancy during gantry and ring rotation.

  4. Magnetogasdynamics shock waves in a rotational axisymmetric non-ideal gas with increasing energy and conductive and radiative heat-fluxes

    NASA Astrophysics Data System (ADS)

    Nath, Gorakh

    2016-07-01

    Self-similar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamics cylindrical shock wave propagating in a rotational axisymmetric non ideal gas with increasing energy and conductive and radiative heat fluxes in presence of an azimuthal magnetic field. The fluid velocities and the azimuthal magnetic field in the ambient medium are assume to be varying and obeying power laws. In order to find the similarity solutions the angular velocity of the ambient medium is taken to be decreasing as the distance from the axis increases. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The effects of the presence of radiation and conduction, the non-idealness of the gas and the magnetic field on the shock propagation and the flow behind the shock are investigated.

  5. APPARATUS AND METHOD FOR ARC WELDING

    DOEpatents

    Noland, R.A.; Stone, C.C.

    1960-05-10

    An apparatus and method are given for forming a welding arc which is rotated by a magnetic field very rapidly about an annular electrode so that a weld is produced simultaneously over all points of an annular or closed path. This invention inhibits outgassing from the jacket of a fuel slug which is being welded by adjusting the pressure throughout the welding cycle to establish a balance between the gas pressure within the jacket and that of the atmosphere surrounding the jacket. Furthermore, an improved control of the magnetic field producing rotation of the welding arc is disclosed whereby this rotation is prevented from splashing about the metal being welded as the welding arc makes it molten.

  6. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  7. Spin-orbit and rotational couplings in radiative association of C({sup 3}P) and N({sup 4}S) atoms

    SciTech Connect

    Antipov, Sergey V.; Gustafsson, Magnus; Nyman, Gunnar

    2011-11-14

    The role of spin-orbit and rotational couplings in radiative association of C({sup 3}P) and N({sup 4}S) atoms is investigated. Couplings among doublet electronic states of the CN radical are considered, giving rise to a 6-state model of the process. The solution of the dynamical problem is based on the L{sup 2} method, where a complex absorbing potential is added to the Hamiltonian operator in order to treat continuum and bound levels in the same manner. Comparison of the energy-dependent rate coefficients calculated with and without spin-orbit and rotational couplings shows that the couplings have a strong effect on the resonance structure and low-energy baseline of the rate coefficient.

  8. Of Eggs and Arcs

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Thomas, P. C.; Helfenstein, P.; Tiscareno, M. S.; Hedman, M. M.; Agarwal, M.

    2012-10-01

    New scenarios for the origins of Saturn’s rings/interior moons have directed scientific attention to the region just exterior to Saturn’s main rings. Four satellites (Aegaeon = Ae; Anthe = An; Methone = Me; Pallene = Pa) discovered by the Cassini mission on either side of Mimas’s orbit perhaps comprise a distinct class of ring-moon. They are tiny (R = 0.3-2.5 km); three (AeAnMe) are trapped in co-rotation resonances with Mimas and reside within ring-arcs; and at least two (MePa) have remarkably regular shapes. Images with pixel scales as fine as 27 m taken in May 2012 reveal Methone to be ovoid within 10 m (from sub-pixel limb detection) and devoid of any craters (>130 m) across its 9 km2 of surface; Pallene and even tiny Aegaeon have similar appearances in lesser-quality images. Numerical simulations demonstrate that particles comprising the surrounding ring-arcs populate the same resonances as their embedded moons; escape speeds from the moons are < 0.5 m/s, smaller than the 2 m/s that dynamically characterize the resonant well. We investigate the gentle transfer of particles back and forth between the ring-arcs and any embedded bodies. In this environment, the moons’ shapes are smooth equipotentials; electrostatic effects may also determine how grains settle to surfaces. Considering these shapes to represent equipotential surfaces for rotating, tidally distorted, homogeneous bodies, we infer mean satellite densities of 250+/-60 (Pa), 310+/-30 (Me), and 540+/-120 (Ae) kg m-3. About half of Methone’s leading hemisphere is covered by a sharply bounded, lemon-shaped, relatively dark region, having a form reminiscent of Mimas’s thermal anomaly (Howett et al. 2011). Its (601 nm) albedo is 13% lower than the bounding brighter material. An irregularly shaped, even-darker (by 4%) blotch straddles the apex of the moon’s motion. Impacts with circum-planetary meteoroids and plasma are likely responsible for these features.

  9. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  10. Similarity Solutions for the Flow Behind an Exponential Shock in a Rotating Nonideal Gas with Heat Conduction and Radiation Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Nath, B.

    2014-07-01

    A self-similar solution for the propagation of a shock wave driven by a cylindrical piston moving according to exponential temporal law in a nonideal rotating gas with heat conduction and radiation heat fluxes is investigated. The density and angular velocity of the ambient medium are assumed to be constant. Heat conduction is expressed in terms of the Fourier law, and radiation is considered to be of diffusion type for an optically thick gray gas model. The thermal conductivity and absorption coefficient are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variations in the heat transfer parameters and gas nonidealness on the flow variables in the region behind the shock are investigated.

  11. Oscillatory MHD Convective Flow of Second Order Fluid Through Porous Medium in a Vertical Rotating Channel in Slip-Flow Regime with Heat Radiation

    NASA Astrophysics Data System (ADS)

    Garg, B. P.; Singh, K. D.; Bansal, A. K.

    2015-02-01

    An analysis of an oscillatory magnetohydrodynamic (MHD) convective flow of a second order (viscoelastic), incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter λ , Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation ω .

  12. Combined Influence of Hall Current and Soret Effect on Chemically Reacting Magnetomicropolar Fluid Flow from Radiative Rotating Vertical Surface with Variable Suction in Slip-Flow Regime.

    PubMed

    Jain, Preeti

    2014-01-01

    An analysis study is presented to study the effects of Hall current and Soret effect on unsteady hydromagnetic natural convection of a micropolar fluid in a rotating frame of reference with slip-flow regime. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with variable suction velocity. The effects of heat absorption, chemical reaction, and thermal radiation are discussed and for this Rosseland approximation is used to describe the radiative heat flux in energy equation. The entire system rotates with uniform angular velocity Ω about an axis normal to the plate. The nonlinear coupled partial differential equations are solved by perturbation techniques. In order to get physical insight, the numerical results of translational velocity, microrotation, fluid temperature, and species concentration for different physical parameters entering into the analysis are discussed and explained graphically. Also, the results of the skin-friction coefficient, the couple stress coefficient, Nusselt number, and Sherwood number are discussed with the help of figures for various values of flow pertinent flow parameters.

  13. Combined Influence of Hall Current and Soret Effect on Chemically Reacting Magnetomicropolar Fluid Flow from Radiative Rotating Vertical Surface with Variable Suction in Slip-Flow Regime

    PubMed Central

    Jain, Preeti

    2014-01-01

    An analysis study is presented to study the effects of Hall current and Soret effect on unsteady hydromagnetic natural convection of a micropolar fluid in a rotating frame of reference with slip-flow regime. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with variable suction velocity. The effects of heat absorption, chemical reaction, and thermal radiation are discussed and for this Rosseland approximation is used to describe the radiative heat flux in energy equation. The entire system rotates with uniform angular velocity Ω about an axis normal to the plate. The nonlinear coupled partial differential equations are solved by perturbation techniques. In order to get physical insight, the numerical results of translational velocity, microrotation, fluid temperature, and species concentration for different physical parameters entering into the analysis are discussed and explained graphically. Also, the results of the skin-friction coefficient, the couple stress coefficient, Nusselt number, and Sherwood number are discussed with the help of figures for various values of flow pertinent flow parameters. PMID:27350957

  14. Intrafraction Prostate Translations and Rotations During Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins

    SciTech Connect

    Water, Steven van de; Valli, Lorella; Aluwini, Shafak; Lanconelli, Nico; Heijmen, Ben; Hoogeman, Mischa

    2014-04-01

    Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V{sub 100%}) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3

  15. Helical Tomotherapy Versus Single-Arc Intensity-Modulated Arc Therapy: A Collaborative Dosimetric Comparison Between Two Institutions

    SciTech Connect

    Rong Yi; Tang, Grace; Welsh, James S.; Mohiuddin, Majid M.; Paliwal, Bhudatt; Yu, Cedric X.

    2011-09-01

    Purpose: Both helical tomotherapy (HT) and single-arc intensity-modulated arc therapy (IMAT) deliver radiation using rotational beams with multileaf collimators. We report a dual-institution study comparing dosimetric aspects of these two modalities. Methods and Materials: Eight patients each were selected from the University of Maryland (UMM) and the University of Wisconsin Cancer Center Riverview (UWR), for a total of 16 cases. Four cancer sites including brain, head and neck (HN), lung, and prostate were selected. Single-arc IMAT plans were generated at UMM using Varian RapidArc (RA), and HT plans were generated at UWR using Hi-Art II TomoTherapy. All 16 cases were planned based on the identical anatomic contours, prescriptions, and planning objectives. All plans were swapped for analysis at the same time after final approval. Dose indices for targets and critical organs were compared based on dose-volume histograms, the beam-on time, monitor units, and estimated leakage dose. After the disclosure of comparison results, replanning was done for both techniques to minimize diversity in optimization focus from different operators. Results: For the 16 cases compared, the average beam-on time was 1.4 minutes for RA and 4.8 minutes for HT plans. HT provided better target dose homogeneity (7.6% for RA and 4.2% for HT) with a lower maximum dose (110% for RA and 105% for HT). Dose conformation numbers were comparable, with RA being superior to HT (0.67 vs. 0.60). The doses to normal tissues using these two techniques were comparable, with HT showing lower doses for more critical structures. After planning comparison results were exchanged, both techniques demonstrated improvements in dose distributions or treatment delivery times. Conclusions: Both techniques created highly conformal plans that met or exceeded the planning goals. The delivery time and total monitor units were lower in RA than in HT plans, whereas HT provided higher target dose uniformity.

  16. SU-E-T-626: Practical Method to Implement Arc Therapy Using Scanned Particle Beams

    SciTech Connect

    Eley, J; Mehta, M; Molitoris, J; Langner, U; Langen, K

    2015-06-15

    Purpose: The purpose of this study was to propose a method to implement arc therapy that is compatible with existing particle therapy systems having gantries and pencil-beam scanning capacities. Furthermore, we sought to demonstrate expected benefits of this method for selected clival chordoma patients. Methods: We propose that a desired particle arc treatment plan can be discretized into a finite number of fixed beams and that only one (or a subset) of these beams be delivered in any single treatment fraction; the target should receive uniform dose during each fraction. For 3 clival-chordoma patients, robust-optimized, scanned proton beams were simulated to deliver 78 Gy (RBE) to clinical target volumes (CTVs), using either a single-field plan with a posterior-anterior (PA) beam or a discrete-arc plan with 16 beams that were equally spaced throughout a 360-degree axial arc. Dose-volume metrics were compared with emphasis on the brainstem, since risk of radiation necrosis there can often restrict application of tumoricidal doses for chordomas. Results: The mean volume of brainstem receiving a dose of 60 Gy (RBE) or higher (V60Gy) was 10.3±0.9 cm{sup 3} for the single-field plan and 4.7±1.8 cm{sup 3} for the discrete-arc plan, a reduction of 55% in favor of arcs. The mean dose to the brainstem was also reduced using arcs, by 18%, while the maximum dose was nearly identical for both methods. For the whole brain, V60Gy was reduced by 23%, in favor of arcs. Mean dose to the CTVs were nearly identical for both strategies, within 0.3%. Conclusion: Discrete arc treatments can be implemented using existing scanned particle-beam facilities. Aside from the physical advantages, the biological uncertainties of particle therapy, particularly high in the distal edge, can be reduced by arc therapy via rotational smearing, which may be of benefit for tumors near the brainstem.

  17. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  18. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  19. Orbital evolution of Neptune's ring arcs

    NASA Astrophysics Data System (ADS)

    Giuliatti-Winter, Silvia; Madeira, Gustavo

    2016-10-01

    Voyager 2 spacecraft sent several images of the Neptune's ring system in 1989. These images show a set of arcs (Courage, Liberté, Egalité and Fraternité), previously detected by stellar occultation in 1984, embedded in the tenuous Adams ring. In order to maintain the confinement of the arcs against the spreading, Renner et al. (2015) proposeda model which the Adams ring has a collection of small coorbital satellites placed in specific positions. These coorbitals would be responsible for maintaining the arcs particles. In this work we analyse the orbital evolution of the particles coorbital to the satellites by adding the effects of the solar radiation force. Our numerical results show that due to this dissipative effect the smallest particles, 1μm in size, leave the arc in less than 10years. Larger particles leave the arc, but can stay confined between the coorbital satellites. De Pater et al. (2005) suggested that a small moonlet embedded in the arc Fraternité can be the source of the arcs and even theAdams ring through an erosion mechanism. Our preliminary results showed that a moonlet up to 200m in radius can stay in the arc without causing any significant variation in the eccentricities of the coorbitals and the particles.

  20. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  1. Long-rotation sugarcane in Hawaii sustains high carbon accumulation and radiation use efficiency in 2nd year of growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane has been a major agronomic crop in Hawaii with an unique, high-yield, two-year production system. However,parameters relevant to advanced, cellulosic biofuel production, such as net ecosystem productivity (NEP) and radiation use efficiency (RUE), have not been evaluated in Hawaii under com...

  2. Corrected Article: "Experimental observation of nonspherically-decaying radiation from a rotating superluminal source" [J. Appl. Phys. 96, 4614 (2004)

    NASA Astrophysics Data System (ADS)

    Ardavan, A.; Hayes, W.; Singleton, J.; Ardavan, H.; Fopma, J.; Halliday, D.

    2004-12-01

    We describe the experimental implementation of a superluminal (i.e., faster than light in vacuo) polarization current distribution that both oscillates and undergoes centripetal acceleration. Theoretical treatments predict that the radiation emitted by each volume element of the superluminally moving distribution pattern will comprise a Čerenkov-like envelope with two sheets that meet along a cusp. Correspondingly, the emission from the experimental machine is found to be tightly beamed in both the azimuthal and polar directions. The beaming is frequency independent and has a sharply defined and unchanging geometry determined only by the speed and path of the moving distribution pattern, i.e., by the parameters governing the structure of the Čerenkov-like envelopes. In addition, over a restricted range of angles, we detect the presence of cusps in the emitted radiation. These, which are due to the focusing of wave fronts on a propagating space curve, result in the reception, during a short time period, of radiation emitted over a considerably longer period of (retarded) source time. The intensity of the radiation at these angles was observed to decline more slowly with increasing distance from the source than would the emission from a conventional antenna. The angular distribution of the emitted radiation and the properties associated with the cusps are in good quantitative agreement with theoretical models of superluminal sources once the effect of reflections from the earth's surface are taken into account. In particular, the prediction that the beaming and the slow decay should extend into the far zone has been tested to several hundred Fresnel distances (Rayleigh ranges). The excellent agreement between the theoretical calculations and the data suggests that the apparatus achieves precise and reproducible control of the polarization current and that similar machines could be of general interest for studying and utilizing the novel effects associated with

  3. Theory of Kerr and Faraday rotation in Topological Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Kargarian, Mehdi; Randeria, Mohit; Trivedi, Nandini

    2015-03-01

    Topological Weyl semimetals are characterized by bulk Dirac nodes separated in momentum space by a distance 2 b and lead to Fermi arcs in the surfaces electronic structure. We calculate the Faraday θF and Kerr θK angles for electromagnetic waves scattered from such a Weyl semimetal using the Kubo formalism. (1) For thin films with electromagnetic radiation incident on a surface without arcs, we show that θK = bd / απ and θF = απ / bd where α is the fine structure constant, and the film thickness d << λ , the wavelength. We further show multiple reflections give rise to giant Kerr rotation, under certain conditions, for a film on a substrate. (2) In the case when the electromagnetic radiation is incident on the surface with arcs, the wave propagating inside the material acquires a longitudinal component of the electric field proportional to b. We discuss the implications of our results for thin films of pyrochlore iridates, and also for the recently discovered Dirac semimetals in a magnetic field. We acknowledge the support of the CEM, an NSF MRSEC, under Grant DMR-1420451.

  4. Radiation imaging with a rotational modulation collimator (RMC) coupled to a Cs2LiYCl6:Ce (CLYC) detector

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Suk; Ye, Sung-Joon; Shin, Youngjun; Lee, Gyemin; Kim, Geehyun

    2016-12-01

    As an attempt to develop a gamma-ray/neutron dual-particle imager, we employed a rotating modulation collimator (RMC) coupled to a pulse shape discrimination-capable scintillator. We performed fundamental simulations on the proposed RMC system utilizing a CLYC detector to verify the basic properties of the RMC system and to optimize the computing methods for the Monte Carlo simulation. We obtained batches of modulation patterns for various source locations by using Monte Carlo N-Particle simulations, and we studied the characteristics of the modulation patterns, such as the rotational effect, the shift effect, and the symmetric effect. We compared simulated modulation patterns with those obtained from the mathematical model of the RMC system to investigate the feasibility of identifying the source location correctly based on the simulated patterns. When a source was located in the far-field region, the modulation patterns showed good agreement between the Monte Carlo simulation and the mathematical model. The results hold promises for reconstructing gamma and neutron images of radioactivity by using a RMC system on a CLYC detector.

  5. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  6. A generalized inverse planning tool for volumetric-modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Cao, Daliang; Afghan, Muhammad K. N.; Ye, Jinsong; Chen, Fan; Shepard, David M.

    2009-11-01

    The recent development in linear accelerator control systems, named volumetric-modulated arc therapy (VMAT), has generated significant interest in arc-based intensity-modulated radiation therapy (IMRT). The VMAT delivery technique features simultaneous changes in dose rate, gantry angle and gantry rotation speed as well as multi-leaf collimator (MLC) leaf positions while radiation is on. In this paper, we describe a generalized VMAT planning tool that is designed to take full advantage of the capabilities of the new linac control systems. The algorithm incorporates all of the MLC delivery constraints such as restrictions on MLC leaf interdigitation and the MLC leaf velocity constraints. A key feature of the algorithm is that it is able to plan for both single- and multiple-arc deliveries. Compared to conventional step-and-shoot IMRT plans, our VMAT plans created using this tool can achieve similar or better plan quality with less MU and better delivery efficiency. The accuracy of the obtained VMAT plans is also demonstrated through plan verifications performed on an Elekta Synergy linear accelerator equipped with a conventional MLC of 1 cm leaf width using a PreciseBeam® VMAT linac control system.

  7. Effect of hall current on MHD flow of a nanofluid with variable properties due to a rotating disk with viscous dissipation and nonlinear thermal radiation

    NASA Astrophysics Data System (ADS)

    Abdel-Wahed, Mohamed; Akl, Mohamed

    2016-09-01

    Analysis of the MHD Nanofluid boundary layer flow over a rotating disk with a constant velocity in the presence of hall current and non-linear thermal radiation has been covered in this work. The variation of viscosity and thermal conductivity of the fluid due to temperature and nanoparticles concentration and size is considered. The problem described by a system of P.D.E that converted to a system of ordinary differential equations by the similarity transformation technique, the obtained system solved analytically using Optimal Homotopy Asymptotic Method (OHAM) with association of mathematica program. The velocity profiles and temperature profiles of the boundary layer over the disk are plotted and investigated in details. Moreover, the surface shear stress, rate of heat transfer explained in details.

  8. Correlation of some radiative processes resulting from electronic and vibrational spectra of a CN molecule excited in an electric arc discharge

    NASA Astrophysics Data System (ADS)

    Iova, Iancu; Bazavan, M.; Biloiu, Costel; Ilie, Gheorghe; Bulinski, M.

    1998-07-01

    The molecular vibration temperature of the plasma from an interrupt arc discharge in air at atmospheric pressure and at current intensities in the range of 2 divided by 8 Amperes, using electronic and vibration bands of violet [B2(Sigma) + - X2(Sigma) +] and red [A2(Pi) - X2(Sigma) +] systems of the CN molecule was determined. At the equilibrium temperature of 6400 K, 27 lines of Ti, contained as impurity in coal electrode were found. These spectral lines were found in the 247 divided by 340 nm spectral range, having the upper levels of the excitation energies in the 3.60 divided by 5.69 eV range, in the neighborhood of the energy of dissociation of the CN molecule on the fundamental electronic state. Some considerations about the vibrational states populations are also made.

  9. Evaluation of the clinical usefulness of modulated arc treatment

    NASA Astrophysics Data System (ADS)

    Lee, Young Kyu; Jang, Hong Seok; Kim, Yeon Sil; Choi, Byung Ock; Kang, Young-Nam; Nam, Sang Hee; Park, Hyeong Wook; Kim, Shin Wook; Shin, Hun Joo; Lee, Jae Choon; Kim, Ji Na; Park, Sung Kwang; Kim, Jin Young

    2015-07-01

    The purpose of this study is to evaluate the clinical usefulness of modulated arc (mARC) treatment techniques. The mARC treatment plans for non-small-cell lung cancer (NSCLC) patients were made in order to verify the clinical usefulness of mARC. A pre-study was conducted to find the best plan condition for mARC treatment, and the usefulness of the mARC treatment plan was evaluated by comparing it with other Arc treatment plans such as tomotherapy and RapidArc plans. In the case of mARC, the optimal condition for the mARC plan was determined by comparing the dosimetric performance of the mARC plans developed by using various parameters, which included the photon energy (6 MV, 10 MV), the optimization point angle (6°- 10°intervals), and the total number of segments (36 - 59 segments). The best dosimetric performance of mARC was observed at a 10 MV photon energy, a point angle 6 degrees, and 59 segments. The treatment plans for the three different techniques were compared by using the following parameters: the conformity index (CI), homogeneity index (HI), the target coverage, the dose to the OARs, the number of monitor units (MU), the beam on time, and the normal tissue complication probability (NTCP). As a result, the three different treatment techniques showed similar target coverages. The mARC plan had the lowest V20 (volume of lung receiving > 20 Gy) and MU per fraction compared with both the RapidArc and the tomotherapy plans. The mARC plan reduced the beam on time as well. Therefore, the results of this study provide satisfactory evidence that the mARC technique can be considered as a useful clinical technique for radiation treatment.

  10. SU-E-T-268: Differences in Treatment Plan Quality and Delivery Between Two Commercial Treatment Planning Systems for Volumetric Arc-Based Radiation Therapy

    SciTech Connect

    Chen, S; Zhang, H; Zhang, B; D’Souza, W

    2015-06-15

    Purpose: To clinically evaluate the differences in volumetric modulated arc therapy (VMAT) treatment plan and delivery between two commercial treatment planning systems. Methods: Two commercial VMAT treatment planning systems with different VMAT optimization algorithms and delivery approaches were evaluated. This study included 16 clinical VMAT plans performed with the first system: 2 spine, 4 head and neck (HN), 2 brain, 4 pancreas, and 4 pelvis plans. These 16 plans were then re-optimized with the same number of arcs using the second treatment planning system. Planning goals were invariant between the two systems. Gantry speed, dose rate modulation, MLC modulation, plan quality, number of monitor units (MUs), VMAT quality assurance (QA) results, and treatment delivery time were compared between the 2 systems. VMAT QA results were performed using Mapcheck2 and analyzed with gamma analysis (3mm/3% and 2mm/2%). Results: Similar plan quality was achieved with each VMAT optimization algorithm, and the difference in delivery time was minimal. Algorithm 1 achieved planning goals by highly modulating the MLC (total distance traveled by leaves (TL) = 193 cm average over control points per plan), while maintaining a relatively constant dose rate (dose-rate change <100 MU/min). Algorithm 2 involved less MLC modulation (TL = 143 cm per plan), but greater dose-rate modulation (range = 0-600 MU/min). The average number of MUs was 20% less for algorithm 2 (ratio of MUs for algorithms 2 and 1 ranged from 0.5-1). VMAT QA results were similar for all disease sites except HN plans. For HN plans, the average gamma passing rates were 88.5% (2mm/2%) and 96.9% (3mm/3%) for algorithm 1 and 97.9% (2mm/2%) and 99.6% (3mm/3%) for algorithm 2. Conclusion: Both VMAT optimization algorithms achieved comparable plan quality; however, fewer MUs were needed and QA results were more robust for Algorithm 2, which more highly modulated dose rate.

  11. Percussive arc welding apparatus

    DOEpatents

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  12. Frequency spectrum of focused broadband pulses of electromagnetic radiation generated by polarization currents with superluminally rotating distribution patterns.

    PubMed

    Ardavan, Houshang; Ardavan, Arzhang; Singleton, John

    2003-11-01

    We investigate the spectral features of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency omega > omega differing from an integral multiple of omega) at the same time. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. Although all of the processes involved are linear, we find that the broadband emission contains frequencies that are higher than omega by a factor of the order of (omega/omega)2. This generation of frequencies not required for the creation of the source stems from mathematically rigorous consequences of the familiar classical expression for the retarded potential. The results suggest practical applications for superluminal polarization currents as broadband radio-frequency and infrared sources.

  13. Self-similar flow of a rotating dusty gas behind the shock wave with increasing energy, conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2012-01-01

    A self-similar solution is obtained for one dimensional adiabatic flow behind a cylindrical shock wave propagating in a rotating dusty gas in presence of heat conduction and radiation heat flux with increasing energy. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston (or inner expanding surface). The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature only. In order to obtain the similarity solutions the initial density of the ambient medium is assumed to be constant and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. The effects of the variation of the heat transfer parameters and non-idealness of the gas in the mixture are investigated. The effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are also investigated.

  14. SU-E-T-625: Potential for Reduced Radiation Induced Toxicity for the Treatment of Inoperable Non-Small-Cell Lung Cancer Using RapidArc Planning

    SciTech Connect

    Pokhrel, D; Sood, S; Badkul, R; Jiang, H; Saleh, H; Wang, F

    2015-06-15

    Purpose: To investigate the feasibility of using RapidArc (RA) treatment planning to reduce irradiation volume of normal lung and other organs at risk (OARs) in the treatment of inoperable non-small-cell lung cancer (NSCLC) patients. Methods: A retrospective treatment planning and delivery study was performed to compare target coverage and the volumes of the normal lung, spinal cord, heart and esophagus on 4D-CT scan above their dose tolerances delivered by RA vs. IMRT for ten inoperable NSCLC patients (Stage I-IIIB). RA plans consisted of either one-full or two-partial co-planar arcs used to treat 95% of the planning target volume (PTV) with 6MV beam to a prescription of 66Gy in 33 fractions. IMRT plans were generated using 5–7 co-planar fields with 6MV beam. PTV coverage, dose-volume histograms, homogeneity/conformity indices (CI), total number of monitor units(MUs), beam-on time and delivery accuracy were compared between the two treatment plans. Results: Similar target coverage was obtained between the two techniques. RA (CI=1.02) provided more conformal plans without loss of homogeneity compared to IMRT plans (CI=1.12). Compared to IMRT, RA achieved a significant median dose reduction in V10 (3%), V20 (8%), and mean lung dose (3%) on average, respectively. On average, V5 was comparable between the two treatment plans. RA reduced mean esophagus (6%), mean heart (18%), and maximum spinal cord dose (7%), on average, respectively. Total number of MUs and beam-on time were each reduced almost by a factor of 2 when compared to IMRT-patient comfort, reduced intra-fraction-motion and leakage dose. The average IMRT and RA QA pass rate was about 98% for both types of plans for 3%/3mm criterion. Conclusion: Compared to IMRT plans, RA provided not only comparable target coverage, but also improved conformity, treatment time, and significant reduction in irradiation of OARs. This may potentially allow for target dose escalation without increase in normal tissue toxicity.

  15. Glenohumeral joint rotation range of motion in competitive swimmers.

    PubMed

    Riemann, Bryan L; Witt, Joe; Davies, George J

    2011-08-01

    Much research has examined shoulder range of motion adaptations in overhead-unilateral athletes. Based on the void examining overhead-bilateral athletes, especially competitive swimmers, we examined shoulder external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion of competitive swimmers. The range of motion of registered competitive swimmers (n = 144, age = 12-61 years) was compared by limb (dominant, non-dominant), sex, and age group (youth, high school, college, masters). Significantly (P < 0.05) greater dominant external rotation was observed for both men and women high school and college swimmers, youth women swimmers, and men masters swimmers compared with the non-dominant limb. The isolated internal rotation (glenohumeral rotation), composite internal rotation (glenohumeral rotation plus scapulothoracic protraction), and total arc of motion (external rotation plus composite internal rotation) of the non-dominant limb was significantly greater than that of the dominant limb by sex and age group. Youth and high school swimmers demonstrated significantly greater composite internal rotation than college and masters swimmers. Youth swimmers displayed significantly greater total arc of motion than all other age groups. These data will aid in the interpretation of shoulder range of motion values in competitive swimmers during preseason screenings, injury evaluations and post-rehabilitation programmes, with the results suggesting that differences exist in bilateral external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion.

  16. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  17. Arc initiation in cathodic arc plasma sources

    SciTech Connect

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  18. Effect of cathode model on arc attachment for short high-intensity arc on a refractory cathode

    NASA Astrophysics Data System (ADS)

    Javidi Shirvan, Alireza; Choquet, Isabelle; Nilsson, Håkan

    2016-12-01

    Various models coupling the refractory cathode, the cathode sheath and the arc at atmospheric pressure exist. They assume a homogeneous cathode with a uniform physical state, and differ by the cathode layer and the plasma arc model. However even the most advanced of these models still fail in predicting the extent of the arc attachment when applied to short high-intensity arcs such as gas tungsten arcs. Cathodes operating in these conditions present a non-uniform physical state. A model taking into account the first level of this non-homogeneity is proposed based on physical criteria. Calculations are done for 5 mm argon arcs with a thoriated tungsten cathode. The results obtained show that radiative heating and cooling of the cathode surface are of the same order. They also show that cathode inhomogeneity has a significant effect on the arc attachment, the arc temperature and pressure. When changing the arc current (100 A, 200 A) the proposed model allows predicting trends observed experimentally that cannot be captured by the homogeneous cathode model unless restricting a priori the size of the arc attachment. The cathode physics is thus an important element to include to obtain a comprehensive and predictive arc model.

  19. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  20. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  1. Tumor cell survival dependence on helical tomotherapy, continuous arc and segmented dose delivery

    NASA Astrophysics Data System (ADS)

    Yang, Wensha; Wang, Li; Larner, James; Read, Paul; Benedict, Stan; Sheng, Ke

    2009-11-01

    The temporal pattern of radiation delivery has been shown to influence the tumor cell survival fractions for the same radiation dose. To study the effect more specifically for state of the art rotational radiation delivery modalities, 2 Gy of radiation dose was delivered to H460 lung carcinoma, PC3 prostate cancer cells and MCF-7 breast tumor cells by helical tomotherapy (HT), seven-field LINAC (7F), and continuous dose delivery (CDD) over 2 min that simulates volumetric rotational arc therapy. Cell survival was measured by the clonogenic assay. The number of viable H460 cell colonies was 23.2 ± 14.4% and 27.7 ± 15.6% lower when irradiated by CDD compared with HT and 7F, respectively, and the corresponding values were 36.8 ± 18.9% and 35.3 ± 18.9% lower for MCF7 cells (p < 0.01). The survival of PC3 was also lower when irradiated by CDD than by HT or 7F but the difference was not as significant (p = 0.06 and 0.04, respectively). The higher survival fraction from HT delivery was unexpected because 90% of the 2 Gy was delivered in less than 1 min at a significantly higher dose rate than the other two delivery techniques. The results suggest that continuous dose delivery at a constant dose rate results in superior in vitro tumor cell killing compared with prolonged, segmented or variable dose rate delivery.

  2. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  3. EDITORIAL Metal vapour in atmospheric-pressure arcs Metal vapour in atmospheric-pressure arcs

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2010-11-01

    Metal vapour has a significant, and in some cases dominant, influence in many applications of atmospheric-pressure plasmas, including arc welding, circuit interruption and mineral processing. While the influence of metal vapour has long been recognized, it is only recently that diagnostic and computational tools have been sufficiently well-developed to allow this influence to be more thoroughly examined and understood. Some unexpected findings have resulted: for example, that the presence of metal vapour in gas-metal arc welding leads to local minima in the temperature and current density in the centre of the arc. It has become clear that the presence of metal vapour, as well as having intrinsic scientific interest, plays an important role in determining the values of critical parameters in industrial applications, such as the weld penetration in arc welding and the extinction time in circuit breakers. In gas-tungsten arc welding, metal vapour concentrations are formed by evaporation of the weld pool, and are relatively low, typically at most a few per cent. Moreover, the convective flow of the plasma near the weld pool tends to direct the metal vapour plume radially outwards. In gas-metal arc welding, in contrast, metal vapour concentrations can reach over 50%. In this case, the metal vapour is produced mainly by evaporation of the wire electrode, and the strong downwards convective flow below the electrode concentrates the metal vapour in the central region of the arc. The very different metal concentrations and distributions in the two welding processes mean that the metal vapour has markedly different influences on the arc. In gas-tungsten arc welding, the current density distribution is broadened near the weld pool by the influence of the metal vapour on the electrical conductivity of the plasma, and the arc voltage is decreased. In contrast, in gas-metal arc welding, the arc centre is cooled by increased radiative emission and the arc voltage is increased. In

  4. Electric Arc and Electrochemical Surface Texturing Technologies

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.

    1997-01-01

    Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.

  5. Evaluation of the OMI Cloud Pressures Derived from Rotational Raman Scattering by Comparisons with other Satellite Data and Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Joiner, Joanna; Spurr, Robert; Bhartia, Pawan K.; Levelt, Pieternel; Stephens, Graeme

    2009-01-01

    In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.

  6. Fore-arc migration in Cascadia and its neotectonic significance

    USGS Publications Warehouse

    Wells, R.E.

    1998-01-01

    Neogene deformation, paleomagnetic rotations, and sparse geodetic data suggest the Cascadia fore arc is migrating northward along the coast and breaking up into large rotating blocks. Deformation occurs mostly around the margins of a large, relatively aseismic Oregon coastal block composed of thick, accreted seamount crust. This 400 km long block is moving slowly clockwise with respect to North America about a Euler pole in eastern Washington, thus increasing convergence rates along its leading edge near Cape Blanco, and creating an extensional volcanic arc on its trailing edge. Northward movement of the block breaks western Washington into smaller, seismically active blocks and compresses them against the Canadian Coast Mountains restraining bend. Arc-parallel transport of fore-arc blocks is calculated to be up to 9 mm/yr, sufficient to produce damaging earthquakes in a broad deformation zone along block margins.

  7. SU-E-T-426: Feasibility of Stereotactic Body Radiation Therapy (SBRT) Treatment of Pancreatic Cancer Using Volumetric Modulated Arc Therapy (VMAT) with Active Breathing Control (ABC)

    SciTech Connect

    Zhang, Y; Jackson, J; Davies, G; Herman, J; Forbang, R Teboh

    2015-06-15

    Purpose: SBRT shows excellent tumor control and toxicity rates for patients with locally advanced pancreatic cancer (PCA). Herein, we evaluate the feasibility of using VMAT with ABC for PCA SBRT. Methods: Nine PCA patients previously treated via SBRT utilizing 11-beam step-and-shoot IMRT technique in our center were retrospectively identified, among whom eight patients received 3300cGy in 5 fractions while one received 3000cGy in 5 fractions. A VMAT plan was generated on each patient’s planning CT in Pinnacle v9.8 on Elekta Synergy following the same PCA SBRT clinical protocol. Three partial arcs (182°–300°, 300°-60°, and 60°-180°) with 2°/4° control-point spacing were used. The dosimetric difference between the VMAT and the original IMRT plans was analyzed. IMRT QA was performed for the VMAT plans using MapCheck2 in MapPHAN and the total delivery time was recorded. To mimic the treatment situation with ABC, where patients hold their breath for 20–30 seconds, the delivery was intentionally interrupted every 20–30 seconds. For each plan, the QA was performed with and without beam interruption. Gamma analysis (2%/2mm) was used to compare the planned and measured doses. Results: All VMAT plans with 2mm dose grid passed the clinic protocol with similar PTV coverage and OARs sparing, where PTV V-RxDose was 92.7±2.1% (VMAT) vs. 92.1±2.6% (IMRT), and proximal stomach V15Gy was 3.60±2.69 cc (VMAT) vs. 4.80±3.13 cc (IMRT). The mean total MU and delivery time of the VMAT plans were 2453.8±531.1 MU and 282.1±56.0 seconds. The gamma passing rates of absolute dose were 94.9±3.4% and 94.5±4.0% for delivery without and with interruption respectively, suggesting the dosimetry of VMAT delivery with ABC for SBRT won’t be compromised. Conclusion: This study suggests that PCA SBRT using VMAT with ABC is a feasible technique without compromising plan dosimetry. The combination of VMAT with ABC will potentially reduce the SBRT treatment time.

  8. Potential for reduced radiation-induced toxicity using intensity-modulated arc therapy for whole-brain radiotherapy with hippocampal sparing.

    PubMed

    Pokhrel, Damodar; Sood, Sumit; Lominska, Christopher; Kumar, Parvesh; Badkul, Rajeev; Jiang, Hongyu; Wang, Fen

    2015-09-01

    The purpose of this study was to retrospectively investigate the accuracy, plan quality, and efficiency of using intensity-modulated arc therapy (IMAT) for whole brain radiotherapy (WBRT) patients with sparing not only the hippocampus (following RTOG 0933 compliance criteria) but also other organs at risk (OARs). A total of 10 patients previously treated with nonconformal opposed laterals whole-brain radiotherapy (NC-WBRT) were retrospectively replanned for hippocampal sparing using IMAT treatment planning. The hippocampus was volumetrically contoured on fused diagnostic T1-weighted MRI with planning CT images and hippocampus avoidance zone (HAZ) was generated using a 5 mm uniform margin around the hippocampus. Both hippocampi were defined as one paired organ. Whole brain tissue minus HAZ was defined as the whole-brain planning target volume (WB-PTV). Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV beam for a prescription dose of 30 Gy in 10 fractions following RTOG 0933 dosimetric criteria. Two full coplanar arcs with orbits avoidance sectors were used. In addition to RTOG criteria, doses to other organs at risk (OARs), such as parotid glands, cochlea, external/middle ear canals, skin, scalp, optic pathways, brainstem, and eyes/lens, were also evaluated. Subsequently, dose delivery efficiency and accuracy of each IMAT plan was assessed by delivering quality assurance (QA) plans with a MapCHECK device, recording actual beam-on time and measuring planed vs. measured dose agreement using a gamma index. On IMAT plans, following RTOG 0933 dosimetric criteria, the maximum dose to WB-PTV, mean WB-PTV D2%, and mean WB-PTV D98% were 34.9±0.3 Gy,33.2±0.4 Gy, and 26.0±0.4 Gy, respectively. Accordingly, WB-PTV received the prescription dose of 30 Gy and mean V30 was 90.5%±0.5%. The D100%, and mean

  9. Potential for reduced radiation-induced toxicity using intensity-modulated arc therapy for whole-brain radiotherapy with hippocampal sparing.

    PubMed

    Pokhrel, Damodar; Sood, Sumit; Lominska, Christopher; Kumar, Pravesh; Badkul, Rajeev; Jiang, Hongyu; Wang, Fen

    2015-09-08

    The purpose of this study was to retrospectively investigate the accuracy, plan quality, and efficiency of using intensity-modulated arc therapy (IMAT) for whole brain radiotherapy (WBRT) patients with sparing not only the hippocampus (following RTOG 0933 compliance criteria) but also other organs at risk (OARs). A total of 10 patients previously treated with nonconformal opposed laterals whole-brain radiotherapy (NC-WBRT) were retrospectively replanned for hippocampal sparing using IMAT treatment planning. The hippocampus was volumetrically contoured on fused diagnostic T1-weighted MRI with planning CT images and hippocampus avoidance zone (HAZ) was generated using a 5 mm uniform margin around the hippocampus. Both hippocampi were defined as one paired organ. Whole brain tissue minus HAZ was defined as the whole-brain planning target volume (WB-PTV). Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV beam for a prescription dose of 30 Gy in 10 fractions following RTOG 0933 dosimetric criteria. Two full coplanar arcs with orbits avoidance sectors were used. In addition to RTOG criteria, doses to other organs at risk (OARs), such as parotid glands, cochlea, external/middle ear canals, skin, scalp, optic pathways, brainstem, and eyes/lens, were also evaluated. Subsequently, dose delivery efficiency and accuracy of each IMAT plan was assessed by delivering quality assurance (QA) plans with a MapCHECK device, recording actual beam-on time and measuring planed vs. measured dose agreement using a gamma index. On IMAT plans, following RTOG 0933 dosimetric criteria, the maximum dose to WB-PTV, mean WB-PTV D2%, and mean WB-PTV D98% were 34.9 ± 0.3 Gy, 33.2 ± 0.4 Gy, and 26.0± 0.4Gy, respectively. Accordingly, WB-PTV received the prescription dose of 30Gy and mean V30 was 90.5% ± 0.5%. The D100%, and

  10. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    NASA Astrophysics Data System (ADS)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  11. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Choi, Kyoung-Sik

    2014-04-01

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ%≤1, γ avg <0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  12. Volumetric modulated arc therapy versus step-and-shoot intensity modulated radiation therapy in the treatment of large nerve perineural spread to the skull base: a comparative dosimetric planning study

    SciTech Connect

    Gorayski, Peter; Fitzgerald, Rhys; Barry, Tamara; Burmeister, Elizabeth; Foote, Matthew

    2014-06-15

    Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneity included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.

  13. WSTF electrical arc projects

    NASA Astrophysics Data System (ADS)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  14. WSTF electrical arc projects

    NASA Technical Reports Server (NTRS)

    Linley, Larry

    1994-01-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  15. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, Hillary

    1995-03-06

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  16. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  17. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  18. Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes

    NASA Technical Reports Server (NTRS)

    Mayo, R. F.; Davis, D. D., Jr.

    1962-01-01

    A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.

  19. The Dosimetric Importance of Six Degree of Freedom Couch End to End Quality Assurance for SRS/SBRT Treatments when Comparing Intensity Modulated Radiation Therapy to Volumetric Modulated Arc Therapy

    NASA Astrophysics Data System (ADS)

    Ulizio, Vincent Michael

    With the advancement of technology there is an increasing ability for lesions to be treated with higher radiation doses each fraction. This also allows for low fractionated treatments. Because the patient is receiving a higher dose of radiation per fraction and because of the fast dose falloff in these targets there must be extreme accuracy in the delivery. The 6 DOF couch allows for extra rotational corrections and for a more accurate set-up. The movement of the couch needs to be verified to be accurate and because of this, end to end quality assurance tests for the couch have been made. After the set-up is known to be accurate then different treatment techniques can be studied. SBRT of the Spine has a very fast dose falloff near the spinal cord and was typically treated with IMRT. Treatment plans generated using this technique tend to have streaks of low dose radiation, so VMAT is being studied to determine if this treatment technique can reduce the low dose radiation volume as well as improve OAR sparing. For the 6 DOF couch QA, graph paper is placed on the anterior and right lateral sides of the VisionRT OSMS Cube Phantom. Each rotational shift is then applied individually, with a 3 degree shift in the positive and negative directions for pitch and roll. A mark is drawn on the paper to record each shift. A CBCT is then taken of the Cube and known shifts are applied and then an additional CBCT is taken to return the Cube to isocenter. The original IMRT plans for SBRT of the Spine are evaluated and then a plan is made utilizing VMAT. These plans are then compared for low dose radiation, OAR sparing, and conformity. If the original IMRT plan is determined to be an inferior treatment to what is acceptable, then this will be re-planned and compared to the VMAT plan. The 6 DOF couch QA tests have proven to be accurate and reproducible. The average deviations in the 3 degree and -3 degree pitch and roll directions were 0.197, 0.068, 0.091, and 0.110 degrees

  20. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  1. Late Cenozoic fault kinematics and basin development, Calabrian arc, Italy

    SciTech Connect

    Knott, S.D.; Turco, E.

    1988-08-01

    Current views for explaining the present structure of the Calabrian arc emphasize bending or buckling of an initially straight zone by rigid indentation. Although bending has played an important role, bending itself cannot explain all structural features now seen in the arc for the following reasons: (1) across-arc extension is inconsistent with buckling, (2) north-south compression predicted by a bending mechanism to occur in the internal part of a curved mountain belt is not present in the Calabrian arc, and (3) lateral shear occurs throughout the arc, not just along the northern and southern boundaries. The model presented here is based on lateral bending of mantle and lower crust (demonstrated by variation in extension in the Tyrrhenian basin) and semibrittle faulting and block rotation in the upper crust. These two styles of deformation are confined to the upper plate of the Calabrian subduction system. This deformation is considered to have been active from the beginning of extension in the Tyrrhenian basin (late Tortonian) and is still active today (based on Holocene seismicity). Block rotations are a consequence of lateral heterogeneous shear during extension. Therefore, some of the observed rotation of paleo-magnetic declinations may have occurred in areas undergoing extension and not just during thrusting. Inversion of sedimentary basins by block rotation is predicted by the model. The model will be a useful aid in interpreting reflection seismic data and exploring and developing offshore and onshore sedimentary basins in southern Italy.

  2. Dynamic electron arc radiotherapy (DEAR): a feasibility study

    NASA Astrophysics Data System (ADS)

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen

    2014-01-01

    Compared to other radiation therapy modalities, clinical electron beam therapy has remained practically unchanged for the past few decades even though electron beams with multiple energies are widely available on most linacs. In this paper, we present the concept of dynamic electron arc radiotherapy (DEAR), a new conformal electron therapy technique with synchronized couch motion. DEAR utilizes combination of gantry rotation, couch motion, and dose rate modulation to achieve desirable dose distributions in patient. The electron applicator is kept to minimize scatter and maintain narrow penumbra. The couch motion is synchronized with the gantry rotation to avoid collision between patient and the electron cone. In this study, we investigate the feasibility of DEAR delivery and demonstrate the potential of DEAR to improve dose distributions on simple cylindrical phantoms. DEAR was delivered on Varian's TrueBeam linac in Research Mode. In conjunction with the recorded trajectory log files, mechanical motion accuracies and dose rate modulation precision were analyzed. Experimental and calculated dose distributions were investigated for different energies (6 and 9 MeV) and cut-out sizes (1×10 cm2 and 3×10 cm2 for a 15×15 cm2 applicator). Our findings show that DEAR delivery is feasible and has the potential to deliver radiation dose with high accuracy (root mean square error, or RMSE of <0.1 MU, <0.1° gantry, and <0.1 cm couch positions) and good dose rate precision (1.6 MU min-1). Dose homogeneity within ±2% in large and curved targets can be achieved while maintaining penumbra comparable to a standard electron beam on a flat surface. Further, DEAR does not require fabrication of patient-specific shields. These benefits make DEAR a promising technique for conformal radiotherapy of superficial tumors.

  3. Dynamic electron arc radiotherapy (DEAR): a feasibility study.

    PubMed

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen

    2014-01-20

    Compared to other radiation therapy modalities, clinical electron beam therapy has remained practically unchanged for the past few decades even though electron beams with multiple energies are widely available on most linacs. In this paper, we present the concept of dynamic electron arc radiotherapy (DEAR), a new conformal electron therapy technique with synchronized couch motion. DEAR utilizes combination of gantry rotation, couch motion, and dose rate modulation to achieve desirable dose distributions in patient. The electron applicator is kept to minimize scatter and maintain narrow penumbra. The couch motion is synchronized with the gantry rotation to avoid collision between patient and the electron cone. In this study, we investigate the feasibility of DEAR delivery and demonstrate the potential of DEAR to improve dose distributions on simple cylindrical phantoms. DEAR was delivered on Varian's TrueBeam linac in Research Mode. In conjunction with the recorded trajectory log files, mechanical motion accuracies and dose rate modulation precision were analyzed. Experimental and calculated dose distributions were investigated for different energies (6 and 9 MeV) and cut-out sizes (1×10 cm(2) and 3×10 cm(2) for a 15×15 cm(2) applicator). Our findings show that DEAR delivery is feasible and has the potential to deliver radiation dose with high accuracy (root mean square error, or RMSE of <0.1 MU, <0.1° gantry, and <0.1 cm couch positions) and good dose rate precision (1.6 MU min(-1)). Dose homogeneity within ±2% in large and curved targets can be achieved while maintaining penumbra comparable to a standard electron beam on a flat surface. Further, DEAR does not require fabrication of patient-specific shields. These benefits make DEAR a promising technique for conformal radiotherapy of superficial tumors.

  4. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  5. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  6. Welding arc initiator

    DOEpatents

    Correy, Thomas B.

    1989-01-01

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  7. Welding arc initiator

    DOEpatents

    Correy, T.B.

    1989-05-09

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  8. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  9. Theoretical analysis of ARC constriction

    SciTech Connect

    Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

    1980-12-01

    The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

  10. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  11. Arc Voltage Between Deion Grid Affected by Division of Arc in Magnetic Driven Arc

    NASA Astrophysics Data System (ADS)

    Inuzuka, Yutaro; Yamato, Takashi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Magnetic driven arc has been applied to DC breaker and fault current limiters. However, it has not been researched, especially stagnation and re-strike of the arc. In this paper, the arc voltage between deion grid affected by division of arc in magnetic driven arc and arc behavior are measured by using the oscilloscope and HSVC (High Speed Video Camera). As a result, arc voltage increased because of division of the arc. The arc mean moving speed increases with increasing the external magnetic field. However, when the arc was not stalemate, the arc moving speed does not change so much. The arc re-strike time increases and stalemate time decreases with increasing the external magnetic field. Therefore, the anode spot moving speed increases 8 times because arc re-strike occurs easily with the external magnetic field. Thus, the erosion of electrodes decreases and the arc movement becomes the smooth. When the arc is divided, the arc voltage increased because of the electrode fall voltage. Therefore, the arc voltage increases with increasing the number of deion grid.

  12. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  13. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  14. Optimized dynamic rotation with wedges.

    PubMed

    Rosen, I I; Morrill, S M; Lane, R G

    1992-01-01

    Dynamic rotation is a computer-controlled therapy technique utilizing an automated multileaf collimator in which the radiation beam shape changes dynamically as the treatment machine rotates about the patient so that at each instant the beam shape matches the projected shape of the target volume. In simple dynamic rotation, the dose rate remains constant during rotation. For optimized dynamic rotation, the dose rate is varied as a function of gantry angle. Optimum dose rate at each gantry angle is computed by linear programming. Wedges can be included in the optimized dynamic rotation therapy by using additional rotations. Simple and optimized dynamic rotation treatment plans, with and without wedges, for a pancreatic tumor have been compared using optimization cost function values, normal tissue complication probabilities, and positive difference statistic values. For planning purposes, a continuous rotation is approximated by static beams at a number of gantry angles equally spaced about the patient. In theory, the quality of optimized treatment planning solutions should improve as the number of static beams increases. The addition of wedges should further improve dose distributions. For the case studied, no significant improvements were seen for more than 36 beam angles. Open and wedged optimized dynamic rotations were better than simple dynamic rotation, but wedged optimized dynamic rotation showed no definitive improvement over open beam optimized dynamic rotation.

  15. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  16. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer

    SciTech Connect

    Balderson, Michael Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-07-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.

  17. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer.

    PubMed

    Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-01-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.

  18. SU-E-J-170: Dosimetric Consequences of Uncorrected Rotational Setup Errors During Stereotactic Body Radiation Therapy (SBRT) Treatment of Pancreatic Cancers

    SciTech Connect

    Di Maso, L; Forbang, R Teboh; Zhang, Y; Herman, J; Lee, J

    2015-06-15

    Purpose: To explore the dosimetric consequences of uncorrected rotational setup errors during SBRT for pancreatic cancer patients. Methods: This was a retrospective study utilizing data from ten (n=10) previously treated SBRT pancreas patients. For each original planning CT, we applied rotational transformations to derive additional CT images representative of possible rotational setup errors. This resulted in 6 different sets of rotational combinations, creating a total of 60 CT planning images. The patients’ clinical dosimetric plans were then applied to their corresponding rotated CT images. The 6 rotation sets encompassed a 3, 2 and 1-degree rotation in each rotational direction and a 3-degree in just the pitch, a 3-degree in just the yaw and a 3-degree in just the roll. After the dosimetric plan was applied to the rotated CT images, the resulting plan was then evaluated and compared with the clinical plan for tumor coverage and normal tissue sparing. Results: PTV coverage, defined here by V33 throughout all of the patients’ clinical plans, ranged from 92–98%. After an n degree rotation in each rotational direction that range decreased to 68–87%, 85–92%, and 88– 94% for n=3, 2 and 1 respectively. Normal tissue sparing defined here by the proximal stomach V15 throughout all of the patients’ clinical plans ranged from 0–8.9 cc. After an n degree rotation in each rotational direction that range increased to 0–17 cc, 0–12 cc, and 0–10 cc for n=3, 2, and 1 respectively. Conclusion: For pancreatic SBRT, small rotational setup errors in the pitch, yaw and roll direction on average caused under dosage to PTV and over dosage to proximal normal tissue. The 1-degree rotation was on average the least detrimental to the normal tissue and the coverage of the PTV. The 3-degree yaw created on average the lowest increase in volume coverage to normal tissue. This research was sponsored by the AAPM Education Council through the AAPM Education and Research

  19. Leaf position error during conformal dynamic arc and intensity modulated arc treatments.

    PubMed

    Ramsey, C R; Spencer, K M; Alhakeem, R; Oliver, A L

    2001-01-01

    Conformal dynamic arc (CD-ARC) and intensity modulated arc treatments (IMAT) are both treatment modalities where the multileaf collimator (MLC) can change leaf position dynamically during gantry rotation. These treatment techniques can be used to generate complex isodose distributions, similar to those used in fix-gantry intensity modulation. However, a beam-hold delay cannot be used during CD-ARC or IMAT treatments to reduce spatial error. Consequently, a certain amount of leaf position error will have to be accepted in order to make the treatment deliverable. Measurements of leaf position accuracy were taken with leaf velocities ranging from 0.3 to 3.0 cm/s. The average and maximum leaf position errors were measured, and a least-squares linear regression analysis was performed on the measured data to determine the MLC velocity error coefficient. The average position errors range from 0.03 to 0.21 cm, with the largest deviations occurring at the maximum achievable leaf velocity (3.0 cm/s). The measured MLC velocity error coefficient was 0.0674 s for a collimator rotation of 0 degrees and 0.0681 s for a collimator rotation of 90 degrees. The distribution in leaf position error between the 0 degrees and 90 degrees collimator rotations was within statistical uncertainty. A simple formula was developed based on these results for estimating the velocity-dependent dosimetric error. Using this technique, a dosimetric error index for plan evaluation can be calculated from the treatment time and the dynamic MLC leaf controller file.

  20. Influence of axial self-magnetic field component on arcing behavior of spiral-shaped contacts

    SciTech Connect

    Feng, Dingyu; Xiu, Shixin Wang, Yi; Liu, Gang; Zhang, Yali; Bi, Dongli

    2015-10-15

    The transverse magnetic field (TMF) contact design is commonly used in vacuum interrupters. When arcing occurs between the TMF contacts, the contact structure can create a self-induced magnetic field that drives the arc to move and rotate on the contact, and thus local overheating and severe erosion can be avoided. However, TMF contacts could also create an axial self-magnetic component, and the influence of this component on the arc behavior has not been considered to date. In this paper, five different types of Cu-Cr spiral-shaped TMF contacts with three different structures are investigated in a demountable vacuum chamber that contains a high-speed charge-coupled device video camera. It was found that the contact structure greatly influenced the arc behavior, especially in terms of arc rotation and the effective contact area, while contacts with the same slot structure but different diameters showed similar arc behavior and arc motion. The magnetic field distribution and the Lorentz force of each of the three different contact structures are simulated, and the axial self-magnetic field was first taken into consideration for investigation of the TMF contact design. It was found that contact designs that have higher axial self-magnetic field components tend to have arc columns with larger diameters and show poorer arc motion and rotation performance in the experiments.

  1. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.

  2. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings.

  3. The automated rotating shadowband spectroradiometer

    SciTech Connect

    Harrison, L.; Beik, M.A.; Michalsky, J.J.

    1993-11-01

    We are developing a photodiode array rotating shadowband spectroradiometer (RSS) as part of the Instrument Development Program (IDP) of the Atmospheric Radiation Measurement (ARM) Program of the United States Department of Energy (DOE). This instrument uses the automated rotating shadowband technique to separate and measure the spectrally resolved direct-normal, total horizontal, and diffuse horizontal irradiances in the 360 to 1060 nm wavelength region. It is intended as an instrument for the central facility of each of the cloud and radiation testbed (CART) sites, and will complement the array of multi-filter rotating shadowband radiometers (MFRSR) currently being deployed by ARM and other research programs including TOGA/COARE.

  4. Back-arc spreading of the northern Izu-Ogasawara (Bonin) Islands arc clarified by GPS data

    NASA Astrophysics Data System (ADS)

    Nishimura, Takuya

    2011-11-01

    We examined GPS data in the northwestern Pacific region, which includes the Izu-Ogasawara (Bonin)-Mariana (IBM) arc and the Japan arc. GPS velocity vectors on the Izu Islands, including Hachijo-jima and Aoga-shima, show systematic eastward movement deviating from that predicted by the rigid rotation of the Philippine Sea plate; this deviation supports the active back-arc spreading model suggested by previous geological studies. The results of a statistical F-test analysis with 99% confidence level showed that the forearc of the Izu Islands arc has an independent motion with respect to the rigid part of the Philippine Sea plate. We developed a kinematic block-fault model to estimate both rigid rotations of crustal blocks and elastic deformation due to locked faults on the block boundaries. The model suggests that the back-arc opening rate along the Izu back-arc rift zone ranges from 2 mm/yr at its southern end to 9 mm/yr near Miyake-jima, its northern end. It also predicts 23-28 mm/yr of relative motion along the Sagami Trough in the direction of ~ N25°W, where the Izu forearc subducts beneath central Japan. The orientation of this motion is supported by slip vectors of recent medium-size earthquakes, repeated slow-slip events, and the 1923 M = 7.9 Kanto earthquake.

  5. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  6. Theory of Kerr and Faraday rotations and linear dichroism in Topological Weyl Semimetals.

    PubMed

    Kargarian, Mehdi; Randeria, Mohit; Trivedi, Nandini

    2015-08-03

    We consider the electromagnetic response of a topological Weyl semimetal (TWS) with a pair of Weyl nodes in the bulk and corresponding Fermi arcs in the surface Brillouin zone. We compute the frequency-dependent complex conductivities σαβ(ω) and also take into account the modification of Maxwell equations by the topological θ-term to obtain the Kerr and Faraday rotations in a variety of geometries. For TWS films thinner than the wavelength, the Kerr and Faraday rotations, determined by the separation between Weyl nodes, are significantly larger than in topological insulators. In thicker films, the Kerr and Faraday angles can be enhanced by choice of film thickness and substrate refractive index. We show that, for radiation incident on a surface with Fermi arcs, there is no Kerr or Faraday rotation but the electric field develops a longitudinal component inside the TWS, and there is linear dichroism signal. Our results have implications for probing the TWS phase in various experimental systems.

  7. Control of arc length during gas metal arc welding

    SciTech Connect

    Madigan, R.B.; Quinn, T.P.

    1994-12-31

    An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementing a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.

  8. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  9. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  10. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    SciTech Connect

    Wang, Lijun Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-15

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  11. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients

    SciTech Connect

    Penoncello, Gregory P.; Ding, George X.

    2016-04-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm{sup 3} for head and neck plans and brain plans and a contiguous volume of 5 cm{sup 3} for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.

  12. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients.

    PubMed

    Penoncello, Gregory P; Ding, George X

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.

  13. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  14. MO-G-BRD-01: Point/Counterpoint Debate: Arc Based Techniques Will Make Conventional IMRT Obsolete

    SciTech Connect

    Shepard, D; Popple, R; Balter, P

    2014-06-15

    A variety of intensity modulated radiation therapy (IMRT) delivery techniques have been developed that have provided clinicians with the ability to deliver highly conformal dose distributions. The delivery techniques include compensators, step-and-shoot IMRT, sliding window IMRT, volumetric modulated arc therapy (VMAT), and tomotherapy. A key development in the field of IMRT was the introduction of new planning algorithms and delivery control systems in 2007 that made it possible to coordinate the gantry rotation speed, dose rate, and multileaf collimator leaf positions during the delivery of arc therapy. With these developments, VMAT became a routine clinical tool. The use of VMAT has continued to grow in recent years and some would argue that this will soon make conventional IMRT obsolete, and this is the premise of this debate. To introduce the debate, David Shepard, Ph.D. will provide an overview of IMRT delivery techniques including historical context and how they are being used today. The debate will follow with Richard Popple, Ph.D. arguing FOR the Proposition and Peter Balter, Ph.D. arguing AGAINST it. Learning Objectives: Understand the different delivery techniques for IMRT. Understand the potential benefits of conventional IMRT. Understand the potential benefits of arc-based IMRT delivery.

  15. ARc Welding (Industrial Processing Series).

    DTIC Science & Technology

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  16. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  17. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  18. Arc Length Gone Global

    ERIC Educational Resources Information Center

    Boudreaux, Gregory M.; Wells, M. Scott

    2007-01-01

    Everyone with a thorough knowledge of single variable calculus knows that integration can be used to find the length of a curve on a given interval, called its arc length. Fortunately, if one endeavors to pose and solve more interesting problems than simply computing lengths of various curves, there are techniques available that do not require an…

  19. Absolute Radiation Measurements in Earth and Mars Entry Conditions

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2014-01-01

    This paper reports on the measurement of radiative heating for shock heated flows which simulate conditions for Mars and Earth entries. Radiation measurements are made in NASA Ames' Electric Arc Shock Tube at velocities from 3-15 km/s in mixtures of N2/O2 and CO2/N2/Ar. The technique and limitations of the measurement are summarized in some detail. The absolute measurements will be discussed in regards to spectral features, radiative magnitude and spatiotemporal trends. Via analysis of spectra it is possible to extract properties such as electron density, and rotational, vibrational and electronic temperatures. Relaxation behind the shock is analyzed to determine how these properties relax to equilibrium and are used to validate and refine kinetic models. It is found that, for some conditions, some of these values diverge from non-equilibrium indicating a lack of similarity between the shock tube and free flight conditions. Possible reasons for this are discussed.

  20. Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes

    PubMed Central

    Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng

    2017-01-01

    Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed. PMID:28335425

  1. Supergranulation rotation

    NASA Astrophysics Data System (ADS)

    Schou, Jesper; Beck, John G.

    2001-01-01

    Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.

  2. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  3. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  4. Rotational Energy.

    ERIC Educational Resources Information Center

    Lockett, Keith

    1988-01-01

    Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)

  5. Common arc method for diffraction pattern orientation.

    PubMed

    Bortel, Gábor; Tegze, Miklós

    2011-11-01

    Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods.

  6. Volumetric Modulated Arc Therapy (VMAT) Treatment Planning for Superficial Tumors

    SciTech Connect

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-10-01

    The physician's planning objective is often a uniform dose distribution throughout the planning target volume (PTV), including superficial PTVs on or near the surface of a patient's body. Varian's Eclipse treatment planning system uses a progressive resolution optimizer (PRO), version 8.2.23, for RapidArc dynamic multileaf collimator volumetric modulated arc therapy planning. Because the PRO is a fast optimizer, optimization convergence errors (OCEs) produce dose nonuniformity in the superficial area of the PTV. We present a postsurgical cranial case demonstrating the recursive method our clinic uses to produce RapidArc treatment plans. The initial RapidArc treatment plan generated using one 360{sup o} arc resulted in substantial dose nonuniformity in the superficial section of the PTV. We demonstrate the use of multiple arcs to produce improved dose uniformity in this region. We also compare the results of this superficial dose compensation method to the results of a recursive method of dose correction that we developed in-house to correct optimization convergence errors in static intensity-modulated radiation therapy treatment plans. The results show that up to 4 arcs may be necessary to provide uniform dose to the surface of the PTV with the current version of the PRO.

  7. Arcing in space structures in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Upschulte, B. L.; Marinelli, W. J.; Weyl, G.; Carleton, K. L.

    1992-01-01

    This report describes results of an experimental and theoretical program to investigate arcing of structures containing dielectric and conducting materials when they are biased negatively with respect to a plasma. An argon ion source generated Ar(+) ions of directed energy 20 to 40 eV and density approximately 10(exp 7) cm(exp -3) that impinged upon samples containing a dielectric material on top of a negatively biased Kovar plate. Arcing events were studied for bias voltages between -300 and -1000V with respect to the ion beam. The samples were Dow Corning 93-500 adhesive on Kovar, fused silica cover slips bonded on Kovar, and silicon solar cells mounted on Kovar. Measurements of discharge current, Kovar plate voltage, and radiation from the arc versus time were carried out. Microsecond duration exposure images and optical spectra in the 0.24 to 0.40 micron band were also acquired during arcing events. Arcing events were found to be associated with exposed adhesive and means were found to eliminate arcing altogether. The charging of a silica cover plate and the fields around the plate were calculated using a particle-in-cell code. Models were developed to explain the ignition of the arc and the physical processes occurring during the discharge.

  8. Semicircular Rashba arc spin polarizer

    SciTech Connect

    Bin Siu, Zhuo; Jalil, Mansoor B. A.; Ghee Tan, Seng

    2014-05-07

    In this work, we study the generation of spin polarized currents using curved arcs of finite widths, in which the Rashba spin orbit interaction (RSOI) is present. Compared to the 1-dimensional RSOI arcs with zero widths studied previously, the finite width presents charge carriers with another degree of freedom along the transverse width of the arc, in addition to the longitudinal degree of freedom along the circumference of the arc. The asymmetry in the transverse direction due to the difference in the inner and outer radii of the arc breaks the antisymmetry of the longitudinal spin z current in a straight RSOI segment. This property can be exploited to generate spin z polarized current output from the RSOI arc by a spin unpolarized current input. The sign of the spin current can be manipulated by varying the arc dimensions.

  9. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  10. Intensity-modulated arc therapy: principles, technologies and clinical implementation

    NASA Astrophysics Data System (ADS)

    Yu, Cedric X.; Tang, Grace

    2011-03-01

    Intensity-modulated arc therapy (IMAT) was proposed by Yu (1995 Phys. Med. Biol. 40 1435-49) as an alternative to tomotherapy. Over more than a decade, much progress has been made. The advantages and limitations of the IMAT technique have also been better understood. In recent years, single-arc forms of IMAT have emerged and become commercially adopted. The leading example is the volumetric-modulated arc therapy (VMAT), a single-arc form of IMAT that delivers apertures of varying weights with a single-arc rotation that uses dose-rate variation of the treatment machine. With commercial implementation of VMAT, wide clinical adoption has quickly taken root. However, there remains a lack of general understanding for the planning of such arc treatments, as well as what delivery limitations and compromises are made. Commercial promotion and competition add further confusion for the end users. It is therefore necessary to provide a summary of this technology and some guidelines on its clinical implementation. The purpose of this review is to provide a summary of the works from the radiotherapy community that led to wide clinical adoption, and point out the issues that still remain, providing some perspective on its further developments. Because there has been vast experience in IMRT using multiple intensity-modulated fields, comparisons between IMAT and IMRT are also made in the review within the areas of planning, delivery and quality assurance.

  11. Arc jet diagnostics tests

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1989-01-01

    Two objectives were addressed during a 10 week 1988 NASA/ASEE summer faculty fellowship at the Johnson Space Center Atmospheric Reentry Materials Structures Evaluation Facility (ARMSEF). These objectives were the evaluation of mass spectrometry for the measurement of atomic and molecular species in an arc jet environment, and the determination of atomic recombination coefficients for reaction cured glass (RCG) coated high temperature surface insulation (HRSI) materials subjected to simulated reentry conditions. Evaluation of mass spectrometry for the measurement of atomic and molecular species provided some of the first measurements of point compositions in arc jet tunnel environments. A major objective of this project centered around the sampling residence time. A three staged vacuum sampling system pulled the molecules and atoms from the arc jet to a quadrupole ionization mass spectrometer in 400 milliseconds. Conditions investigated included a composition survey across the nozzle exit at 3 cm z-distance from the nozzle exit for 3 different currents. Also, a point composition survey was taken around a shock created by the presence of a blunt body.

  12. Risk of radiogenic second cancers following volumetric modulated arc therapy and proton arc therapy for prostate cancer.

    PubMed

    Rechner, Laura A; Howell, Rebecca M; Zhang, Rui; Etzel, Carol; Lee, Andrew K; Newhauser, Wayne D

    2012-11-07

    Prostate cancer patients who undergo radiotherapy are at an increased risk to develop a radiogenic second cancer. Proton therapy has been shown to reduce the predicted risk of second cancer when compared to intensity modulated radiotherapy. However, it is unknown if this is also true for the rotational therapies proton arc therapy and volumetric modulated arc therapy (VMAT). The objective of this study was to compare the predicted risk of cancer following proton arc therapy and VMAT for prostate cancer. Proton arc therapy and VMAT plans were created for three patients. Various risk models were combined with the dosimetric data (therapeutic and stray dose) to predict the excess relative risk (ERR) of cancer in the bladder and rectum. Ratios of ERR values (RRR) from proton arc therapy and VMAT were calculated. RRR values ranged from 0.74 to 0.99, and all RRR values were shown to be statistically less than 1, except for the value calculated with the linear-non-threshold risk model. We conclude that the predicted risk of cancer in the bladder or rectum following proton arc therapy for prostate cancer is either less than or approximately equal to the risk following VMAT, depending on which risk model is applied.

  13. Risk of radiogenic second cancers following volumetric modulated arc therapy and proton arc therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Rechner, Laura A.; Howell, Rebecca M.; Zhang, Rui; Etzel, Carol; Lee, Andrew K.; Newhauser, Wayne D.

    2012-11-01

    Prostate cancer patients who undergo radiotherapy are at an increased risk to develop a radiogenic second cancer. Proton therapy has been shown to reduce the predicted risk of second cancer when compared to intensity modulated radiotherapy. However, it is unknown if this is also true for the rotational therapies proton arc therapy and volumetric modulated arc therapy (VMAT). The objective of this study was to compare the predicted risk of cancer following proton arc therapy and VMAT for prostate cancer. Proton arc therapy and VMAT plans were created for three patients. Various risk models were combined with the dosimetric data (therapeutic and stray dose) to predict the excess relative risk (ERR) of cancer in the bladder and rectum. Ratios of ERR values (RRR) from proton arc therapy and VMAT were calculated. RRR values ranged from 0.74 to 0.99, and all RRR values were shown to be statistically less than 1, except for the value calculated with the linear-non-threshold risk model. We conclude that the predicted risk of cancer in the bladder or rectum following proton arc therapy for prostate cancer is either less than or approximately equal to the risk following VMAT, depending on which risk model is applied.

  14. Darwin : The Third DOE ARM TWP ARCS Site /

    SciTech Connect

    Clements, William E.; Jones, L. A.; Baldwin, T.; Nitschke, K.

    2002-01-01

    The United States Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Program began operations in its Tropical Western Pacific (TWP) locale in October 1996 when the first Atmospheric Radiation and Cloud Station (ARCS) began collecting data on Manus Island in Papua New Guinea (PNG). Two years later, in November 1998, a second ARCS began operations on the island of Nauru in the Central Pacific. Now a third ARCS has begun collecting data in Darwin, Australia. The Manus, Nauru, and Darwin sites are operated through collaborative agreements with the PNG National Weather Service, The Nauru Department of Industry and Economic Development (IED), and the Australian Bureau of Meteorology's (BOM) Special Services Unit (SSU) respectively. All ARM TWP activities in the region are coordinated with the South Pacific Regional Environment Programme (SPREP) based in Apia, Samoa. The Darwin ARM site and its role in the ARM TWP Program are discussed.

  15. Simulation and Experimental Analysis of Arc Motion Characteristics in Air Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Niu, Chunping; Ding, Juwen; Wu, Yi; Yang, Fei; Dong, Delong; Fan, Xingyu; Rong, Mingzhe

    2016-03-01

    In this paper, to simulate the arc motion in an air circuit breaker (ACB), a three-dimensional magneto-hydrodynamic (MHD) model is developed, considering the influence of thermal radiation, the change of physical parameters of arc plasma and the nonlinear characteristic of ferromagnetic material. The distributions of pressure, temperature, gas flow and current density of arc plasma in the arc region are calculated. The simulation results show some phenomena which discourage arc interruption, such as back commutation and arc burning at the back of the splitter plate. To verify the simulation model, the arc motion is studied experimentally. The influences of the material and position of the innermost barrier plate are analyzed mainly. It proved that the model developed in this paper can efficiently simulate the arc motion. The results indicate that the insulation barrier plate close to the top of the splitter plate is conducive to the arc splitting, which leads to the significant increase of the arc voltage, so it is better for arc interruption. The research can provide methods and references to the optimization of ACB design. supported by National Key Basic Research Program of China (973 Program) (Nos. 2015CB251002, 6132620303), National Natural Science Foundation of China (Nos. 51221005, 51377128, 51577144), and the Fundamental Research Funds for the Central Universities, China

  16. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  17. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  18. Development of rotating shadowband spectral radiometers and GCM radiation code test data sets in support of ARM. Technical progress report, September 15, 1992--October 31, 1993

    SciTech Connect

    Michalsky, J.; Harrison, L.

    1993-04-30

    The ARM goal is to help improve both longwave and shortwave models by providing improved radiometric shortwave data. These data can be used directly to test shortwave model predictions. As will be described below they can also provide inferred values for aerosol and cloud properties that are useful for longwave modeling efforts as well. The current ARM research program includes three tasks all related to the study of shortwave radiation transfer through clouds and aerosol. Two of the tasks involve the assembly of archived and new radiation and meteorological data sets; the third and dominant task has been the development and use of new shortwave radiometric sensors. Archived data from Golden, Colorado, and Albany, New York, were combined with National Weather Service ground and upper air data for testing radiation models for the era when the Earth Radiation Budget Experiment (ERBE) was operational. These data do not include optimum surface radiation measurements; consequently we are acquiring downwelling shortwave, including direct and diffuse irradiance, plus downwelling longwave, upwelling shortwave, and aerosol optical depth, at our own institution, as an additional dataset for ARM modelers.

  19. Models for Jupiter's decametric arcs

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.

    1981-01-01

    Arc-shaped structures that dominate Jupiter's decametric emission are discussed in terms of a magnetic fine structure. The sequence of arcs manifest the occurence of widespread fine structures similar to the white ovals on Jupiter's visible surface. An arc concave toward increasing time occurs at the east limb passage, and an arc convex occurs at the west limb passage, which is consistent with the early source producing vertex early arcs, and the late source producing vertex late arcs. Due to the geometry of the Io plasma torus (IPT) which is arranged so that Io skims the northern surface of the IPT, for any connection between Io and Jupiter's surface that involves Alfven waves, the propagation time, the refraction and the directional defocusing of these waves must be strongly influenced by the amount of Alfven wave path length between the instantaneous position of Io and the surface of the IPT.

  20. Control of the low-frequency vibrations of elastic metamaterial shafts with discretized arc-rubber layers

    NASA Astrophysics Data System (ADS)

    Lixia, Li; Anjiang, Cai

    2016-06-01

    We propose a new kind of elastic metamaterial (EM) shaft with discretized arc-shaped rubber layers, which shows excellent low-frequency vibration properties. The band gaps of the shaft structure were analyzed by employing the finite element method. The proposed EM shaft exhibits much lower band gaps than the corresponding structures with the whole rubber ring. Furthermore, the band gaps can be modulated by tuning the arc angle and the number of the arc-shaped rubbers. Additionally, we observed that the first complete band gap tends to disappear when the arc angle of each arc-shaped rubber section is decreased but the arc number remains fixed because the arc angle more strongly affects the rotational stiffness than the transverse stiffness of the rubber layers. This new type of EM shafts could find potential application as a means to control the low-frequency vibrations of rotor shafts in mechanical engineering.

  1. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  2. Joan of Arc.

    PubMed

    Foote-Smith, E; Bayne, L

    1991-01-01

    For centuries, romantics have praised and historians and scientists debated the mystery of Joan of Arc's exceptional achievements. How could an uneducated farmer's daughter, raised in harsh isolation in a remote village in medieval France, have found the strength and resolution to alter the course of history? Hypotheses have ranged from miraculous intervention to creative psychopathy. We suggest, based on her own words and the contemporary descriptions of observers, that the source of her visions and convictions was in part ecstatic epileptic auras and that she joins the host of creative religious thinkers suspected or known to have epilepsy, from St. Paul and Mohammed to Dostoevsky, who have changed western civilization.

  3. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  4. Optical diagnostics of a gliding arc.

    PubMed

    Sun, Z W; Zhu, J J; Li, Z S; Aldén, M; Leipold, F; Salewski, M; Kusano, Y

    2013-03-11

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity.

  5. Modify surfaces with ions and arcs

    SciTech Connect

    Banks, B.A. . Lewis Research Center)

    1993-12-01

    Ions, arcs, and atomic-oxygen techniques have been developed at NASA to texture metals, polymers, and biomaterials for a range of medical and industrial applications. NASA originally conducted research in the field of electron bombardment because the technology involves generation of high-velocity ions, which have the potential to produce much higher propellant exhaust velocities for spacecraft than chemical propulsion. As a consequence, considerable data were collected about the effects of ion beams on a wide range of materials. Based on this information, researchers designed specialized surface modification techniques such as ion beam sputter texturing, etching, and simultaneous deposition and etching. Arc-texturing technology was developed as a result of research on high-thermal-emittance radiators. In this process, an electric arc is formed between a carbon or silicon-carbide electrode and a moving metal surface, resulting in durable, microscopically rough surfaces that emit heat more efficiently than coated materials. Atomic-oxygen texturing is a by-product of studies about the effects of atomic oxygen on the surfaces of spacecraft. The purpose of the original research was to find coatings that could withstand atomic-oxygen attack, but it evolved into deliberate bombardment of polymeric materials to increase thermal emittance or reduce co-efficient of friction.

  6. Arcing on dc power systems

    NASA Technical Reports Server (NTRS)

    Moores, Greg; Heller, R. P.; Sutanto, Surja; Dugal-Whitehead, Norma R.

    1992-01-01

    Unexpected and undesirable arcing on dc power systems can produce hazardous situations aboard space flights. The potential for fire and shock might exist in a situation where there is a broken conductor, a loose power connection, or a break in the insulation of the power cable. Such arcing has been found to be reproducible in a laboratory environment. Arcing tests show that the phenomena can last for several seconds and yet be undetectable by present protection schemes used in classical power relaying and remote power controller applications. This paper characterizes the arcing phenomena and suggests future research that is needed.

  7. Volumetric modulated arc radiotherapy for esophageal cancer

    SciTech Connect

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Syam Kumar, S.A.; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-04-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V{sub 20Gy} and V{sub 30Gy} dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D{sub 35%} of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V{sub 10Gy} and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans.

  8. Quasi-monochromatic measurements of homogeneous arc plasmas.

    NASA Technical Reports Server (NTRS)

    Klein, L.

    1973-01-01

    The refined diagnostic information obtainable by high-order spectrometry is illustrated by the results of quantitative measurements of a few rotational lines of OH in the ultraviolet spectrum of water-vapor plasmas generated in a wall-stabilized arc. Because of the high spectral and spatial resolution achieved in end-on measurements, the emission and also the absorption coefficients pertaining to homogeneous arc regions were obtained directly from measured line spectra - although the absorption was not measured explicitly - leading to the occupation of the upper and the lower state for the transition. The gas temperature was determined from the halfwidth of the Doppler-broadened rotational lines. The measured resolving power of the spectrometer was of the order of 400,000 in these measurements.

  9. Development of rotating shadowband spectral radiometers and GCM radiation code test data sets in support of ARM. Technical progress report, September 15, 1990--September 14, 1991

    SciTech Connect

    Harrison, L.; Michalsky, J.

    1991-03-13

    Three separate tasks are included in the first year of the project. Two involve assembling data sets useful for testing radiation models in global climate modeling (GCM) codes, and the third is concerned with the development of advance instrumentation for performing accurate spectral radiation measurements. Task 1: Three existing data sets have been merged for two locations, one in the wet northeastern US and a second in the dry western US. The data sets are meteorological data from the WBAN network, upper air data from the NCDC, and high quality solar radiation measurements from Albany, New York and Golden, Colorado. These represent test data sets for those modelers developing radiation codes for the GCM models. Task 2: Existing data are not quite adequate from a modeler`s perspective without downwelling infrared data and surface albedo, or reflectance, data. Before the deployment of the first CART site in ARM the authors are establishing this more complete set of radiation measurements at the Albany site to be operational only until CART is operational. The authors will have the site running by April 1991, which will provide about one year`s data from this location. They will coordinate their measurements with satellite overpasses, and, to the extent possible, with radiosonde releases, in order that the data set be coincident in time. Task 3: Work has concentrated on the multiple filter instrument. The mechanical, optical, and software engineering for this instrument is complete, and the first field prototype is running at the Rattlesnake Mountain Observatory (RMO) test site. This instrument is performing well, and is already delivering reliable and useful information.

  10. Dosimetric, mechanical, and geometric verification of conformal dynamic arc treatment.

    PubMed

    Malatesta, T; Landoni, V; delle Canne, S; Bufacchi, A; Marmiroli, L; Caspiani, O; Bonanni, A; Tortoreto, F; Leone, M V; Capparella, R; Fragomeni, R; Begnozzi, L

    2003-01-01

    A conformal dynamic arc (CD-arc) technique has been implemented at the S. Giovanni Calibita-Fatebenefratelli Hospital Radiotherapy Center. This technique is performed by rotational beams and a dynamic multileaf collimator (DMLC): during the treatment delivery the gantry rotates and the field shape, formed by the DMLC changes continuously. The aim of this study was to perform dosimetric, mechanical, and geometric verification to ensure that the dose calculated by a commercial treatment planning system and administered to the patient was correct, before and during the clinical use of this technique. Absolute dose values, at the isocenter and at other points placed in dose heterogeneity zone, have been verified with an ionization chamber in a solid homogeneous phantom. In uniform dose regions measured dose values resulted in agreements with the calculated doses within 2%. Isodose distributions have also been determined by radiographic films and compared with those predicted by the planning system. Distance to agreement between calculated and measured isodoses in dose gradient zone was within 2 mm. In conclusion, our results demonstrated the feasibility and the accuracy of the CD-arc technique for achieving highly conformal dose distributions. Up till now 20 patients have been treated with CD-arc therapy.

  11. Thermal investigation of an electrical high-current arc with porous gas-cooled anode

    NASA Technical Reports Server (NTRS)

    Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.

    1984-01-01

    The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.

  12. Delivery quality assurance with ArcCHECK

    SciTech Connect

    Neilson, Christopher; Klein, Michael; Barnett, Rob; Yartsev, Slav

    2013-04-01

    Radiation therapy requires delivery quality assurance (DQA) to ensure that treatment is accurate and closely follows the plan. We report our experience with the ArcCHECK phantom and investigate its potential optimization for the DQA process. One-hundred seventy DQA plans from 84 patients were studied. Plans were classified into 2 groups: those with the target situated on the diodes of the ArcCHECK (D plans) and those with the target situated at the center (C plans). Gamma pass rates for 8 target sites were examined. The parameters used to analyze the data included 3%/3 mm with the Van Dyk percent difference criteria (VD) on, 3%/3 mm with the VD off, 2%/2 mm with the VD on, and x/3 mm with the VD on and the percentage dosimetric agreement “x” for diode plans adjusted. D plans typically displayed maximum planned dose (MPD) on the cylindrical surface containing ArcCHECK diodes than center plans, resulting in inflated gamma pass rates. When this was taken into account by adjusting the percentage dosimetric agreement, C plans outperformed D plans by an average of 3.5%. ArcCHECK can streamline the DQA process, consuming less time and resources than radiographic films. It is unnecessary to generate 2 DQA plans for each patient; a single center plan will suffice. Six of 8 target sites consistently displayed pass rates well within our acceptance criteria; the lesser performance of head and neck and spinal sites can be attributed to marginally lower doses and increased high gradient of plans.

  13. TH-A-9A-03: Dosimetric Effect of Rotational Errors for Lung Stereotactic Body Radiotherapy

    SciTech Connect

    Lee, J; Kim, H; Park, J; Kim, J; Kim, H; Ye, S

    2014-06-15

    Purpose: To evaluate the dosimetric effects on target volume and organs at risk (OARs) due to roll rotational errors in treatment setup of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: There were a total of 23 volumetric modulated arc therapy (VMAT) plans for lung SBRT examined in this retrospective study. Each CT image of VMAT plans was intentionally rotated by ±1°, ±2°, and ±3° to simulate roll rotational setup errors. The axis of rotation was set at the center of T-spine. The target volume and OARs in the rotated CT images were re-defined by deformable registration of original contours. The dose distributions on each set of rotated images were re-calculated to cover the planning target volume (PTV) with the prescription dose before and after the couch translational correction. The dose-volumetric changes of PTVs and spinal cords were analyzed. Results: The differences in D95% of PTVs by −3°, −2°, −1°, 1°, 2°, and 3° roll rotations before the couch translational correction were on average −11.3±11.4%, −5.46±7.24%, −1.11±1.38% −3.34±3.97%, −9.64±10.3%, and −16.3±14.7%, respectively. After the couch translational correction, those values were −0.195±0.544%, −0.159±0.391%, −0.188±0.262%, −0.310±0.270%, −0.407±0.331%, and −0.433±0.401%, respectively. The maximum dose difference of spinal cord among the 23 plans even after the couch translational correction was 25.9% at −3° rotation. Conclusions: Roll rotational setup errors in lung SBRT significantly influenced the coverage of target volume using VMAT technique. This could be in part compensated by the translational couch correction. However, in spite of the translational correction, the delivered doses to the spinal cord could be more than the calculated doses. Therefore if rotational setup errors exist during lung SBRT using VMAT technique, the rotational correction would rather be considered to prevent over-irradiation of normal

  14. Calculation of pressure and temperature in medium-voltage electrical installations due to fault arcs

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, J.; Gockenbach, E.

    2008-05-01

    In order to determine the pressure rise due to arc faults in electrical installations, the portion of energy heating the surrounding gas of fault arcs has to be known. The ratio of the portion of energy to the electric energy, the thermal transfer coefficient, is adopted as the kp factor. This paper presents a theoretical approach for the determination of the thermal transfer coefficient and the pressure rise in electrical installations. It is based on the fundamental hydro- and thermodynamic conservation equations and the equation of gas state taking into account melting and evaporation of metals as well as chemical reactions with the surrounding gas. In order to consider the dependence of the arc energy on the gas density, the radiative effect of fault arcs on the energy balance is introduced into the arc model by using the net emission coefficient as a function of gas density, arc temperature and arc radius. The results for a test container show that factors such as the kinds of insulating gases and of electrode materials, the size of test vessels and the gas density considerably influence the thermal transfer coefficient and thus the pressure rise. Furthermore, it is demonstrated, for an example of the arc fault in a compact medium-voltage station with pressure relief openings and a pressure relief channel, that the arc energy and the arc temperature can be simulated based on the changing gas density.

  15. Dust in the arcs of Methone and Anthe

    NASA Astrophysics Data System (ADS)

    Sun, Kai-Lung; Seiß, Martin; Hedman, M. M.; Spahn, Frank

    2017-03-01

    Methone and Anthe are two tiny moons (with diameter < 3 km) in the inner part of Saturn's E ring. Both moons are embedded in arcs of dust particles. To understand the amount of micron-sized dust in these arcs and their spatial distributions, we model the source, dynamical evolution, and sinks of the dust in the arc. We assume hypervelocity impacts of micrometeoroids on the moons produces these dust (Hedman et al., 2009), via the so called impact-ejecta process (Krivov et al., 2003; Spahn et al., 2006). After ejecting and escaping from the moons, these micron-sized particles are subject to several perturbing forces, including gravitational perturbation from Mimas, oblateness of Saturn, Lorentz force, solar radiation pressure, and plasma drag. Particles can be either confined in the arcs due to corotational resonance with Mimas, like their source moons (Cooper et al., 2008; El Moutamid et al., 2014; Hedman et al., 2009; Spitale et al., 2006), or pushed outward by plasma drag. Particle sinks are recollisions with the source moon, collisions with other moons, or migration out of the zone of interest. The erosion of particles due to plasma sputtering is also considered (Johnson et al., 2008), although its timescale is much larger than other sinks. Our simulation results show that ejecta from both moons can form maximal number densities between 10-4 and 10-3m-3 . In comparison with the observations of Anthe arc, the peak value in simulations is about an order of magnitude smaller. Plausible explanations for the difference include millimeter-sized particles as additional source and the uncertainties of impactor flux Fimp and the yields Y. The longitudinal extension of the Methone/Anthe arc in our simulation is 10.8°/15°, consistent with observations and theory (Hedman et al., 2009). Our results also show the lifetime distributions of particles and the heliotropic behavior of dust introduced by solar radiation pressure (Hedman et al., 2010a). The lifetimes of arc

  16. Spectroscopic and video observations of fullerene production arcs

    SciTech Connect

    Lorents, D.C.; Stalder, K.R.; Keegan, D.M.; Ruoff, R.S.; Malhotra, R.M.

    1993-12-01

    Spatially resolved spectroscopic studies of a carbon arc operating under fullerene production conditions have been made across the visible wavelength range using an imaging Optical Multichannel Analyzer. C{sub 2} Swan bands are observed to be the major visible emissions although strong CI and CII as well as He I atomic lines are also observed. Video and photographic studies of the arc characteristics show the Swan-band emissions to be concentrated most intensely near the anode but also to appear strongly in regions well outside the electrode gap region. Vibrational and rotational temperatures of these bands provide information on the temperatures in various regions of the arc. The characteristic spatial structure of the arcs observed in the Swan-band light suggests that they are excited by electrons whose trajectories are controlled by the local electric and magnetic fields. The arc exhibits complex and interesting temporal behavior that has been observed with a video camera using short exposure times. Video film taken through a Swan-band filter clearly shows the dominant spatial features of the C{sub 2} emissions.

  17. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  18. TAMA. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, H

    1994-06-03

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  19. SU-E-T-810: Volumetric Modulated Arc Therapy and Conventional Intensity-Modulated Radiotherapy for Non-Small-Cell Lung Cancer with Simultaneously Integrated Boost Radiation Therapy: A Planning Comparison Study

    SciTech Connect

    Liu, T; Chen, J; Zhang, G; Sun, T

    2015-06-15

    Purpose: To compare and analyze the characteristics of intensity-modulated arc therapy(IMAT) versus fixed-gantry intensity-modulated radiotherapy(IMRT) in treatment of non-small-cell lung cancer. Methods: Twelve patients treated in our radiotherapy center were selected for this study. The patient subsequently underwent 4D-CT simulation.Margins of 5mm and 10mm were added to the ITV to generate the CTV and PTV respectively. Three treatment plans (IMRT,one single arc (RA1),double arcs (RA2))were generated with Eclipse ver.8.6 planning systems. Using a dose level of 75Gy in 15fractions to the ITV,60Gy in 15fractions to the CTV and 45Gy in 15fractions to the PTV respectively. The target and normol tissue volumes were compared,as were the dosimetry parameters. Results: There were no significant differences in CI of ITV,PTV,HI of ITV,CTV and PTV, V5,V10,V15,V20,V25,V30,V45,V50 of total-lung and mean lung dose (all p>0.05). However, the differences were significant in terms of CI of CTV,V5 of B-P (all p<0.05). On the MU, IMRT=1540MU,RA1=1006 MU and RA2=1096 MU. (F=12.00,P=0.000).On the treatment time, IMRT= 13.5min,RA1= 1.5min,and RA2=2.5 min (F= 30.11,P=0.000 ). Conclusion: IMAT is equal to IMRT in dosimetril evaluation. Due to much less Mu and delivery time,IMAT is an ideal technique in treating patients by reduceing the uncomfortable influnce which could effect the treatment.

  20. Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer

    SciTech Connect

    Liu, Huan Ye, Jingjing; Kim, John J.; Deng, Jun; Kaur, Monica S.; Chen, Zhe

    2015-04-01

    To compare the dosimetric and delivery characteristics of two arc-based stereotactic body radiotherapy (SBRT) techniques for early-stage lung cancer treatment. SBRT treatment plans for lung tumors of different sizes and locations were designed using a single-isocenter multisegment dynamic conformal arc technique (SiMs-arc) and a volumetric modulated arc therapy technique (RapidArc) for 5 representative patients treated previously with lung SBRT. The SiMs-arc plans were generated with the isocenter located in the geometric center of patient's axial plane (which allows for collision-free gantry rotation around the patient) and 6 contiguous 60° arc segments spanning from 1° to 359°. 2 RapidArc plans, one using the same arc geometry as the SiMs-arc and the other using typical partial arcs (210°) with the isocenter inside planning target volume (PTV), were generated for each corresponding SiMs-arc plan. All plans were generated using the Varian Eclipse treatment planning system (V10.0) and were normalized with PTV V{sub 100} to 95%. PTV coverage, dose to organs at risk, and total monitor units (MUs) were then compared and analyzed. For PTV coverage, the RapidArc plans generally produced higher PTV D{sub 99} (by 1.0% to 3.3%) and higher minimum dose (by 2.7% to 12.7%), better PTV conformality index (by 1% to 8%), and less volume of 50% dose outside 2 cm from PTV (by 0 to 20.8 cm{sup 3}) than the corresponding SiMs-arc plans. For normal tissues, no significant dose differences were observed for the lungs, trachea, chest wall, and heart; RapidArc using partial arcs produced lowest maximum dose to spinal cord. For dose delivery, the RapidArc plans typically required 50% to 90% more MUs than SiMs-arc plans to deliver the same prescribed dose. The additional intensity modulation afforded by variable gantry speed and dose rate and by overlapping arcs enabled RapidArc plans to produce dosimetrically improved plans for lung SBRT, but required more MUs (by a factor > 1.5) to

  1. Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer.

    PubMed

    Liu, Huan; Ye, Jingjing; Kim, John J; Deng, Jun; Kaur, Monica S; Chen, Zhe Jay

    2015-01-01

    To compare the dosimetric and delivery characteristics of two arc-based stereotactic body radiotherapy (SBRT) techniques for early-stage lung cancer treatment. SBRT treatment plans for lung tumors of different sizes and locations were designed using a single-isocenter multisegment dynamic conformal arc technique (SiMs-arc) and a volumetric modulated arc therapy technique (RapidArc) for 5 representative patients treated previously with lung SBRT. The SiMs-arc plans were generated with the isocenter located in the geometric center of patient׳s axial plane (which allows for collision-free gantry rotation around the patient) and 6 contiguous 60° arc segments spanning from 1° to 359°. 2 RapidArc plans, one using the same arc geometry as the SiMs-arc and the other using typical partial arcs (210°) with the isocenter inside planning target volume (PTV), were generated for each corresponding SiMs-arc plan. All plans were generated using the Varian Eclipse treatment planning system (V10.0) and were normalized with PTV V100 to 95%. PTV coverage, dose to organs at risk, and total monitor units (MUs) were then compared and analyzed. For PTV coverage, the RapidArc plans generally produced higher PTV D99 (by 1.0% to 3.3%) and higher minimum dose (by 2.7% to 12.7%), better PTV conformality index (by 1% to 8%), and less volume of 50% dose outside 2cm from PTV (by 0 to 20.8cm(3)) than the corresponding SiMs-arc plans. For normal tissues, no significant dose differences were observed for the lungs, trachea, chest wall, and heart; RapidArc using partial arcs produced lowest maximum dose to spinal cord. For dose delivery, the RapidArc plans typically required 50% to 90% more MUs than SiMs-arc plans to deliver the same prescribed dose. The additional intensity modulation afforded by variable gantry speed and dose rate and by overlapping arcs enabled RapidArc plans to produce dosimetrically improved plans for lung SBRT, but required more MUs (by a factor > 1.5) to deliver. The

  2. X-Raying the Beating Heart of a Newborn Star: Rotational Modulation of High-Energy Radiation from V1647 Ori

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael; Petre, Robert; Teets, William K.; Principe, David

    2012-01-01

    We report a periodicity of approx.1 day in the highly elevated X-ray emission from the protostar V1647 Ori during its two recent multiple-year outbursts of mass accretion. This periodicity is indicative of protostellar rotation at near-breakup speed. Modeling of the phased X-ray light curve indicates the high-temperature ( 50 MK), X-ray-emitting plasma, which is most likely heated by accretion-induced magnetic reconnection, resides in dense ( 5 1010 cm.3), pancake-shaped magnetic footprints where the accretion stream feeds the newborn star. The sustained X-ray periodicity of V1647 Ori demonstrates that such protostellar magnetospheric accretion configurations can be stable over timescales of years. Subject headings: stars: formation stars: individual (V1647 Ori) stars: pre-main sequence X-rays: stars

  3. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  4. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  5. A bird's eye view of "Understanding volcanoes in the Vanuatu arc"

    NASA Astrophysics Data System (ADS)

    Vergniolle, S.; Métrich, N.

    2016-08-01

    The Vanuatu intra-oceanic arc, located between 13 and 22°S in the southwest Pacific Ocean (Fig. 1), is one of the most seismically active regions with almost 39 earthquakes magnitude 7 + in the past 43 years (Baillard et al., 2015). Active deformation in both the Vanuatu subduction zone and the back-arc North-Fiji basin accommodates the variation of convergence rates which are c.a. 90-120 mm/yr along most of the arc (Taylor et al., 1995; Pelletier et al., 1998). The convergence rate is slowed down to 25-43 mm/yr (Baillard et al., 2015) in the central segment where the D'Entrecasteaux ridge - an Eocene-Oligocene island arc complex on the Australian subducting plate - collides and is subducted beneath the fore-arc (Taylor et al., 2005). Hence, the Vanuatu arc is segmented in three blocks which move independently; as the north block rotates counter-clockwise in association with rapid back-arc spreading ( 80 mm/year), the central block translates eastward and the south block rotates clockwise (Calmant et al., 2003; Bergeot et al., 2009). (See Fig. 1.)

  6. Finite element discrete ordinates method for radiative transfer in non-rotationally invariant scattering media - Application to the leaf canopy problem

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Kanemasu, Edward T.; Asrar, Ghassem

    1988-01-01

    A finite element discrete ordinates method for solving the radiative transfer equation in nonrotationally invariant scattering media has been applied to the lead-canopy problem, and results are presented on the cross sections and the reflection functions. The method is based on a unique implementation of the Galerkin integral law formulation of the transport equation. For both near-normal and grazing incidences, the transfer functions of leaf canopies are found to be strongly anisotropic, with relatively more scattered flux in the vertical directions. It is suggested that the assumption of isotropic scattering in leaf canopies is not valid.

  7. Determination of Photosynthetically Active Radiation from multi-filter rotating shadowband measurements: Method and validation based on observations at Lampedusa (35.5°N, 12.6°E)

    NASA Astrophysics Data System (ADS)

    Trisolino, P.; di Sarra, A.; Meloni, D.; Pace, G.; Anello, F.; Becagli, S.; Monteleone, F.; Sferlazzo, D.

    2017-02-01

    Solar radiation plays an important role in several terrestrial, atmospheric and biogeochemical processes, and in climate. This study focusses on the verification of a method for the determination of PAR, the Photosynthetically Active Radiation. The method is based on the use of measurements made with Multifilter Rotating Shadowband Radiometers (MFRSR). The MFRSR measures global and diffuse components of the solar irradiance in six narrowband and one broadband channel; four of the MFRSR bands fall within the spectral range of PAR. This study is based on measurements made at the Station for Climate Observations, on the island of Lampedusa, in the central Mediterranean. MFRSR measurements at Lampedusa are continuously calibrated on-site by using the Langley plot method. The MFRSR signals in the four bands within the PAR spectral interval are linearly combined to infer the corresponding PAR. The method is verified by comparing PAR determinations in days with very different aerosol and cloud conditions. A very good agreement between measured and estimated PAR is found in all conditions, confirming that the method has the capability to accurately retrieve PAR irradiances. The variability of the PAR diffuse component appears also well described.

  8. Comparative process analysis of fullerene production by the arc and the radio-frequency discharge methods.

    PubMed

    Marković, Z; Todorović-Marković, B; Mohai, I; Farkas, Z; Kovats, E; Szepvolgyi, J; Otasević, D; Scheier, P; Feil, S; Romcević, N

    2007-01-01

    In this work, comparative analysis of processes in carbon arc and radio frequency (RF) plasma during fullerene synthesis has been presented. The kinetic model of fullerene formation developed earlier has been verified in both types of plasma reactors. The fullerene yield depended on carbon concentration, velocity of plasma flame and rotational temperature of C2 radicals predominantly. When mean rotational temperature of C2 radicals was 3000 K, the fullerene yield was the highest regardless of the type of used reactor. The zone of fullerene formation is larger significantly in RF plasma reactor compared to arc reactor.

  9. Diffuse vacuum arc with cerium oxide hot cathode

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.; Ivanov, A. S.

    2016-11-01

    Diffuse vacuum arc with hot cathode is one of the perspective plasma sources for the development of spent nuclear fuel plasma reprocessing technology. Experimental data is known for such type of discharges on metal cathodes. In this work discharge with cerium dioxide hot cathode was studied. Cerium dioxide properties are similar to uranium dioxide. Its feature as dielectric is that it becomes conductive in oxygen-free atmosphere. Vacuum arc was studied at following parameters: cathode temperatures were between 2.0 and 2.2 kK, discharge currents was between 30 and 65 A and voltages was in range from 15 to 25 V. Power flows from plasma to cathode were estimated in achieved regimes. Analysis of generated plasma component composition was made by radiation spectrum diagnostics. These results were compared with calculations of equilibrium gaseous phase above solid sample of cerium dioxide in close to experimental conditions. Cerium dioxide vacuum evaporation rate and evaporation rate in arc were measured.

  10. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  11. Apparatus and method to compensate for refraction of radiation

    DOEpatents

    Allen, G.R.; Moskowitz, P.E.

    1990-03-27

    An apparatus to compensate for refraction of radiation passing through a curved wall of an article is provided. The apparatus of a preferred embodiment is particularly advantageous for use in arc tube discharge diagnostics. The apparatus of the preferred embodiment includes means for pre-refracting radiation on a predetermined path by an amount equal and inverse to refraction which occurs when radiation passes through a first wall of the arc tube such that, when the radiation passes through the first wall of the arc tube and into the cavity thereof, the radiation passes through the cavity approximately on the predetermined path; means for releasably holding the article such that the radiation passes through the cavity thereof; and means for post-refracting radiation emerging from a point of the arc tube opposite its point of entry by an amount equal and inverse to refraction which occurs when radiation emerges from the arc tube. In one embodiment the means for pre-refracting radiation includes a first half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a first cylindrical lens, the first half tube being mounted with its concave side facing the radiation source and the first cylindrical lens being mounted between the first half tube and the arc tube and the means for post-refracting radiation includes a second half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a second cylindrical lens, the second half tube being mounted with its convex side facing the radiation source and the second cylindrical lens being mounted between the arc tube and the second half tube. Methods to compensate for refraction of radiation passing into and out of an arc tube is also provided. 4 figs.

  12. Apparatus and method to compensate for refraction of radiation

    DOEpatents

    Allen, Gary R.; Moskowitz, Philip E.

    1990-01-01

    An apparatus to compensate for refraction of radiation passing through a curved wall of an article is provided. The apparatus of a preferred embodiment is particularly advantageous for use in arc tube discharge diagnostics. The apparatus of the preferred embodiment includes means for pre-refracting radiation on a predetermined path by an amount equal and inverse to refraction which occurs when radiation passes through a first wall of the arc tube such that, when the radiation passes through the first wall of the arc tube and into the cavity thereof, the radiation passes through the cavity approximately on the predetermined path; means for releasably holding the article such that the radiation passes through the cavity thereof; and means for post-refracting radiation emerging from a point of the arc tube opposite its point of entry by an amount equal and inverse to refraction which occurs when radiation emerges from the arc tube. In one embodiment the means for pre-refracting radiation includes a first half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a first cylindrical lens, the first half tube being mounted with its concave side facing the radiation source and the first cylindrical lens being mounted between the first half tube and the arc tube and the means for post-refracting radiation includes a second half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a second cylindrical lens, the second half tube being mounted with its convex side facing the radiation source and the second cylindrical lens being mounted between the arc tube and the second half tube. Methods to compensate for refraction of radiation passing into and out of an arc tube is also provided.

  13. Convergent evolution of the arginine deiminase pathway: the ArcD and ArcE arginine/ornithine exchangers.

    PubMed

    Noens, Elke E E; Lolkema, Juke S

    2017-02-01

    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species revealed the presence of 124 arc gene clusters encoding the pathway. About half of the clusters contained the gene encoding the well-studied L-arginine/L-ornithine exchanger ArcD, while the other half contained a gene, termed here arcE, encoding a membrane protein that is not a homolog of ArcD. The arcE gene product of Streptococcus pneumoniae was shown to take up L-arginine and L-ornithine with affinities of 0.6 and 1 μmol/L, respectively, and to catalyze metabolic energy-independent, electroneutral exchange. ArcE of S. pneumoniae could replace ArcD in the ADI pathway of Lactococcus lactis and provided the cells with a growth advantage. In contrast to ArcD, ArcE catalyzed translocation of the pathway intermediate L-citrulline with high efficiency. A short version of the ADI pathway is proposed for L-citrulline catabolism and the presence of the evolutionary unrelated arcD and arcE genes in different organisms is discussed in the context of the evolution of the ADI pathway.

  14. The Relation of Polar Arcs to Magnetotail Twisting and IMF Direction

    NASA Astrophysics Data System (ADS)

    Kullen, A.; Janhunen, P.

    2002-12-01

    A large statistical study of polar arcs utilizing the Polar UV imager reveals a strong solar wind control of large-scale polar arcs. They occur preferably for a high solar wind energy flux during northward IMF. Different types of polar arcs are triggered by different IMF clock angle changes. Oval-aligned arcs appear often during constant IMF, moving transpolar arcs usually develop after an IMF By sign change. The relation of these two polar arc types to changes in the magnetotail topology are investigated with help of the GUMICS-4 MHD code by Janhunen. The simulations show that for northward IMF with a nonzero IMF By component the magnetotail becomes long and highly twisted at its tailward end. The closed field line region reaches in this case high into the near-Earth tail lobes and poleward of the average polar cap boundary. The poleward displaced part of the polar cap boundary is a probable location for polar arcs to occur. In the case of an IMF By sign change the tail twist rotates such that in an intermediate state near-Earth and far-tail regions are oppositely twisted. This causes a bifurcation of the closed field line region in the tail and a bridge of closed field lines in the polar cap. The over the entire polar cap moving closed bridge indicates a moving transpolar arc.

  15. Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow

    SciTech Connect

    Zhao, Tian-Liang; Liu, Jing-Lin; Li, Xiao-Song; Liu, Jin-Bao; Song, Yuan-Hong; Xu, Yong; Zhu, Ai-Min

    2014-05-15

    An annular-mode gliding arc discharge powered by a 50 Hz alternating current (ac) supply was studied in a vortex flow of dry and humid air. Its temporal evolution characteristics were investigated by electrical measurement, temporally resolved imaging, and temporally resolved optical emission spectroscopic measurements. Three discharge stages of arc-ignition, arc-gliding, and arc-extinction were clearly observed in each half-cycle of the discharge. During the arc-gliding stage, the intensity of light emission from the arc root at the cathode was remarkably higher than that at other areas. The spectral intensity of N{sub 2}(C{sup 3}Π{sub u}−B{sup 3}Π{sub g}) during the arc-ignition stage was much higher than that during the arc-gliding stage, which was contrary to the temporal evolutions of spectral intensities for N{sub 2}{sup +}(B{sup 2}Σ{sub u}{sup +}−X{sup 2}Σ{sub g}{sup +}) and OH(A{sup 2}Σ{sup +}−X{sup 2}Π{sub i}). Temporally resolved vibrational and rotational temperatures of N{sub 2} were also presented and decreased with increasing the water vapor content.

  16. Arc of opportunity.

    PubMed

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia.

  17. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  18. PC-based arc ignition and arc length control system for gas tungsten arc welding

    SciTech Connect

    Liu, Y. ); Cook, G.E.; Barnett, R.J.; Springfield, J.F. . School of Engineering)

    1992-10-01

    In this paper, a PC-based digital control system for gas tungsten arc welding (GTAW) is presented. This system controls the arc ignition process, the arc length, and the process of welding termination. A DT2818 made by Data Translation is used for interface and A/D and D/A conversions. The digital I/O ports of the DT2818 are used for control of wirefeed, shield gas, cooling water, welding power supply, etc. The DT2818 is housed in a PC. The welding signals and status are displayed on the screen for in-process monitoring. A user can control the welding process by the keyboard.

  19. SU-E-T-631: Preliminary Results for Analytical Investigation Into Effects of ArcCHECK Setup Errors

    SciTech Connect

    Kar, S; Tien, C

    2015-06-15

    Purpose: As three-dimensional diode arrays increase in popularity for patient-specific quality assurance for intensity-modulated radiation therapy (IMRT), it is important to evaluate an array’s susceptibility to setup errors. The ArcCHECK phantom is set up by manually aligning its outside marks with the linear accelerator’s lasers and light-field. If done correctly, this aligns the ArcCHECK cylinder’s central axis (CAX) with the linear accelerator’s axis of rotation. However, this process is prone to error. This project has developed an analytical expression including a perturbation factor to quantify the effect of shifts. Methods: The ArcCHECK is set up by aligning its machine marks with either the sagittal room lasers or the light-field of the linear accelerator at gantry zero (IEC). ArcCHECK has sixty-six evenly-spaced SunPoint diodes aligned radially in a ring 14.4 cm from CAX. The detector response function (DRF) was measured and combined with inverse-square correction to develop an analytical expression for output. The output was calculated using shifts of 0 (perfect alignment), +/−1, +/−2 and +/−5 mm. The effect on a series of simple inputs was determined: unity, 1-D ramp, steps, and hat-function to represent uniform field, wedge, evenly-spaced modulation, and single sharp modulation, respectively. Results: Geometric expressions were developed with perturbation factor included to represent shifts. DRF was modeled using sixth-degree polynomials with correlation coefficient 0.9997. The output was calculated using simple inputs such as unity, 1-D ramp, steps, and hat-function, with perturbation factors of: 0, +/−1, +/−2 and +/−5 mm. Discrepancies have been observed, but large fluctuations have been somewhat mitigated by aliasing arising from discrete diode placement. Conclusion: An analytical expression with perturbation factors was developed to estimate the impact of setup errors on an ArcCHECK phantom. Presently, this has been applied to

  20. RapidArc radiotherapy for whole pelvic lymph node in cervical cancer with 6 and 15 MV: a treatment planning comparison with fixed field IMRT

    PubMed Central

    Zhai, De-Yin; Yin, Yong; Gong, Guan-Zhong; Liu, Tong-Hai; Chen, Jin-Hu; Ma, Chang-Sheng; Lu, Jie

    2013-01-01

    Dosimetric differences were investigated among single and dual arc RapidArc and fixed-field intensity-modulated radiotherapy (f-IMRT) treatment plans for whole pelvic irradiation of lymph nodes. A total of 12 patients who had undergone radical surgery for cervical cancer and who had demonstrated multiple pelvic lymph node metastases were treated with radiotherapy. For all 12 cases, 7-field IMRT, single-arc RapidArc and dual-arc RapidArc were applied with 6 MV and 15 MV X-ray energies. The radiation dosimetric parameters for the different plans were compared with one another. All the plans met the clinical requirements. The homogeneity, conformity and external volume indices of f-IMRT and dual-arc RapidArc were better than for single-arc RapidArc (P < 0.05), while the differences between f-IMRT and dual-arc RapidArc were not significant. There were no significant differences in the radiation dose to organs at risk, except for the small bowel receiving >40 Gy (f-IMRT and dual-arc < single-arc, P < 0.05). The differences in dose distributions between the two applied X-ray energies for each of the modality plans were not significant. RapidArc plans resulted in fewer monitor units than the corresponding f-IMRT plans. Also, there were no differences between the two photon energies, except for a reduction in the number of MUs for 15 MV (P > 0.05). Compared to f-IMRT, no significant dosimetric benefits were found using RapidArc for whole pelvic lymph node irradiation. However, RapidArc has been associated with shorter treatment time and fewer monitor units, supporting the case for its safety and efficacy for pelvic irradiation. PMID:23283869

  1. Vacuum Friction in Rotating Particles

    SciTech Connect

    Manjavacas, A.; Garcia de Abajo, F. J.

    2010-09-10

    We study the frictional torque acting on particles rotating in empty space. At zero temperature, vacuum friction transforms mechanical energy into light emission and produces particle heating. However, particle cooling relative to the environment occurs at finite temperatures and low rotation velocities. Radiation emission is boosted and its spectrum significantly departed from a hot-body emission profile as the velocity increases. Stopping times ranging from hours to billions of years are predicted for materials, particle sizes, and temperatures accessible to experiment. Implications for the behavior of cosmic dust are discussed.

  2. [Arc spectrum diagnostic and heat coupling mechanism analysis of double wire pulsed MIG welding].

    PubMed

    Liu, Yong-qiang; Li, Huan; Yang, Li-jun; Zheng, Kai; Gao, Ying

    2015-01-01

    A double wire pulsed MIG welding test system was built in the present paper, in order to analyze the heat-coupling mechanism of double wire pulsed MIG welding, and study are temperature field. Spectroscopic technique was used in diagnostic analysis of the are, plasma radiation was collected by using hollow probe method to obtain the arc plasma optical signal The electron temperature of double wire pulsed MIG welding arc plasma was calculated by using Boltzmann diagram method, the electron temperature distribution was obtained, a comprehensive analysis of the arc was conducted combined with the high speed camera technology and acquisition means of electricity signal. The innovation of this paper is the combination of high-speed camera image information of are and optical signal of arc plasma to analyze the coupling mechanism for dual arc, and a more intuitive analysis for are temperature field was conducted. The test results showed that a push-pull output was achieved and droplet transfer mode was a drop in a pulse in the welding process; Two arcs attracted each other under the action of a magnetic field, and shifted to the center of the arc in welding process, so a new heat center was formed at the geometric center of the double arc, and flowing up phenomenon occurred on the arc; Dual arc electronic temperature showed an inverted V-shaped distribution overall, and at the geometric center of the double arc, the arc electron temperature at 3 mm off the workpiece surface was the highest, which was 16,887.66 K, about 4,900 K higher than the lowest temperature 11,963.63 K.

  3. Dynamics of disk galaxies under eccentric perturbations and the effect of radiative thermal exchange on the rotation of lower mass protostars

    NASA Astrophysics Data System (ADS)

    Zhang, Linchu

    2000-09-01

    In the first part of this dissertation, the dynamics of disk galaxies are treated using a representation in a number of circular rings*. The rings are assumed to be rigid and oscillate in a plane. Motion of matter within each ring is taken into account. Eccentric perturbations are studied. First the axisymmetric equilibrium configuration of the galaxy is discussed. After that eccentric perturbations are described. The ring representation is then applied and relevant equations of motion derived. Various formulas involving coefficients of terms in the equations of motion are derived. Angular momentum transport is then discussed with the results of numerical solutions of the equations of motion. Besides the disk, two other components: the galactic bulge, and the dark matter halo are also included, but only as passive sources of gravity. The central region of the disk is handled separately; it may contain a black hole. The second part of this dissertation treats protostars. It is shown that radiative thermal exchange can significantly reduce the angular momentum of a rapidly spinning protostar. The mechanism is especially important for high temperature and large surface area. Also, it is expected that the mechanism is most relevant to lower mass protostars, since they may be embedded inside H II regions which have high temperatures. *This first part of the dissertation is related to [15] (Lovelace, R. V. E., Zhang, L., Kornreich, D. A., & Haynes, M. P. 1999, THE ASTROPHYSICAL JOURNAL, 524, 634, published by the University of Chicago Press,© 1999.The American Astronomical Society. All rights reserved).

  4. Fabrication of graphene from graphite by a thermal assisted vacuum arc discharge system

    NASA Astrophysics Data System (ADS)

    Cheng, Guo-Wei; Chu, Kevin; Chen, Jeng Shiung; Tsai, Jeff T. H.

    2017-04-01

    In this study, graphene was fabricated on copper foils using a high temperature furnace embedded in a vacuum arc discharge method. Combining the advantages of chemical vapor deposition and vacuum arc discharge, single-layer graphene can be fabricated at 600 °C base temperature from the mini furnace embedded with a fast heating via the photon radiation from the vacuum arc to 1100 °C on the substrates' surface. The optimal fabrication condition was determined through a series of experiments on ambient pressure, processing time, arc currents, and the cooling process. Observations by scanning electron microscopy, Raman spectroscopy, and optical microscopy showed that the main products were single-layer graphene, which has a uniform thickness across the entire substrate. The results demonstrated that the combination of a vacuum arc with a thermal method that uses graphite as a carbon source provides a low-cost and straight forward method to synthesize graphene films for graphene-based applications.

  5. Helical tomotherapy quality assurance with ArcCHECK

    SciTech Connect

    Chapman, David; Barnett, Rob; Yartsev, Slav

    2014-07-01

    To design a quality assurance (QA) procedure for helical tomotherapy that measures multiple beam parameters with 1 delivery and uses a rotating gantry to simulate treatment conditions. The customized QA procedure was preprogrammed on the tomotherapy operator station. The dosimetry measurements were performed using an ArcCHECK diode array and an A1SL ion chamber inserted in the central holder. The ArcCHECK was positioned 10 cm above the isocenter so that the 21-cm diameter detector array could measure the 40-cm wide tomotherapy beam. During the implementation of the new QA procedure, separate comparative measurements were made using ion chambers in both liquid and solid water, the tomotherapy onboard detector array, and a MapCHECK diode array for a period of 10 weeks. There was good agreement (within 1.3%) for the beam output and cone ratio obtained with the new procedure and the routine QA measurements. The measured beam energy was comparable (0.3%) to solid water measurement during the 10-week evaluation period, excluding 2 of the 10 measurements with unusually high background. The symmetry reading was similarly compromised for those 2 weeks, and on the other weeks, it deviated from the solid water reading by ∼2.5%. The ArcCHECK phantom presents a suitable alternative for performing helical tomotherapy QA, provided the background is collected properly. The proposed weekly procedure using ArcCHECK and water phantom makes the QA process more efficient.

  6. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  7. NOTE: Does the option to rotate the Elekta Beam Modulator MLC during VMAT IMRT delivery confer advantage?—a study of 'parked gaps'

    NASA Astrophysics Data System (ADS)

    Webb, S.

    2010-06-01

    When delivering intensity-modulated radiation therapy (IMRT) using the volumetric modulated arc therapy (VMAT) technique on an Elekta accelerator equipped with the Elekta Beam Modulator multileaf collimator (MLC), the orientation of the MLC, relative to the accelerator head, is generally fixed during the delivery. However, it has the ability to rotate about its axis as the gantry simultaneously rotates. This note shows that this can confer a potential advantage when planning and delivering IMRT via VMAT. A computer model has been built in which the MLC rotation angle could be varied with each control point (gantry location) within the constraints of the specified MLC rotation speed and the time available for rotation. The model was used to optimize the orientation trajectory in such a way as to minimize the number of parked gaps between leaves which are needed for some gantry orientations but not for others (and which cannot reach the shielding safety of surrounding jaws in the time available). The presented work started with the simple situation of collimating gantry-successive single convex shapes. As a broad statement some 40% reduction in such parked gaps could be achieved. The study was then extended to investigate the optimized trajectories for multiple separate concave shapes with, once again, a saving in unwanted parked gaps or unwanted over-irradiation.

  8. Does the option to rotate the Elekta Beam Modulator MLC during VMAT IMRT delivery confer advantage?--a study of 'parked gaps'.

    PubMed

    Webb, S

    2010-06-07

    When delivering intensity-modulated radiation therapy (IMRT) using the volumetric modulated arc therapy (VMAT) technique on an Elekta accelerator equipped with the Elekta Beam Modulator multileaf collimator (MLC), the orientation of the MLC, relative to the accelerator head, is generally fixed during the delivery. However, it has the ability to rotate about its axis as the gantry simultaneously rotates. This note shows that this can confer a potential advantage when planning and delivering IMRT via VMAT. A computer model has been built in which the MLC rotation angle could be varied with each control point (gantry location) within the constraints of the specified MLC rotation speed and the time available for rotation. The model was used to optimize the orientation trajectory in such a way as to minimize the number of parked gaps between leaves which are needed for some gantry orientations but not for others (and which cannot reach the shielding safety of surrounding jaws in the time available). The presented work started with the simple situation of collimating gantry-successive single convex shapes. As a broad statement some 40% reduction in such parked gaps could be achieved. The study was then extended to investigate the optimized trajectories for multiple separate concave shapes with, once again, a saving in unwanted parked gaps or unwanted over-irradiation.

  9. Wormhole shadows in rotating dust

    NASA Astrophysics Data System (ADS)

    Ohgami, Takayuki; Sakai, Nobuyuki

    2016-09-01

    As an extension of our previous work, which investigated the shadows of the Ellis wormhole surrounded by nonrotating dust, in this paper we study wormhole shadows in a rotating dust flow. First, we derive steady-state solutions of slowly rotating dust surrounding the wormhole by solving relativistic Euler equations. Solving null geodesic equations and radiation transfer equations, we investigate the images of the wormhole surrounded by dust for the above steady-state solutions. Because the Ellis wormhole spacetime possesses unstable circular orbits of photons, a bright ring appears in the image, just as in Schwarzschild spacetime. The bright ring looks distorted due to rotation. Aside from the bright ring, there appear weakly luminous complex patterns by the emission from the other side of the throat. These structure could be detected by high-resolution very-long-baseline-interferometry observations in the near future.

  10. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  11. Arc Detection and Interlock Module for the PEP II Low Level RF System

    SciTech Connect

    Tighe, R.; /SLAC

    2011-08-31

    A new arc detection and interlock generating module for the SLAC PEP-II low-level RF VXI-based system has been developed. The system is required to turn off the RF drive and high voltage power supply in the event of arcing in the cavity windows, klystron window, or circulator. Infrared photodiodes receive arc signals through radiation resistant optical fibers. Gain and bandwidth are selectable for each channel to allow tailoring response. The module also responds to interlock requests from other modules in the VXI system and communicates with the programmable logic controller (PLC) responsible for much of the low-level RF system's interlock functionality.

  12. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  13. Clines Arc through Multivariate Morphospace.

    PubMed

    Lohman, Brian K; Berner, Daniel; Bolnick, Daniel I

    2017-04-01

    Evolutionary biologists typically represent clines as spatial gradients in a univariate character (or a principal-component axis) whose mean changes as a function of location along a transect spanning an environmental gradient or ecotone. This univariate approach may obscure the multivariate nature of phenotypic evolution across a landscape. Clines might instead be plotted as a series of vectors in multidimensional morphospace, connecting sequential geographic sites. We present a model showing that clines may trace nonlinear paths that arc through morphospace rather than elongating along a single major trajectory. Arcing clines arise because different characters diverge at different rates or locations along a geographic transect. We empirically confirm that some clines arc through morphospace, using morphological data from threespine stickleback sampled along eight independent transects from lakes down their respective outlet streams. In all eight clines, successive vectors of lake-stream divergence fluctuate in direction and magnitude in trait space, rather than pointing along a single phenotypic axis. Most clines exhibit surprisingly irregular directions of divergence as one moves downstream, although a few clines exhibit more directional arcs through morphospace. Our results highlight the multivariate complexity of clines that cannot be captured with the traditional graphical framework. We discuss hypotheses regarding the causes, and implications, of such arcing multivariate clines.

  14. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc

    NASA Astrophysics Data System (ADS)

    Timm, Christian; Bassett, Daniel; Graham, Ian J.; Leybourne, Matthew I.; de Ronde, Cornel E. J.; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B.

    2013-04-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated 206Pb/204Pb, 208Pb/204Pb, 86Sr/87Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  15. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    PubMed

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  16. A mathematical model of TIG electric arcs operating in the hyperbaric range

    NASA Astrophysics Data System (ADS)

    Ducharme, R. J.; Kapadia, P. D.; Dowden, J. M.; Richardson, I. M.; Thornton, M. F.

    1996-10-01

    In a recent paper Ducharme et al presented a model for a free-burning tungsten inert gas (TIG) electric arc with non-consumable electrodes using a flat anode and argon shielding gas. The model evaluates the laminar gas flow, temperature distribution and electric field in the arc column by treating the current carrying region of the arc as a partially ionized plasma in local thermodynamic equilibrium. The dependence of transport coefficients on temperature is taken into account, as is the entrained shielding gas flow entering the arc from around the cathode. This model is extended here to investigate both 5 mm long 200 A and 10 mm long 100 A electric arcs at elevated pressures in the ranges 1 - 5 and 1 - 14.8 bar respectively. The results of the electric arc model are found to be in satisfactory agreement with a range of experimental data including spectroscopic temperature maps, electric field distributions, voltage drops, arc radii and total radiative emissions. It has been shown by Allum et al that short arcs length < 4 mm) become unstable once a critical Reynolds number has been reached, signifying the onset of turbulence for the flow emerging from the arc nozzle. This analysis, however, does not explain the inherent instability of longer arcs, which may be present even in a still argon atmosphere. It is proposed here that these are caused by the onset of turbulence in the entrained shielding gas. Two seperate Reynolds numbers, therefore, come into play in the physics of the TIG arc in connection with instabilities and these are estimated in the paper.

  17. Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment.

    PubMed

    Rana, Suresh; Cheng, Chihyao

    2013-10-01

    The volumetric modulated arc therapy (VMAT) technique, in the form of RapidArc, is widely used to treat prostate cancer. The full-single arc (f-SA) technique in RapidArc planning for prostate cancer treatment provides efficient treatment, but it also delivers a higher radiation dose to the rectum. This study aimed to compare the dosimetric results from the new partial-single arc (p-SA) technique with those from the f-SA technique in RapidArc planning for prostate cancer treatment. In this study, 10 patients with low-risk prostate cancer were selected. For each patient, two sets of RapidArc plans (f-SA and p-SA) were created in the Eclipse treatment planning system. The f-SA plan was created using one full arc, and the p-SA plan was created using planning parameters identical to those of the f-SA plan but with anterior and posterior avoidance sectors. Various dosimetric parameters of the f-SA and p-SA plans were evaluated and compared for the same target coverage and identical plan optimization parameters. The f-SA and p-SA plans showed an average difference of ±1% for the doses to the planning target volume (PTV), and there were no clear differences in dose homogeneity or plan conformity. In comparison to the f-SA technique, the p-SA technique reduced the doses to the rectum by approximately 6.1% to 21.2%, to the bladder by approximately 10.3% to 29.5%, and to the penile bulb by approximately 2.2%. In contrast, the dose to the femoral heads, the integral dose, and the number of monitor units were higher in the p-SA plans by approximately 34.4%, 7.7%, and 9.2%, respectively. In conclusion, it is feasible to use the p-SA technique for RapidArc planning for prostate cancer treatment. For the same PTV coverage and identical plan optimization parameters, the p-SA technique is better in sparing the rectum and bladder without compromising plan conformity or target homogeneity when compared to the f-SA technique.

  18. Retinal burns caused by exposure to MIG-welding arcs: report of two cases.

    PubMed

    Brittain, G P

    1988-08-01

    A new generation of arc welder has recently become widely available at a price which is within reach of most amateurs and part-time mechanics, known as the MIG welder (metal-arc inert gas welder). In MIG welding the arc is ensheathed in a stream of inert gas which prevents the molten metal from oxidising. The stream of gas changes the character of the emitted radiation, and it is possible that this type of welder poses a greater threat to sight than previously recognised. Radiation in the ultraviolet range emitted by arc welders is absorbed by the unprotected cornea and lens, giving rise to a keratoconjunctivitis, or 'arc-eye,' which, though intensely painful, is not considered a threat to sight. Radiation in the visible and near infrared spectrum, however, penetrates the eye to be absorbed by the retina and may cause thermal or photochemical damage which may be permanent and sight-threatening. Retinal injuries resulting from exposure to ordinary electric welding arcs have been reported, but such injuries are uncommon. Two cases of retinal burns resulting from exposure to MIG welder emissions which presented on consecutive days to the Leicester Royal Infirmary are presented. This is the first report of such injuries relating specifically to MIG welding.

  19. Sci—Sat AM: Stereo — 03: Dosmetric evaluation of single versus multi-arc VMAT for lung SBRT

    SciTech Connect

    Karan, T; Taremi, M; Comsa, D; Allibhai, Z; Ryan, M; Le, K

    2014-08-15

    Five non-small cell lung cancer patients previously treated with stereotactic body radiation therapy using the VMAT (volumetric modulated arc therapy) technique were selected for this retrospective study. Plans were re-optimized using Pinnacle treatment planning system (v9.0, Philips Medical), with the basis for comparison a two-arc plan involving a 360° arc in addition to a 90° arc with a couch kick. Additionally a single 360° arc was optimized for comparison, as well as a partial arc covering ∼230°, avoiding the contralateral lung. All plans met target coverage criteria as dictated by RTOG0236. Plans were evaluated based on conformity, sparing of organs at risk and practical considerations of delivery. Conformity was best in the two-arc plan; however the decrease seen in one- and partial arc plans was not statistically significant as tested by the Wilcoxon rank sum test. The partial-arc plan resulted in the lowest esophagus and trachea dose and the highest heart dose, however none of the plans exceeded organ at risk tolerances for lung SBRT. Partial arcs resulted in plans with slightly cooler dose distributions, a decrease in low dose spillage and an overall lower mean lung dose. The decrease in treatment time was on average 36 and 40 seconds for single and partial arcs, respectively, with partial arcs requiring the lowest number of MUs. The slight decrease in conformity seen in one-arc plans is offset by an increase in efficiency (optimization and treatment time, MUs) making the implementation of a single or partial-arc treatment technique clinically desirable.

  20. Interaction of solitons with long waves in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Ostrovsky, L. A.; Stepanyants, Y. A.

    2016-10-01

    Interaction of a soliton with long background waves is studied within the framework of rotation modified Korteweg-de Vries (rKdV) equation. Using the asymptotic method for solitons propagating in the field of a long background wave we derive a set of ODEs describing soliton amplitude and phase with respect to the background wave. The shape of the background wave may range from a sinusoid to the limiting profile representing a periodic sequence of parabolic arcs. We analyse energy exchange between a soliton and the long wave taking radiation losses into account. It is shown that the losses can be compensated by energy pumping from the long wave and, as the result, a stationary soliton can exist, unlike the case when there is no variable background. A more complex case when a free long wave attenuates due to the energy consumption by a soliton is also considered. Some of the analytical results are compared with the results of direct numerical calculations within the framework of the rKdV equation.

  1. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  2. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  3. Collimator angle influence on dose distribution optimization for vertebral metastases using volumetric modulated arc therapy

    SciTech Connect

    Mancosu, Pietro; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Reggiori, Giacomo; Cantone, Marie Claire; Navarria, Pierina; Scorsetti, Marta

    2010-08-15

    Purpose: The cylindrical symmetry of vertebrae favors the use of volumetric modulated arc therapy in generating a dose ''hole'' on the center of the vertebrae limiting the dose to the spinal cord. The authors have evaluated if collimator angle is a significant parameter for dose distribution optimization in vertebral metastases. Methods: Three patients with one-three vertebrae involved were considered. Twenty-one differently optimized plans (nine single-arc and 12 double-arc plans) were performed, testing various collimator angle positions. Clinical target volume was defined as the whole vertebrae, excluding the spinal cord canal. The planning target volume (PTV) was defined as CTV+5 mm. Dose prescription was 5x4 Gy{sup 2} with normalization to PTV mean dose. The dose at 1 cm{sup 3} of spinal cord was limited to 11.5Gy. Results: The best plans in terms of target coverage and spinal cord sparing were achieved by two arcs and Arc1-80 deg. and Arc2-280 deg. collimator angles for all the cases considered (i.e., leaf travel parallel to the spinal cord primary orientation). If one arc is used, only 80 deg. reached the objectives. Conclusions: This study demonstrated the role of collimation rotation for the vertebrae metastasis irradiation, with the leaf travel parallel to the spinal cord primary orientation to be better than other solutions. Thus, optimal choice of collimator angle increases the optimization freedom to shape a desired dose distribution.

  4. TU-C-17A-07: FusionARC Treatment with Adaptive Beam Selection Method

    SciTech Connect

    Kim, H; Li, R; Xing, L; Lee, R

    2014-06-15

    Purpose: Recently, a new treatment scheme, FusionARC, has been introduced to compensate for the pitfalls in single-arc VMAT planning. It basically allows for the static field treatment in selected locations, while the remaining is treated by single-rotational arc delivery. The important issue is how to choose the directions for static field treatment. This study presents an adaptive beam selection method to formulate fusionARC treatment scheme. Methods: The optimal plan for single-rotational arc treatment is obtained from two-step approach based on the reweighted total-variation (TV) minimization. To choose the directions for static field treatment with extra segments, a value of our proposed cost function at each field is computed on the new fluence-map, which adds an extra segment to the designated field location only. The cost function is defined as a summation of equivalent uniform dose (EUD) of all structures with the fluence-map, while assuming that the lower cost function value implies the enhancement of plan quality. Finally, the extra segments for static field treatment would be added to the selected directions with low cost function values. A prostate patient data was applied and evaluated with three different plans: conventional VMAT, fusionARC, and static IMRT. Results: The 7 field locations, corresponding to the lowest cost function values, are chosen to insert extra segment for step-and-shoot dose delivery. Our proposed fusionARC plan with the selected angles improves the dose sparing to the critical organs, relative to static IMRT and conventional VMAT plans. The dose conformity to the target is significantly enhanced at the small expense of treatment time, compared with VMAT plan. Its estimated treatment time, however, is still much faster than IMRT. Conclusion: The fusionARC treatment with adaptive beam selection method could improve the plan quality with insignificant damage in the treatment time, relative to the conventional VMAT.

  5. Geologic framework of the Aleutian arc, Alaska

    USGS Publications Warehouse

    Vallier, Tracy L.; Scholl, David W.; Fisher, Michael A.; Bruns, Terry R.; Wilson, Frederic H.; von Huene, Roland E.; Stevenson, Andrew J.

    1994-01-01

    The Aleutian arc is the arcuate arrangement of mountain ranges and flanking submerged margins that forms the northern rim of the Pacific Basin from the Kamchatka Peninsula (Russia) eastward more than 3,000 km to Cooke Inlet (Fig. 1). It consists of two very different segments that meet near Unimak Pass: the Aleutian Ridge segment to the west and the Alaska Peninsula-the Kodiak Island segment to the east. The Aleutian Ridge segment is a massive, mostly submerged cordillera that includes both the islands and the submerged pedestal from which they protrude. The Alaska Peninsula-Kodiak Island segment is composed of the Alaska Peninsula, its adjacent islands, and their continental and insular margins. The Bering Sea margin north of the Alaska Peninsula consists mostly of a wide continental shelf, some of which is underlain by rocks correlative with those on the Alaska Peninsula.There is no pre-Eocene record in rocks of the Aleutian Ridge segment, whereas rare fragments of Paleozoic rocks and extensive outcrops of Mesozoic rocks occur on the Alaska Peninsula. Since the late Eocene, and possibly since the early Eocene, the two segments have evolved somewhat similarly. Major plutonic and volcanic episodes, however, are not synchronous. Furthermore, uplift of the Alaska Peninsula-Kodiak Island segment in late Cenozoic time was more extensive than uplift of the Aleutian Ridge segment. It is probable that tectonic regimes along the Aleutian arc varied during the Tertiary in response to such factors as the directions and rates of convergence, to bathymetry and age of the subducting Pacific Plate, and to the volume of sediment in the Aleutian Trench.The Pacific and North American lithospheric plates converge along the inner wall of the Aleutian trench at about 85 to 90 mm/yr. Convergence is nearly at right angles along the Alaska Peninsula, but because of the arcuate shape of the Aleutian Ridge relative to the location of the plates' poles of rotation, the angle of convergence

  6. Scalar emission in a rotating Goedel black hole

    SciTech Connect

    Chen Songbai; Wang Bin; Jing Jiliang

    2008-09-15

    We study the absorption probability and Hawking radiation of the scalar field in the rotating Goedel black hole in minimal five-dimensional gauged supergravity. We find that Goedel parameter j imprints in the greybody factor and Hawking radiation. It plays a different role from the angular momentum of the black hole in the Hawking radiation and super-radiance. This information can help us know more about rotating Goedel black holes in minimal five-dimensional gauged supergravity.

  7. Effect of the collimator angle on dosimetric verification of volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Kim, Yong Ho; Park, Ha Ryung; Kim, Won Taek; Kim, Dong Won; Ki, Yongkan; Lee, Juhye; Bae, Jinsuk; Park, Dahl; Jeon, Hosang; Nam, Ji Ho

    2015-07-01

    The collimator is usually rotated when planning volumetric modulated arc therapy (VMAT) due to the leakage of radiation between the multi-leaf collimator (MLC) leaves. We studied the effect of the collimator angle on the results of dosimetric verification of VMAT plans for head and neck patients. We studied VMAT plans for 10 head and neck patients. We made two sets of VMAT plans for each patient. Each set was composed of 10 plans with collimator angles of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 degrees. Plans in the first set were optimized individually, and plans in the second set shared the 30-degree collimator-angle optimization. The two sets of plans were verified by using the 2-dimensional ion chamber array MatriXX (IBA Dosimetry, Germany). The comparisons between the calculation and the measurements were made by using a γ-index analysis. The γ-index (2%/2 mm) and (3%/3 mm) passing rates had negative correlations with the collimator angle. The maximum difference between γ-index (3%/3 mm) passing rates of different collimator angles for each patient ranged from 1.46% to 5.60% with an average of 3.67%. There were significant differences (maximum 5.6%) in the passing rates for different collimator angles. The results suggested that the accuracy of the delivered dose depended on the collimator angle. These findings are informative when choosing a collimator angle for VMAT plans.

  8. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering

    NASA Astrophysics Data System (ADS)

    Beyene, Girum A.; Tobin, Isaac; Juschkin, Larissa; Hayden, Patrick; O'Sullivan, Gerry; Sokell, Emma; Zakharov, Vassily S.; Zakharov, Sergey V.; O'Reilly, Fergal

    2016-06-01

    Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.

  9. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  10. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  11. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    SciTech Connect

    Aydogan, Bulent; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Gwe-Ya, Kim

    2011-10-01

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330{sup o} arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of {>=}12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  12. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  13. From analytic inversion to contemporary IMRT optimization: radiation therapy planning revisited from a mathematical perspective.

    PubMed

    Censor, Yair; Unkelbach, Jan

    2012-04-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT).

  14. Amplification of impulsively excited molecular rotational coherence.

    PubMed

    Bustard, Philip J; Sussman, Benjamin J; Walmsley, Ian A

    2010-05-14

    We propose a scheme for preparation of high-coherence molecular dynamics which are phase stable with respect to ultrashort pulses. We experimentally demonstrate an example of this scheme using a phase-independent, nanosecond-duration, pump pulse to prepare a rotational coherence in molecular hydrogen. This rotational coherence is made phase stable with respect to a separate source of ultrashort pulses by seeding. The coherence is used to generate spectral broadening of femtosecond probe radiation by molecular phase modulation.

  15. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  16. Metal vapor arc ion plating

    DOEpatents

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  17. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  18. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  19. STRUVE arc and EUPOS® stations

    NASA Astrophysics Data System (ADS)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana

    2013-04-01

    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  20. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  1. Magnification Bias in Gravitational Arc Statistics

    SciTech Connect

    Caminha, G. B.; Estrada, J.; Makler, M.

    2013-08-29

    The statistics of gravitational arcs in galaxy clusters is a powerful probe of cluster structure and may provide complementary cosmological constraints. Despite recent progresses, discrepancies still remain among modelling and observations of arc abundance, specially regarding the redshift distribution of strong lensing clusters. Besides, fast "semi-analytic" methods still have to incorporate the success obtained with simulations. In this paper we discuss the contribution of the magnification in gravitational arc statistics. Although lensing conserves surface brightness, the magnification increases the signal-to-noise ratio of the arcs, enhancing their detectability. We present an approach to include this and other observational effects in semi-analytic calculations for arc statistics. The cross section for arc formation ({\\sigma}) is computed through a semi-analytic method based on the ratio of the eigenvalues of the magnification tensor. Using this approach we obtained the scaling of {\\sigma} with respect to the magnification, and other parameters, allowing for a fast computation of the cross section. We apply this method to evaluate the expected number of arcs per cluster using an elliptical Navarro--Frenk--White matter distribution. Our results show that the magnification has a strong effect on the arc abundance, enhancing the fraction of arcs, moving the peak of the arc fraction to higher redshifts, and softening its decrease at high redshifts. We argue that the effect of magnification should be included in arc statistics modelling and that it could help to reconcile arcs statistics predictions with the observational data.

  2. Making Conductive Polymers By Arc Tracking

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  3. Arc-starting aid for GTA welding

    NASA Technical Reports Server (NTRS)

    Whiffen, E. L.

    1977-01-01

    Three-in-one handtool combining arc-gap gage, electrode tip sander, and electrode projection gate, effectively improves initiation on gas tungsten arc (GTA), automatic skate-welding machines. Device effects ease in polishing electrode tips and setting exactly initial arc gap before each weld pass.

  4. The Dissipation Rate Transport Equation and Subgrid-Scale Models in Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Ye, Zhou

    1997-01-01

    The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The difficulties arc increased when external agencies like rotation prevent straightforward dimensional analysis from determining the correct form of the modelled equation. In this work, the dissipation rate transport equation and subgrid scale models for rotating turbulence are derived from an analytical statistical theory of rotating turbulence. In the strong rotation limit, the theory predicts a turbulent steady state in which the inertial range energy spectrum scales as k(sup -2) and the turbulent time scale is the inverse rotation rate. This scaling has been derived previously by heuristic arguments.

  5. High Q silica microbubble resonators fabricated by arc discharge

    NASA Astrophysics Data System (ADS)

    Berneschi, S.; Farnesi, D.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Righini, G. C.; Soria, S.

    2011-09-01

    Microbubble resonators combine the unique properties of whispering gallery mode resonators with the intrinsic capability of integrated microfluidics. Here an improved fabrication method of microbubble resonators is presented, based on the heating of a slightly pressurized capillary by a rotating arc discharge. Rotation of the electrodes, moved out of a fiber splicer, ensures a homogeneous distribution of the heat all over the capillary surface. The demonstrated microbubble resonators have Q factors up to 6×107 at 1550nm. Microbubbles were filled with water and aqueous solutions of ethanol in order to test the refractive index sensing capabilities of such resonators, which also show a good temporal stability. The limit of detection of our microbubble resonator sensor is 10-6RIU.

  6. High Q silica microbubble resonators fabricated by arc discharge.

    PubMed

    Berneschi, S; Farnesi, D; Cosi, F; Conti, G Nunzi; Pelli, S; Righini, G C; Soria, S

    2011-09-01

    Microbubble resonators combine the unique properties of whispering gallery mode resonators with the intrinsic capability of integrated microfluidics. Here an improved fabrication method of microbubble resonators is presented, based on the heating of a slightly pressurized capillary by a rotating arc discharge. Rotation of the electrodes, moved out of a fiber splicer, ensures a homogeneous distribution of the heat all over the capillary surface. The demonstrated microbubble resonators have Q factors up to 6×10(7) at 1550 nm. Microbubbles were filled with water and aqueous solutions of ethanol in order to test the refractive index sensing capabilities of such resonators, which also show a good temporal stability. The limit of detection of our microbubble resonator sensor is 10(-6) RIU.

  7. Total dural irradiation: RapidArc versus static-field IMRT: A case study

    SciTech Connect

    Kelly, Paul J.

    2012-07-01

    The purpose of this study was to compare conventional fixed-gantry angle intensity-modulated radiation therapy (IMRT) with RapidArc for total dural irradiation. We also hypothesize that target volume-individualized collimator angles may produce substantial normal tissue sparing when planning with RapidArc. Five-, 7-, and 9-field fixed-gantry angle sliding-window IMRT plans were generated for comparison with RapidArc plans. Optimization and normal tissue constraints were constant for all plans. All plans were normalized so that 95% of the planning target volume (PTV) received at least 100% of the dose. RapidArc was delivered using 350 Degree-Sign clockwise and counterclockwise arcs. Conventional collimator angles of 45 Degree-Sign and 315 Degree-Sign were compared with 90 Degree-Sign on both arcs. Dose prescription was 59.4 Gy in 33 fractions. PTV metrics used for comparison were coverage, V{sub 107}%, D1%, conformality index (CI{sub 95}%), and heterogeneity index (D{sub 5}%-D{sub 95}%). Brain dose, the main challenge of this case, was compared using D{sub 1}%, Dmean, and V{sub 5} Gy. Dose to optic chiasm, optic nerves, globes, and lenses was also compared. The use of unconventional collimator angles (90 Degree-Sign on both arcs) substantially reduced dose to normal brain. All plans achieved acceptable target coverage. Homogeneity was similar for RapidArc and 9-field IMRT plans. However, heterogeneity increased with decreasing number of IMRT fields, resulting in unacceptable hotspots within the brain. Conformality was marginally better with RapidArc relative to IMRT. Low dose to brain, as indicated by V5Gy, was comparable in all plans. Doses to organs at risk (OARs) showed no clinically meaningful differences. The number of monitor units was lower and delivery time was reduced with RapidArc. The case-individualized RapidArc plan compared favorably with the 9-field conventional IMRT plan. In view of lower monitor unit requirements and shorter delivery time, RapidArc

  8. Robotic Variable Polarity Plasma Arc (VPPA) Welding

    NASA Technical Reports Server (NTRS)

    Jaffery, Waris S.

    1993-01-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  9. Robotic Variable Polarity Plasma Arc (VPPA) welding

    NASA Astrophysics Data System (ADS)

    Jaffery, Waris S.

    1993-02-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  10. ION PRODUCING MECHANISM (ARC EXTERNAL TO BLOCK)

    DOEpatents

    Brobeck, W.H.

    1958-09-01

    This patent pentains to an ion producing mechanism employed in a calutron which has the decided advantage of an increased amount of ionization effectuated by the arc, and a substantially uniform arc in poiat of time, i arc location and along the arc length. The unique features of the disclosed ion source lie in the specific structural arrangement of the source block, gas ionizing passage, filament shield and filament whereby the arc is established both within the ionizing passage and immediately outside the exit of the ionizing passage at the block face.

  11. A mechanism that triggers double arcing during plasma arc cutting

    NASA Astrophysics Data System (ADS)

    Nemchinsky, Valerian

    2009-10-01

    Double arcing (DA) is a phenomenon when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode and the nozzle and another that connects the nozzle and a work-piece. It is a commonly accepted opinion that the reason for DA is high voltage drop in the plasma inside the nozzle. However, the specific mechanism that triggers the DA development is not clear. In this paper, we propose such a mechanism. Dielectric films deposited inside the nozzle's orifice play the key role in this mechanism. These films are charged by ion current from plasma. A strong electric field is created inside the film and at the boundary of the film and clean metal of the nozzle. This gives rise to a thermo-field electron emission from the clean metal that borders the film. Emitted electrons are accelerated at the voltage drop between the nozzle and plasma. These electrons produce extra ions, which in turn move back to the film and additionally charge it. This sequence of events leads to explosive instability if the voltage drop inside the nozzle is high enough. Experiments to check the proposed mechanism are suggested.

  12. Comparison of dose distribution in IMRT and RapidArc technique in prostate radiotherapy

    PubMed Central

    Leszczyński, Wojciech; Ślosarek, Krzysztof; Szlag, Marta

    2012-01-01

    Aim The aim was to provide a dosimetric comparison between IMRT and RapidArc treatment plans with RPI index with simultaneous comparison of the treatment delivery time. Background IMRT and RapidArc provide highly conformal dose distribution with good sparing of normal tissues. However, a complex spatial dosimetry of IMRT and RapidArc plans hampers the evaluation and comparison between plans calculated for the two modalities. RPI was used in this paper for treatment plan comparisons. The duration of the therapeutic session in RapidArc is reported to be shorter in comparison to therapeutic time of the other dynamic techniques. For this reasons, total treatment delivery time in both techniques was compared and discussed. Materials and methods 15 patients with prostate carcinoma were randomly selected for the analysis. Two competitive treatment plans using respectively the IMRT and RapidArc techniques were computed for each patient in Eclipse planning system v. 8.6.15. RPIwin® application was used for RPI calculations for each treatment plan. Additionally, total treatment time was compared between IMRT and RapidArc plans. Total treatment time was a sum of monitor units (MU) for each treated field. Results The mean values of the RPI indices were insignificantly higher for IMRT plans in comparison to rotational therapy. Comparison of the mean numbers of monitor units confirmed that the use of rotational technique instead of conventional static field IMRT can significantly reduce the treatment time. Conclusion Analysis presented in this paper, demonstrated that RapidArc can compete with the IMRT technique in the field of treatment plan dosimetry reducing the time required for dose delivery. PMID:24377036

  13. Plasma-arc reactor for production possibility of powdered nano-size materials

    NASA Astrophysics Data System (ADS)

    Hadzhiyski, V.; Mihovsky, M.; Gavrilova, R.

    2011-01-01

    Nano-size materials of various chemical compositions find increasing application in life nowadays due to some of their unique properties. Plasma technologies are widely used in the production of a range of powdered nano-size materials (metals, alloys, oxides, nitrides, carbides, borides, carbonitrides, etc.), that have relatively high melting temperatures. Until recently, the so-called RF-plasma generated in induction plasma torches was most frequently applied [1-3]. The subject of this paper is the developments of a new type of plasma-arc reactor, operated with transferred arc system for production of disperse nano-size materials. The new characteristics of the PLASMALAB reactor are the method of feeding the charge, plasma arc control and anode design. The disperse charge is fed by a charge feeding system operating on gravity principle through a hollow cathode of an arc plasma torch situated along the axis of a water-cooled wall vertical tubular reactor. The powdered material is brought into the zone of a plasma space generated by the DC rotating transferred plasma arc. The arc is subjected to Auto-Electro-Magnetic Rotation (AEMR) by an inductor serially connected to the anode circuit. The anode is in the form of a water-cooled copper ring. It is mounted concentrically within the cylindrical reactor, with its lower part electrically insulated from it. The electric parameters of the arc in the reactor and the quantity of processed charge are maintained at a level permitting generation of a volumetric plasma discharge. This mode enables one to attain high mean mass temperature while the processed disperse material flows along the reactor axis through the plasma zone where the main physico-chemical processes take place. The product obtained leaves the reactor through the annular anode, from where it enters a cooling chamber for fixing the produced nano-structure. Experiments for AlN synthesis from aluminium power and nitrogen were carried out using the plasma reactor

  14. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  15. In-process electrical discharge dressing of arc-shaped metal bonded diamond wheels

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Fan, Fei; Tian, Guoyu; Zhang, Feihu; Liu, Zhongde

    2016-10-01

    Due to the high hardness of SiC ceramics, the wear of the arc-shaped metal bonded diamond wheels is very serious during the grinding process of large-aperture aspheric SiC mirrors. The surface accuracy and surface/sub-surface quality of the aspheric mirror will be affected seriously if the grinding wheel is not timely dressed. Therefore, this paper focus on the in-process dressing of the arc-shaped metal bonded diamond wheels. In this paper, the application of the asymmetric arc profile grinding wheel in the grinding of aspheric mirrors is discussed first. Then a rotating cup-shaped electrode in-process electro discharge dressing device for the arc-shaped wheels is developed based on the analysis. The dressing experiments are carried out with the device. The experimental results show that the in-process dressing device can did the dressing for the asymmetric and symmetric arc-shaped wheel. The profile error of the arc can reach to 3μm with the in-process dressing device.

  16. In-vitro investigation of out-of-field cell survival following the delivery of conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans

    NASA Astrophysics Data System (ADS)

    McGarry, Conor K.; Butterworth, Karl T.; Trainor, Colman; McMahon, Stephen J.; O'Sullivan, Joe M.; Prise, Kevin M.; Hounsell, Alan R.

    2012-10-01

    The aim of this work is to determine the out-of-field survival of cells irradiated with either the primary field or scattered radiation in the presence and absence of intercellular communication following delivery of conformal, IMRT and VMAT treatment plans. Single beam, conformal, IMRT and VMAT plans were created to deliver 3 Gy to half the area of a T80 flask containing either DU-145 or AGO-1522 cells allowing intercellular communication between the in- and out-of-field cell populations. The same plans were delivered to a similar custom made phantom used to hold two T25 culture flasks, one flask in-field and one out-of-field to allow comparison of cell survival responses when intercellular communication is physically inhibited. Plans were created for the delivery of 8 Gy to the more radio-resistant DU-145 cells only in the presence and absence of intercellular communication. Cell survival was determined by clonogenic assay. In both cell lines, the out-of-field survival was not statistically different between delivery techniques for either cell line or dose. There was however, a statistically significant difference between survival out-of-field when intercellular communication was intact (single T80 culture flask) or inhibited (multiple T25 culture flasks) to in-field for all plans. No statistically significant difference was observed in-field with or without cellular communication to out-of-field for all plans. These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields when cellular communication between differentially irradiated cell populations is present. This data is further evidence that refinement of existing radiobiological models to include indirect cell killing effects is required.

  17. The SOAR Gravitational Arc Survey

    NASA Astrophysics Data System (ADS)

    Makler, M.; Furlanetto, C.; Santiago, B. X.; Caminha, G. B.; Cypriano, E.; Cibirka, N.; Pereira, M. E. S.; Bom, C. R. D.; Lima, M. P.; Brandt, C. H.; Neto, A. F.; Estrada, J.; Lin, H.; Hao, J.; McKay, T. M.; da Costa, L. N.; Maia, M. A. G.

    2014-10-01

    We present the first results of the SOAR Gravitational Arc Survey (SOGRAS). The survey imaged 47 clusters in two redshift intervals centered at z=0.27 and z=0.55, targeting the richest clusters in each interval. Images were obtained in the g', r' and i' bands with a median seeing of 0.83, 0.76 and 0.71 arcsec, respectively, in these filters. Most of the survey clusters are located within the Sloan Digital Sky Survey (SDSS) Stripe-82 region and all of them are in the SDSS footprint. We present the first results of the survey, including the 6 best strong lensing systems, photometric and morphometric catalogs of the galaxy sample, and cross matches of the clusters and galaxies with complementary samples (spectroscopic redshifts, photometry in several bands, X-ray and Sunyaev Zel'dovich clusters, etc.), exploiting the synergy with other surveys in Stripe-82. We apply several methods to characterize the gravitational arc candidates, including the Mediatrix method (Bom et al. 2012) and ArcFitting (Furlanetto et al. 2012), and for the subtraction of galaxy cluster light. Finally, we apply strong lensing inversion techniques to the best systems, providing constraints on their mass distribution. The analyses of a spectral follow-up with Gemini and the derived dynamical masses are presented in a poster submitted to this same meeting (Cibirka et al.). Deeper follow-up images with Gemini strengthen the case for the strong lensing nature of the candidates found in this survey.

  18. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models

    SciTech Connect

    Thorek, Daniel L.J.; Kramer, Robin M.; Chen, Qing; Jeong, Jeho; Lupu, Mihaela E.; Lee, Alycia M.; Moynahan, Mary E.; Lowery, Maeve; Ulmert, David; Zanzonico, Pat; Deasy, Joseph O.; Humm, John L.; Russell, James

    2015-10-01

    Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.

  19. SU-E-T-568: Improving Normal Brain Sparing with Increasing Number of Arc Beams for Volume Modulated Arc Beam Radiosurgery of Multiple Brain Metastases

    SciTech Connect

    Hossain, S; Hildebrand, K; Ahmad, S; Larson, D; Ma, L; Sahgal, A

    2014-06-01

    Purpose: Intensity modulated arc beams have been newly reported for treating multiple brain metastases. The purpose of this study was to determine the variations in the normal brain doses with increasing number of arc beams for multiple brain metastases treatments via the TrueBeam Rapidarc system (Varian Oncology, Palo Alto, CA). Methods: A patient case with 12 metastatic brain lesions previously treated on the Leksell Gamma Knife Perfexion (GK) was used for the study. All lesions and organs at risk were contoured by a senior radiation oncologist and treatment plans for a subset of 3, 6, 9 and all 12 targets were developed for the TrueBeam Rapidarc system via 3 to 7 intensity modulated arc-beams with each target covered by at least 99% of the prescribed dose of 20 Gy. The peripheral normal brain isodose volumes as well as the total beam-on time were analyzed with increasing number of arc beams for these targets. Results: All intensisty modulated arc-beam plans produced efficient treatment delivery with the beam-on time averaging 0.6–1.5 min per lesion at an output of 1200 MU/min. With increasing number of arc beams, the peripheral normal brain isodose volumes such as the 12-Gy isodose line enclosed normal brain tissue volumes were on average decreased by 6%, 11%, 18%, and 28% for the 3-, 6-, 9-, 12-target treatment plans respectively. The lowest normal brain isodose volumes were consistently found for the 7-arc treatment plans for all the cases. Conclusion: With nearly identical beam-on times, the peripheral normal brain dose was notably decreased when the total number of intensity modulated arc beams was increased when treating multiple brain metastases. Dr Sahgal and Dr Ma are currently serving on the board of international society of stereotactic radiosurgery.

  20. On the Stability of Rotating Drops

    PubMed Central

    Nurse, A. K.; Coriell, S. R.; McFadden, G. B.

    2015-01-01

    We consider the equilibrium and stability of rotating axisymmetric fluid drops by appealing to a variational principle that characterizes the equilibria as stationary states of a functional containing surface energy and rotational energy contributions, augmented by a volume constraint. The linear stability of a drop is determined by solving the eigenvalue problem associated with the second variation of the energy functional. We compute equilibria corresponding to both oblate and prolate shapes, as well as toroidal shapes, and track their evolution with rotation rate. The stability results are obtained for two cases: (i) a prescribed rotational rate of the system (“driven drops”), or (ii) a prescribed angular momentum (“isolated drops”). For families of axisymmetric drops instabilities may occur for either axisymmetric or non-axisymmetric perturbations; the latter correspond to bifurcation points where non-axisymmetric shapes are possible. We employ an angle-arc length formulation of the problem which allows the computation of equilibrium shapes that are not single-valued in spherical coordinates. We are able to illustrate the transition from spheroidal drops with a strong indentation on the rotation axis to toroidal drops that do not extend to the rotation axis. Toroidal drops with a large aspect ratio (major radius to minor radius) are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. Prolate spheroidal shapes occur if a drop of lower density rotates within a denser medium; these drops appear to be linearly stable. This work is motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., Journal of Applied Mechanics 79 (2012) 051013]. PMID:26958440

  1. SU-E-T-185: Feasibility Study of Dose Rate Modulated Arc Therapy (DrMAT) for Lung SBRT

    SciTech Connect

    KO, Y; Cho, B; Yi, B; Kwak, J; Song, S; Je, H; Ahn, S; Noh, Y

    2014-06-01

    Purpose: To show the feasibility of clinical application of DrMAT for SBRT in lung cancer patients. DrMAT is a form of dynamic conformal arc therapy where MLC segments and dose rates are controlled through simple field weight optimization. Methods: To show feasibility a new treatment plan was created based on the CT of SBRT lung cancer patients. Static plans with 33 fields are made, which have 11deg in between each field and are acquired rotating gantry angle from 180deg to 188deg in CCW direction, total 352deg is rotated. MLC maintained static aperture for each field. To optimize 33 individual fields, field weight was adjusted accordingly using weight optimization algorithm. Keeping weights and MU of static plan, static MLC aperture was converted to multiple arc segments. Arc plan could be created with the fields in the intervals of 11deg. Static MLC should be converted to arc segment MLC. Dynamic conformal arc therapy plan consists of 33 arc fields, is converted to one dose rate modulated arc therapy (DrMAT) plan. DrMAT plan consists of 166 control points which becomes a single arc plan that changes the shape of MLC for every 2.2deg. The resulting DrMAT plan is not an inverse plan it is a simple form of dynamic conformal arc plan using field weight obtained from static plan. This is compared and evaluated with the VMAT plan. Results: DrMAT and VMAT plans have been compared based on the RTOG1021. Both DrMAT and VMAT plans satisfy 100% irradiation to 95% of PTV and critical organs did not exceed dose limit suggested in RTOG1021. DrMAT plan is almost similar with VMAT plan in Result. Conclusion: Field weight optimization method did not show better Resultcompared to VMAT optimization. However, considering simplicity, DrMAT satisfies the condition in RTOG1021. Therefore clinical application of DrMAT is feasible.

  2. Emission Spectroscopic Measurements with an Optical Probe in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Prabhu, Dinesh K.; Raiche, George A.; Terrazas-Salinas, Imelda; Hui, Frank C. L.

    2011-01-01

    An optical probe was designed to measure radiation (from inside the arc heater) incident on a test sample immersed in the arc-heated stream. Currently, only crude estimates are available for this incident radiation. Unlike efforts of the past, where the probe line of sight was inclined to the nozzle centerline, the present development focuses on having the probe line of sight coincide with the nozzle centerline. A fiber-coupled spectrometer was used to measure the spectral distribution of incident radiation in the wavelength range of 225 to 900 nm. The radiation heat flux in this wavelength range was determined by integration of measured emission spectral intensity calibrated to incident irradiance from an integrating sphere. Two arc-heater conditions, corresponding to stream bulk enthalpy levels of 12 and 22 MJ/kg, were investigated in the 13-inch diameter nozzle of the Interaction Heating Facility at NASA Ames Research Center. With the probe placed at a distance of 10 inches from the nozzle exit plane, total radiative heat fluxes were measured to be 3.3 and 8.4 W/sq cm for the 12 and 22 MJ/kg conditions, respectively. About 17% of these radiative fluxes were due to bound-bound radiation from atoms and molecules, while the remaining 83% could be attributed to continua (bound-free and/or free-free). A comparison with spectral simulation based on CFD solutions for the arc-heater flow field and with spectroscopic measurements in the plenum region indicates that more than 95% of the measured radiation is generated in the arc region. The total radiative heat flux from the line radiation could increase by a factor of two through contributions from wavelengths outside the measured range, i.e., from the vacuum ultraviolet (wavelengths less than 225 nm) and the infrared (wavelengths greater than 900 nm). An extrapolation of the continuum radiation to these two wavelength regions was not attempted. In the tested configuration, the measured radiative heat flux accounts for

  3. Shear rotation numbers

    NASA Astrophysics Data System (ADS)

    Doeff, E.; Misiurewicz, M.

    1997-11-01

    This paper presents results on rotation numbers for orientation-preserving torus homeomorphisms homotopic to a Dehn twist. Rotation numbers and the rotation set for such homeomorphisms have been defined and initially investigated by the first author in a previous paper. Here we prove that each rotation number 0951-7715/10/6/017/img5 in the interior of the rotation set is realized by some compact invariant set, and that there is an ergodic measure on that set with mean rotation number 0951-7715/10/6/017/img5. It is also proved that the function which assigns its rotation set to such a homeomorphism is continuous. Finally, a counterexample is presented that shows that rational extremal points of the shear rotation set do not necessarily correspond to any periodic orbits.

  4. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  5. Rotator cuff exercises

    MedlinePlus

    ... to these tendons may result in: Rotator cuff tendinitis, which is irritation and swelling of these tendons ... Brien MJ, Leggin BG, Williams GR. Rotator cuff tendinopathies and tears: surgery and therapy. In: Skirven TM, ...

  6. Shaft-Rotation Detector

    NASA Technical Reports Server (NTRS)

    Randall, Richard L.

    1990-01-01

    Signal-processing subsystem generates signal indicative of rotation of shaft from output of accelerometer mounted on housing of bearing supporting shaft. Output of subsystem binary signal at frequency of rotation of shaft. Part of assembly of electronic equipment measuring vibrations in rotating machinery. Accelerometer mounted in such way sensitive to vibrations of shaft perpendicular to axis. Output of accelerometer includes noise and components of vibration at frequencies higher than rotational frequency of shaft.

  7. On the Sound Field of a Rotating Propeller

    NASA Technical Reports Server (NTRS)

    Gutin, L.

    1948-01-01

    The sound field of a rotating propeller is teated theoretically on the basis of aerodynamic principles. For the lower harmonics, the directional characteristics and the radiated sound energy are determined and are in conformity with existing experimental results.

  8. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  9. Evaluation of the chromium oxide arc spraying treatment on solar energy collectors

    NASA Astrophysics Data System (ADS)

    Fernandezarroyo, Gloria; Gonzalezgarcia-Conde, Antonio; Moralespoyato, Francisco; Arrerajaraiz, Jose Maria; Blancotemprano, Cristina; Camonalvarez, Francisco

    Accelerated aging tests were performed on steel specimens coated with plasma gun Cr2O3 arc sprays. The chromium oxide coating is attractive due to its radiation absorptance characteristic, especially for solar thermal energy absorption applications. The use of plasma blowpipes gives low porosity coatings. Collector efficiency curves were determined and compared to the curves of conventional black paint collectors. The efficiency is close to conventional painting. The excellent behavior at high temperatures makes this treatment applicable to concentrated radiation absorbers.

  10. Review of switching arcs and plasma chemistry

    NASA Astrophysics Data System (ADS)

    Benenson, D. M.; Gilmour, A. S., Jr.; Dollinger, R. E.; Nagamatsu, H. T.; Pfender, E.; Warder, R. C., Jr.

    1980-05-01

    Physical processes in switching arcs are considered in such applications as circuit interruption (in high pressure, high voltage gas blast circuit breakers and vacuum arc interrupters), fault current limiting (principally through vacuum arc devices), and pulse power systems (using vacuum arcs). The physics of arc heaters, associated with processes in the anode region, are described. Analytical models of (1) the current zero region and interrupter performance of gas blast interrupters and (2) the heat transfer mechanisms in the anode region of arc heaters, are discussed. Selected diagnostic techniques are presented. Applications of plasma chemistry involving the high pressure, equilibrium (thermal) plasma are noted. Low pressure (nonequilibrium) plasma processing is described through mechanisms associated with coating, deposition, and etching applications.

  11. ARC length control for plasma welding

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1988-01-01

    A control system to be used with a plasma arc welding apparatus is disclosed. The plasma arc welding apparatus includes a plasma arc power supply, a contactor, and an electrode assembly for moving the electrode relative to a work piece. The electrode assembly is raised or lowered by a drive motor. The present apparatus includes a plasma arc adapter connected across the power supply to measure the voltage across the plasma arc. The plasma arc adapter forms a dc output signal input to a differential amplifier. A second input is defined by an adjustable resistor connected to a dc voltage supply to permit operator control. The differential amplifier forms an output difference signal provided to an adder circuit. The adder circuit then connects with a power amplifier which forms the driving signal for the motor. In addition, the motor connects to a tachometor which forms a feedback signal delivered to the adder to provide damping, therby avoiding servo loop overshoot.

  12. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  13. Rotational stability test for the diagnosis of radial collateral ligament rupture in the fingers: Anatomical study.

    PubMed

    Lazarus, P; Hidalgo Diaz, J J; Prunières, G; Pire, E; Taleb, C; Honecker, S; Bellemère, P; Fontaine, C; Liverneaux, P A

    2017-04-01

    Diagnosing rupture of the radial collateral ligament (RCL) of the finger metacarpophalangeal (MCP) joints is difficult. The aim of this cadaver study was to validate a rotational test for the MCP after RCL transection. With the MCP and proximal interphalangeal joints in flexion, rotation along the axis of the proximal phalanx was applied through an extended distal interphalangeal joint to 36 cadaver fingers. Each finger's pulp described an arc of pronation and supination that was noted on the palm. The test was repeated three times: before transection, after transection of the proper collateral ligament (CL) and after transection of both the proper and accessory CLs. Rotational arcs were measured in pronation and supination. Mean length of the pronation arc after transection of the main RCL was 17.53mm, while it was only 12.41mm before transection for the supination arc. Mean length of the pronation arc after transection of both CLs was 22.83mm compared to only 11.93mm before transection. Our results show a significant difference in pronation stability of the MCP joint after transection of the RCL proper. We can conclude that this rotational stability test is a valid test for diagnosing RCL rupture in MCP joints.

  14. Water in Aleutian Arc Volcanoes

    NASA Astrophysics Data System (ADS)

    Plank, T.; Zimmer, M. M.; Hauri, E. H.

    2011-12-01

    In the past decade, baseline data have been obtained on pre-eruptive water contents for several volcanic arcs worldwide. One surprising observation is that parental magmas contain ~ 4 wt% H2O on average at each arc worldwide [1]. Within each arc, the variation from volcano to volcano is from 2 to 6 w% H2O, with few exceptions. The similar averages at different arcs are unexpected given the order of magnitude variations in the concentration of other slab tracers. H2O is clearly different from other tracers, however, being both a major driver of melting in the mantle and a major control of buoyancy and viscosity in the crust. Some process, such as mantle melting or crustal storage, apparently modulates the water content of mafic magmas at arcs. Mantle melting may deliver a fairly uniform product to the Moho, if the wet melt process includes a negative feedback. On the other hand, magmas with variable water content may be generated in the mantle, but a crustal filter may lead to magma degassing up to a common mid-to-upper crustal storage region. Testing between these two end-member scenarios is critical to our understanding of subduction dehydration, global water budgets, magmatic plumbing systems, melt generation and eruptive potential. The Alaska-Aleutian arc is a prime location to explore this fundamental problem in the subduction water cycle, because active volcanoes vary more than elsewhere in the world in parental H2O contents (based on least-degassed, mafic melt inclusions hosted primarily in olivine). For example, Shishaldin volcano taps magma with among the lowest H2O contents globally (~ 2 wt%) and records low pressure crystal fractionation [2], consistent with a shallow magma system (< 1 km bsl). At the other extreme, Augustine volcano is fed by a mafic parent that contains among the highest H2O globally (~ 7 wt%), and has evolved by deep crystal fractionation [2], consistent with a deep magma system (~ 14 km bsl). Do these magmas stall at different depths

  15. Axisymmetric electromagnetic field influence on the characteristic velocity of an arc-jet

    NASA Technical Reports Server (NTRS)

    Oggero, M.; Gennuso, D.

    1984-01-01

    Tests for determining the influence of an axisymmetric EM field on the characteristic velocity of an arc jet are presented. The experimental set up is briefly described. Tests were performed with rotation induced by the centrifugal and magnetic fields in the same sense. The fuels used were HE and N2 and the results are discussed. It is found that by variation of the induction, current, and arc jet strength, the behavior is determined essentially by the shape of the cathodic and anodic blobs on the electrodes together with their movement under the combined effect of the aerodynamic and magnetic fields. In view of the different characteristics of He and N2 in respect to the dissociation heat and ionization, it is expected that the regime of the arc jet when used with H2 fuel will be similar to that with He.

  16. Galaxy cluster's rotation

    NASA Astrophysics Data System (ADS)

    Manolopoulou, M.; Plionis, M.

    2017-03-01

    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  17. Nomenclature of SLC Arc beamline components

    SciTech Connect

    Silva, J.; Weng, W.T.

    1986-04-10

    This note defines I and C formal names for beamline components in the Arc as specified in the TRANSPORT decks ARCN FINAL and ARCS FINAL of June 5, 1985. The formal name consists of three fields: the primary name, the zone and the unit number. The general principles and guidelines are explained in Reference 1. The rationale and the final resolutions of the naming conventions for the Arc are explained.

  18. Overvoltage protector using varistor initiated arc

    DOEpatents

    Brainard, John P.

    1982-01-01

    Coaxial conductors are protected against electrical overvoltage by at least one element of non-electroded varistor material that adjoins each other varistor element and conductor with which it contacts. With this construction, overvoltage current initiated through the varistor material arcs at the point contacts between varistor elements and, as the current increases, the arcs increase until they become a continuous arc between conductors, bypassing the varistor material.

  19. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, Steven

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  20. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  1. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  2. Visualizing molecular unidirectional rotation

    NASA Astrophysics Data System (ADS)

    Lin, Kang; Song, Qiying; Gong, Xiaochun; Ji, Qinying; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-07-01

    We directly visualize the spatiotemporal evolution of a unidirectional rotating molecular rotational wave packet. Excited by two time-delayed polarization-skewed ultrashort laser pulses, the cigar- or disk-shaped rotational wave packet is impulsively kicked to unidirectionally rotate as a quantum rotor which afterwards disperses and exhibits field-free revivals. The rich dynamics can be coherently controlled by varying the timing or polarization of the excitation laser pulses. The numerical simulations very well reproduce the experimental observations and intuitively revivify the thoroughgoing evolution of the molecular rotational wave packet of unidirectional spin.

  3. Plasma arc melting of zirconium

    SciTech Connect

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-12-31

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming.

  4. Electron Temperature of the Arc Discharge for Nanomaterial Synthesis

    NASA Astrophysics Data System (ADS)

    Feurer, Matthew; Vekselman, Vladislav; Startton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-10-01

    Since the discovery of different allotropes of carbon in the twentieth century many uses have been found for carbon based nanomaterials such as buckyballs, nanotubes (CNTs), and graphene. An atmospheric pressure arc discharge with graphite electrodes is a promising technique for producing large volumes of these carbon nanostructures. Plasma drives the synthesis providing carbon feedstock by anode ablation and sustaining required composition and temperature of nanomaterial species, as such it is important to characterize the plasma used in this process in order to control the quality and attributes of the resulting carbon nanostructures. In work we present detailed in-situ measurements of spatial distribution of arc plasma parameters obtained with optical emission spectroscopy (OES) diagnostics. The plasma temperature has been determined using Boltzmann diagram method with collisional radiative modeling due to plasma deviation from complete local thermodynamic equilibrium (LTE). Results of these measurements demonstrate a strong correlation between arc plasma and synthesis processes. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  5. Boundary Layer Protuberance Simulations in Channel Nozzle Arc-Jet

    NASA Technical Reports Server (NTRS)

    Marichalar, J. J.; Larin, M. E.; Campbell, C. H.; Pulsonetti, M. V.

    2010-01-01

    Two protuberance designs were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility with the Data-Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to nominal baseline heating at a single fixed arc-jet condition in order to obtain heating augmentation factors for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 and STS-128. The arc-jet simulations were performed in conjunction with the actual ground tests performed on the protuberances. The arc-jet simulations included non-uniform inflow conditions based on the current best practices methodology and used variable enthalpy and constant mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results, and the effects of the protuberance shock on the opposite channel wall were investigated.

  6. Petrologic, tectonic, and metallogenic evolution of the Ancestral Cascades magmatic arc, Washington, Oregon, and northern California

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.

    2011-01-01

    reflects extensional tectonics that dominated during these periods of arc magmatism. Mineral deposits associated with ancestral Cascades arc rocks are uncommon; most are small and low grade relative to those found in other continental magmatic arcs. The small size, low grade, and dearth of deposits, especially in the southern two-thirds of the ancestral arc, probably reflect many factors, the most important of which may be the prevalence of extensional tectonics within this arc domain during this magmatic episode. Progressive clockwise rotation of the forearc block west of the evolving Oregon part of the ancestral Cascades magmatism produced an extensional regime that did not foster significant mineral deposit formation. In contrast, the Washington arc domain developed in a transpressional to mildly compressive regime that was more conducive to magmatic processes and hydrothermal fluid channeling critical to deposit formation. Small, low-grade porphyry copper deposits in the northern third of the ancestral Cascades arc segment also may be a consequence of more mature continental crust, including a Mesozoic component, beneath Washington north of Mount St. Helens.

  7. The Abundance of Large Arcs From CLASH

    NASA Astrophysics Data System (ADS)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  8. Atmospheric spreading of protons in auroral arcs

    NASA Technical Reports Server (NTRS)

    Iglesias, G. E.; Vondrak, R. R.

    1974-01-01

    A model is developed to calculate the effect of atmospheric spreading on the flux and angular distribution of protons in homogeneous auroral arcs. An expression is derived that indicates the angular distribution in the atmosphere as a function of distance from arc center, neutral scale height, arc width, and initial angular distribution. The results of the model agree favorably with those based on Monte-Carlo calculations. From these results the enhancement factors needed to compute the original proton current above the atmosphere are obtained. A technique is indicated for determining the incident angular distribution from rocket-based measurements of the arc width and angular distribution.

  9. Automatic Control Of Length Of Welding Arc

    NASA Technical Reports Server (NTRS)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  10. Metals purification by improved vacuum arc remelting

    DOEpatents

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  11. Helium and Carbon Systematics of the Sangihe Arc, Indonesia: Tracing Volatile Sources in an Arc-Arc Collision

    NASA Astrophysics Data System (ADS)

    Jaffe, L. A.; Hilton, D. R.; Fischer, T. P.; Hartono, U.

    2002-12-01

    The Sangihe and Halmahera arcs in northeastern Indonesia are presently colliding, forming the world's only extant example of an arc-arc collision. We report the first helium and carbon isotopic and relative abundance data from the Sangihe Arc volcanoes as a means to trace magma origins in this complicated tectonic region. Gas chemistry and N-isotopes from the same localities are reported in a companion paper (Clor et al, this volume). There is a distinct regional pattern in He and CO2 variations along the north-south strike of the Sangihe Arc. The two northernmost volcanoes (Awu and Karangetang) have 3He/4He <= 6.4RA (where RA = air 3He/4He), CO2/3He >= 30x109, and δ13C >= -2.0‰ . In contrast, the southern volcanoes along the arc (Ruang, Lokon, Mahawu) have 3He/4He >= 7.0RA, CO2/3He < 7x109 and δ13C < -3.0‰ . The southern volcanoes, therefore, sample volatiles more typical of island arc volcanoes. Resolving the CO2 into component structures (mantle-derived, plus slab-derived organic and limestone CO2 - following the approach of Sano and Marty, Chem. Geol., 1995), the northern volcanoes contain higher than average slab-derived limestone contributions. For example, limestone-derived CO2 makes up > 90% of the total CO2 at Karangetang and ~98% at Awu. These values compare with an average limestone contribution of ~65% in the southern Sangihe arc and ~73% in other arcs worldwide. We are investigating possible reasons for the enhanced limestone contributions in the northern Sangihe arc. The sedimentary mélange wedge is thickest in the north (up to 15km) - where the arcs initially collided. The greater availability of sediment may result in a greater input of subducted sediment, thereby providing enhanced dilution of mantle wedge C inputs. Alternatively, subducted sediments may be more carbonate-rich in the northern segment of the arc. This may reflect obduction of shallow, organic-bearing sediments onto the over-riding plate, leaving only pelagic carbonates to

  12. New class of locally rotationally symmetric spacetimes with simultaneous rotation and spatial twist

    NASA Astrophysics Data System (ADS)

    Singh, Sayuri; Ellis, George F. R.; Goswami, Rituparno; Maharaj, Sunil D.

    2016-11-01

    We establish the existence and find the necessary and sufficient conditions for a new class of solutions of locally rotationally symmetric spacetimes that have nonvanishing rotation and spatial twist simultaneously. We transparently show that the existence of such solutions demands nonvanishing and bounded heat flux and these solutions are self-similar. We provide a brief algorithm indicating how to solve the system of field equations with the given Cauchy data on an initial spacelike Cauchy surface. Finally we argue that these solutions can be used as a first approximation from spherical symmetry to study rotating, inhomogeneous, dynamic and radiating astrophysical stars.

  13. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    DOE PAGES

    Gershman, Sophia; Raitses, Yevgeny

    2016-07-27

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10-3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime.

  14. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    SciTech Connect

    Gershman, Sophia; Raitses, Yevgeny

    2016-07-27

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10-3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime.

  15. Optimized Hybrid MV-kV Imaging Protocol for Volumetric Prostate Arc Therapy

    PubMed Central

    Liu, Wu; Wiersma, Rodney D.; Xing, Lei

    2009-01-01

    Purpose To develop a real-time prostate position monitoring technique for modern arc radiotherapy through novel usage of cine-MV imaging together with as-needed kV imaging. Methods We divided the task of monitoring intrafraction prostate motion into two steps for rotational deliveries: (i) to detect potential target motion beyond a pre-defined threshold using MV images from different viewing angles by taking advantage of gantry rotation during arc therapy and (ii) to verify the displacement and determine whether an intervention is needed using fiducial/tumor position information acquired from combined MV-kV imaging (by turning on the kV imager). A Varian Trilogy™ linac with onboard kV imager was used to examine selected typical trajectories using a 4D motion phantom. The performance of the algorithm was evaluated using phantom measurements and computer simulation for 536 Calypso-measured tracks from 17 patients. Results Fiducial displacement relative to the MV beam was limited to within a range of 3mm for 99.9% of the time with better than 1mm accuracy. On average, only ∼0.5 intervention per arc delivery was needed to achieve this level of accuracy. Compared to other fluoroscopy-based tracking techniques, kV usage is significantly reduced to an average of less than 15 times per arc delivery. Conclusions By focusing the attention to detecting a pre-defined abnormal motion (i.e., “failure” detection) and utilizing the inherent mechanism of gantry rotation during arc radiotherapy, the current approach provides us with a high confidence about the prostate position in real-time without paying the unwanted overhead of continuous or periodic kV imaging strategy. PMID:20472354

  16. Optimized Hybrid Megavoltage-Kilovoltage Imaging Protocol for Volumetric Prostate Arc Therapy

    SciTech Connect

    Liu Wu; Wiersma, Rodney D.; Xing Lei

    2010-10-01

    Purpose: To develop a real-time prostate position monitoring technique for modern arc radiotherapy through novel use of cine-megavoltage (MV) imaging, together with as-needed kilovoltage (kV) imaging. Methods and Materials: We divided the task of monitoring the intrafraction prostate motion into two steps for rotational deliveries: to detect potential target motion beyond a predefined threshold using MV images from different viewing angles by taking advantage of gantry rotation during arc therapy and to verify the displacement and determine whether intervention is needed using fiducial/tumor position information acquired from combined MV-kV imaging (by turning on the kV imager). A Varian Trilogy linear accelerator with an onboard kV imager was used to examine selected typical trajectories using a four-dimensional motion phantom. The performance of the algorithm was evaluated using phantom measurements and computer simulation for 536 Calypso-measured tracks from 17 patients. Results: Fiducial displacement relative to the MV beam was limited to within a range of 3 mm 99.9% of the time with <1 mm accuracy. On average, only {approx}0.5 intervention per arc delivery was needed to achieve this level of accuracy. Compared with other fluoroscopy-based tracking techniques, kV use was significantly reduced to an average of <15 times per arc delivery. Conclusion: By focusing the attention on detecting predefined abnormal motion (i.e., 'failure' detection) and using the inherent mechanism of gantry rotation during arc radiotherapy, the current approach provides high confidence regarding the prostate position in real time without the unwanted overhead of continuous or periodic kV imaging.

  17. Predictors of human rotation.

    PubMed

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  18. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    SciTech Connect

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  19. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  20. Quantum Oscillations from Fermi Arcs

    NASA Astrophysics Data System (ADS)

    Pereg-Barnea, Tamar; Refael, Gil; Franz, Marcel; Weber, Heidi; Seradjeh, Babak

    2009-03-01

    Recent experiments[1] in a variety of High Tc superconductors revel 1/B oscillations in the vortex-liquid state. The period of oscillations in underdoped samples is short and can be translated, via the Onsager relation to an area in k-space which makes up a few percents of the Brillouin zone. Quantum oscillations are usually thought of as arising from closed orbits in momentum space along the Fermi surface and are used to measure the Fermi vector. Thus, the observation of quantum oscillations in the cuprates seems to be at odds with the observation of Fermi arcs in ARPES experiments[2] due to their fragmented Fermi surface topology. In this talk we show that quantum oscillations can arise from a partially gapped Fermi surface. We adopt a phenomenological model of arcs which terminate at a regime with a superconducting gap of d-wave symmetry to describe the pseudo gap phase. Without invoking any additional order, quantization of energy is found well below the gap maximum. Semiclassically the quantization condition arises from closed orbits in real-space. When translated to momentum space, the area enclosed by the orbits is much smaller than that of the full Fermi surface. [1]N. Doiron-Leyaraud et al. nature 447, 565 (2007) [2]Kanigel et al. Nature Physics 2 447 (2006)

  1. Detecting stellar-wind bubbles through infrared arcs in H ii regions

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H ii regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H ii regions around individual stars to predict the infrared emission properties of the dust within the H ii region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H ii region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H ii region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H ii regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  2. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    PubMed Central

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms. PMID:22969330

  3. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    PubMed

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  4. Cylindrical rotating triboelectric nanogenerator.

    PubMed

    Bai, Peng; Zhu, Guang; Liu, Ying; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Ma, Jusheng; Zhang, Gong; Wang, Zhong Lin

    2013-07-23

    We demonstrate a cylindrical rotating triboelectric nanogenerator (TENG) based on sliding electrification for harvesting mechanical energy from rotational motion. The rotating TENG is based on a core-shell structure that is made of distinctly different triboelectric materials with alternative strip structures on the surface. The charge transfer is strengthened with the formation of polymer nanoparticles on surfaces. During coaxial rotation, a contact-induced electrification and the relative sliding between the contact surfaces of the core and the shell result in an "in-plane" lateral polarization, which drives the flow of electrons in the external load. A power density of 36.9 W/m(2) (short-circuit current of 90 μA and open-circuit voltage of 410 V) has been achieved by a rotating TENG with 8 strip units at a linear rotational velocity of 1.33 m/s (a rotation rate of 1000 r/min). The output can be further enhanced by integrating more strip units and/or applying larger linear rotational velocity. This rotating TENG can be used as a direct power source to drive small electronics, such as LED bulbs. This study proves the possibility to harvest mechanical energy by TENGs from rotational motion, demonstrating its potential for harvesting the flow energy of air or water for applications such as self-powered environmental sensors and wildlife tracking devices.

  5. Radiative transfer dynamo effect

    NASA Astrophysics Data System (ADS)

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-01

    Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  6. Radiative transfer dynamo effect

    DOE PAGES

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-17

    Here, magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  7. Analysis of Flow From Arc-Jet Spectra

    NASA Technical Reports Server (NTRS)

    Blackwell, H. E.; Scott, Carl D.

    1997-01-01

    Materials testing is carried out at the JSC Atmospheric Reentry Materials and Structures Facility. A flow diagnostics program is under development to characterize the energy distribution in arc-jet flows used to simulate atmospheric entry. Heat transfer to materials depends on flow properties which includes the composition of and energy distribution among the atoms, ions, molecules, and molecular ions which make up the flow. This project involves analysis of shock layer characteristics from the radiation emitted and experimentally collected from near the front of the shock to near the surface of the material. The analysis has yielded information on relative populations of neutral molecules and molecular ions within the layer. In determining non-equilibrium temperatures within the layer, some insight into the spectral constants used to compute radiative emission has been gained.

  8. A fast analytic dose calculation method for arc treatments for kilovoltage small animal irradiators.

    PubMed

    Marco-Rius, I; Wack, L; Tsiamas, P; Tryggestad, E; Berbeco, R; Hesser, J; Zygmanski, P

    2013-09-01

    Arc treatments require calculation of dose for collections of discrete gantry angles. The sampling of angles must balance between short computation time of small angle sets and the better calculation reliability of large sets. In this paper, an analytical formula is presented that allows calculation of dose delivered during continuous rotation of the gantry. The formula holds valid for continuous short arcs of up to about 30° and is derived by integrating a dose formula over gantry angles within a small angle approximation. Doses for longer arcs may be obtained in terms of doses for shorter arcs. The formula is derived with an empirical beam model in water and extended to inhomogeneous media. It is validated with experimental data obtained by applying arc treatment using kV small animal irradiator to a phantom of solid water and lung-equivalent material. The results are a promising step towards efficient 3D dose calculation and inverse planning purposes. In principle, this method also applies to VMAT dose calculation and optimization but requires extensions.

  9. ARCFLO analysis for high-enthalpy arc heaters

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.

    1991-01-01

    Feasibility, physical constraints, and preliminary design and operating envelope are calculated for a next-generation segmented arc heater with enthalpies of 70-90 MJ/kg, for simulation of fast lunar or Martian return trajectories. The ARCFLO computer program is modified for improved accuracy in high-enthalpy radiation-dominated flows. The ARCFLO band-radiation model is compared with the state-of-the-art spectral-radiation code NEQAIR. The band-radiation model is corrected, and band-absorption coefficients are reduced by up to 40 percent at high temperatures. Parametric studies show that, with conventional wall-heating limitations, high mass flow and high enthalpy are contradictory design goals owing to the increase of radiation losses with pressure, current density, and constrictor diameter. With existing hardware limitations, an enthalpy of 70 MJ/kg with a flow rate of 0.1 kg/s can be achieved in a constrictor with 5-6 cm diameter operating near 3-atm stagnation pressure. The total power is under 100 MW, but the current is very high: 14,000-18,000 amperes.

  10. Non-equilibrium modelling of transferred arcs

    NASA Astrophysics Data System (ADS)

    Haidar, J.

    1999-02-01

    A two-temperature, variable-density, arc model has been developed for description of high-current free-burning arcs, including departures from thermodynamic and chemical equilibrium in the plasma. The treatment includes the arc, the anode and the cathode and considers the separate energy balance of the electrons and the heavy particles, together with the continuity equations for these species throughout the plasma. The output includes a two-dimensional distribution for the temperatures and densities both of the electrons and of the heavy particles, plasma velocity, current density and electrical potential throughout the arc. For a 200 A arc in pure argon at 1 atm, we calculate large differences between the temperatures of the electrons and the heavy particles in the plasma region near the cathode tip, together with large departures from local chemical plasma equilibrium. In the main body of the arc at high plasma temperatures, we predict minor differences between the temperatures of the electrons and the heavy particles, which are inconsistent with recent measurements using laser-scattering techniques showing differences of up to several thousand degrees. However, we find that, for the region in front of the cathode tip, the ground-state level of the neutral atoms is overpopulated relative to the corresponding populations under conditions of LTE, in agreement with experimental observations. These departures from LTE are caused by the injection of a large mass flow of cold gas into the arc core due to arc constriction at the tip of the cathode.

  11. Risk assessment of metal vapor arcing

    NASA Technical Reports Server (NTRS)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  12. Preventing Arc Welding From Damaging Electronics

    NASA Technical Reports Server (NTRS)

    Sargent, Noel; Mareen, D.

    1988-01-01

    Shielding technique developed to protect sensitive electronic equipment from damage due to electromagnetic disturbances produced by arc welding. Established acceptable alternative in instances in which electronic equipment cannot be removed prior to arc welding. Guidelines established for open, unshielded welds. Procedure applicable to robotics or computer-aided manufacturing.

  13. Feature extraction of arc tracking phenomenon

    NASA Technical Reports Server (NTRS)

    Attia, John Okyere

    1995-01-01

    This document outlines arc tracking signals -- both the data acquisition and signal processing. The objective is to obtain the salient features of the arc tracking phenomenon. As part of the signal processing, the power spectral density is obtained and used in a MATLAB program.

  14. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  15. Rotationally resolved infrared spectroscopy of adamantane

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm-1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of the SOLEIL synchrotron) as well as a classical globar. Adamantane is a spherical top molecule with tetrahedral symmetry (Td point group) and has no permanent dipole moment in its vibronic ground state. Of the 72 fundamental vibrational modes in adamantane, only 11 are IR active. Here we present rotationally resolved spectra for seven of them: ν30, ν28, ν27, ν26, ν25, ν24, and ν23. The typical rotational structure of spherical tops is observed and analyzed using the STDS software developed in the Dijon group, which provides the first accurate energy levels and rotational constants for seven fundamental modes. Rotational levels with quantum numbers as high as J = 107 have been identified and included in the fit leading to a typical standard deviation of about 10-3 cm-1.

  16. Carbon arc ignition improved by simple auxiliary circuit

    NASA Technical Reports Server (NTRS)

    1965-01-01

    High voltage, low current pulse in series with arc power supply efficiently ignites a carbon arc. The easily and economically produced circuit is useful with arc burners and searchlights and with plasma jets.

  17. Plate motion controls on back-arc spreading. [Cenozoic movement in Western Pacific

    NASA Technical Reports Server (NTRS)

    Fein, J. B.; Jurdy, D. M.

    1986-01-01

    The motions of the subducting and the overriding plates influence the spatial and temporal distribution of back-arc spreading. Cenozoic plate motions in hot spot-fixed and no-net-rotation reference frames were studied with attention to correlations between changes in motion and episodes of back-arc spreading in the western Pacific. The results suggest that major back-arc opening occurs when both the overriding plate retreats from the trench in an absolute sense and the subducting plate undergoes a significant speed-up. Neither phenomenon alone is sufficient to initiate spreading. Three major plate velocity increases can be identified in the Cenozoic: (1) the Pacific plate 5-9 Ma; (2) the Indian plate at 27 Ma; and (3) the Pacific plate at 43 Ma, due to its shift from northerly to more westerly motion. At the present time, the Indian and Philippine are the only overriding plates that are retreating from their Pacific trenches and back-arc spreading occurs only on these two retreating plates. Although the Indian plate has been retreating for at least 25 Ma, back-arc spreading began only following the Pacific plate speed-up 5-9 Ma. Earlier, during the Indian plate speed-up, no overriding plates were retreating strongly and no back-arc spreading epsiodes are preserved from this time. For the earliest Pacific plate shift at 43 Ma, the Eurasian plate was not advancing, thus creating the only favorable plate kinematic conditions in the Cenozoic for back-arc basin formation in this region. It is unclear whether extension in the Japan Sea is a result of these conditions.

  18. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Lee, Cin-Ty; Manga, Michael

    2014-05-01

    The location of volcanic arcs, relative to the trench evolves over time. Arc front migration has been observed in relic (Sierra Nevada, Andes)