Disruption of intracardiac flow patterns in the newborn infant.
Groves, Alan M; Durighel, Giuliana; Finnemore, Anna; Tusor, Nora; Merchant, Nazakat; Razavi, Reza; Hajnal, Jo V; Edwards, A David
2012-04-01
Consistent patterns of rotational intracardiac flow have been demonstrated in the healthy adult human heart. Intracardiac rotational flow patterns are hypothesized to assist in the maintenance of kinetic energy of inflowing blood, augmenting cardiac function. Newborn cardiac function is known to be suboptimal secondary to decreased receptor number and sympathetic innervation, increased afterload, and increased reliance on atrial contraction to support ventricular filling. Patterns of intracardiac flow in the newborn have not previously been examined. Whereas 5 of the 13 infants studied showed significant evidence of rotational flow within the right atrium, 8 infants showed little or no rotational flow. Presence or absence of rotational flow was not related to gestational age, birth weight, postnatal age, atrial size, or image quality. Despite absence of intra-atrial rotational flow, atrioventricular valve flow into the left and right ventricles later in the cardiac cycle could be seen, suggesting that visualization techniques were adequate. While further study is required to assess its exact consequences on cardiac mechanics and energetics, disruption to intracardiac flow patterns could be another contributor to the multifactorial sequence that produces newborn circulatory failure. We studied 13 newborn infants, using three-dimensional (3D) cardiac magnetic resonance phase-contrast imaging (spatial resolution 0.84 mm, temporal resolution 22.6 ms) performed without sedation/anesthesia.
The Effect of Spanwise System Rotation on Turbulent Poiseuille Flow at Very-Low-Reynolds Number
NASA Astrophysics Data System (ADS)
Iida, Oaki; Fukudome, K.; Iwata, T.; Nagano, Y.
Direct numerical simulations (DNSs) with a spectral method are performed with large and small computational domains to study the effects of spanwise rotation on a turbulent Poiseuille flow at the very low-Reynolds numbers. In the case without system rotation, quasi-laminar and turbulent states appear side by side in the same computational domain, which is coined as laminar-turbulence pattern. However, in the case with system rotation, the pattern disappears and flow is dominated by quasi-laminar region including very long low-speed streaks coiled by chain-like vortical structures. Increasing the Reynolds number can not generate the laminar-turbulence pattern as long as system rotation is imposed.
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-12-21
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.
NASA Technical Reports Server (NTRS)
Hathaway, David
2011-01-01
Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.
Pattern formation and three-dimensional instability in rotating flows
NASA Astrophysics Data System (ADS)
Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.
1997-03-01
A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta
NASA Astrophysics Data System (ADS)
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-08-01
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta.
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-08-26
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-01-01
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities. PMID:27561388
Viscoelastic flow in rotating curved pipes
NASA Astrophysics Data System (ADS)
Chen, Yitung; Chen, Huajun; Zhang, Jinsuo; Zhang, Benzhao
2006-08-01
Fully developed viscoelastic flows in rotating curved pipes with circular cross section are investigated theoretically and numerically employing the Oldroyd-B fluid model. Based on Dean's approximation, a perturbation solution up to the secondary order is obtained. The governing equations are also solved numerically by the finite volume method. The theoretical and numerical solutions agree with each other very well. The results indicate that the rotation, as well as the curvature and elasticity, plays an important role in affecting the friction factor, the secondary flow pattern and intensity. The co-rotation enhances effects of curvature and elasticity on the secondary flow. For the counter-rotation, there is a critical rotational number RΩ', which can make the effect of rotation counteract the effect of curvature and elasticity. Complicated flow behaviors are found at this value. For the relative creeping flow, RΩ' can be estimated according to the expression RΩ'=-4Weδ. Effects of curvature and elasticity at different rotational numbers on both relative creeping flow and inertial flow are also analyzed and discussed.
Direct numerical simulation of turbulent flow in a rotating square duct
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yi-Jun; Huang, Wei-Xi, E-mail: hwx@tsinghua.edu.cn; Xu, Chun-Xiao
A fully developed turbulent flow in a rotating straight square duct is simulated by direct numerical simulations at Re{sub τ} = 300 and 0 ≤ Ro{sub τ} ≤ 40. The rotating axis is parallel to two opposite walls of the duct and normal to the main flow. Variations of the turbulence statistics with the rotation rate are presented, and a comparison with the rotating turbulent channel flow is discussed. Rich secondary flow patterns in the cross section are observed by varying the rotation rate. The appearance of a pair of additional vortices above the pressure wall is carefully examined, andmore » the underlying mechanism is explained according to the budget analysis of the mean momentum equations.« less
Magnetic fields and flows between 1 AU and 0.3 AU during the primary mission of HELIOS 1
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ness, N. F.; Mariani, F.; Bavassano, B.; Villante, U.; Rosenbauer, H.; Schwenn, R.; Harvey, J.
1978-01-01
The recurrent flow and field patterns observed by HELIOS 1, and the relation between these patterns and coronal holes are discussed. Four types of recurrent patterns were observed: a large recurrent stream, a recurrent slow (quiet) flow, a rapidly evolving flow, and a recurrent compound stream. There recurrent streams were not stationary, for although the sources recurred at approximately the same longitudes on successive rotations, the shapes and latitudinal patterns changed from one rotation to the next. A type of magnetic field and plasma structure characterized by a low ion temperature and a high magnetic field intensity is described as well as the structures of stream boundaries between the sun at approximately 0.3 AU.
Low-to-moderate Reynolds number swirling flow in an annular channel with a rotating end wall.
Davoust, Laurent; Achard, Jean-Luc; Drazek, Laurent
2015-02-01
This paper presents a new method for solving analytically the axisymmetric swirling flow generated in a finite annular channel from a rotating end wall, with no-slip boundary conditions along stationary side walls and a slip condition along the free surface opposite the rotating floor. In this case, the end-driven swirling flow can be described from the coupling between an azimuthal shear flow and a two-dimensional meridional flow driven by the centrifugal force along the rotating floor. A regular asymptotic expansion based on a small but finite Reynolds number is used to calculate centrifugation-induced first-order correction to the azimuthal Stokes flow obtained as the solution at leading order. For solving the first-order problem, the use of an integral boundary condition for the vorticity is found to be a convenient way to attribute boundary conditions in excess for the stream function to the vorticity. The annular geometry is characterized by both vertical and horizontal aspect ratios, whose respective influences on flow patterns are investigated. The vertical aspect ratio is found to involve nontrivial changes in flow patterns essentially due to the role of corner eddies located on the left and right sides of the rotating floor. The present analytical method can be ultimately extended to cylindrical geometries, irrespective of the surface opposite the rotating floor: a wall or a free surface. It can also serve as an analytical tool for monitoring confined rotating flows in applications related to surface viscosimetry or crystal growth from the melt.
Wave propagation reversal for wavy vortices in wide-gap counter-rotating cylindrical Couette flow.
Altmeyer, S; Lueptow, Richard M
2017-05-01
We present a numerical study of wavy supercritical cylindrical Couette flow between counter-rotating cylinders in which the wavy pattern propagates either prograde with the inner cylinder or retrograde opposite the rotation of the inner cylinder. The wave propagation reversals from prograde to retrograde and vice versa occur at distinct values of the inner cylinder Reynolds number when the associated frequency of the wavy instability vanishes. The reversal occurs for both twofold and threefold symmetric wavy vortices. Moreover, the wave propagation reversal only occurs for sufficiently strong counter-rotation. The flow pattern reversal appears to be intrinsic in the system as either periodic boundary conditions or fixed end wall boundary conditions for different system sizes always result in the wave propagation reversal. We present a detailed bifurcation sequence and parameter space diagram with respect to retrograde behavior of wavy flows. The retrograde propagation of the instability occurs when the inner Reynolds number is about two times the outer Reynolds number. The mechanism for the retrograde propagation is associated with the inviscidly unstable region near the inner cylinder and the direction of the global average azimuthal velocity. Flow dynamics, spatio-temporal behavior, global mean angular velocity, and torque of the flow with the wavy pattern are explored.
Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows
NASA Technical Reports Server (NTRS)
Duvall, Thomas L., Jr.; Gizon, Laurent
1999-01-01
Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence has been measured.
Self-sustained flow oscillations and heat transfer in radial flow through co-rotating parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Inoue, T.
1990-03-01
An experimental study was conducted to determine the fluid flow and heat transfer characteristics in a passage formed by two parallel rotating disks. The local heat transfer coefficients along the disk radius were measured in detail and the flow patterns between the two rotating disks were visualized by using paraffin mist and a laser-light sheet. It was disclosed that: (1) the self-sustained laminar flow separation which is characteristic of the stationary disks still exists even when the disks are set in motion, giving significant influence to the heat transfer; (2) for small source flow Reynolds number, Re, and large rotational Reynolds number, Re(omega), rotating stall dominates the heat transfer; and (3) heat transfer for steady laminar flow occurs only when Re is less than 1200 and Re(omega) is less than 20.
Urita, Atsushi; Funakoshi, Tadanao; Horie, Tatsunori; Nishida, Mutsumi; Iwasaki, Norimasa
2017-01-01
Vascularity is the important factor of biologic healing of the repaired tissue. The purpose of this study was to clarify sequential vascular patterns of repaired rotator cuff by suture techniques. We randomized 21 shoulders in 20 patients undergoing arthroscopic rotator cuff repair into 2 groups: transosseous-equivalent repair (TOE group, n = 10) and transosseous repair (TO group, n = 11). Blood flow in 4 regions inside the cuff (lateral articular, lateral bursal, medial articular, and medial bursal), in the knotless suture anchor in the TOE group, and in the bone tunnel in the TO group was measured using contrast-enhanced ultrasound at 1 month, 2 months, 3 months, and 6 months postoperatively. The sequential vascular pattern inside the repaired rotator cuff was different between groups. The blood flow in the lateral articular area at 1 month, 2 months, and 3 months (P = .002, .005, and .025) and that in the lateral bursal area at 2 months (P = .031) in the TO group were significantly greater than those in the TOE group postoperatively. Blood flow was significantly greater for the bone tunnels in the TO group than for the knotless suture anchor in the TOE group at 1 month and 2 months postoperatively (P = .041 and .009). This study clarified that the sequential vascular pattern inside the repaired rotator cuff depends on the suture technique used. Bone tunnels through the footprint may contribute to biologic healing by increasing blood flow in the repaired rotator cuff. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Nalbach, H O
1992-01-01
Pigeons freely standing in the centre of a two-dimensionally textured cylinder not only rotate but also laterally translate their head in response to the pattern sinusoidally oscillating or unidirectionally rotating around their vertical axis. The translational head movement dominates the response at high oscillation frequencies, whereas in a unidirectionally rotating drum head translation declines at about the same rate as the rotational response increases. It is suggested that this is a consequence of charging the 'velocity storage' in the vestibulo-ocular system. Similar to the rotational head movement (opto-collic reflex), the translational head movement is elicited via a wide-field motion sensitive system. The underlying mechanism can be described as vector integration of movement vectors tangential to the pattern rotation. Stimulation of the frontal visual field elicits largest translational responses while rotational responses can be elicited equally well from any azimuthal position of a moving pattern. Experiments where most of the pattern is occluded by a screen and the pigeon is allowed to view the stimulus through one or two windows demonstrate a short-range inhibition and long-range excitation between movement detectors that feed into the rotational system. Furthermore, the results obtained from such types of experiments suggest that the rotational system inhibits the translational system. These mechanisms may help the pigeon to decompose image flow into its translational and rotational components. Because of their translational response to a rotational stimulus, it is concluded, however, that pigeons either generally cannot perfectly perform the task or they need further visual information, like differential image motion, that was not available to them in the paradigms.
Low order physical models of vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Craig, Anna; Dabiri, John; Koseff, Jeffrey
2016-11-01
In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.
Influence of rotation on the near-wake development behind an impulsively started circular cylinder
NASA Astrophysics Data System (ADS)
Coutanceau, M.; Menard, C.
1985-09-01
A rotating body, travelling through a fluid in such a way that the rotation axis is at right angles to the translational path, experiences a transverse force, called the Magnus force. The present study is concerned with a rotating cylinder which is in a state of translational motion. In the considered case, the existence of a lift force may be explained easily on the basis of the theory of inviscid fluids. An experimental investigation provides new information regarding the mechanism of the near-wake development of the classical unsteady flow and the influence of the rotational effects. Attention is given to the experimental technique, aspects of flow topology and notation, the time development of the wake flow pattern, the time evolution of certain flow properties, the flow structure in the neighborhood of the front stagnation point, and the influence of the Reynolds number on flow establishment.
Defect-mediated turbulence in ribbons of viscoelastic Taylor-Couette flow.
Latrache, Noureddine; Abcha, Nizar; Crumeyrolle, Olivier; Mutabazi, Innocent
2016-04-01
Transition to defect-mediated turbulence in the ribbon patterns observed in a viscoelastic Taylor-Couette flow is investigated when the rotation rate of the inner cylinder is increased while the outer cylinder is fixed. In four polymer solutions with different values of the elasticity number, the defects appear just above the onset of the ribbon pattern and trigger the appearance of disordered oscillations when the rotation rate is increased. The flow structure around the defects is determined and the statistical properties of these defects are analyzed in the framework of the complex Ginzburg-Landau equation.
Pattern Formation in Diffusion Flames Embedded in von Karman Swirling Flows
NASA Technical Reports Server (NTRS)
Nayagam, Vedha
2006-01-01
Pattern formation is observed in nature in many so-called excitable systems that can support wave propagation. It is well-known in the field of combustion that premixed flames can exhibit patterns through differential diffusion mechanism between heat and mass. However, in the case of diffusion flames where fuel and oxidizer are separated initially there have been only a few observations of pattern formation. It is generally perceived that since diffusion flames do not possess an inherent propagation speed they are static and do not form patterns. But in diffusion flames close to their extinction local quenching can occur and produce flame edges which can propagate along stoichiometric surfaces. Recently, we reported experimental observations of rotating spiral flame edges during near-limit combustion of a downward-facing polymethylmethacrylate disk spinning in quiescent air. These spiral flames, though short-lived, exhibited many similarities to patterns commonly found in quiescent excitable media including compound tip meandering motion. Flame disks that grow or shrink with time depending on the rotational speed and in-depth heat loss history of the fuel disk have also been reported. One of the limitations of studying flame patterns with solid fuels is that steady-state conditions cannot be achieved in air at normal atmospheric pressure for experimentally reasonable fuel thickness. As a means to reproduce the flame patterns observed earlier with solid fuels, but under steady-state conditions, we have designed and built a rotating, porous-disk burner through which gaseous fuels can be injected and burned as diffusion flames. The rotating porous disk generates a flow of air toward the disk by a viscous pumping action, generating what is called the von K rm n boundary layer which is of constant thickness over the entire burner disk. In this note we present a map of the various dynamic flame patterns observed during the combustion of methane in air as a function of fuel flow rate and the burner rotational speed.
NASA Astrophysics Data System (ADS)
Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.
2017-06-01
Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.
Cetera, Maureen; Leybova, Liliya; Joyce, Bradley; Devenport, Danelle
2018-05-01
Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Neal, Douglas; Prevost, Richard; Mayrhofer, Arno; Lawrenz, Alan; Foss, John; Sotiropoulos, Fotis
2015-11-01
Secondary flows in a rotating flow in a cylinder, resulting in the so called ``tea leaf paradox'', are fundamental for understanding atmospheric pressure systems, developing techniques for separating red blood cells from the plasma, and even separating coagulated trub in the beer brewing process. We seek to gain deeper insights in this phenomenon by integrating numerical simulations and experiments. We employ the Curvilinear Immersed boundary method (CURVIB) of Calderer et al. (J. Comp. Physics 2014), which is a two-phase flow solver based on the level set method, to simulate rotating free-surface flow in a cylinder partially filled with water as in the tea leave paradox flow. We first demonstrate the validity of the numerical model by simulating a cylinder with a rotating base filled with a single fluid, obtaining results in excellent agreement with available experimental data. Then, we present results for the cylinder case with free surface, investigate the complex formation of secondary flow patterns, and show comparisons with new experimental data for this flow obtained by Lavision. Computational resources were provided by the Minnesota Supercomputing Institute.
NASA Astrophysics Data System (ADS)
Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.
2017-07-01
Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.
NASA Astrophysics Data System (ADS)
Fathonah, N. N.; Nurtono, T.; Kusdianto; Winardi, S.
2018-03-01
Single phase turbulent flow in a vessel agitated by side entering inclined blade turbine has simulated using CFD. The aim of this work is to identify the hydrodynamic characteristics of a model vessel, which geometrical configuration is adopted at industrial scale. The laboratory scale model vessel is a flat bottomed cylindrical tank agitated by side entering 4-blade inclined blade turbine with impeller rotational speed N=100-400 rpm. The effect of the impeller diameter on fluid flow pattern has been investigated. The fluid flow patterns in a vessel is essentially characterized by the phenomena of macro-instabilities, i.e. the flow patterns change with large scale in space and low frequency. The intensity of fluid flow in the tank increase with the increase of impeller rotational speed from 100, 200, 300, and 400 rpm. It was accompanied by shifting the position of the core of circulation flow away from impeller discharge stream and approached the front of the tank wall. The intensity of fluid flow in the vessel increase with the increase of the impeller diameter from d=3 cm to d=4 cm.
Differential rotation in solar-like stars from global simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, G.; Kosovichev, A. G.; Smolarkiewicz, P. K.
2013-12-20
To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridionalmore » cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such 'banana-cell' pattern can be hidden beneath the supergranulation layer.« less
Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine
NASA Astrophysics Data System (ADS)
Xiao, Y. X.; Cui, T.; Wang, Z. W.; Yan, Z. G.
2012-11-01
Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.
Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Braunscheidel, Edward P.
2006-01-01
Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6 percent of the rotor shaft speed.
Photospheric Magnetic Flux Transport - Supergranules Rule
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Rightmire-Upton, Lisa
2012-01-01
Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!
Flow Structure on a Flapping Wing: Quasi-Steady Limit
NASA Astrophysics Data System (ADS)
Ozen, Cem; Rockwell, Donald
2011-11-01
The flapping motion of an insect wing typically involves quasi-steady motion between extremes of unsteady motion. This investigation characterizes the flow structure for the quasi-steady limit via a rotating wing in the form of a thin rectangular plate having a low aspect ratio (AR =1). Particle Image Velocimetry (PIV) is employed, in order to gain insight into the effects of centripetal and Coriolis forces. Vorticity, velocity and streamline patterns are used to describe the overall flow structure with an emphasis on the leading-edge vortex. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75° and it is observed that at each angle of attack the flow structure remains relatively same over the Reynolds number range from 3,600 to 14,500. The dimensionless circulation of the leading edge vortex is found to be proportional to the effective angle of attack. Quasi-three-dimensional construction of the flow structure is used to identify the different regimes along the span of the wing which is then complemented by patterns on cross flow planes to demonstrate the influence of root and tip swirls on the spanwise flow. The rotating wing results are also compared with the equivalent of translating wing to further illustrate the effects of the rotation.
Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder
NASA Astrophysics Data System (ADS)
Subbotin, Stanislav; Dyakova, Veronika
2018-05-01
The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.
The stability of a thin water layer over a rotating disk revisited
NASA Astrophysics Data System (ADS)
Poncet, Sébastien
2014-08-01
The flow driven by a rotating disk of a thin fluid layer in a fixed cylindrical casing is studied by direct numerical simulation and experimental flow visualizations. The characteristics of the flow are first briefly discussed but the focus of this work is to understand the transition to the primary instability. The primary bifurcation is 3D and appears as spectacular sharp-cornered polygonal patterns located along the shroud. The stability diagram is established experimentally in a ( Re, G plane, where G is the aspect ratio of the cavity and Re the rotational Reynolds number and confirmed numerically. The number of vortices scales well with the Ekman number based on the water depth, which confirms the existence of a Stewartson layer along the external cylinder. The critical mixed Reynolds number is found to be constant as in other rotating flows involving a shear-layer instability. Hysteresis cycles are observed highlighting the importance of the spin-up and spin-down processes. In some particular cases, a crossflow instability appears under the form of high azimuthal wave number spiral patterns, similar to those observed in a rotor-stator cavity with throughflow and coexists with the polygons. The DNS calculations confirm the experimental results under the flat free surface hypothesis.
Sediment morpho-dynamics induced by a swirl-flow: an experimental study
NASA Astrophysics Data System (ADS)
Gonzalez-Vera, Alfredo; Duran-Matute, Matias; van Heijst, Gertjan
2016-11-01
This research focuses on a detailed experimental study of the effect of a swirl-flow over a sediment bed in a cylindrical domain. Experiments were performed in a water-filled cylindrical rotating tank with a bottom layer of translucent polystyrene particles acting as a sediment bed. The experiments started by slowly spinning the tank up until the fluid had reached a solid-body rotation at a selected rotation speed (Ωi). Once this state was reached, a swirl-flow was generated by spinning-down the system to a lower rotation rate (Ωf). Under the flow's influence, particles from the bed were displaced, which changed the bed morphology, and under certain conditions, pattern formation was observed. Changes in the bed height distribution were measured by utilizing a Light Attenuation Technique (LAT). For this purpose, the particle layer was illuminated from below. Images of the transmitted light distribution provided quantitative information about the local thickness of the sediment bed. The experiments revealed a few characteristic regimes corresponding to sediment displacement, pattern formation and the occurrence of particle pick-up. Such regimes depend on both the Reynolds (Re) and Rossby (Ro) numbers. This research is funded by CONACYT (Mexico) through the Ph.D. Grant (383903) and NWO (the Netherlands) through the VENI Grant (863.13.022).
Spiral Laminar Flow: a Survey of a Three-Dimensional Arterial Flow Pattern in a Group of Volunteers.
Stonebridge, P A; Suttie, S A; Ross, R; Dick, J
2016-11-01
Spiral laminar flow was suggested as potentially the predominant arterial blood flow pattern many years ago. Computational fluid dynamics and flow rig testing have suggested there are advantages to spiral laminar flow. The aim of this study was to identify whether spiral laminar is the predominant flow pattern in a cohort of volunteers. This study included 42 volunteers (mean age 66.8 years). Eleven arterial sites were examined, comprising bilateral examination of the common carotid artery, internal carotid artery, external carotid artery, common femoral artery, superficial femoral artery, and the infra renal aorta. The presence or absence of spiral laminar flow, the peak systolic velocity, and the rotational velocity were assessed by colour Duplex scanning. The incidence of spiral laminar flow ranged from 81% in the internal carotid artery to 90% in the common carotid artery and the infra renal aorta. Overall, in 58% of all right-sided arteries the rotation was clockwise and 42% anticlockwise. In all left-sided arteries these numbers were reversed. Analysis on the basis of volunteer rather than examination site showed that 41/42 (97%) had more sites with spiral laminar flow than without. Only one volunteer had more sites exhibiting non-spiral laminar flow. Spiral laminar flow was the predominant flow pattern in the study population. This observation raises questions and suggests a need for further studies concerning the form and function of the left ventricle, the geometry of the arterial system, and the function of the arterial wall. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Experimental Investigation of Rotating Stall in a Research Multistage Axial Compressor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Braunscheidel, Edward P.; Welch, Gerard E.
2007-01-01
A collection of experimental data acquired in the NASA low-speed multistage axial compressor while operated in rotating stall is presented in this paper. The compressor was instrumented with high-response wall pressure modules and a static pressure disc probe for in-flow measurement, and a split-fiber probe for simultaneous measurements of velocity magnitude and flow direction. The data acquired to-date have indicated that a single fully developed stall cell rotates about the flow annulus at 50.6% of the rotor speed. The stall phenomenon is substantially periodic at a fixed frequency of 8.29 Hz. It was determined that the rotating stall cell extends throughout the entire compressor, primarily in the axial direction. Spanwise distributions of the instantaneous absolute flow angle, axial and tangential velocity components, and static pressure acquired behind the first rotor are presented in the form of contour plots to visualize different patterns in the outer (midspan to casing) and inner (hub to mid-span) flow annuli during rotating stall. In most of the cases observed, the rotating stall started with a single cell. On occasion, rotating stall started with two emerging stall cells. The root cause of the variable stall cell count is unknown, but is not attributed to operating procedures.
The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models
NASA Astrophysics Data System (ADS)
Sutrisno, Prajitno, Purnomo, W., Setyawan B.
2016-06-01
Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.
How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity
NASA Technical Reports Server (NTRS)
Hathaway, D. H.
2004-01-01
Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.
Algebraic disturbances and their consequences in rotating channel flow transition
NASA Astrophysics Data System (ADS)
Jose, Sharath; Kuzhimparampil, Vishnu; Pier, Benoît.; Govindarajan, Rama
2017-08-01
It is now established that subcritical mechanisms play a crucial role in the transition to turbulence of nonrotating plane shear flows. The role of these mechanisms in rotating channel flow is examined here in the linear and nonlinear stages. Distinct patterns of behavior are found: the transient growth leading to nonlinearity at low rotation rates R o , a highly chaotic intermediate R o regime, a localized weak chaos at higher R o , and complete stabilization of transient disturbances at very high R o . At very low R o , the transient growth amplitudes are close to those for nonrotating flow, but Coriolis forces assert themselves by producing distinct asymmetry about the channel centreline. Nonlinear processes are then triggered, in a streak-breakdown mode of transition. The high R o regimes do not show these signatures; here the leading eigenmode emerges as dominant in the early stages. Elongated structures plastered close to one wall are seen at higher rotation rates. Rotation is shown to reduce nonnormality in the linear operator, in an indirect manifestation of Taylor-Proudman effects. Although the critical Reynolds for exponential growth of instabilities is known to vary a lot with rotation rate, we show that the energy critical Reynolds number is insensitive to rotation rate. It is hoped that these findings will motivate experimental verification and examination of other rotating flows in this light.
LDV measurement of boundary layer on rotating blade surface in wind tunnel
NASA Astrophysics Data System (ADS)
Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke
2014-12-01
Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.
Domino structures evolution in strike-slip shear zones; the importance of the cataclastic flow
NASA Astrophysics Data System (ADS)
Moreira, N.; Dias, R.
2018-05-01
The Porto-Tomar-Ferreira do Alentejo dextral Shear Zone is one of the most important structures of the Iberian Variscides. In its vicinity, close to Abrantes (Central Portugal), a localized heterogeneous strain pattern developed in a decimetric metamorphic siliceous multilayer. This complex pattern was induced by the D2 dextral shearing of the early S0//S1 foliation in brittle-ductile conditions, giving rise to three main shear zone families. One of these families, with antithetic kinematics, delimits blocks with rigid clockwise rotation surrounded by coeval cataclasites, generating a local domino structure. The proposed geometrical and kinematic analysis, coupled with statistical studies, highlights the relation between subsidiary shear zones and the main shear zone. Despite the heterogeneous strain pattern, a quantitative approach of finite strain was applied based on the restoration of the initial fracture pattern. This approach shows the importance of the cataclastic flow coupled with the translational displacement of the domino domain in solving space problems related to the rigid block rotation. Such processes are key in allowing the rigid block rotation inside shear zones whenever the simple shear component is a fundamental mechanism.
Kinematic dynamo action in square and hexagonal patterns.
Favier, B; Proctor, M R E
2013-11-01
We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.
How Large Scales Flows May Influence Solar Activity
NASA Technical Reports Server (NTRS)
Hathaway, D. H.
2004-01-01
Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.
Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Zickefoose, Charles S.
This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…
Simulating immiscible multi-phase flow and wetting with 3D stochastic rotation dynamics (SRD)
NASA Astrophysics Data System (ADS)
Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan; Brinkmann, Martin
2013-11-01
We use a variant of the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the multi-color SRD method, first proposed by Inoue et al., we present an implementation that accounts for complex wettability on heterogeneous surfaces. In order to demonstrate the versatility of this algorithm, we consider immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. We show that these patterns have a significant effect on the interface dynamics. Furthermore, the implementation of angular momentum conservation into the SRD algorithm allows us to extent the applicability of SRD also to micro-fluidic systems. It is now possible to study e.g. the internal flow behaviour of a droplet depending on the driving velocity of the surrounding bulk fluid or the splitting of droplets by an obstacle.
Schönberger, Markus; Deutsch, Steven; Manning, Keefe B
2012-01-01
Ventricular assist devices are a commonly used heart failure therapy for adult patients as bridge-to-transplant or bridge-to-recovery tools. The application of adult ventricular assist devices in pediatric patients has led to increased thrombotic events. Therefore, we have been developing a pediatric ventricular assist device (PVAD), the Penn State 12 cc PVAD. It is designed for patients with a body weight of 5-15 kg and has a stroke volume of 12 cc. Clot formation is the major concern. It is correlated to the coagulability of blood, the blood contacting materials and the fluid dynamics within the system. The intent is for the PVAD to be a long term therapy. Therefore, the system may be oriented in different positions according to the patient's behavior. This study evaluates for the first time the impact of position on the flow patterns within the Penn State 12 cc PVAD, which may help to improve the PVAD design concerning chamber and ports geometries. The fluid dynamics are visualized by particle image velocimetry. The evaluation is based on inlet jet behavior and calculated wall shear rates. Vertical and horizontal model orientations are compared, both with a beat rate of 75, outlet pressures of 90/60 mm Hg and a flow rate of 1.3 l/min. The results show a significant change of the inlet jet behavior and the development of a rotational flow pattern. Vertically, the inlet jet is strong along the wall. It initiates a rotational flow pattern with a wandering axis of rotation. In contrast, the horizontal model orientation results show a weaker inlet jet along the wall with a nearly constant center of rotation location, which can be correlated to a higher risk of thrombotic events. In addition, high speed videography illustrates differences in the diaphragm motion during diastole. Diaphragm opening trajectories measurements determine no significant impact of the density of the blood analog fluids. Hence, the results correlate to human blood.
Generalized elastica patterns in a curved rotating Hele-Shaw cell
NASA Astrophysics Data System (ADS)
Brandão, Rodolfo; Miranda, José A.
2017-08-01
We study a family of generalized elasticalike equilibrium shapes that arise at the interface separating two fluids in a curved rotating Hele-Shaw cell. This family of stationary interface solutions consists of shapes that balance the competing capillary and centrifugal forces in such a curved flow environment. We investigate how the emerging interfacial patterns are impacted by changes in the geometric properties of the curved Hele-Shaw cell. A vortex-sheet formalism is used to calculate the two-fluid interface curvature, and a gallery of possible shapes is provided to highlight a number of peculiar morphological features. A linear perturbation theory is employed to show that the most prominent aspects of these complex stationary patterns can be fairly well reproduced by the interplay of just two interfacial modes. The connection of these dominant modes to the geometry of the curved cell, as well as to the fluid dynamic properties of the flow, is discussed.
MEASUREMENTS OF THE SUN'S HIGH-LATITUDE MERIDIONAL CIRCULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rightmire-Upton, Lisa; Hathaway, David H.; Kosak, Katie, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov, E-mail: mkosak2011@my.fit.edu
2012-12-10
The meridional circulation at high latitudes is crucial to the buildup and reversal of the Sun's polar magnetic fields. Here, we characterize the axisymmetric flows by applying a magnetic feature cross-correlation procedure to high-resolution magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. We focus on Carrington rotations 2096-2107 (2010 April to 2011 March)-the overlap interval between HMI and the Michelson Doppler Imager (MDI). HMI magnetograms averaged over 720 s are first mapped into heliographic coordinates. Strips from these maps are then cross-correlated to determine the distances in latitude and longitude that the magneticmore » element pattern has moved, thus providing meridional flow and differential rotation velocities for each rotation of the Sun. Flow velocities were averaged for the overlap interval and compared to results obtained from MDI data. This comparison indicates that these HMI images are rotated counterclockwise by 0.{sup 0}075 with respect to the Sun's rotation axis. The profiles indicate that HMI data can be used to reliably measure these axisymmetric flow velocities to at least within 5 Degree-Sign of the poles. Unlike the noisier MDI measurements, no evidence of a meridional flow counter-cell is seen in either hemisphere with the HMI measurements: poleward flow continues all the way to the poles. Slight north-south asymmetries are observed in the meridional flow. These asymmetries should contribute to the observed asymmetries in the polar fields and the timing of their reversals.« less
Simulations of particle structuring driven by electric fields
NASA Astrophysics Data System (ADS)
Hu, Yi; Vlahovska, Petia; Miksis, Michael
2015-11-01
Recent experiments (Ouriemi and Vlahovska, 2014) show intriguing surface patterns when a uniform electric field is applied to a droplet covered with colloidal particles. Depending on the particle properties and the electric field intensity, particles organize into an equatorial belt, pole-to-pole chains, or dynamic vortices. Here we present 3D simulations of the collective particle dynamics, which account for electrohydrodynamic flow and dielectrophoresis of particles. In stronger electric fields, particles are expected to undergo Quincke rotation and impose disturbance to the ambient flow. Transition from ribbon-shaped belt to rotating clusters is observed in the presence of the rotation-induced hydrodynamical interactions. Our results provide insight into the various particle assembles discovered in the experiments.
NASA Astrophysics Data System (ADS)
Munir, Adnan; Zhao, Ming; Wu, Helen; Lu, Lin; Ning, Dezhi
2018-05-01
The vortex-induced vibration (VIV) of an elastically mounted rotating circular cylinder vibrating in a uniform flow is studied numerically. The cylinder is allowed to vibrate only in the cross-flow direction. In the numerical simulations, the Reynolds number, the mass ratio, and the damping ratio are kept constants to 500, 11.5, and 0, respectively. Simulations are performed for rotation rates of α = 0, 0.5, and 1 and a range of reduced velocities from 1 to 13, which covers the entire lock-in regime. It is found that the lock-in regime of a rotating cylinder is wider than that of a non-rotating cylinder for α = 0, 0.5, and 1. The vortex shedding pattern of a rotating cylinder is found to be similar to that of a non-rotating cylinder. Next, simulations are performed for three typical reduced velocities inside the lock-in regime and a range of higher rotation rates from α = 1.5 to 3.5 to investigate the effect of the rotation rate on the suppression of VIV. It is found that the VIV is suppressed when the rotation rate exceeds a critical value, which is dependent on the reduced velocity. For a constant reduced velocity, the amplitude of the vibration is found to increase with increasing rotation rate until the latter reaches its critical value for VIV suppression, beyond which the vibration amplitude becomes extremely small. If the rotation rate is greater than its critical value, vortex shedding ceases and hairpin vortices are observed due to the rotation of the cylinder.
A laboratory model for solidification of Earth's core
NASA Astrophysics Data System (ADS)
Bergman, Michael I.; Macleod-Silberstein, Marget; Haskel, Michael; Chandler, Benjamin; Akpan, Nsikan
2005-11-01
To better understand the influence of rotating convection in the outer core on the solidification of the inner core we have constructed a laboratory model for solidification of Earth's core. The model consists of a 15 cm radius hemispherical acrylic tank concentric with a 5 cm radius hemispherical aluminum heat exchanger that serves as the incipient inner core onto which we freeze ice from salt water. Long exposure photographs of neutrally buoyant particles in illuminated planes suggest reduction of flow parallel to the rotation axis. Thermistors in the tank near the heat exchanger show that in experiments with rotation the temperature near the pole is lower than near the equator, unlike for control experiments without rotation or with a polymer that increases the fluid viscosity. The photographs and thermistors suggest that our observation that ice grows faster near the pole than near the equator for experiments with rotation is a result of colder water not readily convecting away from the pole. Because of the reversal of the thermal gradient, we expect faster equatorial solidification in the Earth's core. Such anisotropy in solidification has been suggested as a cause of inner core elastic (and attenuation) anisotropy, though the plausibility of this suggestion will depend on the core Nusselt number and the slope of the liquidus, and the effects of post-solidification deformation. Previous experiments on hexagonal close-packed alloys such as sea ice and zinc-tin have shown that fluid flow in the melt can result in a solidification texture transverse to the solidification direction, with the texture depending on the nature of the flow. A comparison of the visualized flow and the texture of columnar ice crystals in thin sections from these experiments confirms flow-induced transverse textures. This suggests that the convective pattern at the base of the outer core is recorded in the texture of the inner core, and that outer core convection might contribute to the complexity in the seismically inferred pattern of anisotropy in the Earth's inner core.
NASA Astrophysics Data System (ADS)
Shirsath, Sushil; Padding, Johan; Clercx, Herman; Kuipers, Hans
2013-11-01
In blast furnaces operated in the steel industry, particles like coke, sinter and pellets enter from a hopper and are distributed on the burden surface by a rotating chute. Such particulate flows suffer occasionally from particle segregation in chute, which hinders efficient throughflow. To obtain a more fundamental insight into these effects, monodisperse particles flowing through a rotating chute inclined at a fixed angle has been studied both with experiments and with a discrete particle model. We observe that the prevailing flow patterns depend strongly on the rotation rate of the chute. With increasing rotation rate the particles are moving increasingly to the side wall. The streamwise particle velocity is slightly reduced in the first half length of the chute due to the Coriolis force, but strongly increased in the second half due to the centrifugal forces. The particle bed height becomes a two-dimensional function of the position inside the chute, with a strong increase in bed height along the sidewall due to the Coriolis forces. It was found that the DPM model was agreed well with the experimental measurements. We will also discuss ongoing work, where we investigate the effects of binary particle mixtures with different particle size or density, different chute geometry.
Torsion effect on fully developed flow in a helical pipe
NASA Technical Reports Server (NTRS)
Kao, Hsiao C.
1987-01-01
Two techniques, a series expansion method of perturbed Poiseuille flow valid for low Dean numbers and a solution of the complete Navier-Stokes equation applicable to intermediate Dean values, are used to investigate the torsion effect on the fully developed laminar flow in a helical pipe of constant circular cross section. For the secondary flow patterns, the results show that the presence of torsion can produce a significant effect if the ratio of the curvature to the torsion is of order unity. The secondary flow is distorted in these cases. It is noted that the torsion effect is, however, usually small, and that the secondary flow has the usual pattern of a pair of counter-rotating vortices of nearly equal strength.
NASA Astrophysics Data System (ADS)
Azpiroz, M.; Cartigny, M.; Sumner, E. J.; Talling, P.; Parsons, D. R.; Clare, M. A.; Cooper, C.
2017-12-01
Turbidity currents transport sediment through submarine channel systems for hundreds of kilometres to form vast deposits of sediment in the deep sea called submarine fans. The largest submarine fans are fed by meandering channels suggesting that bends may enhance sediment transport distances. The interaction between meander bends and turbidity currents has been a topic of intense debate. Due to the absence of observations of deep-sea turbidity currents flowing through meander bends, our understanding has been based on experimental and numerical models. Measurements of geophysical flows demonstrate a common helical flow structure around meanders. Previous work has demonstrated that helical circulation in rivers is dominated by a single helix that rotates towards the inner bend at near-bed depths. In contrast, initial numerical and experimental models for turbidity currents found both river-like and river-reversed circulations. Saline flows in well-mixed estuaries show a river-like basal helical circulation, while stratified estuaries and saline flows are river-reversed. The existence of lateral stratification in stratified flows is thought to be the key factor in the change of direction of rotation. Stratification causes lateral pressure gradients that can govern the rotation of the flow helix. Turbidity currents are stratified due to their upwards-decreasing sediment load. It has therefore been proposed that stratified turbidity currents behave like stratified saline flow, but this hypothesis remains so far untested. Here we present the first observations of the helical flow in turbidity currents, which occurred within the deep-sea Congo Canyon. The measurements show a consistent river-reversed pattern downstream of the bend apex. Those results lead us to develop a new generalised model for a wide range of flows around meanders. Our conclusions have implications for understanding the flow erosional and depositional patterns, the evolution of channel systems and the architecture of the depositional record.
Winship, I R; Wylie, D R
2001-11-01
The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.
Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.
1988-01-01
The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil
2010-05-01
New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an angle alpha=25°. Constructed finite strain ellipsoid based on the X-axes of the elliptical shaped deformed markers of the diapir cover sequences show trend X-axis of the strain ellipsoid making an angle phai=2° with the boundary zones. The steep plunging stretching lineation primarily controlled by the plastic/viscous flow. This also show that during inclined upwelling boundary-parallel diapers, X-, Y-axes of the strain ellipsoid rotated clockwise and Z-axis experienced counter clockwise rotation with triclinic symmetries relative to the Zagros curvilinear transpression boundary zones with an orientation of N42°plus/minus 24°W.
NASA Astrophysics Data System (ADS)
Garrett, S. J.; Cooper, A. J.; Harris, J. H.; Özkan, M.; Segalini, A.; Thomas, P. J.
2016-01-01
We summarise results of a theoretical study investigating the distinct convective instability properties of steady boundary-layer flow over rough rotating disks. A generic roughness pattern of concentric circles with sinusoidal surface undulations in the radial direction is considered. The goal is to compare predictions obtained by means of two alternative, and fundamentally different, modelling approaches for surface roughness for the first time. The motivating rationale is to identify commonalities and isolate results that might potentially represent artefacts associated with the particular methodologies underlying one of the two modelling approaches. The most significant result of practical relevance obtained is that both approaches predict overall stabilising effects on type I instability mode of rotating disk flow. This mode leads to transition of the rotating-disk boundary layer and, more generally, the transition of boundary-layers with a cross-flow profile. Stabilisation of the type 1 mode means that it may be possible to exploit surface roughness for laminar-flow control in boundary layers with a cross-flow component. However, we also find differences between the two sets of model predictions, some subtle and some substantial. These will represent criteria for establishing which of the two alternative approaches is more suitable to correctly describe experimental data when these become available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani; Roy, Titob
Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for themore » constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.« less
Schönberger, Markus; Deutsch, Steven; Manning, Keefe B.
2012-01-01
Ventricular assist devices are a commonly used heart failure therapy for adult patients as bridge-to-transplant or bridge-to-recovery tool. The application of adult ventricular assist devices in pediatric patients has led to increased thrombotic events. Therefore, we have been developing a pediatric ventricular assist device, the Penn State 12 cc PVAD. It is designed for patients with a body weight of 5 to 15 kg and has a stroke volume of 12 cc. Clot formation is the major concern. It is correlated to the coagulability of blood, the blood contacting materials and the fluid dynamics within the system. The intent is for the PVAD to be a long term therapy. Therefore, the system may be oriented in different positions according to the patient’s behavior. This study evaluates for the first time the impact of position on the flow patterns within the Penn State 12 cc PVAD, which may help to improve the PVAD design concerning chamber and ports geometries. The fluid dynamics are visualized by particle image velocimetry. The evaluation is based on inlet jet behavior and calculated wall shear rates. Vertical and horizontal model orientations are compared, both with a beat rate of 75, outlet pressures of 90/60 mmHg and a flow rate of 1.3 l/min. The results show a significant change of the inlet jet behavior and the development of a rotational flow pattern. Vertically, the inlet jet is strong along the wall. It initiates a rotational flow pattern with a wandering axis of rotation. In contrast, the horizontal model orientation results show a weaker inlet jet along the wall with a nearly constant center of rotation location, which can be correlated to a higher risk of thrombotic events. In addition high speed videography illustrates differences in the diaphragm motion during diastole. Diaphragm opening trajectories measurements determine no significant impact of the density of the blood analog fluids. Hence, the results correlate to human blood. PMID:22929894
NASA Astrophysics Data System (ADS)
Shapovalov, V. M.
2018-05-01
The accuracy of the Ostwald-de Waele model in solving the problem of roll flow has been assessed by comparing with the "reference" solution for an Ellis fluid. As a result of the analysis, it has been shown that the model based on a power-law equation leads to substantial distortions of the flow pattern.
NASA Astrophysics Data System (ADS)
Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi
2014-05-01
In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.
Solar Supergranulation Revealed as a Superposition of Traveling Waves
NASA Technical Reports Server (NTRS)
Gizon, L.; Duvall, T. L., Jr.; Schou, J.; Oegerle, William (Technical Monitor)
2002-01-01
40 years ago two new solar phenomena were described: supergranulation and the five-minute solar oscillations. While the oscillations have since been explained and exploited to determine the properties of the solar interior, the supergranulation has remained unexplained. The supergranules, appearing as convective-like cellular patterns of horizontal outward flow with a characteristic diameter of 30 Mm and an apparent lifetime of 1 day, have puzzling properties, including their apparent superrotation and the minute temperature variations over the cells. Using a 60-day sequence of data from the MDI (Michelson-Doppler Imager) instrument onboard the SOHO (Solar and Heliospheric Observatory) spacecraft, we show that the supergranulation pattern is formed by a superposition of traveling waves with periods of 5-10 days. The wave power is anisotropic with excess power in the direction of rotation and toward the equator, leading to spurious rotation rates and north-south flows as derived from correlation analyses. These newly discovered waves could play an important role in maintaining differential rotation in the upper convection zone by transporting angular momentum towards the equator.
1995-10-20
This drawing depicts one set of flow patterns simulated in the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. Silicone oil served as the atmosphere around a rotating steel hemisphere (dotted circle) and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center (MSFC). An Acrobat PDF copy of this drawing is available at http://microgravity.nasa.gov/gallery. (Credit: NASA/Marshall Space Flight Center)
1995-10-10
This composite image depicts one set of flow patterns simulated in the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. Silicone oil served as the atmosphere around a rotating steel hemisphere (dotted circle) and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. GFFC flew on Spacelab-3 in 1985 and U.S. Microgravity Laboratory-2 in 1995. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall Space Flight Center)
Coarsening dynamics of binary liquids with active rotation.
Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M
2015-11-21
Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.
Topology changes in a water-oil swirling flow
NASA Astrophysics Data System (ADS)
Carrión, Luis; Herrada, Miguel A.; Shtern, Vladimir N.
2017-03-01
This paper reveals the flow topology hidden in the experimental study by Fujimoto and Takeda ["Topology changes of the interface between two immiscible liquid layers by a rotating lid," Phys. Rev. E 80, 015304(R) (2009)]. Water and silicone oil fill a sealed vertical cylindrical container. The rotating top disk induces the meridional circulation and swirl of both fluids. As the rotation strength Reo increases, the interface takes shapes named, by the authors, hump, cusp, Mt. Fuji, and bell. Our numerical study reproduces the interface geometry and discloses complicated flow patterns. For example at Reo = 752, where the interface has the "Mt. Fuji" shape, the water motion has three bulk cells and the oil motion has two bulk cells. This topology helps explain the interface geometry. In addition, our study finds that the steady axisymmetric flow suffers from the shear-layer instability for Reo > 324, i.e., before the interface becomes remarkably deformed. The disturbance energy is concentrated in the water depth. This explains why the instability does not significantly affect the interface shape in the experiment.
Tip clearance noise of axial flow fans operating at design and off-design condition
NASA Astrophysics Data System (ADS)
Fukano, T.; Jang, C.-M.
2004-08-01
The noise due to tip clearance (TC) flow in axial flow fans operating at a design and off-design conditions is analyzed by an experimental measurement using two hot-wire probes rotating with the fan blades. The unsteady nature of the spectra of the real-time velocities measured by two hot-wire sensors in a vortical flow region is investigated by using cross-correlation coefficient and retarded time of the two fluctuating velocities. The results show that the noise due to TC flow consists of a discrete frequency noise due to periodic velocity fluctuation and a broadband noise due to velocity fluctuation in the blade passage. The peak frequencies in a vortical flow are mainly observed below at four harmonic blade passing frequency. The discrete frequency component of velocity fluctuation at the off-design operating conditions is generated in vortical flow region as well as in reverse flow region. The peak frequency can be an important noise source when the fans are rotated with a high rotational speed. The authors propose a spiral pattern of velocity fluctuation in the vortical flow to describe the generation mechanism of the peak frequency in the vortical flow. In addition, noise increase due to TC flow at low flow rate condition is analyzed with relation to the distribution of velocity fluctuation due to the interference between the tip leakage vortex and the adjacent pressure surface of the blade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, L.I.; Bui, R.T.; Charette, A.
The flow structure inside round furnaces with various numbers of burners, burner arrangement, and exit conditions has been studied experimentally with the purpose of improving the flow conditions and the resulting heat transfer. Small-scale transparent models were built according to the laws of geometric and dynamic similarity. Various visualization and experimental techniques were applied. The flow pattern in the near-surface regions was visualized by the fluorescent minituft and popcorn techniques; the flow structure in the bulk was analyzed by smoke injection and laser sheet illumination. For the study of the transient effects, high-speed video photography was applied. The effects ofmore » the various flow patterns, like axisymmetric and rotational flow, on the magnitude and uniformity of the residence time, as well as on the formation of stagnation zones, were discussed. Conclusions were drawn and have since been applied for the improvement of furnace performance.« less
Zhang, Yuquan; Zheng, Yuan; Fernandez-Rodriguez, E; Yang, Chunxia; Zhu, Yantao; Liu, Huiwen; Jiang, Hao
The operating condition of a submerged propeller has a significant impact on flow field and energy consumption of the oxidation ditch. An experimentally validated numerical model, based on the computational fluid dynamics (CFD) tool, is presented to optimize the operating condition by considering two important factors: flow field and energy consumption. Performance demonstration and comparison of different operating conditions were carried out in a Carrousel oxidation ditch at the Yingtang wastewater treatment plants in Anhui Province, China. By adjusting the position and rotating speed together with the number of submerged propellers, problems of sludge deposit and the low velocity in the bend could be solved in a most cost-effective way. The simulated results were acceptable compared with the experimental data and the following results were obtained. The CFD model characterized flow pattern and energy consumption in the full-scale oxidation ditch. The predicted flow field values were within -1.28 ± 7.14% difference from the measured values. By determining three sets of propellers under the rotating speed of 6.50 rad/s with one located 5 m from the first curved wall, after numerical simulation and actual measurement, not only the least power density but also the requirement of the flow pattern could be realized.
Uchiyama, Jumpei; Aoki, Shigeru
2015-01-01
To research the detailed mechanism of the lubrication process using the thermal effusivity sensor, the relationships of the lubrication progress with the pattern of powder flow, the rotation speed and the filling level were investigated. The thermal effusivity profile was studied as a function of the number of rotations at various rotation speeds. It was observed that at lower rotation speeds, the profiles of the lubrication progress were almost the same, regardless of the rotation speed. In this region, the highest speed was defined as the critical rotation speed (CRS), which was found to be one of the important factors. The CRS had close relations with avalanche flow in the blender. The first and the second phases were observed in the lubrication process. The first phase was influenced by the CRS and the filling level in the blender. The second phase was influenced by the rotation speed. The mechanism of two-phase process was proposed as a macro progression of the dispersion of the lubricant (first phase) and micro progression of the coating of the powder particles with lubricant (second phase). The accurate monitoring by the thermal effusivity sensor was able to help a better understanding in the lubrication process.
Turbulent Compressible Convection with Rotation. Part 1; Flow Structure and Evolution
NASA Technical Reports Server (NTRS)
Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri
1996-01-01
The effects of Coriolis forces on compressible convection are studied using three-dimensional numerical simulations carried out within a local modified f-plane model. The physics is simplified by considering a perfect gas occupying a rectilinear domain placed tangentially to a rotating sphere at various latitudes, through which a destabilizing heat flux is driven. The resulting convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers, evaluating conditions where the influence of rotation is both weak and strong. Given the computational demands of these high-resolution simulations, the parameter space is explored sparsely to ascertain the differences between laminar and turbulent rotating convection. The first paper in this series examines the effects of rotation on the flow structure within the convection, its evolution, and some consequences for mixing. Subsequent papers consider the large-scale mean shear flows that are generated by the convection, and the effects of rotation on the convective energetics and transport properties. It is found here that the structure of rotating turbulent convection is similar to earlier nonrotating studies, with a laminar, cellular surface network disguising a fully turbulent interior punctuated by vertically coherent structures. However, the temporal signature of the surface flows is modified by inertial motions to yield new cellular evolution patterns and an overall increase in the mobility of the network. The turbulent convection contains vortex tubes of many scales, including large-scale coherent structures spanning the full vertical extent of the domain involving multiple density scale heights. Remarkably, such structures align with the rotation vector via the influence of Coriolis forces on turbulent motions, in contrast with the zonal tilting of streamlines found in laminar flows. Such novel turbulent mechanisms alter the correlations which drive mean shearing flows and affect the convective transport properties. In contrast to this large-scale anisotropy, small-scale vortex tubes at greater depths are randomly orientated by the rotational mixing of momentum, leading to an increased degree of isotropy on the medium to small scales of motion there. Rotation also influences the thermodynamic mixing properties of the convection. In particular, interaction of the larger coherent vortices causes a loss of correlation between the vertical velocity and the temperature leaving a mean stratification which is not isentropic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp
2014-05-10
In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshingmore » motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.« less
Probing Subsurface Flows in NOAA Active Region 12192: Comparison with NOAA 10486
NASA Astrophysics Data System (ADS)
Jain, Kiran; Tripathy, S. C.; Hill, F.
2017-11-01
NOAA Active Region (AR) 12192 is the biggest AR observed in solar cycle 24 so far. This was a long-lived AR that survived for four Carrington rotations (CRs) and exhibited several unusual phenomena. We measure the horizontal subsurface flows in this AR in multiple rotations using the ring-diagram technique of local helioseismology and the Global Oscillation Network Group (GONG+) Dopplergrams, and we investigate how different was the plasma flow in AR 12192 from that in AR 10486. Both regions produced several high M- and X-class flares, but they had different coronal mass ejection (CME) productivity. Our analysis suggests that these ARs had unusually large horizontal flow amplitude with distinctly different directions. While meridional flow in AR 12192 was poleward that supports the flux transport to poles, it was equatorward in AR 10486. Furthermore, there was a sudden increase in the magnitude of estimated zonal flow in shallow layers in AR 12192 during the X3.1 flare; however, it reversed direction in AR 10486 with the X17.2 flare. These flow patterns produced strong twists in horizontal velocity with depth in AR 10486 that persisted throughout the disk passage, as opposed to AR 12192, which produced a twist only after the eruption of the X3.1 flare that disappeared soon after. Our study indicates that the sunspot rotation combined with the reorganization of magnetic field in AR 10486 was not sufficient to decrease the flow energy even after several large flares that might have triggered CMEs. Furthermore, in the absence of sunspot rotation in AR 12192, this reorganization of magnetic field contributed significantly to the substantial release of flow energy after the X3.1 flare.
NASA Astrophysics Data System (ADS)
Bellmann, M. P.; Meese, E. A.
2011-10-01
We have performed axisymmetric, transient simulations of the vertical Bridgman growth of multi-crystalline (mc) silicon to study the effect of the steady crucible rotation on the melt flow and impurity segregation. A solute transport model has been applied to predict the final segregation pattern of impurities in a circular ingot. Imposing rotation rates of 1-5 rpm on the system makes radial segregation much worse compared to the non-rotating case. Low rotation rates at 1-2 rpm increase radial segregation in the first half period of solidification, whereas at rotation rates above the effect is insignificantly small. Contrary behavior was observed for the second half period of solidification. Here radial segregation is increased at high rotation rates from 3 to 5 rpm with small impact at 1-2 rpm.
NASA Technical Reports Server (NTRS)
Croell, Arne; Dold, P.; Kaiser, Th.; Szofran, Frank; Benz, K. W.
1999-01-01
Hear and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a def@ned flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to ST and in transverse rotating magnetic fields up to 7.S mT. Static fields of a few 100 MT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, is possible with static fields ? 1T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelec:romagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few mT. The field shifts time-dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes
NASA Technical Reports Server (NTRS)
Croll, A.; Dold, P.; Kaiser, Th.; Szofran, F. R.; Benz, K. W.
1999-01-01
Heat and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio-frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a defined flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to 5 T and in transverse rotating magnetic fields up to 7.5 mT. Static fields of a few 100 mT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile toward a more diffusion-limited case, is possible with static fields greater than or equal to 1 T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelectromagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few millitesla. The field shifts time- dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes.
Actomyosin contractility rotates the cell nucleus
Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.
2014-01-01
The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418
Actomyosin contractility rotates the cell nucleus.
Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V
2014-01-21
The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.
NASA Astrophysics Data System (ADS)
Sam, Ashish Alex; Ghosh, Parthasarathi
2017-02-01
Turboexpanders in cryogenic refrigeration and liquefaction cycles, which is of radial inflow configuration, constitute stationary and rotating components like nozzle, a rotating wheel and a diffuser. The relative motion between the stationary and rotating components and the interactions of secondary flows and vortices at different stages make the turboexpander flow unsteady. Computational Fluid Dynamics (CFD) analysis of this flow is essential to identify the scope for improvement in efficiency. The trailing edge vortex formed due to the mixing of the pressure and suction side streams is an important phenomenon to analyse, as this leads to efficiency degradation of the machine. Additionally, there are mechanical vibrations and dynamic loading associated with. This flow non-uniformity at the exit should be suppressed as this may affect the pressure recovery process in the diffuser and thereby the turboexpander’s performance. The strength of this vortex depends upon the geometrical parameters like trailing edge shape, thickness etc. In this paper, transient CFD analyses of a cryogenic turboexpander designed for helium refrigeration and liquefaction cycles using Ansys CFX® were performed to investigate the effect of trailing edge thickness on the turboexpander performance and the performance characteristics and the flow patterns were compared to understand the flow characteristics in each case.
Rotating drum tests of particle suspensions within a fines dispersion
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Gollin, Devis; Kaitna, Roland; Wu, Wei
2014-05-01
Natural flows like mudflows, debris flow, and hyperconcentrated flows are commonly composed by a matrix of particles suspended in a viscous fluid. The nature of the interactions between particles immersed in a fluid is related to its size. While coarse particles (sand, gravel, and boulders) interact with each other or with the surrounding fluid, a dispersion of fine particles interacts with each other through colloidal forces or Brownian motion effects (Coussot and Piau, 1995, and Ancey and Jorrot, 2001). The predominance of one of the previous interactions defines the rheology of the flow. On this sense, experimental insight is required to validate the limits where the rheology of a dispersion of fines is valid. For this purpose, an experimental program in a rotating drum is performed over samples of sand, loess, and kaolin. The solid concentration and angular velocity of the rotating drum are varied. Height and normal loads are measured during flow. High-speed videos are performed to obtain the flow patterns of the mixtures. The experiments provide new laboratory evidence of granular mixture behaviour within an increased viscous fluid phase and its characterization. The results show an apparent threshold in terms of solid concentration, in which the mixtures started to behave as a shear-dependent material.
NASA Technical Reports Server (NTRS)
Fowle, A. A.; Soto, L.; Strong, P. F.; Wang, C. A.
1980-01-01
A low Bond number simulation technique was used to establish the stability limits of cylindrical and conical floating liquid columns under conditions of isorotation, equal counter rotation, rotation of one end only, and parallel axis offset. The conditions for resonance in cylindrical liquid columns perturbed by axial, sinusoidal vibration of one end face are also reported. All tests were carried out under isothermal conditions with water and silicone fluids of various viscosities. A technique for the quantitative measurement of stream velocity within a floating, isothermal, liquid column confined between rotatable disks was developed. In the measurement, small, light scattering particles were used as streamline markers in common arrangement, but the capability of the measurement was extended by use of stereopair photography system to provide quantitative data. Results of velocity measurements made under a few selected conditions, which established the precision and accuracy of the technique, are given. The general qualitative features of the isothermal flow patterns under various conditions of end face rotation resulting from both still photography and motion pictures are presented.
An Experimental and Computational Analysis of Primary Cilia Deflection Under Fluid Flow
Downs, Matthew E.; Nguyen, An M.; Herzog, Florian A.; Hoey, David A.; Jacobs, Christopher R.
2013-01-01
In this work we have developed a novel model of the deflection of primary cilia experiencing fluid flow accounting for phenomena not previously considered. Specifically, we developed a large rotation formulation that accounts for rotation at the base of the cilium, the initial shape of the cilium and fluid drag at high deflection angles. We utilized this model to analyze full three dimensional datasets of primary cilia deflecting under fluid flow acquired with high-speed confocal microscopy. We found a wide variety of previously unreported bending shapes and behaviors. We also analyzed post-flow relaxation patterns. Results from our combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported (Schwartz et al. 1997). In addition our findings indicate the mechanics of primary cilia are richly varied and mechanisms may exist to alter their mechanical behavior. PMID:22452422
Dynamics and stability of thin liquid films
NASA Astrophysics Data System (ADS)
Craster, R. V.; Matar, O. K.
2009-07-01
The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows down a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life. Thin film flows occur over a wide range of length scales and are central to numerous areas of engineering, geophysics, and biophysics; these include nanofluidics and microfluidics, coating flows, intensive processing, lava flows, dynamics of continental ice sheets, tear-film rupture, and surfactant replacement therapy. These flows have attracted considerable attention in the literature, which have resulted in many significant developments in experimental, analytical, and numerical research in this area. These include advances in understanding dewetting, thermocapillary- and surfactant-driven films, falling films and films flowing over structured, compliant, and rapidly rotating substrates, and evaporating films as well as those manipulated via use of electric fields to produce nanoscale patterns. These developments are reviewed in this paper and open problems and exciting research avenues in this thriving area of fluid mechanics are also highlighted.
Laboratory study of forced rotating shallow water turbulence
NASA Astrophysics Data System (ADS)
Espa, Stefania; Di Nitto, Gabriella; Cenedese, Antonio
2011-12-01
During the last three decades several authors have studied the appearance of multiple zonal jets in planetary atmospheres and in the Earths oceans. The appearance of zonal jets has been recovered in numerical simulations (Yoden & Yamada, 1993), laboratory experiments (Afanasyev & Wells, 2005; Espa et al., 2008, 2010) and in field measurements of the atmosphere of giant planets (Galperin et al., 2001). Recent studies have revealed the presence of zonation also in the Earths oceans, in fact zonal jets have been found in the outputs of Oceanic General Circulation Models-GCMs (Nakano & Hasumi, 2005) and from the analysis of satellite altimetry observations (Maximenko et al., 2005). In previous works (Espa et al., 2008, 2010) we have investigated the impact of the variation of the rotation rate and of the fluid depth on jets organization in decaying and forced regimes. In this work we show results from experiments performed in a bigger domain in which the fluid is forced continuously. The experimental set-up consists of a rotating tank (1m in diameter) where the initial distribution of vorticity has been generated via the Lorentz force in an electromagnetic cell. The latitudinal variation of the Coriolis parameter has been simulated by the parabolic profile assumed by the free surface of the rotating fluid. Flow measurements have been performed using an image analysis technique. Experiments have been performed changing the tank rotation rate and the fluid thickness. We have investigated the flow in terms of zonal and radial flow pattern, flow variability and jet scales.
NASA Astrophysics Data System (ADS)
Futterer, Birgit; Egbers, Christoph; Chossat, Pascal; Hollerbach, Rainer; Breuer, Doris; Feudel, Fred; Mutabazi, Innocent; Tuckerman, Laurette
Overall driving mechanism of flow in inner Earth is convection in its gravitational buoyancy field. A lot of effort has been involved in theoretical prediction and numerical simulation of both the geodynamo, which is maintained by convection, and mantle convection, which is the main cause for plate tectonics. Especially resolution of convective patterns and heat transfer mechanisms has been in focus to reach the real, highly turbulent conditions inside Earth. To study specific phenomena experimentally different approaches has been observed, against the background of magneto-hydrodynamic but also on the pure hydrodynamic physics of fluids. With the experiment `GeoFlow' (Geophysical Flow Simulation) instability and transition of convection in spherical shells under the influence of central-symmetry buoyancy force field are traced for a wide range of rotation regimes within the limits between non-rotating and rapid rotating spheres. The special set-up of high voltage potential between inner and outer sphere and use of a dielectric fluid as working fluid induce an electro-hydrodynamic force, which is comparable to gravitational buoyancy force inside Earth. To reduce overall gravity in a laboratory this technique requires microgravity conditions. The `GeoFlow I' experiment was accomplished on International Space Station's module COLUM-BUS inside Fluid Science Laboratory FSL und supported by EADS Astrium, Friedrichshafen, User Support und Operations Centre E-USOC in Madrid, Microgravity Advanced Research and Support Centre MARS in Naples, as well as COLUMBUS Control Center COL-CC Munich. Running from August 2008 until January 2009 it delivered 100.000 images from FSL's optical diagnostics module; here more precisely the Wollaston shearing interferometry was used. Here we present the experimental alignment with numerical prediction for the non-rotating and rapid rotation case. The non-rotating case is characterized by a co-existence of several stationary supercritical modes, with a strong influence of initial conditions leading to axisymmetric, octahedral/cubic or pentagonal solutions. Transition to chaos is in form of a sudden onset. Experimental data supports the numerically validated influence of initial conditions in showing the octahedral mode as most preferred stable state. Well-known issue of rapid rotation is the alignment of convective cells at the tangent cylinder due to the domination of centrifugal forces against the self-gravitating buoyancy field. The system shows very clearly the centrifugal effects by patterns in form of columnar cells. For the planned second mission `GeoFlow II' (on orbit 2010) working fluid shall be an alcanole having a temperature dependent viscosity, i.e. nonanol. Herewith experimental modelling of mantle convection is going to spotlight.
Flow Patterns During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)
2002-01-01
Friction Stir Welding is a relatively new technique for welding that uses a cylindrical pin or nib inserted along the weld seam. The nib (usually threaded) and the shoulder in which it is mounted are rapidly rotated and advanced along the seam. Extreme deformation takes place leaving a fine equiaxed structure in the weld region., The flow of metal during Friction Stir Welding is investigated using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a zone of material that rotates and advances with the nib. The material undergoes a helical motion within the rotational zone that both rotates and advances and descends in the wash of the threads on the nib and rises on the outer part of the rotational zone. After one or more rotations, this material is sloughed off in its wake of the nib, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side.
Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider.
Zhang, ZhiGuo; Fan, YuBo; Deng, XiaoYan; Wang, GuiXue; Zhang, He; Guidoin, Robert
2008-10-01
Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the velocity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.
NASA Astrophysics Data System (ADS)
Haproff, Peter J.; Zuza, Andrew V.; Yin, An
2018-01-01
Whether continental deformation is accommodated by microplate motion or continuum flow is a central issue regarding the nature of Cenozoic deformation surrounding the eastern Himalayan syntaxis. The microplate model predicts southeastward extrusion of rigid blocks along widely-spaced strike-slip faults, whereas the crustal-flow model requires clockwise crustal rotation along closely-spaced, semi-circular right-slip faults around the eastern Himalayan syntaxis. Although global positioning system (GPS) data support the crustal-flow model, the surface velocity field provides no information on the evolution of the India-Asia orogenic system at million-year scales. In this work, we present the results of systematic geologic mapping across the northernmost segment of the Indo-Burma Ranges, located directly southeast of the eastern Himalayan syntaxis. Early research inferred the area to have experienced either right-slip faulting accommodating northward indentation of India or thrusting due to the eastward continuation of the Himalayan orogen in the Cenozoic. Our mapping supports the presence of dip-slip thrust faults, rather than strike-slip faults. Specifically, the northern Indo-Burma Ranges exposes south- to west-directed ductile thrust shear zones in the hinterland and brittle fault zones in the foreland. The trends of ductile stretching lineations within thrust shear zones and thrust sheets rotate clockwise from the northeast direction in the northern part of the study area to the east direction in the southern part of the study area. This clockwise deflection pattern of lineations around the eastern Himalayan syntaxis mirrors the clockwise crustal-rotation pattern as suggested by the crustal-flow model and contemporary GPS velocity field. However, our finding is inconsistent with discrete strike-slip deformation in the area and the microplate model.
The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe
NASA Astrophysics Data System (ADS)
Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde
2017-08-01
The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.
Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.
2016-01-01
The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.
CFD modelling of liquid-solid transport in the horizontal eccentric annuli
NASA Astrophysics Data System (ADS)
Sayindla, Sneha; Challabotla, Niranjan Reddy
2017-11-01
In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.
A retinal code for motion along the gravitational and body axes
Sabbah, Shai; Gemmer, John A.; Bhatia-Lin, Ananya; Manoff, Gabrielle; Castro, Gabriel; Siegel, Jesse K.; Jeffery, Nathan; Berson, David M.
2017-01-01
Summary Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We show that each subtype of direction-selective ganglion cell (DSGC) adjusts its direction preference topographically to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises, or falls. ON-DSGCs and ON-OFF-DSGCs share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Though retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ. PMID:28607486
A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion
NASA Astrophysics Data System (ADS)
Park, S. J.; Kim, J.
2014-12-01
In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.
NASA Astrophysics Data System (ADS)
Featherstone, Nicholas
2017-05-01
Our understanding of the interior dynamics that give rise to a stellar dynamo draws heavily from investigations of similar dynamics in the solar context. Unfortunately, an outstanding gap persists in solar dynamo theory. Convection, an indispensable component of the dynamo, occurs in the midst of rotation, and yet we know little about how the influence of that rotation manifests across the broad range of convective scales present in the Sun. We are nevertheless well aware that the interaction of rotation and convection profoundly impacts many aspects of the dynamo, including the meridional circulation, the differential rotation, and the helicity of turbulent EMF. The rotational constraint felt by solar convection ultimately hinges on the characteristic amplitude of deep convective flow speeds, and such flows are difficult to measure helioseismically. Those measurements of deep convective power which do exist disagree by orders of magnitude, and until this disagreement is resolved, we are left with the results of models and those less ambiguous measurements derived from surface observations of solar convection. I will present numerical results from a series of nonrotating and rotating convection simulations conducted in full 3-D spherical geometry. This presentation will focus on how convective spectra differ between the rotating and non-rotating models and how that behavior changes as simulations are pushed toward more turbulent and/or more rotationally-constrained regimes. I will discuss how the surface signature of rotationally-constrained interior convection might naturally lead to observable signatures in the surface convective pattern, such as supergranulation and a dearth of giant cells.
Bonnemain, Jean; Malossi, A Cristiano I; Lesinigo, Matteo; Deparis, Simone; Quarteroni, Alfio; von Segesser, Ludwig K
2013-10-01
In this work we present numerical simulations of continuous flow left ventricle assist device implantation with the aim of comparing difference in flow rates and pressure patterns depending on the location of the anastomosis and the rotational speed of the device. Despite the fact that the descending aorta anastomosis approach is less invasive, since it does not require a sternotomy and a cardiopulmonary bypass, its benefits are still controversial. Moreover, the device rotational speed should be correctly chosen to avoid anomalous flow rates and pressure distribution in specific location of the cardiovascular tree. With the aim of assessing the differences between these two approaches and device rotational speed in terms of flow rate and pressure waveforms, we set up numerical simulations of network of one-dimensional models where we account for the presence of an outflow cannula anastomosed to different locations of the aorta. Then, we use the resulting network to compare the results of the two different cannulations for several stages of heart failure and different rotational speed of the device. The inflow boundary data for the heart and the cannulas are obtained from a lumped parameters model of the entire circulatory system with an assist device, which is validated with clinical data. The results show that ascending and descending aorta cannulations lead to similar waveforms and mean flow rate in all the considered cases. Moreover, regardless of the anastomosis region, the rotational speed of the device has an important impact on wave profiles; this effect is more pronounced at high RPM. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Dynamics of ferrofluidic flow in the Taylor-Couette system with a small aspect ratio
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2017-01-01
We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field. PMID:28059129
A numerical strategy for modelling rotating stall in core compressors
NASA Astrophysics Data System (ADS)
Vahdati, M.
2007-03-01
The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary conditions downstream. Such an approach is representative of modelling an engine.Using a 3D viscous time-accurate flow representation, the front bladerows of a core compressor were modelled in a whole-annulus fashion whereas the rest of bladerows are modelled in a single-passage fashion. The rotating stall behaviour at two different compressor operating points was studied by considering two different variable-vane scheduling conditions for which experimental data were available. Using a model with nine whole-assembly models, the unsteady-flow calculations were conducted on 32-CPUs of a parallel cluster, typical run times being around 3-4 weeks for a grid with about 60 million points. The simulations were conducted over several engine rotations. As observed on the actual development engine, there was no rotating stall for the first scheduling condition while mal-scheduling of the stator vanes created a 12-band rotating stall which excited the 1st flap mode.
Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang
2013-03-01
This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.
NASA Technical Reports Server (NTRS)
Wuerker, R. F.; Kobayashi, R. J.; Heflinger, L. O.; Ware, T. C.
1974-01-01
Two holographic interblade row flow visualization systems were designed to determine the three-dimensional shock patterns and velocity distributions within the rotating blade row of a transonic fan rotor, utilizing the techniques of pulsed laser transmission holography. Both single- and double-exposure bright field holograms and dark field scattered-light holograms were successfully recorded. Two plastic windows were installed in the rotor tip casing and outer casing forward of the rotor to view the rotor blade passage. The viewing angle allowed detailed investigation of the leading edge shocks and shocks in the midspan damper area; limited details of the trailing edge shocks also were visible. A technique was devised for interpreting the reconstructed holograms by constructing three dimensional models that allowed identification of the major shock systems. The models compared favorably with theoretical predictions and results of the overall and blade element data. Most of the holograms were made using the rapid double-pulse technique.
Research on the performance of low-lift diving tubular pumping system by CFD and Test
NASA Astrophysics Data System (ADS)
Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan
2016-11-01
Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.
Experimental study of mixing mechanisms in stably stratified Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Augier, Pierre; Caulfield, Colm-Cille; Dalziel, Stuart
2014-11-01
We consider experimentally the mechanisms of mixing in stably stratified Taylor-Couette (TC) flow in a TC apparatus for which both cylinders can rotate independently. In the case for which only the inner cylinder rotates, centrifugal instability rapidly splits an initially linear density profile into an array of thin nearly homogeneous layers. Shadowgraph, PIV and density profiles measured by a moving conductivity probe allow us to characterise this process and the resulting flow. In particular, we observe turbulent intrusions of mixed fluid propagating relatively slowly around the tank at the interfaces between the layers, leading to a time-dependent variation in the sharpness and turbulent activity at these interfaces, whose period scales with (but is much larger than) the rotation period. Interestingly, the turbulent intrusions are anti-correlated between adjacent interfaces leading to snake-skin-like patterns in the spatio-temporal diagrams of the density profiles. We also explore how the presence of a density stratification modifies end effects at the top and bottom of the cylinders, in both the presence and absence of primary centrifugal instability.
On the Behavior of Velocity Fluctuations in Rapidly Rotating Flows
NASA Technical Reports Server (NTRS)
Girimaji, S. S.; Ristorcelli, J. R.
1997-01-01
The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the mean flow constitute the second category which includes vortical flows of aerodynamic interest. The Taylor-Proudman theorem is not pertinent to I his class flows and a new result appropriate to this second category of fluctuations is derived. The present development demonstrates that the fluctuating velocity fields are rendered two-dimensional and horizontally non-divergent in the limit of any large combination of reference frame rotation and mean-flow rotation. The concommitant 'geostrophic' balance of the momentum equation is, however, dependent upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and results of this paper highlight many fundamental aspects of rotating flows and have important consequences for their turbulence closures in inertial and non-inertial frames.
Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields
NASA Astrophysics Data System (ADS)
Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration
2011-10-01
Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.
NASA Astrophysics Data System (ADS)
Bellmann, M. P.; Meese, E. A.; Arnberg, L.
2011-03-01
We have performed axisymmetric, transient simulations of the vertical Bridgman growth of mc-silicon to study the effect of the accelerated crucible rotation technique (ACRT) on the melt flow and impurity segregation. A solute transport model has been applied to predict the final segregation pattern of impurities in a circular ingot. The sinusoidal ACRT rotation cycle considered here suppresses mixing in the melt near the center, resulting in diffusion-limited mass transport. Therefore the radial impurity segregation is increased towards the center. The effect of increased radial segregation is intensified for low values of the Ekman time scale.
Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaolei; Hong, Jiarong; Barone, Matthew
Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less
Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines
Yang, Xiaolei; Hong, Jiarong; Barone, Matthew; ...
2016-09-08
Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less
EVOLUTION OF NEAR-SURFACE FLOWS INFERRED FROM HIGH-RESOLUTION RING-DIAGRAM ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogart, Richard S.; Baldner, Charles S.; Basu, Sarbani
2015-07-10
Ring-diagram analysis of acoustic waves observed at the photosphere can provide a relatively robust determination of the sub-surface flows at a particular time under a particular region. The depth of penetration of the waves is related to the size of the region, hence the depth extent of the measured flows is inversely proportional to the spatial resolution. Most ring-diagram analysis has focused on regions of extent ∼15° (180 Mm) or more in order to provide reasonable mode sets for inversions. Helioseismic and Magnetic Imager (HMI) data analysis also provides a set of ring fit parameters on a scale three timesmore » smaller. These provide flow estimates for the outer 1% (7 Mm) of the Sun only, with very limited depth resolution, but with spatial resolution adequate to map structures potentially associated with the belts and regions of magnetic activity. There are a number of systematic effects affecting the determination of flows from a local helioseismic analysis of regions over different parts of the observable disk, and not all of them are well understood. In this study we characterize those systematic effects with higher spatial resolution so that they may be accounted for more effectively in mapping the temporal and spatial evolution of the flows. Leaving open the question of the mean structure of the global meridional circulation and the differential rotation, we describe the near-surface flow anomalies in time and latitude corresponding to the torsional oscillation pattern in differential rotation and analogous patterns in the meridional cell structure as observed by the Solar Dynamics Observatory/HMI.« less
Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow
Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.
2017-01-01
Pockmark flow circulation patterns were investigated through current measurements along the rim and center of two pockmarks in Belfast Bay, Maine. Observed time-varying current profiles have a complex vertical and directional structure that rotates significantly with depth and is strongly dependent on the phase of the tide. Observations of the vertical profiles of horizontal velocities in relation to relative geometric parameters of the pockmark are consistent with circulation patterns described qualitatively by cavity flow models (Ashcroft and Zhang 2005). The time-mean behavior of the shear layer is typically used to characterize cavity flow, and was estimated using vorticity thickness to quantify the growth rate of the shear layer horizontally across the pockmark. Estimated positive vorticity thickness spreading rates are consistent with cavity flow predictions, and occur at largely different rates between the two pockmarks. Previously modeled flow (Brothers et al. 2011) and laboratory measurements (Pau et al. 2014) over pockmarks of similar geometry to those examined herein are also qualitatively consistent with cavity flow circulation, suggesting that cavity flow may be a good first-order flow model for pockmarks in general.
Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel
NASA Technical Reports Server (NTRS)
Dietrich, D. A.; Heidmann, M. F.; Abbott, J. M.
1977-01-01
One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack.
User's manual for three dimensional boundary layer (BL3-D) code
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Caplin, B.
1985-01-01
An assessment has been made of the applicability of a 3-D boundary layer analysis to the calculation of heat transfer, total pressure losses, and streamline flow patterns on the surface of both stationary and rotating turbine passages. In support of this effort, an analysis has been developed to calculate a general nonorthogonal surface coordinate system for arbitrary 3-D surfaces and also to calculate the boundary layer edge conditions for compressible flow using the surface Euler equations and experimental data to calibrate the method, calculations are presented for the pressure endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the 3-D boundary layer analysis can give good predictions of the flow field, loss, and heat transfer on the pressure, suction, and endwall surface of a gas turbine passage.
Vortex rope instabilities in a model of conical draft tube
NASA Astrophysics Data System (ADS)
Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey
2017-10-01
We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka
2015-11-10
We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwisemore » or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.« less
NASA Technical Reports Server (NTRS)
2002-01-01
Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team
2001-04-04
Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. http://photojournal.jpl.nasa.gov/catalog/PIA03400
Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
Instability of counter-rotating stellar disks
NASA Astrophysics Data System (ADS)
Hohlfeld, R. G.; Lovelace, R. V. E.
2015-09-01
We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.
Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects
Turnipseed, Andrew A.; Anderson, Dean E.; Blanken, Peter D.; Baugh, William M.; Monson, Russell K.
2003-01-01
We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks, turbulent length scales, and profiles of turbulent intensities that were comparable in magnitude and pattern to those reported for forest canopies in simpler terrain. We conclude that in many of these statistical measures, the local canopy exerts considerably more influence than does topographical complexity. Lack of vertical flux divergence and modeling suggests that the flux footprints for the site are within the standards acceptable for the application of flux statistics. We investigated three different methods of coordinate rotation: double rotation (DR), triple rotation (TR), and planar-fit rotation (PF). Significant variability in rotation angles at low wind speeds was encountered with the commonly used DR and TR methods, as opposed to the PF method, causing some overestimation of the fluxes. However, these differences in fluxes were small when applied to large datasets involving sensible heat and CO2 fluxes. We observed evidence of frequent drainage flows near the ground during stable, stratified conditions at night. Concurrent with the appearance of these flows, we observed a positive bias in the mean vertical wind speed, presumably due to subtle topographic variations inducing a flow convergence below the measurement sensors. In the presence of such drainage flows, advection of scalars and non-zero bias in the mean vertical wind speed can complicate closure of the mass conservation budget at the site.
Aeroacoustic and wake measurements on a rotating controlled diffusion blade
NASA Astrophysics Data System (ADS)
Davoudi, Behdad
Aeroacoustic and hot-wire wake measurements have been made for Rotating Controlled Diffusion Blades (RCDBs) configured as a 3 and a 9 blade axial fan. Six cases were identified for the three blade configuration based on its performance curve. Also, six cases corresponding to 6 distinct operating conditions: i) an attached flow, ii) a slightly separated flow, iii) deeply separated flow and three cases in the stall region have been selected for the nine blade configuration. These were examined using a detailed data acquisition program. The detailed results include the wake flow patterns and the associated noise radiation. Turbulence intensities and phase averaged velocity magnitudes have been obtained in the downstream region of the fan to represent the basic flow features for each defined case. A beamforming technique has been utilized to properly measure the radiated sound pressure level (SPL) created by the axial fan. Self-noise signatures of the propagated sound (auto-spectral density), corresponding to the defined cases, have been obtained in the range of 200-8000 Hz. Acoustic data and their links to: i) the physics of the flows, ii) aerodynamic loading and iii) fan rotational speed are presented. A semi-empirical model for trailing edge noise (a portion of the axial fan self-noise) was examined. Wake data (mean velocity and turbulence intensity downstream from the fan blades) were used as experimental inputs to these models. The experimental acoustic data and the semi-empirical results have been compared.
An experimental study of mushroom shaped stall cells. [on finite wings with separated flow
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.
1982-01-01
Surface patterns characterized by a pair of counter-rotating swirls have been observed in connection with the conduction of surface flow visualization experiments involving test geometries with separated flows. An example of this phenomenon occurring on a finite wing with trailing edge stall has been referred to by Winkelmann and Barlow (1980) as 'mushroom shaped'. A description is presented of a collection of experimental results which show or suggest the occurrence of mushroom shaped stall cells on a variety of test geometries. Investigations conducted with finite wings, airfoil models, and flat plates are considered, and attention is given to studies involving the use of bluff models, investigations of shock induced boundary layer separation, and mushroom shaped patterns observed in a number of miscellaneous cases. It is concluded that the mushroom shaped stall cell appears commonly in separated flow regions.
Luo, Win-Jet
2006-03-15
This paper investigates two-dimensional, time-dependent electroosmotic flow driven by an AC electric field via patchwise surface heterogeneities distributed along the micro-channel walls. The time-dependent flow fields through the micro-channel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. The transient behavior characteristics of the generated electroosmotic flow are then discussed in terms of the influence of the patchwise surface heterogeneities, the direction of the applied AC electric field, and the velocity of the bulk flow. It is shown that the presence of oppositely charged surface heterogeneities on the micro-channel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in phase with the applied periodic AC electric field intensity. The location and rotational direction of the induced circulations are determined by the directions of the bulk flow velocity and the applied electric field.
Experimental parametric study of jet vortex generators for flow separation control
NASA Technical Reports Server (NTRS)
Selby, Gregory
1991-01-01
A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.
Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan
NASA Technical Reports Server (NTRS)
Hah, Chunill; Rabe, Douglas; Scribben, Angie
2015-01-01
In the study presented, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft engines require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the current study is to advance the understanding of the flow interaction between a modern ultra-compact inlet and a transonic fan for future design applications. Many experimental/ analytical studies have been reported on the aerodynamics of compact inlets in aircraft engines. On the other hand, very few studies have been reported on the effects of flow distortion from these inlets on the performance of the following fan/compressor stages. The primary goal of the study presented is to investigate how flow interaction between an ultra-compact inlet and a transonic compressor influence the operating margin of the compressor. Both Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches are used to calculate the unsteady flow field, and the numerical results are used to study the flow interaction. The present study indicates that stall inception of the following compressor stage is affected directly based on how the distortion pattern evolves before it interacts with the fan/compressor face. For the present compressor, the stall initiates at the tip section with clean inlet flow and distortion pattern away from the casing itself seems to have limited impacts on the stall inception of the compressor. A counter-rotating swirl, which is generated due to flow separation inside the s-shaped compact duct, generates an increased flow angle near the blade tip. This increased flow angle near the rotor tip due to the secondary flow from the counter-rotating vortices is the primary reason for the reduced compressor stall margin.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chyu, Ming-King
1993-01-01
Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.
Differential responses in dorsal visual cortex to motion and disparity depth cues
Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.
2013-01-01
We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808
Flow in the Proximity of the Pin-Tool in Friction Stir Welding and Its Relation to Weld Homogeneity
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2000-01-01
In the Friction Stir Welding (FSW) process a rotating pin inserted into a seam literally stirs the metal from each side of the seam together. It is proposed that the flow in the vicinity of the pin-tool comprises a primary rapid shear over a cylindrical envelope covering the pin-tool and a relatively slow secondary flow taking the form of a ring vortex about the tool circumference. This model is consistent with a plastic characterization of metal flow, where discontinuities in shear flow are allowed but not viscous effects. It is consistent with experiments employing several different kinds of tracer: atomic markers, shot, and wire. If a rotating disc with angular velocity w is superposed on a translating continuum with linear velocity omega, the trajectories of tracer points become circular arcs centered upon a point displaced laterally a distance v/omega from the center of rotation of the disc in the direction of the advancing side of the disc. In the present model a stream of metal approaching the tool (taken as the coordinate system of observation) is sheared at the slip surface, rapidly rotated around the tool, sheared again on the opposite side of the tool, and deposited in the wake of the tool. Local shearing rates are high, comparable to metal cutting in this model. The flow patterns in the vicinity of the pin-tool determine the level of homogenization and dispersal of contaminants that occurs in the FSW process. The approaching metal streams enfold one another as they are rotated around the tool. Neglecting mixing they return to the same lateral position in the wake of the tool preserving lateral tracer positions as if the metal had flowed past the tool like an extrusion instead of being rotated around it. (The seam is, however, obliterated.) The metal stream of thickness approximately that of the tool diameter D is wiped past the tool at elevated temperatures drawn out to a thickness of v/2(omega) in the wiping zone. Mixing distances in the wiping zone are multiplied in the unfolded metal. Inhomogeneities on a smaller scale than the mixing length are obliterated, but structure on a larger scale may be transmitted to the wake of a FSW weld.
Stability of barotropic vortex strip on a rotating sphere
Sohn, Sung-Ik; Kim, Sun-Chul
2018-01-01
We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined. PMID:29507524
Stability of barotropic vortex strip on a rotating sphere.
Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul
2018-02-01
We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.
Laminar Flow About a Rotating Body of Revolution in an Axial Airstream
NASA Technical Reports Server (NTRS)
Schlichting, H.
1956-01-01
We have set ourselves the problem of calculating the laminar flow on a body of revolution in an axial flow which simultaneously rotates about its axis. The problem mentioned above, the flow about a rotating disk in a flow, which we solved some time ago, represents the first step in the calculation of the flow on the rotating body of revolution in a flow insofar as, in the case of a round nose, a small region about the front stagnation point of the body of revolution may be replaced by its tangential plane. In our problem regarding the rotating body of revolution in a flow, for laminar flow, one of the limiting cases is known: that of the body which is in an axial approach flow but does not rotate. The other limiting case, namely the flow in the neighborhood of a body which rotates but is not subjected to a flow is known only for the rotating circular cylinder, aside from the rotating disk. In the case of the cylinder one deals with a distribution of the circumferential velocity according to the law v = omega R(exp 2)/r where R signifies the cylinder radius, r the distance from the center, and omega the angular velocity of the rotation. The velocity distribution as it is produced here by the friction effect is therefore the same as in the neighborhood of a potential vortex. When we treat, in what follows, the general case of the rotating body of revolution in a flow according to the calculation methods of Prandtl's boundary-layer theory, we must keep in mind that this solution cannot contain the limiting case of the body of revolution which only rotates but is not subjected to a flow. However, this is no essential limitation since this case is not of particular importance for practical purposes.
Observation of the development of secondary features in a Richtmyer–Meshkov instability driven flow
Bernard, Tennille; Truman, C. Randall; Vorobieff, Peter; ...
2014-09-10
Richtmyer–Meshkov instability (RMI) has long been the subject of interest for analytical, numerical, and experimental studies. In comparing results of experiment with numerics, it is important to understand the limitations of experimental techniques inherent in the chosen method(s) of data acquisition. We discuss results of an experiment where a laminar, gravity-driven column of heavy gas is injected into surrounding light gas and accelerated by a planar shock. A popular and well-studied method of flow visualization (using glycol droplet tracers) does not produce a flow pattern that matches the numerical model of the same conditions, while revealing the primary feature ofmore » the flow developing after shock acceleration: the pair of counter-rotating vortex columns. However, visualization using fluorescent gaseous tracer confirms the presence of features suggested by the numerics; in particular, a central spike formed due to shock focusing in the heavy-gas column. Furthermore, the streamwise growth rate of the spike appears to exhibit the same scaling with Mach number as that of the counter-rotating vortex pair (CRVP).« less
Fundamental Study of Material Flow in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Reynolds, Anthony P.
1999-01-01
The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied to fit experimental data such as temperature profiles, torque and tool forces. General aspects of the experimentally visualized material flow pattern are confirmed by the 3-D model.
Hydrodynamic structures generated by a rotating magnetic field in a cylindrical vessel
NASA Astrophysics Data System (ADS)
Zibold, A. F.
2015-02-01
The hydrodynamic structures arising in a cylinder under the influence of a rotating magnetic field were considered, and the stability of a primary stationary flow in an infinitely long cylinder was investigated by linear approximation. The curves of neutral stability were obtained for a wide range of flow parameters and the calculations generated a single-vortex (in the radial direction) structure of Taylor’s vortices. The flow stability in the infinitely long cylinder was evaluated based on energy balance. The problem of three-dimensional stationary flow of a viscous incompressible conducting liquid induced by a rotating magnetic field in a cylindrical vessel of limited length was solved using an iteration method. The values of the parameters were found for which the iterative process still converges. Numerical experiment made it possible to investigate the arising spatial flow patterns and to track their evolution with changes in the flow parameters. Results of modelling showed the appearance of a three-dimensional structure of Taylor-type vortices in the middle portion of a sufficiently long vessel. The appearance of a double laminar boundary layer was demonstrated under certain conditions of azimuthal velocity distribution along the vessel height at the location of the end-wave vortex. This article was accepted for publication in Fluid Dynamics Research 2014 Vol 46, No 4; which was a special issue consisting of papers from the 5th International Symposium on Bifurcations in Fluid Dynamics. Due to an unfortunate error on the part of the journal, this article was not published with the other articles from this issue.
Emergent scar lines in chaotic advection of passive directors
NASA Astrophysics Data System (ADS)
Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg A.
2017-12-01
We examine the spatial field of orientations of slender fibers that are advected by a two-dimensional fluid flow. The orientation field of these passive directors are important in a wide range of industrial and geophysical flows. We introduce emergent scar lines as the dominant coherent structures in the orientation field of passive directors in chaotic flows. Previous work has identified the existence of scar lines where the orientation rotates by π over short distances, but the lines that were identified disappeared as time progressed. As a result, earlier work focused on topological singularities in the orientation field, which we find to play a negligible role at long times. We use the standard map as a simple time-periodic two-dimensional flow that produces Lagrangian chaos. This class of flows produces persistent patterns in passive scalar advection and we find that a different kind of persistent pattern develops in the passive director orientation field. We identify the mechanism by which emergent scar lines grow to dominate these patterns at long times in complex flows. Emergent scar lines form where the recent stretching of the fluid element is perpendicular to earlier stretching. Thus these scar lines can be labeled by their age, defined as the time since their stretching reached a maximum.
Results of a zonally truncated three-dimensional model of the Venus middle atmosphere
NASA Technical Reports Server (NTRS)
Newman, M.
1992-01-01
Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole.
Simulations of Global Flows in Io’s Rarefied Atmosphere
NASA Astrophysics Data System (ADS)
Hoey, William A.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Walker, A. C.
2013-10-01
The sulfur-rich Ionian atmosphere is populated through a number of mechanisms, the most notable of which include sublimation from insolated surface frost deposits, material sputtering due to the impact of energetic ions from the Jovian plasma torus, and plume emission related to volcanic activity. While local flows are collisional at low altitudes on portions of the moon’s dayside, densities rapidly tend toward the free-molecular limit with altitude, necessitating non-continuum (rarefied gas dynamic) modeling and analysis. While recent work has modestly constrained the relative contributions of sputtering, sublimation, and volcanism to Io’s atmosphere, dynamic wind patterns driven by dayside sublimation and nightside condensation remain poorly understood. This work moves toward the explanation of mid-infrared observations that indicate an apparent super-rotating wind in Io’s atmosphere. In the present work, the Direct Simulation Monte Carlo method is employed in the modeling of Io’s rarefied atmosphere; simulations are computed in parallel, on a three-dimensional domain that spans the moon’s entire surface and extends hundreds of kilometers vertically, into the exobase. A wide range of physical phenomena have been incorporated into the atmospheric model, including: [1] the effects of planetary rotation; [2] surface temperature, surface frost inhomogeneity, and thermal inertia; [3] plasma heating and sputtering; [4] gas plumes from superimposed volcanic hot spots; and [5] multi-species chemistry. Furthermore, this work improves upon previous efforts by correcting for non-inertial effects in a moon-fixed reference frame. The influence of such effects on the development of global flow patterns and cyclonic wind is analyzed. The case in which Io transits Jupiter is considered, with the anti-Jovian hemisphere as the dayside. We predict that a circumlunar flow develops that is asymmetric about the subsolar point, and drives atmosphere from the warmer, dayside hemisphere toward the colder nightside. The resultant flow patterns, column densities, species concentrations, and temperatures are discussed in relation to previous simulations of Io in a pre-eclipse configuration. This research is supported via NASA-PATM.
Diffuse-interface approach to rotating Hele-Shaw flows.
Chen, Ching-Yao; Huang, Yu-Sheng; Miranda, José A
2011-10-01
When two fluids of different densities move in a rotating Hele-Shaw cell, the interface between them becomes centrifugally unstable and deforms. Depending on the viscosity contrast of the system, distinct types of complex patterns arise at the fluid-fluid boundary. Deformations can also induce the emergence of interfacial singularities and topological changes such as droplet pinch-off and self-intersection. We present numerical simulations based on a diffuse-interface model for this particular two-phase displacement that capture a variety of pattern-forming behaviors. This is implemented by employing a Boussinesq Hele-Shaw-Cahn-Hilliard approach, considering the whole range of possible values for the viscosity contrast, and by including inertial effects due to the Coriolis force. The role played by these two physical contributions on the development of interface singularities is illustrated and discussed.
Multisensory control of a straight locomotor trajectory.
Hanna, Maxim; Fung, Joyce; Lamontagne, Anouk
2017-01-01
Locomotor steering is contingent upon orienting oneself spatially in the environment. When the head is turned while walking, the optic flow projected onto the retina is a complex pattern comprising of a translational and a rotational component. We have created a unique paradigm to simulate different optic flows in a virtual environment. We hypothesized that non-visual (vestibular and somatosensory) cues are required for proper control of a straight trajectory while walking. This research study included 9 healthy young subjects walking in a large physical space (40×25m2) while the virtual environment is viewed in a helmet-mounted display. They were instructed to walk straight in the physical world while being exposed to three conditions: (1) self-initiated active head turns (AHT: 40° right, left, or none); (2) visually simulated head turns (SHT); and (3) visually simulated head turns with no target element (SHT_NT). Conditions 1 and 2 involved an eye-level target which subjects were instructed to fixate, whereas condition 3 was similar to condition 2 but with no target. Identical retinal flow patterns were present in the AHT and SHT conditions whereas non-visual cues differed in that a head rotation was sensed only in AHT but not in SHT. Body motions were captured by a 12-camera Vicon system. Horizontal orientations of the head and body segments, as well as the trajectory of the body's centre of mass were analyzed. SHT and SNT_NT yielded similar results. Heading and body segment orientations changed in the direction opposite to the head turns in SHT conditions. Heading remained unchanged across head turn directions in AHT. Results suggest that non-visual information is used in the control of heading while being exposed to changing rotational optic flows. The small magnitude of the changes in SHT conditions suggests that the CNS can re-weight relevant sources of information to minimize heading errors in the presence of sensory conflicts.
NASA Astrophysics Data System (ADS)
Kareem, Ali Khaleel; Gao, Shian
2018-02-01
The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottom wall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 ≤ Ω ≤ 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-ɛ model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists.
Time-scales of stellar rotational variability and starspot diagnostics
NASA Astrophysics Data System (ADS)
Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.
2018-01-01
The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.
NASA Astrophysics Data System (ADS)
Kerlo, Anna-Elodie M.; Delorme, Yann T.; Xu, Duo; Frankel, Steven H.; Giridharan, Guruprasad A.; Rodefeld, Mark D.; Chen, Jun
2013-08-01
A viscous impeller pump (VIP) based on the Von Karman viscous pump is specifically designed to provide cavopulmonary assist in a univentricular Fontan circulation. The technology will make it possible to biventricularize the univentricular Fontan circulation. Ideally, it will reduce the number of surgeries required for Fontan conversion from three to one early in life, while simultaneously improving physiological conditions. Later in life, it will provide a currently unavailable means of chronic support for adolescent and adult patients with failing Fontan circulations. Computational fluid dynamics simulations demonstrate that the VIP can satisfactorily augment cavopulmonary blood flow in an idealized total cavopulmonary connection (TCPC). When the VIP is deployed at the TCPC intersection as a static device, it stabilizes the four-way flow pattern and is not obstructive to the flow. Experimental studies are carried out to assess performance, hemodynamic characteristics, and flow structures of the VIP in an idealized TCPC model. Stereoscopic particle image velocimetry is applied using index-matched blood analog. Results show excellent performance of the VIP without cavitation and with reduction of the energy losses. The non-rotating VIP smoothes and accelerates flow, and decreases stresses and turbulence in the TCPC. The rotating VIP generates the desired low-pressure Fontan flow augmentation (0-10 mmHg) while maintaining acceptable stress thresholds.
Measuring flows in the solar interior: current developments, results, and outstanding problems
NASA Astrophysics Data System (ADS)
Schad, Ariane
2016-10-01
I will present an overview of the current developments to determine flows in the solar interior and recent results from helioseismology. I will lay special focus on the inference of the deep structure of the meridional flow, which is one of the most challenging problems in helioseismology. In recent times, promising approaches have been developed for solving this problem. The time-distance analysis made large improvements in this after becoming aware of and compensating for a systematic effect in the analysis, the origin of which is not clear yet. In addition to this, a different approach is now available, which directly exploits the distortion of mode eigenfunctions by the meridional flow as well as rotation. These methods have presented us partly surprisingly complex meridional flow patterns, which, however, do not provide a consistent picture of the flow. Resolving this puzzle is part of current research since this has important consequences on our understanding of the solar dynamo. Another interesting discrepancy was found in recent studies between the amplitudes of the large- and small-scale dynamics in the convection zone estimated from helioseismology and those predicted from theoretical models. This raises fundamental questions how the Sun, and in general a star, maintains its heat transport and redistributes its angular momentum that lead, e.g., to the observed differential rotation.
Investigation of the asymptotic state of rotating turbulence using large-eddy simulation
NASA Technical Reports Server (NTRS)
Squires, Kyle D.; Chasnov, Jeffrey R.; Mansour, Nagi N.; Cambon, Claude
1993-01-01
Study of turbulent flows in rotating reference frames has long been an area of considerable scientific and engineering interest. Because of its importance, the subject of turbulence in rotating reference frames has motivated over the years a large number of theoretical, experimental, and computational studies. The bulk of these previous works has served to demonstrate that the effect of system rotation on turbulence is subtle and remains exceedingly difficult to predict. A rotating flow of particular interest in many studies, including the present work, is examination of the effect of solid-body rotation on an initially isotropic turbulent flow. One of the principal reasons for the interest in this flow is that it represents the most basic turbulent flow whose structure is altered by system rotation but without the complicating effects introduced by mean strains or flow inhomogeneities. The assumption of statistical homogeneity considerably simplifies analysis and computation. The principal objective of the present study has been to examine the asymptotic state of solid-body rotation applied to an initially isotropic, high Reynolds number turbulent flow. Of particular interest has been to determine the degree of two-dimensionalization and the existence of asymptotic self-similar states in homogeneous rotating turbulence.
Holographic flow visualization in rotating turbomachinery
NASA Astrophysics Data System (ADS)
Parker, R. J.; Reeves, M.
1990-11-01
Holographic flow visualization has found many applications in rotating turbomachinery. Applications in the design of aeroengine fans, automotive turbochargers, turbines, helicopter rotors, and advanced propfans are discussed. Work in ducted rotating flows and rotating free aerofoils is brought together and new developments in each field are revealed.
Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature
NASA Technical Reports Server (NTRS)
Olsen, Michael E.
2016-01-01
Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.
Some current research in rotating-disc systems.
Owen, J M; Wilson, M
2001-05-01
Rotating-disc systems are used to model the flow and heat transfer that occurs inside the cooling-air systems of gas-turbine engines. In this paper, recent computational and experimental research in three systems is discussed: rotor-stator systems, rotating cavities with superposed flow and buoyancy-induced flow in a rotating cavity. Discussion of the first two systems concentrates respectively on pre-swirl systems and rotating cavities with a peripheral inflow and outflow of cooling air. Buoyancy-induced flow in a rotating cavity is one of the most difficult problems facing computationalists and experimentalists, and there are similarities between the circulation in the Earth's atmosphere and the flow inside gas-turbine rotors. For this case, results are presented for heat transfer in sealed annuli and in rotating cavities with an axial throughflow of cooling air.
Bars in dark-matter-dominated dwarf galaxy discs
NASA Astrophysics Data System (ADS)
Marasco, A.; Oman, K. A.; Navarro, J. F.; Frenk, C. S.; Oosterloo, T.
2018-05-01
We study the shape and kinematics of simulated dwarf galaxy discs in the APOSTLE suite of Λ cold dark matter (ΛCDM) cosmological hydrodynamical simulations. We find that a large fraction of these gas-rich, star-forming discs show weak bars in their stellar component, despite being dark-matter-dominated systems. The bar pattern shape and orientation reflect the ellipticity of the dark matter potential, and its rotation is locked to the slow figure rotation of the triaxial dark halo. The bar-like nature of the potential induces non-circular motions in the gas component, including strong bisymmetric flows that can be readily seen as m = 3 harmonic perturbations in the H I line-of-sight velocity fields. Similar bisymmetric flows are seen in many galaxies of The HI Nearby Galaxy Survey (THINGS) and Local Irregulars That Trace Luminosity Extremes THINGS (LITTLE THINGS), although on average their amplitudes are a factor of ˜2 weaker than in our simulated discs. Our results indicate that bar-like patterns may arise even when baryons are not dominant, and that they are common enough to warrant careful consideration when analysing the gas kinematics of dwarf galaxy discs.
Effects of rotating flows on combustion and jet noise.
NASA Technical Reports Server (NTRS)
Schwartz, I. R.
1972-01-01
Experimental investigations of combustion in rotating (swirling) flow have shown that the mixing and combustion processes were accelerated, flame length and noise levels significantly decreased, and flame stability increased relative to that obtained without rotation. Unsteady burning accompanied by a pulsating flame, violent fluctuating jet, and intense noise present in straight flow burning were not present in rotating flow burning. Correlations between theory and experiment show good agreement. Such effects due to rotating flows could lead to suppressing jet noise, improving combustion, reducing pollution, and decreasing aircraft engine size. Quantitative analysis of the aero-acoustic relationship and noise source characteristics are needed.-
Real-Time Rotational Activity Detection in Atrial Fibrillation
Ríos-Muñoz, Gonzalo R.; Arenal, Ángel; Artés-Rodríguez, Antonio
2018-01-01
Rotational activations, or spiral waves, are one of the proposed mechanisms for atrial fibrillation (AF) maintenance. We present a system for assessing the presence of rotational activity from intracardiac electrograms (EGMs). Our system is able to operate in real-time with multi-electrode catheters of different topologies in contact with the atrial wall, and it is based on new local activation time (LAT) estimation and rotational activity detection methods. The EGM LAT estimation method is based on the identification of the highest sustained negative slope of unipolar signals. The method is implemented as a linear filter whose output is interpolated on a regular grid to match any catheter topology. Its operation is illustrated on selected signals and compared to the classical Hilbert-Transform-based phase analysis. After the estimation of the LAT on the regular grid, the detection of rotational activity in the atrium is done by a novel method based on the optical flow of the wavefront dynamics, and a rotation pattern match. The methods have been validated using in silico and real AF signals. PMID:29593566
Dilution and Mixing in transient velocity fields: a first-order analysis
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; de Barros, Felipe, P. J.; Fiori, Aldo; Bellin, Alberto
2017-04-01
An appealing remediation technique is in situ oxidation, which effectiveness is hampered by difficulties in obtaining good mixing of the injected oxidant with the contaminant, particularly when the contaminant plume is contained and therefore its deformation is physically constrained. Under such conditions (i.e. containment), mixing may be augmented by inducing temporal fluctuations of the velocity field. The temporal variability of the flow field may increase the deformation of the plume such that diffusive mass flux becomes more effective. A transient periodic velocity field can be obtained by an engineered sequence of injections and extractions from wells, which may serve also as a hydraulic barrier to confine the plume. Assessing the effectiveness of periodic flows to maximize solute mixing is a difficult task given the need to use a 3D setup and the large number of possible flow configurations that should be analyzed in order to identify the optimal one. This is the typical situation in which analytical solutions, though approximated, may assist modelers in screening possible alternative flow configurations such that solute dilution is maximized. To quantify dilution (i.e. a precondition that enables reactive mixing) we utilize the concept of the dilution index [1]. In this presentation, the periodic flow takes place in an aquifer with spatially variable hydraulic conductivity field which is modeled as a Stationary Spatial Random Function. We developed a novel first-order analytical solution of the dilution index under the hypothesis that the flow can be approximated as a sequence of steady state configurations with the mean velocity changing with time in intensity and direction. This is equivalent to assume that the characteristic time of the transient behavior is small compared to the period characterizing the change in time of the mean velocity. A few closed paths have been analyzed quantifying their effectiveness in enhancing dilution and thereby mixing between the resident contaminant and an oxidant. In particular, we considered three different flow configurations: (1) a "circular" pattern, in which the vector of the mean velocity rotates at a constant celerity; (2) a "shake" pattern, in which the velocity has a constant magnitude and changes direction alternatively leading to a "back and forth" type of movement and finally (3) a more general "shake and rotate" pattern, which combines the previous two configurations. The new analytical solution shows that dilution is affected by the configuration of the periodic mean flow. Results show that the dilution index increases when the rotation-shake configuration is adopted. In addition, the dilution index is augmented with the oscillation amplitude of the shake component. This analysis is useful to identify optimal flow configurations that may be approximately reproduced in the field and which efficiency may be checked more accurately by numerical simulations, thereby alleviating the computational burden by efficiently screening among alternative configurations. References [1] Kitanidis, P. K. (1994), The concept of the Dilution Index, Water Resour. Res., 30(7), 2011-2026, doi:10.1029/94WR00762.
Problems of gaseous motion around stars
NASA Technical Reports Server (NTRS)
Huang, S.-S.
1973-01-01
A distinction is drawn between radial and tangential modes of ejection from stars, and the possible flow patterns are described. They are: expanding streams, falling streams, jet streams, circulatory streams, and gaseous envelopes. Motion around Be stars is discussed at some length, as a preliminary to studying more complicated flow in binary systems. The rotational velocity of the Be star is insufficient to form the ring. It appears likely that radial instability is temperature sensitive. Rings and disks in binary systems are discussed from the point of view of periodic orbits for particles within the gravitational field of such a system. The formation of these rings is discussed. The expected relation between rotational velocity of the ring and the orbital period is discussed. The relation of circumstellar streams to period changes is mentioned. Finally, the influence of magnetic fields on the circumstellar material and the system is discussed.
Kutty, Shelby; Li, Ling; Danford, David A; Houle, Helene; Datta, Saurabh; Mancina, Joel; Xiao, Yunbin; Pedrizzetti, Gianni; Porter, Thomas R
2014-12-01
The purpose of this investigation was to test the hypothesis that flow patterns in the right ventricle are abnormal in patients with repaired tetralogy of Fallot (TOF). High-resolution echocardiographic contrast particle imaging velocimetry was used to investigate rotation intensity and kinetic energy dissipation of right ventricular (RV) flow in patients with TOF compared with normal controls. Forty-one subjects (16 with repaired TOF and varying degrees of RV dilation and 25 normal controls) underwent prospective contrast imaging using the lipid-encapsulated microbubble (Definity) on Sequoia systems. A mechanical index of 0.4, three-beat high-frame rate (>60 Hz) captures, and harmonic frequencies were used. Rotation intensity and kinetic energy dissipation of flow in the right and left ventricles were studied (Hyperflow). Ventricular volumes and ejection fractions in all subjects were derived from same-day cardiac magnetic resonance (CMR). Measurable planar maps were obtained for the left ventricle in 14 patients and the right ventricle in 10 patients among those with TOF and for the left ventricle in 23 controls and the right ventricle in 21 controls. Compared with controls, the TOF group had higher RV indexed end-diastolic volumes (117.8 ± 25.5 vs 88 ± 15.4 mL/m(2), P < .001) and lower RV ejection fractions (44.6 ± 3.6% vs 51.8 ± 3.6%, P < .001). Steady-streaming (heartbeat-averaged) flow rotation intensities were higher in patients with TOF for the left ventricle (0.4 ± 0.13 vs 0.29 ± 0.08, P = .012) and the right ventricle (0.53 ± 0.15 vs 0.26 ± 0.12, P < .001), whereas kinetic energy dissipation in TOF ventricles was lower (for the left ventricle, 0.51 ± 0.29 vs 1.52 ± 0.69, P < .001; for the right ventricle, 0.4 ± 0.24 vs 1.65 ± 0.91, P < .001). It is feasible to characterize RV and left ventricular flow parameters and planar maps in adolescents and adults with repaired TOF using echocardiographic contrast particle imaging velocimetry. Intraventricular flow patterns in the abnormal and/or enlarged right ventricle in patients with TOF differ from those in normal young adults. The rotation intensity and energy dissipation trends in this investigation suggest that they may be quantitative markers of RV and left ventricular compliance abnormalities in patients with repaired TOF. This hypothesis merits further investigation. Copyright © 2014 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Kazakidi, A; Vavourakis, V; Tsakiris, D P; Ekaterinaris, J A
2015-01-01
The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific instance of the hydrodynamics problem for rough tapered cylinder geometries. The outstanding manipulative and locomotor skills of octopuses could inspire the development of advanced robotic arms, able to operate in fluid environments. Our primary aim was to study the hydrodynamic characteristics of such bio-inspired robotic models and to derive the hydrodynamic force coefficients as a concise description of the vortical flow effects. Utilizing computational fluid dynamic methods, the coefficients were computed on realistic morphologies of octopus-like arm models undergoing prescribed solid-body movements; such motions occur in nature for short durations in time, e.g. during reaching movements and exploratory behaviors. Numerical simulations were performed on translating, impulsively rotating, and maneuvering arms, around which the flow field structures were investigated. The results reveal in detail the generation of complex vortical flow structures around the moving arms. Hydrodynamic forces acting on a translating arm depend on the angle of incidence; forces generated during impulsive rotations of the arms are independent of their exact morphology and the angle of rotation; periodic motions based on a slow recovery and a fast power stroke are able to produce considerable propulsive thrust while harmonic motions are not. Parts of these results have been employed in bio-inspired models of underwater robotic mechanisms. This investigation may further assist elucidating the hydrodynamics underlying aspects of octopus locomotion and exploratory behaviors.
Formation of eyes in large-scale cyclonic vortices
NASA Astrophysics Data System (ADS)
Oruba, L.; Davidson, P. A.; Dormy, E.
2018-01-01
We present numerical simulations of steady, laminar, axisymmetric convection of a Boussinesq fluid in a shallow, rotating, cylindrical domain. The flow is driven by an imposed vertical heat flux and shaped by the background rotation of the domain. The geometry is inspired by that of tropical cyclones and the global flow pattern consists of a shallow swirling vortex combined with a poloidal flow in the r -z plane which is predominantly inward near the bottom boundary and outward along the upper surface. Our numerical experiments confirm that, as suggested in our recent work [L. Oruba et al., J. Fluid Mech. 812, 890 (2017), 10.1017/jfm.2016.846], an eye forms at the center of the vortex which is reminiscent of that seen in a tropical cyclone and is characterized by a local reversal in the direction of the poloidal flow. We establish scaling laws for the flow and map out the conditions under which an eye will, or will not, form. We show that, to leading order, the velocity scales with V =(αg β ) 1 /2H , where g is gravity, α is the expansion coefficient, β is the background temperature gradient, and H is the depth of the domain. We also show that the two most important parameters controlling the flow are Re =V H /ν and Ro =V /(Ω H ) , where Ω is the background rotation rate and ν the viscosity. The Prandtl number and aspect ratio also play an important, if secondary, role. Finally, and most importantly, we establish the criteria required for eye formation. These consist of a lower bound on Re , upper and lower bounds on Ro , and an upper bound on the Ekman number.
Heat transfer in internal channel of a blade: Effects of rotation in a trailing edge cooling system
NASA Astrophysics Data System (ADS)
Andrei, Luca; Andreini, Antonio; Bonanni, Leonardo; Facchini, Bruno
2012-06-01
The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating arm holding both the PMMA TE model and the instrumentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermo-chromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pressure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; moreover several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steady-state RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. Low-Reynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an in-house developed pressure based solver exploiting the k-ω SST turbulence model implemented in the framework of the open-source finite volume discretization toolbox OpenFOAM®. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the heated surface as to resemble a 90 [deg] blade metal angle. Results are reported in terms of detailed heat transfer coefficient 2D maps on the suction side surface as well as spanwise profiles inside the pedestal ducts.
Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes
2015-01-01
To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia.
NASA Astrophysics Data System (ADS)
Xian, Guangming
2018-03-01
In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.
Multiphase flow modeling in centrifugal partition chromatography.
Adelmann, S; Schwienheer, C; Schembecker, G
2011-09-09
The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Flow rate and trajectory of water spray produced by an aircraft tire
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.
1986-01-01
One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Rotation of melting ice disks due to melt fluid flow.
Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B
2016-03-01
We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.
Time-to-Passage Judgments in Nonconstant Optical Flow Fields
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Hecht, Heiko
1995-01-01
The time until an approaching object will pass an observer (time to passage, or TTP) is optically specified by a global flow field even in the absence of local expansion or size cues. Kaiser and Mowafy have demonstrated that observers are in fact sensitive to this global flow information. The present studies investigate two factors that are usually ignored in work related to TTP: (1) non-constant motion functions and (2) concomitant eye rotation. Non-constant velocities violate an assumption of some TTP derivations, and eye rotations may complicate heading extraction. Such factors have practical significance, for example, in the case of a pilot accelerating an aircraft or executing a roll. In our studies, a flow field of constant-sized stars was presented monocularly on a large screen. TIP judgments had to be made on the basis of one target star. The flow field varied in its acceleration pattern and its roll component. Observers did not appear to utilize acceleration information. In particular, TTP with decelerating motion were consistently underestimated. TTP judgments were fairly robust with respect to roll, even when roll axis and track vector were decoupled. However, substantial decoupling between heading and track vector led to a decrement in performance, in both the presence and the absence of roll.
Guarino, Alessio; Vidal, Valerie
2004-06-01
Motivated by the Küppers-Lortz instability of roll patterns in the presence of rotation, we have investigated the effects of rotation on a hexagonal pattern in Rayleigh-Bénard convection. While several theoretical models have been developed, experimental data cannot be found in the literature. In order to check the validity of the predictions and to study the effects of rotation on the behavior of the system, we present experimental results for a non-Boussinesq Rayleigh-Bénard convection with rotation about the vertical axis. Rotation introduces an additional control parameter, namely the dimensionless rotation rate Omega= 2 pi f d(2)/nu, where f is the rotation rate (in Hz), d is the thickness of the cell, and nu is the kinematic viscosity. We observe that the cell rotation induces a slow rotation of the pattern in the opposite direction (approximately Omega x 10(-4) ) in the rotating frame. Moreover, it tends to destroy the convective pattern. No oscillation of the hexagonal pattern over the range of its existence (Omega< or =6) has been observed.
Solidification of II-VI Compounds in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Gillies, D. C.; Volz, M. P.; Mazuruk, K.; Motakef, S.; Dudley, M.; Matyi, R.
1999-01-01
This project is aimed at using a rotating magnetic field (RMF) to control fluid flow and transport during directional solidification of elemental and compound melts. Microgravity experiments have demonstrated that small amounts of residual acceleration of less than a micro-g can initiate and prolong fluid flow, particularly when there is a static component of the field perpendicular to the liquid solid interface. Thus a true diffusion boundary layer is not formed, and it becomes difficult to verify theories of solidification or to achieve diffusion controlled solidification. The RMF superimposes a stirring effect on an electrically conducting liquid, and with appropriate field strengths and frequencies, controlled transport of material through a liquid column can be obtained. As diffusion conditions are precluded and complete mixing conditions prevail, the technique is appropriate for traveling solvent zone or float zone growth methods in which the overall composition of the liquid can be maintained throughout the growth experiment. Crystals grown by RMF techniques in microgravity in previous, unrelated missions have shown exceptional properties. The objective of the project is two-fold, namely (1) using numerical modeling to simulate the behavior of a solvent zone with applied thermal boundary conditions and demonstrate the effects of decreasing gravity levels, or an increasing applied RMF, or both, and (2) to grow elements and II-VI compounds from traveling solvent zones both with and without applied RMFs, and to determine objectively how well the modeling predicts solidification parameters. Numerical modeling has demonstrated that, in the growth of CdTe from a tellurium solution, a rotating magnetic field can advantageously modify the shape of the liquid solid interface such that the interface is convex as seen from the liquid. Under such circumstances, the defect structure is reduced as any defects which are formed tend to grow out and not propagate. The flow of liquid, however, is complex due to the competing flow induced by the rotating magnetic field and the buoyancy driven convection. When the acceleration forces are reduced to one thousandth of gravity, the flow pattern is much simplified and well controlled material transport through the solvent zone can be readily achieved. Triple axis diffractometry and x-ray synchrotron topography have demonstrated that there is no significant improvement in crystal quality for HgCdTe grown on earth from a tellurium solution when a rotating magnetic field is applied. However, modeling shows that the flow in microgravity with a rotating magnetic field would produce a superior product.
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.
Active turbulence in a gas of self-assembled spinners
Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey
2017-01-01
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382
Experimental investigation of door dynamic opening caused by impinging shock wave
NASA Astrophysics Data System (ADS)
Biamino, L.; Jourdan, G.; Mariani, C.; Igra, O.; Massol, A.; Houas, L.
2011-02-01
To prevent damage caused by accidental overpressure inside a closed duct (e.g. jet engine) safety valves are introduced. The present study experimentally investigates the dynamic opening of such valves by employing a door at the end of a shock tube driven section. The door is hung on an axis and is free to rotate, thereby opening the tube. The evolved flow and wave pattern due to a collision of an incident shock wave with the door, causing the door opening, is studied by employing a high speed schlieren system and recording pressures at different places inside the tube as well as on the rotating door. Analyzing this data sheds light on the air flow evolution and the behavior of the opening door. In the present work, emphasis is given to understanding the complex, unsteady flow developed behind the transmitted shock wave as it diffracts over the opening door. It is shown that both the door inertia and the shock wave strength influence the opening dynamic evolution, but not in the proportions that might be expected.
Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes
2015-01-01
Objective To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Methods Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. Results This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Conclusion Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia. PMID:26340159
NASA Astrophysics Data System (ADS)
Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori
2013-08-01
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.
NASA Astrophysics Data System (ADS)
Sudjai, W.; Juntasaro, V.; Juttijudata, V.
2018-01-01
The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.
An experimental description of the flow in a centrifugal compressor from alternate stall to surge
NASA Astrophysics Data System (ADS)
Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.
2017-08-01
The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.
Effect of secondary flows on dispersion in finite-length channels at high Peclet numbers
NASA Astrophysics Data System (ADS)
Adrover, Alessandra
2013-09-01
We investigate the effects of secondary (transverse) flows on convection-dominated dispersion of pressure driven, open column laminar flow in a conduit with rectangular cross-section. We show that secondary flows significantly reduce dispersion (enhancing transverse diffusion) in Taylor-Aris regime [H. Zhao and H. H. Bau, "Effect of secondary flows on Taylor-Aris dispersion," Anal. Chem. 79, 7792-7798 (2007)], as well as in convection-controlled regime. In the convection-controlled dispersion regime (i.e., laminar dispersion in finite-length channel with axial flow at high Peclet numbers) the properties of the dispersion boundary layer and the values of the scaling exponents controlling the dependence of the moment hierarchy on the Peclet number m^{(n)}_out ˜ Pe_eff^{θ _n} are determined by the local near-wall behaviour of the axial velocity. The presence of transverse flows strongly modify the localization properties of the dispersion boundary layer and consequently the moment scaling exponents. Different secondary flows, electrokinetically induced and independent of the primary axial flow are considered. A complete scaling theory is presented for the nth order moment of the outlet chromatogram as a function of the axial Peclet number, the secondary flow's pattern and intensity. We show that some secondary flows (the corotating and the counter-rotating cavity flows) significantly reduce dispersion and m^{(n)}_out ˜ Pe_eff^{(n-1)/3}. No significant dispersion reduction is obtained with the cavity cross-flow m^{(n)}_out ˜ Pe_eff^{(n-1)/2}. The best result is obtained with the two full-motion counter-rotating cross-flows because m^{(n)}_out saturates towards a constant value. Theoretical results from scaling theory are strongly supported by numerical results obtained by Finite Element Method.
Flow Split Venturi, Axially-Rotated Valve
Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James
2000-02-22
The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.
Concentration-Discharge Responses to Storm Events in Coastal California Watersheds
NASA Astrophysics Data System (ADS)
Aguilera, Rosana; Melack, John M.
2018-01-01
Storm events in montane catchments are the main cause of mobilization of solutes and particulates into and within stream channels in coastal California. Nonlinear behavior of nutrients and suspended sediments during storms is evident in the hysteresis that arises in concentration-discharge (C-Q) relationships. We examined patterns in the C-Q hysteresis of nutrients (NO3-, NH4+, DON, and PO43-) and total suspended solids (TSS) during storms across 10 sites and water years 2002-2015 by quantifying the slope of the C-Q relationship and the rotational pattern of the hysteresis loop. We observed several hysteresis types in the ˜400 storms included in our study. Concentrations of constituents associated with sediment transport (PO43- and TSS) peaked during high flows. Conversely, nitrogen species had hysteretic responses such as dilution with clockwise rotation in urban sites and enrichment with anticlockwise rotation in undeveloped sites. The wide range of C-Q responses that occurred among sites and seasons reflected the variable hydrological and biogeochemical characteristics of catchments and storms. Responses for nitrate in nested catchments differed in slope and rotation of C-Q hysteresis. Upland undeveloped and lowland urban sites had anticlockwise rotation at the onset of the rainy season following a dry year, which implied a delay in the transport of this solute to the streams. Slopes by the middle of the rainy season showed that the urban site switched from dilution to enrichment, and then again to dilution with clockwise rotation at the end of the season, which implied high initial concentrations and proximal sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Y.; Dutta, P.; Schupp, P.E.
1995-12-31
Observations of surface flow patterns of steel and aluminum GTAW pools have been made using a pulsed laser visualization system. The weld pool convection is found to be three dimensional, with the azimuthal circulation depending on the location of the clamp with respect to the torch. Oscillation of steel pools and undulating motion in aluminum weld pools are also observed even with steady process parameters. Current axisymmetric numerical models are unable to explain such phenomena. A three dimensional computational study is carried out in this study to explain the rotational flow in aluminum weld pools.
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Gullapalli, Atchyut
2016-11-01
Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].
Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru
2016-11-15
A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model ofmore » a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.« less
NASA Astrophysics Data System (ADS)
Müller, G.; Neumann, G.; Weber, W.
1992-04-01
Both experimental and numerical results on crystal growth and fluid flow studies carried out in a centrifuge are reported. It is shown that the formation of doping striations can be avoided in the vertical Bridgman and the horizontal zone melting growth of Te-doped InSb if the centrifugal acceleration is increased beyond a critical value depending on the thermal boundary conditions. Furthermore, the maximum rate for the growth of inclusion free GaSb crystals grown by the travelling heater method (THM) is increased by a factor of 10 if this method is carried out at an acceleration of 20 times earth gravity. Model experiments in the Bridgman configuration using a test cell with liquid Ga and a larger series of thermocouples are conducted by varying the thermal boundary conditions and the rotation rate of the centrifuge. A three-dimensional time dependent numerical simulation of the fluid flow under the experimental conditions was carried out using a finite difference numerical scheme. It follows clearly that the Coriolis force acting on the melt in the rotating centrifuge system significantly influences the buoyancy-driven convection with respect to the flow patterns as well as the stability. The Coriolis force causes two very different flow states (I and II), depending on whether the rotation sense of the flow is in the same or in the opposite direction to that of the centrifuge. Type I is very similar to that normally observed on earth. Type II is only observed on the centrifuge and has a very large stability range of steady convection which can be used to grow striation-free crystals. All results give excellent agreement between model experiments and numerical calculations, which finally leads to a fully satisfying explanation of the crystal growth results on our centrifuge.
The Flow Field on Hydrofoils with Leading Edge Protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid
2008-11-01
The agility of the humpback whale has been attributed to the use of its pectoral flippers, on which protuberances are present along the leading edge. The forces and moments on hydrofoils with leading edge protuberances were measured in a water tunnel and were compared to a baseline NACA 63(4)-021 hydrofoil revealing significant performance differences. Three protuberance amplitudes and two spanwise wavelengths, closely resembling the morphology found in nature, were examined. Qualitative flow visualization techniques were used to examine flow patterns surrounding the hydrofoils, and Particle Image Velocimetry (PIV) was used to quantify these patterns. Flow visualizations have revealed counter-rotating vortices stemming from the shoulders of the protuberances. These streamwise vortices are a result of the spanwise pressure gradient brought about by the varying leading edge curvature. PIV was used to quantify the strength of these vortices as a function of angle of attack and leading edge geometry. At low angles of attack, these vortices are symmetric with respect to the protuberances; however, the symmetry is lost at high angles of attack. The loss of symmetry can be correlated with the separation point location on the hydrofoil.
Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan
NASA Technical Reports Server (NTRS)
Hah, Chunill; Rabe, Douglas; Scribben, Angie
2015-01-01
In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.
Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?
NASA Astrophysics Data System (ADS)
Evonuk, M.; Samuel, H.
2012-04-01
Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.
Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?
NASA Astrophysics Data System (ADS)
Evonuk, M.; Samuel, H.
2012-12-01
Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.
Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?
NASA Astrophysics Data System (ADS)
Evonuk, M.; Samuel, H.
2012-02-01
Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.
Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades
NASA Technical Reports Server (NTRS)
Graham, R. W.
1979-01-01
Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.
Analogies between oscillation and rotation of bodies induced or influenced by vortex shedding
NASA Astrophysics Data System (ADS)
Lugt, H. J.
Vortex-induced or vortex-influenced rotation and oscillation of bodies in a parallel flow are discussed. A steady flow occurs if the body axis is parallel to the flow or if the axis of rotation is perpendicular to the flow. Flows around an oscillating body are quasi-steady only if the Strougal number is much smaller than unity. The connection between rotation and oscillation is demonstrated in terms of the autorotation of a Lanchester propeller, and conditions for stable autorotation are defined. The Riabouchinsky curve is shown to be typical of forces and torques on bodies with vortical wakes, including situations with fixed body axes perpendicular to the flow. A differential equation is formulated for rotational and oscillating bodies that shed vortices by extending the pendulum equation to include vortical effects expressed as a fifth-order polynomial.
Numerical modeling of interface displacement in heterogeneously wetting porous media
NASA Astrophysics Data System (ADS)
Hiller, T.; Brinkmann, M.; Herminghaus, S.
2013-12-01
We use the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the standard SRD method, we present an approach on implementing complex wettability on heterogeneous surfaces. We use 3D SRD to simulate immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. The simulations are designed to resemble experimental measurements of capillary pressure saturation. We show that the correlation length of the wetting patterns influences the temporal evolution of the interface and thus percolation, residual saturation and work dissipated during the fluid displacement. Our numerical results are in qualitatively good agreement with the experimental data. Besides of modeling flow in porous media, our SRD implementation allows us to address various questions of interfacial dynamics, e.g. the formation of capillary bridges between spherical beads or droplets in microfluidic applications to name only a few.
Geometry of tracer trajectories in turbulent rotating convection
NASA Astrophysics Data System (ADS)
Alards, Kim; Rajaei, Hadi; Kunnen, Rudie; Toschi, Federico; Clercx, Herman
2016-11-01
In Rayleigh-Bénard convection rotation is known to cause transitions in flow structures and to change the level of anisotropy close to the horizontal plates. To analyze this effect of rotation, we collect curvature and torsion statistics of passive tracer trajectories in rotating Rayleigh-Bénard convection, using both experiments and direct numerical simulations. In previous studies, focusing on homogeneous isotropic turbulence (HIT), curvature and torsion PDFs are found to reveal pronounced power laws. In the center of the convection cell, where the flow is closest to HIT, we recover these power laws, regardless of the rotation rate. However, near the top plate, where we expect the flow to be anisotropic, the scaling of the PDFs deviates from the HIT prediction for lower rotation rates. This indicates that anisotropy clearly affects the geometry of tracer trajectories. Another effect of rotation is observed as a shift of curvature and torsion PDFs towards higher values. We expect this shift to be related to the length scale of typical flow structures. Using curvature and torsion statistics, we can characterize how these typical length scales evolve under rotation and moreover analyze the effect of rotation on more complicated flow characteristics, such as anisotropy.
Electrohydrodynamic instabilities of viscous drops*
NASA Astrophysics Data System (ADS)
Vlahovska, Petia M.
2016-10-01
A classic result due to Taylor is that a weakly conducting drop bearing zero net charge placed in a uniform electric field adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. Here I overview some intriguing symmetry-breaking instabilities occurring in strong applied dc fields: Quincke rotation resulting in drop steady tilt or tumbling, and pattern formation on the surface of a particle-coated drop.
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-01-01
Summary Mosquitoes exhibit unique wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz) and with lower stroke amplitudes than any other insect group1. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects2, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report wing kinematics and solve the full Navier-Stokes equations using computational fluid dynamics with overset grids and validate our results with in vivo flow measurements. We show that, while familiar separated flow patterns are used by mosquitoes, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described flying animal. In total, there are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a novel form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half stroke, and are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well-suited to high-aspect ratio mosquito wings. PMID:28355184
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
NASA Astrophysics Data System (ADS)
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-03-01
Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.
Computation of turbulent rotating channel flow with an algebraic Reynolds stress model
NASA Technical Reports Server (NTRS)
Warfield, M. J.; Lakshminarayana, B.
1986-01-01
An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.
Mantle Flow Induced by Subduction Beneath Taurides Mountains
NASA Astrophysics Data System (ADS)
Hui, H.; Sandvol, E. A.; Rey, P. F.; Brocard, G. Y.
2017-12-01
GPS data of Anatolian Plateau shows westward plate motion with respect to the Eurasian plate at a rate of approximately 20 mm/yr, however, the fast direction of shear-wave splitting data in Anatolian Plateau is dominantly northeast-southwest, with significant variations around the central Taurides Mountains. To address the decoupling between the deformation in the crust and in the mantle, we explore the mantle strain pattern beneath Anatoian Plateau. Numerical models of the African plate subducting beneath the Taurides have been constructed with the open source code Underworld by Louis Moresi and the Lithospheric Modeling Recipe by EarthByte Group. We have constructed a 2-D model with dimension of 400km × 480km with 60km thick plate subducting into the mantle. In our numerical model, we observe a poloidal component of the mantle flow around the edge of the subducting plate, which could be explained by straight-forward corner flow. The horizontal component of mantle flow above the subducting plate may explain the shear-wave splitting pattern that is nearly perpendicular to the trench at Anatolia. We are also working on 3-D models with dimension of 400km×400km×480km with the subducting plate width 100km. The asthenospheric mantle below the subducting plate exhibits a flow parallel to the trench, then rotates around the edge of the plate and becomes perpendicular to the trench. This mantle flow pattern may explain the shear-wave splitting directions in central Anatolia.
Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.
1996-01-01
This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.
Split Venturi, Axially-Rotated Valve
Walrath, David E.; Lindberg, William R.; Burgess, Robert K.
2000-08-29
The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane.
Deeg, K-H; Reisig, A
2010-10-01
Position-dependent hypoperfusion of the brain stem may be a risk factor of sudden infant death. From 1998 to 2009 we performed Doppler sonographic flow measurements in the basilar artery of 18 194 newborns, 9322 boys and 8872 girls, in five different positions: the neutral position with the head in the midline and during head rotation to the left and right in a supine or prone position. The peak systolic and the time average flow velocity were measured from the flow profile. The flow velocities during head rotation were converted to % of the flow in the neutral position. A decrease in the velocities during head rotation below 50 % was thought to be abnormal. Biphasic flow, flow oscillating around the zero line or retrograde flow during rotation was considered to be pathological. Head rotations, which had caused abnormal and pathological flow, were avoided. The incidence of SIDS in our study group was evaluated and compared with the incidence in a control group of 3 519 newborns. In 17 929 newborns (98.54 %) the blood flow in the basilar artery was independent of head rotation and body position. In 204 newborns (1.12 %) we found an abnormal decrease under 50 %. Pathological flow alterations could be found in 61 patients (0.33 %). The overall incidence rate of SIDS in the study group was 0.055 ‰ (1:18 194). The incidence rate of SIDS in the control group was 1.14 ‰ (4:3519). The comparison of both groups showed a statistically significant (p < 0.0030) lower incidence rate in the study group. Hypoperfusion of the brain stem may be a significant risk factor of SIDS. © Georg Thieme Verlag KG Stuttgart · New York.
High flow rate nozzle system with production of uniform size droplets
Stockel, I.H.
1990-10-16
Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.
High flow rate nozzle system with production of uniform size droplets
Stockel, Ivar H.
1990-01-01
Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.
A 3-D CFD Analysis of the Space Shuttle RSRM With Propellant Fins @ 1 sec. Burn-Back
NASA Technical Reports Server (NTRS)
Morstadt, Robert A.
2003-01-01
In this study 3-D Computational Fluid Dynamic (CFD) runs have been made for the Space Shuttle RSRM using 2 different grids and 4 different turbulent models, which were the Standard KE, the RNG KE, the Realizable KE, and the Reynolds stress model. The RSRM forward segment consists of 11 fins. By taking advantage of the forward fin symmetry only half of one fin along the axis had to be used in making the grid. This meant that the 3-D model consisted of a pie slice that encompassed 1/22nd of the motor circumference and went along the axis of the entire motor. The 3-D flow patterns in the forward fin region are of particular interest. Close inspection of these flow patterns indicate that 2 counter-rotating axial vortices emerge from each submerged solid propellant fin. Thus, the 3-D CFD analysis allows insight into complicated internal motor flow patterns that are not available from the simpler 2-D axi-symmetric studies. In addition, a comparison is made between the 3-D bore pressure drop and the 2-D axi-symmetric pressure drop.
NASA Technical Reports Server (NTRS)
2001-01-01
Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.Each image covers a swath approximately 380 kilometers wide.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D
2017-06-01
Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Hu, Jialin; Du, Qiang; Liu, Jun; Wang, Pei; Liu, Guang; Liu, Hongrui; Du, Meimei
2017-08-01
Although many literatures have been focused on the underneath flow and loss mechanism, very few experiments and simulations have been done under the engines' representative working conditions or considering the real cavity structure as a whole. This paper aims at realizing the goal of design of efficient turbine and scrutinizing the velocity distribution in the vicinity of the rim seal. With the aid of numerical method, a numerical model describing the flow pattern both in the purge flow spot and within the mainstream flow path is established, fluid migration and its accompanied flow mechanism within the realistic cavity structure (with rim seal structure and considering mainstream & secondary air flow's interaction) is used to evaluate both the flow pattern and the underneath flow mechanism within the inward rotating cavity. Meanwhile, the underneath flow and loss mechanism are also studied in the current paper. The computational results show that the sealing air flow's ingestion and ejection are highly interwound with each other in both upstream and downstream flow of the rim seal. Both the down-stream blades' potential effects as well as the upstream blades' wake trajectory can bring about the ingestion of the hot gas flow within the cavity, abrupt increase of the static pressure is believed to be the main reason. Also, the results indicate that sealing air flow ejected through the rear cavity will cause unexpected loss near the outlet section of the blades in the downstream of the HP rotor passages.
Rotation-invariant neural pattern recognition system with application to coin recognition.
Fukumi, M; Omatu, S; Takeda, F; Kosaka, T
1992-01-01
In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.
The flow in the spiral arms of slowly rotating bar-spiral models
NASA Astrophysics Data System (ADS)
Patsis, P. A.; Tsigaridi, L.
2017-07-01
We use response models to study the stellar and gaseous flows in the spiral arm regions of slow rotating barred-spiral potentials. We vary the pattern speed so that the corotation-to bar radius ratios (Rc/Rb) are in the range 2 < Rc/Rb < 3. We find in general two sets of spirals, one inside and one outside corotation, which are reinforced by two different dynamical mechanisms. The bar and the spirals inside corotation are supported by regular orbits, while the spirals beyond corotation are associated with the "chaotic spirals", both in the stellar as well as in the gaseous case. The main difference in the two flows is the larger dispersion of velocities we encounter in the stellar (test-particles) models. The inner and the outer spirals are in general not connected. In most cases we find an oval component inside corotation, that surrounds the inner barred-spiral structure and separates it from the outer spirals. In the gaseous models, clumps of local overdensities are formed along the inner arms as the gas shocks in the spirals region, while clumps in the spirals beyond corotation are formed as the flows along the two outer arms meet and join each other close to the unstable Lagrangian points of the system.
Influence of lead ions on the macromorphology of electrodeposited zinc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuda, Tetsuaki; Tobias, Charles W.
1981-09-01
The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth ofmore » initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.« less
Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows
NASA Astrophysics Data System (ADS)
Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel
2017-11-01
We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.
Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates
NASA Astrophysics Data System (ADS)
SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro
2016-11-01
Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.
2010-01-01
or in more general terms, as a result of dislocation nucleation, motion, multiplication, and interaction). Nonetheless, state-of-the-art simulation ...computational power, together with under-developed physics within the simulation codes (i.e. cross-slip, climb, crystal rotations and patterning to...name a few), prevent realistic dislocation simulations over temporal and spatial domains that are readily accessible by experimental methods [9, 10
Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode
NASA Astrophysics Data System (ADS)
Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.
2014-03-01
Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.
Subsonic-transonic stall flutter study
NASA Technical Reports Server (NTRS)
Stardter, H.
1979-01-01
The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.
NASA Astrophysics Data System (ADS)
Lu, Lin; Guo, Xiao-ling; Tang, Guo-qiang; Liu, Ming-ming; Chen, Chuan-qi; Xie, Zhi-hua
2016-09-01
Numerical results of fluid flow over a rotationally oscillating circular cylinder with splitter plate are presented here. Different from the previous examinations with freely rotatable assembly, the fluid and structure interactions are treated as a coupled dynamic system by fully considering the structural inertia, stiffness, and damping. The hydrodynamic characteristics are examined in terms of reduced velocity Ur at a relatively low Reynolds number Re = 100 for different plate lengths of L/D = 0.5, 1.0, and 1.5, where Ur = U/(Dfn), Re = UD/υ and fn = (κ/J)0.5/2π with U the free stream velocity, D the diameter of the circular cylinder, υ the fluid kinematic viscosity, fn the natural frequency, J the inertial moment, κ the torsional stiffness, and L the plate length. Contrast to the freely rotating cylinder/plate body, that is, in the limit of κ → 0 or Ur →∞, remarkable rotary oscillation is observed at relatively low reduced velocities. For the typical case with L/D = 1.0, the maximum amplitude may reach five times that at the highest reduced velocity of Ur = 15.0 considered in this work. At the critical reduced velocity Ur = 4.2, notable hydrodynamic jumps are identified for the rotation amplitude, response frequency, mean drag coefficient, lift amplitude, and vortex shedding frequency. Moreover, the phase angle between the fluid moment and rotary oscillation abruptly changes from 0 to π at Ur = 6.5. Due to the combined effect of fluid moment, rotation response, and phase difference, the natural frequency of the rotating body varies in flow, leading to a wide regime of lock-in/synchronization (Ur ≥4.2, for L/D = 1.0). The phenomenon of rotation bifurcation, i.e., the equilibrium position of the rotary oscillation deflects to a position which is not parallel to the free stream, is found to only occur at higher reduced velocities. The longer splitter plate has the lower critical reduced velocity. The occurrence of bifurcation is attributed to the anti-symmetry breaking of the wake flow evolution. The resultant asymmetric mean pressure distribution on the splitter plate gives rise to the net lift force and the deviated moment on the assembly, leading to the offset mean position of splitter plate. The global vortex shedding is identified to be the classic 2S mode for both cases with and without the bifurcation, although the second vortex formation and the shedding pattern in the near wake for the bifurcate case are different from the non-bifurcate case with lower reduced velocities.
Hoffmann, Ch; Lücke, M; Pinter, A
2004-05-01
We present numerical simulations of vortices that appear via primary bifurcations out of the unstructured circular Couette flow in the Taylor-Couette system with counter rotating as well as with corotating cylinders. The full, time dependent Navier Stokes equations are solved with a combination of a finite difference and a Galerkin method for a fixed axial periodicity length of the vortex patterns and for a finite system of aspect ratio 12 with rigid nonrotating ends in a setup with radius ratio eta=0.5. Differences in structure, dynamics, symmetry properties, bifurcation, and stability behavior between spiral vortices with azimuthal wave numbers M=+/-1 and M=0 Taylor vortices are elucidated and compared in quantitative detail. Simulations in axially periodic systems and in finite systems with stationary rigid ends are compared with experimental spiral data. In a second part of the paper we determine how the above listed properties of the M=-1, 0, and 1 vortex structures are changed by an externally imposed axial through flow with Reynolds numbers in the range -40< or =Re< or =40. Among other things we investigate when left handed or right handed spirals or toroidally closed vortices are preferred.
Design and Development of Sequential Rotary Valve
NASA Technical Reports Server (NTRS)
D’Orsi, Nicholas; Castillo, Priscilla
2017-01-01
Valves are used to regulate the flow of fluids through systems. This rotary valve's main purpose is to fill, pressurize, empty, and vent three smaller tanks with the supply of one larger tank. Many different designs are being taken into consideration, which are each at different stages of development. The furthest along uses three ball valves on a common shaft to open and close their respective ports as the shaft completes one full rotation or cycle. We were tasked with advancing this design to its first test as a plastic model for flow verification, as well as sizing and ordering the necessary O-rings and fasteners. A motor will also be sized to satisfy the torque requirements, and will then be programmed using a Raspberry Pi to rotate the shaft at the calculated speed and dwelling times needed to fill each tank equally. In addition, we have also been advancing designs that use a camshaft and poppets. These are earlier on in their development, currently being sized to replicate the expected flow patterns of the rotary ball valve. Expected outcomes of this valve include bi-directionality, successful sealing under pressure, and accurate cycling.
Active turbulence in a gas of self-assembled spinners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokot, Gasper; Das, Shibananda; Winkler, Roland G.
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less
Active turbulence in a gas of self-assembled spinners
Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...
2017-11-20
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less
Mathematical modeling of the burden distribution in the blast furnace shaft
NASA Astrophysics Data System (ADS)
Park, Jong-In; Jung, Hun-Je; Jo, Min-Kyu; Oh, Han-Sang; Han, Jeong-Whan
2011-06-01
Process efficiency in the blast furnace is influenced by the gas flow pattern, which is dictated by the burden profile. Therefore, it is important to control the burden distribution so as to achieve reasonable gas flow in the blast furnace operation. Additionally, the charging pattern selection is important as it affects the burden trajectory and stock profile. For analysis of the burden distribution, a new analysis model was developed by use of the spreadsheet program, Microsoft® Office Excel, based on visual basic. This model is composed of the falling burden trajectory and a stock model. The burden trajectory is determined by the burden type, batch weight, rotating velocity of the chute, tilting angle, and friction coefficient. After falling, stock lines are formed by the angle of repose, which is affected by the burden trajectory and the falling velocity. The mathematical formulas for developing this model were modified by a scaled model experiment and DEM simulation.
Heat and Mass Transfer in the Over-Shower Zone of a Cooling Tower with Flow Rotation
NASA Astrophysics Data System (ADS)
Kashani, M. M. Hemmasian; Dobrego, K. V.
2013-11-01
The influence of flow rotation in the over-shower zone of a natural draft wet cooling tower (NDCT) on heat and mass transfer in this zone is investigated numerically. The 3D geometry of an actual NDCT and three models of the induced rotation velocity fields are utilized for calculations. Two phases (liquid and gaseous) and three components are taken into consideration. The interphase heat exchange, heat transfer to the walls, condensation-evaporation intensity field, and other parameters are investigated as functions of the induced rotation intensity (the inclination of the velocity vector at the periphery). It is shown that the induced flow rotation intensifies the heat and mass transfer in the over-shower zone of an NDCT. Flow rotation leads to specific redistribution of evaporation-condensation areas in an NDCT and stimulates water condensation near its walls.
Kirol, Lance D.
1988-01-01
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.
Kirol, L.D.
1987-02-11
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.
Simulations of electrically induced particle structuring on spherical drop surface
NASA Astrophysics Data System (ADS)
Hu, Yi; Vlahovska, Petia; Miksis, Michael
2016-11-01
Recent experiments (Ouriemi and Vlahovska, 2014) show intriguing surface patterns when a uniform electric field is applied to a droplet covered with colloidal particles. Depending on the particle properties and the electrical field intensity, particles organize into an equatorial belt, pole-to-pole chains, or dynamic vortices. Here we present a model to simulate the collective particle dynamics, which accounts for the electrohydrodynamic flow and particle dielectrophoresis due to the non-uniformity of local electrical field. In stronger electric fields, particles are expected to undergo Quincke rotation, inducing rotating clusters through inter-particle hydrodynamical interaction. We discuss how the field intensity influences the width, orientation and periodicity of the particle clusters. Our results provide insight into the various particle assembles discovered in the experiments.
Modeling of a Sequential Two-Stage Combustor
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Liu, N.-S.; Gallagher, J. R.; Ryder, R. C.; Brankovic, A.; Hendricks, J. A.
2005-01-01
A sequential two-stage, natural gas fueled power generation combustion system is modeled to examine the fundamental aerodynamic and combustion characteristics of the system. The modeling methodology includes CAD-based geometry definition, and combustion computational fluid dynamics analysis. Graphical analysis is used to examine the complex vortical patterns in each component, identifying sources of pressure loss. The simulations demonstrate the importance of including the rotating high-pressure turbine blades in the computation, as this results in direct computation of combustion within the first turbine stage, and accurate simulation of the flow in the second combustion stage. The direct computation of hot-streaks through the rotating high-pressure turbine stage leads to improved understanding of the aerodynamic relationships between the primary and secondary combustors and the turbomachinery.
NASA Astrophysics Data System (ADS)
Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.
2016-08-01
This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.
Geometry of tracer trajectories in rotating turbulent flows
NASA Astrophysics Data System (ADS)
Alards, Kim M. J.; Rajaei, Hadi; Del Castello, Lorenzo; Kunnen, Rudie P. J.; Toschi, Federico; Clercx, Herman J. H.
2017-04-01
The geometry of passive tracer trajectories is studied in two different types of rotating turbulent flows; rotating Rayleigh-Bénard convection (RBC; experiments and direct numerical simulations) and rotating electromagnetically forced turbulence (EFT; experiments). This geometry is fully described by the curvature and torsion of trajectories, and from these geometrical quantities we can subtract information on the typical flow structures at different rotation rates. Previous studies, focusing on nonrotating homogeneous isotropic turbulence (HIT), show that the probability density functions (PDFs) of curvature and torsion reveal pronounced power laws. However, the set-ups studied here involve inhomogeneous turbulence, and in RBC the flow near the horizontal plates is definitely anisotropic. We investigate how the typical shapes of the curvature and torsion PDFs, including the pronounced scaling laws, are influenced by this level of anisotropy and inhomogeneity and how this effect changes with rotation. A first effect of rotation is observed as a shift of the curvature and torsion PDFs towards higher values in the case of RBC and towards lower values in the case of EFT. This shift is related to the length scale of typical vortical structures that decreases with rotation in RBC, but increases with rotation in EFT, explaining the opposite shifts of the curvature (and torsion) PDFs. A second remarkable observation is that in RBC the HIT scaling laws are always recovered, as long as the boundary layer (BL) is excluded. This suggests that these scaling laws are very robust and hold as long as we measure in the turbulent bulk. In the BL of the RBC cell, however, the scaling deviates from the HIT prediction for lower rotation rates. This scaling behavior is found to be consistent with the coupling between the boundary layer dynamics and the bulk flow, which changes under rotation. In particular, it is found that the active coupling of the Ekman-type boundary layer with the bulk flow suppresses anisotropy in the BL region for increasing rotation rates.
A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow
NASA Astrophysics Data System (ADS)
Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A.
Abrasive flow machining has been the pioneer of new finishing processes. Rotating workpiece and imposing a magnetic field using magnetorheological working medium are some assisting manipulations to improve surface finishing, because they can increase the forces on the workpiece surface. Similarly, swirling the inlet flow using stationary swirler vanes, as a novel idea, may also increase forces on the surface, and then raise the material removal, with a lower expense and energy consumption compared with the case of workpiece rotation. Thus, in this paper, surface roughness improvement is studied in a pipe with rotating inlet flow of a magnetorheological finishing medium under imposing a magnetic field. The results are compared with the case of rotating workpiece, using 3D numerical simulation. The governing hydrodynamic parameters are investigated in both cases to monitor the flow variations. It is shown that surface roughness is improved by rotating inlet flow. However, it is found that finishing in the entrance length of swirling-assisted inlet flow can be so economical for short length workpieces, compared with the case of rotating workpiece, with very near Ra values. By comparison of the numerical results and published experimental data, current study also shows the ability of the numerical simulation, as an inexpensive and efficient tool, to predict the surface roughness changes in finishing processes.
NASA Astrophysics Data System (ADS)
Wells, Gary; Ledesma-Aguillar, Ridrigo; McHale, Glen; Sefiane, Khellil
2015-11-01
The Leidenfrost effect, the sustained levitation of evaporating liquid droplets by a cushion of their on vapour on very hot surfaces, has received increased attention over the past few years. On patterned surfaces, rectification of the vapour layer flow can lead to rich dynamics of evaporating drops or sublimating blocks of dry ice, including self-propulsion, orbiting and conjoint rotation. In this paper we show that the Leidenfrost effect can be exploited to drive the rotation of rigid objects, such as solid hydrophilic plates coupled to water droplets and blocks of dry ice, by using turbine-like substrates. Using a hydrodynamic model, we show that drag-based rotation is achieved at low-Reynolds number by a rectification mechanism of the flow in the vapour layer caused by the underlying turbine-like geometry. Our theoretical model determines the maximum weight of Leidenfrost rotors and the net torque driving their motion in terms of operational parameters, showing an excellent agreement with experiments using dry-ice blocks. We generalise the concept of rotation into a new concept for a heat engine capable of harvesting thermal energy using either thin-film boiling or sublimation as a phase-change mechanism. As a proof principle, we implement the new sublimation engine in the lab to create a simple electromagnetic generator. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.
Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature
NASA Technical Reports Server (NTRS)
Olsen, Michael E.
2016-01-01
Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.
Cogan, N G; Wolgemuth, C W
2011-01-01
The behavior of collections of oceanic bacteria is controlled by metabolic (chemotaxis) and physical (fluid motion) processes. Some sulfur-oxidizing bacteria, such as Thiovulum majus, unite these two processes via a material interface produced by the bacteria and upon which the bacteria are transiently attached. This interface, termed a bacterial veil, is formed by exo-polymeric substances (EPS) produced by the bacteria. By adhering to the veil while continuing to rotate their flagella, the bacteria are able to exert force on the fluid surroundings. This behavior induces a fluid flow that, in turn, causes the bacteria to aggregate leading to the formation of a physical pattern in the veil. These striking patterns are very similar in flavor to the classic convection instability observed when a shallow fluid is heated from below. However, the physics are very different since the flow around the veil is mediated by the bacteria and affects the bacterial densities. In this study, we extend a model of a one-dimensional veil in a two-dimensional fluid to the more realistic two-dimensional veil in a three-dimensional fluid. The linear stability analysis indicates that the Peclet number serves as a bifurcation parameter, which is consistent with experimental observations. We also solve the nonlinear problem numerically and are able to obtain patterns that are similar to those observed in the experiments.
A laboratory study of mean flow generation in rotating fluids by Reynolds stress gradients
NASA Astrophysics Data System (ADS)
McGuinness, D. S.; Boyer, D. L.; Fernando, H. J. S.
2001-06-01
Laboratory experiments were conducted that demonstrate that a mean azimuthal flow can be produced by introducing Reynolds stress gradients to a rotating fluid with zero initial mean flow. This mechanism may play a role in the generation of mean currents in coastal regions. The experiments entail the establishment of turbulence in a thin annular-shaped region centered within a cylindrical test cell through the use of a vertically oscillating grid. This region rests in a horizontal plane perpendicular to the vertical axis of the tank, and the entire system is placed on a turntable to simulate background rotation. Flow visualization techniques are used to depict qualitative features of the resulting flow field. Measurements of the mean and turbulent velocity fields are performed using a two-component laser-Doppler velocimeter. The results show how rectified currents (mean flows) can be generated via Reynolds stress gradients induced by periodic forcing of the grid. In the absence of background rotation, rectified flow is observed in the radial and vertical directions only. The presence of background rotation tends to organize these motions in that the flow tends to move parallel to the turbulent source, i.e., in the azimuthal direction, with the source (strong turbulence) located to the right, facing downstream. The influence of rotation on the Reynolds stresses and their gradients as well as on the ensuing mean flow is evaluated, and the observations are examined by considering individual contributions of the terms in the Reynolds-averaged momentum equations.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1985-01-01
The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.
1998-12-05
This false color picture of Saturn’s northern hemisphere was assembled from ultraviolet, violet and green images obtained Aug. 19 by Voyager 2 from a range of 7.1 million kilometers (4.4 million miles). The several weather patterns evident include three spots flowing westward at about 15 meters-per-second (33 mph). Although the cloud system associated with the western-most spot is part of this flow, the spot itself moves eastward at about 30 meters-per-second (65 mph). Their joint flow shows the anti-cyclonic rotation of the spot, which is about 3,000 km. (1,900 mi.) in diameter. The ribbon- like feature to the north marks a high-speed jet where wind speeds approach 150 meters-per-second (330 mph). http://photojournal.jpl.nasa.gov/catalog/PIA01365
Laminar mixing in a small floating zone
NASA Technical Reports Server (NTRS)
Harriott, George M.
1987-01-01
The relationship between the flow and solute fields during steady mass transfer of a dilute component is analyzed for multi-cellular rotating flows in the floating zone process of semiconductor growth. When the recirculating flows are weak in relation to the rate of crystal growth, a closed-form solution clearly shows the link between the convection pattern in the melt and the solute distribution across the surface of the growing solid. In the limit of strong convection, finite element calculations demonstrate the tendency of the composition to become uniform over the majority of the melt. The solute segregation in the product crystal is greatest when the recirculating motion is comparable to the rate of crystal growth, and points to the danger in attempting to grow compositionally uniform materials from a nearly convectionless melt.
Connecting the large- and the small-scale magnetic fields of solar-like stars
NASA Astrophysics Data System (ADS)
Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.
2018-05-01
A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.
Turbulent structures in cylindrical density currents in a rotating frame of reference
NASA Astrophysics Data System (ADS)
Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas
2018-06-01
Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.
Turbine blade tip flow discouragers
Bunker, Ronald Scott
2000-01-01
A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.
Numerical analysis of the bucket surface roughness effects in Pelton turbine
NASA Astrophysics Data System (ADS)
Xiao, Y. X.; Zeng, C. J.; Zhang, J.; Yan, Z. G.; Wang, Z. W.
2013-12-01
The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance.
Solar-Cycle Variation of Subsurface-Flow Divergence: A Proxy of Magnetic Activity?
NASA Astrophysics Data System (ADS)
Komm, R.; Howe, R.; Hill, F.
2017-09-01
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have analyzed Global Oscillation Network Group (GONG) Dopplergrams with a ring-diagram analysis covering about 15 years and Helioseismic and Magnetic Imager (HMI) Dopplergrams covering more than 6 years. After subtracting the average rotation rate and meridional flow, we have calculated the divergence of the horizontal residual flows from the maximum of Solar Cycle 23 through the declining phase of Cycle 24. The subsurface flows are mainly divergent at quiet regions and convergent at locations of high magnetic activity. The relationship is essentially linear between divergence and magnetic activity at all activity levels at depths shallower than about 10 Mm. At greater depths, the relationship changes sign at locations of high activity; the flows are increasingly divergent at locations with a magnetic activity index (MAI) greater than about 24 G. The flows are more convergent by about a factor of two during the rising phase of Cycle 24 than during the declining phase of Cycle 23 at locations of medium and high activity (about 10 to 40 G MAI) from the surface to at least 10 Mm. The subsurface divergence pattern of Solar Cycle 24 first appears during the declining phase of Cycle 23 and is present during the extended minimum. It appears several years before the magnetic pattern of the new cycle is noticeable in synoptic maps. Using linear regression, we estimate the amount of magnetic activity that would be required to generate the precursor pattern and find that it should be almost twice the amount of activity that is observed.
Wind-Induced Air-Flow Patterns in an Urban Setting: Observations and Numerical Modeling
NASA Astrophysics Data System (ADS)
Sattar, Ahmed M. A.; Elhakeem, Mohamed; Gerges, Bishoy N.; Gharabaghi, Bahram; Gultepe, Ismail
2018-04-01
City planning can have a significant effect on wind flow velocity patterns and thus natural ventilation. Buildings with different heights are roughness elements that can affect the near- and far-field wind flow velocity. This paper aims at investigating the impact of an increase in building height on the nearby velocity fields. A prototype urban setting of buildings with two different heights (25 and 62.5 cm) is built up and placed in a wind tunnel. Wind flow velocity around the buildings is mapped at different heights. Wind tunnel measurements are used to validate a 3D-numerical Reynolds averaged Naviers-Stokes model. The validated model is further used to calculate the wind flow velocity patterns for cases with different building heights. It was found that increasing the height of some buildings in an urban setting can lead to the formation of large horseshoe vortices and eddies around building corners. A separation area is formed at the leeward side of the building, and the recirculation of air behind the building leads to the formation of slow rotation vortices. The opposite effect is observed in the wake (cavity) region of the buildings, where both the cavity length and width are significantly reduced, and this resulted in a pronounced increase in the wind flow velocity. A significant increase in the wind flow velocity in the wake region of tall buildings with a value of up to 30% is observed. The spatially averaged velocities around short buildings also increased by 25% compared to those around buildings with different heights. The increase in the height of some buildings is found to have a positive effect on the wind ventilation at the pedestrian level.
Lagrangian particle drift and surface deformation in a rotating wave on a free liquid surface
NASA Astrophysics Data System (ADS)
Fontana, Paul W.; Francois, Nicolas; Xia, Hua; Punzmann, Horst; Shats, Michael
2017-11-01
A nonlinear model of a rotating wave on the free surface of a liquid is presented. The flow is assumed to be inviscid and irrotational. The wave is constructed as a superposition of two perpendicular, monochromatic standing Stokes waves and is standing-wave-like, but with ``antinodes'' or cells consisting of rotating surface gradients of alternating polarity. Lagrangian fluid particle trajectories show a rotational drift about each cell in the direction of wave rotation, corresponding to a rotating Stokes drift. Each cell therefore has a circulating flow and localized angular momentum even though the Eulerian flow is irrotational. Meanwhile, the wave sets up a static displacement of the free surface, making a trough in each cell. This static surface gradient provides a centripetal force that may account for additional rotation seen in experiments.
The three-dimensional flow past a rapidly rotating circular cylinder
NASA Technical Reports Server (NTRS)
Denier, James P.; Duck, Peter W.
1993-01-01
The high Reynolds number (Re) flow past a rapidly rotating circular cylinder is investigated. The rotation rate of the cylinder is allowed to vary (slightly) along the axis of the cylinder, thereby provoking three-dimensional flow disturbances, which are shown to involve relatively massive (O(Re)) velocity perturbations to the flow away from the cylinder surface. Additionally, three integral conditions, analogous to the single condition determined in two dimensions by Batchelor, are derived, based on the condition of periodicity in the azimuthal direction.
The impact of circulation control on rotary aircraft controls systems
NASA Technical Reports Server (NTRS)
Kingloff, R. F.; Cooper, D. E.
1987-01-01
Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.
NASA Astrophysics Data System (ADS)
Dou, Huashu; Zhang, Shuo; Yang, Hui; Setoguchi, Toshiaki; Kinoue, Yoichi
2018-04-01
Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Reynolds number 40≤ Re ≤200 and various rotation rate θ i . The incoming flow is assumed to be two-dimensional laminar flow. The governing equations are the incompressible Navier-Stokes equations and solved by the finite volume method (FVM). The ratio of the center-to-center spacing to the cylinder diameter is T/D=2. The objective of the present work is to investigate the effect of rotational speed and Reynolds number on the stability of the flow. The simulation results are compared with the experimental data and a good agreement is achieved. The stability of the flow is analyzed by using the energy gradient theory, which produces the energy gradient function K to identify the region where the flow is the most prone to be destabilized and the degree of the destabilization. Numerical results reveal that K is the most significant at the separated shear layers of the cylinder pair. With Re increases, the length of the wake is shorter and the vortex shedding generally exhibits a symmetrical distribution for θ i < θ crit . It is also shown that the unsteady vortex shedding can be suppressed by rotating the cylinders in the counter-rotating mode.
Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics
NASA Astrophysics Data System (ADS)
Krakov, M. S.; Nikiforov, I. V.
2008-12-01
Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.
NASA Astrophysics Data System (ADS)
Feonychev, A. I.
It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of thermal gravitational and thermocapillary convection with secondary flow created by rotating magnetic field, the pulsating oscillations had been also discovered. High-frequency oscillations, with frequencies are usual for oscillatory thermocapillary convection, are modulated by low-frequency oscillation. The latter has frequency is less than the first one by a factor of 10 and more and amplitude can be comparable to amplitude of high-frequency oscillations. Mathematical model of fluid rotating by the action of magnetic field gives an instrument for study of different hydrodynamic problems. Some geophysical problems connected with flow of rotating fluid had been considered in /5/. References 1. Feonychev A.I., Dolgikh G.A. Cosmic Research. 2001. Vol. 39. N 4, pp. 390-399 (translated from Kosmicheskie Issledovaniya). 2. Feonychev A.I. Cosmic Research. 2004 (in press, in Russia). 3. Feonychev A.I., Dolgikh G.A. IX Europ. Symp.'' Gravity-Dependent Phenomena in Physical Science''. Berlin. 1995. Abstracts. P. 246. 4. Feonychev A.I., Bondareva N.V. 2004. Vol. 77. N 2 (translated from Inzhinerno-Physicheskyi zhurnal). 5. Feonychev A.I., Bondareva N.V. Laminar and turbulent flows in homogeneous and stratified rotating fluid. 27th General Assembly of the European Geophysical Society. Nice. France. April 21-26. 2002. Abstract EGS02 -- A -- 01226.
Dynamically generated patterns in dense suspensions of active filaments
NASA Astrophysics Data System (ADS)
Prathyusha, K. R.; Henkes, Silke; Sknepnek, Rastko
2018-02-01
We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations. Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analog in systems of active particles without internal degrees of freedom.
Method and apparatus for improved melt flow during continuous strip casting
Follstaedt, Donald W.; King, Edward L.; Schneider, Ken C.
1991-11-12
The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points.
Method and apparatus for improved melt flow during continuous strip casting
Follstaedt, D.W.; King, E.L.; Schneider, K.C.
1991-11-12
The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points. 8 figures.
Computer modeling of the stalled flow of a rotating cylinder and the reverse magnus effect
NASA Astrophysics Data System (ADS)
Belotserkovskii, S. M.; Kotovskii, V. N.; Nisht, M. I.; Fedorov, R. M.
1985-02-01
Unsteady stalled flow around a rotating cylinder is investigated in a numerical experiment. Attention is mostly given to the reverse Magnus effect which was discovered in tube experiments at some critical rotational speed of the cylinder.
NASA Technical Reports Server (NTRS)
Lawless, Patrick B.; Fleeter, Sanford
1991-01-01
A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.
Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
Zhang, Jiaolong; Xu, Xinpeng; Qian, Tiezheng
2015-03-01
The hydrodynamic reciprocal theorem for Stokes flows is generalized to incorporate the Navier slip boundary condition, which can be derived from Onsager's variational principle of least energy dissipation. The hydrodynamic reciprocal relations and the Jeffery orbit, both of which arise from the motion of a slippery anisotropic particle in a simple viscous shear flow, are investigated theoretically and numerically using the fluid particle dynamics method [Phys. Rev. Lett. 85, 1338 (2000)]. For a slippery elliptical particle in a linear shear flow, the hydrodynamic reciprocal relations between the rotational torque and the shear stress are studied and related to the Jeffery orbit, showing that the boundary slip can effectively enhance the anisotropy of the particle. Physically, by replacing the no-slip boundary condition with the Navier slip condition at the particle surface, the cross coupling between the rotational torque and the shear stress is enhanced, as manifested through a dimensionless parameter in both of the hydrodynamic reciprocal relations and the Jeffery orbit. In addition, simulations for a circular particle patterned with portions of no-slip and Navier slip are carried out, showing that the particle possesses an effective anisotropy and follows the Jeffery orbit as well. This effective anisotropy can be tuned by changing the ratio of no-slip portion to slip potion. The connection of the present work to nematic liquid crystals' constitutive relations is discussed.
Defensive Abdominal Rotation Patterns of Tenebrionid Beetle, Zophobas atratus, Pupae
Ichikawa, Toshio; Nakamura, Tatsuya; Yamawaki, Yoshifumi
2012-01-01
Exarate pupae of the beetle Zophobas atratus Fab. (Coleoptera: Tenebrionidae) have free appendages (antenna, palp, leg, and elytron) that are highly sensitive to mechanical stimulation. A weak tactile stimulus applied to any appendage initiated a rapid rotation of abdominal segments. High-speed photography revealed that one cycle of defensive abdominal rotation was induced in an all-or-none fashion by bending single or multiple mechanosensory hairs on a leg or prodding the cuticular surface of appendages containing campaniform sensilla. The direction of the abdominal rotation completely depended on the side of stimulation; stimulation of a right appendage induced a right-handed rotation about the anterior-posterior axis of the pupal body and vice versa. The trajectories of the abdominal rotations had an ellipsoidal or pear-shaped pattern. Among the trajectory patterns of the rotations induced by stimulating different appendages, there were occasional significant differences in the horizontal (right-left) component of abdominal rotational movements. Simultaneous stimulation of right and left appendages often induced variable and complex patterns of abdominal movements, suggesting an interaction between sensory signals from different sides. When an abdominal rotation was induced in a freely lying pupa, the rotation usually made the pupa move away from or turn its dorsum toward the source of stimulation with the aid of the caudal processes (urogomphi), which served as a fulcrum for transmitting the power of the abdominal rotation to the movement or turning of the whole body. Pattern generation mechanisms for the abdominal rotation were discussed. PMID:23448289
Defensive abdominal rotation patterns of tenebrionid beetle, Zophobas atratus, pupae.
Ichikawa, Toshio; Nakamura, Tatsuya; Yamawaki, Yoshifumi
2012-01-01
Exarate pupae of the beetle Zophobas atratus Fab. (Coleoptera: Tenebrionidae) have free appendages (antenna, palp, leg, and elytron) that are highly sensitive to mechanical stimulation. A weak tactile stimulus applied to any appendage initiated a rapid rotation of abdominal segments. High-speed photography revealed that one cycle of defensive abdominal rotation was induced in an all-or-none fashion by bending single or multiple mechanosensory hairs on a leg or prodding the cuticular surface of appendages containing campaniform sensilla. The direction of the abdominal rotation completely depended on the side of stimulation; stimulation of a right appendage induced a right-handed rotation about the anterior-posterior axis of the pupal body and vice versa. The trajectories of the abdominal rotations had an ellipsoidal or pear-shaped pattern. Among the trajectory patterns of the rotations induced by stimulating different appendages, there were occasional significant differences in the horizontal (right-left) component of abdominal rotational movements. Simultaneous stimulation of right and left appendages often induced variable and complex patterns of abdominal movements, suggesting an interaction between sensory signals from different sides. When an abdominal rotation was induced in a freely lying pupa, the rotation usually made the pupa move away from or turn its dorsum toward the source of stimulation with the aid of the caudal processes (urogomphi), which served as a fulcrum for transmitting the power of the abdominal rotation to the movement or turning of the whole body. Pattern generation mechanisms for the abdominal rotation were discussed.
Pattern formation in rotating Bénard convection
NASA Astrophysics Data System (ADS)
Fantz, M.; Friedrich, R.; Bestehorn, M.; Haken, H.
1992-12-01
Using an extension of the Swift-Hohenberg equation we study pattern formation in the Bénard experiment close to the onset of convection in the case of rotating cylindrical fluid containers. For small Taylor numbers we emphasize the existence of slowly rotating patterns and describe behaviour exhibiting defect motion. Finally, we study pattern formation close to the Küppers-Lortz instability. The instability is nucleated at defects and proceeds through front propagation into the bulk patterns.
Electro-osmotic flow in a rotating rectangular microchannel
Ng, Chiu-On; Qi, Cheng
2015-01-01
An analytical model is presented for low-Rossby-number electro-osmotic flow in a rectangular channel rotating about an axis perpendicular to its own. The flow is driven under the combined action of Coriolis, pressure, viscous and electric forces. Analytical solutions in the form of eigenfunction expansions are developed for the problem, which is controlled by the rotation parameter (or the inverse Ekman number), the Debye parameter, the aspect ratio of the channel and the distribution of zeta potentials on the channel walls. Under the conditions of fast rotation and a thin electric double layer (EDL), an Ekman–EDL develops on the horizontal walls. This is essentially an Ekman layer subjected to electrokinetic effects. The flow structure of this boundary layer as a function of the Ekman layer thickness normalized by the Debye length is investigated in detail in this study. It is also shown that the channel rotation may have qualitatively different effects on the flow rate, depending on the channel width and the zeta potential distributions. Axial and secondary flows are examined in detail to reveal how the development of a geostrophic core may lead to a rise or fall of the mean flow. PMID:26345088
Rotation motion of designed nano-turbine.
Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong
2014-07-28
Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called "dragging effect". Moreover, counterintuitively, the ratio of "effective" driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors.
Rotatable non-circular forebody flow controller
NASA Technical Reports Server (NTRS)
Moskovitz, Cary A. (Inventor)
1991-01-01
The invention is a rotatable, non-circular forebody flow controller. The apparatus comprises a small geometric device located at a nose of a forebody of an aircraft and a non-circular cross-sectional area that extends toward the apex of the aircraft. The device is symmetrical about a reference plane and preferably attaches to an axle which in turn attaches to a rotating motor. The motor rotates the device about an axis of rotation. Preferably, a control unit connected to an aircraft flight control computer signals to the rotating motor the proper rotational positioning of the geometric device.
Steady Flow Generated by a Core Oscillating in a Rotating Spherical Cavity
NASA Astrophysics Data System (ADS)
Kozlov, V. G.; Subbotin, S. V.
2018-01-01
Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).
NASA Astrophysics Data System (ADS)
Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.
2018-03-01
The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.
Granular flow in silos with moving exit
NASA Astrophysics Data System (ADS)
To, Kiwing
2017-11-01
We conducted granular flow experiments of mono-disperse plastic beads falling out of a cylindrical silos through a circular orifice at the bottom. When the diameter of the orifice is about twice that of the beads, no finite flow rate can be sustained because of clogging at the orifice. We constructed a silo with a bottom that can rotate with respect to the wall of the silo. Then one can rotate the bottom of the silo so that the orifice can rotate (or move in a circle if the orifice is off centered) with respect to the beads. In such a silo with rotating bottom, a finite flow rate can be sustained. While the flow rate Q depends on the angular frequency ω of the rotating bottom as well as the distance R of the orifice from the axis of the silo, Q at different ω and R can be collapsed to a single curve when Q when plotted against the product of ω and R. Nankang, Taipei, Taiwan 11529.
NASA Technical Reports Server (NTRS)
Thomas, S.; Faghri, A.; Hankey, W.
1990-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.
Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser
NASA Technical Reports Server (NTRS)
Moore, F. K.
1988-01-01
A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.
Laminar forced convection from a rotating horizontal cylinder in cross flow
NASA Astrophysics Data System (ADS)
Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.
2017-04-01
The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.
Low-speed wind-tunnel tests of single- and counter-rotation propellers
NASA Technical Reports Server (NTRS)
Dunham, D. M.; Gentry, G. L., Jr.; Coe, P. L., Jr.
1986-01-01
A low-speed (Mach 0 to 0.3) wind-tunnel investigation was conducted to determine the basic performance, force and moment characteristics, and flow-field velocities of single- and counter-rotation propellers. Compared with the eight-blade single-rotation propeller, a four- by four- (4 x 4) blade counter-rotation propeller with the same blade design produced substantially higher thrust coefficients for the same blade angles and advance ratios. The results further indicated that ingestion of the wake from a supporting pylon for a pusher configuration produced no significant change in the propeller thrust performance for either the single- or counter-rotation propellers. A two-component laser velocimeter (LV) system was used to make detailed measurements of the propeller flow fields. Results show increasing slipstream velocities with increasing blade angle and decreasing advance ratio. Flow-field measurements for the counter-rotation propeller show that the rear propeller turned the flow in the opposite direction from the front propeller and, therefore, could eliminate the swirl component of velocity, as would be expected.
Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.
Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik
2014-03-01
For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.
DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu
We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions havemore » significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.« less
NASA Technical Reports Server (NTRS)
Bardino, J.; Ferziger, J. H.; Reynolds, W. C.
1983-01-01
The physical bases of large eddy simulation and subgrid modeling are studied. A subgrid scale similarity model is developed that can account for system rotation. Large eddy simulations of homogeneous shear flows with system rotation were carried out. Apparently contradictory experimental results were explained. The main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation. Experimental results are shown to be affected by conditions at the turbulence producing grid, which make the initial states a function of the rotation rate. A two equation model is proposed that accounts for effects of rotation and shows good agreement with experimental results. In addition, a Reynolds stress model is developed that represents the turbulence structure of homogeneous shear flows very well and can account also for the effects of system rotation.
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.
1993-01-01
Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles which are as large as +/- 50 to 60 degrees to the axis of rotation. Most of the previously-presented, multiple-passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. Results from serpentine passages with orientations 0 and 45 degrees to the axis of rotation which simulate the coolant passages for the mid chord and trailing edge regions of the rotating airfoil are compared. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 degree trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 degrees compared to the model at 0 degrees. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 degrees, compared to the results at 0 degrees. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant.
Unsteady flow over a decelerating rotating sphere
NASA Astrophysics Data System (ADS)
Turkyilmazoglu, M.
2018-03-01
Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.
Rotating Detonation Engine Operation (Preprint)
2012-01-01
MdotH2 = mass flow of hydrogen MdotAir = mass flow of air PCB = Piezoelectric Pressure Sensor PDE = Pulsed Detonation Engine RDE = Rotating ...and unsteady thrust output of PDEs . One of the new designs was the Rotating Detonation Engine (RDE). An RDE operates by exhausting an initial...AFRL-RZ-WP-TP-2012-0003 ROTATING DETONATION ENGINE OPERATION (PREPRINT) James A. Suchocki and Sheng-Tao John Yu The Ohio State
NASA Technical Reports Server (NTRS)
Webb, G. M.; Jokipii, J. R.; Morfill, G. E.
1994-01-01
Green's theorem and Green's formula for the diffusive cosmic-ray transport equation in relativistic flows are derived. Green's formula gives the solution of the transport equation in terms of the Green's function of the adjoint transport equation, and in terms of distributed sources throughout the region R of interest, plus terms involving the particle intensity and streaming on the boundary. The adjoint transport equation describes the time-reversed particle transport. An Euler-Lagrange variational principle is then obtained for both the mean scattering frame distribution function f, and its adjoint f(dagger). Variations of the variational functional with respect to f(dagger) yield the transport equation, whereas variations of f yield the adjoint transport equation. The variational principle, when combined with Noether's theorem, yields the conservation law associated with Green's theorem. An investigation of the transport equation for steady, azimuthal, rotating flows suggests the introduction of a new independent variable H to replace the comoving frame momentum variable p'. For the case of rigid rotating flows, H is conserved and is shown to be analogous to the Hamiltonian for a bead on a rigidly rotating wire. The variable H corresponds to a balance between the centrifugal force and the particle inertia in the rotating frame. The physical interpretation of H includes a discussion of nonrelativistic and special relativistic rotating flows as well as the cases of aziuthal, differentially rotating flows about Schwarzs-child and Kerr black holes. Green's formula is then applied to the problem of the acceleration of ultra-high-energy cosmic rays by galactic rotation. The model for galactic rotation assumes an angular velocity law Omega = Omega(sub 0)(omega(sub 0)/omega), where omega denotes radial distance from the axis of rotation. Green's functions for the galactic rotation problem are used to investigate the spectrum of accelerated particles arising from monoenergetic and truncated power-law sources. We conclude that it is possible to accelerate particles beyond the knee by galactic rotation, but not in sufficient number to adequately explain the observed spectrum.
Visualization of a vortex flow in a rotating tank
NASA Astrophysics Data System (ADS)
Kawano, Yosuke
Flow structures of a vortex in a rotating tank were studied employing tracer method. The velocity measurements were made by photographing the motions of small polystyrene particles and analyzing strobo flash light pictures. The vortex flow is confined to a cylindrical region which is composed of a spiral upward flow in the center surrounded by an annular downward flow.
Dynamics of two interacting active Janus particles.
Bayati, Parvin; Najafi, Ali
2016-04-07
Starting from a microscopic model for a spherically symmetric active Janus particle, we study the interactions between two such active motors. The ambient fluid mediates a long range hydrodynamic interaction between two motors. This interaction has both direct and indirect hydrodynamic contributions. The direct contribution is due to the propagation of fluid flow that originated from a moving motor and affects the motion of the other motor. The indirect contribution emerges from the re-distribution of the ionic concentrations in the presence of both motors. Electric force exerted on the fluid from this ionic solution enhances the flow pattern and subsequently changes the motion of both motors. By formulating a perturbation method for very far separated motors, we derive analytic results for the translation and rotational dynamics of the motors. We show that the overall interaction at the leading order modifies the translational and rotational speeds of motors which scale as O[1/D](3) and O[1/D](4) with their separation, respectively. Our findings open up the way for studying the collective dynamics of synthetic micro-motors.
Modeling Czochralski growth of oxide crystals for piezoelectric and optical applications
NASA Astrophysics Data System (ADS)
Stelian, C.; Duffar, T.
2018-05-01
Numerical modeling is applied to investigate the impact of crystal and crucible rotation on the flow pattern and crystal-melt interface shape in Czochralski growth of oxide semi-transparent crystals used for piezoelectric and optical applications. Two cases are simulated in the present work: the growth of piezoelectric langatate (LGT) crystals of 3 cm in diameter in an inductive furnace, and the growth of sapphire crystals of 10 cm in diameter in a resistive configuration. The numerical results indicate that the interface shape depends essentially on the internal radiative heat exchanges in the semi-transparent crystals. Computations performed by applying crystal/crucible rotation show that the interface can be flattened during LGT growth, while flat-interface growth of large diameter sapphire crystals may not be possible.
Prediction of active control of subsonic centrifugal compressor rotating stall
NASA Technical Reports Server (NTRS)
Lawless, Patrick B.; Fleeter, Sanford
1993-01-01
A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.
Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng
2015-05-01
Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system to C-R, R-R and B-R rotation patterns had good effect in terms of improving total yield and economic benefits, and soil physical and chemical properties were improved.
PLASMA FLOWS AT VOYAGER 2 AWAY FROM THE MEASURED SUPRATHERMAL PRESSURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, D. J.; Schwadron, N. A., E-mail: dmccomas@swri.edu
2014-11-01
Plasma flows measured by Voyager 2 show a clear rotation away from radially outward with increasing penetration into the inner heliosheath while the overall flow speed remains roughly constant. However, the direction of rotation is far more into the transverse, and less into the polar direction, than predicted. No current model reproduces the key observational results of (1) the direction of flow rotation or (2) constancy of the flow speed. Here we show that the direction is consistent with flow away from the region of maximum pressure in the inner heliosheath, ∼20° south of the upwind direction, as measured bymore » the Interstellar Boundary Explorer (IBEX). Further, we show that the dominance of the suprathermal ion pressure in the inner heliosheath measured by IBEX can explain both the observed flow rotation and constancy of the flow speed. These results indicate the critical importance of suprathermal ions in the physics of the inner heliosheath and have significant implications for understanding this key region of the heliosphere's interstellar interaction and astrophysical plasmas more broadly.« less
Flow Modification Induced by Quincke Rotation in a Capillary
NASA Astrophysics Data System (ADS)
Cebers, A.; Lemaire, E.; Lobry, L.
When particles immersed in a semi-insulating liquid are submitted to a sufficiently high DC field, they can rotate spontaneously around any axis perpendicular to the field (Quincke rotation). Recently we have shown that due to Quincke effect the effective viscosity of a colloidal suspension could be reduced. When the suspension is submitted to a shear, the particles rotation is amplified by the electric torque and drives the suspending liquid. For a flow in a capillary, this effect manifests itself by an increase of the flow rate. We present the results of our experiments carried out with a rectangular cross section capillary. These results are compared with the direct determination of the apparent viscosity in a Couette flow rheometer.
Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser.
Ning, Qiu-Yi; Liu, Hao; Zheng, Xu-Wu; Yu, Wei; Luo, Ai-Ping; Huang, Xu-Guang; Luo, Zhi-Chao; Xu, Wen-Cheng; Xu, Shan-Hui; Yang, Zhong-Min
2014-05-19
The vector nature of multi-soliton dynamic patterns was investigated in a passively mode-locked figure-eight fiber laser based on the nonlinear amplifying loop mirror (NALM). By properly adjusting the cavity parameters such as the pump power level and intra-cavity polarization controllers (PCs), in addition to the fundamental vector soliton, various vector multi-soliton regimes were observed, such as the random static distribution of vector multiple solitons, vector soliton cluster, vector soliton flow, and the state of vector multiple solitons occupying the whole cavity. Both the polarization-locked vector solitons (PLVSs) and the polarization-rotating vector solitons (PRVSs) were observed for fundamental soliton and each type of multi-soliton patterns. The obtained results further reveal the fundamental physics of multi-soliton patterns and demonstrate that the figure-eight fiber lasers are indeed a good platform for investigating the vector nature of different soliton types.
Hindered bacterial mobility in porous media flow enhances dispersion
NASA Astrophysics Data System (ADS)
Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey
2017-11-01
Swimming bacteria live in porous environments characterized by dynamic fluid flows, where they play a crucial role in processes ranging from the bioremediation to the spread of infections. We study bacterial transport in a quasi-two-dimensional porous microfluidic device, which is complemented by Langevin simulations. The cell trajectories reveal filamentous patterns of high cell concentration, which result from the accumulation of bacteria in the high-shear regions of the flow and their subsequent advection. Moreover, the effective diffusion coefficient of the motile bacteria is severely hindered in the transverse direction to the flow due to decorrelation of the cells' persistent random walk by shear-induced rotation. The hindered lateral diffusion has the surprising consequence of strongly enhancing the longitudinal bacterial transport through a dispersion effect. These results demonstrate the significant role of the flow and geometry in bacterial transport through porous media with potential implications for understanding ecosystem dynamics and engineering bioreactors. NSF CBET-1511340, NSF CAREER-1554095.
Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2004-01-01
In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
On Stationary Navier-Stokes Flows Around a Rotating Obstacle in Two-Dimensions
NASA Astrophysics Data System (ADS)
Higaki, Mitsuo; Maekawa, Yasunori; Nakahara, Yuu
2018-05-01
We study the two-dimensional stationary Navier-Stokes equations describing the flows around a rotating obstacle. The unique existence of solutions and their asymptotic behavior at spatial infinity are established when the rotation speed of the obstacle and the given exterior force are sufficiently small.
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Woike, Mark R.
2013-01-01
The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the patterns; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross-correlation algorithms in order to determine the particle displacements. The effectiveness of each pattern at resolving the known shift is evaluated and discussed in order to choose the most suitable pattern to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.
Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands
NASA Astrophysics Data System (ADS)
Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman
2016-08-01
During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed.
NASA Technical Reports Server (NTRS)
Hall, Philip; Balakumar, P.
1990-01-01
A class of exact steady and unsteady solutions of the Navier Stokes equations in cylindrical polar coordinates is given. The flows correspond to the motion induced by an infinite disc rotating with constant angular velocity about the z-axis in a fluid occupying a semi-infinite region which, at large distances from the disc, has velocity field proportional to (x,-y,O) with respect to a Cartesian coordinate system. It is shown that when the rate of rotation is large, Karman's exact solution for a disc rotating in an otherwise motionless fluid is recovered. In the limit of zero rotation rate a particular form of Howarth's exact solution for three-dimensional stagnation point flow is obtained. The unsteady form of the partial differential system describing this class of flow may be generalized to time-periodic equilibrium flows. In addition the unsteady equations are shown to describe a strongly nonlinear instability of Karman's rotating disc flow. It is shown that sufficiently large perturbations lead to a finite time breakdown of that flow whilst smaller disturbances decay to zero. If the stagnation point flow at infinity is sufficiently strong, the steady basic states become linearly unstable. In fact there is then a continuous spectrum of unstable eigenvalues of the stability equations but, if the initial value problem is considered, it is found that, at large values of time, the continuous spectrum leads to a velocity field growing exponentially in time with an amplitude decaying algebraically in time.
Lattice Boltzmann simulation of viscoelastic flow past a confined free rotating cylinder
NASA Astrophysics Data System (ADS)
Xia, Yi; Zhang, Peijie; Lin, Jianzhong; Ku, Xiaoke; Nie, Deming
2018-05-01
To study the dynamics of rigid body immersed in viscoelastic fluid, an Oldroyd-B fluid flow past an eccentrically situated, free rotating cylinder in a two-dimensional (2D) channel is simulated by a novel lattice Boltzmann method. Two distribution functions are employed, one of which is aimed to solve Navier-Stokes equation and the other to the constitutive equation, respectively. The unified interpolation bounce-back scheme is adopted to treat the moving curved boundary of cylinder, and the novel Galilean invariant momentum exchange method is utilized to obtain the hydrodynamic force and torque exerted on the cylinder. Results show that the center-fixed cylinder rotates inversely in the direction where a cylinder immersed in Newtonian fluid do, which generates a centerline-oriented lift force according to Magnus effect. The cylinder’s eccentricity, flow inertia, fluid elasticity and viscosity would affect the rotation of cylinder in different ways. The cylinder rotates more rapidly when located farther away from the centerline, and slows down when it is too close to the wall. The rotation frequency decreases with increasing Reynolds number, and larger rotation frequency responds to larger Weissenberg number and smaller viscosity ratio, indicating that the fluid elasticity and low solvent viscosity accelerates the flow-induced rotation of cylinder.
Numerical investigation of the onset of centrifugal buoyancy in a rotating cavity
NASA Astrophysics Data System (ADS)
Pitz, Diogo B.; Marxen, Olaf; Chew, John
2016-11-01
Buoyancy-induced flows in a differentially heated rotating annulus present a multitude of dynamics when control parameters such as rotation rate, temperature difference and Prandtl number are varied. Whilst most of the work in this area has been motivated by applications involving geophysics, the problem of buoyancy-induced convection in rotating systems is also relevant in industrial applications such as the flow between rotating disks of turbomachinery internal air systems, in which buoyancy plays a major role and poses a challenge to accurately predict temperature distributions and heat transfer rates. In such applications the rotational speeds involved are very large, so that the centrifugal accelerations induced are much higher than gravity. In this work we perform direct numerical simulations and linear stability analysis of flow induced by centrifugal buoyancy in a sealed rotating annulus of finite gap with flat end-walls, using a canonical setup representative of an internal air system rotating cavity. The analysis focuses on the behaviour of small-amplitude disturbances added to the base flow, and how those affect the onset of Rossby waves and, ultimately, the transition to a fully turbulent state where convection columns no longer have a well-defined structure. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.
NASA Astrophysics Data System (ADS)
Rodriguez-Garcia, Jesus O.; Burguete, Javier
2017-11-01
A new experimental setup has been developed in order to study rotating flows. Our research is derived from the experiments carried out in our group relating to this kind of flows, and the setup is inspired by the simulations performed by Lopez & Gutierrez-Castillo using a split-cylinder flow. In their work they study the different bifurcations taking place into the flow, among others, finding inertial waves in different configurations of the movement of the split-cylinder. Our setup consists in a split-cylinder in which each half can move in co-rotation or in counter-rotation. Moreover, we can set the rotation velocity of each half independently in order to study these different configurations of the flow. The aspect ratio defined as Γ = H / R can be modified, where H is the internal length of the cylinder and R is its radius. With this setup, we study the flow developed inside the split-cylinder depending on the Reynolds number like the different symmetry-breaking that should appear according to Lopez & Gutierrez-Castillo. To obtain the experimental data we use both laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques. The firsts results got are in the co-rotation case rotating one half faster than the other. We acknowledge support from Spanish Government Grant FIS 2014-54101-P. Jesús O. Rodríguez-García acknowledge research Grant from Asociación de Amigos de la Universidad de Navarra.
Geometrically Induced Interactions and Bifurcations
NASA Astrophysics Data System (ADS)
Binder, Bernd
2010-01-01
In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.
NASA Astrophysics Data System (ADS)
Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao
2018-03-01
The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.
Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Liou, Tong-Miin; Wang, Chun-Sheng
2018-01-01
Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.
Rotation Motion of Designed Nano-Turbine
Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong
2014-01-01
Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called “dragging effect”. Moreover, counterintuitively, the ratio of “effective” driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors. PMID:25068725
Experimental study on rotating instability mode characteristics of axial compressor tip flow
NASA Astrophysics Data System (ADS)
Tian, Jie; Yao, Dan; Wu, Yadong; Ouyang, Hua
2018-04-01
This paper investigates the rotating instabilities that occurred on the single-stage axial compressor designed for aerodynamic performance validation, which was tested with two sets of circumferential measuring points in combination. Circumferential mode characteristics of compressors are usually too high to be captured experimentally, and aliasing of the circumferential mode order occurs when not enough sensors are used. A calibration and prediction method to capture the higher circumferential mode of unsteady flow in a compressor was proposed. Unsteady pressure fluctuations near the tip region in an axial compressor were studied, and high circumferential mode characteristics were captured on both the blade passing frequency (BPF) and the rotational instability frequency (RIF) under different flow rate conditions based on this novel method. The characteristic RI spectrum with a broadband hump was present in a large range of flow conditions. Both the frequency range and the dominant circumferential mode order decreased as the flow rate decreased. Based on the calibrated mode characteristics, a rotating aerodynamic source model is used to explain the side-by-side peak of RIF spectrum and rotating characteristics of RI. The calibration and prediction method of the high circumferential mode is beneficial for the research of unsteady flow in an axial compressor.
Mochizuki, S; Abe, Y; Chinzei, T; Isoyama, T; Ono, T; Saito, I; Guba, P; Karita, T; Sun, Y P; Kouno, A; Suzuki, T; Baba, K; Mabuchi, K; Imachi, K
2000-01-01
An undulation pump is a special rotary blood pump in which rotation of a brushless DC motor is transformed to an undulating motion by a disc in the pump housing attached by means of a special link mechanism. In the blood pump, a closed line between the disc and housing moves from the inlet to the outlet by this undulating disc motion, which sucks and pushes the blood from the inlet to the outlet. Because the same phenomena occurs at both sides of the disc, a continuous flow is obtained when the motor rotational speed is constant. The pump flow pattern can be easily changed from continuous flow to pulsatile flow by controlling the motor drive current pattern. A seal membrane made of segmented polyurethane protects the blood from invading the link mechanism as well as the motor. UPTAH is fabricated with two undulation pumps and two brushless DC motors. Its size is 75 mm in diameter and 80 mm long, and it has one of the great advantage of no compliance chamber required in the system. UPTAHs were implanted under cardiopulmonary bypass (CPB) into the chest cavities of 16 goats, each weighing between 41 and 72 kg. No anticoagulant and antiplatelet agent was used after the surgery. The left atrial pressure was automatically controlled to prevent its elevation and sucking of the atrial wall into the atrial cuff. The following results were obtained: (1) UPTAHs fit well into all the goats; (2) the longest survival was 19.8 days, the cause of death was bleeding from the aortic anastomosis; (3) No thrombus was observed in the blood pump despite no anticoagulant use. Hemolysis depended upon the length of CPB during surgery. When CPB time was within 2 hours, hemolysis level returned to baseline within a few days of the surgery. UPTAH is a promising implantable TAH, because of its small size and easy controllability.
Ellingson, William A.; Forster, George A.
1999-11-02
Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.
NASA Astrophysics Data System (ADS)
Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.
2018-07-01
The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.
NASA Astrophysics Data System (ADS)
Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.
2018-04-01
The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.
Self-Rotation of Cells in an Irrotational AC E-Field in an Opto-Electrokinetics Chip
Chau, Long-Ho; Liang, Wenfeng; Cheung, Florence Wing Ki; Liu, Wing Keung; Li, Wen Jung; Chen, Shih-Chi; Lee, Gwo-Bin
2013-01-01
The use of optical dielectrophoresis (ODEP) to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK) device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and physical properties of cells. PMID:23320067
Effect of TurboSwirl Structure on an Uphill Teeming Ingot Casting Process
NASA Astrophysics Data System (ADS)
Bai, Haitong; Ersson, Mikael; Jönsson, Pär
2015-12-01
To produce high-quality ingot cast steel with a better surface quality, it would be beneficial for the uphill teeming process if a much more stable flow pattern could be achieved in the runners. Several techniques have been utilized in the industry to try to obtain a stable flow of liquid steel, such as a swirling flow. Some research has indicated that a swirl blade inserted in the horizontal and vertical runners, or some other additional devices and physics could generate a swirling flow in order to give a lower hump height, avoid mold flux entrapment, and improve the quality of the ingot products, and a new swirling flow generation component, TurboSwirl, was introduced to improve the flow pattern. It has recently been demonstrated that the TurboSwirl method can effectively reduce the risk of mold flux entrapment, lower the maximum wall shear stress, and decrease velocity fluctuations. The TurboSwirl is built at the elbow of the runners as a connection between the horizontal and vertical runners. It is located near the mold and it generates a tangential flow that can be used with a divergent nozzle in order to decrease the axial velocity of the vertical flow into the mold. This stabilizes flow before the fluid enters the mold. However, high wall shear stresses develop at the walls due to the fierce rotation in the TurboSwirl. In order to achieve a calmer flow and to protect the refractory wall, some structural improvements have been made. It was found that by changing the flaring angle of the divergent nozzle, it was possible to lower the axial velocity and wall shear stress. Moreover, when the vertical runner and the divergent nozzle were not placed at the center of the TurboSwirl, quite different flow patterns could be obtained to meet to different requirements. In addition, the swirl numbers of all the cases mentioned above were calculated to ensure that the swirling flow was strong enough to generate a swirling flow of the liquid steel in the TurboSwirl.
Mobile-bearing knees reduce rotational asymmetric wear.
Ho, Fang-Yuan; Ma, Hon-Ming; Liau, Jiann-Jong; Yeh, Chuan-Ren; Huang, Chun-Hsiung
2007-09-01
Polyethylene wear of bearing components is the most common long-term complication in total knee arthroplasty. One would anticipate differing kinematics would generate different wear patterns (including wear type, degree, and symmetry) on the articulating surface of mobile-bearing and fixed-bearing inserts. Because mobile-bearing designs facilitate movement of the insert relative to the tray when the knee rotates, we hypothesized mobile-bearing designs would reduce the incidence of rotational asymmetric wear. We examined 51 worn tibial inserts, including 15 from mobile-bearing rotating-platform posterior-cruciate-sacrificing dished prostheses and 36 from fixed-bearing posterior-cruciate-retaining flat prostheses, which were retrieved at revision surgery with an average implantation time of 115 months. We divided wear types into low-grade wear (burnishing, abrasion, and cold flow) and high-grade wear (scratching, pitting, metal embedding, and delamination) to assess wear degree of polyethylene. To assess symmetry of wear, the insert surface was divided into medial and lateral sides and each side was further divided into three equal zones along the anteroposterior direction. Low-grade wear was more common in mobile-bearing knees, whereas high-grade wear was more common in fixed-bearing knees. We identified no internal/external rotational asymmetric wear or anteroposterior asymmetric wear in mobile-bearing knees.
The Flow in a Model Rotating-Wall Bioreactor.
NASA Astrophysics Data System (ADS)
Smith, Marc K.; Neitzel, G. Paul
1997-11-01
Aggregates of mammalian cells can be grown on artificial polymer constructs in a reactor vessel in order to produce high-quality tissue for medical applications. The growth and differentiation of these cells is greatly affected by the fluid flow and mass transfer within the bioreactor. The surface shear stress on the constructs is an especially important quantity of interest. Here, we consider a bioreactor in the form of two concentric, independently-rotating cylinders with the axis of rotation in a horizontal plane. We shall examine the flow around a model tissue construct in the form of a disk fixed in the flow produced by the rotating walls of the bioreactor. Using CFD techniques, we shall determine the flow field and the surface shear stress distribution on the construct as a function of the wall velocities, the Reynolds number of the flow, and the construct size and position. The results will be compared to the PIV measurements of this system reported by Brown & Neitzel(1997 Meeting of the APS/DFD.).
Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation
NASA Astrophysics Data System (ADS)
Porth, Oliver J. G.
2011-11-01
In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz force, such that we obtain an increased stability of relativistic flows. Accordingly, the non-axisymmetric modes applied to the field-line foot-points saturate quickly, with no signs of enhanced dissipation or disruption near the jet launching site.
NASA Technical Reports Server (NTRS)
Converse, David
2011-01-01
Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.
Effect of Pin Tool Shape on Metal Flow During Friction Stir Welding
NASA Technical Reports Server (NTRS)
McClure, J. C.; Coronado, E.; Aloor, S.; Nowak, B.; Murr, L. M.; Nunes, Arthur C., Jr.; Munafo, Paul M. (Technical Monitor)
2002-01-01
It has been shown that metal moves behind the rotating Friction Stir Pin Tool in two separate currents or streams. One current, mostly on the advancing side, enters a zone of material that rotates with the pin tool for one or more revolutions and eventually is abandoned behind the pin tool in crescent-shaped pieces. The other current, largely on the retreating side of the pin tool is moved by a wiping process to the back of the pin tool and fills in between the pieces of the rotational zone that have been shed by the rotational zone. This process was studied by using a faying surface copper trace to clarify the metal flow. Welds were made with pin tools having various thread pitches. Decreasing the thread pitch causes the large scale top-to-bottorn flow to break up into multiple vortices along the pin and an unthreaded pin tool provides insufficient vertical motion for there to be a stable rotational zone and flow of material via the rotational zone is not possible leading to porosity on the advancing side of the weld.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.; Burcham, R. E.; Diamond, W. A.
1985-01-01
High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-steip and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mullen, R. L.; Braun, M. J.; Burcham, R. E.; Diamond, W. A.
1987-01-01
High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-step and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.
Effect of rotation rate on the forces of a rotating cylinder: Simulation and control
NASA Technical Reports Server (NTRS)
Burns, John A.; Ou, Yuh-Roung
1993-01-01
In this paper we present numerical solutions to several optimal control problems for an unsteady viscous flow. The main thrust of this work is devoted to simulation and control of an unsteady flow generated by a circular cylinder undergoing rotary motion. By treating the rotation rate as a control variable, we can formulate two optimal control problems and use a central difference/pseudospectral transform method to numerically compute the optimal control rates. Several types of rotations are considered as potential controls, and we show that a proper synchronization of forcing frequency with the natural vortex shedding frequency can greatly influence the flow. The results here indicate that using moving boundary controls for such systems may provide a feasible mechanism for flow control.
NASA Astrophysics Data System (ADS)
Lan, C. W.
2001-07-01
The effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation are investigated through numerical simulation. The numerical model is based on the Boussinesq approximation in a rotating frame, and the fluid flow, heat and mass transfer, and the growth interface are solved simultaneously by a robust finite-volume/Newton method. The growth of gallium-doped germanium (GaGe) in the Grenoble furnace is adopted as an example. The calculated results at small Froude number (Fr<<1) are consistent with the previous prediction (Lan, J. Crystal growth 197 (1999) 983). However, at a high rotation speed or in reduced gravity, where the centrifugal acceleration becomes important (Fr˜1), the results are quite different due to the secondary flow induced. Since the direction of the induced flow is different from that of the buoyancy convection due to the concave interface, the flow damping is more effective than that due to the Coriolis force alone. More importantly, radial segregation can be reversed during the flow transition from one to the other.
NASA Astrophysics Data System (ADS)
Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel
2017-06-01
In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.
Turbulent flow in rib-roughened channel under the effect of Coriolis and rotational buoyancy forces
NASA Astrophysics Data System (ADS)
Coletti, Filippo; Jacono, David Lo; Cresci, Irene; Arts, Tony
2014-04-01
The turbulent flow inside a rotating channel provided with transverse ribs along one wall is studied by means of two-dimensional time-resolved particle image velocimetry. The measurement set-up is mounted on the same rotating disk with the test section, allowing to obtain the same accuracy and resolution as in a non-rotating rig. The Reynolds number is 15 000, and the rotation number is 0.38. As the ribbed wall is heated, both the Coriolis force and the centrifugal force play a role in the fluid dynamics. The mean velocity fields highlight the major impact of the rotational buoyancy (characterized by a buoyancy number of 0.31) on the flow along the leading side of the duct. In particular, since the flow is directed radially outward, the near-wall layers experience significant centripetal buoyancy. The recirculation area behind the obstacles is enlarged to the point of spanning the whole inter-rib space. Also the turbulent fluctuations are significantly altered, and overall augmented, with respect to the non-buoyant case, resulting in higher turbulence levels far from the rib. On the other hand the centrifugal force has little or no impact on the flow along the trailing wall. Vortex identification, proper orthogonal decomposition, and two-point correlations are used to highlight rotational effects, and in particular to determine the dominant scales of the turbulent unsteady flow, the time-dependent behavior of the shear layer and of the recirculation bubble behind the wall-mounted obstacles, the lifetime and advection velocity of the coherent structures.
NASA Astrophysics Data System (ADS)
Mukunda, P. G.; Shailesh, Rao A.; Rao, Shrikantha S.
2010-02-01
Although the manner in which the molten metal flows plays a major role in the formation of the uniform cylinder in centrifugal casting, not much information is available on this topic. The flow in the molten metal differs at various rotational speeds, which in turn affects the final casting. In this paper, the influence of the flow of molten metal of hyper eutectic Al-2Si alloys at various rotational speeds is discussed. At an optimum speed of 800 rpm, a uniform cylinder was formed. For the rotational speeds below and above these speeds, an irregular shaped casting was formed, which is mainly due to the influence of melt. Primary á-Al particles were formed in the tube periphery at low rotational speed, and their sizes and shapes were altered with changes in rotational speeds. The wear test for the inner surface of the casting showed better wear properties for the casting prepared at the optimum speed of rotation.
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
The effects of two types of flow non-uniformity on stall inception behavior were assessed with linearized stability analyses of two compressor flow models. Response to rotating tip clearance asymmetries induced by a whirling rotor shaft or rotor height variations were investigated with a two-dimensional flow model. A 3-D compressor model was also developed to study the stability of both full-span and part-span rotating stall modes in annular geometries with radial flow variations. The studies focussed on (1) understanding what compressor designs were sensitive to these types of circumferential and spanwise flow non-uniformities, and (2) situations where 2-D stability theories were inadequate because of 3-D flow effects. Rotating tip clearance non-uniformity caused the greatest performance loss for shafts whirling at the rotating stall frequency. A whirling shaft displacement of 1 percent chord caused the stalling mass flow to rise by as much as 10 percent and the peak pressure rise to decrease by 6 percent. These changes were an order of magnitude larger than for equivalent-sized stationary or rotor-locked clearance asymmetries. Spanwise flow non-uniformity always destabilized the compressor, so that 2-D models over-predicted that stall margin compared to 3-D theory. The difference increased for compressors with larger spanwise variations of characteristic slope and reduced characteristic curvature near the peak. Differences between 2-D and 3-D stall point predictions were generally unacceptable (2 - 4 percent of flow coefficient) for single-stage configurations, but were less than 1 percent for multistage compressors. 2-D analyses predicted the wrong stall mode for specific cases of radial inlet flow distortion, mismatching and annulus area contraction, where higher-order radial modes led to stall. The stability behavior of flows with circumferential or radial non-uniformity was unified through a single stability criterion. The stall point for both cases was set by the integral around the annulus of the pressure rise characteristic slope, weighted by the amplitude of the mode shape. For the case of steady circumferential variations, this criterion reduced to the integrated mean slope (IMS) condition associated with steady inlet distortions. The rotating tip clearance asymmetry model was also used to demonstrate the feasibility of actively controlling the shaft position to suppress rotating stall. In axisymmetric mean flow, this method only stabilized the first harmonic mode, increasing the operating range until surge or higher harmonic modes became unstable.
Development of model-based control for Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Sonda, Paul; Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey. J.
2004-05-01
We study the feasibility of using crucible rotation with feedback control to suppress oscillatory flows in two prototypical vertical Bridgman crystal growth systems—a stabilizing configuration driven by a time-oscillatory furnace disturbance and a thermally destabilized configuration, which exhibits inherent time-varying flows. Proportional controllers are applied to the two systems, with volume-averaged flow speed chosen as the single controlled output and crucible rotation chosen as the manipulated input. Proportional control is able to significantly suppress oscillations in the stabilizing configuration. For the destabilized case, control is effective for small-amplitude flows but is generally ineffective, due to the exacerbating effect of crucible rotation on the time-dependent flows exhibited by this system.
Centrifugal and Coriolis Effects on Thermal Convection in a Rotating Vertical Cylinder
NASA Astrophysics Data System (ADS)
Lee, Hanjie; Pearlstein, Arne J.
1997-11-01
For a rotating vertical circular cylinder, we compute steady axisymmetric flows driven by heating from below, accounting for both centrifugal and Coriolis effects. We discuss the dependence of the flow and heat transfer on Rayleigh number and Ekman number for selected values of the Prandtl number and aspect ratio. For the case where the sidewall temperature varies linearly, the computed solutions include single- and multi-cell flows. We pay particular attention to deviations from rigid-body rotation, with emphasis on topological division of the flow by surfaces on which the azimuthal velocity is equal to the product of the angular velocity and the radius, or by surfaces on which the meridional flow vanishes.
NASA Astrophysics Data System (ADS)
Chaouat, Bruno
2012-04-01
The partially integrated transport modeling (PITM) method [B. Chaouat and R. Schiestel, "A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows," Phys. Fluids 17, 065106 (2005), 10.1063/1.1928607; R. Schiestel and A. Dejoan, "Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations," Theor. Comput. Fluid Dyn. 18, 443 (2005), 10.1007/s00162-004-0155-z; B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgridscale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3; B. Chaouat and R. Schiestel, "Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations," Int. J. Heat Fluid Flow 30, 602 (2009), 10.1016/j.ijheatfluidflow.2009.02.021] viewed as a continuous approach for hybrid RANS/LES (Reynolds averaged Navier-Stoke equations/large eddy simulations) simulations with seamless coupling between RANS and LES regions is used to derive a subfilter scale stress model in the framework of second-moment closure applicable in a rotating frame of reference. This present subfilter scale model is based on the transport equations for the subfilter stresses and the dissipation rate and appears well appropriate for simulating unsteady flows on relatively coarse grids or flows with strong departure from spectral equilibrium because the cutoff wave number can be located almost anywhere inside the spectrum energy. According to the spectral theory developed in the wave number space [B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3], the coefficients used in this model are no longer constants but they are some analytical functions of a dimensionless parameter controlling the spectral distribution of turbulence. The pressure-strain correlation term encompassed in this model is inspired from the nonlinear SSG model [C. G. Speziale, S. Sarkar, and T. B. Gatski, "Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach," J. Fluid Mech. 227, 245 (1991), 10.1017/S0022112091000101] developed initially for homogeneous rotating flows in RANS methodology. It is modeled in system rotation using the principle of objectivity. Its modeling is especially extended in a low Reynolds number version for handling non-homogeneous wall flows. The present subfilter scale stress model is then used for simulating large scales of rotating turbulent flows on coarse and medium grids at moderate, medium, and high rotation rates. It is also applied to perform a simulation on a refined grid at the highest rotation rate. As a result, it is found that the PITM simulations reproduce fairly well the mean features of rotating channel flows allowing a drastic reduction of the computational cost in comparison with the one required for performing highly resolved LES. Overall, the mean velocities and turbulent stresses are found to be in good agreement with the data of highly resolved LES [E. Lamballais, O. Metais, and M. Lesieur, "Spectral-dynamic model for large-eddy simulations of turbulent rotating flow," Theor. Comput. Fluid Dyn. 12, 149 (1998)]. The anisotropy character of the flow resulting from the rotation effects is also well reproduced in accordance with the reference data. Moreover, the PITM2 simulations performed on the medium grid predict qualitatively well the three-dimensional flow structures as well as the longitudinal roll cells which appear in the anticyclonic wall-region of the rotating flows. As expected, the PITM3 simulation performed on the refined grid reverts to highly resolved LES. The present model based on a rational formulation appears to be an interesting candidate for tackling a large variety of engineering flows subjected to rotation.
On blockage effects for a marine hydrokinetic turbine in free surface proximity
NASA Astrophysics Data System (ADS)
Banerjee, A.; Kolekar, N.
2016-12-01
Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.
Menke, John R.; Boeker, Gilbert F.
1976-05-11
1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.
Simulation of an Ice Giant-style Dynamo
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Aurnou, J. M.
2010-12-01
The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.
Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow.
Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric
2013-01-01
In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties. © 2013, The Author(s). Ground Water © 2013, National Ground Water Association.
Flow field investigation in a bulb turbine diffuser
NASA Astrophysics Data System (ADS)
Pereira, M.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.
2017-04-01
An important drop in turbine performances has been measured in a bulb turbine model operated at overload. Previous investigations have correlated the performance drop with diffuser losses, and particularly to the flow separation zone at the diffuser wall. The flow has been investigated in the transition part of the diffuser using two LDV measurement sections. The transition part is a diffuser section that transforms from a circular to a rectangular section. The two measurement sections are at the inlet and outlet of the diffuser transition part. The turbine has been operated at three operating points, which are representative of different flow patterns at the diffuser exit at overload. In addition to the average velocity field, the analysis is conducted based on a backflow occurrence function and on the swirl level. Results reveal a counter-rotating zone in the diffuser, which intensifies with the guide vanes opening. The guide vanes opening induces a modification of the flow phenomena: from a central backflow recirculation zone at the lowest flowrate to a backflow zone induced by flow separation at the wall at the highest flowrate.
Consistency of flow quantifications in tridirectional phase-contrast MRI
NASA Astrophysics Data System (ADS)
Unterhinninghofen, R.; Ley, S.; Dillmann, R.
2009-02-01
Tridirectionally encoded phase-contrast MRI is a technique to non-invasively acquire time-resolved velocity vector fields of blood flow. These may not only be used to analyze pathological flow patterns, but also to quantify flow at arbitrary positions within the acquired volume. In this paper we examine the validity of this approach by analyzing the consistency of related quantifications instead of comparing it with an external reference measurement. Datasets of the thoracic aorta were acquired from 6 pigs, 1 healthy volunteer and 3 patients with artificial aortic valves. Using in-house software an elliptical flow quantification plane was placed manually at 6 positions along the descending aorta where it was rotated to 5 different angles. For each configuration flow was computed based on the original data and data that had been corrected for phase offsets. Results reveal that quantifications are more dependent on changes in position than on changes in angle. Phase offset correction considerably reduces this dependency. Overall consistency is good with a maximum variation coefficient of 9.9% and a mean variation coefficient of 7.2%.
Optoelectrofluidic enhanced immunoreaction based on optically-induced dynamic AC electroosmosis.
Han, Dongsik; Park, Je-Kyun
2016-04-07
We report a novel optoelectrofluidic immunoreaction system based on electroosmotic flow for enhancing antibody-analyte binding efficiency on a surface-based sensing system. Two conventional indium tin oxide glass slides are assembled to provide a reaction chamber for a tiny volume of sample droplet (∼5 μL), in which the top layer is employed as an antibody-immobilized substrate and the bottom layer acts as a photoconductive layer of an optoelectrofluidic device. Under the application of an AC voltage, an illuminated light pattern on the photoconductive layer causes strong counter-rotating vortices to transport analytes from the bulk solution to the vicinity of the assay spot on the glass substrate. This configuration overcomes the slow immunoreaction problem of a diffusion-based sensing system, resulting in the enhancement of binding efficiency via an optoelectrofluidic method. Furthermore, we investigate the effect of optically-induced dynamic AC electroosmotic flow on optoelectrofluidic enhancement for surface-based immunoreaction with a mathematical simulation study and real experiments using immunoglobulin G (IgG) and anti-IgG. As a result, dynamic light patterns provided better immunoreaction efficiency than static light patterns due to effective mass transport of the target analyte, resulting in an achievement of 2.18-fold enhancement under a growing circular light pattern compared to the passive mode.
Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids
NASA Astrophysics Data System (ADS)
Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus
2017-11-01
The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.
NASA Technical Reports Server (NTRS)
Jongen, T.; Machiels, L.; Gatski, T. B.
1997-01-01
Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.
Rotational Relaxation in Nonequilibrium Freejet Expansions of Heated Nitrogen
NASA Technical Reports Server (NTRS)
Gochberg, Lawrence A.; Hurlbut, Franklin C.; Arnold, James O. (Technical Monitor)
1994-01-01
Rotational temperatures have been measured in rarefied, nonequilibrium, heated freejet expansions of nitrogen using the electron beam fluorescence technique at the University of California at Berkeley Low Density Wind Tunnel facility. Spectroscopic measurements of the (0,0) band of the first negative system of nitrogen reveal the nonequilibrium behavior in the flowfield upstream of, and through the Mach disk, which forms as the freejet expands into a region of finite back pressure. Results compare well with previous freejet expansion data and computations regarding location of the Mach disk and terminal rotational temperature in the expansion. Measurements are also presented for shock thickness based on the rotational temperature changes in the flow. Thickening shock layers, departures of rotational temperature from equilibrium in the expansion region, and downstream rotational temperature recovery much below that of an isentropic normal shock provide indications of the rarefied, nonequilibrium flow behavior. The data are analyzed to infer constant values of the rotational-relaxation collision number from 2.2 to 6.5 for the various flow conditions. Collision numbers are also calculated in a consistent manner for data from other investigations for which is seen a qualitative increase with increasing temperature. Rotational-relaxation collision numbers are seen as not fully descriptive of the rarefied freejet flows. This may be due to the high degree of nonequilibrium in the flowfields, and/or to the use of a temperature-insensitive rotational-relaxation collision number model in the data analyses.
Bedrock erosion by sliding wear in channelized granular flow
NASA Astrophysics Data System (ADS)
Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.
2014-12-01
Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of granular velocity and stress.
Photothermally controlled Marangoni flow around a micro bubble
NASA Astrophysics Data System (ADS)
Namura, Kyoko; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi
2015-01-01
We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size.
Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong
2016-05-01
In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)
2009-09-01
non-uniform, stationary rotation / non- Distribution A: Approved for public release; distribution is unlimited. 8 stationary rotation , mass...Cayley spectral transformation as a means of rotating the basin of convergence of the Arnoldi algorithm. Instead of doing the inversion of the large...pair of counter rotating streamwise vortices embedded in uniform shear flow. Consistently with earlier work by the same group, the main present finding
Goldmann, Louis H.
1986-01-01
A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.
Mineral lineation produced by 3-D rotation of rigid inclusions in confined viscous simple shear
NASA Astrophysics Data System (ADS)
Marques, Fernando O.
2016-08-01
The solid-state flow of rocks commonly produces a parallel arrangement of elongate minerals with their longest axes coincident with the direction of flow-a mineral lineation. However, this does not conform to Jeffery's theory of the rotation of rigid ellipsoidal inclusions (REIs) in viscous simple shear, because rigid inclusions rotate continuously with applied shear. In 2-dimensional (2-D) flow, the REI's greatest axis (e1) is already in the shear direction; therefore, the problem is to find mechanisms that can prevent the rotation of the REI about one axis, the vorticity axis. In 3-D flow, the problem is to find a mechanism that can make e1 rotate towards the shear direction, and so generate a mineral lineation by rigid rotation about two axes. 3-D analogue and numerical modelling was used to test the effects of confinement on REI rotation and, for narrow channels (shear zone thickness over inclusion's least axis, Wr < 2), the results show that: (1) the rotational behaviour deviates greatly from Jeffery's model; (2) inclusions with aspect ratio Ar (greatest over least principle axis, e1/e3) > 1 can rotate backwards from an initial orientation w e1 parallel to the shear plane, in great contrast to Jeffery's model; (3) back rotation is limited because inclusions reach a stable equilibrium orientation; (4) most importantly and, in contrast to Jeffery's model and to the 2-D simulations, in 3-D, the confined REI gradually rotated about an axis orthogonal to the shear plane towards an orientation with e1 parallel to the shear direction, thus producing a lineation parallel to the shear direction. The modelling results lead to the conclusion that confined simple shear can be responsible for the mineral alignment (lineation) observed in ductile shear zones.
Numerical flow simulation of a reusable sounding rocket during nose-up rotation
NASA Astrophysics Data System (ADS)
Kuzuu, Kazuto; Kitamura, Keiichi; Fujimoto, Keiichiro; Shima, Eiji
2010-11-01
Flow around a reusable sounding rocket during nose-up rotation is simulated using unstructured compressible CFD code. While a reusable sounding rocket is expected to reduce the cost of the flight management, it is demanded that this rocket has good performance for wide range of flight conditions from vertical take-off to vertical landing. A rotating body, which corresponds to a vehicle's motion just before vertical landing, is one of flight environments that largely affect its aerodynamic design. Unlike landing of the space shuttle, this vehicle must rotate from gliding position to vertical landing position in nose-up direction. During this rotation, the vehicle generates massive separations in the wake. As a result, induced flow becomes unsteady and could have influence on aerodynamic characteristics of the vehicle. In this study, we focus on the analysis of such dynamic characteristics of the rotating vehicle. An employed numerical code is based on a cell-centered finite volume compressible flow solver applied to a moving grid system. The moving grid is introduced for the analysis of rotating motion. Furthermore, in order to estimate an unsteady turbulence, we employed DDES method as a turbulence model. In this simulation, flight velocity is subsonic. Through this simulation, we discuss the effect on aerodynamic characteristics of a vehicle's shape and motion.
Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge
NASA Astrophysics Data System (ADS)
Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin
2018-03-01
In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.
Analysis of preexistent vertebral rotation in the normal infantile, juvenile, and adolescent spine.
Janssen, Michiel M A; Kouwenhoven, Jan-Willem M; Schlösser, Tom P C; Viergever, Max A; Bartels, Lambertus W; Castelein, René M; Vincken, Koen L
2011-04-01
Vertebral rotation was systematically analyzed in the normal, nonscoliotic thoracic spine of children aged 0 to 16 years. Subgroups were created to match the infantile, juvenile, and adolescent age groups according to the criteria of the Scoliosis Research Society. To determine whether a distinct pattern of vertebral rotation in the transverse plane exists in the normal, nonscoliotic infantile, juvenile, and adolescent spine. We assume that, once the spine starts to deteriorate into a scoliotic deformity, it will follow a preexisting rotational pattern. Recently, we identified a rotational pattern in the normal nonscoliotic adult spine that corresponds to the most common curve types in adolescent idiopathic scoliosis. In infantile idiopathic scoliosis, curves are typically left sided and boys are affected more often than girls, whereas in adolescent idiopathic scoliosis, the thoracic curve is typically right sided and predominantly girls are affected. The present study is the first systematic analysis of vertebral rotation in the normal children's spine. Vertebral rotation in the transverse plane of T2-T12 was measured by using a semiautomatic method on 146 computed tomographic scans of children (0-16 years old) without clinical or radiologic evidence of spinal pathology. Scans were mainly made for reasons such as recurrent respiratory tract infections, malignancies, or immune disorders. Vertebral rotational patterns were analyzed in the infantile (0-3-year-old), juvenile (4-9-year-old), and adolescent (10-16-year-old) boys and girls. In the infantile spine, vertebrae T2-T6 were significantly rotated to the left (P < 0.001). In the juvenile spine, T4 was significantly rotated to the left. In the adolescent spine, T6-T12 were significantly rotated to the right (P ≤ 0.001). Rotation to the left was more pronounced in infantile boys than in the girls (P = 0.023). In juvenile and adolescent children, no statistical differences in rotation were found between the sexes. These data support the hypothesis that the direction of the spinal curve in idiopathic scoliosis is determined by the built-in rotational pattern that the spine exhibits at the time of onset. The well-known predominance of right-sided thoracic curves in adolescent idiopathic scoliosis and left-sided curves in infantile idiopathic scoliosis can be explained by the observed patterns of vertebral rotation that preexist at the corresponding age.
Nonlinear travelling waves in rotating Hagen–Poiseuille flow
NASA Astrophysics Data System (ADS)
Pier, Benoît; Govindarajan, Rama
2018-03-01
The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.
Rotating flow of a nanofluid due to an exponentially stretching surface with suction
NASA Astrophysics Data System (ADS)
Salleh, Siti Nur Alwani; Bachok, Norfifah; Arifin, Norihan Md
2017-08-01
An analysis of the rotating nanofluid flow past an exponentially stretched surface with the presence of suction is studied in this work. Three different types of nanoparticles, namely, copper, titania and alumina are considered. The system of ordinary differential equations is computed numerically using a shooting method in Maple software after being transformed from the partial differential equations. This transformation has considered the similarity transformations in exponential form. The physical effect of the rotation, suction and nanoparticle volume fraction parameters on the rotating flow and heat transfer phenomena is investigated and has been described in detail through graphs. The dual solutions are found to appear when the governing parameters reach a certain range.
A Study of Two-Equation Turbulence Models on the Elliptic Streamline Flow
NASA Technical Reports Server (NTRS)
Blaisdell, Gregory A.; Qin, Jim H.; Shariff, Karim; Rai, Man Mohan (Technical Monitor)
1995-01-01
Several two-equation turbulence models are compared to data from direct numerical simulations (DNS) of the homogeneous elliptic streamline flow, which combines rotation and strain. The models considered include standard two-equation models and models with corrections for rotational effects. Most of the rotational corrections modify the dissipation rate equation to account for the reduced dissipation rate in rotating turbulent flows, however, the DNS data shows that the production term in the turbulent kinetic energy equation is not modeled correctly by these models. Nonlinear relations for the Reynolds stresses are considered as a means of modifying the production term. Implications for the modeling of turbulent vortices will be discussed.
Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet
NASA Technical Reports Server (NTRS)
Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.
2017-01-01
Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.
NASA Astrophysics Data System (ADS)
Vidmar, David; Narayan, Sanjiv M.; Krummen, David E.; Rappel, Wouter-Jan
2016-11-01
We present a general method of utilizing bioelectric recordings from a spatially sparse electrode grid to compute a dynamic vector field describing the underlying propagation of electrical activity. This vector field, termed the wave-front flow field, permits quantitative analysis of the magnitude of rotational activity (vorticity) and focal activity (divergence) at each spatial point. We apply this method to signals recorded during arrhythmias in human atria and ventricles using a multipolar contact catheter and show that the flow fields correlate with corresponding activation maps. Further, regions of elevated vorticity and divergence correspond to sites identified as clinically significant rotors and focal sources where therapeutic intervention can be effective. These flow fields can provide quantitative insights into the dynamics of normal and abnormal conduction in humans and could potentially be used to enhance therapies for cardiac arrhythmias.
Vortex breakdown in closed containers with polygonal cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naumov, I. V., E-mail: naumov@itp.nsc.ru; Dvoynishnikov, S. V.; Kabardin, I. K.
2015-12-15
The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position onmore » the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results.« less
The effects of leading edge modifications on the post-stall characteristics of wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Barlow, J. B.; Saini, J. K.; Anderson, J. D., Jr.; Jones, E.
1980-01-01
An investigation of the effects of leading edge modifications on the post-stall characteristics of two rectangular planform wings in a series of low speed wind tunnel tests is presented. Abrupt discontinuities in the leading edge shape of the wings were produced by placing a nose glove over a portion of the span or by deflecting sections of a segmented leading edge flap. Six component balance data, oil flow visualization photographs, and pressure distribution measurements were obtained, and tests made to study the development of flow separation at stall on small scale planform wing models. Results of oil flow visualization tests at and beyond stall showed the formation of counter-rotating swirl patterns on the upper surface of the '2-D' and '3-D' wings, and results of a numerical lifting line technique applied to wings with leading edge modifications are included.
Distorted turbulence submitted to frame rotation: RDT and LES results
NASA Technical Reports Server (NTRS)
Godeferd, Fabien S.
1995-01-01
The objective of this effort is to carry the analysis of Lee et al. (1990) to the case of shear with rotation. We apply the RDT approximation to turbulence submitted to frame rotation for the case of a uniformly sheared flow and compare its mean statistics to results of high resolution DNS of a rotating plane channel flow. In the latter, the mean velocity profile is modified by the Coriolis force, and accordingly, different regions in the channel can be identified. The properties of the plane pure strain turbulence submitted to frame rotation are, in addition, investigated in spectral space, which shows the usefulness of the spectral RDT approach. This latter case is investigated here. Among the general class of quadratic flows, this case does not follow the same stability properties as the others since the related mean vorticity is zero.
Three-dimensional flows in a hyperelastic vessel under external pressure.
Zhang, Sen; Luo, Xiaoyu; Cai, Zongxi
2018-05-09
We study the collapsible behaviour of a vessel conveying viscous flows subject to external pressure, a scenario that could occur in many physiological applications. The vessel is modelled as a three-dimensional cylindrical tube of nonlinear hyperelastic material. To solve the fully coupled fluid-structure interaction, we have developed a novel approach based on the Arbitrary Lagrangian-Eulerian (ALE) method and the frontal solver. The method of rotating spines is used to enable an automatic mesh adaptation. The numerical code is verified extensively with published results and those obtained using the commercial packages in simpler cases, e.g. ANSYS for the structure with the prescribed flow, and FLUENT for the fluid flow with prescribed structure deformation. We examine three different hyperelastic material models for the tube for the first time in this context and show that at the small strain, all three material models give similar results. However, for the large strain, results differ depending on the material model used. We further study the behaviour of the tube under a mode-3 buckling and reveal its complex flow patterns under various external pressures. To understand these flow patterns, we show how energy dissipation is associated with the boundary layers created at the narrowest collapsed section of the tube, and how the transverse flow forms a virtual sink to feed a strong axial jet. We found that the energy dissipation associated with the recirculation does not coincide with the flow separation zone itself, but overlaps with the streamlines that divide the three recirculation zones. Finally, we examine the bifurcation diagrams for both mode-3 and mode-2 collapses and reveal that multiple solutions exist for a range of the Reynolds number. Our work is a step towards modelling more realistic physiological flows in collapsible arteries and veins.
Effect of Vestibular Impairment on Cerebral Blood Flow Response to Dynamic Roll Tilt
NASA Technical Reports Server (NTRS)
Serrador, J. M.; Black, F. O.; Schlgel, Todd T.; Lipsitz, L. A.; Wood, S. J.
2008-01-01
Change to upright posture results in reductions in cerebral perfusion pressure due to hydrostatic pressure changes related to gravity. Since vestibular organs, specifically the otoliths, provide information on position relative to gravity, vestibular inputs may assist in adaptation to the upright posture. The goal of this study was to examine the effect of direct vestibular stimulation on cerebral blood flow (CBF). To examine the role of otolith inputs we screened 165 subjects for vestibular function and classified subjects as either normal or impaired based on ocular torsion. Ocular torsion, an indication of otolith function, was assessed during sinusoidal roll tilt of 20 degrees at 0.01 Hz (100 sec per cycle). Subjects with torsion one SD below the mean were classified as impaired while subjects one SD above the mean were considered normal. During one session subjects were placed in a chair that was sinusoidally rotated 25 degrees in the roll plane at five frequencies: 0.25 & 0.125 Hz for 80 sec, 0.0625 Hz for 160 sec and 0.03125 Hz and 0.015625 Hz for 320 sec. During testing, CBF (transcranial Doppler), blood pressure (Finapres), and end tidal CO2 (Puritan Bennet) were measured continuously. Ocular torsion was assessed from infrared images of the eyes. All rotations were done in the dark with subjects fixated on a red LED directly at the center of rotation. In the normal group, dynamic tilt resulted in significant changes in both blood pressure and cerebral blood flow velocity that was related to the frequency of stimulus. In contrast the impaired group did not show similar patterns. As expected normal subjects demonstrated significant ocular torsion that was related to stimulus frequency while impaired subjects had minimal changes. These data suggest that vestibular inputs have direct effects on cerebral blood flow regulation during dynamic tilt. Supported by NASA.
Flow Transitions in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
1996-01-01
Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.
Goldmann, L.H.
1984-12-06
This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.
Motion fading is driven by perceived, not actual angular velocity.
Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U
2010-06-01
After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Rotationally symmetric viscous gas flows
NASA Astrophysics Data System (ADS)
Weigant, W.; Plotnikov, P. I.
2017-03-01
The Dirichlet boundary value problem for the Navier-Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.
Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Chjan
Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-bodymore » flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.« less
Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation
NASA Technical Reports Server (NTRS)
Yoshikawa, K. K.; Itikawa, Y.
1976-01-01
The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.
Does the Rotator Cuff Tear Pattern Influence Clinical Outcomes After Surgical Repair?
Watson, Scott; Allen, Benjamin; Robbins, Chris; Bedi, Asheesh; Gagnier, Joel J.; Miller, Bruce
2018-01-01
Background: Limited literature exists regarding the influence of rotator cuff tear morphology on patient outcomes. Purpose: To determine the effect of rotator cuff tear pattern (crescent, U-shape, L-shape) on patient-reported outcomes after rotator cuff repair. Study Design: Cohort study; Level of evidence, 3. Methods: Patients undergoing arthroscopic repair of known full-thickness rotator cuff tears were observed prospectively at regular intervals from baseline to 1 year. The tear pattern was classified at the time of surgery as crescent, U-shaped, or L-shaped. Primary outcome measures were the Western Ontario Rotator Cuff Index (WORC), the American Shoulder and Elbow Surgeons (ASES), and a visual analog scale (VAS) for pain. The tear pattern was evaluated as the primary predictor while controlling for variables known to affect rotator cuff outcomes. Mixed-methods regression and analysis of variance (ANOVA) were used to examine the effects of tear morphology on patient-reported outcomes after surgical repair from baseline to 1 year. Results: A total of 82 patients were included in the study (53 male, 29 female; mean age, 58 years [range, 41-75 years]). A crescent shape was the most common tear pattern (54%), followed by U-shaped (25%) and L-shaped tears (21%). There were no significant differences in outcome scores between the 3 groups at baseline. All 3 groups showed statistically significant improvement from baseline to 1 year, but analysis failed to show any predictive effect in the change in outcome scores from baseline to 1 year for the WORC, ASES, or VAS when tear pattern was the primary predictor. Further ANOVA also failed to show any significant difference in the change in outcome scores from baseline to 1 year for the WORC (P = .96), ASES (P = .71), or VAS (P = .86). Conclusion: Rotator cuff tear pattern is not a predictor of functional outcomes after arthroscopic rotator cuff repair. PMID:29623283
Does the Rotator Cuff Tear Pattern Influence Clinical Outcomes After Surgical Repair?
Watson, Scott; Allen, Benjamin; Robbins, Chris; Bedi, Asheesh; Gagnier, Joel J; Miller, Bruce
2018-03-01
Limited literature exists regarding the influence of rotator cuff tear morphology on patient outcomes. To determine the effect of rotator cuff tear pattern (crescent, U-shape, L-shape) on patient-reported outcomes after rotator cuff repair. Cohort study; Level of evidence, 3. Patients undergoing arthroscopic repair of known full-thickness rotator cuff tears were observed prospectively at regular intervals from baseline to 1 year. The tear pattern was classified at the time of surgery as crescent, U-shaped, or L-shaped. Primary outcome measures were the Western Ontario Rotator Cuff Index (WORC), the American Shoulder and Elbow Surgeons (ASES), and a visual analog scale (VAS) for pain. The tear pattern was evaluated as the primary predictor while controlling for variables known to affect rotator cuff outcomes. Mixed-methods regression and analysis of variance (ANOVA) were used to examine the effects of tear morphology on patient-reported outcomes after surgical repair from baseline to 1 year. A total of 82 patients were included in the study (53 male, 29 female; mean age, 58 years [range, 41-75 years]). A crescent shape was the most common tear pattern (54%), followed by U-shaped (25%) and L-shaped tears (21%). There were no significant differences in outcome scores between the 3 groups at baseline. All 3 groups showed statistically significant improvement from baseline to 1 year, but analysis failed to show any predictive effect in the change in outcome scores from baseline to 1 year for the WORC, ASES, or VAS when tear pattern was the primary predictor. Further ANOVA also failed to show any significant difference in the change in outcome scores from baseline to 1 year for the WORC ( P = .96), ASES ( P = .71), or VAS ( P = .86). Rotator cuff tear pattern is not a predictor of functional outcomes after arthroscopic rotator cuff repair.
Observations of Thermospheric Horizontal Winds at Watson Lake, Yukon Territory (lambda=65 Deg N)
NASA Technical Reports Server (NTRS)
Niciejewski, R. J.; Killeen, T. L.; Solomon, Stanley C.
1996-01-01
Fabry-Perot interferometer observations of the thermospheric O I (6300 A) emission have been conducted from an airglow observatory at a dark field site in the southeastern Yukon Territory, Canada, for the period November 1991 to April 1993. The experiment operated in unattended, remote fashion, has resulted in a substantial data set from which mean neutral winds have been determined. Dependent upon geomagnetic activity, the nocturnal location of the site is either equatorward of the auroral oval or within oval boundaries. The data set is rich enough to permit hourly binning of neutral winds based upon the K(sub p) geomagnetic disturbance index as well as the season. For cases of low geomagnetic activity the averaged vector horizontal neutral wind exhibits the characteristics of a midlatitude site displaying antisunward pressure-gradient-driven winds. As the geomagnetic activity rises in the late afternoon and evening winds slowly rotate sunward in an anticlockwise direction, initially remaining near 100 m/s in speed but eventually increasing to 300 m/s for K(sub p) greater than 5. For the higher levels of activity the observed neutral wind flow pattern resembles a higher-latitude polar cap pattern characterized by ion drag forcing of thermospheric neutral gases. In addition, rotational Coriolis forcing on the dusk side enhances the ion drag forcing, resulting in dusk winds which trace out the clockwise dusk cell plasma flow. On the dawn side the neutral winds also rotate in an anticlockwise direction as the strength of geomagnetic disturbances increase. Since the site is located at a transition latitude between the midlatitude and the polar cap the data set provides a sensitive test for general circulation models which attempt to parameterize the contribution of magnetospheric processes. A comparison with the Vector Spherical Harmonic (VSH) model indicates several regions of poor correspondence for December solstice conditions but reasonable agreement for the vernal equinox.
Adaptive Effects on Locomotion Performance Following Exposure to a Rotating Virtual Environment
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Richards, J. T.; Marshburn, A. M.; Bucello, R.; Bloomberg, J. J.
2003-01-01
During long-duration spaceflight, astronauts experience alterations in vestibular and somatosensory cues that result in adaptive disturbances in balance and coordination upon return to Earth. These changes can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate the adaptive sensorimotor component underlying the locomotor disturbances that occur after spaceflight. Therefore, the goal of this study is to develop an inflight training regimen that facilitates recovery of locomotor function after long-duration spaceflight. The countermeasure we are proposing is based on the concept of adaptive generalization. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, i.e., the subject learns response generalizability or the ability to "learn to learn." under a variety of environmental constraints. We are developing an inflight countermeasure built around treadmill exercise activities. By manipulating the sensory conditions of exercise by varying visual flow patterns, body load and speed we will systematically and repeatedly promote adaptive change in locomotor behavior. It has been shown that variable practice training increases adaptability to novel visuo-motor situations. While walking over ground in a stereoscopic virtual environment that oscillated in roll, subjects have shown compensatory torso rotation in the direction of scene rotation that resulted in positional variation away from a desired linear path. Thus, postural sway and locomotor stability in 1-g can be modulated by visual flow patterns and used during inflight treadmill training to promote adaptive generalization. The purpose of this study was to determine if adaptive modification in locomotor performance could be achieved by viewing simulated self-motion in a passive-immersive virtual ' environment over a prolonged period during treadmill locomotion.
Blood flow velocity measurement by endovascular Doppler optical coherence tomography
NASA Astrophysics Data System (ADS)
Sun, Cuiru; Nolte, Felix; Vuong, Barry; Cheng, Kyle H. Y.; Lee, Kenneth K. C.; Standish, Beau A.; Courtney, Brian; Marotta, Tom R.; Yang, Victor X. D.
2013-03-01
Blood flow velocity and volumetric flow measurements are important parameters for assessment of the severity of stenosis and the outcome of interventional therapy. However, feasibility of intravascular flow measurement using a rotational catheter based phase resolved Doppler optical coherence tomography (DOCT) is difficult. Motion artefacts induced by the rotating optical imaging catheter, and the radially dependent noise background of measured Doppler signals are the main challenges encountered. In this study, a custom-made data acquisition system and developed algorithms to remove non-uniform rotational distortion (NURD) induced phase shift artefact by tracking the phase shift observed on catheter sheath. The flow velocity is calculated from Doppler shift obtained by Kasai autocorrelation after motion artefact removal. Blood flow velocity profiles in porcine carotid arteries in vivo were obtained at 100 frames/s with 500 A-lines/frame and DOCT images were taken at 20 frames/s with 2500 A-lines/frame. Time-varying velocity profiles were obtained at an artery branch. Furthermore, the identification of a vein adjacent to the catheterized vessel based on the color Doppler signal was also observed. The absolute measurement of intravascular flow using a rotating fiber catheter can provide insights to different stages of interventional treatment of stenosis in carotid artery.
Magnetically Driven Flows of Suspensions of Rods to Deliver Clot-Busting Drugs to Dead-End Arteries
NASA Astrophysics Data System (ADS)
Bonnecaze, Roger; Clements, Michael
2014-11-01
Suspensions of iron particles in the presence of a magnetic field create flows that could significantly increase the delivery of drugs to dissolve clots in stroke victims. An explanation of this flow rests on the foundation of the seminal works by Prof. Acrivos and his students on effective magnetic permittivity of suspensions of rods, hydrodynamic diffusion of particles, and the flow of suspensions. Intravenous administration of the clot dissolving tissue plasminogen activator (tPA) is the most used therapy for stroke. This therapy is often unsuccessful because the tPA delivery is diffusion-limited and too slow to be effective. Observations show that added iron particles in a rotating magnetic field form rotating rods along the wall of the occluded vessel, creating a convective flow that can carry tPA much faster than diffusion. We present a proposed mechanism for this magnetically driven flow in the form of coupled particle-scale and vessel-scale flow models. At the particle-scale, particles chain up to form rods that rotate, diffuse and translate in the presence of the flow and magnetic fields. Localized vorticity created by the rotating particles drives a macroscopic convective flow in the vessel. Suspension transport equations describe the flow at the vessel-scale. The flow affects the convection and diffusion of the suspension of particles, linking the two scales. The model equations are solved asymptotically and numerically to understand how to create convective flows in dead-end or blocked vessels.
Forced convection in vertical Bridgman configuration with the submerged heater
NASA Astrophysics Data System (ADS)
Meyer, S.; Ostrogorsky, A. G.
1997-02-01
Ga-doped Ge single crystals were grown in vertical Bridgman configuration, using the submerged heater method (SHM). When used without rotation, the submerged heater drastically reduces convection at the solid-liquid interface. When the submerged heater is set in to rotation or oscillatory rotation, it acts as a centrifugal viscous pump, inducing forced convection (radial-inward flow) along the interface. The flow produced by a rotation and oscillatory rotation of the submerged heater was visualized using a 1 : 1 scale model. The vigorous mixing produced by the oscillatory rotation creates a nearly perfectly stirred melt, and yields a uniform lateral distribution of the dopant. The crystals were free of unintentionally produced striae.
Heat transfer in a rotating cavity with a stationary stepped casing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirzaee, I.; Quinn, P.; Wilson, M.
1999-04-01
In the system considered here, corotating turbine disks are cooled by air supplied at the periphery of the system. The system comprises two corotating disks, connected by a rotating cylindrical hub and shrouded by a stepped, stationary cylindrical outer casing. Cooling air enters the system through holes in the periphery of one disk, and leaves through the clearances between the outer casing and the disks. The paper describes a combined computational and experimental study of the heat transfer in the above-described system. In the experiments, one rotating disk is heated, the hub and outer casing are insulated, and the othermore » disk is quasi-adiabatic. Thermocouples and fluxmeters attached to the heated disc enable the Nusselt numbers, Nu, to be determined for a wide range of rotational speeds and coolant flow rates. Computations are carried out using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} turbulence model. The flow structure is shown to be complex and depends strongly on the so-called turbulent flow parameter, {lambda}{sub T}, which incorporates both rotational speed and flow rate. For a given value of {lambda}{sub T}, the computations show that Nu increases as Re{sub {phi}}, the rotational Reynolds number, increases. Despite the complexity of the flow, the agreement between the computed and measured Nusselt numbers is reasonably good.« less
Advanced wind turbine with lift-destroying aileron for shutdown
Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.
1996-06-18
An advanced aileron configuration for wind turbine rotors featuring an aileron with a bottom surface that slopes upwardly at an angle toward the nose region of the aileron. The aileron rotates about a center of rotation which is located within the envelope of the aileron, but does not protrude substantially into the air flowing past the aileron while the aileron is deflected to angles within a control range of angles. This allows for strong positive control of the rotation of the rotor. When the aileron is rotated to angles within a shutdown range of deflection angles, lift-destroying, turbulence-producing cross-flow of air through a flow gap, and turbulence created by the aileron, create sufficient drag to stop rotation of the rotor assembly. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.
Resistive magnetohydrodynamics with toroidal rotation in toroidal plasmas
NASA Astrophysics Data System (ADS)
Cao, Jintao; Cai, Huishan
2018-01-01
Toroidal rotation has always existed in tokamak plasmas, and its Mach number can reach unity during neutral beam injection. Toroidal rotation can affect plasma equilibrium and magnetohydrodynamic instabilities significantly. Based on linearized equations including the toroidal rotation effect, the toroidal model derived by Glasser et al. [Phys. Fluids 18, 875 (1975)] is extended to include this effect, and a set of resistive equations including the toroidal rotation effect in the axi-symmetry toroidal geometry is derived. Based on these derived equations, the effect of toroidal rotation on tearing modes is considered, and the growth rate of tearing modes is obtained analytically. It is shown that the effect of toroidal rotation on tearing modes depends on both the direction of toroidal rotation flow and the sign of toroidal rotation flow shear. When they have the same sign, they play a role in stabilizing tearing modes, while when they have opposite signs, they have a destabilizing effect on tearing modes.
Visual perception of axes of head rotation
Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.
2013-01-01
Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into the SCC frame. PMID:23919087
Castro, M A; Putman, C M; Cebral, J R
2006-09-01
The purpose of this study is to show the influence of the upstream parent artery geometry on intraaneurysmal hemodynamics of cerebral aneurysms. Patient-specific models of 4 cerebral aneurysms (1 posterior communicating artery [PcomA], 2 middle cerebral artery [MCA], and 1 anterior communicating artery [AcomA]) were constructed from 3D rotational angiography images. Two geometric models were constructed for each aneurysm. One model had the native parent vessel geometry; the second model was truncated approximately 1 cm upstream from the aneurysm, and the parent artery replaced with a straight cylinder. Corresponding finite element grids were generated and computational fluid dynamics simulations were carried out under pulsatile flow conditions. The intra-aneurysmal flow patterns and wall shear stress (WSS) distributions were visualized and compared. Models using the truncated parent vessel underestimated the WSS in the aneurysms in all cases and shifted the impaction zone to the neck compared with the native geometry. These effects were more pronounced in the PcomA and AcomA aneurysms where upstream curvature was substantial. The MCA aneurysm with a long M1 segment was the least effected. The more laminar flow pattern within the parent vessel in truncated models resulted in a less complex intra-aneurysmal flow patterns with fewer vortices and less velocity at the dome. Failure to properly model the inflow stream contributed by the upstream parent artery can significantly influence the results of intra-aneurysmal hemodynamic models. The upstream portion of the parent vessel of cerebral aneurysms should be included to accurately represent the intra-aneurysmal hemodynamics.
NASA Technical Reports Server (NTRS)
Johnston, J. P.; Halleen, R. M.; Lezius, D. K.
1972-01-01
Experiments on fully developed turbulent flow in a channel which is rotating at a steady rate about a spanwise axis are described. The Coriolis force components in the region of two-dimensional mean flow affect both local and global stability. Three stability-related phenomena were observed or inferred: (1) the reduction (increase) of the rate of wall-layer streak bursting in locally stabilized (destabilized) wall layers; (2) the total suppression of transition to turbulence in a stabilized layer; (3) the development of large-scale roll cells on the destabilized side of the channel by growth of a Taylor-Gortler vortex instability. Local effects of rotational stabilization, such as reduction of the turbulent stress in wall layers, can be related to the local Richardson number in a simple way. This paper not only investigates this effect, but also, by methods of flow visualization, exposes some of the underlying structure changes caused by rotation.-
NASA Technical Reports Server (NTRS)
Parmentier, E. M.; Helfenstein, P.
1985-01-01
Global lineaments on Europa were interpreted as fractures in an icy crust. A variety of lineament types were identified, which appear to form a systematic pattern on the surface. For a synchronously rotating body, the patterns of fractures observed could be produced by a combination of stresses due to orbital recession, orbital eccentricity, and internal contraction. However, it was recently suggested that the forced eccentricity of Europa's orbit may result in nonsynchronous rotation. The hypothesis that fractures in a thin icy crust may have formed in response to stresses resulting from nonsynchronous rotation is studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauscher, Emily; Kempton, Eliza M. R.
We study the feasibility of observationally constraining the rotation rate of hot Jupiters, planets that are typically assumed to have been tidally locked into synchronous rotation. We use a three-dimensional General Circulation Model to solve for the atmospheric structure of two hot Jupiters (HD 189733b and HD 209458b), assuming rotation periods that are 0.5, 1, or 2 times their orbital periods (2.2 and 3.3 days, respectively), including the effect of variable stellar heating. We compare two observable properties: (1) the spatial variation of flux emitted by the planet, measurable in orbital phase curves, and (2) the net Doppler shift inmore » transmission spectra of the atmosphere, which is tantalizingly close to being measurable in high-resolution transit spectra. Although we find little difference between the observable properties of the synchronous and non-synchronous models of HD 189733b, we see significant differences when we compare the models of HD 209458b. In particular, the slowly rotating model of HD 209458b has an atmospheric circulation pattern characterized by westward flow and an orbital phase curve that peaks after secondary eclipse (in contrast to all of our other models), while the quickly rotating model has a net Doppler shift that is more strongly blueshifted than the other models. Our results demonstrate that the combined use of these two techniques may be a fruitful way to constrain the rotation rate of some planets and motivate future work on this topic.« less
NASA Astrophysics Data System (ADS)
Bekezhanova, V. B.; Goncharova, O. N.
2017-09-01
The solution of special type of the Boussinesq approximation of the Navier - Stokes equations is used to simulate the two-layer evaporative fluid flows. This solution is the 3D generalization of the Ostroumov - Birikh solution of the equations of free convection. Modeling of the 3D fluid flows is performed in an infinite channel of the rectangular cross section without assumption of the axis-symmetrical character of the flows. Influence of gravity and evaporation on the dynamic and thermal phenomena in the system is studied. The fluid flow patterns are determined by various thermal, mechanical and structural effects. Numerical investigations are performed for the liquid - gas system like ethanol - nitrogen and HFE-7100 - nitrogen under conditions of normal and low gravity. The solution allows one to describe a formation of the thermocapillary rolls and multi-vortex structures in the system. Alteration of topology and character of the flows takes place with change of the intensity of the applied thermal load, thermophysical properties of working media and gravity action. Flows with translational, translational-rotational or partially reverse motion can be formed in the system.
NASA Astrophysics Data System (ADS)
Takagi, Seiji; Ueda, Tetsuo
2008-03-01
The emergence and transitions of various spatiotemporal patterns of thickness oscillation were studied in the freshly isolated protoplasm of the Physarum plasmodium. New patterns, such as standing waves, and chaotic and rotating spirals, developed successively before the well-documented synchronous pattern appeared. There was also a spontaneous opposite transition from synchrony to chaotic and rotating spirals. Rotating spiral waves were observed in the large migrating plasmodium, where the vein structures were being destroyed. Thus, the Physarum plasmodium exhibits versatile patterns, which are generally expected in coupled oscillator systems. This paper discusses the physiological roles of spatiotemporal patterns, comparing them with other biological systems.
NASA Astrophysics Data System (ADS)
Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.
2017-07-01
We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the cylinder over one quasi-period of the slowly decaying response and find that vortex elongation is associated with a sign change of that measure, indicating that a reversal of the direction of energy transfer, with the cylinder ;leaking energy back; to the flow, is responsible for partial stabilization and elongation of the wake. We interpret these findings in terms of the spatial structure and energy distribution of the POD modes, and relate them to the mechanism of transient resonance capture into a slow invariant manifold of the fluid-structure interaction dynamics.
Instability in Rotating Machinery
NASA Technical Reports Server (NTRS)
1985-01-01
The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.
A magnetic fluid seal for rotary blood pumps: Behaviors of magnetic fluids in a magnetic fluid seal.
Mitamura, Yoshinori; Yano, Tetsuya; Nakamura, Wataru; Okamoto, Eiji
2013-01-01
A magnetic fluid (MF) seal has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids (several days). We have developed an MF seal that has a shield mechanism. The seal was perfect for 275 days in water. To investigate the effect of a shield, behaviors of MFs in a seal in water were studied both experimentally and computationally. (a) Two kinds of MF seals, one with a shield and one without a shield, were installed in a centrifugal pump. Behaviors of MFs in the seals in water were observed with a video camera and high-speed microscope. In the seal without a shield, the surface of the water in the seal waved and the turbulent flow affected behaviors of the MFs. In contrast, MFs rotated stably in the seal with a shield in water even at high rotational speeds. (b) Computational fluid dynamics analysis revealed that a stationary secondary flow pattern in the seal and small velocity difference between magnetic fluid and water at the interface. These MF behaviors prolonged the life of an MF seal in water.
Mitamura, Yoshinori; Yano, Tetsuya; Okamoto, Eiji
2013-01-01
A magnetic fluid (MF) seal has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids (several days). We have developed an MF seal that has a shield mechanism. The seal was perfect for 275 days in water. To investigate the effect of a shield, behaviors of MFs in a seal in water were studied both experimentally and computationally. (a) Two kinds of MF seals, one with a shield and one without a shield, were installed in a centrifugal pump. Behaviors of MFs in the seals in water were observed with a video camera and high-speed microscope. In the seal without a shield, the surface of the water in the seal waved and the turbulent flow affected behaviors of the MFs. In contrast, MFs rotated stably in the seal with a shield in water even at high rotational speeds. (b) Computational fluid dynamics analysis revealed that a stationary secondary flow pattern in the seal and small velocity difference between magnetic fluid and water at the interface. These MF behaviors prolonged the life of an MF seal in water.
Shen, Shuang; Sun, Xiuzhen; Yu, Shen; Liu, Yingxi; Su, Yingfeng; Zhao, Wei; Liu, Wenlong
2016-06-14
The utriculo-endolymphatic valve (UEV) has an uncertain function, but its opening and closure have been predicted to maintain a constant endolymphatic pressure within the semicircular canals (SCCs) and the utricle of the inner ear. Here, the study׳s aim was to examine the role of the UEV in regulating the capabilities of the 3 SCCs in sensing angular acceleration by using the finite element method. The results of the developed model showed endolymphatic flow and cupula displacement patterns in good agreement with previous experiments. Moreover, the open valve was predicted to permit endolymph exchange between the 2 parts of the membranous labyrinth during head rotation and, in comparison to the closed valve, to result in a reinforced endolymph flow in the utricle and an enhanced or weakened cupula deflection. Further, the model predicted an increase in the size of the orifice would result in greater endolymph exchange and thereby to a greater impact on cupula deflection. The model findings suggest the UEV plays a crucial role in the preservation of inner ear sensory function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Two-dimensional models of fast rotating early-type stars
NASA Astrophysics Data System (ADS)
Rieutord, Michel
2015-08-01
Rotation has now become an unavoidable parameter of stellar models, but for most massive or intermediate-mass stars rotation is fast, at least of a significant fraction of the critical angular velocity. Current spherically symmetric models try to cope with this feature of the stars using various approximations, like for instance the so-called shellular rotation usually accompanied with a diffusion that is meant to represent the mixing induced by rotationally generated flows. Such approximations may be justified in the limit of slow rotation where anisotropies and associated flows are weak. However, when rotation is fast, say larger than 50% of the critical velocities the use of a spherically symmetric 1D-model is doubtful. This is not only because of the centrifugal flattening of the star, but also because of the flows that are induced by the baroclinic torque that naturally appears in the radiative envelope of an early-type (rotating) star. These flows face the cylindrical symmetry of the Coriolis force and the spheroidal symmetry of the effective gravity.In this talk I shall present the latest results of the ESTER project that has taken up the challenge of making two-dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I will focus on main sequence massive and intermediate-mass stars. I'll show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangential cylinder of the core. I'll also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I shall finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I'll also discuss how 2D models can help to recover the fundamental parameters of a star.
Initial stages of cavitation damage and erosion on copper and brass tested in a rotating disk device
NASA Technical Reports Server (NTRS)
Rao, P. V.; Rao, B. C. S.; Rao, N. S. L.
1982-01-01
In view of the differences in flow and experimental conditions, there has been a continuing debate as to whether or not the ultrasonic method of producing cavitation damage is similar to the damage occurring in cavitating flow systems, namely, venturi and rotating disk devices. In this paper, the progress of cavitation damage during incubation periods on polycrystalline copper and brass tested in a rotating disk device is presented. The results indicate several similarities and differences in the damage mechanism encountered in a rotating disk device (which simulates field rotary devices) and a magnetostriction apparatus. The macroscopic erosion appears similar to that in the vibratory device except for nonuniform erosion and apparent plastic flow during the initial damage phase.
Nonmodal phenomena in differentially rotating dusty plasmas
NASA Astrophysics Data System (ADS)
Poedts, Stefaan; Rogava, Andria D.
2000-10-01
In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .
The Influence of Slope Breaks on Lava Flow Surface Disruption
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert
2014-01-01
Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.
Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan
2015-08-01
Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.
Fast image processing with a microcomputer applied to speckle photography
NASA Astrophysics Data System (ADS)
Erbeck, R.
1985-11-01
An automated image recognition system is described for speckle photography investigations in fluid dynamics. The system is employed for characterizing the pattern of interference fringes obtained using speckle interferometry. A rotating ground glass serves as a screen on which laser light passing through a specklegraph plate, the flow and a compensation plate (CP) is shone to produce a compensated Young's pattern. The image produced on the ground glass is photographed by a video camera whose signal is digitized and processed through a microcomputer using a 6502 CPU chip. The normalized correlation function of the intensity is calculated in two directions of the recorded pattern to obtain the wavelength and the light deflection angle. The system has a capability of one picture every two seconds. Sample data are provided for a free jet of CO2 issuing into air in both laminar and turbulent form.
The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth
NASA Astrophysics Data System (ADS)
Pätzold, Olf; Niemietz, Kathrin; Lantzsch, Ronny; Galindo, Vladimir; Grants, Ilmars; Bellmann, Martin; Gerbeth, Gunter
2013-03-01
This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.
NASA Technical Reports Server (NTRS)
Moore, Joan G.; Moore, John
1992-01-01
The flow in the NASA Low-Speed Impeller is affected by both curvature and rotation. The flow curves due to the following: (1) geometric curvature, e.g. the curvature of the hub and shroud profiles in the meridional plane and the curvature of the backswept impeller blades; and (2) secondary flow vortices, e.g. the tip leakage vortex. Changes in the turbulence and effective turbulent viscosity in the impeller are investigated. The effects of these changes on three-dimensional flow development are discussed. Two predictions of the flow in the impeller, one with, and one without modification to the turbulent viscosity due to rotation and curvature, are compared. Some experimental and theoretical background for the modified mixing length model of turbulent viscosity will also be presented.
Numerical study of the effects of rotating forced downdraft in reproducing tornado-like vortices
NASA Astrophysics Data System (ADS)
Zhu, Jinwei; Cao, Shuyang; Tamura, Tetsuro; Tokyo Institute of Technology Collaboration; Tongji Univ Collaboration
2016-11-01
Appropriate physical modeling of a tornado-like vortex is a prerequisite to studying near-surface tornado structure and tornado-induced wind loads on structures. Ward-type tornado simulator modeled tornado-like flow by mounting guide vanes around the test area to provide angular momentum to converging flow. Iowa State University, USA modified the Ward-type simulator by locating guide vanes at a high position to allow vertical circulation of flow that creates a rotating forced downdraft in the process of generating a tornado. However, the characteristics of the generated vortices have not been sufficiently investigated till now. In this study, large-eddy simulations were conducted to compare the dynamic vortex structure generated with/without the effect of rotating forced downdraft. The results were also compared with other CFD and experimental results. Particular attention was devoted to the behavior of vortex wander of generated tornado-like vortices. The present study shows that the vortex center wanders more significantly when the rotating forced downdraft is introduced into the flow. The rotating forced downdraft is advantageous for modeling the rear flank downdraft phenomenon of a real tornado.
Tuning transitions in rotating Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Joshi, Pranav; Kunnen, Rudie; Clercx, Herman
2015-11-01
Turbulent rotating Rayleigh-Bénard convection, depending on the system parameters, exhibits multiple flow states and transitions between them. The present experimental study aims to control the transitions between the flow regimes, and hence the system heat transfer characteristics, by introducing particles in the flow. We inject near-neutrally buoyant silver coated hollow ceramic spheres (~100 micron diameter) and measure the system response, i.e. the Nusselt number, at different particle concentrations and rotation rates. Both for rotating and non-rotating cases, most of the particles settle on the top and bottom plates in a few hours following injection. This rapid settling may be a result of ``trapping'' of particles in the laminar boundary layers at the horizontal walls. These particle layers on the heat-transfer surfaces reduce their effective conductivity, and consequently, lower the heat transfer rate. We calculate the effective system parameters by estimating, and accounting for, the temperature drop across the particle layers. Preliminary analysis suggests that the thermal resistance of the particle layers may affect the flow structure and delay the transition to the ``geostrophic'' regime. Financial support from Foundation for Fundamental Research on Matter.
Numerical simulations of icing in turbomachinery
NASA Astrophysics Data System (ADS)
Das, Kaushik
Safety concerns over aircraft icing and the high experimental cost of testing have spurred global interest in numerical simulations of the ice accretion process. Extensive experimental and computational studies have been carried out to understand the icing on external surfaces. No parallel initiatives were reported for icing on engine components. However, the supercooled water droplets in moist atmosphere that are ingested into the engine can impinge on the component surfaces and freeze to form ice deposits. Ice accretion could block the engine passage causing reduced airflow. It raises safety and performance concerns such as mechanical damage from ice shedding as well as slow acceleration leading to compressor stall. The current research aims at developing a computational methodology for prediction of icing phenomena on turbofan compression system. Numerical simulation of ice accretion in aircraft engines is highly challenging because of the complex 3-D unsteady turbomachinery flow and the effects of rotation on droplet trajectories. The aim of the present research focuses on (i) Developing a computational methodology for ice accretion in rotating turbomachinery components; (ii) Investigate the effect of inter-phase heat exchange; (iii) Characterize droplet impingement pattern and ice accretion at different operating conditions. The simulations of droplet trajectories are based on a Eulerian-Lagrangian approach for the continuous and discrete phases. The governing equations are solved in the rotating blade frame of reference. The flow field is computed by solving the 3-D solution of the compressible Reynolds Averaged Navier Stokes (RANS) equations. One-way interaction models simulate the effects of aerodynamic forces and the energy exchange between the flow and the droplets. The methodology is implemented in the cool, TURBODROP and applied to the flow field and droplet trajectories in NASA Roto-67r and NASA-GE E3 booster rotor. The results highlight the variation of impingement location and temperature with droplet size. It also illustrates the effect of rotor speed on droplet temperature rise. The computed droplet impingement statistics and flow properties are used to calculate ice shapes. It was found that the mass of accreted ice and maximum thickness is highly sensitive to rotor speed and radial location.
Exploring the properties of Solar Prominence Tornados
NASA Astrophysics Data System (ADS)
Ahmad, E.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.
2015-12-01
Solar prominences consist of relatively cool and dense plasma embedded in the hotter solar corona above the solar limb. They form along magnetic polarity inversion lines, and are magnetically supported against gravity at heights of up to ~100 Mm above the chromosphere. Often, parts of prominences visually resemble Earth-based tornados, with inverted-cone-shaped structures and internal motions suggestive of rotation. These "prominence tornados" clearly possess complex magnetic structure, but it is still not certain whether they actually rotate around a ''rotation'' axis, or instead just appear to do so because of composite internal material motions such as counter-streaming flows or lateral (i.e. transverse to the field) oscillations. Here we study the structure and dynamics of five randomly selected prominences, using extreme ultraviolet (EUV) 171 Å images obtained with high spatial and temporal resolution by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) spacecraft. All of the prominences resided in non-active-region locations, and displayed what appeared to be tornado-like rotational motions. Our set includes examples oriented both broadside and end-on to our line-of-sight. We created time-distance plots of horizontal slices at several different heights of each prominence, to study the horizontal plasma motions. We observed patterns of oscillations at various heights in each prominence, and we measured parameters of these oscillations. We find the oscillation time periods to range over ~50 - 90 min, with average amplitudes of ~6,000 km, and with average velocities of ~7 kms-1. We found similar values for prominences viewed either broadside or end-on; this observed isotropy of the lateral oscillatory motion suggests that the apparent oscillations result from actual rotational plasma motions and/or lateral oscillations of the magnetic field, rather than to counter-streaming flows. This research was supported by the National Science Foundation under Grant No. AGS-1460767; EA participated in the Research Experience for Undergraduates (REU) program, at NASA/MSFC. Additional support was from a grant from the NASA LWS program.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1990-01-01
In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.
Vortex-induced suspension of sediment in the surf zone
NASA Astrophysics Data System (ADS)
Otsuka, Junichi; Saruwatari, Ayumi; Watanabe, Yasunori
2017-12-01
A major mechanism of sediment suspension by organized vortices produced under violent breaking waves in the surf zone was identified through physical and computational experiments. Counter-rotating flows within obliquely descending eddies produced between adjacent primary roller vortices induce transverse convergent near-bed flows, driving bed load transport to form regular patterns of transverse depositions. The deposited sediment is then rapidly ejected by upward carrier flows induced between the vortices. This mechanism of vortex-induced suspension is supported by experimental evidence that coherent sediment clouds are ejected where the obliquely descending eddies reach the sea bed after the breaking wave front has passed. In addition to the effects of settling and turbulent diffusion caused by breaking waves, the effect of the vortex-induced flows was incorporated into a suspension model on the basis of vorticity dynamics and parametric characteristics of transverse flows in breaking waves. The model proposed here reasonably predicts an exponential attenuation of the measured sediment concentration due to violent plunging waves and significantly improves the underprediction of the concentration produced by previous models.
Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips
NASA Technical Reports Server (NTRS)
Tse, David G.N.; Steuber, Gary
1996-01-01
Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.
NASA Astrophysics Data System (ADS)
Zhang, Yanfeng; Lu, Xingen; Chu, Wuli; Zhu, Junqiang
2010-08-01
It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception. Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor. For steady analysis, the predicted results agree well with the experimental data for the estimation of compressor rotor global performance. For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage. On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale — spike type rotating stall inception at blade tip region. It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased, the rotating stall cell was further developed in the blade passage.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.
2008-12-01
Escarpments bounding the Pito Deep Rift expose cross-sections into ~3 Ma oceanic crust accreted at a super-fast spreading (>140 mm/yr) segment of the East Pacific Rise (EPR). Dikes within the sheeted dike complex persistently strike NE, parallel to local abyssal hill lineaments and magnetic anomaly stripes, and dip SE, outward and away from the EPR. During the Pito Deep 2005 Cruise, both ALVIN and JASON II used the Geocompass to fully orient a total of 69 samples [63 basaltic dikes, 6 massive gabbros] collected in situ. Paleomagnetic analyses of these oriented samples provide a quantitative constraint of kinematics of structural rotations of dikes. Magnetic remanence of dike samples indicates a dominant normal polarity with almost all directions rotated clockwise from the expected direction. The most geologically plausible model to account for these dispersions using these data coupled with the general orientation of the dikes incorporates two different structural rotations: 1) A horizontal-axis rotation that occurred near the EPR axis, related to sub-axial subsidence, and 2) A clockwise vertical-axis rotation, associated with the rotation of the Easter microplate consistent with current models. Additionally, the anisotropy of magnetic susceptibility (AMS) of dike samples indicates rock fabric and magmatic flow direction within dikes. In most samples, two of three AMS eigenvectors lie near the dike plane orientations. Generally, Kmin lies perpendicular to dike planes, while Kmax is often shallow within the dike planes, indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions that suggest either primary flow or gravitational back-flow during waning stages of dike intrusion. These results provide the first direct evidence for primarily horizontal magma flow in sheeted dikes of super-fast spread oceanic crust. Results for Pito Deep Rift and previous results for Hess Deep Rift reveal outward dipping dikes that are interpreted as a result of subaxial spreading processes that are not evident from surface studies of spreading centers. Both areas show evidence of subaxial subsidence during accretion and lateral magmatic flow in the sheeted dike complex.
Chimenti, Ruth L.; Scholtes, Sara A.
2013-01-01
Many risk factors have been identified as contributing to the development or persistence of low back pain (LBP). However, the juxtaposition of both high and low levels of physical activity being associated with LBP reflects the complexity of the relationship between a risk factor and LBP. Moreover, not everyone with an identified risk factor, such as a movement pattern of increased lumbopelvic rotation, has LBP. Objective The purpose of this study was to examine differences in activity level and movement patterns between people with and people without chronic or recurrent LBP who participate in rotation-related sports. Design Case Case-control study. Setting University laboratory environment. Participants 52 people with chronic or recurrent LBP and 25 people without LBP who all play a rotation-related sport. Main Outcome Measures Participants completed self-report measures including the Baecke Habitual Activity Questionnaire and a questionnaire on rotation-related sports. A 3-dimensional motion-capture system was used to collect movement-pattern variables during 2 lower-limb-movement tests. Results Compared with people without LBP, people with LBP reported a greater difference between the sport subscore and an average work and leisure composite subscore on the Baecke Habitual Activity Questionnaire (F = 6.55, P = .01). There were no differences between groups in either rotation-related-sport participation or movement-pattern variables demonstrated during 2 lower-limb movement tests (P > .05 for all comparisons). Conclusions People with and people without LBP who regularly play a rotation-related sport differed in the amount and nature of activity participation but not in movement pattern variables. An imbalance between level of activity during sport and daily functions may contribute to the development or persistence of LBP in people who play a rotation-related sport. PMID:23295458
Phantom motion after effects--evidence of detectors for the analysis of optic flow.
Snowden, R J; Milne, A B
1997-10-01
Electrophysiological recording from the extrastriate cortex of non-human primates has revealed neurons that have large receptive fields and are sensitive to various components of object or self movement, such as translations, rotations and expansion/contractions. If these mechanisms exist in human vision, they might be susceptible to adaptation that generates motion aftereffects (MAEs). Indeed, it might be possible to adapt the mechanism in one part of the visual field and reveal what we term a 'phantom MAE' in another part. The existence of phantom MAEs was probed by adapting to a pattern that contained motion in only two non-adjacent 'quarter' segments and then testing using patterns that had elements in only the other two segments. We also tested for the more conventional 'concrete' MAE by testing in the same two segments that had adapted. The strength of each MAE was quantified by measuring the percentage of dots that had to be moved in the opposite direction to the MAE in order to nullify it. Four experiments tested rotational motion, expansion/contraction motion, translational motion and a 'rotation' that consisted simply of the two segments that contained only translational motions of opposing direction. Compared to a baseline measurement where no adaptation took place, all subjects in all experiments exhibited both concrete and phantom MAEs, with the size of the latter approximately half that of the former. Adaptation to two segments that contained upward and downward motion induced the perception of leftward and rightward motion in another part of the visual field. This strongly suggests there are mechanisms in human vision that are sensitive to complex motions such as rotations.
Circulation Plasma Centrifuge with Product Flow
NASA Astrophysics Data System (ADS)
Borisevich, V. D.; Potanin, E. P.
2018-05-01
We have analyzed the isotope separation in a high-frequency plasma circulating centrifuge operating with a product flow. The rotation of a weakly ionized plasma is ensured by a rotating magnetic field, while the countercurrent flow (circulation) is produced by a traveling magnetic field. We have calculated the dependences of the enrichment factor and the separative power of the centrifuge on a product flow. The optimal characteristics of the separation unit have been determined.
NASA Astrophysics Data System (ADS)
Breidenthal, Robert
2003-11-01
Using heuristic arguments, the fundamental effect of acceleration on dissipation in self-similar turbulence is explored. If the ratio of the next vortex rotation period to the last one is always constant, a flow is temporally self-similar. This implies that the vortex rotation period is a linear function of time. For ordinary, unforced turbulence, the period increases linearly in time. However, by imposing an external e-folding time scale on the flow that decreases linearly in time, the dissipation rate is changed from that of the corresponding unforced flow. The dissipation rate depends on the time rate of change of the rotation period as well as the dimensions of the dynamic quantity controlling the flow. For almost all canonical laboratory flows, acceleration reduces the dissipation and entrainment rates. An example is the exponential jet, where the flame length increases by about 20conventional jet. An exception is Rayleigh-Taylor flow, where acceleration increases the dissipation rate.
Erosion and flow of hydrophobic granular materials
NASA Astrophysics Data System (ADS)
Utter, Brian; Benns, Thomas; Mahler, Joseph
2013-11-01
We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.
Erosion and flow of hydrophobic granular materials
NASA Astrophysics Data System (ADS)
Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph
2015-03-01
We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.
Experimental study of rotational oscillation of H-shaped bodies in the flow
NASA Astrophysics Data System (ADS)
Braun, Oleg; Ryabinin, Anatoly
2018-05-01
The rotational oscillations of H-shaped body in the air flow are studied in the wind tunnel. The body is elastically fixed in the test section and can rotate only around axis that is perpendicular to the velocity vector. Tenzometrical technique is used for measurement of amplitude of rotational oscillations. The dependencies of oscillation amplitude on aspect ratio of the H-shaped body and air velocity are obtained. It is found that the increase of the flange height leads to growth of the amplitude of the oscillations.
Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation
NASA Technical Reports Server (NTRS)
Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri
1998-01-01
The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence with symmetries broken by rotation and stratification. Such structure is here found to play a crucial role in defining the mean zonal and meridional flows that coexist with the convection. Though they are subject to strong inertial oscillations, the strength and type of the mean flows are determined by a combination of the laminar tilting and the turbulent alignment mechanisms. Varying the parameters produces a wide range of mean motions. Among these, some turbulent solutions exhibit a mean zonal velocity profile that is nearly constant with depth, much as deduced by helioseismology at midlatitudes within the Sun. The solutions exhibit a definite handedness, with the direction of the persistent mean flows often prescribing a spiral with depth near the boundaries, also in accord with helioseismic deductions. The mean helicity has a profile that is positive in the upper portion of the domain and negative in the lower portion, a property bearing on magnetic dynamo processes that may be realized within such rotating layers of turbulent convection.
NASA Astrophysics Data System (ADS)
Sonda, Paul Julio
This thesis presents a comprehensive examination of the modeling, simulation, and control of axisymmetric flows occurring in a vertical Bridgman crystal growth system with the melt underlying the crystal. The significant complexity and duration of the manufacturing process make experimental optimization a prohibitive task. Numerical simulation has emerged as a powerful tool in understanding the processing issues still prevalent in industry. A first-principles model is developed to better understand the transport phenomena within a representative vertical Bridgman system. The set of conservation equations for momentum, energy, and species concentration are discretized using the Galerkin finite element method and simulated using accurate time-marching schemes. Simulation results detail the occurrence of fascinating nonlinear dynamics, in the form of stable, time-varying behavior for sufficiently large melt regimes and multiple steady flow states. This discovery of time-periodic flows for high intensity flows is qualitatively consistent with experimental observations. Transient simulations demonstrate that process operating conditions have a marked effect on the hydrodynamic behavior within the melt, which consequently affects the dopant concentration profile within the crystal. The existence of nonlinear dynamical behavior within this system motivates the need for feedback control algorithms which can provide superior crystal quality. This work studies the feasibility of using crucible rotation to control flows in the vertical Bridgman system. Simulations show that crucible rotation acts to suppress the axisymmetric flows. However, for the case when the melt lies below the crystal, crucible rotation also acts to accelerate the onset of time-periodic behavior. This result is attributed to coupling between the centrifugal force and the intense, buoyancy-driven flows. Proportional, proportional-integral, and input-output linearizing controllers are applied to vertical Bridgman systems in stabilizing (crystal below the melt) and destabilizing (melt below the crystal) configurations. The spatially-averaged, axisymmetric kinetic energy is the controlled output. The flows are controlled via rotation of the crucible containing the molten material. Simulation results show that feedback controllers using crucible rotation effectively attenuate flow oscillations in a stabilizing configuration with time-varying disturbance. Crucible rotation is not an optimal choice for suppressing inherent flow oscillations in the destabilizing configuration.
NASA Astrophysics Data System (ADS)
Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai
2016-09-01
We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-04-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
Identification of complex flows in Taylor-Couette counter-rotating cavities
NASA Technical Reports Server (NTRS)
Czarny, O.; Serre, E.; Bontoux, P.; Lueptow, R. M.
2001-01-01
The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available. c2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-03-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
On the development of lift and drag in a rotating and translating cylinder
NASA Astrophysics Data System (ADS)
Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon
2014-11-01
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.
Flows about a rotating circular cylinder by the discrete-vortex method
NASA Astrophysics Data System (ADS)
Kimura, Takeyoshi; Tsutahara, Michihisa
1987-01-01
A numerical study has been conducted for flows past a rotating circular cylinder at high Reynolds numbers, using the discrete-vortex method. It is noted that the reverse Magnus effect is caused by the retreat of the separation point on the acceleration side. At high rotating speed, the nascent vortices of opposite directions are mixed faster, the wake becomes narrower, and predominating frequencies in the lift force disappear.
Sunkara, Adhira
2015-01-01
As we navigate through the world, eye and head movements add rotational velocity patterns to the retinal image. When such rotations accompany observer translation, the rotational velocity patterns must be discounted to accurately perceive heading. The conventional view holds that this computation requires efference copies of self-generated eye/head movements. Here we demonstrate that the brain implements an alternative solution in which retinal velocity patterns are themselves used to dissociate translations from rotations. These results reveal a novel role for visual cues in achieving a rotation-invariant representation of heading in the macaque ventral intraparietal area. Specifically, we show that the visual system utilizes both local motion parallax cues and global perspective distortions to estimate heading in the presence of rotations. These findings further suggest that the brain is capable of performing complex computations to infer eye movements and discount their sensory consequences based solely on visual cues. DOI: http://dx.doi.org/10.7554/eLife.04693.001 PMID:25693417
Column formation and hysteresis in a two-fluid tornado
NASA Astrophysics Data System (ADS)
Sharifullin, B. R.; Naumov, I. V.; Herrada, M. A.; Shtern, V. N.
2018-03-01
This experimental and numerical study addresses a flow of water and sunflower oil. This flow is driven by the rotating lid in a sealed vertical cylinder. The experiments were performed in a glass container with a radius of 45 mm and a height of 45 mm with the water volume fraction of 20%. Different densities and immiscibility of liquids provide the stable and sharp interface. At the rest, the interface is flat and horizontal. As the rotation speeds up, a new water-flow cell emerges near the bottom center. This cell expands and occupies almost the entire water domain while the initial water circulation shrinks into a thin layer adjacent to the interface. The water, rising near the container axis, strongly deforms the interface (upward near the axis and downward near the sidewall). A new oil-flow cell emerges above the interface near the axis. This cell disappears as the interface approaches the lid. The water separates from the sidewall, reaches the lid, and forms a column. As the rotation is decreased, the scenario reverses, but the flow states differ from those for the increasing rotation, i.e., a hysteresis is observed. The numerical simulations agree with the experiment and help explain the flow metamorphoses.
Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes
NASA Astrophysics Data System (ADS)
Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.
2015-11-01
We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.
Stability Of Oscillatory Rotating-Disk Boundary Layers
NASA Astrophysics Data System (ADS)
Morgan, Scott; Davies, Christopher
2017-11-01
The rotating disk boundary layer has long been considered as an archetypal model for studying the stability of three-dimensional boundary-layer flows. It is one of the few truly three-dimensional configurations for which there is an exact similarity solution of the Navier-Stokes equations. Due to a crossflow inflexion point instability, the investigation of strategies for controlling the behaviour of disturbances that develop in the rotating disk flow may prove to be helpful for the identification and assessment of aerodynamical technologies that have the potential to maintain laminar flow over swept wings. We will consider the changes in the stability behaviour which arise when the base-flow is altered by imposing a periodic modulation in the rotation rate of the disk surface. Following similar work by Thomas et al., preliminary results indicate that this modification can lead to significant stabilising effects. Current work encompasses linearised DNS, complemented by a local in time analysis made possible by imposing an artificial frozen flow approximation. This is deployed together with a more exact global treatment based upon Floquet theory, which avoids the need for any simplification of the temporal dependency of the base-flow.
CFD simulation of local and global mixing time in an agitated tank
NASA Astrophysics Data System (ADS)
Li, Liangchao; Xu, Bin
2017-01-01
The Issue of mixing efficiency in agitated tanks has drawn serious concern in many industrial processes. The turbulence model is very critical to predicting mixing process in agitated tanks. On the basis of computational fluid dynamics(CFD) software package Fluent 6.2, the mixing characteristics in a tank agitated by dual six-blade-Rushton-turbines(6-DT) are predicted using the detached eddy simulation(DES) method. A sliding mesh(SM) approach is adopted to solve the rotation of the impeller. The simulated flow patterns and liquid velocities in the agitated tank are verified by experimental data in the literature. The simulation results indicate that the DES method can obtain more flow details than Reynolds-averaged Navier-Stokes(RANS) model. Local and global mixing time in the agitated tank is predicted by solving a tracer concentration scalar transport equation. The simulated results show that feeding points have great influence on mixing process and mixing time. Mixing efficiency is the highest for the feeding point at location of midway of the two impellers. Two methods are used to determine global mixing time and get close result. Dimensionless global mixing time remains unchanged with increasing of impeller speed. Parallel, merging and diverging flow pattern form in the agitated tank, respectively, by changing the impeller spacing and clearance of lower impeller from the bottom of the tank. The global mixing time is the shortest for the merging flow, followed by diverging flow, and the longest for parallel flow. The research presents helpful references for design, optimization and scale-up of agitated tanks with multi-impeller.
NASA Astrophysics Data System (ADS)
Kivelson, Margaret; Southwood, David
Superimposed on the predominantly dipolar field of Saturn's middle magnetosphere (here taken as between 5 and 10 RS) are perturbations of a few nT amplitude that vary with the SKR periodicity. Andrews and coworkers (2008) have determined that averages of the perturbations of the radial and azimuthal field components vary roughly sinusoidally and in quadrature, with the radial component leading. Thus these two components of the magnetic perturbations can be represented as an approximately uniform field rotating in the sense of Saturn's rotation (Espinosa et al., 2003). This perturbation field is referred to by Southwood and Kivelson (2007) as the cam field. Andrews et al. (2008) show that perturbation of the theta component, (theta is colatitude) is also nearly sinusoidal and in-phase with the radial perturbations. It follows that near the equator variations of the field magnitude are also in phase with the radial perturbations. Provan et al. (2009) and Khurana et al. (2009) have attributed the periodicity of the field magnitude to an asymmetric ring current. Saturn's asymmetric ring current is not fixed in local time,as it is at Earth, but rotates quasi-rigidly at the SKR period. A distributed, rotating field-aligned current (FAC) system must develop between regions with an excess of or a dearth of azimuthal current but, because those FACs spread over a large spatial region, the associated current density will be smaller than the current density of the more localized cam current system. Thus, it is the electrons associated with the latter currents that are likely to drive the periodically modulated SKR signals. The ring current of the middle magnetosphere is dominated by inertial currents carried by the thermal plasma (Sergis et al., 2010), but the variation of azimuthal current may arise either from density variations or variations of plasma beta. In either case, the current pattern must drive a circulation of the plasma in the middle magnetosphere. [A circulating plasma pattern in the inner magnetosphere at distances less than 5 RS has been described by Gurnett et al. (2007) but has not yet been related to the analysis of this talk.] Because of the local time asymmetry of the magnetosphere, the flows and some of the magnetic perturbations are expected to increase in magnitude when the outward flow sector rotates into the post dusk magnetosphere, a phenomenon possibly related to the recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere described by Mitchell et al (2009). In this talk we expand on the description of this abstract and analyze the consequences for plasma circulation of the rotating asymmetry in field and particles in Saturn's middle magnetosphere.
Terabayashi, Nobuo; Watanabe, Tsuneo; Matsumoto, Kazu; Takigami, Iori; Ito, Yoshiki; Fukuta, Masashi; Akiyama, Haruhiko; Shimizu, Katsuji
2014-09-01
Night pain is a particularly vexing symptom in patients with rotator cuff tear. It disturbs sleep and decreases quality of life, and there is no consensus regarding its etiology. Based on arthroscopic surgical observations of synovitis around the rotator interval or capsule surface in rotator cuff tear, we hypothesized that blood flow from the artery feeding the capsule increases blood supply to the synovium. This study aimed to investigate the relationship between blood flow and night pain using pulse Doppler ultrasonography. A series of 47 consecutive patients with rotator cuff tear was evaluated. The peak systolic velocity and resistance index of blood flow in the ascending branch of the anterior humeral circumflex artery were evaluated using pulse Doppler ultrasonography. We also investigated 20 normal shoulders in healthy volunteers. The peak systolic velocity and resistance index were compared between affected and unaffected sides in patients and between dominant and nondominant sides in controls. Anterior humeral circumflex artery peak systolic velocity and resistance index did not differ between sides in control subjects or in patients with rotator cuff tear without night pain. However, anterior humeral circumflex artery peak systolic velocity and resistance index did differ significantly between sides in patients with rotator cuff tear with night pain. This study revealed anterior humeral circumflex artery hemodynamics in patients with rotator cuff tear and normal subjects using Doppler ultrasonography. Night pain, particularly involving aching, appears to be related to the hemodynamics. These findings suggest that investigating the hemodynamics of patients with rotator cuff tear with night pain may lead to greater understanding of the etiology of this symptom.
Flow visualization around a rotating body in a wind tunnel
NASA Astrophysics Data System (ADS)
Hiraki, K.; Zaitsu, D.; Yanaga, Y.; Kleine, H.
2017-02-01
The rotational behavior of capsule-shaped models is investigated in the transonic wind tunnel of JAXA. A special support is developed to allow the model to rotate around the pitch, yaw and roll axes. This 3-DOF free rotational mounting apparatus achieves the least frictional torque from the support and the instruments. Two types of capsule models are prepared, one is drag type (SPH model) and the other is lift type (HTV-R model). The developed mounting apparatus is used in the wind tunnel tests with these capsule models. In a flow of Mach 0.9, the SPH model exhibits oscillations in pitch and yaw, and it rolls half a turn during the test. Similarly, the HTV-R model exhibits pitch and yaw oscillations in a flow of Mach 0.5. Moreover, it rolls multiple times during the test. In order to investigate the flow field around the capsule, the combined technique of color schlieren and surface tufts is applied. This visualization clearly shows the flow reattachment on the back surface of a capsule, which is suspected to induce the rapid rolling motion.
Development of rotation sample designs for the estimation of crop acreages
NASA Technical Reports Server (NTRS)
Lycthuan-Lee, T. G. (Principal Investigator)
1981-01-01
The idea behind the use of rotation sample designs is that the variation of the crop acreage of a particular sample unit from year to year is usually less than the variation of crop acreage between units within a particular year. The estimation theory is based on an additive mixed analysis of variance model with years as fixed effects, (a sub t), and sample units as a variable factor. The rotation patterns are decided upon according to: (1) the number of sample units in the design each year; (2) the number of units retained in the following years; and (3) the number of years to complete the rotation pattern. Different analytic formulae for the variance of (a sub t) and the variance comparisons in using a complete survey of the rotation patterns.
Ouyang, Yiwen; Wang, Shibo; Li, Jingyi; Riehl, Paul S; Begley, Matthew; Landers, James P
2013-05-07
We recently defined a method for fabricating multilayer microdevices using poly(ethylene terephthalate) transparency film and printer toner, and showed these could be successfully applied to DNA extraction and amplification (Duarte et al., Anal. Chem. 2011, 83, 5182-5189). Here, we advance the functionality of these microdevices with flow control enabled by hydrophobic valves patterned using laser printer lithography. Laser printer patterning of toner within the microchannel induces a dramatic change in surface hydrophobicity (change in contact angle of DI water from 51° to 111°) with good reproducibility. Moreover, the hydrophobicity of the surface can be controlled by altering the density of the patterned toner via varying the gray-scale setting on the laser printer, which consequently tunes the valve's burst pressure. Toner density provided a larger burst pressure bandwidth (158 ± 18 Pa to 573 ± 16 Pa) than could be achieved by varying channel geometry (492 ± 18 Pa to 573 ± 16 Pa). Finally, we used a series of tuned toner valves (with varied gray-scale) for passive valve-based fluidic transfer in a predictable manner through the architecture of a rotating PeT microdevice. While an elementary demonstration, this presents the possibility for simplistic and cost-effective microdevices with valved fluid flow control to be fabricated using nothing more than a laser printer, a laser cutter and a laminator.
Toward a Turbulence Constitutive Relation for Rotating Flows
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1996-01-01
In rapidly rotating turbulent flows the largest scales of the motion are in approximate geostrophic balance. Single-point turbulence closures, in general, cannot attain a geostrophic balance. This article addresses and resolves the possibility of constitutive relation procedures for single-point second order closures for a specific class of rotating or stratified flows. Physical situations in which the geostrophic balance is attained are described. Closely related issues of frame-indifference, horizontal nondivergence, Taylor-Proudman theorem and two-dimensionality are, in the context of both the instantaneous and averaged equations, discussed. It is shown, in the absence of vortex stretching along the axis of rotation, that turbulence is frame-indifferent. A derivation and discussion of a geostrophic constraint which the prognostic equations for second-order statistics must satisfy for turbulence approaching a frame-indifferent limit is given. These flow situations, which include rotating and nonrotating stratified flows, are slowly evolving flows in which the constitutive relation procedures are useful. A nonlinear non-constant coefficient representation for the rapid-pressure strain covariance appearing in the Reynolds stress and heat flux equations consistent with the geostrophic balance is described. The rapid-pressure strain model coefficients are not constants determined by numerical optimization but are functions of the state of the turbulence as parameterized by the Reynolds stresses and the turbulent heat fluxes. The functions are valid for all states of the turbulence attaining their limiting values only when a limit state is achieved. These issues are relevant to strongly vortical flows as well as flows such as the planetary boundary layers, in which there is a transition from a three-dimensional shear driven turbulence to a geostrophic or horizontal turbulence.
Turbulence modeling in simulation of gas-turbine flow and heat transfer.
Brereton, G; Shih, T I
2001-05-01
The popular k-epsilon type two-equation turbulence models, which are calibrated by experimental data from simple shear flows, are analyzed for their ability to predict flows involving shear and an extra strain--flow with shear and rotation and flow with shear and streamline curvature. The analysis is based on comparisons between model predictions and those from measurements and large-eddy simulations of homogenous flows involving shear and an extra strain, either from rotation or from streamline curvature. Parameters are identified, which show the conditions under which performance of k-epsilon type models can be expected to be poor.
On the Variation of Zonal Gravity Coefficients of a Giant Planet Caused by Its Deep Zonal Flows
NASA Astrophysics Data System (ADS)
Kong, Dali; Zhang, Keke; Schubert, Gerald
2012-04-01
Rapidly rotating giant planets are usually marked by the existence of strong zonal flows at the cloud level. If the zonal flow is sufficiently deep and strong, it can produce hydrostatic-related gravitational anomalies through distortion of the planet's shape. This paper determines the zonal gravity coefficients, J 2n , n = 1, 2, 3, ..., via an analytical method taking into account rotation-induced shape changes by assuming that a planet has an effective uniform density and that the zonal flows arise from deep convection and extend along cylinders parallel to the rotation axis. Two different but related hydrostatic models are considered. When a giant planet is in rigid-body rotation, the exact solution of the problem using oblate spheroidal coordinates is derived, allowing us to compute the value of its zonal gravity coefficients \\bar{J}_{2n}, n=1,2,3, \\dots, without making any approximation. When the deep zonal flow is sufficiently strong, we develop a general perturbation theory for estimating the variation of the zonal gravity coefficients, \\Delta {J}_{2n}={J}_{2n}-\\bar{J}_{2n}, n=1,2,3, \\dots, caused by the effect of the deep zonal flows for an arbitrarily rapidly rotating planet. Applying the general theory to Jupiter, we find that the deep zonal flow could contribute up to 0.3% of the J 2 coefficient and 0.7% of J 4. It is also found that the shape-driven harmonics at the 10th zonal gravity coefficient become dominant, i.e., \\Delta {J}_{2n} \\,{\\ge}\\, \\bar{J}_{2n} for n >= 5.
Electrohydrodynamics of drops in strong uniform dc electric fields
NASA Astrophysics Data System (ADS)
Salipante, Paul F.; Vlahovska, Petia M.
2010-11-01
Drop deformation in an uniform dc electric field is a classic problem. The pioneering work of Taylor demonstrated that for weakly conducting media, the drop fluid undergoes a toroidal flow and the drop adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. However, recent studies have revealed a nonaxisymmetric rotational flow in strong fields, similar to the rotation of solid dielectric particles observed by Quincke in the 19th century. We present a systematic experimental study of this phenomenon, which highlights the importance of charge convection along the drop surface. The critical electric field, drop inclination angle, and rate of rotation are measured. We find that for small, high viscosity drops, the threshold field strength is well approximated by the Quincke rotation criterion. Reducing the viscosity ratio shifts the onset for rotation to stronger fields. The drop inclination angle increases with field strength. The rotation rate is approximately given by the inverse Maxwell-Wagner polarization time. Novel features are also observed such as a hysteresis in the tilt angle for large low-viscosity drops.
NASA Astrophysics Data System (ADS)
Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung
2018-04-01
Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re < 10. At a range of Re > 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.
Analysis of internal flow characteristics of a smooth-disk water-brake dynamometer
NASA Technical Reports Server (NTRS)
Evans, D. G.
1973-01-01
The principal of absorbing power with an enclosed partially submerged rotating disk through the turbulent viscous shearing of water is discussed. Reference information is used to develop a flow model of the water brake. A method is then presented that uses vector diagrams to relate the effects of rotational flow, through flow, and secondary flow to power absorption. The method is used to describe the operating characteristics of an example 111-cm (43.7-in.) diameter water brake. Correlating performance parameters are developed in a dimensional analysis.
NASA Astrophysics Data System (ADS)
Miranda, Jose; Brandao, Rodolfo
2017-11-01
We study a family of generalized elastica-like equilibrium shapes that arise at the interface separating two fluids in a curved rotating Hele-Shaw cell. This family of stationary interface solutions consists of shapes that balance the competing capillary and centrifugal forces in such a curved flow environment. We investigate how the emerging interfacial patterns are impacted by changes in the geometric properties of the curved Hele-Shaw cell. A vortex-sheet formalism is used to calculate the two-fluid interface curvature, and a gallery of possible shapes is provided to highlight a number of peculiar morphological features. A linear perturbation theory is employed to show that the most prominent aspects of these complex stationary patterns can be fairly well reproduced by the interplay of just two interfacial modes. The connection of these dominant modes to the geometry of the curved cell, as well as to the fluid dynamic properties of the flow, is discussed. We thank CNPq (Brazilian Research Council) for financial support under Grant No. 304821/2015-2.
The Role of Marangoni Convection for the FZ-Growth of Silicon
NASA Technical Reports Server (NTRS)
Dold, P.; Corell, A.; Schweizer, M.; Kaiser, Th.; Szofran, F.; Nakamura, S.; Hibiya, T.; Benz, K. W.
1998-01-01
Fluctuations of the electrical resistivity due to inhomogeneous dopant distribution are still a serious problem for the industrial processing yield of doped silicon crystals. In the case of silicon floating-zone growth, the main sources of these inhomogeneities are time- dependent flows in the liquid phase during the growth process. Excluding radio frequency (RF) induced convection, buoyancy and thermocapillary (Marangoni) convection are the two natural reasons for fluid flow. Both originate from temperature/concentration gradients in the melt, buoyancy convection through thermal/concentrational volume expansion, and thermocapillary convection through the temperature/concentration dependence of the surface tension. To improve the properties of grown crystals, knowledge of the strength, the characteristic, and the relation of these two flow mechanisms is essential. By the use of microgravity, the effect and the strength of buoyancy (gravity dependent) and thermocapillary (gravity independent) convection can be separated and clarified. Applying magnetic fields, both convective modes can be influenced: fluid flow can either be damped (static magnetic fields) or overlaid by a regular flow regime (rotating magnetic fields). Two complementary approaches have been pursued: Silicon full zones (experiments on the German sounding rockets TEXUS 7, 12, 22, 29, and 36) with the maximum temperature at half of the zone height and silicon half zones (experiments on the Japanese sounding rockets TR-IA4 and 6) with the maximum temperature at the top of the melt. With the full zone arrangement, the intensity and the frequency of the dopant striations could be determined and the critical Marangoni number could be identified. The half zone configuration is suited to classify the flow pattern and to measure the amplitude and the frequency of temperature fluctuations in the melt by inserting thermocouples or temperature sensors into the melt. All experiments have been carried out in monoellipsoid mirror furnaces. Typical zone geometries are approx. 8 to 14 mm in diameter and height. The crystals grown under microgravity are compared to crystals grown in static axial magnetic fields (B<5 tesla) and in transversal rotating magnetic fields (B<7.5 mT / f=50 Hz). Experimental results are completed by 3D numerical simulations: the obtained temperature and concentration distribution in the melt confirm the damping effect of rotating magnetic fields and explain the change in the radial segregation under static magnetic fields.
NASA Astrophysics Data System (ADS)
Chen, Jincai; Jin, Guodong; Zhang, Jian
2016-03-01
The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.
ERIC Educational Resources Information Center
Raykov, Tenko; Little, Todd D.
1999-01-01
Describes a method for evaluating results of Procrustean rotation to a target factor pattern matrix in exploratory factor analysis. The approach, based on the bootstrap method, yields empirical approximations of the sampling distributions of: (1) differences between target elements and rotated factor pattern matrices; and (2) the overall…
Sex Differences in Mental Rotation and Cortical Activation Patterns: Can Training Change Them?
ERIC Educational Resources Information Center
Jausovec, Norbert; Jausovec, Ksenija
2012-01-01
In two experiments the neuronal mechanisms of sex differences in mental rotation were investigated. In Experiment 1 cortical activation was studied in women and men with similar levels of mental rotation ability (high, and average to low), who were equalized with respect to general intelligence. Sex difference in neuroelectric patterns of brain…
Experimental investigation of aerodynamics and combustion properties of a multiple-swirler array
NASA Astrophysics Data System (ADS)
Kao, Yi-Huan
An annular combustor is one of the popular configurations of a modern gas turbine combustor. Since the swirlers are arranged as side-by-side in an annular combustor, the swirling flow interaction should be considered for the design of an annular gas turbine combustor. The focus of this dissertation is to investigate the aerodynamics and the combustion of a multiple-swirler array which features the swirling flow interaction. A coaxial counter-rotating radial-radial swirler was used in this work. The effects of confinement and dome recession on the flow field of a single swirler were conducted for understanding the aerodynamic characteristic of this swirler. The flow pattern generated by single swirler, 3-swirler array, and 5-swirler array were evaluated. As a result, the 5-swirler array was utilized in the remaining of this work. The effects of inter-swirler spacing, alignment of swirler, end wall distance, and the presence of confinement on the flow field generated by a 5-swirler array were investigated. A benchmark of aerodynamics performance was established. A phenomenological description was proposed to explain the periodically non-uniform flow pattern of a 5-swirler array. The non-reacting spray distribution measurements were following for understanding the effect of swirling flow interaction on the spray distribution issued out by a 5-swirler array. The spray distribution from a single swirler/ fuel nozzle was measured and treated as a reference. The spray distribution from a 5-swriler array was periodically non-uniform and somehow similar to what observed in the aerodynamic result. The inter-swirler spacing altered not only the topology of aerodynamics but also the flame shape of a 5-swirler array. As a result, the distribution of flame shape strongly depends on the inter-swirler spacing.
NASA Astrophysics Data System (ADS)
Fukumoto, Yasuhide; Miyachi, Yuki
2017-11-01
We address the suppression of the gravitational instability of rotating stratified flows in a confined geometry in two ways, continuous and discontinuous stratification. A rotating flow of a stratified fluid confined in an ellipsoid, subject to gravity force, whose velocity and density fields are linear in coordinates, bears an analogy with a mechanical system of finite degrees of freedom, that is, a heavy rigid body. An insight is gained into the mechanism of system rotation for the ability of a lighter fluid of sustaining, on top of it, a heavier fluid when the angular velocity is greater than a critical value. The sleeping top corresponds to such a state. First we show that a rotating stratified flow confined in a tilted spheroid is equivalent to a heavy symmetrical top with the symmetric axis tilted from the top axis. This tilting effect of the symmetric axis on the linear stability of the sleeping top and its bifurcation is investigated in some detail. Second, we explore the incompressible two-layer RTI of a discontinuously stratified fluid confined in the lower-half of an upright spheroid rotating about the axis of symmetry oriented parallel to the vertical direction. The gyroscopic analogy accounts for decrease of the critical rotation rate with oblateness. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant No. 16K05476).
NASA Technical Reports Server (NTRS)
Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.
1990-01-01
The flow of a thin liquid film with a free surface along a horizontal plane that emanates from a pressurized vessel is examined numerically. In one g, a hydraulic jump was predicted in both plane and radial flow, which could be forced away from the inlet by increasing the inlet Froude number or Reynolds number. In zero g, the hydraulic jump was not predicted. The effect of solid-body rotation for radial flow in one g was to 'wash out' the hydraulic jump and to decrease the film height on the disk. The liquid film heights under one g and zero g were equal under solid-body rotation because the effect of centrifugal force was much greater than that of the gravitational force. The heat transfer to a film on a rotating disk was predicted to be greater than that of a stationary disk because the liquid film is extremely thin and is moving with a very high velocity.
Numerical simulation of fluid flow in a rotational bioreactor
NASA Astrophysics Data System (ADS)
Ganimedov, V. L.; Papaeva, E. O.; Maslov, N. A.; Larionov, P. M.
2017-10-01
Application of scaffold technology for the problem of bone tissue regeneration has great prospects in modern medicine. The influence of fluid shear stress on stem cells cultivation and its differentiation into osteoblasts is the subject of intensive research. Mathematical modeling of fluid flow in bioreactor allowed us to determine the structure of flow and estimate the level of mechanical stress on cells. The series of computations for different rotation frequencies (0.083, 0.124, 0.167, 0.2 and 0.233 Hz) was performed for the laminar flow regime approximation. It was shown that the Taylor vortices in the gap between the cylinders qualitatively change the distribution of static pressure and shear stress in the region of vortices connection. It was shown that an increase in the rotation frequency leads to an increase of the unevenness in distribution of the above mentioned functions. The obtained shear stress and static pressure dependence on the rotational frequency make it possible to choose the operating mode of the reactor depending on the provided requirements. It was shown that in the range of rotation frequencies chosen in this work (0.083 < f < 0.233 Hz), the shear stress does not exceed the known literature data (0.002 - 0.1 Pa).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Laura K., E-mail: lcurrie@astro.ex.ac.uk
Motivated by the significant interaction of convection, rotation, and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilize a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organizes them,more » leading to stronger time-averaged flows. Furthermore, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behavior is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even when the quenching of the overall flow velocity by the field is relatively strong.« less
Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball
NASA Astrophysics Data System (ADS)
Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary
2017-10-01
The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.
Ishida, Kazunari; Shibanuma, Nao; Matsumoto, Tomoyuki; Sasaki, Hiroshi; Takayama, Koji; Matsuzaki, Tokio; Tei, Katsumasa; Kuroda, Ryosuke; Kurosaka, Masahiro
2016-01-01
To investigate whether intraoperative kinematics obtained by navigation systems can be divided into several kinematic patterns and to assess the correlation between the intraoperative kinematics with maximum flexion angles before and after total knee arthroplasty (TKA). Fifty-four posterior-stabilised (PS) TKA implanted using an image-free navigation system were evaluated. At registration and after implantation, tibial internal rotation angles at maximum extension, 30°, 45°, 60°, 90°, and maximum flexion were collected. The rotational patterns were divided into four groups and were examined the correlation with maximum flexion before and after operation. Tibial internal rotation from 90° of flexion to maximum flexion at registration was correlated with maximum flexion angles pre- and postoperatively. The four groups showed statistically different kinematic patterns. The group with tibial external rotation up to 90° of flexion, following tibial internal rotation at registration, achieved better flexion angles, compared to those of another groups (126.7° ± 12.0°, p < 0.05). The group with tibial external rotation showed the worst flexion angles (80.0° ± 40.4°, p < 0.05). Furthermore, the group with limited extension showed worse flexion angles (111.6° ± 8.9°, p < 0.05). Navigation-based kinematic patterns found at registration predict postoperative maximum flexion angle in PS TKA. Navigation-based kinematics can be useful information during TKA surgery. Diagnostic studies, development of diagnostic criteria in a consecutive series of patients and a universally applied "gold" standard, Level II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choquette, A. K.; Smith, C. R.; Sichel-Tissot, R. J.
2016-07-01
We report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A-site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO3 films under strain states ranging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a(-)a(+)c(-) and a(+)a(-)c(-) rotational patterns. We compare the EuFeO3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on nonorthorhombic substrates, as well as additional measurements from LaGaO3, LaFeO3, and Eu0.7Sr0.3MnO3 films on SrTiO3. Compiling the results from various material systems reveals a general strain dependence in which compressivemore » strain strongly favors a(-)a(+)c(-) and a(+)a(-)c(-) rotation patterns and tensile strain weakly favors a(-)a(-)c(+) structures. In contrast, EuFeO3 films grown on Pbnm-type GdScO3 under 2.3% tensile strain take on a uniform a(-)a(+)c(-) rotation pattern imprinted from the substrate, despite strain considerations that favor the a(-)a(-)c(+) pattern. These results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A-site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.« less
Choquette, A. K.; Smith, C. R.; Sichel-Tissot, R. J.; ...
2016-07-07
Here, we report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A -site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO 3 films under strain states ranging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a - a + c - and a + a - c - rotational patterns. We compare the EuFeO 3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on nonorthorhombic substrates, as well as additional measurements from LaGaO 3 ,more » LaFeO 3 , and Eu 0.7Sr 0.3 MnO 3 films on SrTiO 3 . Compiling the results from various material systems reveals a general strain dependence in which compressive strain strongly favors a - a + c - and a + a - c - rotation patterns and tensile strain weakly favors a - a - c + structures. In contrast, EuFeO 3 films grown on Pbnm-type GdScO 3 under 2.3% tensile strain take on a uniform a - a + c - rotation pattern imprinted from the substrate, despite strain considerations that favor the a - a - c + pattern. Our results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A -site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.« less
NASA Technical Reports Server (NTRS)
Zoladz, Thomas F.
2000-01-01
Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac engine turbopump are discussed. Detailed observations acquired from the analysis of both water flow and liquid oxygen test data are offered in this paper. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a lumped-parameter hydraulic system model developed to better understand observed data is given.
Modeling the dissipation rate in rotating turbulent flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Raj, Rishi; Gatski, Thomas B.
1990-01-01
A variety of modifications to the modeled dissipation rate transport equation that have been proposed during the past two decades to account for rotational strains are examined. The models are subjected to two crucial test cases: the decay of isotropic turbulence in a rotating frame and homogeneous shear flow in a rotating frame. It is demonstrated that these modifications do not yield substantially improved predictions for these two test cases and in many instances give rise to unphysical behavior. An alternative proposal, based on the use of the tensor dissipation rate, is made for the development of improved models.
Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump
NASA Technical Reports Server (NTRS)
Zoladz, Thomas; Turner, Jim (Technical Monitor)
2001-01-01
Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.
The supernova-regulated ISM. III. Generation of vorticity, helicity, and mean flows
NASA Astrophysics Data System (ADS)
Käpylä, M. J.; Gent, F. A.; Väisälä, M. S.; Sarson, G. R.
2018-03-01
Context. The forcing of interstellar turbulence, driven mainly by supernova (SN) explosions, is irrotational in nature, but the development of significant amounts of vorticity and helicity, accompanied by large-scale dynamo action, has been reported. Aim. Several earlier investigations examined vorticity production in simpler systems; here all the relevant processes can be considered simultaneously. We also investigate the mechanisms for the generation of net helicity and large-scale flow in the system. Methods: We use a three-dimensional, stratified, rotating and shearing local simulation domain of the size 1 × 1 × 2 kpc3, forced with SN explosions occurring at a rate typical of the solar neighbourhood in the Milky Way. In addition to the nominal simulation run with realistic Milky Way parameters, we vary the rotation and shear rates, but keep the absolute value of their ratio fixed. Reversing the sign of shear vs. rotation allows us to separate the rotation- and shear-generated contributions. Results: As in earlier studies, we find the generation of significant amounts of vorticity, the rotational flow comprising on average 65% of the total flow. The vorticity production can be related to the baroclinicity of the flow, especially in the regions of hot, dilute clustered supernova bubbles. In these regions, the vortex stretching acts as a sink of vorticity. In denser, compressed regions, the vortex stretching amplifies vorticity, but remains sub-dominant to baroclinicity. The net helicities produced by rotation and shear are of opposite signs for physically motivated rotation laws, with the solar neighbourhood parameters resulting in the near cancellation of the total net helicity. We also find the excitation of oscillatory mean flows, the strength and oscillation period of which depend on the Coriolis and shear parameters; we interpret these as signatures of the anisotropic-kinetic-α (AKA) effect. We use the method of moments to fit for the turbulent transport coefficients, and find αAKA values of the order 3-5 km s-1. Conclusions: Even in a weakly rotationally and shear-influenced system, small-scale anisotropies can lead to significant effects at large scales. Here we report on two consequences of such effects, namely on the generation of net helicity and on the emergence of large-scale flows by the AKA effect, the latter detected for the first time in a direct numerical simulation of a realistic astrophysical system.
Polygons on a rotating fluid surface.
Jansson, Thomas R N; Haspang, Martin P; Jensen, Kåre H; Hersen, Pascal; Bohr, Tomas
2006-05-05
We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.
Liu, Ping; Wang, Jianquan; Xu, Yan; Ao, Yingfang
2015-04-01
The aim of this study was to determine the in situ forces and length patterns of the fibular collateral ligament (FCL) and kinematics of the knee under various loading conditions. Six fresh-frozen cadaveric knees were used (mean age 46 ± 14.4 years; range 20-58). In situ forces and length patterns of FCL and kinematics of the knee were determined under the following loading conditions using a robotic/universal force-moment sensor testing system: no rotation, varus (10 Nm), external rotation (5 Nm), and internal rotation (5 Nm) at 0°, 15°, 30°, 60º, 90°, and 120° of flexion, respectively. Under no rotation loading, the distances between the centres of the FCL attachments decreased as the knee flexed. Under varus loading, the force in FCL peaked at 15° of flexion and decreased with further knee flexion, while distances remained nearly constant and the varus rotation increased with knee flexion. Using external rotation, the force in the FCL also peaked at 15° flexion and decreased with further knee flexion, the distances decreased with flexion, and external rotation increased with knee flexion. Using internal rotation load, the force in the FCL was relatively small across all knee flexion angles, and the distances decreased with flexion; the amount of internal rotation was fairly constant. FCL has a primary role in preventing varus and external rotation at 15° of flexion. The FCL does not perform isometrically following knee flexion during neutral rotation, and tibia rotation has significant effects on the kinematics of the FCL. Varus and external rotation laxity increased following knee flexion. By providing more realistic data about the function and length patterns of the FCL and the kinematics of the intact knee, improved reconstruction and rehabilitation protocols can be developed.
Numerical simulation of supersonic and hypersonic inlet flow fields
NASA Technical Reports Server (NTRS)
Mcrae, D. Scott; Kontinos, Dean A.
1995-01-01
This report summarizes the research performed by North Carolina State University and NASA Ames Research Center under Cooperative Agreement NCA2-719, 'Numerical Simulation of Supersonic and Hypersonic Inlet Flow Fields". Four distinct rotated upwind schemes were developed and investigated to determine accuracy and practicality. The scheme found to have the best combination of attributes, including reduction to grid alignment with no rotation, was the cell centered non-orthogonal (CCNO) scheme. In 2D, the CCNO scheme improved rotation when flux interpolation was extended to second order. In 3D, improvements were less dramatic in all cases, with second order flux interpolation showing the least improvement over grid aligned upwinding. The reduction in improvement is attributed to uncertainty in determining optimum rotation angle and difficulty in performing accurate and efficient interpolation of the angle in 3D. The CCNO rotational technique will prove very useful for increasing accuracy when second order interpolation is not appropriate and will materially improve inlet flow solutions.
Relativistic centrifugal instability
NASA Astrophysics Data System (ADS)
Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.
2018-03-01
Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.
The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings
NASA Astrophysics Data System (ADS)
Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat
2018-06-01
In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.
Boundary layers and global stability of laboratory quasi-Keplerian flow
NASA Astrophysics Data System (ADS)
Edlund, E. M.; Ji, H.
2013-11-01
Studies in the HTX device at PPPL, a modified Taylor-Couette experiment, have demonstrated a robust stability of astrophysically relevant, quasi-Keplerian flows. Independent rings on the axial boundary can be used to fine tune the rotation profile, allowing ideal Couette rotation to be achieved over nearly the entire radial gap. Fluctuation levels in these flows are observed to be at nearly the noise floor of the laser Doppler velocimetry (LDV) diagnostic, in agreement with prior studies under similar conditions. Deviations from optimal operating parameters illustrate the importance of centrifugally unstable boundary layers in Taylor-Couette devices of the classical configuration where the axial boundaries rotate with the outer cylinder. The global stability of nearly ideal-Couette flows, with implications for astrophysical systems, will be discussed in light of the global stability of these flows with respect to externally applied perturbations of large magnitude.
Ekeroth, D.E.; Garner, D.C.; Hopkins, R.J.; Land, J.T.
1993-11-30
An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof. 3 figures.
Ekeroth, Douglas E.; Garner, Daniel C.; Hopkins, Ronald J.; Land, John T.
1993-01-01
An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof.
Application of the Regional Atmospheric Modeling System to the Martian Atmosphere
NASA Technical Reports Server (NTRS)
Rafkin, Scot C. R.
1998-01-01
The core dynamics of the Regional Atmospheric Modeling System (RAMS), a widely used and powerful mesoscale Earth model, is adapted to the Martian Atmosphere and applied in the study of aeolian surface features. In particular, research efforts focused on the substitution of Martian planetary and atmospheric properties such as rotation rate, and thermodynamic constants in place of hard-wired Earth properties. Application of the model was restricted to three-dimensional flow impinging upon impact craters, and the search for plausible wind patterns that could produce the so-called light and dark streaks downwind of topographic barriers.
Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
NASA Astrophysics Data System (ADS)
Tahir, Madeeha; Naeem, Muhammad Nawaz; Javaid, Maria; Younas, Muhammad; Imran, Muhammad; Sadiq, Naeem; Safdar, Rabia
2018-04-01
In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.
NASA Astrophysics Data System (ADS)
Xu, Mianguang; Li, Zhongyang; Wang, Zhaohui; Zhu, Miaoyong
2017-02-01
To gain a fundamental understanding of the transient fluid flow in twin-roll continuous casting, the current paper applies both large eddy simulation (LES) and full-scale water modeling experiments to investigate the characteristics of the top free surface, stirring effect of the roll rotation, boundary layer fluctuations, and backflow stability. The results show that, the characteristics of the top free surface and the flow field in the wedge-shaped pool region are quite different with/without the consideration of the roll rotation. The roll rotation decreases the instantaneous fluctuation range of the top free surface, but increases its horizontal velocity. The stirring effect of the roll rotating makes the flow field more homogenous and there exists clear shear flow on the rotating roll surface. The vortex shedding induced by the Kármán Vortex Street from the submerged entry nozzle (SEN) causes the "velocity magnitude wave" and strongly influences the boundary layer stability and the backflow stability. The boundary layer fluctuations or the "velocity magnitude wave" induced by the vortex shedding could give rise to the internal porosity. In strip continuous casting process, the vortex shedding phenomenon indicates that the laminar flow can give rise to instability and that it should be made important in the design of the feeding system and the setting of the operating parameters.
The energy transfer mechanism of a perturbed solid-body rotation flow in a rotating pipe
NASA Astrophysics Data System (ADS)
Feng, Chunjuan; Liu, Feng; Rusak, Zvi; Wang, Shixiao
2017-04-01
Three-dimensional direct numerical simulations of a solid-body rotation superposed on a uniform axial flow entering a rotating constant-area pipe of finite length are presented. Steady in time profiles of the radial, axial, and circumferential velocities are imposed at the pipe inlet. Convective boundary conditions are imposed at the pipe outlet. The Wang and Rusak (Phys. Fluids 8:1007-1016, 1996. doi: 10.1063/1.86882) axisymmetric instability mechanism is retrieved at certain operational conditions in terms of incoming flow swirl levels and the Reynolds number. However, at other operational conditions there exists a dominant, three-dimensional spiral type of instability mode that is consistent with the linear stability theory of Wang et al. (J. Fluid Mech. 797: 284-321, 2016). The growth of this mode leads to a spiral type of flow roll-up that subsequently nonlinearly saturates on a large amplitude rotating spiral wave. The energy transfer mechanism between the bulk of the flow and the perturbations is studied by the Reynolds-Orr equation. The production or loss of the perturbation kinetic energy is combined of three components: the viscous loss, the convective loss at the pipe outlet, and the gain of energy at the outlet through the work done by the pressure perturbation. The energy transfer in the nonlinear stage is shown to be a natural extension of the linear stage with a nonlinear saturated process.
Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight
2014-08-06
dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex
Magma mixing during caldera forming eruptions
NASA Astrophysics Data System (ADS)
Kennedy, B.; Jellinek, M.; Stix, J.
2006-12-01
During explosive caldera-forming eruptions magma erupts through a ring dyke. Flow is driven, in part, by foundering of a magma chamber roof into underlying buoyant magma. One intriguing and poorly understood characteristic of deposits from calderas is that bulk ignimbrite, pumices, and crystals can show complex stratigraphic zonation. We propose that zonation patterns can be explained by different, and temporally evolving subsidence styles, and that the geometry imposed by subsidence can affect flow and cause mixing in the chamber and ring dyke. We use two series of laboratory experiments to investigate aspects of the mixing properties of flow in the chamber and ring dike during caldera collapse. In the first series, cylindrical blocks of height, h, and diameter, d, are released into circular analog magma chambers of diameter D and height H, containing buoyant fluids with viscosities that we vary. Subsidence occurs as a result of flow through the annular gap (ring dike) between the block and the wall of the surrounding tank of width, w = D-d. Three dimensionless parameters characterize the nature and evolution of the subsidence, and the resulting flow: A Reynolds number, Re, a tilt number, T = w/h and a subsidence number, S = w/H. Whereas Re indicates the importance of inertia for flow and mixing, T and S are geometric parameters that govern the extent of roof tilting, the spatial variation in w during collapse and the wavelength and structure of fluid motions. On the basis of field observations and theoretical arguments we fix T ≍ 0.14 and characterize subsidence and the corresponding flow over a wide range of Re - S parameter space appropriate to silicic caldera systems. Where S < 2 and Re < 103 the roof can rotate or tilt as it sinks and a spectrum of fluid mechanical behavior within the ring dike are observed. The combination of roof rotation and tilting drives unsteady, 3D overturning motions within the ring dike that are inferred to cause extensive mixing. In the absence of tilting and rotation flow is quasi-steady, there is negligible overturning and mixing. Where S > 2 and Re < 10^1 there is a "locking regime" in which the roof the roof rotates as it sinks but does not settle to the floor. The resulting flow leads to little overturning and mixing. Where S > 2 and Re > 10^1 the roof block settles with negligible tilting. Unsteady laminar overturning (Re < 102) and turbulent motions (Re > 103) produce extensive mixing in the ring dike. In a second series of experiments, motivated by the "piecemeal" collapse of many calderas, we investigate additional effects arising in the presence of two blocks. In contrast to the single-block case, the relative motions of the blocks cause extensive overturning and mixing in the chamber as well as the ring dike. Our experimental results are applied to understand the subsidence behavior and the mixing properties of a number of natural cases. Our work suggests that during most caldera-forming eruptions mixing is an inevitable consequence of synchronous eruption and subsidence. In addition, extensive mechanical mixing within the ring dike can explain the cumulate and mingled textures characteristic of many ring dikes.
Magnetic energy flow in the solar wind.
NASA Technical Reports Server (NTRS)
Modisette, J. L.
1972-01-01
Discussion of the effect of rotation (tangential flow) of the solar wind on the conclusions of Whang (1971) suggesting an increase in the solar wind velocity due to the conversion of magnetic energy to kinetic energy. It is shown that the effect of the rotation of the sun on the magnetic energy flow results in most of the magnetic energy being transported by magnetic shear stress near the sun.
NASA Astrophysics Data System (ADS)
Brauckmann, Hannes J.; Eckhardt, Bruno; Schumacher, Jörg
2017-03-01
Rayleigh-Bénard convection and Taylor-Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh-Bénard convection in air at Rayleigh number Ra=107 and Taylor-Couette flow at shear Reynolds number ReS=2×104 for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angular momentum currents, there are differences in the fluctuations outside the boundary layers that increase with overall rotation and can be related to differences in the flow structures in the boundary layer and in the bulk. The study extends the similarities between the two flows from global quantities to local quantities and reveals the effects of rotation on the transport.
Recirculation cells for granular flow in cylindrical rotating tumblers
NASA Astrophysics Data System (ADS)
D'Ortona, Umberto; Thomas, Nathalie; Lueptow, Richard M.
2018-05-01
To better understand the velocity field and flowing layer structure, we have performed a detailed discrete element method study of the flow of monodisperse particles in a partially filled three-dimensional cylindrical rotating tumblers. Similar to what occurs near the poles in spherical and conical tumblers, recirculation cells (secondary flows) develop near the flat endwalls of a cylindrical tumbler in which particles near the surface drift axially toward the endwall, while particles deeper in the flowing layer drift axially toward the midlength of the tumbler. Another recirculation cell with the opposite sense develops next to each endwall recirculation cell, extending to the midlength of the tumbler. For a long enough tumbler, each endwall cell is about one quarter of the tumbler diameter in length. Endwall cells are insensitive to tumbler length and relatively insensitive to rotation speed (so long as the flowing layer remains flat and continuously flowing) or fill level (from 25% to 50% full). However, for shorter tumblers (0.5 to 1.0 length/diameter aspect ratio) the endwall cell size does not change much, while center cells reduce their size and eventually disappear for the shortest tumblers. For longer tumblers (length/diameter aspect ratio larger than 2), a stagnation zone appears in between the central cells. These results provide insight into the mixing of monodisperse particles in rotating cylindrical tumblers as well as the frictional effects of the tumbler endwalls.
Facilitation of Learning of a Simultaneous Discrimination between Rotated Patterns by Bumblebees
ERIC Educational Resources Information Center
Perreault, M. J.; Plowright, C. M. S.
2009-01-01
The failure to discriminate between a pattern consisting of four orthogonal bars and the same pattern rotated by 45 degrees has been interpreted in the literature as evidence against pictorial representations in honeybees. This study determines whether prior training can facilitate the discrimination. In Experiment 1, one group of bumblebees was…
A simple depth-averaged model for dry granular flow
NASA Astrophysics Data System (ADS)
Hung, Chi-Yao; Stark, Colin P.; Capart, Herve
Granular flow over an erodible bed is an important phenomenon in both industrial and geophysical settings. Here we develop a depth-averaged theory for dry erosive flows using balance equations for mass, momentum and (crucially) kinetic energy. We assume a linearized GDR-Midi rheology for granular deformation and Coulomb friction along the sidewalls. The theory predicts the kinematic behavior of channelized flows under a variety of conditions, which we test in two sets of experiments: (1) a linear chute, where abrupt changes in tilt drive unsteady uniform flows; (2) a rotating drum, to explore steady non-uniform flow. The theoretical predictions match the experimental results well in all cases, without the need to tune parameters or invoke an ad hoc equation for entrainment at the base of the flow. Here we focus on the drum problem. A dimensionless rotation rate (related to Froude number) characterizes flow geometry and accounts not just for spin rate, drum radius and gravity, but also for grain size, wall friction and channel width. By incorporating Coriolis force the theory can treat behavior under centrifuge-induced enhanced gravity. We identify asymptotic flow regimes at low and high dimensionless rotation rates that exhibit distinct power-law scaling behaviors.
Kang, Chang-Wei; Wang, Yan; Tania, Marshella; Zhou, Huancheng; Gao, Yi; Ba, Te; Tan, Guo-Dong Sean; Kim, Sangho; Leo, Hwa Liang
2013-01-01
A myriad of bioreactor configurations have been investigated as extracorporeal medical support systems for temporary replacement of vital organ functions. In recent years, studies have demonstrated that the rotating bioreactors have the potential to be utilized as bioartificial liver assist devices (BLADs) owing to their advantage of ease of scalability of cell-culture volume. However, the fluid movement in the rotating chamber will expose the suspended cells to unwanted flow structures with abnormally high shear conditions that may result in poor cell stability and in turn lower the efficacy of the bioreactor system. In this study, we compared the hydrodynamic performance of our modified rotating bioreactor design with that of an existing rotating bioreactor design. Computational fluid dynamic analysis coupled with experimental results were employed in the optimization process for the development of the modified bioreactor design. Our simulation results showed that the modified bioreactor had lower fluid induced shear stresses and more uniform flow conditions within its rotating chamber than the conventional design. Experimental results revealed that the cells within the modified bioreactor also exhibited better cell-carrier attachment, higher metabolic activity, and cell viability compared to those in the conventional design. In conclusion, this study was able to provide important insights into the flow physics within the rotating bioreactors, and help enhanced the hydrodynamic performance of an existing rotating bioreactor for BLAD applications. © 2013 American Institute of Chemical Engineers.
Instability and transition in rotating disk flow
NASA Technical Reports Server (NTRS)
Malik, M. R.
1981-01-01
The stability of three dimensional rotating disk flow and the effects of Coriolis forces and streamline curvature were investigated. It was shown that this analysis gives better growth rates than Orr-Sommerfeld equation. Results support the numerical prediction that the number of stationary vortices varies directly with the Reynolds number.
Rotary moving bed for CO.sub.2 separation and use of same
Elliott, Jeannine Elizabeth; Copeland, Robert James; McCall, Patrick P.
2017-01-10
A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.
Aerts, Frank; Carrier, Kathy; Alwood, Becky
2016-01-01
Background: The assessment of clinical manifestation of muscle fatigue is an effective procedure in establishing therapeutic exercise dose. Few studies have evaluated physical therapist reliability in establishing muscle fatigue through detection of changes in quality of movement patterns in a live setting. Objective: The purpose of this study is to evaluate the inter-rater reliability of physical therapists’ ability to detect altered movement patterns due to muscle fatigue. Design: A reliability study in a live setting with multiple raters. Participants: Forty-four healthy individuals (ages 19-35) were evaluated by six physical therapists in a live setting. Methods: Participants were evaluated by physical therapists for altered movement patterns during resisted shoulder rotation. Each participant completed a total of four tests: right shoulder internal rotation, right shoulder external rotation, left shoulder internal rotation and left shoulder external rotation. Results: For all tests combined, the inter-rater reliability for a single rater scoring ICC (2,1) was .65 (95%, .60, .71) This corresponds to moderate inter-rater reliability between physical therapists. Limitations: The results of this study apply only to healthy participants and therefore cannot be generalized to a symptomatic population. Conclusion: Moderate inter-rater reliability was found between physical therapists in establishing muscle fatigue through the observation of sustained altered movement patterns during dynamic resistive shoulder internal and external rotation. PMID:27347241
Magnetic shear-flow instability in thin accretion discs
NASA Astrophysics Data System (ADS)
Rüdiger, G.; Primavera, L.; Arlt, R.; Elstner, D.
1999-07-01
The possibility that the magnetic shear-flow instability (also known as the `Balbus-Hawley' instability) might give rise to turbulence in a thin accretion disc is investigated through numerical simulations. The study is linear and the fluid disc is supposed to be incompressible and differentially rotating with a simple velocity profile with Omega~R^-q. The simplicity of the model is counterbalanced by the fact that the study is fully global in all three spatial directions with boundaries on each side; finite diffusivities are also allowed. The investigation is also carried out for several values of the azimuthal wavenumber of the perturbations in order to analyse whether non-axisymmetric modes might be preferred, which may produce, in a non-linear extension of the study, a self-sustained magnetic field. We find the final pattern steady, with similar kinetic and magnetic energies and the angular momentum always transported outwards. Despite the differential rotation, there are only small differences for the eigenvalues for various non-axisymmetric eigensolutions. Axisymmetric instabilities are by no means preferred; in fact for Prandtl numbers between 0.1 and 1, the azimuthal wavenumbers m=0,1,2(10^16gs^-1). All three quantities appear to be equally readily excited. The equatorial symmetry is quadrupolar for the magnetic field and dipolar for the flow field system. The maximal magnetic field strength required to cause the instability is almost independent of the magnetic Prandtl number. With typical white dwarf values, a magnetic amplitude of 10^5G is estimated.
Formation and behavior of counter-rotating vortex rings
NASA Astrophysics Data System (ADS)
Sadri, V.; Krueger, P. S.
2017-08-01
Concentric, counter-rotating vortex ring formation by transient jet ejection between concentric cylinders was studied numerically to determine the effects of cylinder gap ratio, Δ R/R, and jet stroke length-to-gap ratio, L/Δ R, on the evolution of the vorticity and the trajectories of the resulting axisymmetric vortex pair. The flow was simulated at a jet Reynolds number of 1000 (based on Δ R and the jet velocity), L/Δ R in the range 1-20, and Δ R/R in the range 0.05-0.25. Five characteristic flow evolution patterns were observed and classified based on L/Δ R and Δ R/R. The results showed that the relative position, relative strength, and radii of the vortex rings during and soon after formation played a prominent role in the evolution of the trajectories of their vorticity centroids at the later time. The conditions on relative strength of the vortices necessary for them to travel together as a pair following formation were studied, and factors affecting differences in vortex circulation following formation were investigated. In addition to the characteristics of the primary vortices, the stopping vortices had a strong influence on the initial vortex configuration and effected the long-time flow evolution at low L/Δ R and small Δ R/R. For long L/Δ R and small Δ R/R, shedding of vorticity was sometimes observed and this shedding was related to the Kelvin-Benjamin variational principle of maximal energy for steadily translating vortex rings.
Flow past an axially aligned spinning cylinder: Experimental Study
NASA Astrophysics Data System (ADS)
Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva
2017-11-01
Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.
Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong
1989-01-01
Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.
Experimental study of time-dependent flows in laboratory atmospheric flow models
NASA Technical Reports Server (NTRS)
Rush, J. E.
1982-01-01
Baroclinic waves in a rotating, differentially-heated annulus of liquid were studied in support of the Atmospheric General Circulation Experiment. Specific objectives were to determine: (1) the nature of the flow at shallow depths, (2) the effect of a rigid lid vs. free surface, and (3) the nature of fluctuations in the waves as a function of rotation rate, depth, and type of surface. It is found that flows with a rigid lid are basically the same as those with a free surface, except for a decrease in flow rate. At shallow depths steady flows are found in essentially the same form, but the incidence of unsteady flows is greatly diminished.
Design parameters for rotating cylindrical filtration
NASA Technical Reports Server (NTRS)
Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.
2002-01-01
Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.
Deep crustal deformation by sheath folding in the Adirondack Mountains, USA
NASA Technical Reports Server (NTRS)
Mclelland, J. M.
1988-01-01
As described by McLelland and Isachsen, the southern half of the Adirondacks are underlain by major isoclinal (F sub 1) and open-upright (F sub 2) folds whose axes are parallel, trend approximately E-W, and plunge gently about the horizontal. These large structures are themselves folded by open upright folds trending NNE (F sub 3). It is pointed out that elongation lineations in these rocks are parallel to X of the finite strain ellipsoid developed during progressive rotational strain. The parallelism between F sub 1 and F sub 2 fold axes and elongation lineations led to the hypothesis that progressive rotational strain, with a west-directed tectonic transport, rotated earlier F sub 1-folds into parallelism with the evolving elongation lineation. Rotation is accomplished by ductile, passive flow of F sub 1-axes into extremely arcuate, E-W hinges. In order to test these hypotheses a number of large folds were mapped in the eastern Adirondacks. Other evidence supporting the existence of sheath folds in the Adirondacks is the presence, on a map scale, of synforms whose limbs pass through the vertical and into antiforms. This type of outcrop pattern is best explained by intersecting a horizontal plane with the double curvature of sheath folds. It is proposed that sheath folding is a common response of hot, ductile rocks to rotational strain at deep crustal levels. The recognition of sheath folds in the Adirondacks reconciles the E-W orientation of fold axes with an E-W elongation lineation.
The sound field of a rotating dipole in a plug flow.
Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H
2018-04-01
An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.
NASA Technical Reports Server (NTRS)
Mager, Arthur
1952-01-01
The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.
Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szklarski, Jacek; Ruediger, Guenther
2007-12-15
We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio H/D=10. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha{approx_equal}10, and the rotation rates correspond to Reynolds numbers of order 10{sup 2}-10{sup 3}. We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmannmore » current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.« less
Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core
NASA Astrophysics Data System (ADS)
Adams, M. M.; Stone, D.; Lathrop, D. P.
2014-12-01
Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.
NASA Technical Reports Server (NTRS)
Bonataki, E.; Chaviaropoulos, P.; Papailiou, K. D.
1991-01-01
A new inverse inviscid method suitable for the design of rotating blade sections lying on an arbitrary axisymmetric stream-surface with varying streamtube width is presented. The geometry of the axisymmetric stream-surface and the streamtube width variation with meridional distance, the number of blades, the inlet flow conditions, the rotational speed and the suction and pressure side velocity distributions as functions of the normalized arc-length are given. The flow is considered irrotational in the absolute frame of reference and compressible. The output of the computation is the blade section that satisfies the above data. The method solves the flow equations on a (phi 1, psi) potential function-streamfunction plane for the velocity modulus, W and the flow angle beta; the blade section shape can then be obtained as part of the physical plane geometry by integrating the flow angle distribution along streamlines. The (phi 1, psi) plane is defined so that the monotonic behavior of the potential function is guaranteed, even in cases with high peripheral velocities. The method is validated on a rotating turbine case and used to design new blades. To obtain a closed blade, a set of closure conditions were developed and referred.
Rotating permanent magnet excitation for blood flow measurement.
Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S
2015-11-01
A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.
NASA Astrophysics Data System (ADS)
Noel, James H.
Energy harvesters are scalable devices that generate microwatt to milliwatt power levels by scavenging energy from their ambient natural environment. Applications of such devices are numerous, ranging from wireless sensing to biomedical implants. A particular type of energy harvester is a device which converts the momentum of an incident fluid flow into electrical output by using flow-induced instabilities such as galloping, flutter, vortex shedding and wake galloping. Galloping flow energy harvesters (GFEHs), which represent the core of this thesis, consist of a prismatic tip body mounted on a long, thin cantilever beam fixed on a rigid base. When the bluff body is placed such that its leading edge faces a moving fluid, the flow separates at the edges of the leading face causing shear layers to develop behind the bluff face. The shear layer interacts with the surface area of the afterbody. An asymmetric condition in the shear layers causes a net lift which incites motion. This causes the beam to oscillate periodically at or near the natural frequency of the system. The periodic strain developed near the base of the oscillating beam is then transformed into electricity by attaching a piezoelectric layer to either side of the beam surface. This thesis focuses on characterizing the influence of the rotation of the beam tip on the response and output power of GFEHs. Previous modeling efforts of GFEHs usually adopt two simplifying assumptions. First, it is assumed that the tip rotation of the beam is arbitrarily small and hence can be neglected. Second, it is assumed that the quasi-steady assumption of the aerodynamic force can be adopted even in the presence of tip rotation. Although the validity of these two assumptions becomes debatable in the presence of finite tip rotations, which are common to occur in GFEHs, none the previous research studies have systematically addressed the influence of finite tip rotations on the validity of the quasi-steady assumption and the response of cantilevered flow energy harvesters. To this end, the first objective of this thesis is to investigate the influence of the tip rotation on the output power of energy harvesters under the quasi-steady assumption. It is shown that neglecting the tip rotation will cause significant over-prediction of the output power even for small tip rotations. This thesis further assesses the validity of the quasi-steady assumption of the aerodynamic force in the presence of tip rotations using extensive experiments. It is shown that the quasi-steady model fails to accurately predict the behavior of square and trapezoidal prisms mounted on a cantilever beam and undergoing galloping oscillations. In particular, it is shown that the quasi-steady model under-predicts the amplitude of oscillation because it fails to consider the effect of body rotation. Careful analysis of the experimental data indicates that, unlike the quasi-steady aerodynamic lift force which depends only on the angle of attack, the effective aerodynamic curve is a function of both the angle of attack and the upstream flow velocity when the effects of body rotation are included. Nonetheless, although the quasi-steady assumption fails, the remarkable result is that the overall structure of the aerodynamic model remains intact, permitting the use of aerodynamic force surfaces to capture the influence of tip rotation. The second objective of this thesis is to present an approach to optimize the geometry of the bluff body to improve the performance of flow energy harvesters. It is shown that attaching a splitter plate to the afterbody of the prism can improve the output power of the device by as much as 60% for some cases. By increasing the reattachment angle of the shear layer and producing additional flow recirculation bubbles, the extension of the body using the splitter plate increases the useful range of the galloping instability for energy harvesting.
Large Eddy Simulation of Supercritical CO2 Through Bend Pipes
NASA Astrophysics Data System (ADS)
He, Xiaoliang; Apte, Sourabh; Dogan, Omer
2017-11-01
Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.
Precessing rotating flows with additional shear: stability analysis.
Salhi, A; Cambon, C
2009-03-01
We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally, both flow cases are briefly discussed in view of a subsequent nonlinear study using pseudospectral direct numerical simulations, which is a natural continuation of RDT.
A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots
NASA Technical Reports Server (NTRS)
Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.
1993-01-01
A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1989-01-01
The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.
The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Bernstein, E. L.; Nunes, A. C., Jr.
2000-01-01
The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.
Observation of the spiral flow and vortex induced by a suction pump in superfluid 4He
NASA Astrophysics Data System (ADS)
Yano, H.; Ohyama, K.; Obara, K.; Ishikawa, O.
2018-03-01
A suction flow generates a whirlpool, namely a bathtub vortex, in a classical fluid; in contrast, rotating containers, which are usually used for studies of superfluid helium, can produce only simple solid rotation. In the present work, the superfluid flow and concentrated quantized vortices induced by a cryogenic motor immersed in superfluid 4He were investigated. Using a motor with six blades in a cylinder caused the free surface of the superfluid 4He to take on a parabolic shape, indicating that the motor produces a rotating superfluid flow. To drive a suction flow in superfluid helium, the motor was mounted in a cylindrical container with a small hole at the center of the top and a slit at the side, acting as a superfluid pump. This pump was successfully used to generate a spiral flow and a vortex with a funnel-shaped core in superfluid 4He, suggesting that the resulting suction flow transports and centralizes quantized vortices to the suction hole, increasing the vortex circulation and sucking the free surface of the superfluid down.
NASA Astrophysics Data System (ADS)
Dembo, N.; Granot, R.; Hamiel, Y.
2017-12-01
The intraplate crustal deformation found in the northern part of the Sinai Microplate, located near the northern Dead Sea Fault plate boundary, is examined. Previous studies have suggested that distributed deformation in Lebanon is accommodated by regional uniform counterclockwise rigid block rotations. However, remanent magnetization directions observed near the Lebanese restraining bend are not entirely homogeneous suggesting that an unexplained and complex internal deformation pattern exists. In order to explain the variations in the amount of vertical-axis rotations we construct a mechanical model of the major active faults in the region that simulates the rotational deformation induced by motion along these faults. The rotational pattern calculated by the mechanical modeling predicts heterogeneous distribution of rotations around the faults. The combined rotation field that considers both the fault induced rotations and the already suggested regional block rotations stands in general agreement with the observed magnetization directions. Overall, the modeling results provide a more detailed and complete picture of the deformation pattern in this region and show that rotations induced by motion along the Dead Sea Fault act in parallel to rigid block rotations. Finally, the new modeling results unravel important insights as to the fashion in which crustal deformation is distributed within the northern part of the Sinai Microplate and propose an improved deformational mechanism that might be appropriate for other plate margins as well.
Rotation-invariant image and video description with local binary pattern features.
Zhao, Guoying; Ahonen, Timo; Matas, Jiří; Pietikäinen, Matti
2012-04-01
In this paper, we propose a novel approach to compute rotation-invariant features from histograms of local noninvariant patterns. We apply this approach to both static and dynamic local binary pattern (LBP) descriptors. For static-texture description, we present LBP histogram Fourier (LBP-HF) features, and for dynamic-texture recognition, we present two rotation-invariant descriptors computed from the LBPs from three orthogonal planes (LBP-TOP) features in the spatiotemporal domain. LBP-HF is a novel rotation-invariant image descriptor computed from discrete Fourier transforms of LBP histograms. The approach can be also generalized to embed any uniform features into this framework, and combining the supplementary information, e.g., sign and magnitude components of the LBP, together can improve the description ability. Moreover, two variants of rotation-invariant descriptors are proposed to the LBP-TOP, which is an effective descriptor for dynamic-texture recognition, as shown by its recent success in different application problems, but it is not rotation invariant. In the experiments, it is shown that the LBP-HF and its extensions outperform noninvariant and earlier versions of the rotation-invariant LBP in the rotation-invariant texture classification. In experiments on two dynamic-texture databases with rotations or view variations, the proposed video features can effectively deal with rotation variations of dynamic textures (DTs). They also are robust with respect to changes in viewpoint, outperforming recent methods proposed for view-invariant recognition of DTs.
Perceptual Strategies of Pigeons to Detect a Rotational Centre—A Hint for Star Compass Learning?
Helduser, Sascha; Mouritsen, Henrik; Güntürkün, Onur
2015-01-01
Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy. PMID:25807499
Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Fan, Liang-Shih
2015-07-01
Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, D. L.; Qiu, X. M.; Geng, S. F.
The numerical simulation described in our paper [D. L. Tang et al., Phys. Plasmas 19, 073519 (2012)] shows a rotating dense plasma structure, which is the critical characteristic of the rotating spoke. The simulated rotating spoke has a frequency of 12.5 MHz with a rotational speed of {approx}1.0 Multiplication-Sign 10{sup 6} m/s on the surface of the anode. Accompanied by the almost uniform azimuthal ion distribution, the non-axisymmetric electron distribution introduces two azimuthal electric fields with opposite directions. The azimuthal electric fields have the same rotational frequency and speed together with the rotating spoke. The azimuthal electric fields excite themore » axial electron drift upstream and downstream due to the additional E{sub {theta}} x B field and then the axial shear flow is generated. The axial local charge separation induced by the axial shear electron flow may be compensated by the azimuthal electron transport, finally resulting in the azimuthal electric field rotation and electron transport with the rotating spoke.« less
Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate
NASA Astrophysics Data System (ADS)
Faulk, Sean
This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.
Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less
Visualization and Measurement of Flow in a Model Rotating-Wall Bioreactor
NASA Astrophysics Data System (ADS)
Brown, Jason B.; Neitzel, G. Paul
1997-11-01
Fluid shear has been observed to have an effect on the in vitro growth of mammalian cells and is expected to play a role in the in vitro development of aggregates of cells into tissue. The interactions between culture media and cell constructs within a circular Couette flow bioreactor with independently rotating cylinders are investigated in model studies using flow visualization. Particle-Image Velocimetry (PIV) is used to quantify the velocity field in a plane perpendicular to the vessel axis which contains a cell construct model. This velocity field is then used to compute the instantaneous shear field. Experiments show the path of the model cell construct is dependent on the rotation rates of the cylinders.
High sensitivity, high surface area Enzyme-linked Immunosorbent Assay (ELISA).
Singh, Harpal; Morita, Takahiro; Suzuki, Yuma; Shimojima, Masayuki; Le Van, An; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked immunosorbent assays (ELISA) are considered the gold standard in the demonstration of various immunological reactions with an application in the detection of infectious diseases such as during outbreaks or in patient care. This study aimed to produce an ELISA-based diagnostic with an increased sensitivity of detection compared to the standard 96-well method in the immunologic diagnosis of infectious diseases. A '3DStack' was developed using readily available, low cost fabrication technologies namely nanoimprinting and press stamping with an increased surface area of 4 to 6 times more compared to 96-well plates. This was achieved by stacking multiple nanoimprinted polymer sheets. The flow of analytes between the sheets was enhanced by rotating the 3DStack and confirmed by Finite-Element (FE) simulation. An Immunoglobulin G (IgG) ELISA for the detection of antibodies in human serum raised against Rubella virus was performed for validation. An improved sensitivity of up to 1.9 folds higher was observed using the 3DStack compared to the standard method. The increased surface area of the 3DStack developed using nanoimprinting and press stamping technologies, and the flow pattern between sheets generated by rotating the 3DStack were potential contributors to a more sensitive ELISA-based diagnostic device.
Turbofan compressor dynamics during afterburner transients
NASA Technical Reports Server (NTRS)
Kurkov, A. P.
1975-01-01
The effects of afterburner light-off and shut-down transients on compressor stability were investigated. Experimental results are based on detailed high-response pressure and temperature measurements on the Tf30-p-3 turbofan engine. The tests were performed in an altitude test chamber simulating high-altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan-bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient, the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.
Fluid signatures of rotational discontinuities at Earth's magnetopause
NASA Technical Reports Server (NTRS)
Scudder, J. D.
1983-01-01
Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.
Experimental observation of steady inertial wave turbulence in deep rotating flows
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Sharon, Eran
2015-11-01
We present experimental evidence of inertial wave turbulence in deep rotating fluid. Experiments were performed in a rotating cylindrical water tank, where previous work showed statistics similar to 2D turbulence (specifically an inverse energy cascade). Using Fourier analysis of high resolution data in both space (3D) and time we show that most of the energy of a steady state flow is contained around the inertial wave dispersion relation. The nonlinear interaction between the waves is manifested by the widening of the time spectrum around the dispersion relation. We show that as the Rossby number increases so does the spectrum width, with a strong dependence on wave number. Our results suggest that in some parameters range, rotating turbulence velocity field can be represented as a field of interacting waves (wave turbulence). Such formalism may provide a better understanding of the flow statistics. This work was supported by the Israel Science Foundation, Grant No. 81/12.
Eslami, Mansour; Begon, Mickaël; Farahpour, Nader; Allard, Paul
2007-01-01
Based on twisted plate and mitered hinge models of the foot and ankle, forefoot-rearfoot coupling motion patterns can contribute to the amount of tibial rotation. The present study determined the differences of forefoot-rearfoot coupling patterns as well as excessive excursion of tibial internal rotation in shod versus barefoot conditions during running. Sixteen male subjects ran 10 times at 170 steps per minute under the barefoot and shod conditions. Forefoot-rearfoot coupling motions were assessed by measuring mean relative phase angle during five intervals of stance phase for the main effect of five time intervals and two conditions (ANOVA, P<0.05). Tibial internal rotation excursion was compared between the shod and barefoot conditions over the first 50% of stance phase using paired t-test, (P<0.05). Forefoot adduction/abduction and rearfoot eversion/inversion coupling motion patterns were significantly different between the conditions and among the intervals (P<0.05; effect size=0.47). The mean absolute relative angle was significantly modified to 37 degrees in-phase relationship at the heel-strike of running with shoe wears. No significant differences were noted in the tibial internal rotation excursion between shod and barefoot conditions. Significant variations in the forefoot adduction/abduction and rearfoot eversion/inversion coupling patterns could have little effect on the amount of tibial internal rotation excursion. Yet it remains to be determined whether changes in the frontal plane forefoot-rearfoot coupling patterns influence the tibia kinematics for different shoe wears or foot orthotic interventions. The findings question the rational for the prophylactic use of forefoot posting in foot orthoses.
Computational Analysis of a Pylon-Chevron Core Nozzle Interaction
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Kinzie, Kevin W.; Pao, S. Paul
2001-01-01
In typical engine installations, the pylon of an engine creates a flow disturbance that interacts with the engine exhaust flow. This interaction of the pylon with the exhaust flow from a dual stream nozzle was studied computationally. The dual stream nozzle simulates an engine with a bypass ratio of five. A total of five configurations were simulated all at the take-off operating point. All computations were performed using the structured PAB3D code which solves the steady, compressible, Reynolds-averaged Navier-Stokes equations. These configurations included a core nozzle with eight chevron noise reduction devices built into the nozzle trailing edge. Baseline cases had no chevron devices and were run with a pylon and without a pylon. Cases with the chevron were also studied with and without the pylon. Another case was run with the chevron rotated relative to the pylon. The fan nozzle did not have chevron devices attached. Solutions showed that the effect of the pylon is to distort the round Jet plume and to destroy the symmetrical lobed pattern created by the core chevrons. Several overall flow field quantities were calculated that might be used in extensions of this work to find flow field parameters that correlate with changes in noise.
Three-dimensional modelling of thin liquid films over spinning disks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar
2016-11-01
In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.
The Influence of Low Frequency Mechanical Vibrations on the Growth of Single Crystals
NASA Technical Reports Server (NTRS)
Feigelson, R. S.; Elwell, D.
1985-01-01
The optimum conditions for crystal growth are usually achieved either by suppressing convective fluid flows (e.g., by the use of a low-gravity environment) or by over-riding thermal and solutal convection by the use of a strong stirring action. A novel stirring technique has been developed which involves subjecting a vertical crucible to a circle in a horizontal plane (without rotation). Use of an amplitude of 3 mm at a frequency of approx 6 Hz produced complete mixing of a non-uniform aqueous liquid in a few seconds. The mixing action involved the downward flow of liquid in the outer annulus of the liquid, driven by surface waves. When the downward flowing liquid reaches the bottom of the crucible, it is reflected in a central, upward flowing spiral. This flow pattern should be beneficial for crystal growth by the Bridgman method since it will sweep impurities away from the walls and produce a more convex solid-liquid interface. Initial attempts to apply the new stirring technique to CdTe crystal growth did not show significant improvement in the number of crystals nucleated, but the interface shape appeared to be close to that predicted.
NASA Astrophysics Data System (ADS)
Chatzaras, V.; Kruckenberg, S. C.; Titus, S.; Tikoff, B.; Teyssier, C. P.; Drury, M. R.
2016-12-01
We provide geological constraints on mantle deformation across a system of two oceanic paleotransform faults exposed in the Bogota Peninsula area, New Caledonia. Mantle deformation occurred at depths corresponding to temperatures of 900 oC and is highly heterogeneous. The paleotransform faults consist of mylonitic shear zones ( 1 km wide), and are surrounded by broader areas in which rotation of both the shape fabric (foliation and lineation) and olivine crystallographic preferred orientation (CPO) takes place. Outside the plaeotransform faults, mantle flows oblique to the strike of the mylonitic zones and is characterized by lateral variations in the flow direction. To further constrain the kinematics and type of deformation, we determine the orientation of the crystallographic vorticity axes as an independent tool for constraining deformation geometry (e.g., simple shear, transpression, transtension). The observed mantle flow is associated to lateral variations in: 1) the geometry and degree of anisotropy of spinel shape fabric; 2) olivine CPO type; 3) amount of stretching; and 4) the orientation of the crystallographic vorticity axes. Upper mantle in the vicinity of oceanic transform faults may be characterized by complex, three-dimensional flow patterns and deformation geometries deviating from simple shear.
NASA Astrophysics Data System (ADS)
Grannan, Alexander Michael
2017-08-01
The energy for driving turbulent flows in planetary fluid layers comes from a combination of thermocompositional sources and the motion of the boundary in contact with the fluid through mechanisms like precessional, tidal, and librational forcing. Characterizing the resulting turbulent fluid motions are necessary for understanding many aspects of the planet's dynamics and evolution including the generation of magnetic fields in the electrically conducting fluid layers and dissipation in the oceans. Although such flows are strongly inertial they are also strongly influenced by the Coriolis force whose source is in the rotation of the body and tends to constrain the inertial effects and provide support for fluid instabilities that might in-turn generate turbulence. Furthermore, the magnetic fields generated by the electrically conducting fluids act back on the fluid through the Lorentz force that also tends to constrain the flow. The goal of this dissertation is to investigate the characteristics of turbulent flows under the influence of mechanical, convective, rotational and magnetic forcing. In order to investigate the response of the fluid to mechanical forcing, I have modified a unique set of laboratory experiments that allows me to quantify the generation of turbulence driven by the periodic oscillations of the fluid containing boundary through tides and libration. These laboratory experiments replicate the fundamental ingredients found in planetary environments and are necessary for the excitation of instabilities that drive the turbulent fluid motions. For librational forcing, a rigid ellipsoidal container and ellipsoidal shell of isothermal unstratified fluid is made to rotate with a superimposed oscillation while, for tidal forcing, an elastic ellipsoidal container of isothermal unstratified fluid is made to rotate while an independently rotating perturbance also flexes the elastic container. By varying the strength and frequencies of these oscillations the characteristics of the resulting turbulence are investigated using meridional views to identify the dominate modes and spatial location of the turbulence. For the first time, measurements of the velocity in the equatorial plane are coupled with high resolution numerical simulations of the full flow field in identical geometry to characterize the instability mechanism, energy deposited into the fluid layer, and long-term evolution of the flow. The velocities determined through laboratory and numerical simulations when extrapolated to planets allow me to argue that the dynamics of mechanical forcing in low viscosity fluids may an important role as new and potentially large source of dissipation in planetary interiors. To study convective forcing, I have modified and performed a set of rotating and non-rotating hydrodynamic convection experiments using water as well as rotating and non-rotating magnetohydrodynamic convection in gallium. These studies are performed in a cylindrical geometry representing a model of high latitude planetary core style convection wherein the axis of rotation and gravity are aligned. For the studies using water, the steady columns that are characteristic of rotating convection and present in the dynamo models are likely to destabilize at the more extreme planetary parameters giving way to transitions to more complex styles of rotating turbulent flow. In the studies of liquid metal where the viscosity is lower, the onset of rotating convection occurs through oscillatory columnar convection well below the onset of steady columns. Such oscillatory modes are not represented at the parameters used by current dynamo models. Furthermore a suite of laboratory experiments shows that the imposition of rotational forces and magnetic forces both separately and together generate zeroeth order flow transitions that change the fundamental convective modes and heat transfer. Such regimes are more easily accessible to laboratory experiments then to numerical simulations but demonstrate the need for a new generation of dynamo simulations capable of including the fundamental properties of liquid metals as are relevant for understanding the dynamics of planetary interiors.
Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows
NASA Astrophysics Data System (ADS)
Şengül, Taylan; Wang, Shouhong
2018-02-01
The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple steady states, as well as continuous and catastrophic transitions to spatiotemporal oscillations.
Extensional flow of blood analog solutions in microfluidic devices
Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.
2011-01-01
In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the choice or development of analog fluids that are adequate to replicate blood behavior at the microscale. PMID:21483662
Core flow inversion tested with numerical dynamo models
NASA Astrophysics Data System (ADS)
Rau, Steffen; Christensen, Ulrich; Jackson, Andrew; Wicht, Johannes
2000-05-01
We test inversion methods of geomagnetic secular variation data for the pattern of fluid flow near the surface of the core with synthetic data. These are taken from self-consistent 3-D models of convection-driven magnetohydrodynamic dynamos in rotating spherical shells, which generate dipole-dominated magnetic fields with an Earth-like morphology. We find that the frozen-flux approximation, which is fundamental to all inversion schemes, is satisfied to a fair degree in the models. In order to alleviate the non-uniqueness of the inversion, usually a priori conditions are imposed on the flow; for example, it is required to be purely toroidal or geostrophic. Either condition is nearly satisfied by our model flows near the outer surface. However, most of the surface velocity field lies in the nullspace of the inversion problem. Nonetheless, the a priori constraints reduce the nullspace, and by inverting the magnetic data with either one of them we recover a significant part of the flow. With the geostrophic condition the correlation coefficient between the inverted and the true velocity field can reach values of up to 0.65, depending on the choice of the damping parameter. The correlation is significant at the 95 per cent level for most spherical harmonic degrees up to l=26. However, it degrades substantially, even at long wavelengths, when we truncate the magnetic data sets to l <= 14, that is, to the resolution of core-field models. In some of the latter inversions prominent zonal currents, similar to those seen in core-flow models derived from geomagnetic data, occur in the equatorial region. However, the true flow does not contain this flow component. The results suggest that some meaningful information on the core-flow pattern can be retrieved from secular variation data, but also that the limited resolution of the magnetic core field could produce serious artefacts.