Science.gov

Sample records for rotational liquid drop

  1. Bifurcation of rotating liquid drops: Results from USML-1 experiments in space

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G.; Anilkumar, A. V.; Lee, C. P.; Lin, K. C.

    1994-01-01

    Experiments on rotational bifurcation of liquid drops, in which the drops were levitated and spun using acoustic fields in a low-gravity environment, were conducted during the first United States Microgravity Laboratory (USML-1) Space Shuttle flight. The experiments have successfully resolved the discrepancies existing between the previous experimental results and the theoretical predictions. In the case of a spherical drop, for which theory exists, the results agree well with the predictions. In the case of flattened drops, the experiments have extablished a family of curves, with the spherical drop as the limiting case.

  2. On the Poincaré instability of a rotating liquid drop

    NASA Astrophysics Data System (ADS)

    Ivanyuk, F. A.; Pomorski, K.

    2013-05-01

    The stability of a rotating nuclear liquid drop against pear-like deformations is studied within the optimal shape theory of Strutinsky et al (1963 Nucl. Phys. 46 639). It is found that such a break-up of reflection symmetric shapes appears in light nuclei at high angular momenta when non-axial degrees of freedom are taken into account.

  3. Shapes and Fissility of Highly Charged and Rapidly Rotating Levitated Liquid Drops

    NASA Astrophysics Data System (ADS)

    Liao, L.; Hill, R. J. A.

    2017-09-01

    We use diamagnetic levitation to investigate the shapes and the stability of free electrically charged and spinning liquid drops of volume ˜1 ml. In addition to binary fission and Taylor cone-jet fission modes observed at low and high charge density, respectively, we also observe an unusual mode which appears to be a hybrid of the two. Measurements of the angular momentum required to fission a charged drop show that nonrotating drops become unstable to fission at the amount of charge predicted by Lord Rayleigh. This result is in contrast to the observations of most previous experiments on fissioning charged drops, which typically exhibit fission well below Rayleigh's limit.

  4. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  5. Bubble trajectories in rotating drops

    NASA Technical Reports Server (NTRS)

    Brone, D.; Cole, R.

    1991-01-01

    The investigation summarized in this paper describes recent normal gravity experiments involving the behavior of compound drops in rotating flows and in particular, the subsequent migration of the less dense phase (air bubble) toward the rotation axis. The data are compared to two models. The first was developed to predict the trajectory of a fluid particle in an infinitely large drop in the presence of both gravitational and rotational fields at the limit of quasi-steady creeping flow. The second predicts the trajectory of a fluid particle in a compound drop in the presence of a rotational field and at the limit of creeping flow. Gravity has not yet been incorporated into this second model.

  6. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  7. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  8. On the Stability of Rotating Drops

    PubMed Central

    Nurse, A. K.; Coriell, S. R.; McFadden, G. B.

    2015-01-01

    We consider the equilibrium and stability of rotating axisymmetric fluid drops by appealing to a variational principle that characterizes the equilibria as stationary states of a functional containing surface energy and rotational energy contributions, augmented by a volume constraint. The linear stability of a drop is determined by solving the eigenvalue problem associated with the second variation of the energy functional. We compute equilibria corresponding to both oblate and prolate shapes, as well as toroidal shapes, and track their evolution with rotation rate. The stability results are obtained for two cases: (i) a prescribed rotational rate of the system (“driven drops”), or (ii) a prescribed angular momentum (“isolated drops”). For families of axisymmetric drops instabilities may occur for either axisymmetric or non-axisymmetric perturbations; the latter correspond to bifurcation points where non-axisymmetric shapes are possible. We employ an angle-arc length formulation of the problem which allows the computation of equilibrium shapes that are not single-valued in spherical coordinates. We are able to illustrate the transition from spheroidal drops with a strong indentation on the rotation axis to toroidal drops that do not extend to the rotation axis. Toroidal drops with a large aspect ratio (major radius to minor radius) are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. Prolate spheroidal shapes occur if a drop of lower density rotates within a denser medium; these drops appear to be linearly stable. This work is motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., Journal of Applied Mechanics 79 (2012) 051013]. PMID:26958440

  9. Liquid drops on soft solids

    NASA Astrophysics Data System (ADS)

    Lubbers, Luuk A.; Weijs, Joost H.; Das, Siddhartha; Botto, Lorenzo; Andreotti, Bruno; Snoeijer, Jacco H.

    2014-03-01

    A sessile drop can elastically deform a substrate by the action of capillary forces. The typical size of the deformation is given by the ratio of surface tension and the elastic modulus, γ / E , which can reach up to 10-100 microns for soft elastomers. In this talk we theoretically show that the contact angles of drops on such a surface exhibit two transitions when increasing γ / E : (i) the microsocopic geometry of the contact line first develops a Neumann-like cusp when γ / E is of the order of few nanometers, (ii) the macroscopic angle of the drop is altered only when γ / E reaches the size of the drop. Using the same framework we then show that two neighboring drops exhibit an effective interaction, mediated by the deformation of the elastic medium. This is in analogy to the well-known Cheerios effect, where small particles at a liquid interface attract each other due to the meniscus deformations. Here we reveal the nature of drop-drop interactions on a soft substrate by combining numerical and analytical calculations.

  10. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  11. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  12. Electrostatic Liquid-Drop-Levitation System

    NASA Technical Reports Server (NTRS)

    Rhim, Won Kyu; Chung, San Kun; Hyson, Michael T.; Elleman, Daniel D.

    1988-01-01

    Electrostatic levitator has levitated drops of liquid up to 4 mm in diameter while maintaining spherical drop shapes. Stable levitation of spherical drops valuable in experiments involving super-cooling, solidification, and crystal growth.

  13. The dynamics of free liquid drops

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Trinh, E. H.; Croonquist, A. P.; Elleman, D. D.

    1988-01-01

    The behavior of rotating and oscillating free liquid drops was studied by many investigators theoretically for many years. More recent numerical treatments have yielded predictions which are yet to be verified experimentally. The purpose is to report the results of laboratory work as well as that of the experiments carried out in space during the flight of Spacelab 3, and to compare it with the existing theoretical studies. Ground-based experiments were attempted as a first approximation to the ideal boundary conditions used by the theoretical treatments by neutralizing the overwhelming effects of the Earth's gravitational field with an outside supporting liquid and with the use of levitation technology. The viscous and inertial loading of such a suspending fluid was found to profoundly effect the results, but the information thus gathered has emphasized the uniqueness of the experimental data obtained in the low-gravity environment of space.

  14. Theory of Compound Liquid Drops

    NASA Technical Reports Server (NTRS)

    Saffren, M. M.; Elleman, D. D.; Rhim, W. K.

    1983-01-01

    Dynamic behavior is analyzed for drop within drop within infinite fluid. Report gives theoretical basis for understanding behavior of compound drops. Aids in planning and interpreting experiments in laboratory, spacecraft, and research aircraft. Provides insight into fabrication of target pellets for nuclear fusion.

  15. Containerless protein crystal growth in rotating levitated drops

    NASA Astrophysics Data System (ADS)

    Chung, Sang K.; Trinh, Eugene H.

    1998-01-01

    A method for growing protein crystals in a containerless environment using an ultrasonic-electrostatic hybrid levitator is evaluated. In this approach, a single protein solution droplet bearing a surface charge is electrostatically levitated and acoustically rotated along a horizontal axis during the crystal nucleation and growth phases. Sample rotation is induced by ultrasonic streaming and radiation pressure applied in addition to the electrostatic levitation force. This unique approach is developed in order to create controlled crystal growth conditions which would reproduce some of the aspects of the low-gravity environment. We present the outcome of a development effort and feasibility study showing the successful growth of lysozyme and thaumatin crystals suspended within the bulk of quiescent liquid protein solutions inside rotating droplets also containing a very small concentration of agarose. Even though the crystals are not growing in a completely gelled medium and rotation is required for their long-term suspension, there are indications that a convectionless crystal growth environment has been obtained within the rotating drop, and that artificial flow can be introduced in a controlled manner by imposing drop shape oscillations.

  16. Leidenfrost drops on liquid baths : experiments

    NASA Astrophysics Data System (ADS)

    Maquet, Laurent; Darbois-Texier, Baptiste; Duchesne, Alexis; Brandenbourger, Martin; Dorbolo, Stéphane; Sobac, Benjamin; Rednikov, Alexey; Colinet, Pierre; Grasp, Université de Liège, Liège, Belgium Team; Tips, Université Libre de Bruxelles, Bruxelles, Belgium Team

    2015-11-01

    In the Leidenfrost effect, a liquid drop stands above a very hot substrate and levitates over a bed of its own vapor. Recently, the use of these drops has shown rather interesting possibilities, and better understanding of this effect thus appears necessary. Roughness generally leads to an increase of the Leidenfrost temperature. Therefore, the idea of our work is to use the smoothest substrate possible: a liquid bath. Indeed, we observed stable Leidenfrost drops with superheat (difference between the temperature of the bath and the boiling temperature of the drop's liquid) down to 1°C. This remarquable behavior has been seen notably for ethanol drops on silicon oil baths. However, the viscosity of the liquid of the bath seems to play an important role as no ethanol drop can be in the Leidenfrost state over high viscosity baths (kinematic viscosity ν ~ 200 cSt). This may be due to local cooling of the substrate under the drop. We also investigate the evaporation of these drops, and find scalings markably different from those applying in the case of a solid substrate. We also observe that the drop can enter in contact with the bath before its complete evaporation if the temperature is not high enough.

  17. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  18. Spreading dynamics of superposed drops of two liquids on a spinning disk

    NASA Astrophysics Data System (ADS)

    Sahoo, Subhadarshinee; Orpe, Ashish; Doshi, Pankaj

    2016-11-01

    We have experimentally studied simultaneous spreading of two liquid drops, one engulfing the other, when rotated atop a horizontal spinning disk using flow visualization technique. A drop of high surface tension liquid is placed centrally on a horizontal disk followed by a drop of second liquid placed exactly above the first. The second liquid, of higher volume, lower surface tension and lower density than the first, engulfs the first drop completely. The disk is then rotated at a desired speed for a range of volume ratios of two liquids. The spreading behavior of both the drops is captured using a high speed camera. Such an arrangement of two liquids drops does not affect the spreading behavior of the outer liquid, but influences that of the inner liquid significantly. The drop spreads to a larger extent and breaks into more fingers as compared to the case where the same liquid is spreading in the absence of outer liquid. The fingering instability is achieved at earlier times with decreasing volume ratios, indicative of the increasing influence of the edge of outer liquid film being closer to that of the inner liquid. Further, sustained rotation of the disk leads to emanation of drops from the spreading drop travelling outwards through the fingers of outer liquid.

  19. Electro-hydrodynamic propulsion of counter-rotating Pickering drops

    NASA Astrophysics Data System (ADS)

    Dommersnes, P.; Mikkelsen, A.; Fossum, J. O.

    2016-07-01

    Insulating particles or drops suspended in carrier liquids may start to rotate with a constant frequency when subjected to a uniform DC electric field. This is known as the Quincke rotation electro-hydrodynamic instability. A single isolated rotating particle exhibit no translational motion at low Reynolds number, however interacting rotating particles may move relative to one another. Here we present a simple system consisting of two interacting and deformable Quincke rotating particle covered drops, i.e. deformable Pickering drops. The drops attract one another and spontaneously form a counter-rotating pair that exhibits electro-hydrodynamic driven propulsion at low Reynolds number flow.

  20. Damped coalescence cascade of liquid drops

    NASA Astrophysics Data System (ADS)

    Shim, Suin; Stone, Howard A.

    2017-04-01

    We introduce a regime of the coalescence cascade of a liquid drop—the damped coalescence cascade (DCC)—where the rebound of daughter drops is suppressed. DCC typically occurs when the surface tension difference between the bath and the drop is larger than a critical value. A local Marangoni flow generated in the bath at every pinch-off is expected to accelerate air drainage in the gap between the daughter drop and the bath, and thus leads to suppression of the rebound of the daughter drop. Both scaling arguments and lubrication calculations demonstrate faster air drainage in the presence of local Marangoni flow.

  1. Leidenfrost drops on liquid baths: theory

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Rednikov, Alexei; Maquet, Laurent; Darbois-Texier, Baptiste; Duchesne, Alexis; Brandenbourger, Martin; Dorbolo, Stéphane; Colinet, Pierre

    2015-11-01

    It is well known that a liquid drop released over a very hot surface generally does not contact the surface nor boils but rather levitates over a thin vapor film generated by its own evaporation (Leidenfrost effect). In particular, the case of a hot (and flat) solid substrate has been extensively studied in recent years. In contrast, we here focus on Leidenfrost drops over a superheated liquid bath, addressing the problem theoretically and comparing our predictions with experimental results, detailed in a separate talk. We predict the geometry of the drop and of the liquid bath, based on the hydrostatic Young-Laplace and lubrication equations. A good agreement is observed with the available experimental data concerning the deformation of the liquid bath. The modeling also yields a rather complete insight into the shape of the drop. As in the case of a solid substrate, the vapor layer generally appears to be composed of a vapor pocket surrounded by a circular neck. The influences of the superheat and of the drop size are parametrically investigated. A number of scaling laws are established. Unlike the case of a solid substrate, no chimney instability was found in the range of drop size studied.

  2. Spreading of liquid drops over porous substrates.

    PubMed

    Starov, V M; Zhdanov, S A; Kosvintsev, S R; Sobolev, V D; Velarde, M G

    2003-07-01

    The spreading of small liquid drops over thin and thick porous layers (dry or saturated with the same liquid) has been investigated in the case of both complete wetting (silicone oils of different viscosities) and partial wetting (aqueous SDS solutions of different concentrations). Nitrocellulose membranes of different porosity and different average pore size have been used as a model of thin porous layers, glass and metal filters have been used as a model of thick porous substrates. The first problem under investigation has been the spreading of small liquid drops over thin porous layers saturated with the same liquid. An evolution equation describing the drop spreading has been deduced, which showed that both an effective lubrication and the liquid exchange between the drop and the porous substrates are equally important. Spreading of silicone oils over different nitrocellulose microfiltration membranes was carried out. The experimental laws of the radius of spreading on time confirmed the theory predictions. The spreading of small liquid drops over thin dry porous layers has also been investigated from both theoretical and experimental points of view. The drop motion over a dry porous layer appears caused by the interplay of two processes: (a). the spreading of the drop over already saturated parts of the porous layer, which results in a growth of the drop base, and (b). the imbibition of the liquid from the drop into the porous substrate, which results in a shrinkage of the drop base and a growth of the wetted region inside the porous layer. As a result of these two competing processes the radius of the drop base goes through a maximum as time proceeds. A system of two differential equations has been derived to describe the time evolution of the radii of both the drop base and the wetted region inside the porous layer. This system includes two parameters, one accounts for the effective lubrication coefficient of the liquid over the wetted porous substrate, and

  3. Ultrasonic characterization of single drops of liquids

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  4. Micro coulometric titration in a liquid drop.

    PubMed

    Kanyanee, Tinakorn; Fuekhad, Pongwasin; Grudpan, Kate

    2013-10-15

    Miniaturized coulometric titration in a liquid drop has been investigated. Assays of ascorbic acid and thiosulfate with iodine titration were chosen as models. Constant volumes of falling liquid drops containing sample or reagent are manipulated via gravimetrical force to move along a slope hydrophobic path and directed to stop or to move out from an electrode. Such manipulation is useful for delivery of sample and reagents, in a way of flow without tubing. Electrochemical generation of titrant, in this case, iodine, is started at the electrode and micro coulometric titration can be performed in a drop by applying constant current. Timing in the titration can be made via naked eye with a stopwatch or via recording with a webcam camera connecting to a computer to detect the change due to the blue color complex of the excess iodine and starch.

  5. Rotation of ultrasonically levitated glycerol drops

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Leung, E. W.; Trinh, E. H.

    1991-01-01

    Ultrasonic levitation is used to suspend single millimeter-size glycerol drops in a rectangular chamber. Audio-frequency laterally standing waves set up in the chamber are used to torque the suspended drops. The shape evolution of the drop under the combined effect of centrifugal forces and the acoustic radiation stress, along with its angular velocity are monitored, using video imaging and light scattering techniques. The results show good qualitative agreement with the theoretically predicted shape evolution as a function of angular velocity.

  6. Behavior Of Evaporating Liquid Drops In Clusters

    NASA Technical Reports Server (NTRS)

    Bellan, Josette

    1990-01-01

    Report presents critical analysis of methods, developed for calculating behavior of evaporating liquid drops in dense and dilute clusters. Essential to understanding variety of physical and chemical phenomena occurring in combustion of sprayed fuels and in sprays used in agriculture, food industry, and painting. Presents insights on important aspects of two-phase flow.

  7. The liquid drop nature of nucleoli.

    PubMed

    Marko, John F

    2012-03-01

    Nucleoli are prominent subnuclear organelles, and are known to be hubs of ribosome synthesis. A recent study of Brangwynne et al. reports that the nucleoli of Xenopus oocytes display "liquid drop" behavior, suggesting that nucleolar structure may be driven by rather simple physical principles.

  8. Bubble migration inside a liquid drop in a space laboratory

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Shankar, N.; Cole, R.; Subramanian, R. S.

    1982-01-01

    The design of experiments in materials processing for trials on board the Shuttle are described. Thermocapillary flows will be examined as an aid to mixing in the formation of glasses. Acoustically levitated molten glass spheres will be spot heated to induce surface flow away from the hot spot to induce mixing. The surface flows are also expected to cause internal convective motion which will drive entrained gas bubbles toward the hot spot, a process also enhanced by the presence of thermal gradients. The method is called fining, and will be augmented by rotation of the sphere to cause bubble migration toward the axes of rotation to form one large bubble which is more easily removed. Centering techniques to fix the maximum centering accuracy will also be tried. Ground-based studies of bubble migration in a rotating liquid and in a temperature gradient in a liquid drop are reviewed.

  9. Non-wetting drops at liquid interfaces: from liquid marbles to Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Wong, Clint Y. H.; Adda-Bedia, Mokhtar; Vella, Dominic

    We consider the flotation of deformable, non-wetting drops on a liquid interface. We consider the deflection of both the liquid interface and the droplet itself in response to the buoyancy forces, density difference and the various surface tensions within the system. Our results suggest new insight into a range of phenomena in which such drops occur, including Leidenfrost droplets and floating liquid marbles. In particular, we show that the floating state of liquid marbles is very sensitive to the tension of the particle-covered interface and suggest that this sensitivity may make such experiments a useful assay of the properties of these complex interfaces.

  10. Non-wetting drops at liquid interfaces: from liquid marbles to Leidenfrost drops.

    PubMed

    Wong, Clint Y H; Adda-Bedia, Mokhtar; Vella, Dominic

    2017-08-09

    We consider the flotation of deformable, non-wetting drops on a liquid interface. We consider the deflection of both the liquid interface and the droplet itself in response to the buoyancy forces, density difference and the various surface tensions within the system. Our results suggest new insight into a range of phenomena in which such drops occur, including Leidenfrost droplets and floating liquid marbles. In particular, we show that the floating state of liquid marbles is very sensitive to the tension of the particle-covered interface and suggest that this sensitivity may make such experiments a useful assay of the properties of these complex interfaces.

  11. Asymptotic Behavior in Liquid Drop Coalescence

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Burton, Justin; Nagel, Sidney; Appathurai, Santosh; Harris, Michael; Basaran, Osman

    2012-02-01

    During coalescence, two drops first touch and then merge, as a liquid bridge grows from initially microscopic scales to a macroscopic size comparable to the drop diameter. The initial dynamics of coalescence are expected to be universal, owing to a singularity in the Laplace pressure, which diverges when the curvature of the liquid interface is infinite at the point where the drops first touch. Conventionally, this process has been thought to have just two regimes: a highly viscous one dominated by macroscopic flows pulling the two drops together and an inertial one described by local deformations near the growing neck. We use high-speed imaging, electrical measurements and full Navier-Stokes simulations to reveal a new regime that dominates the asymptotic dynamics of coalescence for any finite viscosity. The character of this new regime improves our understanding of the unexpectedly late viscous-to-inertial crossover [1]. An argument based on force balance and an appropriate choice of length-scales allow the construction of a new phase diagram of coalescence.[4pt] [1] J. D. Paulsen, J. C. Burton, S. R. Nagel, PRL 106, 114501 (2011).

  12. Ground based studies of the vibrational and rotational dynamics of acoustically levitated drops and shells

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Leung, E.

    1990-01-01

    A substantial amount of experimental data can be gathered on the dynamics of acoustically positioned liquids in a ground-based laboratory and during short duration low-gravity parabolic flights of the KC-135. The preliminary results of a set of measurements of the static shape, of the vibrational spectrum, and the rotation equilibrium shapes of simple drops and liquid shells carried out using ultrasonic levitators working between 19 and 40 kHz is presented. The droplet diameter ranges between 1 and 5 mm, the surface tension of the liquid used varies between 25 and 70 dynes/cm, and the viscosity is changed between 1 to 1,000 cP. Of particular interest is the variation of the frequency of the fundamental mode of shape oscillation with various factors, and the effects of static drop shape deformation on the limit of stability of the axisymmetric shape of a drop in solid-body rotation.

  13. COD measurement based on the integrated liquid drop sensor

    NASA Astrophysics Data System (ADS)

    Qiu, Zurong; Zhang, Guoxiong; Song, Qing; Xu, Jian

    2005-02-01

    A study on Chemical Oxygen Demand (COD) measuring method is reported, in which the COD value is measured by an integrated liquid drop monitor sensor without any reagent and chemical treatment. The integrated drop sensor consists of a liquid head, an integrated fiber sensor and a capacitor sensor. The capacitor sensor is composed of a drop head and a ring electrode. As the part of the drop head, the outline of the drop will be changed during the drop forming, which result in the variation of the capacitance. The fiber sensor is composed of two fibers that are positioned into the liquid drop. The light signal goes into the liquid drop from one fiber and out from the other one. A unique fingerprint of the liquid drop can be got by the data processing. The matching between the COD value of a liquid and the codes of the fingerprints in the database are presented and discussed.

  14. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  15. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  16. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  17. Ultrasonic characterization of single drops of liquids

    DOEpatents

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  18. Drop Impact on to Moving Liquid Pools

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  19. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  20. Rotating Molten Metallic Drops and Their Applications for Surface Tension Measurements

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    Shapes and stability of rotating molten metal drops carrying net surface electric charges are experimentally investigated, and the feasibility of measureing surface tension based on drop rotation is examined.

  1. Flow visualization and characterization of evaporating liquid drops

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    An optical system, consisting of drop-reflection image, reflection-refracted shadowgraphy and top-view photography, is used to measure the spreading and instant dynamic contact angle of a volatile-liquid drop on a non-transparent substrate. The drop-reflection image and the shadowgraphy is shown by projecting the images of a collimated laser beam partially reflected by the drop and partially passing through the drop onto a screen while the top view photograph is separately viewed by use of a camera video recorder and monitor. For a transparent liquid on a reflective solid surface, thermocapillary convection in the drop, induced by evaporation, can be viewed nonintrusively, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this technique clearly reveal that evaporation and thermocapillary convection greatly affect the spreading process and the characteristics of dynamic contact angle of the drop.

  2. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen.

    PubMed

    Adda-Bedia, M; Kumar, S; Lechenault, F; Moulinet, S; Schillaci, M; Vella, D

    2016-05-03

    We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: a nitrogen vapor layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density ρd of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(ρd), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R,ρd) parameter space that separates them.

  3. (abstract) Production and Levitation of Free Drops of Liquid Helium

    NASA Technical Reports Server (NTRS)

    Paine, C. G.; Petrac, D.; Rhim, W. K.

    1995-01-01

    We are interested in the nucleation and behavior of quantized vorticies and surface excitations in free drops of superfluid helium. We have constructed an apparatus to maintain liquid helium drops isolated from any material container in the Earth's gravitational field, and have investigated two techniques for generating and introducing liquid drops into the region of confinement. The levitation apparatus utilizes the electrostatic force acting upon a charged liquid drop to counteract the gravitational force, with drop position stability provided by a static magnetic field acting upon the helium diamagnetic moment. Electrically neutral superfluid drops have been produced with a miniature thermomechanical pump; for a given configuration the liquid initial velocity has been varied up to several centimeters per second. Liquid drops carrying either net positive or negative charge are produced by an electrode which generates a flow of ionized liquid from the bulk liquid surface. Potentials of less than one thousand volts to several thousand volts are required. The mass flow is controlled by varying duration of the ionizing voltage pulse; drops as small as 30 micrometers diameter, charged to near the Rayleigh limit, have been observed.

  4. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2016-11-01

    While perpendicular drop impact onto a deep liquid pool is widely studied, the dynamics after oblique drop impact remain to be quantified. Here we study, for the first time, oblique drop impact experiments onto a deep liquid pool using ultrafast imaging. We quantify the splashing behavior and derive a model to describe the splashing threshold based on the impact angle and Weber number of the impacting drop. In addition, we study the cavity formation below the water surface and quantify the cavity depth and displacement. Based on the asymmetric cavity dynamics, we develop a method to predict the direction in which a jetted droplet can escape the cavity.

  5. Nucleation of Quantized Vortices from Rotating Superfluid Drops

    NASA Technical Reports Server (NTRS)

    Donnelly, Russell J.

    2001-01-01

    The long-term goal of this project is to study the nucleation of quantized vortices in helium II by investigating the behavior of rotating droplets of helium II in a reduced gravity environment. The objective of this ground-based research grant was to develop new experimental techniques to aid in accomplishing that goal. The development of an electrostatic levitator for superfluid helium, described below, and the successful suspension of charged superfluid drops in modest electric fields was the primary focus of this work. Other key technologies of general low temperature use were developed and are also discussed.

  6. Effect of Surfactants on Drop Coalescence at Liquid/liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Weheliye, Weheliye Hashii; Dong, Teng; Angeli, Panagiota

    2016-11-01

    In this paper the coalescence of a drop with a liquid-liquid interface was investigated experimentally using Particle Image Velocimetry (PIV). Initially the drop rest on the interface was studied. It was found that during drop rest the interface deformed before rupture, and the deformation increased with increasing surfactant concentration. The results from PIV showed that two counter-rotating vortices formed inside the droplet during the rupture process which moved from the bottom to the top of the drop. The evolutions of vortices for three surfactant concentrations will be presented. The vortices moved faster in lower surfactant concentrations compared to the higher ones. The intensities of the vortices in different concentrations were also calculated. After the rupture, for low surfactant concentrations, the intensities increased with time and reached a maximum while at later times they decreased. At high surfactant concentrations, the increase and subsequent decrease in intensity was not as pronounced. The work is support by the MEMPHIS program and the University College London. The author Teng Dong would like to thank the Chinese Scholarship Council (CSC) for providing funds for his overseas research.

  7. Initiation of liquid-solid contact beneath an impacting drop

    NASA Astrophysics Data System (ADS)

    Rubinstein, Shmuel; Kolinski, John

    2015-11-01

    Before an impacting drop contacts the solid surface it must first drain the air beneath it. As a prelude to wetting, before any contact occurs, the impinging liquid confines the intervening air into a nanometers-thin film. Once liquid-solid contact initiates by the spontaneous formation of a liquid bridge, the fluid rapidly wicks through the thin film of air, permanently binding the drop to the surface. Here, we experimentally examine these initial stages in the formation of the liquid solid contact beneath the impacting drop. Fast TIR microscopy enables unprecedented spatial and temporal resolution of the wetting process beneath the impacting drop and permits 3-dimensional imaging of the real contact line as well as nanometer-resolution of the thin film of air separating the liquid from the solid.

  8. Scaling of liquid-drop impact craters in granular media

    NASA Astrophysics Data System (ADS)

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Gao, Ming; Cheng, Xiang

    Granular impact cratering by liquid drops is a ubiquitous phenomenon, directly relevant to many important natural and industrial processes such as soil erosion, drip irrigation, and dispersion of micro-organisms in soil. Here, by combining the high-speed photography with high precision laser profilometry, we investigate the liquid-drop impact dynamics on granular surfaces and monitor the morphology of resulting craters. Our experiments reveal novel scaling relations between the size of granular impact craters and important control parameters including the impact energy, the size of impinging drops and the degree of liquid saturation in a granular bed. Interestingly, we find that the scaling for liquid-drop impact cratering in dry granular media can be quantitatively described by the Schmidt-Holsapple scaling originally proposed for asteroid impact cratering. On the other hand, the scaling for impact craters in wet granular media can be understood by balancing the inertia of impinging drops and the strength of impacted surface. Our study sheds light on the mechanism governing liquid-drop impacts on dry/wet granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes. Scaling of liquid-drop impact craters in granular media.

  9. Deformation of liquid drops moving in a gas medium

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2015-10-01

    Deformation of drops (with initial characteristic sizes of 3-6 mm) of widely used liquids (water, kerosene, and ethyl alcohol) moving in air with moderate velocities (up to 5 m/s) is investigated experimentally using a high-speed (105 frames per second) video camera. The characteristic "deformation cycles" for drops are established. The duration, length, and amplitude of variation of the drop sizes in each cycle are determined. It is shown how the initial size and velocity of drops affect these characteristics. The experimental results are processed using the similarity criteria (Weber and Reynolds numbers) adopted for investigating the motion of liquid drops. The features of the processes under investigation are outlined; it is shown that the conditions and characteristics of deformation of drops are determined not only by the effect of viscous, inertial, and surface tension forces.

  10. Electrically rotating suspended films of polar liquids

    NASA Astrophysics Data System (ADS)

    Shirsavar, R.; Amjadi, A.; Tonddast-Navaei, A.; Ejtehadi, M. R.

    2011-02-01

    Controlled rotation of a suspended soap water film, simply generated by applying an electric field, has been reported recently. The film rotates when the applied electric field exceeds a certain threshold. In this study, we investigate the phenomenon in films made of a number of other liquids with various physical and chemical properties. Our measurements show that the intrinsic electrical dipole moments of the liquid molecules seems to be vital for the corresponding film rotation. All the investigated rotating liquids have a molecular electric dipole moment of above 1 Debye, while weakly polar liquids do not rotate. However, the liquids investigated here cover a wide range of physical parameters (e.g. viscosity, density, conductivity, etc.). So far, no significant correlation has been observed between the electric field thresholds and macroscopic properties of the liquids.

  11. Gibbs free energy of liquid drops on conical fibers.

    PubMed

    Michielsen, Stephen; Zhang, Jinlin; Du, Jinmei; Lee, Hoon Joo

    2011-10-04

    Small drops can move spontaneously on conical fibers. As a drop moves along the cone, it must change shape to maintain a constant volume, and thus, it must change its surface energy. Simultaneously, the exposed surface area of the underlying cone must also change. The associated surface energies should balance each other, and the drop should stop moving when it reaches a location where the free energy is a minimum. In this paper, a minimum Gibbs free energy analysis has been performed to predict where a drop will stop on a conical fiber. To obtain the Gibbs free energies of a drop at different locations of a conical fiber, the theoretical expressions for the shape of a droplet on a conical fiber are derived by extending Carroll's equations for a drop on a cylindrical fiber. The predicted Gibbs free energy exhibits a minimum along the length of the cone. For a constant cone angle, as the contact angle between the liquid and the cone increases, the drop will move toward the apex of the cone. Likewise, for a constant contact angle, as the cone angle increases, the drop moves toward the apex. Experiments in which water and dodecane were placed on glass cones verify these dependencies. Thus, the final location of a drop on a conical fiber can be predicted on the basis of the geometry and surface energy of the cone, the surface tension and volume of the liquid, and the original location where the drop was deposited. © 2011 American Chemical Society

  12. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  13. Ultrasonic atomization of liquids in drop-chain acoustic fountains.

    PubMed

    Simon, Julianna C; Sapozhnikov, Oleg A; Khokhlova, Vera A; Crum, Lawrence A; Bailey, Michael R

    2015-03-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain.

  14. Partial coalescence of sessile drops with different liquids

    NASA Astrophysics Data System (ADS)

    Borcia, Rodica; Bestehorn, Michael

    2014-11-01

    We examine numerically the interaction between two deformable drops consisting of two perfectly miscible liquids sitting on a solid substrate under a given contact angle. Driven by solutal Marangoni forces, several distinct coalescence regimes are achieved after the droplets collision. Phase diagrams for different control parameters are emphasized, which give predictions about drop behavior along the solid substrates, control of various interfacial effects, manipulations of tiny droplets in micro- and nano-fluidic devices without power supply, design of droplets or cleaning surfaces. This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under the project ``Dynamics of interfaces between drops with miscible liquids''.

  15. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  16. Soft Listeria: actin-based propulsion of liquid drops.

    PubMed

    Boukellal, Hakim; Campás, Otger; Joanny, Jean-François; Prost, Jacques; Sykes, Cécile

    2004-06-01

    We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pearlike shape under the action of the elastic stresses exerted by the actin comet, a tail of cross-linked actin filaments. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.

  17. Liquid drops on vertical and inclined surfaces; I. An experimental study of drop geometry.

    PubMed

    ElSherbini, A I; Jacobi, A M

    2004-05-15

    Experiments have been conducted to investigate the geometric parameters necessary to describe the shapes of liquid drops on vertical and inclined plane surfaces. Two liquids and eight surfaces have been used to study contact angles, contact lines, profiles, and volumes of drops of different sizes for a range of surface conditions. The results show the contact-angle variation along the circumference of a drop to be best fit by a third-degree polynomial in the azimuthal angle. This contact-angle function is expressed in terms of the maximum and minimum contact angles of the drop, which are determined for various conditions. The maximum contact angle, thetamax, is approximately equal to the advancing contact angle, thetaA, of the liquid on the surface. As the Bond number, Bo, increases from 0 to a maximum, the minimum contact angle, thetamin, decreases almost linearly from the advancing to the receding angle. A general relation is found between thetamin/thetaA and Bo for different liquid-surface combinations. The drop contour can be described by an ellipse, with the aspect ratio increasing with Bo. These experimental results are valuable in modeling drop shape, as presented in Part II of this work.

  18. The approach and coalescence of liquid drops in air

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph Daniel

    The coalescence of liquid drops has conventionally been thought to have just two regimes when the drops are brought together slowly in vacuum or air: a viscous regime corresponding to the Stokes-flow limit and a later, inertial, regime where viscous effects are unimportant. Recently, Paulsen et al. showed that for low-viscosity drops there is an unexpectedly late crossover to the inertial regime. Further work confirmed that this picture with only two regimes must be supplanted by a description having a third regime with distinct dynamics. I use an ultrafast electrical method and high-speed imaging to provide a detailed description of coalescence near the moment of contact for drops that approach at sufficiently slow speed, where no drop deformation occurs before contact. These measurements support the new picture of coalescence. At higher approach speeds, signatures both before and after contact indicate that the intervening gas layer has deformed the drops before they touch.

  19. A comparative flow visualization study of thermocapillary flow in drops in liquid-liquid systems

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rashidnia, N.

    1991-01-01

    Experiments are performed to visualize thermocapillary flow in drops in an immiscible host liquid. The host liquid used is silicone oil. Drops of three different liquids are used, viz, vegetable oil, water-methanol mixture anad pure methanol. Clear evidence of thermocapillary flow is seen in vegetable oil drops. For a mixture of water and methanol (approximately 50-50 by weight), natural convection is seen to dominate the flow outside the drop. Pure methanol drops exhibit thermocapillary flow, but dissolve in silicone oil. A small amount of water added to pure methanol significantly reduces the dissolution. Flow oscillations occur in this system for both isothermal and non-isothermal conditions.

  20. Rotating Molten Metallic Drops and Related Phenomena: A New Approach to the Surface Tension Measurement

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Ishikawa, Takehiko

    2000-01-01

    Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.

  1. Drop interaction with solid boundaries in liquid/liquid systems

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur Deep

    The present experimental work was motivated primarily by the CO 2 sequestration process. In a possible scenario during this process, gravity driven CO2 bubbles coalesce at an interface near the rock surface. In another scenario, trapped CO2 fluid may escape from a porous matrix overcoming interfacial force inside a pore. Based on these potential scenarios, the current research was divided into two broad experimental studies. In the first part, coalescence at a quiescent interface of two analogous fluids (silicone oil and water/glycerin mixture) was investigated for water/glycerin drops with Bond number (Bo) ~7 and Ohnesorge number ~ 0.01 using high-speed imaging and time-resolved tomographic PIV. Two perturbation cases with a solid particle wetted in oil and water/glycerin placed adjacent to the coalescing drop were considered. The results were compared with coalescence of a single drop and that of a drop neighBored by a second drop of equivalent size. Each perturbing object caused an initial tilting of the drop, influencing its rupture location, subsequent film retraction and eventual collapse behavior. Once tilted, drops typically ruptured near their lowest vertical position which was located either toward or away from the perturbing object depending on the case. The trends in local retraction speed of the ruptured film and the overall dynamics of the collapsing drops were discussed in detail. In the second part, the motion of gravity driven drops (B o~0.8-11) through a confining orifice d/D<1) was studied using high speed imaging and planar PIV. Drops of water/glycerin, surrounded by silicone oil, fall toward and encounter the orifice plate after reaching terminal speed. The effects of surface wettability were investigated for Both round-edged and sharp-edged orifices. For the round-edged case, a thin film of surrounding oil prevented the drop fluid from contacting the orifice surface, such that the flow outcomes of the drops were independent of surface

  2. Liquid-film coating on topographically patterned rotating cylinders

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Carvalho, Marcio S.; Kumar, Satish

    2017-02-01

    The coating of discrete objects having surface topography is an important step in the manufacturing of a broad variety of products. To develop a fundamental understanding of this problem, we study liquid-film flow on rotating cylinders patterned with sinusoidal topographical features. The Stokes equations, augmented with a term accounting for centrifugal forces, are solved in a rotating reference frame using the Galerkin finite-element method (GFEM). A nonlinear evolution equation for the film thickness based on lubrication theory is also solved numerically and its predictions are compared to those from the GFEM calculations. When gravitational effects are negligible and the rotation rate is sufficiently low, liquid accumulates over the pattern troughs before merging to form multiple larger drops (located over troughs) whose number at steady state depends on the topography wavelength and rotation rate. When the rotation rate is sufficiently high, similar merging events occur, but liquid accumulates over the pattern crests at steady state. When gravitational forces become significant, it is possible to obtain a coating that closely conforms to the surface topography. The GFEM calculations are in agreement with predictions from the lubrication model provided the free-surface curvatures are sufficiently small. For sufficiently large pattern amplitude and film thickness, the GFEM calculations show that recirculation regions inside the troughs can appear and vanish as the cylinder rotates due to the variation of gravitational forces around the cylinder surface. This phenomenon, along with flow reversal over the crests, may strongly influence mixing, mass transport, and heat transport.

  3. Thermally Driven Oscillations and Wave Motion of a Liquid Drop

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Hendricks, R. C.; Schoessow, G. J.

    1977-01-01

    In the state of Leidenfrost boiling, liquid drops are observed to vibrate in a variety of modal patterns. Theories are presented which predict the frequency of oscillation and show that the observed model patterns of drops correspond to the minimum energy oscillatory excitation state. High-speed photographic techniques were used to record these motions and substantiate the theories. An incipient temperature was also found for water drops in film boiling below which free oscillations do not exist. In addition to these oscillations, photographic sequences are presented which show that wave motion can exist along the circumference of the drop. Following the study of free oscillations, the system was mounted on a shaker table and the drop subjected to a range of forced frequencies and accelerations.

  4. Thermally driven oscillations and wave motion of a liquid drop

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Hendricks, R. C.; Schoessow, G. J.

    1977-01-01

    In the state of Leidenfrost boiling, liquid drops are observed to vibrate in a variety of modal patterns. Theories are presented which predict the frequency of oscillation and show that the observed modal patterns of drops correspond to the minimum energy oscillatory excitation state. High-speed photographic techniques were used to record these motions and substantiate the theories. An incipient temperature was also found for water drops in film boiling below which free oscillations do not exist. In addition to these oscillations, photographic sequences are presented which show that wave motion can exist along the circumference of the drop. Following the study of free oscillations, the system was mounted on a shaker table and the drop subjected to a range of forced frequencies and accelerations.

  5. High-speed oblique drop impact on thin liquid films

    NASA Astrophysics Data System (ADS)

    Guo, Yisen; Lian, Yongsheng

    2017-08-01

    We numerically investigate high-speed drop impact on thin liquid films with a focus on oblique impact. The flow behavior is described by solving the incompressible Navier-Stokes equations using the variable density pressure projection method. The phase interfaces are captured using the moment-of-fluid method. The numerical method is validated against experiments and theoretical predictions. Our study on high-speed oblique impact reveals that the tangential velocity can significantly alter impact phenomena: a higher tangential velocity leads to a lower lamella height and radius on the side behind the advancing drop, and the higher tangential velocity also leads to stronger vortices at the drop and film interface due to Kelvin-Helmholtz instability. Our investigation on the effect of liquid film thickness shows that a thinner liquid film leads to an earlier crown breakup. Last, our study shows that lowering the film density can prompt earlier splashing.

  6. Symmetric drop coalescence on an under-liquid substrate.

    PubMed

    Mitra, Surjyasish; Mitra, Sushanta K

    2015-09-01

    We have derived a modified one-dimensional lubrication equation to describe the early coalescence behavior of a symmetric sessile drop coalescence for under-liquid substrates, which takes into account the viscosities of both the drop and the surrounding medium. We found a time scale, which governs the process, and there exists a crossover time between the universal scaling of the bridge height growth h^{*}∼t^{*} (valid for both under-liquid and air) and a much slower bridge growth h^{*}∼t^{*}^{0.24} occurring at a later time. It is also found that the drop coalescence bridge profile has a self-similarity, which breaks up much earlier for under-liquid substrates as opposed to symmetric coalescence in air.

  7. Viscous to Inertial Crossover in Liquid Drop Coalescence

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Burton, Justin; Nagel, Sidney

    2010-11-01

    When two liquid drops coalesce, a dramatic topological transition occurs. We use an electrical method and high-speed imaging to probe the coalescence down to 10 ns after the drops touch. Immediately after contact, the resistance varies as t-1 and later crosses over to t-1/2. In the case of water drops [1], this behavior had been interpreted with a model in which coalescence occurs between slightly deformed interfaces. By varying the liquid viscosity over two decades, we conclude that at sufficiently low approach velocity where deformation is not present, the drops coalesce as spheres, but with an unexpectedly late crossover time between a regime dominated by viscous (i.e., t-1) and one dominated by inertial (i.e., t-1/2) effects. This interpretation is consistent with experiments in which we change the drop approach velocity and the surrounding gas pressure and molecular weight. We argue that the late crossover, not accounted for in the theory [2], is due to the flow field in the liquid and an additional length-scale present in the drop geometry. [1] S. C. Case, and S. R. Nagel, PRL 100, 084503 (2008). [2] J. Eggers, J. Lister, and H. A. Stone, JFM 401, 293 (1999).

  8. Liquid drop spreading on surfaces: Initial regimes revisited

    NASA Astrophysics Data System (ADS)

    Mitra, Surjyasish; Mitra, Sushanta

    2016-11-01

    Liquid drop spreading on a given surface is fundamental towards technological processes like coating and paints, inkjet printing, surface characterization, etc. Though, the underlying dynamics is well understood, we have revisited this problem through experiments conducted on surfaces kept in air as well as immersed in water. It was found that the two key parameters that dictated the spreading process were drop-surrounding medium viscosity ratio and the characteristic viscous length scale. It was observed that irrespective of the drop liquid and surrounding liquid medium (air and water in this case), spreading always began in a regime dominated by drop viscosity, where the spreading radius scales as r t . However, the prefactor of the scaling observed was different for air (of the order of unity) and under-water (much less than unity). Following this initial regime, a second intermediate regime dominated by drop inertia (typically found for water drops spreading in air) was observed only when the characteristic viscous length scale favored such a transition. In this regime as well, a non-universal prefactor was noted for the scaling law, i.e., r t1/2. In all cases considered, the spreading process terminated in the Tanner's regime where the spreading radius scaled as r t1/10.

  9. Liquid drop impact cratering on a granular layer

    NASA Astrophysics Data System (ADS)

    Katsuragi, H.

    2010-12-01

    Granular impact cratering has been studied both in terms of planetary science and fundamental granular physics. Recent studies have revealed morphological scaling and dynamics of the granular impact cratering phenomenon. In all these studies, solid impactors have been used. However, the actual geophysical scale impactors might be melt. To mimic what happens when the impactor is melt, we performed simple drop granular impact experiment. A small (millimeter scale) water drop was dropped onto a granular layer (abrasives of micrometer grain size) at low impact speed (about meter/second). Then, various kinds of novel crater shapes were discovered depending on the experimental conditions. For instance, "sink type", "flat type", "ring type", and "bump type" craters were observed. We measured the characteristic time scale and length scale of the cratering, using a high speed camera and a laser profilometry system. From the experimental data, a simple scaling of the crater radius is proposed. The obtained scaling exponent is same as that of usual solid impact cratering. In the solid impactor case, the scaling exponent is derived from energy balance between impactor and ejecta. However, we found that the liquid drop deformation determines the scaling exponent in this experiment. We have also used glycerol and ethanol and their aqueous solutions, in order to examine the effect of viscosity and capillary force of liquid drops. A picture of the impacting drop is shown below. A water drop impacting onto a layer of abrasive.

  10. A liquid drop model for embedded atom method cluster energies

    NASA Technical Reports Server (NTRS)

    Finley, C. W.; Abel, P. B.; Ferrante, J.

    1996-01-01

    Minimum energy configurations for homonuclear clusters containing from two to twenty-two atoms of six metals, Ag, Au, Cu, Ni, Pd, and Pt have been calculated using the Embedded Atom Method (EAM). The average energy per atom as a function of cluster size has been fit to a liquid drop model, giving estimates of the surface and curvature energies. The liquid drop model gives a good representation of the relationship between average energy and cluster size. As a test the resulting surface energies are compared to EAM surface energy calculations for various low-index crystal faces with reasonable agreement.

  11. Liquid-drop-like model for cylindrical helium systems

    NASA Astrophysics Data System (ADS)

    Szybisz, Leszek

    2000-08-01

    Free liquid 4He at T=0 K with cylindrical symmetry is studied. The ground-state energy and chemical potential are computed by using a density functional approach. A liquid-drop-like model is formulated for analyzing the behavior of these observables as a function of the size of the systems. It is shown that such a model allows to get precise information about the asymptotic values of the energy per particle and surface tension.

  12. Drop impact on thin liquid films using TIRM

    NASA Astrophysics Data System (ADS)

    Pack, Min; Ying Sun Team

    2015-11-01

    Drop impact on thin liquid films is relevant to a number of industrial processes such as pesticide spraying and repellent surface research such as self-cleaning applications. In this study, we systematically investigate the drop impact dynamics on thin liquid films on plain glass substrates by varying the film thickness, viscosity and impact velocity. High speed imaging is used to track the droplet morphology and trajectory over time as well as observing instability developments at high Weber number impacts. Moreover, the air layer between the drop and thin film upon drop impact is probed by total internal reflection microscopy (TIRM) where the grayscale intensity is used to measure the air layer thickness and spreading radius over time. For low We impact on thick films (We ~ 10), the effect of the air entrainment is pronounced where the adhesion of the droplet to the wall is delayed by the air depletion and liquid film drainage, whereas for high We impact (We >100) the air layer is no longer formed and instead, the drop contact with the wall is limited only to the film drainage for all film thicknesses. In addition, the maximum spreading radius of the droplet is analyzed for varying thin film thickness and viscosity.

  13. Air cushioning vs liquid jets in drop impact

    NASA Astrophysics Data System (ADS)

    Josserand, Christophe; Ray, Pascal; Zaleski, Stephane; Institut D'Alembert Team

    2016-11-01

    Drop impact on a liquid thin film is investigated numerically, focusing on the interaction between the air cushioning and the splashing dynamics. We show that a new dimensionless number, balancing the time scale of the lubrication dynamics and that of the jet formation is at the heart of the different mechanisms at play.

  14. Drop impact on liquid film: dynamics of interfacial gas layer

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao

    2016-11-01

    Drop impacting liquid film is commonly observed in many processes including inkjet printing and thermal sprays. Owing to the resistance from the interfacial gas layer trapped between the drop and film surface, impact may not always result in coalescence; and as such investigating the behavior of the interfacial gas layer is important to understand the transition between bouncing and merging outcomes. The gas layer is, however, not easily optically accessible due to its microscopic scale and curved interfaces. We report the measurement of this critical gas layer thickness between two liquid surfaces using high-speed color interferometry capable of measuring micron and submicron thicknesses. The complete gas layer dynamics for the bouncing cases can be divided into two stages: the approaching stage when the drop squeezes the gas layer at the beginning of the impact, and the rebounding stage when the drop retracts and rebounds from the liquid film. The approaching stage is found to be similar across wide range of conditions studied. However, for the rebounding stage, with increase of liquid film thickness, the evolution of gas layer changes dramatically, displaying a non-monotonic behavior. Such dynamics is analyzed in lights of various competing timescales.

  15. Drop coalescence and liquid flow in a single Plateau border

    NASA Astrophysics Data System (ADS)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2015-05-01

    We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014), 10.1103/PhysRevLett.112.218303] to the inertial imbibition regime, unexpected at such small length scales. Here we report other features of interest of the drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels. Extensions of our study to liquid foams are discussed.

  16. Trapped liquid drop at the end of capillary.

    PubMed

    Wang, Zhengjia; Yen, Hung-Yu; Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-10-01

    The liquid drop captured at the capillary end, which is observed in capillary valve and pendant drop technique, is investigated theoretically and experimentally. Because of contact line pinning of the lower meniscus, the lower contact angle is able to rise from the intrinsic contact angle (θ*) so that the external force acting on the drop can be balanced by the capillary force. In the absence of contact angle hysteresis (CAH), the upper contact angle remains at θ*. However, in the presence of CAH, the upper contact angle can descend to provide more capillary force. The coupling between the lower and upper contact angles determines the equilibrium shape of the captured drop. In a capillary valve, the pinned contact line can move across the edge as the pressure difference exceeds the valving pressure, which depends on the geometrical characteristic and wetting property of the valve opening. When CAH is considered, the valving pressure is elevated because the capillary force is enhanced by the receding contact angle. For a pendant drop under gravity, the maximal capillary force is achieved as the lower contact angle reaches 180° in the absence of CAH. However, in the presence of CAH, four regimes can be identified by three critical drop volumes. The lower contact angle can exceed 180°, and therefore the drop takes on the shape of a light bulb, which does not exist in the absence of CAH. The comparisons between Surface Evolver simulations and experiments are quite well.

  17. Direct numerical simulation of gaseous mixing layers laden with multicomponent-liquid drops: liquid-specific effects

    NASA Astrophysics Data System (ADS)

    Le Clercq, Patrick C.; Bellan, Josette

    2005-06-01

    A representation of multicomponent-liquid (MC-liquid) composition as a linear combination of two single-Gamma probability distribution functions (PDFs) is used to describe a large number of MC-liquid drops evaporating in a gas flow. The PDF, called the double-Gamma PDF, depends on the molar mass. The gas-phase conservation equations are written in an Eulerian frame and the drops are described in a Lagrangian frame. Gas conservation equations for mass, momentum, species and energy are combined with differential conservation equations for the first four moments of the gas-composition PDF and coupled to the perfect gas equation of state. Source terms in all conservation equations account for the gas/drop interaction. The drop governing equations encompass differential conservation statements for position, mass, momentum, energy and four moments of the liquid-composition PDF. Simulations are performed for a three-dimensional mixing layer whose lower stream is initially laden with drops colder than the surrounding gas. Initial perturbations excite the layer to promote the double pairing of its four initial spanwise vortices to an ultimate vortex. During the layer evolution, the drops heat and evaporate. The results address the layer evolution, and the state of the gas and drops when layers reach a momentum-thickness maximum past the double vortex pairing. Of interest is the influence of the liquid composition on the development of the vortical features of the flow, on the vortical state reached after the second pairing, and on the gas temperature and composition. The MC-liquid simulations are initiated with a single-Gamma PDF composition so as to explore the development of the double-Gamma PDF. Examination of equivalent simulations with n-decane, diesel and three kerosenes as the liquid, permits assessment of the single-species versus the MC-liquid aspect, and of mixture composition specific effects. Global layer growth and global rotational characteristics are

  18. Method of orientation control and experimental investigation using a liquid-drop micromanipulator

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Wang, Han; Gan, Yuming; Huang, Weijun; Aoyama, Hisayuki

    2017-04-01

    Orientation adjustment of the micro-component is the key but most difficult part of micro-assembly. In this paper, the mechanism and physical process for orientation adjustment of micro-components absorbed by a liquid-drop micromanipulator are analyzed. The transformation relationship between the orientation of micro-components and the shape of the liquid-drop micromanipulator tip is studied. The quantitative mapping relationship between the shape of the liquid-drop micromanipulator tip and the orientation of micro components is established. A method to quantitatively control the tilt and rotation of micro-components is presented, and the feasibility of the method is verified by experiment. The results show that the orientation of a micro-component absorbed by a liquid-drop micromanipulator varies with the orientation of the micromanipulator. Quantitative control of the orientation of the micro-component can be realized by changing the shape of micromanipulator tip by controlling the upward and downward movement of tungsten rods.

  19. Alcohol drops on miscible liquid: mixing or spreading?

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard

    2016-11-01

    We studied how a sessile drop of alcohol behaves when placed on a fully miscible liquid. The dynamics of the subsequent mixing and spreading were captured by using a high-speed camera and investigated by varying parameters (e.g., surface tension, density, and viscosity). We observed that a deposited alcohol drop on a liquid bath remains as a floating lens shape, the alcohol liquid leaks out along the rim of the droplet, and it spreads axi-symmetrically along the bottom liquid interface. To visualize spreading and mixing features, we used time-resolved Particle Tacking Velocimetry and a Schlieren method. We observed a localized mixing flow at the rim of the floating droplet where the maximum flow speed is obtained, driven by a solutal Marangoni effect. Underneath the interface of the bath liquid, a viscous boundary layer develops while the alcohol liquid spreads along the radial direction. We also observed a finite quasi-steady interfacial flow velocity regime after the alcohol droplet touched the bottom liquid surface. In this regime, the flow speed linearly increases inside the floating lens, and outside the lens the flow speed decays along the r-direction with a power-law slope, Ur r - 1 / 2 . Physical arguments to support the observations will be discussed.

  20. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2017-08-01

    Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  1. Vapor condensation onto a non-volatile liquid drop

    NASA Astrophysics Data System (ADS)

    Inci, Levent; Bowles, Richard K.

    2013-12-01

    Molecular dynamics simulations of miscible and partially miscible binary Lennard-Jones mixtures are used to study the dynamics and thermodynamics of vapor condensation onto a non-volatile liquid drop in the canonical ensemble. When the system volume is large, the driving force for condensation is low and only a submonolayer of the solvent is adsorbed onto the liquid drop. A small degree of mixing of the solvent phase into the core of the particles occurs for the miscible system. At smaller volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Mixing into the core of the droplet is also observed for partially miscible systems below an onset volume suggesting the presence of a solubility transition. We also develop a non-volatile liquid drop model, based on the capillarity approximations, that exhibits a solubility transition between small and large drops for partially miscible mixtures and has a hysteresis loop similar to the one observed in the deliquescence of small soluble salt particles. The properties of the model are compared to our simulation results and the model is used to study the formulation of classical nucleation theory for systems with low free energy barriers.

  2. Vapor condensation onto a non-volatile liquid drop

    SciTech Connect

    Inci, Levent; Bowles, Richard K.

    2013-12-07

    Molecular dynamics simulations of miscible and partially miscible binary Lennard–Jones mixtures are used to study the dynamics and thermodynamics of vapor condensation onto a non-volatile liquid drop in the canonical ensemble. When the system volume is large, the driving force for condensation is low and only a submonolayer of the solvent is adsorbed onto the liquid drop. A small degree of mixing of the solvent phase into the core of the particles occurs for the miscible system. At smaller volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Mixing into the core of the droplet is also observed for partially miscible systems below an onset volume suggesting the presence of a solubility transition. We also develop a non-volatile liquid drop model, based on the capillarity approximations, that exhibits a solubility transition between small and large drops for partially miscible mixtures and has a hysteresis loop similar to the one observed in the deliquescence of small soluble salt particles. The properties of the model are compared to our simulation results and the model is used to study the formulation of classical nucleation theory for systems with low free energy barriers.

  3. Fine Drop Recovery in Batch Gas-Agitated Liquid-Liquid Dispersions

    NASA Astrophysics Data System (ADS)

    Shahrokhi, H.; Shaw, J. M.

    1996-11-01

    The hydrodynamics of batch gas-agitated liquid-liquid dispersions has received comparatively little attention in the open literature1-5. Such systems arise in diverse contexts but operate on the same basic principle. Two immiscible liquids form stratified layers initially and return to this stratified state at the end of a batch. Liquid from the lower liquid phase is entrained and then dispersed by gas bubbles passing from the lower to the upper liquid phase. At the end of a batch, the liquids separate under the influence of gravity. Fine drops separate slowly. For industrial processes such as nickel conversion, long settling periods reduce equipment productivity. Metal drops entrained in the lower density slag phase also pose leaching problems in slag heaps. We assessed fine drop production in such batch systems previously5. In this work, we address fine drop recovery. The net rate of fine drop recovery can be up to five times greater than Standard Settling experiments if low speed recirculation loops are imposed within the upper liquid phase that are perpendicular to the liquid-liquid interface. The principal mechanism for enhanced fine drop recovery, in this case, arises from improving drop liquid-liquid interface coalescence. 1. Hatzikiriakos et al., A.I.Ch.E. J., 36, 677-684 (1990). 2. Hatzikiriakos et al., Chem. Eng. Sci., 45, 2349-2356 (1990). 3. Konduru & Shaw, Proc. Int. Symp. Materials Handling in Pyromet., Hamilton, Cda, 14-24 (1991). 4. ibid, Can. J. Chem. Eng., 70, 381-384 (1992). 5. Shahrokhi & Shaw, Chem. Eng. Sci., 49, 5203-5213 (1994).

  4. Distinguishing between microscale gaseous bubbles and liquid drops

    NASA Astrophysics Data System (ADS)

    Tan, Beng Hau; An, Hongjie; Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    In recent years, there has been strong research interest in decorating surfaces with tiny bubbles and drops due to their potential applications in reducing slippage in micro and nanofluidic devices. Both nanobubbles and nanodrops are typically nucleated by exchanging fluids over a suitable substrate. However, the nucleation experiments present many challenges, such as reproducibility and the possibility of contamination. The use of one-use plastic syringes and needle cannulas in nucleation experiments can introduce polymeric contamination. A contaminated experiment may nucleate bubbles, drops or both. Moreover, it is surprisingly difficult to distinguish between bubbles and drops under the usual atomic force microscopy or optical techniques. Here we present an experimental study comparing bubbles and oil (PDMS) drops on an atomically smooth surface (HOPG). Instead of nucleating the objects via solvent exchange, we directly introduced bubbles via electrolysis, and oil drops by injecting a dilute solution. Contrary to previous reports, we find that under careful AFM characterisation, liquid drops and gaseous bubbles respond differently to a change in imaging force, and moreover present different characteristic force curves.

  5. Dynamics of drop coalescence on under-liquid substrates

    NASA Astrophysics Data System (ADS)

    Mitra, Surjyasish; Mitra, Sushanta

    2015-11-01

    Theoretical understanding of drop coalescence on under-liquid substrates is a challenging problem due to the presence of a surrounding viscous medium. Though, most work till date have focused on coalescence in air medium, the presence of a surrounding viscous medium is a significant extension to this classical coalescence problem. Such instances are often found in physical systems such as oil-spills, wetting of marine ecosystem, etc. In the present work, a modified one-dimensional lubrication equation has been developed to describe the early coalescence behavior of two symmetric sessile drops for under-liquid substrates, which takes into account the viscosities of both the drop and the surrounding medium. We found a new time scale which governs the process and there exist a cross-over time between the universal scaling of the bridge height growth \\hcirc ~ \\tcirc (valid for both under-liquid and air) and a much slower bridge growth \\hcirc ~\\tcirc 0 . 24 occurring at a later time. It is also found that the evolving bridge profile has a self-similarity, which breaks up much earlier for under-liquid substrates as opposed to symmetric coalescence in air.

  6. A Partial Equilibrium Theory for Drops and Capillary Liquids

    SciTech Connect

    Searcy, Alan W.; Beruto, Dario T.; Barberis, Fabrizio

    2006-10-26

    The two-century old theory of Young and Laplace retains apowerful influence on surface and interface studies because itquantitatively predicts the height of rise of capillary liquids from thecontact angles of drops. But the classical theory does not acknowledgethat equilibrium requires separate minimization of partial free energiesof one-component liquids bonded to immiscible solids. We generalize atheorem of Gibbs and Curie to obtain a partial equilibrium (PE) theorythat does so and that also predicts the height of capillary rise fromcontact angles of drops. Published observations and our own measurementsof contact angles of water bonded to glass and Teflon surfaces supportthe conclusion of PE theory that contact angles of meniscuses and ofdrops are different dependent variables. PE theory provides thermodynamicand kinetic guidance to nanoscale processes that the classical theoryobscures, as illustrated by examples in our concludingsection.

  7. Active structuring of colloidal armour on liquid drops

    PubMed Central

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716

  8. Maximal air bubble entrainment at liquid-drop impact.

    PubMed

    Bouwhuis, Wilco; van der Veen, Roeland C A; Tran, Tuan; Keij, Diederik L; Winkels, Koen G; Peters, Ivo R; van der Meer, Devaraj; Sun, Chao; Snoeijer, Jacco H; Lohse, Detlef

    2012-12-28

    At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for small impact velocity and small droplets, capillary forces minimize the entrained bubble. However, we demonstrate experimentally, theoretically, and numerically that in between there is an optimum, leading to maximal air bubble entrapment. For a 1.8 mm diameter ethanol droplet, this optimum is achieved at an impact velocity of 0.25  m/s. Our results have a strong bearing on various applications in printing technology, microelectronics, immersion lithography, diagnostics, or agriculture.

  9. Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets

    NASA Astrophysics Data System (ADS)

    Borthakur, Manash Pratim; Biswas, Gautam; Bandyopadhyay, Dipankar

    2017-07-01

    This paper presents a numerical investigation of the dynamics of pinch-off in liquid drops and jets during injection of a liquid through an orifice into another fluid. The current study is carried out by solving axisymmetric Navier-Stokes equations and the interface is captured using a coupled level-set and volume-of-fluid approach. The delicate interplay of inertia and viscous effects plays a crucial role in deciding the dynamics of the formation as well as breakup of liquid drops and jets. In the dripping regime, the growth and breakup rate of a drop are studied and quantified by corroborating with theoretical predictions. During the growth stage of the drops, a self-similar behavior of the drop profile is identified over a relatively short duration of time. The viscosity of the drop liquid shows substantial influence on the thinning behavior of a liquid neck and a transition is observed from an inertia dominated regime to an inertia-viscous regime beyond a critical minimum value of the neck radius. The phenomenon of interface overturning is fundamentally related to the magnitude of drop viscosity. The variation of overturning angle as a function of drop viscosity is computed and a critical value of Ohnesorge number is obtained beyond which overturning ceases. Increasing the inertia of drop liquid transforms the system from a periodically dripping regime to a quasiperiodic regime and finally it culminates into an elongated liquid jet. Another interesting transition from dripping to jetting regime is demonstrated by varying the viscosity of the ambient medium. The breakup of jets in Rayleigh mode is explored and the breakup length obtained from our computations shows excellent agreement with the theoretical predictions owing to Rayleigh's analysis. The ambient medium is entrained as the jet moves downstream with the creation of a vortical structure just outside the jet signifying increased participation of the ambient medium in the dynamics of jet breakup at

  10. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, L.L.; Bae, J.H.

    1991-12-24

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes. 17 figures.

  11. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, Lawrence L.; Bae, Jae-Heum

    1991-01-01

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.

  12. Coalescence of Immiscible Liquid Metal Drop on Graphene

    PubMed Central

    Li, Tao; Li, Jie; Wang, Long; Duan, Yunrui; Li, Hui

    2016-01-01

    Molecular dynamics simulations were performed to investigate the wetting and coalescence of liquid Al and Pb drops on four carbon-based substrates. We highlight the importance of the microstructure and surface topography of substrates in the coalescence process. Our results show that the effect of substrate on coalescence is achieved by changing the wettability of the Pb metal. Additionally, we determine the critical distance between nonadjacent Al and Pb films required for coalescence. These findings improve our understanding of the coalescence of immiscible liquid metals at the atomistic level. PMID:27667589

  13. Liquid drops and surface tension with smoothed particle applied mechanics

    NASA Astrophysics Data System (ADS)

    Nugent, S.; Posch, H. A.

    2000-10-01

    Smoothed particle applied mechanics (SPAM), also referred to as smoothed particle hydrodynamics, is a Lagrangian particle method for the simulation of continuous flows. Here we apply it to the formation of a liquid drop, surrounded by its vapor, for a van der Waals (vdW) fluid in two dimensions. The cohesive pressure of the vdW equation of state gives rise to an attractive, central force between the particles with an interaction range which is assumed to exceed the interaction range of all the other smoothed forces in the SPAM equations of motion. With this assumption, stable drops are formed, and the vdW phase diagram is well reproduced by the simulations. Below the critical temperature, the surface tension for equilibrated drops may be computed from the pressure excess in their centers. It agrees very well with the surface tension independently determined from the vibrational frequency of weakly excited drops. We also study strongly deformed drops performing large-amplitude oscillations, which are reminiscent of the oscillations of a large ball of water under microgravity conditions. In an appendix we comment on the limitations of SPAM by studying the violation of angular momentum conservation, which is a consequence of noncentral forces contributed by the full Newtonian viscous stress tensor.

  14. Single drop liquid-liquid-liquid microextraction of methamphetamine and amphetamine in urine.

    PubMed

    He, Yi; Kang, Youn-Jung

    2006-11-10

    Single drop liquid-liquid-liquid microextraction (LLLME) combined with high performance liquid chromatography (HPLC)-UV detection was investigated for the determination of a popular drug of abuse, methamphetamine (MAP), and its major metabolite, amphetamine (AP), in urine samples. The target compounds were extracted from NaOH modified sample solution to a thin layer of organic solvent membrane, and back-extracted to an acidic acceptor drop suspended on the tip of a 50-microL HPLC syringe in the aforementioned organic layer. This syringe was also used for direct injection after extraction. Factors affecting extraction efficiency were studied. At optimal conditions, the overall enrichment factor (EF) was 500-fold for AP and 730-fold for MAP, respectively. The method exhibited a wide linear range (1.0-1500 microg/L), low detection limit (0.5 microg/L), and good repeatability (RSD<5.0%) for both analytes. The feasibility of the method was demonstrated by the analysis of human urine samples.

  15. Planar equilibrium shapes of a liquid drop on a membrane.

    PubMed

    Hui, Chung-Yuen; Jagota, Anand

    2015-12-14

    The equilibrium shape of a small liquid drop on a smooth rigid surface is governed by the minimization of energy with respect to the change in configuration, represented by the well-known Young's equation. In contrast, the equilibrium shape near the line separating three immiscible fluid phases is determined by force balance, represented by Neumann's Triangle. These two are limiting cases of the more general situation of a drop on a deformable, elastic substrate. Specifically, we have analyzed planar equilibrium shapes of a liquid drop on a deformable membrane. We show that to determine its equilibrium shape one must simultaneously satisfy configurational energy and mechanical force balance along with a constraint on the liquid volume. The first condition generalizes Young's equation to include changes in stored elastic energy upon changing the configuration. The second condition generalizes the force balance conditions by relating tensions to membrane stretches via their constitutive elastic behavior. The transition from Young's equation to Neumann's triangle is governed by the value of the elasto-capillary number, β = TRo/μh, where TRo is twice the surface tension of the solid-vapor interface, μ is the shear modulus of the membrane, and h is its thickness.

  16. Deformation of liquid-liquid interfaces by a rotating rod

    NASA Astrophysics Data System (ADS)

    Zhao, C. W.; Gentric, C.; Dietrich, N.; Ma, Y. G.; Li, Huai Z.

    2017-07-01

    The present study aims at investigating the deformation mechanism of liquid-liquid interfaces by both the experimental and numerical approaches. The experiments reveal that the topology of an initial flat interface composed of Newtonian aqueous and Newtonian oil phases can be modulated as climbing or descending along a rotating rod according to the ratio of the kinematic viscosity between these two liquid phases. The measurements of the fluid flow fields by particle image velocimetry highlight the relationship between the appearance of the Taylor-Couette instability in the less viscous phase and the interface's orientation. The increasing rod rotation speed expands the Taylor-Couette vortices and then intensifies the magnitude of the interface deformation. The numerical simulation by the volume of fluid method is in qualitative agreement with the experimental results, in particular the interface shape and the qualitative influence of different parameters, even under very high rotation speeds of the rod.

  17. Small Liquid Hydrogen Tank for Drop Tower Tests

    NASA Image and Video Library

    1964-11-21

    A researcher fills a small container used to represent a liquid hydrogen tank in preparation for a microgravity test in the 2.2-Second Drop Tower at the National Aeronautics and Space Administration (NASA) Lewis Research Center. For over a decade, NASA Lewis endeavored to make liquid hydrogen a viable propellant. Hydrogen’s light weight and high energy made it very appealing for rocket propulsion. One of the unknowns at the time was the behavior of fluids in the microgravity of space. Rocket designers needed to know where the propellant would be inside the fuel tank in order to pump it to the engine. NASA Lewis utilized sounding rockets, research aircraft, and the 2.2 Second Drop Tower to study liquids in microgravity. The drop tower, originally built as a fuel distillation tower in 1948, descended into a steep ravine. By early 1961 the facility was converted into an eight-floor, 100-foot tower connected to a shop and laboratory space. Small glass tanks, like this one, were installed in experiment carts with cameras to film the liquid’s behavior during freefall. Thousands of drop tower tests in the early 1960s provided an increased understanding of low-gravity processes and phenomena. The tower only afforded a relatively short experiment time but was sufficient enough that the research could be expanded upon using longer duration freefalls on sounding rockets or aircraft. The results of the early experimental fluid studies verified predictions made by Lewis researchers that the total surface energy would be minimized in microgravity.

  18. Liquid drops attract or repel by the inverted Cheerios effect

    PubMed Central

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A.; Weijs, Joost H.; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H.

    2016-01-01

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop–drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the “Cheerios effect.” The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology. PMID:27298348

  19. A perspective on the interfacial properties of nanoscopic liquid drops

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr; Jackson, George

    2012-11-01

    The structural and interfacial properties of nanoscopic liquid drops are assessed by means of mechanical, thermodynamical, and statistical mechanical approaches that are discussed in detail, including original developments at both the macroscopic level and the microscopic level of density functional theory (DFT). With a novel analysis we show that a purely macroscopic (static) mechanical treatment can lead to a qualitatively reasonable description of the surface tension and the Tolman length of a liquid drop; the latter parameter, which characterizes the curvature dependence of the tension, is found to be negative and has a magnitude of about a half of the molecular dimension. A mechanical slant cannot, however, be considered satisfactory for small finite-size systems where fluctuation effects are significant. From the opposite perspective, a curvature expansion of the macroscopic thermodynamic properties (density and chemical potential) is then used to demonstrate that a purely thermodynamic approach of this type cannot in itself correctly account for the curvature correction of the surface tension of liquid drops. We emphasize that any approach, e.g., classical nucleation theory, which is based on a purely macroscopic viewpoint, does not lead to a reliable representation when the radius of the drop becomes microscopic. The description of the enhanced inhomogeneity exhibited by small drops (particularly in the dense interior) necessitates a treatment at the molecular level to account for finite-size and surface effects correctly. The so-called mechanical route, which corresponds to a molecular-level extension of the macroscopic theory of elasticity and is particularly popular in molecular dynamics simulation, also appears to be unreliable due to the inherent ambiguity in the definition of the microscopic pressure tensor, an observation which has been known for decades but is frequently ignored. The union of the theory of capillarity (developed in the nineteenth

  20. Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions

    NASA Astrophysics Data System (ADS)

    Maaß, S.; Wollny, S.; Voigt, A.; Kraume, M.

    2011-02-01

    An online measurement technique for drop size distribution in stirred tank reactors is needed but has not yet been developed. Different approaches and different techniques have been published as the new standard during the last decade. Three of them (focus beam reflectance measurement, two-dimensional optical reflectance measurement techniques and a fiber optical FBR sensor) are tested, and their results are compared with trustful image analysis results from an in situ microscope. The measurement of drop sizes in liquid/liquid distribution is a major challenge for all tested measurement probes, and none provides exact results for the tested system of pure toluene/water compared to an endoscope. Not only the size analysis but also the change of the size over time gives unreasonable results. The influence of the power input on the drop size distribution was the only reasonable observation in this study. The FBR sensor was not applicable at all to the used system. While all three probes are based on laser back scattering, the general question of the usability of this principle for measuring evolving drop size distributions in liquid/liquid system is asked. The exterior smooth surface of droplets in such systems is leading to strong errors in the measurement of the size of the drops. That leads to widely divergent results. A different measurement principle should be used for online measurements of drop size distributions than laser back scattering.

  1. Hip Rotations Influence Electromyographic Activity of Gluteus Medius Muscle During Pelvic Drop Exercise.

    PubMed

    Monteiro, Renan Lima; Facchini, Joana Hoverter; de Freitas, Diego Galace; Callegaric, Bianca; Amado João, Sílvia Maria

    2016-08-24

    Pelvic drop exercises are often used to strengthen the gluteus medius muscle with the aim of increasing or prioritizing its recruitment. However, the effect of hip rotation on the performance of the action of the gluteus medius is unknown. The aim of the study was to evaluate the effect of hip rotation on the recruitment of the gluteus medius muscle, tensor fasciae latae and quadratus lumborum. Seventeen healthy subjects performed two sets of four repetitions of pelvic drop exercise in random order with lateral (PDLR), medial (PDMR) and neutral (PDN) rotation of the hip. The electromyographic activity of the gluteus medius muscle (GM), tensor fasciae latae (TFL) and quadratus lumborum (QL) were evaluated using surface electromyography (sEMG). The results showed significant increases in activation of the GM with medial and neutral rotation compared with lateral rotation (p = 0.03, p = 0.01, respectively) and there was no difference between medial and neutral rotation (p=1.00). There was no difference in electromyographic activity of the tensor fasciae latae and quadratus lumborum in any of the positions. The GM:TFL ratio was the same in all analyzed positions. Regarding the GM:QL ratio, there was a significant increase with medial rotation compared with lateral rotation (p=0.02). Pelvic drop exercises are more efficient for activating the gluteus medius when the hip is in medial rotation and neutral position.

  2. Instability of a rotating liquid ring

    NASA Astrophysics Data System (ADS)

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  3. Coalescence of surfactant-laden drops in liquids

    NASA Astrophysics Data System (ADS)

    Nowak, Emilia; Simmons, Mark

    2015-11-01

    Whilst coalescence of droplets in air is much studied, the mechanism of merging surfactant-laden drops in other liquids is less well understood. The dynamics of the coalescence of droplets in presence of surfactants was investigated focusing on the curvature and progression of the width of the neck that bridges the drops (up to millimetres) as well as the mixing patterns and surface flows driven by Marangoni stresses. Coalescence of different composition droplets revealed difference in the curvature of the meniscus on either side of the growing bridge which was more pronounced for the lower viscosities of the surrounding oils and related to the different local values of the surface tension. With the aid of a dye present in one of the drops, the visualisation of bulk flow was possible and different patterns were observed with increasing viscosity of the surrounding oil that led to formation of `mushroom'-like structures inside the droplets. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  4. Suspension of Drops of a Liquid in a Column of Water.

    ERIC Educational Resources Information Center

    Ahmad, Jamil

    1995-01-01

    Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)

  5. Suspension of Drops of a Liquid in a Column of Water.

    ERIC Educational Resources Information Center

    Ahmad, Jamil

    1995-01-01

    Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)

  6. Electric Field Induced Stable Micro Rotor in Nematic Liquid Crystal Drops Constrained on Thin Cellulosic Fibers

    NASA Astrophysics Data System (ADS)

    Godinho, Maria Helena; Geng, Yong; Almeida, Pedro; Figueirinhas, João; Terentjev, Eugene

    2012-02-01

    We directly visualize the response of nematic liquid crystal drops of toroidal topology constrained on thin fibers, suspended in air, to an AC applied electric field E. This new localized liquid crystal system can exhibit non-trivial point defects, which may become energetically unstable against expanding into ring disclinations depending on the fiber constraining geometries. The director anchoring tangential near the fiber surface and homeotropic at the air interface, making a hybrid shell distribution that in turn causes a ring of disclination line around the main axis of the fiber at the center of the droplet. Upon application of E, the disclination ring first expands and slightly moves along the fiber main axis, followed by the appearance of a stable ``spherical particle'' orbiting around the fiber at the center of the liquid crystal drop. The rotation speed of this particle was found to vary linearly with the applied voltage. This constrained liquid crystal geometry seems to meet the essential requirements in which soliton like particles can develop and exhibit stable orbiting in three dimensions upon application of an external electric field. This is another example of a soft energy transducer system which allows, at the micro scale, the transfer in a continuous way of electrical to mechanical energy.

  7. Difficulties in applying laser technique to measure drop sizes in vertical and inclined Annular gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Zaidi, Sohail H.

    1996-11-01

    Annular two phase flow is one of the most common regimes of gas/liquid flow found in industrial equipment. In this regime, the liquid flows in part as a film on the channel walls while the rest of the liquid is carried as drops by the gas flowing in the center of the channel. Detailed knowledge of the liquid drops particularly their sizes and velocities is essential in processes involving heat and mass transfer. This information is of great importance for the oil industry where inclined drilling has recently become a common practice. The effect of inclination on the drop sizes is still unknown and requires further investigation. Laser diffraction is one of the few available techniques which is widely used for the measurement of droplet size distribution. Although the technique is simple to use, it is not free from problems. This paper highlights the practical difficulties encountered when the technique was used to measure the drop size distribution in an inclinable flow column. The laser system was mounted on the rig and the flow column was rotated from vertical to horizontal position. Liquid drops appearing on the optical windows prohibited laser measurements. Other problems included the glass reflections and vibration when the rig was in operation. In this paper some practical suggestions have been made to overcome these problems and some useful results have been included.

  8. Non-axisymmetric shapes of a rotating drop in an immiscible system

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Tagg, R.; Cammack, L.; Croonquist, A. P.

    1982-01-01

    The nonaxisymmetric shapes of a rotating drop in an immiscible system were studied. Five basic families of shapes (axisymmetric, two-lobed, three-lobed, four-lobed, and toroidal) were observed. The sequence (axisymmetric to two-lobed to three-lobed to four-lobed to toroidal) seems to be linked to increasing spin-up velocity. For the axisymmetric case, direct comparisons of experiments with the theory of a free rotating drop were surprisingly good the equatorial area differs from theory by only 30%. Furthermore, the non-axisymmetric shapes are in good qualitative agreement with the theory, although the theory does not address the presence of an outer fluid.

  9. Dynamics of drop impact and coalescence at a liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Mohamed-Kassim, Ahmad Zulfaa

    Coalescence is a process where two fluidic bodies merge into one. Coalescence will occur, for example, after a raindrop impacts on a pool of water or when petroleum oil is collected in bulk after separating it from water. However, the topological transition and the short length and time scales associated with coalescence made it difficult to model analytically or simulate numerically. Hence, predictions of any coalescence phenomena are typically made through empirical or ad-hoc methods which can be cumbersome and costly. The objective of this investigation was to obtain detailed velocity field measurements using the particle image velocimetry (PIV) method on a simple two-fluid flow undergoing a coalescence process. These measurements will provide test cases against numerical simulations. The flow was modeled experimentally by releasing a single drop through a less dense ambient until it achieved a terminal velocity before impacting onto a liquid/liquid interface. Viscosity of the less dense ambient was varied to study the effect of Reynolds number on the flow. The drop approach and impact were also studied to observe their influence on the coalescence process. Index matching and a slight camera inclination were employed to eliminate optical distortions. Sequences of images and velocity fields were obtained using a high-speed video camera to study flow evolution during impact and coalescence. The experimental measurements showed that coalescence is decoupled from impact for the liquid/liquid combinations studied here. Prior to impact, a wake existed upstream of each drop due to viscous and pressure drag. Inside the drop, the fluid circulated around a vortex ring whose diameter extends near the drop boundary. After impact, the viscously-induced circulation inside the drop dissipated completely due to wake impingement and drop deformation. The interfacial rupture which led to coalescence was typically off-axis, followed by a retraction of the thin film free edge with

  10. Drop deformation and breakup in a partially filled horizontal rotating cylinder

    NASA Astrophysics Data System (ADS)

    White, Andrew; Pereira, Caroline; Hyacinthe, Hyaquino; Ward, Thomas

    2014-11-01

    Drop deformation and breakup due to shear flow has been studied extensively in Couette devices as well as in gravity-driven flows. In these cases shear is generated either by the moving wall or the drop's motion. For such flows the drop shape remains unperturbed at low capillary number (Ca), deforms at moderate Ca , and can experience breakup as Ca --> 1 and larger. Here single drops of NaOH(aq) will be placed in a horizontal cylindrical rotating tank partially filled with vegetable oil resulting in 10-2 < Ca <101 . It will be shown that the reactive vegetable oil-NaOH(aq) system, where surfactants are produced in situ by saponification, can yield lower minimum surface tensions and faster adsorption than non-reactive surfactant systems. Oil films between the wall and drop as well as drop shape will be observed as rotation rates and NaOH(aq) concentration are varied. Results will be presented in the context of previous work on bubble and drop shapes and breakup. NSF CBET #1262718.

  11. New drop deposition technique for wettability characterization of under-liquid superoleophobic surfaces

    NASA Astrophysics Data System (ADS)

    Mitra, Sushanta; Waghmare, Prashant; Das, Siddhartha

    2013-11-01

    From understanding the remarkable self-cleaning behavior of fish scales to the preparation of surfaces that will counter the destructive effects of oil-spills, there has been a remarkable interest in understanding the wettability of a solid in an ``under-liquid'' configuration. Like surfaces in air, here too, the main focus remain in designing surfaces (such as fish scales) that exhibit repelling behavior to a multiple other liquids in this ``under-liquid'' state. Problem occurs, just as with surfaces in air, when this ``under-liquid'' surface is too repelling to a given liquid. In that case, the standard drop deposition technique is unable to deposit a drop that is not ``interfered'' by the needle holding the drop. Here we shall discuss a unique technique that ensures that we achieve a ``needle-free'' deposited drop on the under-liquid surface. A drop is produced at the end of the needle, with the needle placed inside the liquid bath. Then the needle holding the drop is moved away from the concerned surface, and the moment this drop-needle assembly hits the liquid-air or liquid-another-liquid (a layer of this another liquid is intentionally created at the location where the liquid bath is exhausted), the surface tension effects will ensure that the drop is detached from the needle.

  12. Stochastic rotation dynamics for nematic liquid crystals

    SciTech Connect

    Lee, Kuang-Wu Mazza, Marco G.

    2015-04-28

    We introduce a new mesoscopic model for nematic liquid crystals (LCs). We extend the particle-based stochastic rotation dynamics method, which reproduces the Navier-Stokes equation, to anisotropic fluids by including a simplified Ericksen-Leslie formulation of nematodynamics. We verify the applicability of this hybrid model by studying the equilibrium isotropic-nematic phase transition and nonequilibrium problems, such as the dynamics of topological defects and the rheology of sheared LCs. Our simulation results show that this hybrid model captures many essential aspects of LC physics at the mesoscopic scale, while preserving microscopic thermal fluctuations.

  13. Evaporation dynamics of a liquid drop on a non-miscible liquid bath

    NASA Astrophysics Data System (ADS)

    Pirat, Christophe; Ramos-Canut, Stella; Caupin, Frederic; wetting Team

    2016-11-01

    When a liquid drop sits on a solid surface, it is well known that the wetting and evaporation properties strongly depend on the environmental and wetting conditions. In this experimental study, we investigate the coupled spreading-evaporation dynamics of a liquid drop, made of a mixture of water and ethanol, gently deposited on a non-miscible oil bath. After a fast spreading stage due to a positive spreading parameter, the drop starts to recede while the evaporation is going on. Subsequently, a Marangoni instability develops as alcohol evaporates faster than water. In particular, depending on the initial alcohol-water ratio, a set of rim instabilities takes place. Radial droplet ejections can be observed, with various droplet speeds, sizes and frequencies.

  14. Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions.

    PubMed

    Zang, Duyang; Yu, Yinkai; Chen, Zhen; Li, Xiaoguang; Wu, Hongjing; Geng, Xingguo

    2017-03-18

    The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surface is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on how the dynamic behavior is related to the rheological properties and discuss the possibility to develop a novel rheometer based on this technique. We review the methods and applications of acoustic levitation for the manipulation of both liquid and solid samples and emphasize the important progress made in the study of phase transitions and bio-chemical analysis. We also highlight the possible open areas for future research.

  15. Liquid-drop model for extremely neutron rich nuclei

    SciTech Connect

    Fisher, J.C.

    1998-08-01

    Nuclear energy levels are characterized in part by their isospin quantum numbers. Ordinary nuclides are well described by an independent-particle model with ground-state isospins equal to the minimum possible value T{sub min} = abs(A/2 {minus} Z). It has been suggested that extremely neutron rich nuclei constitute a second branch of the table of isotopes whose ground states have the maximum possible isospin T{sub max} = A/2 and that neutral members of the T{sub max} branch (i.e., polyneutrons) serve as mediating particles for the new class of nuclear reactions discovered by Fleischmann and Pons. The energetics of the new reactions have been qualitatively described by a liquid-drop model. Recent measurements of the mass spectrum of reaction products produced in the new reactions make possible a refinement of the model, providing an explanation for gaps of instability separating ranges of stability in the mass spectrum.

  16. Analysis of the free-fall behavior of liquid-metal drops in a gaseous atmosphere

    NASA Technical Reports Server (NTRS)

    Mccoy, J. Kevin; Markworth, Alan J.; Collings, E. W.; Brodkey, Robert S.

    1987-01-01

    The free-fall of a liquid-metal drop and heat transfer from the drop to its environment are described for both a gaseous atmosphere and vacuum. A simple model, in which the drop is assumed to fall rectilinearly with behavior like that of a rigid particle, is developed first, then possible causes of deviation from this behavior are discussed. The model is applied to describe solidification of drops in a drop tube. Possible future developments of the model are suggested.

  17. Analysis of the free-fall behavior of liquid-metal drops in a gaseous atmosphere

    NASA Technical Reports Server (NTRS)

    Mccoy, J. Kevin; Markworth, Alan J.; Collings, E. W.; Brodkey, Robert S.

    1987-01-01

    The free-fall of a liquid-metal drop and heat transfer from the drop to its environment are described for both a gaseous atmosphere and vacuum. A simple model, in which the drop is assumed to fall rectilinearly with behavior like that of a rigid particle, is developed first, then possible causes of deviation from this behavior are discussed. The model is applied to describe solidification of drops in a drop tube. Possible future developments of the model are suggested.

  18. Marangoni stresses and drop breakup due to wall shear in a partially filled rotating cylinder

    NASA Astrophysics Data System (ADS)

    White, Andrew; Odesanya, Azeez; Ward, Thomas

    2015-11-01

    Drop deformation and breakup in a rotating cylinder partially filled with oil is studied. Experiments using a rotating cylinder are relatively new but we will demonstrate that they are analogous to studies involving tubes and other geometries. Surfactants are added to the drop phase in concentrations at and below the CMC while the rotation rate of the cylinder is varied. Of interest is the effect of interfacial surfactant transport on changes in oil film thickness, drop shape and the onset of tail streaming. Two Biot numbers comparing the importance of surfactant adsorption and desorption to convection of surfactant on the interface are estimated. As shown in previous work on drops and bubbles in tubes, the balance between surface convection, diffusion and adsorption can affect the placement of Marangoni stresses, resulting in thicker or thinner films than with clean surfaces. When surface convection is large, surfactant builds up at the tail and Marangoni stresses can lead to tail streaming when surface tensions are sufficiently small. Experimental results are compared to numerical simulations and to previous work on drops and bubbles in tubes. National Science Foundation (#1262718).

  19. Cooling and solidification of liquid-metal drops in a gaseous atmosphere

    NASA Technical Reports Server (NTRS)

    Mccoy, J. K.; Markworth, A. J.; Collings, E. W.; Brodkey, R. S.

    1992-01-01

    The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and solidification of the drop are described for both gaseous and vacuum atmospheres. A simple model, in which the drop is assumed to fall rectilinearly, with behavior like that of a rigid particle, is developed to describe cooling behavior. Recalescence of supercooled drops is assumed to occur instantaneously when a specified temperature is passed. The effects of solidification and experimental parameters on drop cooling are calculated and discussed. Major results include temperature as a function of time, and of drag, time to complete solidification, and drag as a function of the fraction of the drop solidified.

  20. Cooling and solidification of liquid-metal drops in a gaseous atmosphere

    NASA Technical Reports Server (NTRS)

    Mccoy, J. K.; Markworth, A. J.; Collings, E. W.; Brodkey, R. S.

    1992-01-01

    The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and solidification of the drop are described for both gaseous and vacuum atmospheres. A simple model, in which the drop is assumed to fall rectilinearly, with behavior like that of a rigid particle, is developed to describe cooling behavior. Recalescence of supercooled drops is assumed to occur instantaneously when a specified temperature is passed. The effects of solidification and experimental parameters on drop cooling are calculated and discussed. Major results include temperature as a function of time, and of drag, time to complete solidification, and drag as a function of the fraction of the drop solidified.

  1. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents.

    PubMed

    An, Jiwoo; Rahn, Kira L; Anderson, Jared L

    2017-05-15

    A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl4(2-)])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl4(2-)]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R(2)) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL(-1) with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL(-1). Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for

  2. Flow in a differentially rotated cylindrical drop at moderate Reynolds number

    NASA Astrophysics Data System (ADS)

    Harriott, G. M.; Brown, R. A.

    1984-07-01

    Galerkin finite-element approximations are combined with computer-implemented perturbation methods for tracking families of solutions to calculate the steady axisymmetric flows in a differentially rotated cylindrical drop as a function of Reynolds number Re, drop aspect ratio and the rotation ratio between the two end disks. The flows for Reynolds numbers below 100 are primarily viscous and reasonably described by an asymptotic analysis. When the disks are exactly counter-rotated, multiple steady flows are calculated that bifurcate to higher values of Re from the expected solution with two identical secondary cells stacked symmetrically about the axial midplane. The new flows have two cells of different size and are stable beyond the critical value Re sub c. The slope of the locus of Re sub c for drops with aspect ratio up to 3 disagrees with the result for two disks of infinite radius computed assuming the similarity form of the velocity field. Changing the rotation ratio for exact counter-rotation ruptures the junction of the multiple flow fields into two separated flow families.

  3. The investigation of liquid analysis method based on fiber micro-drop sensor

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Li, Xiaomei; Zeng, Youmin

    2007-01-01

    A portable and practical fiber micro-drop sensor, with which can determine the refractive index and the concentration of the liquid, has be designed and realized. The advantages of this sensors combines simplicity of structure, facility of operation, wide range of measurement and low price. Liquid drops formed at the tip of a liquid sensing head are measured by a fiber sensor. The fiber sensor works as follows: infrared light source is injected into the drop through an optical fiber and the total internal reflections and absorptions are detected by a photo detector. A drop speed independent one-dimensional waveform, fiber fingerprint drop trace (FFDT), is generated. Liquid surface tension, refractive index and dielectric constant can be estimated from the fingerprint. For the effective use of the sensor, a new on-line method of liquid drop analysis is proposed, which is used for liquid discrimination with the orderliness of the fiber fingerprint drop trace. To compare two fingerprints effectively, signal analysis is required. Comparing fiber fingerprint drop trace, which might cause peaks and valleys in the trace at almost the same wavelet, digital signals process is more intuitionist. Analyzing every part of the fingerprint drop trace with impactful signal analysis method, as Fast Fourier Transform algorithm and correlative analysis, some orderliness can be revealed. Colligating the orderliness, we can discriminate all kinds of liquids or their characteristic parameters, such as liquid concentration, refractive index and so on.

  4. Do liquid drops roll or slide on inclined surfaces?

    PubMed

    Thampi, Sumesh P; Adhikari, Ronojoy; Govindarajan, Rama

    2013-03-12

    We study the motion of a two-dimensional droplet on an inclined surface, under the action of gravity, using a diffuse interface model which allows for arbitrary equilibrium contact angles. The kinematics of motion is analyzed by decomposing the gradient of the velocity inside the droplet into a shear and a residual flow. This decomposition helps in distinguishing sliding versus rolling motion of the drop. Our detailed study confirms intuition, in that rolling motion dominates as the droplet shape approaches a circle, and the viscosity contrast between the droplet and the ambient fluid becomes large. As a consequence of kinematics, the amount of rotation in a general droplet shape follows a universal curve characterized by geometry, and independent of Bond number, surface inclination and equilibrium contact angle, but determined by the slip length and viscosity contrast. Our results open the way toward a rational design of droplet-surface properties, both when rolling motion is desirable (as in self-cleaning hydrophobic droplets) and when it must be prevented (as in insecticide sprays on leaves).

  5. Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Lin, Te-Sheng; Rogers, Steven; Tseluiko, Dmitri; Thiele, Uwe

    2016-08-01

    We discuss the behavior of partially wetting liquids on a rotating cylinder using a model that takes into account the effects of gravity, viscosity, rotation, surface tension, and wettability. Such a system can be considered as a prototype for many other systems where the interplay of spatial heterogeneity and a lateral driving force in the proximity of a first- or second-order phase transition results in intricate behavior. So does a partially wetting drop on a rotating cylinder undergo a depinning transition as the rotation speed is increased, whereas for ideally wetting liquids, the behavior only changes quantitatively. We analyze the bifurcations that occur when the rotation speed is increased for several values of the equilibrium contact angle of the partially wetting liquids. This allows us to discuss how the entire bifurcation structure and the flow behavior it encodes change with changing wettability. We employ various numerical continuation techniques that allow us to track stable/unstable steady and time-periodic film and drop thickness profiles. We support our findings by time-dependent numerical simulations and asymptotic analyses of steady and time-periodic profiles for large rotation numbers.

  6. Liquid drop runs upward between two nonparallel plates.

    PubMed

    Heng, Xin; Luo, Cheng

    2015-03-10

    We have recently observed an interesting phenomenon: even under gravity, a microliter-scaled silicone oil drop was still able to run upward between two nonparallel plates that were approximately vertically placed. We also saw the same phenomenon in the case of isopropyl alcohol (IPA) drops. In this work, we developed simple models to interpret this phenomenon, followed by experimental validation. We demonstrated that, by changing the locations of drops or tilt and opening angles of plates, the moving directions of silicone oil, IPA, and water drops could be controlled. In the cases of silicone oil and IPA, we also found that the speed of a drop had a linear relation with the square of the drop location when the drop was far away from the corner of two nonparallel plates and that the drop moved faster as it became closer to this corner.

  7. Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging

    SciTech Connect

    Arne J. Pearlstein; Alexander Scheeline

    2002-08-30

    Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor

  8. Tibial rotation in anterior cruciate ligament reconstructed knees during single limb hop and drop landings.

    PubMed

    Webster, Kate E; Feller, Julian A

    2012-06-01

    Alterations in knee joint kinematics have been suggested as a potential mechanism that influences the development of osteoarthritis of the knee after anterior cruciate ligament reconstruction. Whilst previous work has shown changes in internal-external tibial rotation during level walking, many patients aim to return to high impact activities following surgery. This study examined tibial rotation during single limb hop and drop landings in anterior cruciate ligament reconstructed knees compared to a control group, and also evaluated the influence of graft type (hamstring or patellar tendon). In 48 participants (17 patellar tendon graft, 18 hamstring graft and 13 controls) internal-external rotation was measured during single limb hop and drop landings in a gait laboratory at mean of 10 months after surgery. There was no difference between the two graft types and both patient groups had less internal rotation when compared to the control group. For 60% of patients, internal rotation values were at least 5° less than the control group mean. Anterior cruciate ligament reconstructed knees with both hamstring tendon and patellar tendon grafts show altered rotational kinematic patterns during high impact dynamic load activities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Rheological properties, shape oscillations, and coalescence of liquid drops with surfactants

    NASA Technical Reports Server (NTRS)

    Apfel, R. E.; Holt, R. G.

    1990-01-01

    A method was developed to deduce dynamic interfacial properties of liquid drops. The method involves measuring the frequency and damping of free quadrupole oscillations of an acoustically levitated drop. Experimental results from pure liquid-liquid systems agree well with theoretical predictions. Additionally, the effects of surfactants is considered. Extension of these results to a proposed microgravity experiment on the drop physics module (DPM) in USML-1 are discussed. Efforts are also underway to model the time history of the thickness of the fluid layer between two pre-coalescence drops, and to measure the film thickness experimentally. Preliminary results will be reported, along with plans for coalescence experiments proposed for USML-1.

  10. The illustrated topology of liquid drops during formation

    NASA Astrophysics Data System (ADS)

    Njock Libii, Josué

    2004-03-01

    High-speed photography can show that the shape often used for a newly forming drop is wrong. Knowledge of drop behaviour is important for inkjet printers, and a close look at the formation of drops as given here can enhance critical observation, thinking and analysis.

  11. The Illustrated Topology of Liquid Drops during Formation

    ERIC Educational Resources Information Center

    Libii, Josue Njock

    2004-01-01

    High-speed photography can show that the shape often used for a newly forming drop is wrong. Knowledge of drop behaviour is important for inkjet printers, and a close look at the formation of drops as given here can enhance critical observation, thinking and analysis.

  12. The Illustrated Topology of Liquid Drops during Formation

    ERIC Educational Resources Information Center

    Libii, Josue Njock

    2004-01-01

    High-speed photography can show that the shape often used for a newly forming drop is wrong. Knowledge of drop behaviour is important for inkjet printers, and a close look at the formation of drops as given here can enhance critical observation, thinking and analysis.

  13. Large bubble entrapment during drop impacts on a restricted liquid surface

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Ji, Chen; Yuan, BaoGang; Ren, YuLiang; Ruan, XiaoDong; Fu, Xin

    2012-05-01

    The behavior of millimetric drops impacting on a gas-liquid interface restricted by surrounding walls is studied using a high-speed video camera. A novel phenomenon of large bubble entrapment is observed in experiments. It is found that the large bubble formation is not only dependent on the impact velocity of the drop, but also the shape of drop at the moment of contact with the liquid surface and the distance from the impact point to surrounding walls.

  14. Proton radioactivity within a generalized liquid drop model

    SciTech Connect

    Dong, J. M.; Zhang, H. F.; Royer, G.

    2009-05-15

    The proton radioactivity half-lives of spherical proton emitters are investigated theoretically. The potential barriers preventing the emission of protons are determined in the quasimolecular shape path within a generalized liquid drop model (GLDM) including the proximity effects between nuclei in a neck and the mass and charge asymmetry. The penetrability is calculated with the WKB approximation. The spectroscopic factor has been taken into account in half-life calculation, which is obtained by employing the relativistic mean field (RMF) theory combined with the BCS method with the force NL3. The half-lives within the GLDM are compared with the experimental data and other theoretical values. The GLDM works quite well for spherical proton emitters when the spectroscopic factors are considered, indicating the necessity of introducing the spectroscopic factor and the success of the GLDM for proton emission. Finally, we present two formulas for proton emission half-life calculation similar to the Viola-Seaborg formulas and Royer's formulas of {alpha} decay.

  15. Investigation of proton radioactivity with the effective liquid drop model

    NASA Astrophysics Data System (ADS)

    Sheng, Zong-Qiang; Shu, Liang-Ping; Fan, Guang-Wei; Meng, Ying; Qian, Jian-Fa

    2015-02-01

    Proton radioactivity has been investigated using the effective liquid drop model with varying mass asymmetry shapes and effective inertial coefficients. An effective nuclear radius constant formula replaces the old empirical one in the calculations. The theoretical half-lives are in good agreement with the available experimental data. All the deviations between the calculated logarithmic half-lives and the experimental values are less than 0.8. The root-mean-square (rms) deviation is 0.523. Predictions for the half-lives of proton radioactivity are made for elements across the periodic table. From the theoretical results, there are 11 candidate nuclei for proton radioactivity in the region Z<51. In the region Z>83, no nuclei are suggested as probable candidate nuclei for proton radioactivity within the selected range of half-lives studied. Supported by National Natural Science Foundation of China (11247001), Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (KJ2012A083, KJ2013Z066) and Anhui Provincial Natural Science Foundation (1408085MA05)

  16. Size Distribution and Velocity of Ethanol Drops in a Rocket Combustor Burning Ethanol and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1961-01-01

    Single jets of ethanol were studied photomicrographically inside a rocket chamber as they broke up into sprays of drops which underwent simultaneous acceleration and vaporization with chemical reaction occurring in the surrounding combustion gas stream. In each rocket test-firing, liquid oxygen was used as the oxidant. Both drop velocity and drop size distribution data were obtained from photomicrographs of the ethanol drops taken with an ultra-high speed tracking camera developed at NASA, Lewis Research Center.

  17. Analytical and experimental investigation of liquid double drop dynamics: Preliminary design for space shuttle experiments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.

  18. Drop tower experiment for performance evaluation of gas-liquid equilibrium thruster for small spacecraft

    NASA Astrophysics Data System (ADS)

    Motooka, Norizumi; Yamamoto, Takayuki; Mori, Osamu; Okano, Yoshinobu; Kishino, Yoshihiro; Kawaguchi, Junichiro

    JAXA/ISAS is developing the gas-liquid equilibrium thruster for a small spacecraft. In small spacecrafts, the thruster system must be simple and its weight must be light. This thruster system uses HFC-134a (1,1,1,2-tetrafluoroethane) , a kind of liquefied gas, as propellant because of its harmlessness and ease of handling. And this thruster stores propellant as liquid in the tank and ejects propellant as gas using the gas-liquid equilibrium pressure to produce thrust, so the propellant tank only needs to resist the vapor pressure of propellant. In this thruster system, the porous metal is also equipped in the tank for the following performance advantages: (1) liquid fuel retention: The porous metal reduces sloshing problems which cause bad effects on spacecraft attitude by retaining liquid propellant inside the porous metal: (2) vapor-liquid separation: The porous metal also helps propellant separate gas from liquid by advancing propellant vaporization on its large surface area and retaining liquid propellant using its surface tension. In last autumn, we carried out the experiment to evaluate these two advantages of porous metal under micro gravity condition using 50 meters drop tower in Hokkaido, Japan. The system of this experiment divides into two different systems. The first one evaluates liquid propellant retention performance by adding disturbance to liquid propellant absorbed in porous metal. The disturbance is centrifugal force and angular acceleration worked on the liquid propellant by rotating propellant tank controlled by motor. A high speed camera records the behavior of the liquid propellant. The other one evaluates the ability of gas-liquid separation on the case of propellant ejection. In this evaluation, the parameters are full filling porous metal or some ullage in the tank, nozzle diameters and the filling ratio of liquid propellant in the tank. As for (1) liquid fuel retention, in all conducted cases without propellant ejection, liquid propellant

  19. On-chip drop-to-drop liquid microextraction coupled with real-time concentration monitoring technique.

    PubMed

    Wijethunga, Pavithra A L; Nanayakkara, Yasith S; Kunchala, Praveen; Armstrong, Daniel W; Moon, Hyejin

    2011-03-01

    This paper demonstrates a novel drop-to-drop liquid-liquid micro-extraction (DTD-LLME) device, which is based on an electrowetting on dielectric (EWOD) digital microfluidic chip. Droplets of two immiscible liquids, one of which is an ionic liquid, are formed in nanoliter volumes, driven along electrodes, merged and mixed for extraction, and finally separated upon the completion of the extraction process. All the steps are carried out on a microfluidic chip using combined electrowetting and dielectrophoretic forces, which act on the droplet upon the application of electric potential. Specially, the phase separation of two immiscible nanoliter-scale liquid drops was achieved for the first time on an EWOD digital microfluidic chip. To study the on-chip extraction kinetics, an image-based concentration measurement technique with suitable color parameters was studied and compared with the typical UV absorption based technique. Finally, the effect of applied ac voltage frequency on the extraction kinetics was studied. The observations on DTD-LLME, particularly phase separation, are discussed. The image-based method was found to be applicable for precise concentration measurements with the right choice of the color parameter. Results from experiments on finding the frequency dependence on extraction kinetics demonstrate that the application of higher frequencies can be a factor in accelerating the extraction on the proposed microextraction device.

  20. On the coalescence of sessile drops with miscible liquids.

    PubMed

    Borcia, R; Bestehorn, M

    2011-08-01

    Sessile drops sitting on highly wettable solid substrates fuse in qualitatively different ways after contact, depending on the surface tension gradients between the mixing droplets. In early time evolution the drop coalescence can be fast or delayed (intermittent). In long time evolution a secondary drop formation can occur. We study numerically droplet dynamics during coalescence in two and three spatial dimensions, within a phase field approach. We discuss criteria to distinguish different coalescence regimes. A comparison with recent experiments will be done.

  1. Contact angles of liquid drops on super hydrophobic surfaces: understanding the role of flattening of drops by gravity.

    PubMed

    Extrand, C W; Moon, Sung In

    2010-11-16

    Measurement of contact angles on super hydrophobic surfaces by conventional methods can produce ambiguous results. Experimental difficulties in constructing tangent lines, gravitational distortion or erroneous assumptions regarding the extent of spreading can lead to underestimation of contact angles. Three models were used to estimate drop shape and perceived contact angles on completely nonwetting super hydrophobic surfaces. One of the models employed the classic numerical solutions from Bashforth and Adams. Additionally, two approximate models were derived as part of this work. All three showed significant distortion of microliter-sized drops and similar trends in perceived contact angles. Liquid drops of several microliters are traditionally used in sessile contact angle measurements. Drops of this size are expected to and indeed undergo significant flattening on super hydrophobic surfaces, even if the wetting interactions are minimal. The distortion is more pronounced if the liquid has a lesser surface tension or greater density. For surfaces that are completely nonwetting, underestimation of contact angles can be tens of degrees. Our modeling efforts suggest that accurate contact angle measurements on super hydrophobic surfaces would require very small sessile drops, on the order of hundreds of picoliters.

  2. Flotation of Denser Liquid Drops on Lighter Liquids in Non-Neumann Condition: Role of Line Tension.

    PubMed

    George, D; Damodara, S; Iqbal, R; Sen, A K

    2016-10-11

    Flotation of a denser liquid drop on lighter liquid has been explained earlier via the Neumann triangle. We demonstrate the flotation of a denser liquid (water) drop on a lighter liquid in a pair that does not satisfy the Neumann triangle. We attribute this newly studied phenomenon to the role of line tension τ which prevents the water droplet from complete engulfment. A simple model is used to explain the underlying physics and to obtain critical line tension value for stable flotation. We establish line tension values for different liquids with water and show possible heterogeneous nucleation that contributes toward the variance of line tension values.

  3. Drop impact dynamics on liquid-infused superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Rothstein, Jonathan

    2015-11-01

    In this talk, we present a series of experiments investigating the drop impact dynamics on hydrophobic, air-infused and lubricant-infused superhydrophobic surfaces. To create the superhydrophobic surfaces, smooth Teflon (PTFE) surfaces were roughened by a 240-grit sandpaper. The immiscible and incompressible silicone oils with different viscosities were infused into features of the superhydrophobic surfaces by a skim coating technique. The spreading and retraction dynamics on a series of the tested surfaces will be presented. We will show that the maximal deformation of the drops on lubricant-infused surfaces grows with increasing viscosity ratio between a water drop and the infused oil. We will show that this increase in the maximal deformation with the viscosity ratio is consistent with increasing the velocity and the viscosity of the drops but the rims of the drops destabilize with increasing the drop velocity. Finally, we will demonstrate that increasing the viscosity of the infused oil induces higher viscous force at the contact line, resulting in reduction in the movement of the drops during retraction and corresponding increase in the final drop size.

  4. Liquid drop stability for protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Broom, Beth H.; Snyder, Robert S.; Daniel, Ron

    1987-01-01

    It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth.

  5. Growth of the surface area of separated liquid fragments during high-temperature fragmentation of an inhomogeneous liquid drop

    NASA Astrophysics Data System (ADS)

    Piskunov, M. V.; Strizhak, P. A.

    2017-06-01

    We have experimentally studied the formation of a droplet cloud during intense heating and subsequent explosive fragmentation of an inhomogeneous liquid drop. The experiments were performed with water drops containing graphite particles, which were heated in a flow of combustion products at a temperature varied from 600 to 1100 K. Three regimes of fragmentation of the inhomogeneous liquid drops have been observed, which are characterized by different total areas of liquid phase surface in aerosol clouds. Dependence of these regimes on the water/inclusion volume ratio and the amount of supplied heat has been determined.

  6. Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo

    2016-09-01

    We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.

  7. Direct Numerical Simulation of Transitional Multicomponent-Species Gaseous and Multicomponent-Liquid Drop-Laden Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent C.; Bellan, Josette

    2006-01-01

    organization depend on the initial gas temperature, this being due to the drop/turbulence coupling. The vapor-composition mean molar mass and standard deviation distributions strongly correlate with the initial liquid-composition PDF; such a correlation only exists for the magnitude of the mean but not for that of the standard deviation. Unlike in pre-transitional situations, regions of large composition standard deviation no longer necessarily coincide with regions of large mean molar mass. The kinetic energy, rotational and composition characteristics, and dissipation are liquid specific and the variation among liquids is amplified with increasing free-stream gas temperature. Eulerian and Lagrangian statistics of gas-phase quantities show that the different. Observation framework may affect the perception of the flow characteristics. The gas composition, of which the first four moments are calculated, is shown to be close to, but distinct from a SGPDF. The PDF of the scalar dissipation rate is calculated for drop-laden layers and is shown to depart more significantly from the typically assumed Gaussian in gaseous flows than experimentally measured gaseous scalar dissipation rates, this being attributed to the increased heterogeneity due to drop/flow interactions.

  8. Direct Numerical Simulation of Transitional Multicomponent-Species Gaseous and Multicomponent-Liquid Drop-Laden Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent C.; Bellan, Josette

    2006-01-01

    organization depend on the initial gas temperature, this being due to the drop/turbulence coupling. The vapor-composition mean molar mass and standard deviation distributions strongly correlate with the initial liquid-composition PDF; such a correlation only exists for the magnitude of the mean but not for that of the standard deviation. Unlike in pre-transitional situations, regions of large composition standard deviation no longer necessarily coincide with regions of large mean molar mass. The kinetic energy, rotational and composition characteristics, and dissipation are liquid specific and the variation among liquids is amplified with increasing free-stream gas temperature. Eulerian and Lagrangian statistics of gas-phase quantities show that the different. Observation framework may affect the perception of the flow characteristics. The gas composition, of which the first four moments are calculated, is shown to be close to, but distinct from a SGPDF. The PDF of the scalar dissipation rate is calculated for drop-laden layers and is shown to depart more significantly from the typically assumed Gaussian in gaseous flows than experimentally measured gaseous scalar dissipation rates, this being attributed to the increased heterogeneity due to drop/flow interactions.

  9. Evaporation of pure liquid sessile and spherical suspended drops: a review.

    PubMed

    Erbil, H Yildirim

    2012-01-15

    A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Controlled drop emission by wetting properties in driven liquid filaments.

    PubMed

    Ledesma-Aguilar, R; Nistal, R; Hernández-Machado, A; Pagonabarraga, I

    2011-05-01

    The controlled formation of micrometre-sized drops is of great importance to many technological applications. Here we present a wetting-based destabilization mechanism of forced microfilaments on either hydrophilic or hydrophobic stripes that leads to the periodic emission of droplets. The drop emission mechanism is triggered above the maximum critical forcing at which wetting, capillarity, viscous friction and gravity can balance to sustain a stable driven contact line. The corresponding critical filament velocity is predicted as a function of the static wetting angle, which can be tuned through the substrate behaviour, and shows a strong dependence on the filament size. This sensitivity explains the qualitative difference in the critical velocity between hydrophilic and hydrophobic stripes, and accounts for previous experimental results of splashing solids. We demonstrate that this mechanism can be used to control independently the drop size and emission period, opening the possibility of highly monodisperse and flexible drop production techniques in open microfluidic geometries.

  11. Evaporation of drops on two parallel fibers: influence of the liquid morphology and fiber elasticity.

    PubMed

    Duprat, Camille; Bick, Alison D; Warren, Patrick B; Stone, Howard A

    2013-06-25

    We investigate experimentally the evaporation of liquid accumulated on a pair of parallel fibers, rigid or flexible. The liquid wetting the fibers can adopt two distinct morphologies: a compact drop shape, whose evaporation dynamics is similar to that of an isolated aerosol droplet, or a long liquid column of constant cross-section, whose evaporation dynamics depends upon the aspect ratio of the column. We thus find that the evaporation rate is constant for drops, while it increases strongly for columns as the interfiber distance decreases, and we propose a model to explain this behavior. When the fibers are flexible, the transition from drops to columns can be induced by the deformation of the fibers because of the capillary forces applied by the drop. Thus, we find that the evaporation rate increases with increasing flexibility. Furthermore, complex morphology transitions occur upon drying, which results in spreading of the drop as it evaporates.

  12. Multimode dynamics of a liquid drop over an inclined surface with a wettability gradient.

    PubMed

    Das, A K; Das, P K

    2010-06-15

    A liquid drop placed over a solid surface with a wettability gradient self-propels to minimize its surface energy. It can also climb an inclined plane if the applied gradient strength is high enough. We investigate the motion of liquid drops over an inclined gradient surface using a unique 3D computational technique. The technique combines diffuse interface in a smoothed particle hydrodynamics simulation to study the internal fluid structure and the contact line dynamics. Simulation results reveal that drop motion is dependent on its volume, surface inclination, and the strength of the wettability gradient. It has been demonstrated that, depending on these parameters, a drop can experience upward or downward motion or can remain stationary on the inclined plane. Finally, drop mobility maps which give an idea about the regimes of uphill and downhill movement of a drop over gradient surfaces have been proposed.

  13. Computations of the deformation and solidifcation of impinging liquid metal drops

    NASA Astrophysics Data System (ADS)

    Che, Judy; Tryggvason, Gretar; Ceccio, Steven

    1997-11-01

    The solidification of individual liquid metal drops impacting a cold wall, as well as the deposition of subsequent drops characterized by drop remelt, coalescence, and solidification, are simulated numerically. The numerical method fully couples fluid flow and heat transfer and is based on a single set of conservation equations written for all phases, allowing for arbitrary changes in material properties. Solidification is modeled as a stable, planar solid-liquid interface, which is valid for both pure and eutectic systems with no initial thermal undercooling. Using this technique, towers have been built by depositing drops on top of one another. Low Weber number simulations produce short, squat towers, while high Weber number cases generate tall, slender towers. Within a tower, each drop takes on a final shape based on the Peclet number and the non- dimensional freezing temperature. In some high Peclet number cases, divots freeze onto a drop's surface forming a pore at the axis of the tower. Supported by NASA.

  14. Wettability-gradient-driven micropump for transporting discrete liquid drops

    NASA Astrophysics Data System (ADS)

    Bardaweel, Hamzeh K.; Zamuruyev, Konstantin; Delplanque, Jean-Pierre; Davis, Cristina E.

    2013-03-01

    In this paper, we report our efforts toward building a microelectromechanical system-based micropump. The micropump is driven by a wettability gradient and used to transport discrete drops. The gradient in wettability is distributed axisymmetrically, with hydrophobicity of the micropump surface decreasing radially toward the center. Both physical and chemical properties of the surface are altered to obtain the wettability gradient needed for driving the drops. The surface of the micropump is, first, patterned with pre-designed micro-features that define the roughness of the surface and, then, coated with a low-energy interface film. Results show that drops deposited on the surface of the micropump move, in a directional way, along the wettability gradient. The average velocity of the deposited drops is 5 mm s-1. Measured contact angles decrease gradually from 157.0° to 124.2° toward the center of the micropump surface. Maximum driving force exerted by the solid surface on the drops is 12.82 µN. The average size of the drops transported on the surface of the micropump is 2 µL.

  15. An analysis of the sensitivity of pendant drops and liquid bridges to measure the interfacial tension

    NASA Astrophysics Data System (ADS)

    Ferrera, C.; Montanero, J. M.; Cabezas, M. G.

    2007-12-01

    Drop shape techniques, such as axisymmetric drop shape analysis, provide accurate measurements of the interfacial tension from images of pendant drops for a wide variety of experimental conditions. However, these techniques are known to fail when dealing with nearly spherical drop shapes, which may occur, for instance, when working with interfaces between liquids of similar densities and/or under microgravity. We analyzed the advantages of using liquid bridges close to the minimum volume stability limit instead of pendant drops to measure the interfacial tension under different experimental conditions. First, the sensitivity of both configurations to a variation of the interfacial tension is studied numerically as a function of the volume for several Bond numbers B. The results indicate that a liquid bridge close to the minimum volume stability limit is generally more sensitive than a pendant drop of the same volume, especially for small values of the density difference across the interface and/or gravity. This suggests that the use of liquid bridges may extend the range of applicability of drop shape techniques. To explore this possibility, synthetic images of both pendant drops and liquid bridges were generated and then processed by TIFA-AI. The results demonstrated that the use of liquid bridges enhances the range of Bond numbers for which drop shape techniques work satisfactorily. More specifically, similar accuracy is obtained from both configurations for B ~ 10-1, while the use of liquid bridges yields much better results for B ~ 10-2. Finally, experiments were conducted to partially validate the analysis based on synthetic images. Good agreement was found between the values determined from the real and synthetic images.

  16. Liquid drop technique for generation of organic glass and metal shells

    NASA Astrophysics Data System (ADS)

    Hendricks, C. D.

    1982-03-01

    It was found that liquid drop techniques are very useful in several diverse areas. For producing very uniform metallic, organic, inorganic and, on particular, glassy shells, the liquid jet method is the most reproducible and exceptionally useful of all the techniques studied. The technique of capillary wave synchronization of the break-up of single and multiple component jets was utilized to produce uniform sized liquid drops and solid particles, and hollow liquid and solid shells. The technique was also used to encapsulate a number of liquids in impermeable spherical shells. Highly uniform glass shells were made by generating uniform drops of glass forming materials in an aqueous solution, subsequently evaporating the water, and then fusing and blowing the remaining solids in a high temperature vertical tube furnace. Experimental results are presented and the critical problems in further research in this field are discussed.

  17. Liquid drop technique for generation of organic glass and metal shells

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    It was found that liquid drop techniques are very useful in several diverse areas. For producing very uniform metallic, organic, inorganic and, on particular, glassy shells, the liquid jet method is the most reproducible and exceptionally useful of all the techniques studied. The technique of capillary wave synchronization of the break-up of single and multiple component jets was utilized to produce uniform sized liquid drops and solid particles, and hollow liquid and solid shells. The technique was also used to encapsulate a number of liquids in impermeable spherical shells. Highly uniform glass shells were made by generating uniform drops of glass forming materials in an aqueous solution, subsequently evaporating the water, and then fusing and blowing the remaining solids in a high temperature vertical tube furnace. Experimental results are presented and the critical problems in further research in this field are discussed.

  18. The production of drops by the bursting of a bubble at an air liquid interface

    NASA Technical Reports Server (NTRS)

    Darrozes, J. S.; Ligneul, P.

    1982-01-01

    The fundamental mechanism arising during the bursting of a bubble at an air-liquid interface is described. A single bubble was followed from an arbitrary depth in the liquid, up to the creation and motion of the film and jet drops. Several phenomena were involved and their relative order of magnitude was compared in order to point out the dimensionless parameters which govern each step of the motion. High-speed cinematography is employed. The characteristic bubble radius which separates the creation of jet drops from cap bursting without jet drops is expressed mathematically. The corresponding numerical value for water is 3 mm and agrees with experimental observations.

  19. Stability of a liquid drop in an electric field

    SciTech Connect

    Popova, L.N.; Fedorenko, A.I.

    1982-04-01

    The boundary-value problem is solved for the critical electric field that causes a loss of stability of a dielectric electric drop. The theory is compared to experimental results on water, glycerin, N, N-dimethylformamide, and diethylene glycol.(AIP)

  20. Dynamic measurement of the force required to move a liquid drop on a solid surface.

    PubMed

    Pilat, D W; Papadopoulos, P; Schäffel, D; Vollmer, D; Berger, R; Butt, H-J

    2012-12-11

    We measured the forces required to slide sessile drops over surfaces. The forces were measured by means of a vertical deflectable capillary stuck in the drop. The drop adhesion force instrument (DAFI) allowed the investigation of the dynamic lateral adhesion force of water drops of 0.1 to 2 μL volume at defined velocities. On flat PDMS surfaces, the dynamic lateral adhesion force increases linearly with the diameter of the contact area of the solid-liquid interface and linearly with the sliding velocity. The movement of the drop relative to the surfaces enabled us to resolve the pinning of the three-phase contact line to individual defects. We further investigated a 3D superhydrophobic pillar array. The depinning of the receding part of the rim of the drop occurred almost simultaneously from four to five pillars, giving rise to peaks in the lateral adhesion force.

  1. Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis.

    PubMed

    Mettu, Srinivas; Chaudhury, Manoj K

    2011-08-16

    Hysteresis of wetting, like the Coulombic friction at solid/solid interface, impedes the motion of a liquid drop on a surface when subjected to an external field. Here, we present a counterintuitive example, where some amount of hysteresis enables a drop to move on a surface when it is subjected to a periodic but asymmetric vibration. Experiments show that a surface either with a negligible or high hysteresis is not conducive to any drop motion. Some finite hysteresis of contact angle is needed to break the periodic symmetry of the forcing function for the drift to occur. These experimental results are consistent with simulations, in which a drop is approximated as a linear harmonic oscillator. The experiment also sheds light on the effect of the drop size on flow reversal, where drops of different sizes move in opposite directions due to the difference in the phase of the oscillation of their center of mass.

  2. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    NASA Technical Reports Server (NTRS)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  3. Static shape and instability of an acoustically levitated liquid drop

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1991-11-01

    Dynamical aspects of a drop drastically flattened by acoustic radiation stress are considered. Its static equilibrium has been studied, starting with a dislike shape and modeling the sound field and the associated radiation stress according to this geometry. It is suggested that, at low viscosity, the ripples are capillary waves generated by the parametric instability excited by the membrane vibration, which is driven by the sound pressure. Atomization occurs whenever the membrane becomes so thin that the vibration is sufficiently intense. Buckling occurs when an existent equilibrium is unstable to a radial oscillation of the membrane because of the Bernoulli effect. The radiation stress at the rim of the flattened drop is also destabilizing and leads to horizontal expansion and subsequent breakup.

  4. An experimental study of small-amplitude drop oscillations in immiscible liquid systems

    NASA Technical Reports Server (NTRS)

    Trinh, E.; Zwern, A.; Wang, T. G.

    1982-01-01

    Measurements of the characteristics of small-amplitude shape oscillations of drops immersed in a host liquid have been carried out by acoustical means. The resonance frequencies of the first few modes have been measured, as well as the damping constant for the fundamental mode, as functions of the drop radius and viscosities of the two liquids. A qualitative photographic study during steady oscillations has revealed a simple internal fluid-particle flow field with no circulation. The theory available at the present time has been found to provide results which are in general agreement with experimental findings for low-viscosity liquids.

  5. Noncoalescence of sessile drops from different but miscible liquids: hydrodynamic analysis of the twin drop contour as a self-stabilizing traveling wave.

    PubMed

    Karpitschka, Stefan; Riegler, Hans

    2012-08-10

    Capillarity always favors drop fusion. Nevertheless, sessile drops from different but completely miscible liquids often do not fuse instantaneously upon contact. Rather, intermediate noncoalescence is observed. Two separate drop bodies, connected by a thin liquid neck, move over the substrate. Supported by new experimental data, a thin film hydrodynamic analysis of this state is presented. Presumably advective and diffusive volume fluxes in the neck region establish a localized and temporarily stable surface tension gradient. This induces a local surface (Marangoni) flow that stabilizes a traveling wave, i.e., the observed moving twin drop configuration. The theoretical predictions are in excellent agreement with the experimental findings.

  6. Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces.

    PubMed

    Srinivasan, Siddarth; McKinley, Gareth H; Cohen, Robert E

    2011-11-15

    Gravity-induced sagging can amplify variations in goniometric measurements of the contact angles of sessile drops on super-liquid-repellent surfaces. The very large value of the effective contact angle leads to increased optical noise in the drop profile near the solid-liquid free surface and the progressive failure of simple geometric approximations. We demonstrate a systematic approach to determining the effective contact angle of drops on super-repellent surfaces. We use a perturbation solution of the Bashforth-Adams equation to estimate the contact angles of sessile drops of water, ethylene glycol, and diiodomethane on an omniphobic surface using direct measurements of the maximum drop width and height. The results and analysis can be represented in terms of a dimensionless Bond number that depends on the maximum drop width and the capillary length of the liquid to quantify the extent of gravity-induced sagging. Finally, we illustrate the inherent sensitivity of goniometric contact angle measurement techniques to drop dimensions as the apparent contact angle approaches 180°.

  7. In-line coupled single drop liquid-liquid-liquid microextraction with capillary electrophoresis for determining fluoroquinolones in water samples.

    PubMed

    Springer, Valeria H; Lista, Adriana G

    2015-07-01

    A simple in-line single drop liquid-liquid-liquid microextraction (SD-LLLME) coupled with CE for the determination of two fluoroquinolones was developed. The method is capable to quantify trace amount of analytes in water samples and to improve the sensitivity of CE detection. For the SD-LLLME, a thin layer of organic phase was used to separate a drop of 0.1 M NaOH hanging at the inlet of the capillary from the aqueous donor phase. By this way, the analytes were extracted to the acceptor phase through the organic layer based on their acidic/basic dissociation equilibrium. The drop was immersed into the organic phase during 10 min for extraction and then it is directly injected into the capillary for the analysis. Parameters such as type and volume of organic solvent phase, aqueous donor, and acceptor phases and extraction time and temperature were optimized. The enrichment factor was calculated, resulting 40-fold for enrofloxacin (ENR) and sixfold for ciprofloxacin (CIP). The linear range were 20-400 μg/L for ENR and 60-400 μg/L for CIP. The detection limits were 10.1 μg/L and 55.3 μg/L for ENR and CIP, respectively, and a good reproducibility was obtained (4.4% for ENR and 5.6% for CIP). Two real water samples were analysed applying the new method and the obtained results presented satisfactory recovery percentages (90-100.3%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  9. Resonance and nonlinear properties of a crack filled with a drop of liquid

    NASA Astrophysics Data System (ADS)

    Didenkulov, I. N.; Yoon, S. W.

    2000-07-01

    An investigation of the vibroacoustic response of a crack is very important for the development of methods of nondestructive evaluation (NDE). Several models of linear and nonlinear elastic properties of a dry crack have been developed earlier. A recently suggested model of the capillary nonlinear elasticity of a crack partially filled in with a drop of liquid (V. E. Nazarov, 1996, 1999) does not take into account inertial properties of the oscillatory motion of the liquid inside a crack. A new crack model filled in with a drop of liquid is proposed and studied in this paper. The model accounts for the oscillatory motion of the liquid in a breathing crack. Both linear and nonlinear elastic properties of such a crack are analytically studied. It is shown that the crack with a drop of non-wetting liquid inside shows resonance behavior while that with a wetting liquid does not. The resonance properties as well as the nonlinear elasticity of a crack filled in with a drop of liquid may find application in NDE of modern materials.

  10. Drop fragmentation at impact onto a bath of an immiscible liquid.

    PubMed

    Lhuissier, H; Sun, C; Prosperetti, A; Lohse, D

    2013-06-28

    The impact of a drop onto a deep bath of an immiscible liquid is studied with emphasis on the drop fragmentation into a collection of noncoalescing daughter drops. At impact the drop flattens and spreads at the surface of the crater it transiently opens in the bath and reaches a maximum deformation, which gets larger with increasing impact velocity, before surface tension drives its recession. This recession can promote the fragmentation by two different mechanisms: At moderate impact velocity, the drop recession converges to the axis of symmetry to form a jet which then fragments by a Plateau-Rayleigh mechanism. At higher velocity the edge of the receding drop destabilizes and shapes into radial ligaments which subsequently fragment. For this latter mechanism the number N∝We3 and the size distribution of the daughter drops p(d)∝d-4 as a function of the impact Weber number We are explained on the basis of the observed spreading of the drop. The universality of this model for the fragmentation of receding liquid sheets might be relevant for other configurations.

  11. Drop Fragmentation at Impact onto a Bath of an Immiscible Liquid

    NASA Astrophysics Data System (ADS)

    Lhuissier, H.; Sun, C.; Prosperetti, A.; Lohse, D.

    2013-06-01

    The impact of a drop onto a deep bath of an immiscible liquid is studied with emphasis on the drop fragmentation into a collection of noncoalescing daughter drops. At impact the drop flattens and spreads at the surface of the crater it transiently opens in the bath and reaches a maximum deformation, which gets larger with increasing impact velocity, before surface tension drives its recession. This recession can promote the fragmentation by two different mechanisms: At moderate impact velocity, the drop recession converges to the axis of symmetry to form a jet which then fragments by a Plateau-Rayleigh mechanism. At higher velocity the edge of the receding drop destabilizes and shapes into radial ligaments which subsequently fragment. For this latter mechanism the number N∝We3 and the size distribution of the daughter drops p(d)∝d-4 as a function of the impact Weber number We are explained on the basis of the observed spreading of the drop. The universality of this model for the fragmentation of receding liquid sheets might be relevant for other configurations.

  12. Rotational reorganization of doped cholesteric liquid crystalline films.

    PubMed

    Eelkema, Rienk; Pollard, Michael M; Katsonis, Nathalie; Vicario, Javier; Broer, Dirk J; Feringa, Ben L

    2006-11-08

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pitch. The direction of this reorganization is correlated to the sign of the change in helical twisting power of the dopant. The rotational reorganization of the liquid crystalline film was used to rotate microscopic objects 4 orders of magnitude larger than the bistable dopants in the film, which shows that molecular motors and switches can perform work. The surface of the doped cholesteric liquid crystalline films was found to possess a regular surface relief, whose periodicity coincides with typical cholesteric polygonal line textures. These surface features originate from the cholesteric superstructure in the liquid crystalline film, which in turn is the result of the presence of the chiral dopant. As such, the presence of the dopant is expressed in these distinct surface structures. A possible mechanism at the origin of the rotational reorganization of liquid crystalline films and the cholesteric surface relief is discussed.

  13. Transport Phenomena in Thin Rotating Liquid Films Including: Nucleate Boiling

    NASA Technical Reports Server (NTRS)

    Faghri, Amir

    2005-01-01

    In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from which

  14. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  15. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (Ts≈0.96 ) is close to the theoretically derived value of Ts=1 at zero ambient pressure for this vdW fluid.

  16. Viscous-gravity spreading of time-varying liquid drop volumes on solid surfaces.

    PubMed

    Chebbi, Rachid

    2006-08-15

    Viscous-gravity spreading of liquid drops of time-dependent volume over a solid surface is considered. A self-similar solution for the drop configuration is obtained, in the case the liquid drop volume varies as a power-law function of time, along with the spreading laws in both cases of cylindrical and axisymmetric geometries. Results compare favorably with published experimental results and previous theoretical work. The limitations of the model are discussed, along with a comparison with viscous gravity spreading of oil on water. The validity of using approximate spreading laws is considered, and an approximate method is suggested to provide the dynamics of spreading in the general case where the drop volume does not necessarily vary as a power-law function of time.

  17. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes.

    PubMed

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Cheng, Xiang

    2015-01-13

    When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters. Inspired by this similarity, we integrate the physical insight from planetary sciences, the liquid marble model from fluid mechanics, and the concept of jamming transition from granular physics into a simple theoretical framework that quantitatively describes all of the main features of liquid-drop imprints in granular media. Our study sheds light on the mechanisms governing raindrop impacts on granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes.

  18. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes

    PubMed Central

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Cheng, Xiang

    2015-01-01

    When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters. Inspired by this similarity, we integrate the physical insight from planetary sciences, the liquid marble model from fluid mechanics, and the concept of jamming transition from granular physics into a simple theoretical framework that quantitatively describes all of the main features of liquid-drop imprints in granular media. Our study sheds light on the mechanisms governing raindrop impacts on granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes. PMID:25548187

  19. Drop spreading on under-liquid substrates: Inertial to Viscous Regimes

    NASA Astrophysics Data System (ADS)

    Gunda, Naga Siva Kumar; Mitra, Surjyasish; Mitra, Sushanta

    2015-11-01

    Spreading of liquid drops on a substrate placed in air medium is a well understood phenomenon from the theory of minimization of surface energy. This process has been studied rigorously over the past few decades due to its wide array of applications like printing, coating, microfluidic devices as well as it presents the challenging problem of contact line dynamics. However, many applications like oil recovery, emulsions, liquid-liquid displacement in porous media, etc. warrants the need to study this phenomenon in the presence of a surrounding liquid medium. In the present study, an experimental investigation of the spreading process of a laser-oil drop on an ITO-coated glass substrate submerged inside water has been conducted. The experimental investigation reveals two different regimes of under-liquid drop spreading, one which is dominated by inertia and a later regime, where viscous effects, with contributions from both the drop and surrounding liquid, takes over. In doing so, we have identified the characteristic time scales for each regimes and also the transition point from one regime to another.

  20. Surface-ascension of discrete liquid drops via experimental reactive wetting and lattice Boltzmann simulation.

    PubMed

    Mo, Gary C H; Liu, Wei-Yang; Kwok, Daniel Y

    2005-06-21

    The reactive-wetting technique is employed to move liquid against gravitational force. Experiments have shown that the velocity of an ascending liquid drop is constant, unlike the gradual decrease intuitively linked to objects against gravitation. The ascending velocity decreases for increasing slope. The maximum inclination, or stopping, angle for this particular setup is >25 degrees . Computer simulation of a reactive-wetting drop using the lattice Boltzmann method is also performed. The results indicate that the method employed is suitable for the task, producing most experimentally observable responses. The mass flow of a liquid drop under reactive wetting was studied through simulation results, and a general description of the reactive-wetting phenomenon was deduced.

  1. The capacitive drop tensiometer - a novel multianalysing technique for measuring the properties of liquids

    NASA Astrophysics Data System (ADS)

    Wang, C. H.; Augousti, A. T.; Mason, J.; McMillan, N. D.

    1999-01-01

    A new instrumental method for measuring the physical properties of a liquid has been developed. The instrument, called a capacitive drop tensiometer (CDT), is based on the drop volume principle in combination with a capacitive transducer. A delivery head with a specialized wetting design was constructed for forming drops. The capacitive transducer uses the delivery head as one of its plates and a cylindrical ring plate, which surrounds the delivery head and the space occupied by the drop that is formed, as another. Excellent linearity is achieved by optimizing the design, with an accuracy of drop volume measurement of approximately 0957-0233/10/1/007/img6. The system is suitable for measuring both drops in equilibrium and those in the process of growing. Its capability of real-time measurement makes it particularly useful for volatile liquids, in which instance the measurement of drop volume using a flowmeter or a pump is no longer reliable. The CDT can also be used to determine concentration. It was found that the concentration curve is linear for aqueous glycerol solutions although not so for aqueous ethanol solutions. The CDT's ability to measure surface tension was also explored and experimental results are presented here.

  2. Turbulent convection in liquid metal with and without rotation

    PubMed Central

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional buoyancy forcing and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer . In general, we find that the convective behavior of liquid metal differs substantially from that of moderate fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of and fluids, respectively. PMID:23569262

  3. Turbulent convection in liquid metal with and without rotation.

    PubMed

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr < 1. Most analog models of planetary dynamos, however, use moderate Pr fluids, and the systematic influence of reducing Pr is not well understood. We perform rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr < 1 and Pr > 1 fluids, respectively.

  4. Measuring g using a rotating liquid mirror: enhancing laboratory learning

    NASA Astrophysics Data System (ADS)

    Sundström, Andréas; Adawi, Tom

    2016-09-01

    We describe a low-cost yet experimentally challenging method to measure the acceleration of gravity, g, using a liquid in a rotating bowl and a laser pointer. The idea underpinning this novel method is that the rotating liquid surface will form a parabolic reflector which will focus light into a unique focal point. By measuring the height of the focal point, g could be determined to 9.78+/- 0.13 m s-2. We discuss the pedagogical merits of this method compared to more traditional methods for measuring g, and how it can be implemented as an experimental problem at different educational levels.

  5. Nuclear Matter Properties with the Re-evaluated Coefficients of Liquid Drop Model

    NASA Astrophysics Data System (ADS)

    Chowdhury, P. Roy; Basu, D. N.

    2006-06-01

    The coefficients of the volume, surface, Coulomb, asymmetry and pairing energy terms of the semiempirical liquid drop model mass formula have been determined by furnishing best fit to the observed mass excesses. Slightly different sets of the weighting parameters for liquid drop model mass formula have been obtained from minimizations of \\chi 2 and mean square deviation. The most recent experimental and estimated mass excesses from Audi-Wapstra-Thibault atomic mass table have been used for the least square fitting procedure. Equation of state, nuclear incompressibility, nuclear mean free path and the most stable nuclei for corresponding atomic numbers, all are in good agreement with the experimental results.

  6. Pool boiling from rotating and stationary spheres in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  7. Studies of rotating liquid floating zones on Skylab IV

    NASA Technical Reports Server (NTRS)

    Carruthers, J. R.; Gibson, E. G.; Klett, M. G.; Facemire, B. R.

    1975-01-01

    Liquid zones of water, soap solution and soap foam were deployed between two aligned circular disks which were free to rotate about the zone axis in the microgravity environment of Skylab IV. Such a configuration is of interest in the containerless handling of melts for possible future space processing crystal growth experiments. Three basic types of zone surface deformation and instability were observed for these rotational conditions; axisymmetric shape changes under single disk rotation, nonaxisymmetric, whirling, C-modes for long zones with equal rotation of both disks, and capillary wave phenomena for short zones with equal rotation of both disks. The sources of these instabilities and the conditions promoting them are analyzed in detail from video tape recordings of the Skylab experiments.

  8. Coarsening dynamics of binary liquids with active rotation.

    PubMed

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

  9. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  10. Single-drop coacervative microextraction of organic compounds prior to liquid chromatography. Theoretical and practical considerations.

    PubMed

    López-Jiménez, Francisco José; Rubio, Soledad; Pérez-Bendito, Dolores

    2008-06-27

    Coacervates made of surfactant aggregates, namely aqueous and reverse micelles and vesicles, were firstly used as solvents in single-drop microextraction (SDME) and proposed for the extraction and concentration of chlorophenols prior to liquid chromatography. The formation of coacervate drops in the needle tip of conventional microsyringes depended on the type of intermolecular forces established between the surfactant headgroups making up the supramolecular aggregates; hydrogen bond interactions were strong enough to permit the formation of spherical drops. Stability of 1-50 microL coacervate drops was achieved by introducing the microsyringe needle tip in a PTFE rod, the end of which had been machined out with a heated flanging-tool to get circular flanges (diameters in the range 3.5-6 mm). The parameters affecting the efficiency of single-drop coacervative microextraction (SDCME) were investigated using vesicular coacervates as a solvent and 2-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) as model analytes. Coacervative microextraction dynamics fit to the general rate equation of liquid-liquid extraction. The effect of variables such as extraction time, drop volume, stirring rate, pH and temperature, on the extraction of chlorophenols was similar to that described for organic solvent drops. Electrolyte concentrations above 0.1 M caused drop instability. Under the optimum conditions, detection limits were in the range 0.1-0.3 microg L(-1). The relative standard deviation was between 4.3 and 5.6 at 20 microg L(-1) spiked level. The method was applied to the determination of the four chlorophenols in wastewater, superficial water from a reservoir and groundwater and the recoveries were in the range 79 and 106% at 5-20 microg L(-1) spiked level.

  11. Tailored Ink For Piston-Driven Electrostatic Liquid Drop Modulator

    DOEpatents

    Wong, Raymond W.; Breton, Marcel P.; Bedford, Christine E.; Carreira, Leonard M.; Gooray, Arthur M.; Roller, George J.; Zavadil, Kevin; Galambos, Paul; Crowley, Joseph

    2005-04-19

    The present invention relates to an ink composition including water, a solvent, a solvent-soluble dye, and a surfactant, where the ink exhibits a stable liquid microemulsion phase at a first temperature and a second temperature higher than the first temperature and has a conductivity of at most about 200 .mu.S/cm and a dielectric constant of at least about 60, and methods of making such ink compositions. The present invention also relates to a method of making an ink composition for use in a microelectromechanical system-based fluid ejector. The method involves providing a solution or dispersion including a dye or a pigment and adding to the solution or dispersion an additive which includes a material that enhances dielectric permittivity and/or reduces conductivity under conditions effective to produce an ink composition having a conductivity of at most about 200 .mu.S/cm and a dielectric constant of at least about 60.

  12. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.

    PubMed

    Chen, Longquan; Bonaccurso, Elmar

    2014-08-01

    In this paper, we experimentally investigated the dynamic spreading of liquid drops on solid surfaces. Drop of glycerol water mixtures and pure water that have comparable surface tensions (62.3-72.8 mN/m) but different viscosities (1.0-60.1 cP) were used. The size of the drops was 0.5-1.2 mm. Solid surfaces with different lyophilic and lyophobic coatings (equilibrium contact angle θ(eq) of 0°-112°) were used to study the effect of surface wettability. We show that surface wettability and liquid viscosity influence wetting dynamics and affect either the coefficient or the exponent of the power law that describes the growth of the wetting radius. In the early inertial wetting regime, the coefficient of the wetting power law increases with surface wettability but decreases with liquid viscosity. In contrast, the exponent of the power law does only depend on surface wettability as also reported in literature. It was further found that surface wettability does not affect the duration of inertial wetting, whereas the viscosity of the liquid does. For low viscosity liquids, the duration of inertial wetting corresponds to the time of capillary wave propagation, which can be determined by Lamb's drop oscillation model for inviscid liquids. For relatively high viscosity liquids, the inertial wetting time increases with liquid viscosity, which may due to the viscous damping of the surface capillary waves. Furthermore, we observed a viscous wetting regime only on surfaces with an equilibrium contact angle θ(eq) smaller than a critical angle θ(c) depending on viscosity. A scaling analysis based on Navier-Stokes equations is presented at the end, and the predicted θ(c) matches with experimental observations without any additional fitting parameters.

  13. Viscosity Measurement of Highly Viscous Liquids Using Drop Coalescence in Low Gravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    The method of drop coalescence is being investigated for use as a method for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in this case to minimize the undesirable effects of body forces and liquid motion in levitated drops. Also, the low gravity environment will allow for investigating large liquid volumes which can lead to much higher accuracy for the viscosity calculations than possible under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. In the analytical aspect of the method two liquid volumes are brought into contact which will coalesce under the action of surface tension alone. The free surface geometry development as well as its velocity during coalescence which are obtained from numerical computations are compared with an analogous experimental model. The viscosity in the numerical computations is then adjusted to bring into agreement of the experimental results with the calculations. The true liquid viscosity is the one which brings the experiment closest to the calculations. Results are presented for method validation experiments performed recently on board the NASA/KC-135 aircraft. The numerical solution for this validation case was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, in this case glycerine at room temperature, was determined to high degree of accuracy using the liquid coalescence method. These experiments gave very encouraging results which will be discussed together with plans for implementing the method in a shuttle flight experiment.

  14. Theory of Homogeneous Dynamos in a Rotating Liquid Sphere

    PubMed Central

    Pekeris, C. L.; Accad, Y.

    1975-01-01

    A spherical harmonic analysis is made of the hydrodynamic equation governing the flow of an incompressible liquid in a rotating sphere in the presence of the magnetic Lorentz force. Nonlinear partial differential equations are derived for the functions Sn(r,t) and Tn(r,t) entering the spherical harmonic representation of the velocity field. PMID:16592240

  15. Note: A top-view optical approach for observing the coalescence of liquid drops

    NASA Astrophysics Data System (ADS)

    Wang, Luhai; Zhang, Guifu; Wu, Haiyi; Yang, Jiming; Zhu, Yujian

    2016-02-01

    We developed a new device that is capable of top-view optical examination of the coalescence of liquid drops. The device exhibits great potential for visualization, particularly for the early stage of liquid bridge expansion, owing to the use of a high-speed shadowgraph technique. The fluid densities of the two approaching drops and that of the ambient fluid are carefully selected to be negligibly different, which allows the size of the generated drops to be unlimitedly large in principle. The unique system design allows the point of coalescence between two drops to serve as an undisturbed optical pathway through which to image the coalescence process. The proposed technique extended the dimensionless initial finite radius of the liquid bridge to 0.001, in contrast to 0.01 obtained for conventional optical measurements. An examination of the growth of the bridge radius for a water and oil-tetrachloroethylene system provided results similar to Paulsen's power laws of the inertially limited viscous and inertial regimes. Furthermore, a miniscule shift in the center of the liquid bridge was detected at the point of crossover between the two regimes, which can be scarcely distinguished with conventional side-view techniques.

  16. Theory of rotating electrohydrodynamic flows in a liquid film.

    PubMed

    Shiryaeva, E V; Vladimirov, V A; Zhukov, M Yu

    2009-10-01

    The mathematical model of rotating electrohydrodynamic flows in a thin suspended liquid film is proposed and studied. The flows are driven by the given difference of potentials in one direction and constant external electric field E(out) in another direction in the plane of a film. To derive the model, we employ the spatial averaging over the normal coordinate to a film that leads to the average Reynolds stress that is proportional to |E(out)|3. This stress generates tangential velocity in the vicinity of the edges of a film that, in turn, causes the rotational motion of a liquid. The proposed model is used to explain the experimental observations of the liquid film motor.

  17. Bubble migration in a rotating, liquid-filled sphere

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    Results and analysis of ground-based experiments performed to aid in designing experiments on the behavior of bubbles in a rotating liquid body on board the Shuttle in free fall are presented. Spherical shells filled with silicone oil containing a small gas bubble were spun and filmed by high speed motion picture photography. The rotation of the shell and the trajectory of the bubble motion were recorded and the film was exposed to a motion analyzer connected to a keypunch. The analyzer measured Cartesian coordinates as well as angle, frame number, and rotation rate. Optical correction equations were employed to determine the apparent bubble trajectory relative to an inertial frame of reference. An analytical model for the bubble motion was defined, yielding predictions of velocity and position at different times. Rotation of the fluid container is concluded to aid in centering the bubbles.

  18. Subcritical Thermal Convection of Liquid Metals in a Rapidly Rotating Sphere

    NASA Astrophysics Data System (ADS)

    Kaplan, E. J.; Schaeffer, N.; Vidal, J.; Cardin, P.

    2017-09-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here, we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct numerical simulation. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superseded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are smoothly connected. As the planetary core rotates faster, the smooth transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ek <10-6. Here, the strong branch persists even as the thermal forcing drops well below the linear onset of convection (Ra =0.7 Racrit in this study). We highlight the importance of the Reynolds stress, which is required for convection to subsist below the linear onset. In addition, the Péclet number is consistently above 10 in the strong branch. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets through a subcritical bifurcation.

  19. Electrical control of Faraday rotation at a liquid-liquid interface.

    PubMed

    Marinescu, Monica; Kornyshev, Alexei A; Flatté, Michael E

    2015-01-01

    A theory is developed for the Faraday rotation of light from a monolayer of charged magnetic nanoparticles at an electrified liquid-liquid interface. The polarization fields of neighboring nanoparticles enhance the Faraday rotation. At such interfaces, and for realistic sizes and charges of nanoparticles, their adsorption-desorption can be controlled with a voltage variation<1 V, providing electrovariable Faraday rotation. A calculation based on the Maxwell-Garnett theory predicts that the corresponding redistribution of 40 nm nanoparticles of yttrium iron garnet can switch a cavity with a quality factor larger than 10(4) for light of wavelength 500 nm at normal incidence.

  20. Deformation and breakup of round drops and nonturbulent liquid jets in uniform crossflows

    NASA Astrophysics Data System (ADS)

    Aalburg, Christian

    2002-09-01

    The deformation and breakup properties of liquid drops and round liquid jets in uniform crossflows were studied computationally, motivated by applications to the behavior of sprays in crossflows found in a variety of power and propulsion systems. The objective of the present investigation was to extend the parameter range of past deformation and breakup studies, by means of numerical computations, to conditions more representative of practical high-pressure spray combustion processes. The time-dependent, incompressible and two-dimensional Navier-Stokes equations were solved on a uniform, staggered grid using the projection method of Chorin (1968) and the Level Set method of Sussman et al. (1994). Numerical simulations of the effect of crossflows on the deformation and breakup of drops and round liquid jets were carried out for the following range of parameters to study the independent effects of four dimensionless variables that fully describe the problem: Weber numbers of 0.1--2,000,000, Ohnesorge numbers of 0.001--100, Reynolds numbers of 12.5--200 and liquid/gas density ratios of 2--infinity (the last by Richardson extrapolation). The present results were in good agreement with existing measurements of deformation and breakup properties of both liquid drops and round liquid jets at large liquid/gas density ratios and with wake and drag properties of spheres and cylinders in crossflows. Similar to past experimental observations, remarkable similarities were observed between the breakup properties of round liquid jets and liquid drops. The liquid/gas density ratio was found to have a relatively small effect on deformation and breakup. Effects of Reynolds number variations were also small for conditions where the drag coefficient is relatively independent of the Reynolds number. As the Stokes flow regime is approached, however, the Weber number (We) required for breakup increases significantly due to increased drag coefficients. At large Ohnesorge number (Oh

  1. A Study of the Measurement of Surface and Interfacial Tension by the Maximum Liquid Drop Volume Method.

    PubMed

    Pu, Bingyin; Chen, Donghao

    2001-03-15

    The maximum liquid drop volume (nu(max)) is measured using a back-suction technique with a micrometer syringe piston. The residual amount of liquid on the tip was determined and the tension data calculated from the theoretical correction factors are well in accordance with those from the falling drop volume (nu(f)). Copyright 2001 Academic Press.

  2. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  3. Scaling of liquid-drop impact craters in wet granular media.

    PubMed

    Zhang, Qianyun; Gao, Ming; Zhao, Runchen; Cheng, Xiang

    2015-10-01

    Combining high-speed photography with laser profilometry, we study the dynamics and the morphology of liquid-drop impact cratering in wet granular media-a ubiquitous phenomenon relevant to many important geological, agricultural, and industrial processes. By systematically investigating important variables such as impact energy, the size of impinging drops, and the degree of liquid saturation in granular beds, we uncover a scaling law for the size of impact craters. We show that this scaling can be explained by considering the balance between the inertia of impinging drops and the strength of impacted surface. Such a theoretical understanding confirms that the unique energy partition originally proposed for liquid-drop impact cratering in dry granular media also applies for impact cratering in wet granular media. Moreover, we demonstrate that compressive stresses, instead of shear stresses, control the process of granular impact cratering. Our study enriches the picture of generic granular impact cratering and sheds light on the familiar phenomena of raindrop impacts in granular media.

  4. Magnetorotational Instability in a Rotating Liquid Metal Annulus

    SciTech Connect

    Hantao Ji; Jeremy Goodman; Akira Kageyama

    2001-03-10

    Although the magnetorotational instability (MRI) has been widely accepted as a powerful accretion mechanism in magnetized accretion disks, it has not been realized in the laboratory. The possibility of studying MRI in a rotating liquid-metal annulus (Couette flow) is explored by local and global stability analysis and magnetohydrodynamic (MHD) simulations. Stability diagrams are drawn in dimensionless parameters, and also in terms of the angular velocities at the inner and outer cylinders. It is shown that MRI can be triggered in a moderately rapidly rotating table-top apparatus, using easy-to-handle metals such as gallium. Practical issues of this proposed experiment are discussed.

  5. Instability development of a viscous liquid drop impacting a smooth substrate.

    PubMed

    Xu, Lei

    2010-08-01

    We study the instability development during a viscous liquid drop impacting a smooth substrate, using high-speed photography. The onset time of the instability highly depends on the surrounding air pressure and the liquid viscosity: it decreases with air pressure with the power of minus two, and increases linearly with the liquid viscosity. From the real-time dynamics measurements, we construct a model which compares the destabilizing stress from air with the stabilizing stress from liquid viscosity. Under this model, our experimental results indicate that at the instability onset time, the two stresses balance each other. This model also illustrates the different mechanisms for the inviscid and viscous regimes previously observed: the inviscid regime is stabilized by the surface tension and the viscous regime is stabilized by the liquid viscosity.

  6. Nanoparticles at liquid interfaces: rotational dynamics and angular locking.

    PubMed

    Razavi, Sepideh; Kretzschmar, Ilona; Koplik, Joel; Colosqui, Carlos E

    2014-01-07

    Nanoparticles with different surface morphologies that straddle the interface between two immiscible liquids are studied via molecular dynamics simulations. The methodology employed allows us to compute the interfacial free energy at different angular orientations of the nanoparticle. Due to their atomistic nature, the studied nanoparticles present both microscale and macroscale geometrical features and cannot be accurately modeled as a perfectly smooth body (e.g., spheres and cylinders). Under certain physical conditions, microscale features can produce free energy barriers that are much larger than the thermal energy of the surrounding media. The presence of these energy barriers can effectively "lock" the particle at specific angular orientations with respect to the liquid-liquid interface. This work provides new insights on the rotational dynamics of Brownian particles at liquid interfaces and suggests possible strategies to exploit the effects of microscale features with given geometric characteristics.

  7. Rotation of a liquid crystal by the Casimir torque

    NASA Astrophysics Data System (ADS)

    Somers, David A. T.; Munday, Jeremy N.

    2015-03-01

    We present a calculation of the Casimir torque acting on a liquid crystal near a birefringent crystal. In this system, a liquid crystal bulk is uniformly aligned at one surface and is twisted at the other surface by a birefringent crystal, e.g., barium titanate. The liquid crystal is separated from the solid crystal by an isotropic, transparent material such as SiO2. By varying the thickness of the deposited layer, we can observe the effect of retardation on the torque (which differentiates it from the close-range van der Waals torque). We find that a barium titanate slab would cause 5CB (4 -cyano -4 '-pentylbiphenyl) liquid crystal to rotate by 10∘ through its bulk when separated by 35 nm of SiO2. The optical technique for measuring this twist is also outlined.

  8. Nanoparticles at liquid interfaces: Rotational dynamics and angular locking

    SciTech Connect

    Razavi, Sepideh; Kretzschmar, Ilona; Koplik, Joel; Colosqui, Carlos E.

    2014-01-07

    Nanoparticles with different surface morphologies that straddle the interface between two immiscible liquids are studied via molecular dynamics simulations. The methodology employed allows us to compute the interfacial free energy at different angular orientations of the nanoparticle. Due to their atomistic nature, the studied nanoparticles present both microscale and macroscale geometrical features and cannot be accurately modeled as a perfectly smooth body (e.g., spheres and cylinders). Under certain physical conditions, microscale features can produce free energy barriers that are much larger than the thermal energy of the surrounding media. The presence of these energy barriers can effectively “lock” the particle at specific angular orientations with respect to the liquid-liquid interface. This work provides new insights on the rotational dynamics of Brownian particles at liquid interfaces and suggests possible strategies to exploit the effects of microscale features with given geometric characteristics.

  9. Numerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing method

    NASA Astrophysics Data System (ADS)

    Coyajee, Emil; Boersma, Bendiks Jan

    2009-07-01

    The gravity-driven motion of a droplet impacting on a liquid-liquid interface is studied. The full Navier-Stokes equations are solved on a fixed, uniform grid using a finite difference/front-capturing method. For the representation of fluid-fluid interfaces, a coupled Level-Set/Volume-Of-Fluid method [M. Sussman, E.G. Puckett, A coupled Level-Set and Volume-of-Fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comp. Phys. 162 (2000) 301-337] is used, in which we introduce the novel approach of describing separate interfaces with different marker functions. As a consequence, we prevent numerical coalescence of the droplet and the liquid-liquid interface without excessive (local) grid refinement. To validate our method, numerical simulations of the drop impact event are compared with experiments [Z. Mohamed-Kassim, E.K. Longmire, Drop impact on a liquid-liquid interface, Phys. Fluids 15 (2003) 3263-3273]. Furthermore, a comparison is made with the numerical results of [A. Esmaeeli, G. Tryggvason, Direct numerical simulations of bubbly flows. Part 2. Moderate Reynolds number arrays, J. Fluid Mech. 385 (1999) 325-358] for an array of rising bubbles. The investigation shows that the multiple marker approach successfully prevents numerical coalescence of interfaces and adequately captures the effect of surface tension.

  10. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  11. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  12. Liquid management in low gravity using baffled rotating containers

    NASA Technical Reports Server (NTRS)

    Gans, R. F.

    1984-01-01

    Possible static configurations of liquids in rotating cylindrical containers with baffles evenly spaced in the axial direction are found. The force balance is among surface tension, centrifugal force and gravity. Two instabilities are found in this parameter space: type 1 is the inability of the liquid to form an interface attached to the baffles; type 2 is the inability for multi-baffled configurations to sustain interfaces between each pair of baffles. The type 1 analysis is confirmed through laboratory based equipment. Applications to orbiting containers are discussed.

  13. Liquid Motion in a Rotating Tank Experiment (LME)

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.

    1992-01-01

    The Liquid Motion in Rotating Tank Experiment (LME) will investigate and quantify liquid motions occurring in spin-stabilized spacecraft; acquire representative data to validate ground-test scaling procedures; and obtain scientific understanding to formulate better analytical models. LME eliminates the limitations of ground testing. LME design is nearing the end of phase B: the breadboard hardware model has been completed; the load cells have been fabricated and tested; the experiment computer has been flight qualified; and other electronics have been breadboarded. Various aspects of this experiment are presented in viewgraph form.

  14. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  15. Janus Gel Fabrication Using Liquid Drop Coalescence and Limited Mixing in the Hele-Shaw Geometry

    NASA Astrophysics Data System (ADS)

    Gonzalez, Brittany; Moran, Alexis; Lee, Donghee; Ryu, Sangjin

    2015-11-01

    Hydrogel substrates of tunable stiffness have been actively utilized for in vitro cell mechanobiology study. Here we present a new method to fabricate Janus polyacrylamide gel based on limited mixing between liquid drops coalescing in the Hele-Shaw geometry. Two pre-polymer drops with different concentrations were sandwiched and squeezed between two parallel glass surfaces. Once the drops coalesced in the decreased gap between the surfaces, gelation was initiated by UV light exposure with various time delays. AFM nano-indentation was utilized to map the Young's modulus of obtained gels. Fabricated Janus gels had two regions of different Young's moduli interfaced by the stiffness gradient zone, and the width of the gradient zone increased with the delay time. We acknowledge support from Bioengineering for Human Health grant from UNL and UNMC, and NSF REU grant for UNL.

  16. Experimental investigation of the influence of the liquid drop size and velocity on the parameters of drop deformation in air

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2015-08-01

    The deformation of water, kerosene, and ethyl alcohol drops traveling a distance of up to 1 m in air with different velocities (1-5 m/s) is recorded by high-speed photography (the frame of the cross-correlation camera is less than 1 µs). It is shown that the shape of the drops varies cyclically. Several tens of "deformation cycles" are found, which have characteristic times, drop size variation amplitudes, and number of shapes. It is found that the velocity and size of the drops influence the parameters of their deformation cycles. Experiments with the drops are conducted in air at moderate Weber numbers (We < 10).

  17. Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution.

    PubMed

    Berberović, Edin; van Hinsberg, Nils P; Jakirlić, Suad; Roisman, Ilia V; Tropea, Cameron

    2009-03-01

    In the present work experimental, numerical, and theoretical investigations of a normal drop impact onto a liquid film of finite thickness are presented. The dynamics of drop impact on liquid surfaces, the shape of the cavity, the formation and propagation of a capillary wave in the crater, and the residual film thickness on the rigid wall are determined and analyzed. The shape of the crater within the film and the uprising liquid sheet formed upon the impact are observed using a high-speed video system. The effects of various influencing parameters such as drop impact velocity, liquid film thickness and physical properties of the liquids, including viscosity and surface tension, on the time evolution of the crater formation are investigated. Complementary to experiments the direct numerical simulations of the phenomena are performed using an advanced free-surface capturing model based on a two-fluid formulation of the classical volume-of-fluid (VOF) model in the framework of the finite volume numerical method. In this model an additional convective term is introduced into the transport equation for phase fraction, contributing decisively to a sharper interface resolution. Furthermore, an analytical model for the penetration depth of the crater is developed accounting for the liquid inertia, viscosity, gravity, and surface tension. The model agrees well with the experiments at the early times of penetration far from the wall if the impact velocity is high. Finally, a scaling analysis of the residual film thickness on the wall is conducted demonstrating a good agreement with the numerical predictions.

  18. Single-drop liquid phase microextraction accelerated by surface acoustic wave.

    PubMed

    Zhang, Anliang; Zha, Yan

    2013-03-01

    A single-drop liquid phase microextraction method is presented, in which surface acoustic wave (SAW) is used for accelerating extraction speed. A pair of interdigital transducers with 27.5 MHz center frequency is fabricated on a 128° yx-LiNbO3 substrate. A radio frequency signal is applied to one of interdigital transducers to excite SAW. Plastic straw is filled with PDMS, leaving 1 mL for holding sample solution. Plastic straw with sample solution droplet is then dipping into extractant, into which SAW is radiated. Mass transportation from sample solution to extractant drop is accelerated due to acoustic streaming, and extraction time is decreased. An ionic liquid and an acid green-25 solution are used for extraction experiments. Results show that the extraction process is almost finished within 2 min, and extraction speed is increased with radio frequency signal power.

  19. Capillary flow as the cause of ring stains from dried liquid drops

    NASA Astrophysics Data System (ADS)

    Deegan, Robert D.; Bakajin, Olgica; Dupont, Todd F.; Huber, Greb; Nagel, Sidney R.; Witten, Thomas A.

    1997-10-01

    When a spilled drop of coffee dries on a solid surface, it leaves a dense, ring-like deposit along the perimeter (Fig. 1a). The coffee-initially dispersed over the entire drop-becomes concentrated into a tiny fraction of it. Such ring deposits are common wherever drops containing dispersed solids evaporate on a surface, and they influence processes such as printing, washing and coating. Ring deposits also provide a potential means to write or deposit a fine pattern onto a surface. Here we ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior. The resulting outward flow can carry virtually all the dispersed material to the edge. This mechanism predicts a distinctive power-law growth of the ring mass with time-a law independent of the particular substrate, carrier fluid or deposited solids. We have verified this law by microscopic observations of colloidal fluids.

  20. Impact of a single drop on the same liquid: formation, growth and disintegration of jets

    NASA Astrophysics Data System (ADS)

    Agbaglah, G. Gilou; Deegan, Robert

    2015-11-01

    One of the simplest splashing scenarios results from the impact of a single drop on on the same liquid. The traditional understanding of this process is that the impact generates a jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are bifurcations in the multiplicity of jets. First, we study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid using a combination of numerical simulations and linear stability theory. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. We also use experiments and numerical simulations of a single drop impacting on a deep pool to examine the bifurcation from a single jet into two jets. Using high speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet.

  1. Maximum spreading of liquid drop on various substrates with different wettabilities

    NASA Astrophysics Data System (ADS)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  2. Capillary Drop Penetration Method to Characterize the Liquid Wetting of Powders.

    PubMed

    Liu, Zhanjie; Wang, Yifan; Muzzio, Fernando J; Callegari, Gerardo; Drazer, German

    2017-01-10

    We present a method to characterize the wettability of powders, based on the penetration dynamics of a sessile drop deposited on a slightly compressed powder bed. First, we show that a direct comparison of the wetting properties of different liquids is possible without having to solve the three-dimensional liquid penetration problem, by considering the appropriate dimensionless variables. We show that the contact area between the sessile drop and the powder bed remains constant during most of the penetration process and demonstrate that as a result, the evolution of the dimensionless penetration volume is given by a universal function of the dimensionless time, with no dimensionless parameters. Then, using a reference liquid that completely wets the powder, it is possible to obtain an effective contact angle for a test liquid of interest, independent of other properties of the powder bed, such as permeability and a characteristic pore size. We apply the proposed method to estimate the contact angle of water with different powder blends, by using silicone oil as the reference liquid. Finally, to highlight the potential of the proposed method to characterize pharmaceutical powders, we consider a blend of lactose, acetaminophen, and a small amount of lubricant (magnesium stearate). The proposed method adequately captures a significant decrease in hydrophilicity that results from exposing the blend to excessive mixing, a well-known effect in the pharmaceutical industry.

  3. Selection of thermotropic liquid crystalline polymers for rotational molding

    NASA Astrophysics Data System (ADS)

    Scribben, Eric

    Thermotropic liquid crystalline polymers (TLCPs) possess a number of physical and mechanical properties such as: excellent chemical resistance, low permeability, low coefficient of thermal expansion, high tensile strength and modulus, and good impact resistance, which make them desirable for use in the storage of cryogenic fluids. Rotational molding was selected as the processing method for these containers because it is convenient for manufacturing large storage vessels from thermoplastics. Unfortunately, there are no reports of successful TLCP rotational molding in the technical literature. The only related work reported involved the static coalescence of two TLCP powders, where three key results were reported that were expected to present problems that preclude the rotational molding process. The first result was that conventional grinding methods produced powders that were composed of high aspect ratio particles. Secondly, coalescence was observed to be either slow or incomplete and speculated that the observed difficulties with coalescence may be due to large values of the shear viscosity at low deformation rates. Finally, complete densification was not observed for the high aspect ratio particles. However, the nature of these problems were not evaluated to determine if they did, in fact, create processing difficulties for rotational molding or if it was possible to develop solutions to the problems to achieve successful rotational molding. This work is concerned with developing a resin selection method to identify viable TLCP candidates and establish processing conditions for successful rotational molding. This was accomplished by individually investigating each of the phenomenological steps of rotational molding to determine the requirements for acceptable performance in, or successful completion of, each step. The fundamental steps were: the characteristics and behavior of the powder in solids flow, the coalescence behavior of isolated particles, and the

  4. The behavior of a liquid drop levitated and drastically flattened by an intense sound field

    NASA Technical Reports Server (NTRS)

    Lee, C. P.; Anilkumar, A. V.; Wang, Taylor G.

    1992-01-01

    The deformation and break-up are studied of a liquid drop in levitation through the radiation pressure. Using high-speed photography ripples are observed on the central membrane of the drop, atomization of the membrane by emission of satellite drops from its unstable ripples, and shattering of the drop after upward buckling like an umbrella, or after horizontal expansion like a sheet. These effects are captured on video. The ripples are theorized to be capillary waves generated by the Faraday instability excited by the sound vibration. Atomization occurs whenever the membrane becomes so thin that the vibration is sufficiently intense. The vibration leads to a destabilizing Bernoulli correction in the static pressure. Buckling occurs when an existent equilibrium is unstable to a radial (i.e., tangential) motion of the membrane because of the Bernoulli effect. Besides, the radiation stress at the rim of the drop is a suction stress which can make equilibrium impossible, leading to the horizontal expansion and the subsequent break-up.

  5. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.

    PubMed

    Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q

    2015-05-01

    The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics.

    PubMed

    van Hinsberg, Nils Paul; Charbonneau-Grandmaison, Marie

    2015-07-01

    The present paper is devoted to an experimental investigation of the cavity formed upon a single-drop impingement onto a traveling solitary surface wave on a deep pool of the same liquid. The dynamics of the cavity throughout its complete expansion and receding phase are analyzed using high-speed shadowgraphy and compared to the outcomes of drop impingements onto steady liquid surface films having equal thickness. The effects of the surface wave velocity, amplitude and phase, drop impingement velocity, and liquid viscosity on the cavity's diameter and depth evolution are accurately characterized at various time instants. The wave velocity induces a distinct and in time increasing inclination of the cavity in the wave propagation direction. In particular for strong waves an asymmetrical distribution of the radial expansion and retraction velocity along the cavity's circumference is observed. A linear dependency between the absolute Weber number and the typical length and time scales associated with the cavity's maximum depth and maximum diameter is reported.

  7. Spreading and mixing of drops on a miscible liquid of different surface tension

    NASA Astrophysics Data System (ADS)

    Afkhami, S.; Seric, I.; Kondic, L.; Kim, H.; Shardt, O.; Stone, H. A.

    2016-11-01

    We carry out Volume-of-Fluid based numerical simulations of a Marangoni-driven spreading of isopropyl alcohol (IPA) drops placed on water-air interface. The two fully miscible liquids create a spatially varying surface tension, leading to the spreading of the IPA drop on the water surface. We study the spreading of drops as IPA concentration is varied. In particular, we compute the spreading velocity and show that the scaling of the front position, L, with time, t, is given by L t 0 . 7 . We observe that while the surface tension difference between the two liquids controls the spreading velocity, it only slightly alters the power-law behavior for the range of considered IPA concentrations. We also provide detailed insight of the mixing of the IPA and water, and show the time evolution of liquid-air surface tension distribution. We show that the mixing results in a volume flux in a thin region on the surface, generating a vortical flow underneath the spreading front; we investigate the details of these flow patterns and show the time evolution of the circulation within the water. The numerical results are supported by new experimental observations reported separately.

  8. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics

    NASA Astrophysics Data System (ADS)

    van Hinsberg, Nils Paul; Charbonneau-Grandmaison, Marie

    2015-07-01

    The present paper is devoted to an experimental investigation of the cavity formed upon a single-drop impingement onto a traveling solitary surface wave on a deep pool of the same liquid. The dynamics of the cavity throughout its complete expansion and receding phase are analyzed using high-speed shadowgraphy and compared to the outcomes of drop impingements onto steady liquid surface films having equal thickness. The effects of the surface wave velocity, amplitude and phase, drop impingement velocity, and liquid viscosity on the cavity's diameter and depth evolution are accurately characterized at various time instants. The wave velocity induces a distinct and in time increasing inclination of the cavity in the wave propagation direction. In particular for strong waves an asymmetrical distribution of the radial expansion and retraction velocity along the cavity's circumference is observed. A linear dependency between the absolute Weber number and the typical length and time scales associated with the cavity's maximum depth and maximum diameter is reported.

  9. Investigation in Simulated Vertical Descent of the Characteristics of a Cargo-Dropping Device having Extensible Rotating Blades

    NASA Technical Reports Server (NTRS)

    Stone, Ralph W., Jr.; Hultz, Burton E.

    1949-01-01

    The characteristics of a cargo-dropping device having extensible rotating blades as load-carrying surfaces have been studied in simulated vertical descent in the Langley 20-foot free-spinning tunnel. The investigation included tests to determine the variation in vertical sinking speed with load. A study of the blade characteristics and of the test results indicated a method of dynamically balancing the blades to permit proper functioning of the device.

  10. Application of dispersive liquid-liquid-solidified floating organic drop microextraction and ETAAS for the preconcentration and determination of indium.

    PubMed

    Ashrafzadeh Afshar, Elham; Taher, Mohammad Ali; Fazelirad, Hamid; Naghizadeh, Matin

    2017-03-01

    A new, simple and efficient method, including dispersive liquid-liquid-solidified floating organic drop microextraction and then electrothermal atomic absorption spectrometry, has been developed for the preconcentration and determination of ultratrace amounts of indium. The method was applied to preconcentrate the indium-1-(2-pyridylazo)-2-naphthol complex in 25 μL 1-undecanol. The various factors affecting the extraction efficiency, such as pH, type and volume of extraction solvent, type and volume of disperser solvent, sample volume, ionic strength, and ligand concentration, were investigated and optimized. Under the optimum conditions, an enrichment factor of 62.5, precision of ±4.75%, a detection limit of 55.6 ng L(-1), and for the calibration graph a linear range of 96.0-3360 ng L(-1) were obtained. The method was used for the extraction and determination of indium in water and standard samples with satisfactory results. Graphical Abstract Preconcentration of indium ions via liquid-liquid-solidified floating organic drop microextraction method and determination by ETAAS.

  11. Flow Straightener for a Rotating-Drum Liquid Separator

    NASA Technical Reports Server (NTRS)

    O'Coin, James R.; Converse, David G.; Rethke, Donald W.

    2004-01-01

    A flow straightener has been incorporated into a rotary liquid separator that originally comprised an inlet tube, a shroud plate, an impeller, an inner drum, an outer drum, a housing, a pitot tube, and a hollow shaft motor. As a consequence of the original geometry of the impeller, shroud, inner drum, and hollow shaft, swirl was created in the airflow inside the hollow shaft during operation. The swirl speed was large enough to cause a significant pressure drop. The flow straightener consists of vanes on the back side of the shroud plate. These vanes compartmentalize the inside of the inner drum in such a way as to break up the flow path and thereby stop the air from swirling; as a result, the air enters the hollow shaft with a predominantly axial velocity instead of a swirl. Tests of the rotary liquid separator at an airflow rate of 10 cu ft/min (0.0047 cu m/s) revealed that the dynamic pressure drop was 8 in. of water (approx.=2 kPa) in the absence of the flow straightener and was reduced to 1 in. of water (approx.=0.25 kPa) in the presence of the flow straightener.

  12. Liquid drops on a surface: Using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling

    NASA Astrophysics Data System (ADS)

    Hughes, Adam P.; Thiele, Uwe; Archer, Andrew J.

    2015-02-01

    The contribution to the free energy for a film of liquid of thickness h on a solid surface due to the interactions between the solid-liquid and liquid-gas interfaces is given by the binding potential, g(h). The precise form of g(h) determines whether or not the liquid wets the surface. Note that differentiating g(h) gives the Derjaguin or disjoining pressure. We develop a microscopic density functional theory (DFT) based method for calculating g(h), allowing us to relate the form of g(h) to the nature of the molecular interactions in the system. We present results based on using a simple lattice gas model, to demonstrate the procedure. In order to describe the static and dynamic behaviour of non-uniform liquid films and drops on surfaces, a mesoscopic free energy based on g(h) is often used. We calculate such equilibrium film height profiles and also directly calculate using DFT the corresponding density profiles for liquid drops on surfaces. Comparing quantities such as the contact angle and also the shape of the drops, we find good agreement between the two methods. We also study in detail the effect on g(h) of truncating the range of the dispersion forces, both those between the fluid molecules and those between the fluid and wall. We find that truncating can have a significant effect on g(h) and the associated wetting behaviour of the fluid.

  13. Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling.

    PubMed

    Hughes, Adam P; Thiele, Uwe; Archer, Andrew J

    2015-02-21

    The contribution to the free energy for a film of liquid of thickness h on a solid surface due to the interactions between the solid-liquid and liquid-gas interfaces is given by the binding potential, g(h). The precise form of g(h) determines whether or not the liquid wets the surface. Note that differentiating g(h) gives the Derjaguin or disjoining pressure. We develop a microscopic density functional theory (DFT) based method for calculating g(h), allowing us to relate the form of g(h) to the nature of the molecular interactions in the system. We present results based on using a simple lattice gas model, to demonstrate the procedure. In order to describe the static and dynamic behaviour of non-uniform liquid films and drops on surfaces, a mesoscopic free energy based on g(h) is often used. We calculate such equilibrium film height profiles and also directly calculate using DFT the corresponding density profiles for liquid drops on surfaces. Comparing quantities such as the contact angle and also the shape of the drops, we find good agreement between the two methods. We also study in detail the effect on g(h) of truncating the range of the dispersion forces, both those between the fluid molecules and those between the fluid and wall. We find that truncating can have a significant effect on g(h) and the associated wetting behaviour of the fluid.

  14. Development of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of trace nickel.

    PubMed

    Wang, Yukun; Zhang, Jingwen; Zhao, Bin; Du, Xin; Ma, Jingjun; Li, Jingci

    2011-12-01

    A liquid-phase microextraction technique was developed using dispersive liquid-liquid microextraction based on solidification of floating organic drop combined with flame atomic absorption spectrometry, for the extraction and determination of trace amounts of nickel in water samples. Microextraction efficiency factors, such as the type and volume of extraction and dispersive solvents, pH, extraction time, the chelating agent amount, and ionic strength, were investigated and optimized. Under optimum conditions, the calibration graph was linear in the range of 4.23-250 μg L(-1) with a detection limit of 1.27 μg L(-1). The relative standard deviation for ten replicate measurements of 10 and 100 μg L(-1) of nickel were 3.21% and 2.55%, respectively. The proposed method was assessed through the analysis of certified reference water or recovery experiments.

  15. Micro-ball lens structure fabrication based on drop on demand printing the liquid mold

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyang; Zhu, Li; Chen, Hejuan; Yang, Lijun; Zhang, Weiyi

    2016-01-01

    In this paper, we demonstrated a simple micro-ball lens array (MBLA) fabrication method using a drop-on-demand (DOD) droplet printing technique and liquid mold. The micro-ball droplet array on the hydrophobic surface is used as the liquid mold to fabricate the MBLA. The ultrahigh adhesion force between the micro-ball droplet and the substrate is ascribed to the Wenzel state of the micro-ball droplet, while the replication process with low position error is attributed to the ultrahigh adhesion force between the micro-ball droplet and the substrate and the high viscosity of the micro-ball droplet and polydimethylsiloxane (PDMS) liquid. The micro-ball lenses (MBLs) with a contact angle of 120° and 150° were fabricated and the important fabrication details were discussed. The optical performance and scanning electron microscope (SEM) data of the MBLs showed that the MBLs had high quality surface morphology and good optical performance.

  16. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  17. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop.

    PubMed

    He, Yi; Vargas, Angelica; Kang, Youn-Jung

    2007-04-25

    This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H(3)PO(4) drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 microg L(-1), repeatability of the extraction (R.S.D.<5%, n=6), and low detection limits (0.3 microg L(-1) for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples.

  18. Collision and coalescence of liquid drops in a dynamically active ambient fluid

    NASA Astrophysics Data System (ADS)

    Sambath, Krishnaraj; Subramani, Hariprasad; Basaran, Osman

    2012-11-01

    The fluid dynamics of the collision and coalescence of liquid drops has intrigued scientists and engineers for more than a century owing to its ubiquitousness in nature, e.g. raindrop coalescence, and industry, e.g. breaking of emulsions in the oil and gas industry. The complexity of the underlying dynamics, e.g. occurrence of hydrodynamic singularities, has required study of the problem at different scales - macroscopic, mesoscopic and molecular - using stochastic and deterministic methods. In this work, we adopt a multiscale, deterministic method to simulate the approach, collision, and eventual coalescence of two drops where the drops as well as the ambient fluid are incompressible, Newtonian fluids. The free boundary problem governing the dynamics consists of the Navier-Stokes system and associated initial and boundary conditions that have been augmented to account for the effects of disjoining pressure as the separation between the drops becomes of the order of a few hundred nanometers. This free boundary problem is solved by a Galerkin finite element-based algorithm. The approach and results to be reported build on earlier work by Leal and coworkers, and are used to identify conditions conducive for coalescence in terms of flow and fluid properties.

  19. Carbon dioxide in an ionic liquid: Structural and rotational dynamics

    NASA Astrophysics Data System (ADS)

    Giammanco, Chiara H.; Kramer, Patrick L.; Yamada, Steven A.; Nishida, Jun; Tamimi, Amr; Fayer, Michael D.

    2016-03-01

    Ionic liquids (ILs), which have widely tunable structural motifs and intermolecular interactions with solutes, have been proposed as possible carbon capture media. To inform the choice of an optimal ionic liquid system, it can be useful to understand the details of dynamics and interactions on fundamental time scales (femtoseconds to picoseconds) of dissolved gases, particularly carbon dioxide (CO2), within the complex solvation structures present in these uniquely organized materials. The rotational and local structural fluctuation dynamics of CO2 in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2) were investigated by using ultrafast infrared spectroscopy to interrogate the CO2 asymmetric stretch. Polarization-selective pump probe measurements yielded the orientational correlation function of the CO2 vibrational transition dipole. It was found that reorientation of the carbon dioxide occurs on 3 time scales: 0.91 ± 0.03, 8.3 ± 0.1, 54 ± 1 ps. The initial two are attributed to restricted wobbling motions originating from a gating of CO2 motions by the IL cations and anions. The final (slowest) decay corresponds to complete orientational randomization. Two-dimensional infrared vibrational echo (2D IR) spectroscopy provided information on structural rearrangements, which cause spectral diffusion, through the time dependence of the 2D line shape. Analysis of the time-dependent 2D IR spectra yields the frequency-frequency correlation function (FFCF). Polarization-selective 2D IR experiments conducted on the CO2 asymmetric stretch in the parallel- and perpendicular-pumped geometries yield significantly different FFCFs due to a phenomenon known as reorientation-induced spectral diffusion (RISD), revealing strong vector interactions with the liquid structures that evolve slowly on the (independently measured) rotation time scales. To separate the RISD contribution to the FFCF from the structural spectral

  20. Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate.

    PubMed

    Tadmor, Rafael; Bahadur, Prashant; Leh, Aisha; N'guessan, Hartmann E; Jaini, Rajiv; Dang, Lan

    2009-12-31

    A novel instrument allows for the first time measurements of the lateral adhesion forces at a solid-liquid interface, f(parallel), in a way that is decoupled from the normal forces, f(perpendicular). We use it to measure how f(parallel) between a drop and a surface is influenced by different f(perpendicular) and different histories of drop resting periods on the surface prior to sliding, t(rest). The variation of f(parallel) with t(rest) is similar for different f(perpendicular) and always plateaus as t(rest)-->infinity. We show that the f(parallel) plateau value is higher when f(perpendicular) is lower. This seemingly counterintuitive result is in agreement with recent theories.

  1. Drop Simulation of 6M Drum with Locking-Ring Closure and Liquid Contents

    SciTech Connect

    Wu, T

    2006-04-17

    This paper presents the dynamic simulation of the 6M drum with a locking-ring type closure subjected to a 4.9-foot drop. The drum is filled with water to 98 percent of overflow capacity. A three dimensional finite-element model consisting of metallic, liquid and rubber gasket components is used in the simulation. The water is represented by a hydrodynamic material model in which the material's volume strength is determined by an equation of state. The explicit numerical method based on the theory of wave propagation is used to determine the combined structural response to the torque load for tightening the locking-ring closure and to the impact load due to the drop.

  2. Self-similar micron-size and nanosize drops of liquid generated by surface acoustic waves.

    PubMed

    Taller, Daniel; Go, David B; Chang, Hsueh-Chia

    2012-11-30

    A planar surface acoustic wave on a solid substrate and its radiated sound into a static liquid drop produce time-averaged, exponentially decaying acoustic and electric Maxwell pressures near the contact line. These localized contact-line pressures are shown to generate two sequences of hemispherical satellite droplets at the tens of microns and submicron scales, both obeying self-similar exponential scaling but with distinct exponents that correspond to viscous dissipation and field leakage length scales, respectively. The acoustic pressure becomes dominant when the film thickness exceeds (1/4π) of the surface acoustic wave wavelength and it affects the shape and stability of the mother drop. The Maxwell pressure of the nanodrops, which exceeds ten atmospheres, is sensitive to the contact angle.

  3. Simple Verification of the Parabolic Shape of a Rotating Liquid and a Boat on Its Surface

    ERIC Educational Resources Information Center

    Sabatka, Z.; Dvorak, L.

    2010-01-01

    This article describes a simple and inexpensive way to create and to verify the parabolic surface of a rotating liquid. The liquid is water. The second part of the article deals with the problem of a boat on the surface of a rotating liquid. (Contains 1 table, 10 figures and 5 footnotes.)

  4. Simple Verification of the Parabolic Shape of a Rotating Liquid and a Boat on Its Surface

    ERIC Educational Resources Information Center

    Sabatka, Z.; Dvorak, L.

    2010-01-01

    This article describes a simple and inexpensive way to create and to verify the parabolic surface of a rotating liquid. The liquid is water. The second part of the article deals with the problem of a boat on the surface of a rotating liquid. (Contains 1 table, 10 figures and 5 footnotes.)

  5. Simple verification of the parabolic shape of a rotating liquid and a boat on its surface

    NASA Astrophysics Data System (ADS)

    Šabatka, Z.; Dvořák, L.

    2010-09-01

    This article describes a simple and inexpensive way to create and to verify the parabolic surface of a rotating liquid. The liquid is water. The second part of the article deals with the problem of a boat on the surface of a rotating liquid.

  6. A new method for measuring the dynamic surface tension of complex-mixture liquid drops

    SciTech Connect

    Zhang, X.; Harris, M.T.; Basaran, O.A.

    1994-06-29

    A simple and accurate technique has been developed for measuring dynamic surface tension. The new technique is based on growing a drop at the end of a fine capillary into another immiscible fluid and can follow the changes in tension at a freshly formed interface during its entire period of evolution. When the relative importance of the surface tension force is large compared to gravitational and viscous forces, shapes of growing drops are sections of spheres and the difference in pressure between the interior and the exterior of the drop {triangle}p is related to the surface tension {sigma} and the radius of curvature R by the static Young-Laplace formula {triangle}p = 2{sigma}/R. In contrast to related work, the new technique can determine the surface tension of an interface with a surface age of a few to tens of milliseconds by measuring transient drop shapes and pressures in 1/6 to 1 millisecond. The capabilities of the new method are demonstrated by performing tension measurements on liquid systems that do not exhibit dynamic surface tension as well as ones that exhibit significant dynamic tension effects. Tension measurements made with surfactant-laden solutions show that variation of surface tension is nonmonotonic in time. In such systems, the dynamic behavior of surface tension is shown to depend upon both the rate of interfacial dilatation and that of surfactant transport. A maximum in the surface tension is attained when the lowering of the surfactant concentration on the drop interface due to its dilatation is balanced by the addition of fresh surfactant to the interface by convection and diffusion.

  7. Dynamic response of a thin sessile drop of conductive liquid to an abruptly applied or removed electric field.

    PubMed

    Corson, L T; Mottram, N J; Duffy, B R; Wilson, S K; Tsakonas, C; Brown, C V

    2016-10-01

    We consider, both theoretically and experimentally, a thin sessile drop of conductive liquid that rests on the lower plate of a parallel-plate capacitor. We derive analytical expressions for both the initial deformation and the relaxation dynamics of the drop as the electric field is either abruptly applied or abruptly removed, as functions of the geometrical, electrical, and material parameters, and investigate the ranges of validity of these expressions by comparison with full numerical simulations. These expressions provide a reasonable description of the experimentally measured dynamic response of a drop of conductive ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate.

  8. Dynamic response of a thin sessile drop of conductive liquid to an abruptly applied or removed electric field

    NASA Astrophysics Data System (ADS)

    Corson, L. T.; Mottram, N. J.; Duffy, B. R.; Wilson, S. K.; Tsakonas, C.; Brown, C. V.

    2016-10-01

    We consider, both theoretically and experimentally, a thin sessile drop of conductive liquid that rests on the lower plate of a parallel-plate capacitor. We derive analytical expressions for both the initial deformation and the relaxation dynamics of the drop as the electric field is either abruptly applied or abruptly removed, as functions of the geometrical, electrical, and material parameters, and investigate the ranges of validity of these expressions by comparison with full numerical simulations. These expressions provide a reasonable description of the experimentally measured dynamic response of a drop of conductive ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate.

  9. Transport of free surface liquid films and drops by external ratchets and self-ratcheting mechanisms

    NASA Astrophysics Data System (ADS)

    Thiele, Uwe; John, Karin

    2010-10-01

    We discuss the usage of ratchet mechanisms to transport a continuous phase in several micro-fluidic settings. In particular, we study the transport of a dielectric liquid in a heterogeneous ratchet capacitor that is periodically switched on and off. The second system consists of drops on a solid substrate that are transported by different types of harmonic substrate vibrations. We argue that the latter can be seen as a self-ratcheting process and discuss analogies between the employed class of thin film equations and Fokker-Planck equations for transport of discrete objects in a 'particle ratchet'.

  10. Effect of ice contamination on liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. This paper presents experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  11. Effect of ice contamination of liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. Experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation is presented. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  12. Necklaces of Liquid Crystal Beads: Nematic Drops Constrained on Thin Cellulosic Fibers

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Geng, Yong; Terentjev, Eugene; Godinho, Maria Helena

    2012-02-01

    Liquid crystal droplets dispersed in a continuous matrix have important applications in electro-optical devices. They also produce intriguing topological defect structures due to the confinement of the liquid crystal by closed boundaries that impose alignment at the interface. In this work we use a simple method to generate stable liquid crystal droplets topologically equivalent to a toroid by depositing tiny volumes of a nematic liquid on cellulosic micro-fibers (1 μm diameter) suspended in air. This system can exhibit non-trivial point topological defects which can be energetically unstable against expanding into ring defects, depending on the fibers constraining geometries. By changing temperature, the system remains stable and allows the study of the defects evolution near the nematic-isotropic transition showing qualitatively different behavior on cooling and heating processes. The necklaces of such liquid crystal drops constitute excellent systems for fundamental studies and open new perspectives for applications. This work was sponsored by Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA8655-10-1-3020. The US Government is authorized to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright notation thereon. Other support includes the Portuguese Science and Technology Foundation grant SFRH/BD/63574/2009 and projects PEst-C/CTM/LA0025/2011 (Strategic Project - LA 25 - 2011-2012, PTDC/CTM/099595/2008, PTDC/FIS/110132/2009 and Windsor Treaty grant 2009-10 UR55.

  13. Liquid-bridge breakup in contact-drop dispensing: Liquid-bridge stability with a free contact line

    NASA Astrophysics Data System (ADS)

    Akbari, Amir; Hill, Reghan J.; van de Ven, Theo G. M.

    2015-08-01

    The static stability of weightless liquid bridges with a free contact line with respect to axisymmetric and nonaxisymmetric perturbations is studied. Constant-volume and constant-pressure stability regions are constructed in slenderness versus cylindrical volume diagrams for fixed contact angles. Bifurcations along the stability-region boundaries are characterized by the structure of axisymmetric bridge branches and families of equilibria. A wave-number definition is presented based on the pieces-of-sphere states at branch terminal points to classify equilibrium branches and identify branch connections. Compared with liquid bridges pinned at two equal disks, the free contact line breaks the equatorial and reflective symmetries, affecting the lower boundary of the constant-volume stability region where axisymmetric perturbations are critical. Stability is lost at transcritical bifurcations and turning points along this boundary. Our results furnish the maximum-slenderness stability limit for drop deposition on real surfaces when the contact angle approaches the receding contact angle.

  14. Liquid-bridge breakup in contact-drop dispensing: Liquid-bridge stability with a free contact line.

    PubMed

    Akbari, Amir; Hill, Reghan J; van de Ven, Theo G M

    2015-08-01

    The static stability of weightless liquid bridges with a free contact line with respect to axisymmetric and nonaxisymmetric perturbations is studied. Constant-volume and constant-pressure stability regions are constructed in slenderness versus cylindrical volume diagrams for fixed contact angles. Bifurcations along the stability-region boundaries are characterized by the structure of axisymmetric bridge branches and families of equilibria. A wave-number definition is presented based on the pieces-of-sphere states at branch terminal points to classify equilibrium branches and identify branch connections. Compared with liquid bridges pinned at two equal disks, the free contact line breaks the equatorial and reflective symmetries, affecting the lower boundary of the constant-volume stability region where axisymmetric perturbations are critical. Stability is lost at transcritical bifurcations and turning points along this boundary. Our results furnish the maximum-slenderness stability limit for drop deposition on real surfaces when the contact angle approaches the receding contact angle.

  15. Capillary forces exerted by liquid drops caught between crossed cylinders. A 3-D meniscus problem with free contact line

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Scriven, L. E.

    1982-01-01

    The Young-Laplace equation is solved for three-dimensional menisci between crossed cylinders, with either the contact line fixed or the contact angle prescribed, by means of the Galerkin/finite element method. Shapes are computed, and with them the practically important quantities: drop volume, wetted area, capillary pressure force, surface tension force, and the total force exerted by the drop on each cylinder. The results show that total capillary force between cylinders increases with decreasing contact angle, i.e. with better wetting. Capillary force is also increases with decreasing drop volume, approaching an asymptotic limit. However, the wetted area on each cylinder decreases with decreasing drop volume, which raises the question of the optimum drop volume to strive for, when permanent bonding is sought from solidified liquid. For then the strength of the bond is likely to depend upon the area of contact, which is the wetted area when the bonding agent was introduced in liquid form.

  16. Preliminary drop-tower experiments on liquid-interface geometry in partially filled containers at zero gravity

    NASA Technical Reports Server (NTRS)

    Smedley, G.

    1990-01-01

    Plexiglass containers with rounded trapezoidal cross sections were designed and built to test the validity of Concus and Finn's existence theorem (1974, 1983) for a bounded free liquid surface at zero gravity. Experiments were carried out at the NASA Lewis two-second drop tower. Dyed ethanol-water solutions and three immiscible liquid pairs, with one liquid dyed, were tested. High-speed movies were used to record the liquid motion. Liquid rose to the top of the smaller end of the containers when the contact angle was small enough, in agreement with the theory. Liquid interface motion demonstrated a strong dependence on physical properties, including surface roughness and contamination.

  17. Characterization of pathogenic bacteria using ionic liquid via single drop microextraction combined with MALDI-TOF MS.

    PubMed

    Ahmad, Faheem; Wu, Hui-Fen

    2011-10-07

    The present research was based on the single drop microextraction (SDME) approach using an ionic liquid drop to extract bacteria from aqueous samples for characterization of pathogenic bacteria by MALDI-TOF MS. The SDME of bacteria from aqueous samples was successfully achieved by using platinum nanoparticles mixed in ionic liquid (IL, 1-butyl-3-methylimidazolium hexafluorophosphate) and IL alone as the extraction drops. The IL was used as liquid drops by SDME to obtain protein profiles from bacteria. Significant numbers of biomarker protein peaks of bacteria were identified from target biological samples. The IL also significantly improved the signal reproducibility of spectra using the SDME approach combined with MALDI-TOF MS. Thus, the present technique was successfully applied to detect pathogenic bacteria at low concentrations of 10(6) cfu mL(-1) from aqueous suspensions. The selected bacteria viz., Escherichia coli and Serratia marcescens were used as target biological sample.

  18. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  19. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  20. Bubble pinch-off and scaling during liquid drop impact on liquid pool

    NASA Astrophysics Data System (ADS)

    Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh

    2012-08-01

    Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.

  1. Effects of polymers on the rotational viscosities of nematic liquid crystals and dynamics of field alignment

    SciTech Connect

    Kim, D.

    1993-12-31

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar`s reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity co-efficient, {gamma}{sub 1}. The main objective of this project is to study the rotational viscosities of selected micellar nematic systems and the effect of dissolved polymers in micellar and thermotropic liqud crystals. We used rotating magnetic field method which allows one to determine {gamma}{sub 1} and the anisotropic magnetic susceptibility, {chi}{sub a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest values {gamma}{sub 1} as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N{sub c} phase. The pretransitional increase in {gamma}{sub 1} near the disk-like nematic to smectic-A phase transition of the pure CsPFO/H{sub 2}O systems are better understood with the help of mean-field models of W.L. McMillan. He predicted a critical exponent {nu} = {1/2} for the divergence of {gamma}{sub 1}. The polymer (PEO, molecular weight = 10{sup 5}) dissolved in CsPFO/H{sub 2}O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of {gamma}{sub 1} is observed, which agrees with Brochard theory.

  2. Self-Rotation-Induced Propulsion of a Leidenfrost Drop on a Ratchet.

    PubMed

    Mrinal, Manjarik; Wang, Xiang; Luo, Cheng

    2017-06-27

    A Leidenfrost drop is capable of self-propelling on a ratchet, which consists of asymmetric teeth. In this work, the corresponding movements were first experimentally investigated. Because the detected motion could not be interpreted using existing propulsive mechanisms, a new propulsive mechanism was then developed, followed by force analysis using a scaling law.

  3. An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples.

    PubMed

    Vidal, Lorena; Psillakis, Elefteria; Domini, Claudia E; Grané, Nuria; Marken, Frank; Canals, Antonio

    2007-02-12

    A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett-Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time and temperature), and then a central composite design was used to optimize the significant conditions. The optimum experimental conditions found from this statistical evaluation were: a 5 microL microdrop of 1-butyl-3-methylimidazolium hexafluorophosphate, exposed for 37 min to the headspace of a 10 mL aqueous sample placed in a 15 mL vial, stirred at 1580 rpm at room temperature and containing 30% (w/v) NaCl. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9981 and 0.9997. The repeatability of the proposed method, expressed as relative standard deviation, varied between 1.6 and 5.1% (n=5). The limits of detection ranged between 0.102 and 0.203 microg L(-1). Matrix effects upon extraction were evaluated by analysing spiked tap and river water as well as effluent water samples originating from a municipal wastewater treatment plant.

  4. On the applicability of Young-Laplace equation for nanoscale liquid drops

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Wei, Jiuan; Cui, Shuwen; Xu, Shenghua; Sun, Zhiwei; Zhu, Ruzeng

    2016-03-01

    Debates continue on the applicability of the Young-Laplace equation for droplets, vapor bubbles and gas bubbles in nanoscale. It is more meaningful to find the error range of the Young-Laplace equation in nanoscale instead of making the judgement of its applicability. To do this, for seven liquid argon drops (containing 800, 1000, 1200, 1400, 1600, 1800, or 2000 particles, respectively) at T = 78 K we determined the radius of surface of tension R s and the corresponding surface tension γ s by molecular dynamics simulation based on the expressions of R s and γ s in terms of the pressure distribution for droplets. Compared with the two-phase pressure difference directly obtained by MD simulation, the results show that the absolute values of relative error of two-phase pressure difference given by the Young-Laplace equation are between 0.0008 and 0.027, and the surface tension of the argon droplet increases with increasing radius of surface of tension, which supports that the Tolman length of Lennard-Jones droplets is positive and that Lennard-Jones vapor bubbles is negative. Besides, the logic error in the deduction of the expressions of the radius and the surface tension of surface of tension, and in terms of the pressure distribution for liquid drops in a certain literature is corrected.

  5. A continuous film-recirculable drop gas-liquid equilibration device. Measurement of trace gaseous ammonia

    PubMed

    Genfa; Dasgupta

    2000-07-15

    A miniature gas-liquid equilibrator or a gas collector, intended as a low-volume interface between a soluble gaseous sample and a liquid phase analyzer or between a liquid phase sample and a detector designed for use with gas samples, is described. This paper addresses the application of the device for the measurement of trace atmospheric ammonia. Gas collection occurs solely by diffusive sampling such that aerosol particles are not collected. The device essentially consists of a tube surrounded externally by a jacket. Gas flows through the jacket and contacts a liquid film flowing on the surface of the tube. The flowing film forms a drop at the tube terminus and is aspirated off through the inner bore of the tube. The collected analyte can be (a) directly sent to an analysis system or (b) preconcentrated on a suitable stationary phase; the preconcentrator effluent can be recycled, if desired. With a fluorometric flow injection analysis system harnessed to measure ammonia with such a collector, the limit of detection (LOD, S/N = 3) for a sample drawn for 18 min at 200 mL/min was 4.5 parts per trillion by volume, with the linear range extending up to 30 parts per billion.

  6. Turbulent Convection in a Rotating Sphere Filled With Liquid Metal

    NASA Astrophysics Data System (ADS)

    Nataf, H.; Aubert, J.; Cardin, P.; Brito, D.; Masson, J.

    2001-12-01

    Understanding the organization of turbulent convective motions in a rotating sphere would help building more realistic models of the geodynamo and solar dynamo. We have performed laboratory experiments using water and gallium as working fluids. We have examined the convective structures that form by following the time--variation of velocity profiles measured by Doppler ultrasonic velocimetry and investigated their dynamical behaviour by monitoring the amplitude of velocity as a function of the Prandtl, Rayleigh and Ekman numbers. Our most striking result is that a strong zonal flow develops in liquid gallium (Prandtl number of 0.025). It can be 2.5 times stronger than typical convective velocities. We explain this phenomenon by the high Reynolds numbers reached in these experiments, up to 2000, much larger than in the water experiments (less than 250). Our observations for gallium are well accounted for by a quasi--geostrophic inertial model, in which kinetic energy is injected at the convective scale and cascades up to a large zonal flow, whose amplitude is limited by friction on the outer sphere. This model predicts that the convective velocity U becomes independent of the two diffusivities (viscous and thermal) and scales as : $ U ~ D Ω ( (α g Q)/(ρ CP Ω 3 D2) )2/5 where D is the thickness of the liquid shell, \\Omega the rotation rate, Q the heat flux, g the gravity acceleration, and \\alpha, \\rho and C_P$ are the thermal expansion coefficient, the density and the heat capacity of the liquid. The sphericity also introduces a variation of velocity with radius. Both the scaling law and these radial variations are in very good agreement with the measured velocity profiles. In contrast, the zonal velocity does depend upon the viscosity of the liquid through friction on the outer boundary. This behaviour illustrates the crucial role of the spherical boundaries in controlling the organization of turbulence. Nevertheless, the motions remain essentially two

  7. A comprehensive analysis of the evaporation of a liquid spherical drop.

    PubMed

    Sobac, B; Talbot, P; Haut, B; Rednikov, A; Colinet, P

    2015-01-15

    In this paper, a new comprehensive analysis of a suspended drop of a pure liquid evaporating into air is presented. Based on mass and energy conservation equations, a quasi-steady model is developed including diffusive and convective transports, and considering the non-isothermia of the gas phase. The main original feature of this simple analytical model lies in the consideration of the local dependence of the physico-chemical properties of the gas on the gas temperature, which has a significant influence on the evaporation process at high temperatures. The influence of the atmospheric conditions on the interfacial evaporation flux, molar fraction and temperature is investigated. Simplified versions of the model are developed to highlight the key mechanisms governing the evaporation process. For the conditions considered in this work, the convective transport appears to be opposed to the evaporation process leading to a decrease of the evaporation flux. However, this effect is relatively limited, the Péclet numbers happening to be small. In addition, the gas isothermia assumption never appears to be valid here, even at room temperature, due to the large temperature gradient that develops in the gas phase. These two conclusions are explained by the fact that heat transfer from the gas to the liquid appears to be the step limiting the evaporation process. Regardless of the complexity of the developed model, yet excluding extremely small droplets, the square of the drop radius decreases linearly over time (R(2) law). The assumptions of the model are rigorously discussed and general criteria are established, independently of the liquid-gas couple considered.

  8. Not spreading in reverse: The dewetting of a liquid film into a single drop

    PubMed Central

    Edwards, Andrew M. J.; Ledesma-Aguilar, Rodrigo; Newton, Michael I.; Brown, Carl V.; McHale, Glen

    2016-01-01

    Wetting and dewetting are both fundamental modes of motion of liquids on solid surfaces. They are critically important for processes in biology, chemistry, and engineering, such as drying, coating, and lubrication. However, recent progress in wetting, which has led to new fields such as superhydrophobicity and liquid marbles, has not been matched by dewetting. A significant problem has been the inability to study the model system of a uniform film dewetting from a nonwetting surface to a single macroscopic droplet—a barrier that does not exist for the reverse wetting process of a droplet spreading into a film. We report the dewetting of a dielectrophoresis-induced film into a single equilibrium droplet. The emergent picture of the full dewetting dynamics is of an initial regime, where a liquid rim recedes at constant speed and constant dynamic contact angle, followed by a relatively short exponential relaxation of a spherical cap shape. This sharply contrasts with the reverse wetting process, where a spreading droplet follows a smooth sequence of spherical cap shapes. Complementary numerical simulations and a hydrodynamic model reveal a local dewetting mechanism driven by the equilibrium contact angle, where contact line slip dominates the dewetting dynamics. Our conclusions can be used to understand a wide variety of processes involving liquid dewetting, such as drop rebound, condensation, and evaporation. In overcoming the barrier to studying single film-to-droplet dewetting, our results provide new approaches to fluid manipulation and uses of dewetting, such as inducing films of prescribed initial shapes and slip-controlled liquid retraction. PMID:27704042

  9. Not spreading in reverse: The dewetting of a liquid film into a single drop.

    PubMed

    Edwards, Andrew M J; Ledesma-Aguilar, Rodrigo; Newton, Michael I; Brown, Carl V; McHale, Glen

    2016-09-01

    Wetting and dewetting are both fundamental modes of motion of liquids on solid surfaces. They are critically important for processes in biology, chemistry, and engineering, such as drying, coating, and lubrication. However, recent progress in wetting, which has led to new fields such as superhydrophobicity and liquid marbles, has not been matched by dewetting. A significant problem has been the inability to study the model system of a uniform film dewetting from a nonwetting surface to a single macroscopic droplet-a barrier that does not exist for the reverse wetting process of a droplet spreading into a film. We report the dewetting of a dielectrophoresis-induced film into a single equilibrium droplet. The emergent picture of the full dewetting dynamics is of an initial regime, where a liquid rim recedes at constant speed and constant dynamic contact angle, followed by a relatively short exponential relaxation of a spherical cap shape. This sharply contrasts with the reverse wetting process, where a spreading droplet follows a smooth sequence of spherical cap shapes. Complementary numerical simulations and a hydrodynamic model reveal a local dewetting mechanism driven by the equilibrium contact angle, where contact line slip dominates the dewetting dynamics. Our conclusions can be used to understand a wide variety of processes involving liquid dewetting, such as drop rebound, condensation, and evaporation. In overcoming the barrier to studying single film-to-droplet dewetting, our results provide new approaches to fluid manipulation and uses of dewetting, such as inducing films of prescribed initial shapes and slip-controlled liquid retraction.

  10. Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments.

    PubMed

    Lee, Jae Bong; Derome, Dominique; Dolatabadi, Ali; Carmeliet, Jan

    2016-02-09

    The maximum spreading of an impinging droplet on a rigid surface is studied for low to high impact velocity, until the droplet starts splashing. We investigate experimentally and numerically the role of liquid properties, such as surface tension and viscosity, on drop impact using three liquids. It is found that the use of the experimental dynamic contact angle at maximum spreading in the Kistler model, which is used as a boundary condition for the CFD-VOF calculation, gives good agreement between experimental and numerical results. Analytical models commonly used to predict the boundary layer thickness and time at maximum spreading are found to be less correct, meaning that energy balance models relying on these relations have to be considered with care. The time of maximum spreading is found to depend on both the impact velocity and surface tension, and neither dependency is predicted correctly in common analytical models. The relative proportion of the viscous dissipation in the total energy budget increases with impact velocity with respect to surface energy. At high impact velocity, the contribution of surface energy, even before splashing, is still substantial, meaning that both surface energy and viscous dissipation have to be taken into account, and scaling laws depending only on viscous dissipation do not apply. At low impact velocity, viscous dissipation seems to play an important role in low-surface-tension liquids such as ethanol.

  11. Determining the Drag Coefficient of Rotational Symmetric Objects Falling through Liquids

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2012-01-01

    I will propose here a kinematic approach for measuring the drag coefficient of rotational symmetric objects falling through liquids. For this, I will show that one can obtain a measurement of the drag coefficient of a rotational symmetric object by numerically solving the equation of motion describing its fall through a known liquid contained in a…

  12. Determining the Drag Coefficient of Rotational Symmetric Objects Falling through Liquids

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2012-01-01

    I will propose here a kinematic approach for measuring the drag coefficient of rotational symmetric objects falling through liquids. For this, I will show that one can obtain a measurement of the drag coefficient of a rotational symmetric object by numerically solving the equation of motion describing its fall through a known liquid contained in a…

  13. 3D simulation of liquid-gas flows with contact lines and applications to drop impact on a fiber

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Desjardins, Olivier

    2016-11-01

    In this talk, we propose a numerical approach to simulate liquid-gas flows with contact lines, then, apply it to investigate drop impact on a horizontal fiber. This approach combines a conservative level set method to capture the interface, an immersed boundary method to represent the curved boundary, and a curvature boundary method to treat the contact lines. The simulation results are compared with experimental results. Two key aspects are investigated: the critical velocity for a drop to be captured by a fiber, and the topology of the impacting drop. Numerical results show good qualitative agreement with experiments in predicting the critical velocity. A regime map of drop topology based on the Weber number and drop-to-fiber diameter ratio is compared to the experimental results.

  14. Statistical theory of wetting of liquid drops on superhydrophobic randomly rough surfaces.

    PubMed

    Afferrante, L; Carbone, G

    2015-10-01

    It is well known that hydrophobic surfaces may become superhydrophobic when their surface is properly roughened. However, the role of roughness is not yet very clear, notwithstanding several theoretical and experimental investigations. In the present paper, we propose a relatively simple theory aiming at calculating the apparent contact angle (ACA) and the contact area occurring in the case of drops gently deposited on two-dimensional randomly rough surfaces. Our theory applies both to isotropic and anisotropic rough surfaces, although in the latter case the predicted ACA has to be interpreted as the average contact angle at the triple line. We assume large separation of scales, i.e., that the spectral content of the surface lies in a range of wavelengths much smaller than the size of the apparent liquid-solid contact area. Results show that anisotropy negligibly affects the ACA, and a very reasonable agreement is obtained between theoretical ACA values and experimental data.

  15. Alpha and light nucleus emission within a generalized liquid drop model

    NASA Astrophysics Data System (ADS)

    Royer, G.; Bonilla, C.; Moustabchir, R.

    2002-11-01

    The potential energy governing the spontaneous α, C, O, F, Ne, Mg and Si emissions has been determined within a generalized liquid drop model including the proximity effects between the emitted light nucleus and the daughter one and taking into account empirically the experimental Q value. The decay path has been described by a quasi-molecular shape sequence leading rapidly to two spherical touching nuclei before crossing the barrier. The partial half-lives deduced from the WKB barrier penetration probabability are in very good agreement with experimental data and accurate analytical expressions are proposed. The partial half-lives of the Be, Li, He and H sub-barrier emissions have been calculated by adding an excitation energy to the Q value and new formulae are given.

  16. Determination of benzalkonium chloride in viscous ophthalmic drops of azithromycin by high-performance liquid chromatography *

    PubMed Central

    Shen, Yan; Xu, Sheng-jie; Wang, Shi-chun; Tu, Jia-sheng

    2009-01-01

    A high-performance liquid chromatography (HPLC) system was used in the reversed phase mode for the determination of benzalkonium chloride (BKC) in azithromycin viscous ophthalmic drops. A Venusil-XBP(L)-C18 (150 mm×4.6 mm, 5 μm) column was used at 50 °C. The mobile phase consisted of a mixture of methanol-potassium phosphate (16:5, v/v). Two sample preparation methods were compared. The results suggested that, compared with an extraction procedure, a deproteinization procedure was much quicker and more convenient. Using the deproteinization procedure for sample preparation, calibration curves were linear in the range 5.0~50 μg/ml. The within-day and inter-day coefficients of variation were less than 10%. The average recoveries were determined as 96.70%, 98.52%, and 97.96% at concentrations of 10.0, 30.0, and 50.0 μg/ml, respectively. Variability in precision did not exceed 5%. In conclusion, this HPLC method using a simple sample treatment procedure appears suitable for monitoring BKC content in azithromycin viscous ophthalmic drops. PMID:19946951

  17. Determination of benzalkonium chloride in viscous ophthalmic drops of azithromycin by high-performance liquid chromatography.

    PubMed

    Shen, Yan; Xu, Sheng-jie; Wang, Shi-chun; Tu, Jia-sheng

    2009-12-01

    A high-performance liquid chromatography (HPLC) system was used in the reversed phase mode for the determination of benzalkonium chloride (BKC) in azithromycin viscous ophthalmic drops. A Venusil-XBP(L)-C(18) (150 mmx4.6 mm, 5 microm) column was used at 50 degrees C. The mobile phase consisted of a mixture of methanol-potassium phosphate (16:5, v/v). Two sample preparation methods were compared. The results suggested that, compared with an extraction procedure, a deproteinization procedure was much quicker and more convenient. Using the deproteinization procedure for sample preparation, calibration curves were linear in the range 5.0 to approximately 50 microg/ml. The within-day and inter-day coefficients of variation were less than 10%. The average recoveries were determined as 96.70%, 98.52%, and 97.96% at concentrations of 10.0, 30.0, and 50.0 microg/ml, respectively. Variability in precision did not exceed 5%. In conclusion, this HPLC method using a simple sample treatment procedure appears suitable for monitoring BKC content in azithromycin viscous ophthalmic drops.

  18. Effects of Polymers on the Rotational Viscosities of Nematic Liquid Crystals and Dynamics of Field Alignment.

    NASA Astrophysics Data System (ADS)

    Kim, Du-Rim

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continuous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar's reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity coefficient, gamma_1. The main objective of this project is to study the rotational viscosities of selected micellar nematic systems and the effect of dissolved polymers in micellar and thermotropic liquid crystals. We used rotating magnetic field method which allows one to determine gamma _1 and the anisotropic magnetic susceptibility, chi_{a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest value gamma_1 as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N_{c} phase. The pretransitional increase in gamma _1 near the disk-like nematic to smectic -A phase transition of the pure CsPFO H_2O systems are better understood with the help of mean-field models of W. L. McMillan. He predicted a critical exponent nu = -{1over 2} for the divergence of gamma_1. The polymer (PEO, molecular weight = 10 ^5) dissolved in CsPFO H_2O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of gamma_1 is observed, which agrees with Brochard theory. The polymer solutions in thermotropic liquid crystal solvents

  19. Separation of trace amount of silver using dispersive liquid-liquid based on solidification of floating organic drop microextraction.

    PubMed

    Afzali, Daryoush; Mohadesi, Ali Reza; Jahromi, Behnoosh Bahadori; Falahnejad, Masoumeh

    2011-01-17

    In the present work, dispersive liquid-liquid microextraction based on solidification of floating organic drop was developed as a simple and rapid technique for separation of silver ions from aqueous samples. In this technique, 700 μL 0.02% of 5-(4'-dimethylamino benzyliden)-rhodanine (chelating agent) was added into the 10 mL analyte sample in a test tube and 30.0 μL 1-undecanol (extraction solvent) was injected shortly thereafter. The test tubes were sonicated, centrifuged and then some effective parameters on extraction and complex formation, such as type and volume of extraction and disperser solvent, pH, the amount of chelating agent and extraction time were optimized. The effect of the interfering ions on the analytes recovery was also investigated. The calibration graph was linear in the range of 0.10-10.0 ng mL(-1) with detection limit of 0.056 ng mL(-1) (n=8). The relative standard deviation (RSD) was ±4.3% (n=8, C=5.0 ng mL(-1)) and the enrichment factor was 250.0. The proposed method was applied for extraction and determination of silver in different water samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Manipulation of Contact Angles and Interfacial Lengths of Liquid Drops using Electro-Kinetic Techniques

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Nolte, D. D.; Pyrak-Nolte, L. J.

    2014-12-01

    Traditionally, capillary pressure is determined by increasing or decreasing external fluid pressures to change the immiscible fluid saturation in a porous medium. The resulting saturation and interfacial area are then linked to the capillary pressure through constitutive equations. A key question is whether externally measured pressures are sensitive to changes in distributions that arise from internal changes in contact angles. As a first step in addressing this question, we investigated the effect of electro-kinetic manipulation on interfacial area and contact angles for a fixed saturation. An EWOD (electro-wetting on dielectric) technique was used to alter the contact angle of single 10 μL droplets of a 1M KCl-H2O solution. A liquid droplet was placed on a glass cover slip (18 mm x 18 mm) coated with a layer of silver (100 nm in thickness) to act as an electrode and then spin-coated with polyimide (a dielectric). A platinum wire was inserted into the droplet and connected to an AC voltage source. The glass plate electrode was connected to ground. Measurements were made for Vrms voltages between 0 to 300 V at a frequency of 50 Hz. Two CCD cameras were used to image changes in the shape of a droplet. One camera was placed on a microscope to capture a top view of a drop in order to measure changes in areal extent and the perimeter of the drop. The second camera imaged a drop from the side to measure contact angles and side-view areal extent and perimeter. At low voltages, the cosine of the contact angle, θ, after applying voltage was linearly dependent on Vrms2. Several experiments showed that the slope of the low-voltage relationship of cos θ vs Vrms2 remained constant for all trials. As the voltage increased, the contact angle saturated. From the side-view images, the contact angle and interfacial length decreased with increasing voltage. From the top-view images, the drop shape changed from circular to elliptical-to irregular as the voltage increased

  1. Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses.

    PubMed

    van Hinsberg, Nils Paul; Budakli, Mete; Göhler, Sebastian; Berberović, Edin; Roisman, Ilia V; Gambaryan-Roisman, Tatiana; Tropea, Cameron; Stephan, Peter

    2010-10-01

    This paper presents experimental and numerical investigations of single drop impacts onto liquid films of finite thickness. The dynamics of the drop impingement on liquid surface films, the shape of the cavity, the surface film dynamics and the residual film thickness are investigated and analysed. The shape of the penetrating cavity within the surface film is observed experimentally using a high-speed video system. Additionally, the thickness of the liquid film between the expanding, receding and retracting cavity and the solid wall is monitored in time using an optical sensor based on chromatic confocal imaging. The effects of various influencing parameters, such as the drop impingement velocity, liquid properties (surface tension and viscosity) and the initial liquid film thickness, on the time evolution of the cavity and film dynamics are investigated. Complementary to the experiments direct numerical simulations of the drop impacts and cavity expansion are performed using a volume-of-fluid free-surface capturing model in the framework of the finite volume numerical method. The numerical predictions of the film thickness dynamics agree well with the experiments for most phases of the impingement process. Finally, a scaling analysis of the residual film thickness between the cavity and the solid wall is performed for various impingement parameters. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Effects of foot rotation positions on knee valgus during single-leg drop landing: Implications for ACL injury risk reduction.

    PubMed

    Teng, P S P; Kong, P W; Leong, K F

    2017-06-01

    Non-contact anterior cruciate ligament (ACL) injuries commonly occur when athletes land in high risk positions such as knee valgus. The position of the foot at landing may influence the transmission of forces from the ankle to the knee. Using an experimental approach to manipulate foot rotation positions, this study aimed to provide new insights on how knee valgus during single-leg landing may be influenced by foot positions. Eleven male recreational basketball players performed single-leg drop landings from a 30-cm high platform in three foot rotation positions (toe-in, toe-forward and toe-out) at initial contact. A motion capture system and a force plate were used to measure lower extremity kinematics and kinetics. Knee valgus angles at initial contact (KVA) and maximum knee valgus moments (KVM), which were known risk factors associated with ACL injury, were measured. A one-way repeated measures Analysis of Variance was conducted (α=0.05) to compare among the three foot positions. Foot rotation positions were found to have a significant effect on KVA (p<0.001, η(2)=0.66) but the difference between conditions (about 1°) was small and not clinically meaningful. There was a significant effect of foot position on KVM (p<0.001, η(2)=0.55), with increased moment observed in the toe-out position as compared to toe-forward (p=0.012) or toe-in positions (p=0.002). When landing with one leg, athletes should avoid extreme toe-out foot rotation positions to minimise undesirable knee valgus loading associated with non-contact ACL injury risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Determination of fentanyl in biological and water samples using single-drop liquid-liquid-liquid microextraction coupled with high-performance liquid chromatography.

    PubMed

    Ebrahimzadeh, H; Yamini, Y; Gholizade, A; Sedighi, A; Kasraee, S

    2008-09-26

    A single-drop liquid-liquid-liquid microextraction (LLLME) method coupled with high-performance liquid chromatography (HPLC) was developed for the determination of fentanyl in biological (plasma and urine) and wastewater samples. Fentanyl is a potent synthetic narcotic analgesic administered in the form of a transdermal patch for the management of chronic pain. Fentanyl was extracted from 0.01 M NaOH solution (donor phase) into a thin layer of organic phase (100 muL), then back-extracted into 5 muL of the acidic acceptor microdrop (1 x 10(-3)M HClO(4)) immersed in the organic membrane from the tip of a 25-muL HPLC syringe. After the extraction, the microdrop was withdrawn into the syringe and injected directly into a HPLC system for analysis. The parameters influencing the extraction efficiency including the organic solvent and its volume, acceptor microdrop volume, composition of the donor and acceptor phases, stirring rate, temperature, salt addition and pre- and back-extraction times were investigated and optimized. At the most appropriate conditions (100 muL of n-octane, 3.6 mL of the donor phase maintained at 0.01 M NaOH, 5 muL of 1 x 10(-3)M HClO(4) as the acceptor microdrop, stirring rate of 1000 rpm for pre-extraction and 700 rpm for back-extraction, 30 degrees C, no salt addition, 30 min for pre-extraction and 20 min for back-extraction), an enrichment factor (EF) of 355 was obtained. The limit of detection (LOD) was 0.1 ngmL(-1) (based on S/N=3) and intra- and inter-day relative standard deviations less than 9% were obtained. The calibration graph was linear within the range of 0.5-1000 ngmL(-1) with the correlation coefficient (r) of 0.9999. Finally, the feasibility of the proposed method was evaluated by extraction and determination of fentanyl in plasma, urine and wastewater samples and satisfactory results were obtained.

  4. Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model.

    PubMed Central

    Dubochet, J; Adrian, M; Schultz, P; Oudet, P

    1986-01-01

    The structure of SV40 minichromosomes has been studied by cryo-electron microscopy of vitrified thin layers of solution. In high-salt buffer (130 mM NaCl), freshly prepared minichromosomes are condensed into globules 30 nm or more in diameter. On the micrograph, they appear to be formed by the close packing of 10 nm granules which give rise to a 10 nm reflection in the optical diffractogram. The globules can adopt many different conformations. At high concentration, they fuse into a homogeneous 'sea' of closely packed 10 nm granules. In low-salt buffer (less than 10 mM NaCl), the globules open, first into 10 nm filaments, and then into nucleosome-strings. The 'liquid drop' model is proposed to explain the condensed structure of the minichromosome in high-salt buffer: nucleosomes stack specifically on top of one another, thus forming the 10 nm filaments. 10 nm filaments in turn, tend to aggregate laterally. Optimizing both these interactions results in the condensation of 10 nm filaments or portions thereof into a structure similar to that of a liquid. Some implications of this model for the structure of cellular chromatin are discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 11. Fig. 13. Fig. 14. PMID:3011410

  5. Dispersion-solidification liquid-liquid microextraction for volatile aromatic hydrocarbons determination: comparison with liquid phase microextraction based on the solidification of a floating drop.

    PubMed

    Vickackaite, Vida; Pusvaskiene, Edita

    2009-10-01

    Two microextraction techniques--liquid phase microextraction based on solidification of a floating organic drop (LPME-SFO) and dispersive liquid-liquid microextraction combined with a solidification of a floating organic drop (DLLME-SFO)--are explored for benzene, toluene, ethylbenzene and o-xylene sampling and preconcentration. The investigation covers the effects of extraction solvent type, extraction and disperser solvents' volume, and the extraction time. For both techniques 1-undecanol containing n-heptane as internal standard was used as an extracting solvent. For DLLME-SFO acetone was used as a disperser solvent. The calibration curves for both techniques and for all the analytes were linear up to 10 microg/mL, correlation coefficients were in the range 0.997-0.998, enrichment factors were from 87 for benzene to 290 for o-xylene, detection limits were from 0.31 and 0.35 microg/L for benzene to 0.15 and 0.10 microg/L for o-xylene for LPME-SFO and DLLME-SFO, respectively. Repeatabilities of the results were acceptable with RSDs up to 12%. Being comparable with LPME-SFO in the analytical characteristics, DLLME-SFO is superior to LPME-SFO in the extraction time. A possibility to apply the proposed techniques for volatile aromatic hydrocarbons determination in tap water and snow was demonstrated.

  6. Encapsulation of liquids using a counter rotating twin screw extruder.

    PubMed

    Tackenberg, Markus W; Krauss, Ralph; Marmann, Andreas; Thommes, Markus; Schuchmann, Heike P; Kleinebudde, Peter

    2015-01-01

    Until now extrusion is not applied for pharmaceutical encapsulation processes, whereas extrusion is widely used for encapsulation of flavours within food applications. Based on previous mixing studies, a hot melt counter-rotating extrusion process for encapsulation of liquid active pharmaceutical ingredients (APIs) was investigated. The mixing ratio of maltodextrin to sucrose as matrix material was adapted in first extrusion trials. Then the number of die holes was investigated to decrease expansion and agglutination of extrudates to a minimum. At a screw speed of 180 min(-1) the product temperature was decreased below 142 °C, resulting in extrudates of cylindrical shape with a crystalline content of 9-16%. Volatile orange terpenes and the nonvolatile α-tocopherol were chosen as model APIs. Design of experiments were performed to investigate the influences of barrel temperature, powder feed rate, and API content on the API retentions. A maximum of 9.2% α-tocopherol was encapsulated, while the orange terpene encapsulation rate decreased to 6.0% due to evaporation after leaving the die. During 12 weeks of storage re-crystallization of sucrose occurred; however, the encapsulated orange terpene amount remained unchanged.

  7. A Study of the Measurement of Surface and Interfacial Tension by the Maximum Liquid Drop Volume Method.

    PubMed

    Pu, Bingyin; Chen, Donghao

    2001-03-15

    The maximum liquid drop volume (v(max)) is measured by using a back-suction micrometer syringe piston technique. Different very viscous liquids are measured by (v(max)) and (v(f)) methods to observe the effect of viscosity on tension measurement. No apparent viscosity effect was observed in surface tension data obtained by using Harkins-Brown factors and the theoretical correction factors in the viscosity range 5.9-100,900 mP. Copyright 2001 Academic Press.

  8. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    PubMed

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  9. Distant optical detection of small rotations and displacements by means of chiral liquid crystals

    SciTech Connect

    Shibaev, Petr V. E-mail: shibayev@fordham.edu; Troisi, Juliana; Reddy, Kathryn; Iljin, Andrey

    2014-01-15

    The paper describes novel chiral viscoelastic liquid crystalline mixtures and their application for the detection of small rotational displacements of two plates confining cholesteric liquid crystals (CLC). The mixtures are characterized by extremely high viscosities and stability of the selective reflection band (SRB) at ambient temperatures. Even a small rotation applied to the chiral liquid crystal (CLC) cell results in dramatic changes of the reflective properties of sandwiched CLC films. The angle and direction of rotation as well as the magnitude of CLC's shear deformation can be determined for a variety of experimental geometries, each of which is characterized by its own response function. The proposed model explains changes in the reflection spectra for different experimental geometries and relates them to the angle of rotation and magnitude of shear. The method was tested for a detection of small rotations from a distance of up to 50 m and allows for resolving small rotations of the order of fractions of degrees.

  10. Distant optical detection of small rotations and displacements by means of chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr V.; Iljin, Andrey; Troisi, Juliana; Reddy, Kathryn

    2014-01-01

    The paper describes novel chiral viscoelastic liquid crystalline mixtures and their application for the detection of small rotational displacements of two plates confining cholesteric liquid crystals (CLC). The mixtures are characterized by extremely high viscosities and stability of the selective reflection band (SRB) at ambient temperatures. Even a small rotation applied to the chiral liquid crystal (CLC) cell results in dramatic changes of the reflective properties of sandwiched CLC films. The angle and direction of rotation as well as the magnitude of CLC's shear deformation can be determined for a variety of experimental geometries, each of which is characterized by its own response function. The proposed model explains changes in the reflection spectra for different experimental geometries and relates them to the angle of rotation and magnitude of shear. The method was tested for a detection of small rotations from a distance of up to 50 m and allows for resolving small rotations of the order of fractions of degrees.

  11. Exchange flows of two immiscible Newtonian liquids in a vertical tube: From falling drops to falling slugs

    NASA Astrophysics Data System (ADS)

    Varges, P. R.; Fonseca, B. S.; Naccache, M. F.; de Souza Mendes, P. R.

    2017-06-01

    We present an experimental study of buoyancy-driven flows of two immiscible Newtonian liquids in a vertical tube where initially the heavier and more viscous one is placed on the top of the lighter one. Flow visualization was performed using a digital camera, and inversion velocities were determined through image analysis. The influence of the governing parameters on the speed and flow regime was examined for pairs of liquids with small density differences. Two different flow regimes were observed, namely, falling drops and falling slugs. In the first regime, spherical and ellipsoidal drops are obtained, depending on the ratio between the drop and tube diameters. The falling slug regime is a core-annular flow pattern above a critical value of interfacial tension, while no flow is noticed below this critical value. The experimental results are in good agreement with model predictions from the literature. Indeed, the results showed that terminal velocity can be estimated by empirical correlations for falling spheres.

  12. Modulated exponential films generated by surface acoustic waves and their role in liquid wicking and aerosolization at a pinned drop.

    PubMed

    Taller, Daniel; Go, David B; Chang, Hsueh-Chia

    2013-05-01

    The exponentially decaying acoustic pressure of scattered surface acoustic waves (SAWs) at the contact line of a liquid film pinned to filter paper is shown to sustain a high curvature conic tip with micron-sized modulations whose dimension grows exponentially from the tip. The large negative capillary pressure in the film, necessary for offsetting the large positive acoustic pressure at the contact line, also creates significant negative hydrodynamic pressure and robust wicking action through the paper. An asymptotic analysis of this intricate pressure matching between the quasistatic conic film and bulk drop shows that the necessary SAW power to pump liquid from the filter paper and aerosolize, expressed in terms of the acoustic pressure scaled by the drop capillary pressure, grows exponentially with respect to twice the acoustic decay constant multiplied by the drop length, with a universal preexponential coefficient. Global rapid aerosolization occurs at a SAW power twice as high, beyond which the wicking rate saturates.

  13. Modulated exponential films generated by surface acoustic waves and their role in liquid wicking and aerosolization at a pinned drop

    NASA Astrophysics Data System (ADS)

    Taller, Daniel; Go, David B.; Chang, Hsueh-Chia

    2013-05-01

    The exponentially decaying acoustic pressure of scattered surface acoustic waves (SAWs) at the contact line of a liquid film pinned to filter paper is shown to sustain a high curvature conic tip with micron-sized modulations whose dimension grows exponentially from the tip. The large negative capillary pressure in the film, necessary for offsetting the large positive acoustic pressure at the contact line, also creates significant negative hydrodynamic pressure and robust wicking action through the paper. An asymptotic analysis of this intricate pressure matching between the quasistatic conic film and bulk drop shows that the necessary SAW power to pump liquid from the filter paper and aerosolize, expressed in terms of the acoustic pressure scaled by the drop capillary pressure, grows exponentially with respect to twice the acoustic decay constant multiplied by the drop length, with a universal preexponential coefficient. Global rapid aerosolization occurs at a SAW power twice as high, beyond which the wicking rate saturates.

  14. Isotropic rotation vs. shear relaxation in supercooled liquids with globular cage molecules

    NASA Astrophysics Data System (ADS)

    Kaseman, Derrick C.; Gulbiten, Ozgur; Aitken, Bruce G.; Sen, Sabyasachi

    2016-05-01

    The temperature dependence of the rotational dynamics of P4Se3 molecules in the glass-forming molecular liquid P5Se3 is studied using two-dimensional 31P nuclear magnetic resonance spectroscopy. Unlike typical molecular glass-forming liquids, the constituent molecules in the P5Se3 liquid perform rapid isotropic rotation without significant translational diffusion in the supercooled regime and this rotational process shows a decoupling in time scale from shear relaxation by nearly six orders of magnitude at the glass transition. This dynamical behavior of liquid-like rotation and localized translation appears to be universal to glass-forming liquids with high-symmetry globular molecules that are characterized by an underlying thermodynamically stable plastic crystal phase.

  15. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2006-06-15

    Flow patterns and pressure drop of upward liquid single-phase flow and air-water two-phase flow in sinusoidal wavy channels are experimentally studied. The test section is formed by a sinusoidal wavy wall of 1.00 m length with a wave length of 67.20mm, an amplitude of 5.76mm. Different phase shifts between the side walls of the wavy channel of 0{sup o}, 90{sup o} and 180{sup o} are investigated. The flow phenomena, which are bubbly flow, slug flow, churn flow, and dispersed bubbly flow are observed and recorded by high-speed camera. When the phase shifts are increased, the onset of the transition from the bubbly flow to the churn flow shifts to a higher value of superficial air velocity, and the regions of the slug flow and the churn flow are smaller. In other words, the regions of the bubbly flow and the dispersed bubbly flow are larger as the phase shift increases. The slug flow pattern is only found in the test sections with phase shifts of 0{sup o} and 90{sup o}. Recirculating gas bubbles are always found in the troughs of the corrugations. The recirculating is higher when the phase shifts are larger. The relationship between the two-phase multipliers calculated from the measured pressure drops, and the Martinelli parameter is compared with the Lockhart-Martinelli correlation. The correlation in the case of turbulent-turbulent condition is shown to fit the data very well for the phase shift of 0{sup o} but shows greater deviation when the phase shifts are higher. (author)

  16. Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction.

    PubMed

    Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-09-01

    A vacuum headspace single-drop microextraction method based on the use of magnetic ionic liquids (vacuum MIL-HS-SDME) for the determination of short chain free fatty acids is described for the first time. The basis of the method involves the use of a rod magnet to aid in maintaining a small microdroplet of magnetic ionic liquid (MIL) during headspace single-drop microextraction (HS-SDME). The application favors reduced pressure conditions inside the sampling vial while maintaining the MIL droplet in the headspace. After extraction, the MIL microdroplet containing extracted FFAs is transferred to a headspace vial where static headspace desorption is performed, followed by gas chromatographic-mass spectrometry (GC-MS) analysis. A number of MILs were studied and the trihexyl(tetradecyl)phosphonium tris(hexafluoroacetylaceto)manganate(II) MIL was found to be the most suitable for the proposed method. A comparison with atmospheric pressure MIL-HS-SDME revealed that analytes reached equilibrium faster when reduced pressure conditions were applied and that an enhancement in the extraction efficiency of analytes under these vacuum conditions was observed at any extraction time. Under optimum conditions, the method requires only 20µL of MIL placed at the end of a rod magnet and the evacuation of air using a modified extraction vial and a vacuum pump. Afterwards, 10mL of sample containing 30% (w/v) of NaCl is injected in the vial and the vacuum MIL-HS-SDME is performed at 45°C and 600rpm for 60min. The MIL microdroplet can easily be transferred to a 4.2mL modified headspace vial for the headspace desorption and GC-MS analysis. The entire method is characterized by wide linearity ranges, low limits of detection for analytes (down to 14.5µgL(-1)), good reproducibility (with relative standard deviation lower than 13%), and relative recoveries ranging from 79.5% to 111%. The proposed vacuum MIL-HS-SDME was applied towards the analysis of two different milk samples with the

  17. Superdeformed nuclei: Shells-vs-liquid drop, pairing-vs-thermal excitations, triaxial-vs-octupole shapes, super-superdeformation

    SciTech Connect

    Dudek, J.

    1987-01-01

    Mechanisms influencing the behavior of superdeformed nuclei are studied using several well established nuclear structure techniques. In particular: pairing, thermal excitation, shell and liquid-drop mechanisms are considered. The effects of quadrupole and hexadecapole (both axial and non-axial), and octupole deformation degrees of freedom are studied. Most of the results are illustrated using the case of /sup 152/Dy nucleus in which a superdeformed band extending up to I approx. 60 h-bar has been found in experiment. Some comparisons between /sup 152/Dy and the nuclei in the neighborhood are given. Calculations show that pairing ''de-aligns'' typically 6 to 8 units of angular momentum, as compared to the corresponding rigid rotation. This takes place for spins extending up to the highest limit, and thus diminishes the effective moments of inertia. Predicted octupole shape susceptibility is extremely large, significantly stronger than the susceptibilities known in the ground-states of many Actinide nuclei. Consequences of this result for the near-constancy of the dynamical moments of inertia are pointed out. Nuclear level densities calculated in function of spin, excitation energy and deformation explain the ''unusual'' side feeding pattern of the /sup 152/Dy superdeformed states. Predictions of super-superdeformed nuclear states (axis ratio varying between 2:1 and 3:1 or more) are given and exemplified for Erbium nuclei. Finally, the problem of superdeformation stability and the influence of increased collective inertia on a barrier penetration are examined. An analytical expression for the effective inertia parameter is obtained and its derivation outlined. 35 refs., 9 figs.

  18. Volumetric thermal measurements using thermo-liquid crystal (TLC) micro-particles in evaporating drops

    NASA Astrophysics Data System (ADS)

    Segura, Rodrigo; Marin, Alvaro Gomez; Kaehler, Christian

    2013-11-01

    Freely evaporating sessile droplets develop weak temperature gradients that can generate Marangoni flows at the drop's surface. Quantitative temperature measurements of small gradients at such scales are very difficult. In this work, a method to track the temperature of individual thermo-liquid crystal (TLC) particles is employed to extract the temperature field inside an evaporating droplet. TLC thermography has been investigated for several years but the low quality of individual TLC particles, as well as the methods used to extract temperature from their color appearance, has prevented the development of a reliable approach to track their temperature individually. In order to overcome these challenges, an emulsion of stable non-encapsulated TLC micro particles with a narrower size distribution than that of commercial encapsulated TLC solutions was used along with a multi-variable calibration approach, as opposed to the direct hue-temperature relationship usually implemented (Segura et al., Microfluid Nanofluid, 2012). In addition, an optimized color space was implemented as well as circular polarization filtering to remove background noise and improve signal-to-noise ratio. Using this technique, a 3D temperature-velocity field within a droplet could be simultaneously resolved.

  19. Dissolution of a Drop on a Liquid Surface Leading to Surface Waves and Interfacial Turbulence

    PubMed

    Santiago-Rosanne; Vignes-Adler; Velarde

    1997-07-01

    If a droplet of liquid with a lower surface tension than that of water and partially soluble in water is deposited on a free water surface, it spreads, dissolves, and simultaneously creates surface tension gradients leading to Marangoni instability and interfacial turbulence. In a first stage, if the solubility of the drop is not too high, there is formation of patterns that evolve in time, eventually leading to interfacial turbulence and droplet disappearance. These patterns, which on occasion last quite long time intervals, result from the interaction and collision of surface waves sustained by the surface tension gradient. These surface waves have been observed with a Schlieren device and their characteristics (e.g., shape, velocity) have been measured. Two types of surface wave profiles exist: wave profile like a "hump" (sech-like) or like a hydraulic jump (tanh-like). We have followed their time evolution and for head-on, oblique, and overtaking collisions we have measured their trajectories. We have been able to correlate our experimental findings with available theoretical, albeit qualitative, results known about waves and shocks.

  20. Crater evolution after the impact of a drop onto a semi-infinite liquid target.

    PubMed

    Bisighini, Alfio; Cossali, Gianpietro E; Tropea, Cameron; Roisman, Ilia V

    2010-09-01

    This paper is devoted to an experimental and theoretical investigation of the crater formed by the impact of a single drop onto a semi-infinite target of the same liquid. The shape of the crater at various time instances after impact has been observed using a high-speed video system and then accurately characterized. A theoretical model for the crater expansion has been developed, which is able to predict the temporal variation of the crater depth for sufficiently high Weber, Froude, and Reynolds numbers. The flow around the crater is approximated by an irrotational velocity field past a moving and expanding sphere. The equations describing the propagation of the surface of the crater have been obtained from the balance of stresses at the crater interface, accounting for inertia, gravity, and surface tension. The temporal evolution of the crater depth has been calculated by numerical solution of the equations of motion. The agreement between the theoretical predictions and experimental data are rather good.

  1. Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.

  2. Progress Report on Rotating Liquid Liner Implosion Experiment, 1 June to 31 December 1975.

    DTIC Science & Technology

    A critical question in the use of imploding liner flux compression for controlled fusion has been the stability of the inner surface of the liner ...To study the problem experimentally, the existing NRL Imploding Liner Facility was modified to allow the implosion of rotating liquid metal liners ...Rotational stabilization of lthe inner surface of a decelerating liquid sodium-potassium liner has been demonstrated, with excellent circularity of the

  3. Bingham liquid flow between two cylinders induced by inner ring rotation

    NASA Astrophysics Data System (ADS)

    Jaroslav, Štigler; Simona, Fialová

    2017-09-01

    This paper deals with the fluid flow between two cylinders induced by inner ring rotation. The gap width between the cylinders, in case that they are both concentric, is 1mm, the gap and inner ring radius ratio 0.013 and the radius ratio 0.987. Attention is focused on rotation speed and eccentricity influence on the flow. Calculations were done for both Newtonian liquid and Bingham plastic liquid with the yield stress threshold 50 Pa.

  4. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography.

    PubMed

    Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba

    2014-06-01

    A novel, rapid, simple and sensitive dispersive liquid-liquid microextraction method based on the solidification of floating organic drop (DLLME-SFO) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine amphetamine and methamphetamine in urine samples. The factors affecting the extraction efficiency of DLLME-SFO such as the kind and volume of the extraction and the disperser solvents, effect of concentration of K2CO3 and extraction time were investigated and the optimal extraction conditions were established. Under the optimum conditions (extraction solvent: 30.0μl 1-undecanol; disperser solvent: 300μl acetonitrile; buffer concentration: 2% (w/v) K2CO3 and extraction time: 1min), calibration curves are linear in the range of 10-3000μgl(-1) and limit of detections (LODs) are in the range of 2-8μgl(-1). The relative standard deviations (RSDs) for 100μgl(-1) of amphetamine and methamphetamine in diluted urine are in the range of 6.2-7.8% (n=7). The method was successfully applied for the determination of amphetamine and methamphetamine in the actual urine samples. The relative recoveries of urine samples spiked with amphetamine and methamphetamine are 87.8-113.2%. The obtained results show that DLLME-SFO combined with HPLC-UV is a fast and simple method for the determination of amphetamine and methamphetamine in urine.

  5. Direct analysis in real time mass spectrometry combined with single-drop liquid-liquid-liquid microextraction for the rapid analysis of multiple phytohormones in fruit juice.

    PubMed

    Bai, Yu; Zhang, Jialing; Bai, Yu; Liu, Huwei

    2012-06-01

    A rapid, simple, and efficient method for the fast determination of multiple phytohormones was developed in this work, based on single-drop liquid-liquid-liquid microextraction (SD-LLLME) combined with direct analysis in real-time mass spectrometry (DART-MS). Six phytohormones--indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and gibberellin A(3) (GA(3))--were analyzed simultaneously using this method, and the conditions employed for DART-MS and SD-LLLME were optimized systematically. Satisfactory results were obtained in terms of linearity (R (2) values for all phytohormones were 0.991-0.996), sensitivity (limits of detection were 0.65-72 ng/mL), and repeatability (RSD values were 6.9-14%). In addition, the proposed method was applied to determine the endogenous phytohormones in three kinds of fruit juice. Different concentrations of phytohormones were detected with satisfactory recoveries, and the whole analytical procedure took no more than 30 min. Therefore, this combination of SD-LLLME and DART-MS was shown to be a suitable and effective approach for the fast analysis of targets present at trace level concentrations in complex matrices.

  6. New applications of liquid-crystal thermography in rotating turbomachinery heat transfer research

    NASA Technical Reports Server (NTRS)

    Blair, M. F.; Wagner, J. H.; Steuber, G. D.

    1991-01-01

    Two new liquid-crystal thermography techniques developed for use in rotating heat transfer experiments are described. In one experiment steady-state heat transfer data were obtained on the exterior surface of rotating turbine airfoil models. In the second study a transient technique was employed to obtain interior-surface heat transfer data in a rotating turbine blade coolant passage model. Sample data are presented in the form of photographs of the liquid-crystal temperature patterns and as contour maps and distributions of heat transfer on the rotor and coolant passage surfaces.

  7. Polarization of light by a polymer film containing elongated drops of liquid crystal with inhomogeneous interfacial anchoring

    NASA Astrophysics Data System (ADS)

    Loiko, V. A.; Konkolovich, A. V.; Zyryanov, V. Ya.; Miskevich, A. A.

    2017-06-01

    An optico-mechanical model describing the coherent (directed) transmittance and the degree of polarization of forward-transmitted light by a polymer film with elongated liquid-crystal (LC) drops has been developed. This model, based on the Foldy-Twersky and anomalous-diffraction approximations, makes it possible to analyze the optical response of a film under extension as a function of the film thickness, refractive index of the polymer, the sizes and anisometry parameters of liquid-crystal drops, their concentration, internal structure, polydispersity, and orientation of optical axes. The model is verified based on the comparison of numerical and experimental data for the inverse modification of interfacial anchoring by an ion-forming surfactant. The internal drop structure is determined by solving the problem of minimizing the volume free energy density. A comparative analysis of the calculated transmittance and degree of polarization for films with uniform homeotropic and modified inhomogeneous interfacial anchoring is performed. The spectral polarization characteristics of a film with elongated LC drops and single-domain internal structure, formed under mechanical extension with the aid of surfactants, are investigated.

  8. Puddle jumping: Spontaneous ejection of large liquid droplets from hydrophobic surfaces during drop tower tests

    NASA Astrophysics Data System (ADS)

    Attari, B.; Weislogel, M.; Wollman, A.; Chen, Y.; Snyder, T.

    2016-10-01

    Large droplets and puddles jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 104 times larger than their normal terrestrial counterparts. We provide and/or confirm quick and qualitative design guides for such "drop shooters" as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, and fluid properties including contact angle. The latter is determined via profile image comparisons with numerical equilibrium interface computations. Water drop volumes of 0.04-400 ml at ejection speeds of -0.007-0.12 m/s are demonstrated herein. A sample application of the drop jump method is made to the classic problem of low-gravity phase change heat transfer for large impinging drops. Many other candidate problems might be identified by the reader.

  9. Determination of the liquid crystals phase transition temperatures using optical rotation effect

    NASA Astrophysics Data System (ADS)

    Niu, Xiao-ling; Liu, Wei-guo; Liu, Peng; Cai, Chang-long

    2011-11-01

    Using optical rotation effect, a sensitive, simple optical analytical system is developed for determining the phase transition temperatures of liquid crystals (LCs). When a monochromatic polarized light passes through LCs sample and analyzer, the light intensity changes with temperature. Especially, during the phase transition process, the intensity varies greatly due to optical rotation effect. The variation of light intensity versus variation of temperature curve shows the phase transition temperatures of LCs clearly. The phase transition temperatures of three cholesteric liquid crystals (ChLCs) and a nematic liquid crystals (NLCs) were detected by this method, and compared with those of the differential scanning calorimetry (DSC) and polarized light microscope (PLM) methods.

  10. Octadecyltrichlorosilane (OTS)-coated ionic liquid drops: Micro-reactors for homogenous catalytic reactions at designated interfaces.

    PubMed

    Zhang, Xiaoning; Cai, Yuguang

    2012-01-01

    An ionic liquid (IL), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) can assemble on prefabricated carboxylic acid-terminated chemical patterns on octadecyltrichlorosilane (OTS) film. The chemical pattern controls the position, shape and size of the IL on the surface. After the IL assembly - by incubating IL drops assembled on sample surface in an OTS silane vapor - an OTS layer was coated on the IL drop surface which encapsulated the IL drop. The OTS-coated capsule can exist stably under aqueous solution. The OTS coating protected the IL drops from being instantaneously dissolved by other solutions. We found that a homogenous catalyst (FeCl(3)) dissolved in [Bmim]Cl can be assembled together on the chemical patterns and subsequently encapsulated together with [Bmim]Cl by OTS coating. The pinhole defects within the vapor-coated silane layer provide space for the catalyst inside the capsule and reactants outside the capsule to meet and react. When the OTS-coated capsule containing a FeCl(3)/IL mixture was soaked under H(2)O(2) solution, the Fe(3+) ions catalyzed the decomposition reaction of hydrogen peroxide at the vapor-coated OTS-water interface. Since the shape and position of the interface is defined by the underneath chemical pattern, our findings show that the OTS-coated IL drops assembled on chemical patterns can be used as novel micro-reactors. This allows homogenous catalytic reactions to occur at the designated interfaces.

  11. Dynamics of liquid-crystalline magnetic suspensions in a rotating magnetic field.

    PubMed

    Boychuk, Alexey N; Makarov, Dmitriy V; Zakhlevnykh, Alexander N

    2016-10-01

    We theoretically study the dynamics of the orientational structure of a ferronematic liquid crystal with soft planar coupling between the director and the magnetization in a rotating magnetic field. We determine critical parameters characterizing the boundary between synchronous and asynchronous rotation regimes. We show that the magnetic impurity increases the stability threshold of an asynchronous rotation regime. The critical angular velocity, the angles of the director and the magnetization rotation in each regime of orientational structure rotation are found for rigid planar coupling. We obtain that in weak magnetic fields when the main mechanism of the field influence on a ferronematic liquid crystal is associated with the effect on the magnetic particles, the critical angular velocity is linearly dependent on the field strength, while in strong magnetic fields, when the influence of a field is determined by a diamagnetic mechanism, the critical velocity is quadratically dependent on the field strength.

  12. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    NASA Astrophysics Data System (ADS)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    2016-11-01

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  13. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    NASA Astrophysics Data System (ADS)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  14. Liquid Motion in a Rotating Tank Experiment (LME)

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, D. M.; Dodge, F. T.; Green, S. T.

    1998-01-01

    The Liquid Motion Experiment (LME), which flew on STS 84 in May 1997, was an investigation of liquid motions in spinning, nutating tanks. LME was designed to quantify the effects of such liquid motions on the stability of spinning spacecraft, which are known to be adversely affected by the energy dissipated by the liquid motions. The LME hardware was essentially a spin table which could be forced to nutate at specified frequencies at a constant cone angle, independently of the spin rate. Cylindrical and spherical test tanks, partially filled with liquids of different viscosities, were located at the periphery of the spin table to simulate a spacecraft with off-axis propellant tanks; one set of tanks contained generic propellant management devices (PMDs). The primary quantitative data from the flight tests were the liquid-induced torques exerted on the tanks about radial and tangential axes through the center of the tank. Visual recordings of the liquid oscillations also provided qualitative information. The flight program incorporated two types of tests: sine sweep tests, in which the spin rate was held constant and the nutation frequency varied over a wide range; and sine dwell test, in which both the spin rate and the nutation frequency were held constant. The sine sweep tests were meant to investigate all the prominent liquid resonant oscillations and the damping of the resonances, and the sine dwell tests were meant to quantify the viscous energy dissipation rate of the liquid oscillations for steady state conditions. The LME flight data were compared to analytical results obtained from two companion IR&D programs at Southwest Research Institute. The comparisons indicated that the models predicted the observed liquid resonances, damping, and energy dissipation rates for many test conditions but not for all. It was concluded that improved models and CFD simulations are needed to resolve the differences. This work is ongoing under a current IR&D program.

  15. Festoon instability of a drop of volatile insoluble liquid on the surface of other liquid under evaporation cooling conditions

    NASA Astrophysics Data System (ADS)

    Tarasov, O. A.; Gorbacheva, N. A.

    2007-02-01

    A festoon structure having the form of round hills has been observed at the periphery of a drop of o-oxylene or isooctane lying on the surface of a layer of hot water. On reaching a diameter of about 1 mm, festoons are ejected toward the drop center at a velocity of 1 2 mm/s. The growth of festoons is caused by thermocapillary flows, while their ejection is related to the capillary forces, which tend to decrease the free surface. This kind of stability substantially differs from the other known thermocapillary instabilities, since the ejection of festoons prevents the drop from spreading and thus prolongs its life.

  16. Numerical modelling of the impact of a liquid drop on the surface of a two-phase fluid system

    NASA Astrophysics Data System (ADS)

    Sochan, Agata; Lamorski, Krzysztof; Bieganowski, Andrzej; Ryżak, Magdalena

    2014-05-01

    The aim of the study was validation of a numerical model of the impact of a liquid drop on the surface of a two-phase system of immiscible fluids. The drop impact phenomenon was recorded using a high-speed camera (Vision Research MIRO M310) and the data were recorded at 2000 frames per second. The numerical calculations were performed with the Finite Volume Method (FVM) solving the three-dimensional Navier-Stokes equations for three phases: air and two selected immiscible fluids. The Volume of Fluid (VOF) technique was employed for modelling of the boundaries between the phases. Numerical modelling was done with the Finite Volume Method using an available OpenFOAM software. The experiment was based on three variables: • the height from which the drop of the selected fluids fell (the speed of the drop), • the thickness of the layers of the two selected immiscible fluids (a thin layer of the fluid with a lower density was spread over the higher-density fluid), • the size of the fluid droplet. The velocity and radius of the falling drop was calculated based on the recorded images. The used parameters allowed adequate projection of the impact of fluid droplets on a system of two immiscible liquids. Development of the numerical model of splash may further have practical applications in environmental protection (spraying of hazardous fluids, spread of fuels and other hazardous substances as a result of disasters, spraying (water cooling) of hot surfaces), and in agriculture (prevention of soil erosion). The study was partially funded from the National Science Centre (Poland) based on the decision no. DEC-2012/07/N/ST10/03280.

  17. Solute rotational dynamics at the water liquid/vapor interface

    NASA Astrophysics Data System (ADS)

    Benjamin, Ilan

    2007-11-01

    The rotational dynamics of a number of diatomic molecules adsorbed at different locations at the interface between water and its own vapors are studied using classical molecular dynamics computer simulations. Both equilibrium orientational and energy correlations and nonequilibrium orientational and energy relaxation correlations are calculated. By varying the dipole moment of the molecule and its location, and by comparing the results with those in bulk water, the effects of dielectric and mechanical frictions on reorientation dynamics and on rotational energy relaxation can be studied. It is shown that for nonpolar and weekly polar solutes, the equilibrium orientational relaxation is much slower in the bulk than at the interface. As the solute becomes more polar, the rotation slows down and the surface and bulk dynamics become similar. The energy relaxation (both equilibrium and nonequilibrium) has the opposite trend with the solute dipole (larger dipoles relax faster), but here again the bulk and surface results converge as the solute dipole is increased. It is shown that these behaviors correlate with the peak value of the solvent-solute radial distribution function, which demonstrates the importance of the first hydration shell structure in determining the rotational dynamics and dependence of these dynamics on the solute dipole and location.

  18. Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.

  19. A Symmetry Breaking Experiment Aboard Mir and the Stability of Rotating Liquid Films

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.; Gomes, D.; McCuan, J.; Weislogel, M.

    1999-01-01

    We discuss results from two parts of our study on the behavior of liquids under low-gravity conditions. The first concerns the Interface Configuration Experiment (ICE) aboard the Space Station Mir on the Mir-21/NASA-2 mission; for a certain 'exotic' container, distinct asymmetric liquid configurations are found as locally stable ones, even though the container itself is rotationally symmetric, in confirmation of mathematical results and numerical computations. The second investigation concerns the behavior of slowly rotating liquids; it is found that a rotating film instability observed previously in a physical experiment in 1-g, scaled to render gravity effects small, does not correspond to mathematical and computational results obtained for low gravity. These latter results are based on the classical equilibrium theory enhanced with a van der Waals potential of adhesion.

  20. Convergence of a cylindrical liquid shell and the formation of a bore in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Kedrinskii, V. K.; Nikulin, V. V.

    1999-12-01

    This paper presents the results of experimental studies of a collapsing cylindrical cavity (the convergence of a liquid shell) in a rotating fluid as well as the formation and propagation of a jump (bore) at the interface. The basic parameters of the liquid shell dynamics for a pulsed one-dimensional load are estimated using the equation of cylindrical cavity pulsation in an unbounded fluid. The theoretical model of a rotationally symmetric hydraulic jump moving along the free surface of a hollow vortex is constructed. The jump is simulated by a discontinuous solution of the equations in the long-wave approximation for tornado-like and hollow vortices. For comparison with the experimental data, basic theoretical results are obtained for flows in a hollow vortex with constant circulation and axial velocity varying along the radius of the rotating liquid shell.

  1. HIGH-PRECISION MACLAURIN-BASED MODELS OF ROTATING LIQUID PLANETS

    SciTech Connect

    Hubbard, W. B.

    2012-09-01

    We present an efficient numerical self-consistent field method for calculating a gravitational model of a rotating liquid planet to spherical harmonic degree {approx}30 and a precision {approx}10{sup -12} in the external gravity field. The method's accuracy is validated by comparing results, for Jupiter rotation parameters, with the exact Maclaurin constant-density solution. The method can be generalized to non-constant density.

  2. Impingement of a drop train enhance the liquid infiltration into a closed end hole

    NASA Astrophysics Data System (ADS)

    Sanada, Toshiyuki; Yamaguchi, Eri; Muraki, Shunsuke

    2016-11-01

    Liquid infiltration is an important process for cleaning inside fine holes. However, it is difficult to infiltrate liquid into closed end holes having small diameter. Because the surface tension prevents the deformation of gas-liquid interface for entering them. In this study we observed the liquid infiltration process into a closed end hole by applying external pressure under two ways, i.e. gradual pressurization with a hand pump and impingement of a droplet train. As a result, it is found that the amount of dissolved air into liquid by applying pressure is small, and it has small effect for the liquid infiltration. In addition, it is also found that the high liquid infiltration rate can be achieved by applying a droplet train impact. It is observed that the trapped bubbles inside the holes were ejected by repetition of droplet impingement.

  3. Experimental investigation of instantaneous velocities of liquid metal drops and gas-vapor inclusions in weightless conditions

    SciTech Connect

    Popov, V.I.; Dobychin, E.I.

    1985-04-01

    This examination of dynamics of dispersed particles is an attempt to estimate the formation of structures in heterogeneous media during their transition into weightlessness. An approximate expression for the velocity of the translational motion of the center of gravity of gas-vapor inclusions is obtained based on energy considerations. The expression is presented and analyzed. Motion picture frame illustrations show the behavior of mercury drops with 10- and 20-g mass in kerosene. Formulas are presented which give prognostic values of u(t) of liquid metal drops and gas-vapor inclusions, which may be used for estimating the formation of structures in heterogeneous media during transition to weightlessness, or in conditions of microgravitation in space technology.

  4. Ionic liquid-based single drop microextraction of ultra-trace copper in food and water samples before spectrophotometric determination

    NASA Astrophysics Data System (ADS)

    Wen, Xiaodong; Deng, Qingwen; Guo, Jie

    2011-09-01

    In this work, room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4mim]PF 6) was used as extractant in single drop microextraction (SDME). The traditionally volatile organic extractants were substituted by this green reagent, which changed SDME preconcentration into environmentally friendly method, relatively. After this pretreatment, ultra-trace copper in water and food samples could be accurately detected by spectrophotometer. This study was focused on the improvement of the analytical performance of spectrophotometric determination, expanding its applications. The influence factors relevant to IL-SDME, such as absorption spectra of complex, drop volume of RTIL, stirring rate and time, concentration of chelating agent, pH, and salt effect were studied systematically. Under the optimal conditions, the limit of detection (LOD) was 0.15 μg L -1 with an enhancement factor (EF) of 33. The proposed method was green, simple, rapid, sensitive, and cost-efficient.

  5. A numerical and experimental study of three-dimensional liquid sloshing in a rotating spherical container

    NASA Technical Reports Server (NTRS)

    Chen, Kuo-Huey; Kelecy, Franklyn J.; Pletcher, Richard H.

    1992-01-01

    A numerical and experimental study of three dimensional liquid sloshing inside a partially-filled spherical container undergoing an orbital rotating motion is described. Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a gradual spin-up from rest are compared with experimental data obtained using a rotating test rig fitted with two liquid-filled spherical tanks. Data gathered from several experiments are reduced in terms of a dimensionless free surface height for comparison with transient results from the numerical simulations. The numerical solutions are found to compare favorably with the experimental data.

  6. On fast solid-body rotation of the solar core and differential (liquid-like) rotation of the solar surface

    NASA Astrophysics Data System (ADS)

    Pashitskii, E. A.

    2017-07-01

    On the basis of a two-component (two-fluid) hydrodynamic model, it is shown that the probable phenomenon of solar core rotation with a velocity higher than the average velocity of global rotation of the Sun, discovered by the SOHO mission, can be related to fast solid-body rotation of the light hydrogen component of the solar plasma, which is caused by thermonuclear fusion of hydrogen into helium inside the hot dense solar core. Thermonuclear fusion of four protons into a helium nucleus (α-particle) creates a large free specific volume per unit particle due to the large difference between the densities of the solar plasma and nuclear matter. As a result, an efficient volumetric sink of one of the components of the solar substance—hydrogen—forms inside the solar core. Therefore, a steady-state radial proton flux converging to the center should exist inside the Sun, which maintains a constant concentration of hydrogen as it burns out in the solar core. It is demonstrated that such a converging flux of hydrogen plasma with the radial velocity v r ( r) = -β r creates a convective, v r ∂ v φ/∂ r, and a local Coriolis, v r v φ/ r,φ nonlinear hydrodynamic forces in the solar plasma, rotating with the azimuthal velocity v φ. In the absence of dissipation, these forces should cause an exponential growth of the solid-body rotation velocity of the hydrogen component inside the solar core. However, friction between the hydrogen and helium components of the solar plasma due to Coulomb collisions of protons with α-particles results in a steady-state regime of rotation of the hydrogen component in the solar core with an angular velocity substantially exceeding the global rotational velocity of the Sun. It is suggested that the observed differential (liquid-like) rotation of the visible surface of the Sun (photosphere) with the maximum angular velocity at the equator is caused by sold-body rotation of the solar plasma in the radiation zone and strong turbulence in

  7. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap.

    PubMed

    Yang, Y; Brimicombe, P D; Roberts, N W; Dickinson, M R; Osipov, M; Gleeson, H F

    2008-05-12

    The transfer of optical angular momentum to birefringent particles via circularly polarized light is common. We report here on the unexpected, continuous rotation of chiral nematic liquid crystal droplets in a linearly polarized optical trap. The rotation is non-uniform, occurs over a timescale of seconds, and is observed only for very specific droplet sizes. Synchronized vertical motion of the droplet occurs during the rotation. The motion is the result of photo-induced molecular reorganization, providing a micron sized opto-mechanical transducer that twists and translates.

  8. Drainage of the air film during drop impact on flowing liquid films

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Matar, Omar

    2015-11-01

    Immediately upon the impact of a droplet on a liquid or a solid, a thin air cushion is formed by trapping air beneath the droplet. The drainage of the air film is critical in determining the eventual outcome of the impact. Here we propose a model to study the drainage of the gas film between a droplet and a flowing liquid film. The effects of a wide range of parameters influencing the drainage process are studied, such as the fluid viscosities, the surface tension, the velocity of the droplet, the velocity of the liquid film. The results show that the tangential movement of the liquid film can delay the drainage of the air film and promote the bouncing of droplets. This confirms our previous experimental results, which show that during the impact of droplets on flow liquid films, the probability of bouncing increases with the Reynolds number of the liquid film. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  9. Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis.

    PubMed

    Amde, Meseret; Tan, Zhi-Qiang; Liu, Rui; Liu, Jing-Fu

    2015-05-22

    Using a nanofluid obtained by dispersing ZnO nanoparticles (ZnO NPs) in 1-hexyl-3-methylimidazolium hexafluorophosphate, new single drop microextraction method was developed for simultaneous extraction of three fungicides (chlorothalonil, kresoxim-methyl and famoxadone) in water samples prior to their analysis by high performance liquid chromatography (HPLC-VWD). The parameters affecting the extraction efficiency such as amount of ZnO NPs in the nanofluid, solvent volume, extraction time, stirring rate, pH and ionic strength of the sample solution were optimized. Under the optimized conditions, the limits of detection were in the range of 0.13-0.19ng/mL, the precision of the method assessed with intra-day and inter-day relative standard deviations were <4.82% and <7.04%, respectively. The proposed method was successfully applied to determine the three fungicides in real water samples including lake water, river water, as well as effluent and influent of wastewater treatment plant, with recoveries in the range of 74.94-96.11% at 5ng/mL spiking level. Besides to being environmental friendly, the high enrichment factor and the data quality obtained with the proposed method demonstrated its potential for application in multi residue analysis of fungicides in actual water samples.

  10. Interfacial Tension between Water and Selected Superheated Liquids by Quadrupole Oscillations of Drops.

    DTIC Science & Technology

    1983-12-01

    referred to Fig. 4.1(c)) is to get a cluster of the gel containing one superheated drop into the host water by squeezing a rubber bulb fitted to the glass...copy each) 3 Professor L. Crum Dr. I. Rudnick Physics Department Physics Department University of Mississippi University of California Oxford, MS 38677

  11. Dispersive liquid-liquid microextraction based on solidification of floating organic drop and high-performance liquid chromatography to the analysis of cocaine's major adulterants in human urine.

    PubMed

    Sena, Laís Cristina Santana; Matos, Humberto Reis; Dórea, Haroldo Silveira; Pimentel, Maria Fernanda; de Santana, Danielle Cristine Almeida Silva; de Santana, Fernando José Malagueño

    2017-02-01

    A simple method has been proposed for the determination of cocaine's major adulterants (caffeine, levamisole, lidocaine, phenacetin, diltiazem, and hydroxyzine) in human urine by dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) in combination with high-performance liquid chromatography - photodiode array detector (HPLC-PDA). The reversed-phase chromatographic separation was obtained with a column C18 extended (250×4.6mm; 5μm; 80Å) in gradient elution mode using acetonitrile-trifluoroacetic acid 0.026% (v,v) (pH=2.5) at 1mLmin(-1) as mobile phase, at 25°C, and detection at 235nm. The analysis time was 25min. This condition had the best resolution factors (>1.15), retention factors (>0.68), number of plates (>2094.9), and separation factors (>1.05) for all targets, indicating a good separation. The kind of extraction and dispersive solvent were investigated for unifactorial design. The buffer pH, the volume of extraction and disperser solvent, and the amount of salt were optimized for full factorial design. Under optimum conditions, human urine samples were alkalized with 0.5M sodium phosphate buffer (pH 10) and added to sodium chloride (20%m/v). Acetonitrile (150μL) and 1-dodecanol (30μL) were used as dispersive and extraction solvent, respectively. The method presented linear range of 312.5-3125ngmL(-1) to caffeine and levamisole and 187.5-1875ngmL(-1) to lidocaine, phenacetin, diltiazem, and hydroxyzine. The limit of quantification was 187.5ngmL(-1) to lidocaine, phenacetin, diltiazem, and hydroxyzine and 312.5ngmL(-1) for caffeine and levamisole. The recovery mean values were between 6.0 and 42.6%. The method showed good precision and accuracy, with within- and between-run relative standard deviation and relative error less than 15%. The samples were stable after freeze-thaw cycle and short-term room temperature stability tests. Besides, this method was satisfactorily applied in urine of cocaine users. It

  12. The Oscillatory Nature of Rotating Convection in Liquid Metal

    NASA Astrophysics Data System (ADS)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  13. Continuous Rotation of Achiral Nematic Liquid Crystal Droplets Driven by Heat Flux

    NASA Astrophysics Data System (ADS)

    Ignés-Mullol, Jordi; Poy, Guilhem; Oswald, Patrick

    2016-07-01

    Suspended droplets of cholesteric (chiral nematic) liquid crystals spontaneously rotate in the presence of a heat flux due to a temperature gradient, a phenomenon known as the Lehmann effect. So far, it is not clear whether this effect is due to the chirality of the phase and the molecules or only to the chirality of the director field. Here, we report the continuous rotation in a temperature gradient of nematic droplets of a lyotropic chromonic liquid crystal featuring a twisted bipolar configuration. The achiral nature of the molecular components leads to a random handedness of the spontaneous twist, resulting in the coexistence of droplets rotating in the two senses, with speeds proportional to the temperature gradient and inversely proportional to the droplet radius. This result shows that a macroscopic twist of the director field is sufficient to induce a rotation of the droplets, and that the phase and the molecules do not need to be chiral. This suggests that one can also explain the Lehmann rotation in cholesteric liquid crystals without introducing the Leslie thermomechanical coupling—only present in chiral mesophases. An explanation based on the Akopyan and Zeldovich theory of thermomechanical effects in nematics is proposed and discussed.

  14. Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Barmatz, M.; Shipley, C.

    1988-01-01

    The effect of a standing wave field in a rectangular chamber on the shape and location of an acoustically positioned drop or bubble is calculated. The sample deformation and equilibrium position are obtained from an analysis of the spherical harmonic projections of the total surface stress tensor. The method of calculation relies on the assumed condition that the sample is only slightly distorted from a spherical form. The equilibrium location of a levitated drop is combined with a formula introduced by Hasegawa (1979) to calcualte the ka dependence of the radiation force function. The present theory is valid for large as well as small ka values. Calculations in the small ka limit agree with previous theories and experimental results. Examples are presented for nonplane-wave modes as well as plane-wave rectangular modes.

  15. Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Barmatz, M.; Shipley, C.

    1988-01-01

    The effect of a standing wave field in a rectangular chamber on the shape and location of an acoustically positioned drop or bubble is calculated. The sample deformation and equilibrium position are obtained from an analysis of the spherical harmonic projections of the total surface stress tensor. The method of calculation relies on the assumed condition that the sample is only slightly distorted from a spherical form. The equilibrium location of a levitated drop is combined with a formula introduced by Hasegawa (1979) to calcualte the ka dependence of the radiation force function. The present theory is valid for large as well as small ka values. Calculations in the small ka limit agree with previous theories and experimental results. Examples are presented for nonplane-wave modes as well as plane-wave rectangular modes.

  16. Interactions between drops of molten Al-Li alloys and liquid water

    SciTech Connect

    Hyder, M.L.; Nelson, L.S.; Duda, P.M.; Hyndman, D.A.

    1993-08-01

    Sandia National Laboratories, at the request of the Savannah River Technology Center (SRTC), studied the interactions between single drops of molten aluminum-lithium alloys and water. Most experiments were performed with ``B`` alloy (3.1 w/o Li, balance A1). Objectives were to develop experimental procedures for preparing and delivering the melt drops and diagnostics for characterizing the interactions, measure hydrogen generated by the reaction between melt and water, examine debris recovered after the interaction, determine changes in the aqueous phase produced by the melt-water chemical reactions, and determine whether steam explosions occur spontaneously under the conditions studied. Although many H{sub 2} bubbles were generated after the drops entered the water, spontaneous steam explosions never occurred when globules of the ``B`` alloy at temperatures between 700 and 1000C fell freely through water at room temperature, or upon or during subsequent contact with submerged aluminum or stainless steel surfaces. Total amounts of H{sub 2} (STP) increased from about 2 to 9 cm{sup 3}/per gram of melt as initial melt temperature increased over this range of temperatures.

  17. Gas-liquid pressure drop in vertical internally wavy 90 bend

    SciTech Connect

    Benbella, Shannak; Al-Shannag, Mohammad; Al-Anber, Zaid A.

    2009-01-15

    Experiments of air water two-phase flow pressure drop in vertical internally wavy 90 bend have been carried out. The tested bends are flexible and made of stainless steel with inner diameter of 50 mm and various curvature radiuses of 200, 300, 400 and 500 mm. The experiments were performed under the following conditions of two-phase parameters; mass flux from 350 to 750 kg/m{sup 2} s. Gas quality from 1% to 50% and system pressure from 4 to 7.5 bar. The results demonstrate that the effect of the above-mentioned parameters is very significant at high ranges of mass flow quality. Due to the increasing of two-phase flow resistance, energy dissipations, friction losses and interaction of the two-phases in the vertical internally wavy 90 bend the total pressure drops are perceptible about 2-5 times grater than that in smooth bends. Based on the mass and energy balance as well as the presented experimental results, new empirical correlation has been developed to calculate the two-phase pressure drop and hence the two-phase friction factor of the tested bends. The correlation includes the relevant primary parameter, fit the data well, and is sufficiency accurate for engineering purposes. (author)

  18. The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels.

    PubMed

    Stan, Claudiu A; Ellerbee, Audrey K; Guglielmini, Laura; Stone, Howard A; Whitesides, George M

    2013-02-07

    Hydrodynamic lift forces offer a convenient way to manipulate particles in microfluidic applications, but there is little quantitative information on how non-inertial lift mechanisms act and compete with each other in the confined space of microfluidic channels. This paper reports measurements of lift forces on nearly spherical drops and bubbles, with diameters from one quarter to one half of the width of the channel, flowing in microfluidic channels, under flow conditions characterized by particle capillary numbers Ca(P) = 0.0003-0.3 and particle Reynolds numbers Re(P) = 0.0001-0.1. For Ca(P) < 0.01 and Re(P) < 0.01 the measured lift forces were much larger than predictions of deformation-induced and inertial lift forces found in the literature, probably due to physicochemical hydrodynamic effects at the interface of drops and bubbles, such as the presence of surfactants. The measured forces could be fit with good accuracy using an empirical formula given herein. The empirical formula describes the power-law dependence of the lift force on hydrodynamic parameters (velocity and viscosity of the carrier phase; sizes of channel and drop or bubble), and includes a numerical lift coefficient that depends on the fluids used. The empirical formula using an average lift coefficient of ~500 predicted, within one order of magnitude, all lift force measurements in channels with cross-sectional dimensions below 1 mm.

  19. A simple expression for pressure drops of water and other low molecular liquids in the flow through micro-orifices

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tomiichi; Ushida, Akiomi; Narumi, Takatsune

    2015-12-01

    Flows are generally divided into two types: shear flows and shear-free elongational (extensional) flows. Both are necessary for a thorough understanding of the flow properties of a fluid. Shear flows are easy to achieve in practice, for example, through Poiseuille or Couette flows. Shear-free elongational flows are experimentally hard to achieve, resulting in an incomplete understanding of the flow properties of fluids in micro-devices. Nevertheless, flows through micro-orifices are useful for probing the properties of elongational flows at high elongational rates; although these flows exhibit shear and elongation, the elongation is dominant and the shear is negligible in the central region of the flows. We previously reported an anomalous reduction in pressure drops in the flows of water, a 50/50 mixture of glycerol and water, and silicone oils through micro-orifices. In the present paper, we rearrange the data presented in the previous paper and reveal a simple relationship where the pressure drop is proportional to the velocity through the micro-orifices, independent of the orifice diameter and the viscosity of the liquids tested. We explain our observations by introducing a "fluid element" model, in which fluid elements are formed on entering the orifice. The model is based on the idea that low molecular liquids, including water, generate strong elongational stress, similar to a polymer solution, in the flow through micro-orifices.

  20. Translation-rotation decoupling of tracers of locally favorable structures in glass-forming liquids.

    PubMed

    Park, Yoonjae; Kim, Jeongmin; Sung, Bong June

    2017-09-28

    Particles in glass-forming liquids may form domains of locally favorable structures (LFSs) upon supercooling. Whether and how the LFS domains would relate to the slow relaxation of the glass-forming liquids have been issues of interest. In this study, we employ tracers of which structures resemble the LFS domains in Wahnström and Kob-Andersen (KA) glass-forming liquids and investigate the translation-rotation decoupling of the tracers. We find that the tracer structure affects how the translation and the rotation of tracers decouple and that information on the local mobility around the LFS domains may be gleaned from the tracer dynamics. According to the Stokes-Einstein relation and the Debye-Stokes-Einstein relation, the ratio of the translational (DT) and rotational (DR) diffusion coefficients is expected to be a constant over a range of T/η, where η and T denote the medium viscosity and temperature, respectively. In supercooled liquids and glasses, however, DT and DR decouple due to dynamic heterogeneity, thus DT/DR not being constant any more. In Wahnström glass-forming liquids, icosahedron LFS domains are the most long-lived ones and the mobility of neighbor particles around the icosahedron LFS domain is suppressed. We find from our simulations that the icosahedron tracers, similar in size and shape to the icosahedron LFS domains, experience drastic translation-rotation decoupling upon cooling. The local mobility of liquid particles around the icosahedron tracers is also suppressed significantly. On the other hand, tracers of FCC and HCP structures do not show translation-rotation decoupling in the Wahnström liquid. In KA glass-forming liquids, bicapped square antiprism LFS domains are the most long-lived LFS domains but are not correlated significantly with the local mobility. We find from our simulations that DT and DR of bicapped square antiprism tracers, also similar in size and shape to the bicapped square antiprism LFS domains, do not decouple

  1. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Xuewen; Chen, Bin; Tang, Jau; Hassan, Mohammed Th.; Zewail, Ahmed H.

    2017-02-01

    In real time and space, four-dimensional electron microscopy (4D EM) has enabled observation of transient structures and morphologies of inorganic and organic materials. We have extended 4D EM to include liquid cells without the time resolution being limited by the response of the detector. Our approach permits the imaging of the motion and morphological dynamics of a single, same particle on nanometer and ultrashort time scales. As a first application, we studied the rotational dynamics of gold nanoparticles in aqueous solution. A full transition from the conventional diffusive rotation to superdiffusive rotation and further to a ballistic rotation was observed with increasing asymmetry of the nanoparticle morphology. We explored the underlying physics both experimentally and theoretically according to the morphological asymmetry of the nanoparticles.

  2. Continuous rotation of a cholesteric liquid crystalline droplet by a circularly polarized optical tweezers

    NASA Astrophysics Data System (ADS)

    Tamura, Yuta; Kimura, Yasuyuki

    2017-04-01

    We studied the opto-mechanical response of droplets composed of cholesteric liquid crystal (ChLC) to a circularly polarized optical tweezers. Although the alignment of LC molecular within a droplet depends on the relative ratio of the droplet diameter d to the helical pitch p, the optically induced rotation was found to be asymmetric to the direction of circularly polarized light irrespective to the inner molecular alignment. We studied the rotation of the droplets with various sizes, helical pitch (strength of chirality) and different chirality. In the case of d/p 1, the direction of the rotation was simply determined by chirality of ChLC and the rotation was also observed for linearly polarized light, which has already been reported by Yang et al.

  3. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters

    NASA Astrophysics Data System (ADS)

    Li, Yong; Peng, Guilong; He, Qiang; Zhu, Hui; Al-Hamadani, Sulala M. Z. F.

    2015-04-01

    In the present work, a dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of Pb, Co, Cu, Ni, Zn. The influences of analytical parameters, including pH, extraction solvent volume, disperser solvent volume, concentration of chelating agent on the quantitative recoveries of Pb, Co, Cu, Ni, Zn were investigated. The effect of the interfering ions on the analytes recovery was also investigated. Under the optimized conditions, the limits of detection were 0.97-2.18 ng L-1. The relative standard deviations (RSDs) were 2.62-4.51% (n = 7, C = 20 ng L-1). The proposed method was successfully applied for the analysis of ultra trace metals in wastewater samples.

  4. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters.

    PubMed

    Li, Yong; Peng, Guilong; He, Qiang; Zhu, Hui; Al-Hamadani, Sulala M Z F

    2015-04-05

    In the present work, a dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of Pb, Co, Cu, Ni, Zn. The influences of analytical parameters, including pH, extraction solvent volume, disperser solvent volume, concentration of chelating agent on the quantitative recoveries of Pb, Co, Cu, Ni, Zn were investigated. The effect of the interfering ions on the analytes recovery was also investigated. Under the optimized conditions, the limits of detection were 0.97-2.18 ng L(-1). The relative standard deviations (RSDs) were 2.62-4.51% (n=7, C=20 ng L(-1)). The proposed method was successfully applied for the analysis of ultra trace metals in wastewater samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. How pinning and contact angle hysteresis govern quasi-static liquid drop transfer.

    PubMed

    Chen, H; Tang, T; Zhao, H; Law, K-Y; Amirfazli, A

    2016-02-21

    This paper presents both experimental and numerical simulations of liquid transfer between two solid surfaces with contact angle hysteresis (CAH). Systematic studies on the role of the advancing contact angle (θa), receding contact angle (θr) and CAH in determining the transfer ratio (volume of the liquid transferred onto the acceptor surface over the total liquid volume) and the maximum adhesion force (Fmax) were performed. The transfer ratio was found to be governed by contact line pinning at the end of the transfer process caused by CAH of surfaces. A map based on θr of the two surfaces was generated to identify the three regimes for liquid transfer: (I) contact line pinning occurs only on the donor surface, (II) contact line pinning occurs on both surfaces, and (III) contact line pinning occurs only on the acceptor surface. With this map, an empirical equation is provided which is able to estimate the transfer ratio by only knowing θr of the two surfaces. The value of Fmax is found to be strongly influenced by the contact line pinning in the early stretching stage. For symmetric liquid bridges between two identical surfaces, Fmax may be determined only by θa, only by θr, or by both θa and θr, depending on the magnitude of the contact angles. For asymmetric bridges, Fmax is found to be affected by the period when contact lines are pinned on both surfaces.

  6. Energy storage capacity of reversible liquid phase Diels-Alder reactions as determined by drop calorimetry

    SciTech Connect

    Chung, C.P.

    1983-01-01

    Several Diels-Alder reactions were evaluated as possible candidates for energy storage. The goal was to use simple drop calorimetry to screen reactions and to identify those with high energy storage capacities. The dienes used were furan and substituted furans. The dienophiles used were maleic anhydride and substituted maleic anhydrides. Sixteen reactions have been examined. Three had energy storage capacities that were increased due to reaction (maleic anhydride and 2-methyl furan, maleic anhydride and 2-ethyl furan, maleic anhydride and 2,5-dimethyl furan). The remaining thirteen showed no increase in apparent heat capacity due to reaction.

  7. Nuclear-deformation energies according to a liquid-drop model with a sharp surface

    SciTech Connect

    Blocki, J.; Swiatecki, W.J.

    1982-05-01

    We present an atlas of 665 deformation-energy maps and 150 maps of other properties of interest, relevant for nuclear systems idealized as uniformly charged drops endowed with a surface tension. The nuclear shapes are parametrized in terms of two spheres modified by a smoothly fitted quadratic surface of revolution and are specified by three variables: asymmetry, sphere separation, and a neck variable (that goes over into a fragment-deformation variable after scission). The maps and related tables should be useful for the study of macroscopic aspects of nuclear fission and of collisions between any two nuclei in the periodic table.

  8. Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy

    SciTech Connect

    Patterson, Joseph P.; Parent, Lucas R.; Cantlon, Joshua; Eickhoff, Holger; Bared, Guido; Evans, James E.; Gianneschi, Nathan C.

    2016-05-03

    Abstract

    Liquid cell transmission electron microscopy (LCTEM) provides a unique insight into the dynamics of nanomaterials in solution. Controlling the addition of multiple solutions to the liquid cell remains a key hurdle in our ability to increase throughput and to study processes dependent on solution mixing including chemical reactions. Here, we report that a piezo dispensing technique allows for mixing of multiple solutions directly within the viewing area. This technique permits deposition of 50 pL droplets of various aqueous solutions onto the liquid cell window, before assembly of the cell in a fully controlled manner. This proof-of-concept study highlights the great potential of picoliter dispensing in combination with LCTEM for observing nanoparticle mixing in the solution phase and the creation of chemical gradients.

  9. The coffee-drop phenomenon and its time fluctuations: Self-sustained oscillations in colloidal liquids

    NASA Astrophysics Data System (ADS)

    Yakhno, T. A.; Yakhno, V. G.

    2017-03-01

    The instant coffee model has been taken to study self-sustained oscillations in liquid dispersive media using dynamic self-organization processes in drying droplets that stay sessile on a solid wetted substrate. The width of the formed ring and the dynamics of mechanical properties of the drying sediment and the way they fluctuated over 11 h of the experiment have been measured. Analysis has shown a high degree of correlation between these indicators. This dynamics reflects processes that develop in the examined liquid medium. The possible mechanism of self-sustained oscillations, which is related to the aggregation-disaggregation of the colloidal phase and fluctuations of the interphase tension, has been discussed. The practical significance of this work is that fluctuation processes in liquid dispersive media need to be taken into account as a natural source of systematic measurement error.

  10. Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy

    PubMed Central

    Patterson, Joseph P.; Parent, Lucas R.; Cantlon, Joshua; Eickhoff, Holger; Bared, Guido; Evans, James E.; Gianneschi, Nathan C.

    2017-01-01

    Liquid cell transmission electron microscopy (LCTEM) provides a unique insight into the dynamics of nanomaterials in solution. Controlling the addition of multiple solutions to the liquid cell remains a key hurdle in our ability to increase throughput and to study processes dependent on solution mixing including chemical reactions. Here, we report that a piezo dispensing technique allows for mixing of multiple solutions directly within the viewing area. This technique permits deposition of 50 pL droplets of various aqueous solutions onto the liquid cell window, before assembly of the cell in a fully controlled manner. This proof-of-concept study highlights the great potential of picoliter dispensing in combination with LCTEM for observing nanoparticle mixing in the solution phase and the creation of chemical gradients. PMID:27135268

  11. Experimental study of the stability and flow characteristics of floating liquid columns confined between rotating disks

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.; Soto, L.; Strong, P. F.; Wang, C. A.

    1980-01-01

    A low Bond number simulation technique was used to establish the stability limits of cylindrical and conical floating liquid columns under conditions of isorotation, equal counter rotation, rotation of one end only, and parallel axis offset. The conditions for resonance in cylindrical liquid columns perturbed by axial, sinusoidal vibration of one end face are also reported. All tests were carried out under isothermal conditions with water and silicone fluids of various viscosities. A technique for the quantitative measurement of stream velocity within a floating, isothermal, liquid column confined between rotatable disks was developed. In the measurement, small, light scattering particles were used as streamline markers in common arrangement, but the capability of the measurement was extended by use of stereopair photography system to provide quantitative data. Results of velocity measurements made under a few selected conditions, which established the precision and accuracy of the technique, are given. The general qualitative features of the isothermal flow patterns under various conditions of end face rotation resulting from both still photography and motion pictures are presented.

  12. Experimental study of the stability and flow characteristics of floating liquid columns confined between rotating disks

    NASA Astrophysics Data System (ADS)

    Fowle, A. A.; Soto, L.; Strong, P. F.; Wang, C. A.

    1980-02-01

    A low Bond number simulation technique was used to establish the stability limits of cylindrical and conical floating liquid columns under conditions of isorotation, equal counter rotation, rotation of one end only, and parallel axis offset. The conditions for resonance in cylindrical liquid columns perturbed by axial, sinusoidal vibration of one end face are also reported. All tests were carried out under isothermal conditions with water and silicone fluids of various viscosities. A technique for the quantitative measurement of stream velocity within a floating, isothermal, liquid column confined between rotatable disks was developed. In the measurement, small, light scattering particles were used as streamline markers in common arrangement, but the capability of the measurement was extended by use of stereopair photography system to provide quantitative data. Results of velocity measurements made under a few selected conditions, which established the precision and accuracy of the technique, are given. The general qualitative features of the isothermal flow patterns under various conditions of end face rotation resulting from both still photography and motion pictures are presented.

  13. A new method for measuring the contact angles from digital images of liquid drops.

    PubMed

    Mirzaei, M

    2017-09-05

    The drop hitting a solid surface may be symmetric or asymmetric, which depends on the surface texture and external force orientations. The accurate measurement of the contact angle is of fundamental importance for the purpose of scientific research, while having a substantial role in a wide range of practical applications. This paper presents a new image processing based method, as a computational scheme to measure the inclination angle of apparent edge curves in digital images. The main concept of the scheme is the emulation of a moving goniometer mask coupled with a Gaussian weighted function, which does not require edge fitting with analytic curves for the angle calculation. The algorithm produces as follow: allocating the exact position of the contact points by Harris corner detector function, selecting a series of points on the drop boundary near the contact points, setting goniometric mask on each given point and calculating the angles, applying the Gaussian weighted average function on the calculated angles and measure the objective contact angle. The scheme is tested on several images from recent studies in the available literature. The comparison between analytical and calculated angles shows less than 1° difference. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Contraction of an inviscid swirling liquid jet: Comparison with results for a rotating granular jet.

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Kubitschek, J. P.

    2007-11-01

    In honor of the tercentenary of Leonhard Euler, we report a new solution of the Euler equations for the shape of an inviscid rotating liquid jet emanating from a tube of inner radius R0 aligned with gravity. Jet contraction is dependent on the exit swirl parameter χ0 = R0 φ0/U0 where φ0 and U0 are the uniform rotation rate and axial velocity of the liquid at the exit. The results reveal that rotation reduces the rate of jet contraction. In the limit χ0-> 0 one recovers the contraction profile for a non-rotating jet and the limit χ0->∞ gives a jet of constant radius. In contrast, experiments and a kinematic model for a rotating non-cohesive granular jet show that it expands rather than contracts when a certain small angular velocity is exceeded. The blossoming profiles are parabolic in nature. The model predicts a jet of uniform radius for χ0-> 0 and a jet with an initially horizontal trajectory in the limit χ0->∞.

  15. Effect of solute transfer and interfacial instabilities on scalar and velocity field around a drop rising in quiescent liquid channel

    NASA Astrophysics Data System (ADS)

    Khanwale, Makrand A.; Khadamkar, Hrushikesh P.; Mathpati, Channamallikarjun S.

    2015-11-01

    Physics of development of flow structures around the drop rising with solute transfer is highly influenced by the interfacial behaviour and is remarkably different than a particle rising under the same conditions. We report on the use of simultaneous particle image velocimetry-planar laser induced fluorescence technique to measure scalar and velocity fields around a drop rising in a quiescent liquid channel. The selected continuous phase is glycerol, and the drop consists of a mixture of toluene, acetone, and a dye rhodamine-6G, with acetone working as a interfacial tension depressant. The drop lies in the spherical region with Eötvös number, Eo = 1.95, Morton number, M = 78.20 and the particle Reynolds number being, Rep = 0.053. With Rep approaching that of creeping flow, we analyse the effect of interfacial instabilities solely, contrary to other investigations [M. Wegener et al., "Impact of Marangoni instabilities on the fluid dynamic behaviour of organic droplets," Int. J. Heat Mass Transfer 52, 2543-2551 (2009); S. Burghoff and E. Y. Kenig, "A CFD model for mass transfer and interfacial phenomena on single droplets," AIChE J. 52, 4071-4078 (2006); J. Wang et al., "Numerical simulation of the Marangoni effect on transient mass transfer from single moving deformable drops," AIChE J. 57, 2670-2683 (2011); R. F. Engberg, M. Wegener, and E. Y. Kenig, "The impact of Marangoni convection on fluid dynamics and mass transfer at deformable single rising droplets—A numerical study," Chem. Eng. Sci. 116, 208-222 (2014)] which account for turbulence as well as interfacial instabilities with Rep in the turbulent range. The velocity and concentration fields obtained are subjected to scale-wise energy decomposition using continuous wavelet transform. Scale-wise probability distribution functions of wavelet coefficients are calculated to check intermittent non-Gaussian behaviour for simultaneous velocity and scalar statistics. Multi-fractal singularity spectra for scalar

  16. Self-Running Liquid Metal Drops that Delaminate Metal Films at Record Velocities.

    PubMed

    Mohammed, Mohammed; Sundaresan, Rishi; Dickey, Michael D

    2015-10-21

    This paper describes a new method to spontaneously accelerate droplets of liquid metal (eutectic gallium indium, EGaIn) to extremely fast velocities through a liquid medium and along predefined metallic paths. The droplet wets a thin metal trace (a film ∼100 nm thick, ∼ 1 mm wide) and generates a force that simultaneously delaminates the trace from the substrate (enhanced by spontaneous electrochemical reactions) while accelerating the droplet along the trace. The formation of a surface oxide on EGaIn prevents it from moving, but the use of an acidic medium or application of a reducing bias to the trace continuously removes the oxide skin to enable motion. The trace ultimately provides a sacrificial pathway for the metal and provides a mm-scale mimic to the templates used to guide molecular motors found in biology (e.g., actin filaments). The liquid metal can accelerate along linear, curved and U-shaped traces as well as uphill on surfaces inclined by 30 degrees. The droplets can accelerate through a viscous medium up to 180 mm/sec which is almost double the highest reported speed for self-running liquid metal droplets. The actuation of microscale objects found in nature (e.g., cells, microorganisms) inspires new mechanisms, such as these, to manipulate small objects. Droplets that are metallic may find additional applications in reconfigurable circuits, optics, heat transfer elements, and transient electronic circuits; the paper demonstrates the latter.

  17. Theoretical analysis of the oscillations of rotating liquid bridges under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Acero, F. J.; Montanero, J. M.

    A liquid bridge can hold a significant liquid volume and provides a convenient way for its manipulation in microgravity conditions. Apart from their basic scientific interest, a liquid bridge can be considered as the simplest idealisation of the configuration appearing in the floating zone technique used for crystal growth and purification of high melting point materials. This has conferred to the study of liquid bridges a great interest not only in fluid mechanics but also in the field of material engineering. Even in space, the liquid bridge is susceptible to dynamic disturbances that may result from g-jitter, pulse-like accelerations due to a docking activity, crew movement or operation of equipment on the space station, and vibration of machines on board. These perturbations may excite oscillations of the free interface. Therefore it is important to know the natural frequencies and decay rates that characterize those oscillations. The presence of rotation in many artificial satellites and space stations provides a strong motivation for the study of its influence in the dynamics of liquid bridges. In this contribution, an analytical study of the small oscillation modes of rotating liquid columns is carried out. The analysis also includes the effect of an outer bath of similar density to that of the liquid column. However, to simplify the study, the ratio between viscous and capillary forces is assumed to be very small, so that a negligible amount of the oscillation energy is dissipated in the thin boundary layers existing at solid surfaces and fluid interfaces. The oscillation frequency ω depends on the rotation speed Ω due to the competition between the centrifugal and Coriolis inertial forces, and the restoring capillary force. If 2Ω<ω, the problem presents an elliptic character and the oscillation motion is a surface wave. For 2Ω>ω the motion becomes an internal wave (hyperbolic regime). The influence of the rotation speed on the axisymmetric and non

  18. Flow patterns in a rotating horizontal cylinder partially filled with liquid

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor; Polezhaev, Denis

    2015-07-01

    The dynamics of an annular layer of low-viscosity liquid inside a rapidly rotating horizontal cylinder is experimentally studied. Under gravity, the liquid performs forced azimuthal oscillations in the cavity frame. We examined the stability of the two-dimensional azimuthal flow and discovered two novel types of axisymmetric liquid flows. First, a large-scale axially symmetric flow is excited near the end walls. The inertial modes generated in the corner regions are proven to be responsible for such a flow. Second, a small-scale flow in the form of the Taylor-Gortler vortices appears due to the centrifugal instability of the oscillatory liquid flow. The spatial period of the vortices is in qualitative agreement with the data obtained in the experimental and numerical studies of cellular flow in librating containers.

  19. Anomalous thermally induced pinning of a liquid drop on a solid substrate.

    PubMed

    Mettu, Srinivas; Kanungo, Mandakini; Law, Kock-Yee

    2013-08-27

    The effect of substrate temperature on the wetting and spreading behavior of a UV ink monomer has been studied as a surrogate for the ink on four different substrates: DTC (digital top coat)-coated BOPP (biaxial oriented polypropylene), Flexo-coated BOPP, DTC-coated SGE (semigloss elite) paper, and Flexo-coated SGE paper. Results show that the dynamic contact angles of the monomer decrease exponentially over time after contacting the surface, and the rate of spreading is consistently higher at 95 °C than at 22 °C. This observation indicates that spreading is controlled by the viscosity of the monomer as it decreases with temperature. An anomalous temperature effect is observed for the static contact angle on the DTC-coated BOPP substrate. The static contact angle at 95 °C is significantly larger than that at 22 °C (52° versus 30°). This is counterintuitive, as the surface tension of the monomer is shown to decease with increasing temperature. Microscopy (SEM and AFM) studies suggest that there is little interaction between the DTC coating solution and the BOPP substrate during the fast-drying coating process. This results in a smooth coated surface and, more importantly, voids between the BOPP nanofibers underneath the DTC coating. As the DTC-BOPP substrate is heated to 95 °C, fiber expansions occur. Microscopy results show that nanosized protrusions are formed on the DTC surface. We attribute it to fiber expansions in the vertical direction. Fiber expansions in the lateral direction causes little surface morphology change as the expanded materials only fill the voids laterally between the nanofiber network. We suggest that the protrusions on the surface create strong resistance to the wetting process and pin the monomer drop into a metastable wetting state. This interpretation is supported by the sliding angle and sessile drop height experiments.

  20. Numerical simulation of drop impact on a controlled falling liquid film

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Adebayo, Idris; Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Matar, Omar

    2016-11-01

    We study the impact process of droplets falling obliquely on controlled films using a numerical simulation approach. This approach is based on a finite element discretisation of the Navier Stokes equations on fully unstructured anisotropic and adaptive meshes, which are capable of representing the underlying physics of multiphase problems accurately while also reducing computational effort. Liquid film control here is applied to ensure that droplet impact occurs on different, targeted regions of a controlled film surface viz. capillary waves preceding a large-amplitude wave, flat film regions, and wave humps. The outcomes of droplet impact on these different regions are then compared and the differences discussed. The effect of varying the film flow rate, droplet speed, and droplet size on a number of droplet impact outcomes is also studied and the results further compared with those from uncontrolled as well as quiescent liquid films. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).

  1. Fluctuation emergence of bubbles under a rapid drop of pressure in a liquid

    NASA Astrophysics Data System (ADS)

    Pavlov, P. A.; Vinogradov, V. E.

    2015-07-01

    Explosive cavitation at the front of a negative-pressure pulse has been studied. Conditions for the emergence of bubbles by the mechanism of homogeneous fluctuation nucleation were identified. Those conditions feature a high rate of the phase transformation, with the vapor formation process being concentrated in time at the instant of attainment of a certain pressure. Under such conditions, the liquid cavitation strength is maximal, and its value can be predicted by the homogeneous nucleation theory. For implementing the regime with high nucleation frequency, a method based on passing a negative-pressure pulse across a region with locally heated liquid was employed. The cavitation kinetics was examined by monitoring the perturbation of the heat flow from a miniature heater. The experimental data were generalized using the theory of explosive vapor formation in shock boiling mode. A method for calculating the cavitation in the regime of the fluctuation emergence of bubbles was approbated.

  2. Crystal deposition patterns from evaporating sessile drops on superhydrophobic and liquid impregnated surfaces

    NASA Astrophysics Data System (ADS)

    McBride, Samantha; Dash, Susmita; Varanasi, Kripa; Varanasi Group Team

    2016-11-01

    Accelerated corrosion and scale buildup near oceans is partially due to deposition of salty sea mist onto ships, cars, and building structures. Many corrosion preventative measures are expensive, time intensive, and/or have negative impacts on the environment. One solution is the use of specific surfaces that are engineered for scale resistance. In this work, we show that we can delay crystallization and reduce scale adhesion on specifically engineered liquid impregnated surfaces (LIS). The low contact angle hysteresis of the LIS results in a sliding contact line of the saline droplet during evaporation, and the elevated energy barrier of the smooth liquid interface delays crystallization. Experiments conducted on surfaces with different wettability also demonstrate the corresponding influence in controlling salt crystal polymorphism.

  3. Influence of Solute Charge and Pyrrolidinium Ionic Liquid Alkyl Chain Length on Probe Rotational Reorientation Dynamics

    SciTech Connect

    Guo, Jianchang; Mahurin, Shannon Mark; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W

    2014-01-01

    In recent years, the effect of molecular charge on the rotational dynamics of probe solutes in room temperature ionic liquids (RTILs) has been a subject of growing interest. For the purpose of extending our understanding of charged solute behavior within RTILs, we have studied the rotational dynamics of three illustrative xanthene fluorescent probes within a series of N-alkylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cnmpyr][Tf2N]) RTILs with different n-alkyl chain lengths (n = 3, 4, 6, 8, or 10) using time-resolved fluorescence anisotropy decay. The rotational dynamics of the neutral probe rhodamine B dye lies between the stick and slip boundary conditions due to the influence of specific hydrogen bonding interactions. The rotation of the negatively-charged sulforhodamine 640 is slower than that of its positively-charged counterpart rhodamine 6G. An analysis based upon Stokes-Einstein-Debye hydrodynamics indicates that SR640 adheres to stick boundary conditions due to specific interactions, whereas the faster rotation of R6G is attributed to weaker electrostatic interactions. No dependence of the rotational dynamics on the solvent alkyl chain length was observed for any of the three dyes, suggesting that the specific interactions between dyes and RTILs are independent of this solvent parameter.

  4. Rotational and translational diffusion of spin probes in room-temperature ionic liquids.

    PubMed

    Mladenova, Boryana Y; Chumakova, Natalia A; Pergushov, Vladimir I; Kokorin, Alexander I; Grampp, Günter; Kattnig, Daniel R

    2012-10-11

    We have studied the rotational and translational diffusion of the spin probe 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPOL) in five imidazolium-based room-temperature ionic liquids (RTILs) and glycerol by means of X-band electron paramagnetic resonance (EPR) spectroscopy. Rotational correlation times and rate constants of intermolecular spin exchange have been determined by analysis of the EPR line shape at various temperatures and spin probe concentrations. The model of isotropic rotational diffusion cannot account for all spectral features of TEMPOL in all RTILs. In highly viscous RTILs, the rotational mobility of TEMPOL differs for different molecular axes. The translational diffusion coefficients have been calculated from spin exchange rate constants. To this end, line shape contributions stemming from Heisenberg exchange and from the electron-electron dipolar interaction have been separated based on their distinct temperature dependences. While the Debye-Stokes-Einstein law is found to apply for the rotational correlation times in all solvents studied, the dependence of the translational diffusion coefficients on the Stokes parameter T/η is nonlinear; i.e., deviations from the Stokes-Einstein law are observed. The effective activation energies of rotational diffusion are significantly larger than the corresponding values for translational motion. Effects of the identity of the RTIL cations and anions on the activation energies are discussed.

  5. Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian (Technical Monitor); Ozar, B.; Cetegen, B. M.; Faghri, A.

    2004-01-01

    An experimental study of heat transfer into a thin liquid film on a rotating heated disk is described. Deionized water was introduced at the center of a heated. horizontal disk with a constant film thickness and uniform radial velocity. Radial distribution of the disk surface temperatures was measured using a thermocouple/slip ring arrangement. Experiments were performed for a range of liquid flow rates between 3.01pm and 15.01pm. The angular speed of the disk was varied from 0 rpm to 500 rpm. The local heat transfer coefficient was determined based on the heat flux supplied to the disk and the temperature difference between the measured disk surface temperature and the liquid entrance temperature onto the disk. The local heat transfer coefficient was seen to increase with increasing flow rate as well as increasing angular velocity of the disk. Effect of rotation on heat transfer was largest for the lower liquid flow rates with the effect gradually decreasing with increasing liquid flow rates. Semi-empirical correlations are presented in this study for the local and average Nusselt numbers.

  6. Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian (Technical Monitor); Ozar, B.; Cetegen, B. M.; Faghri, A.

    2004-01-01

    An experimental study of heat transfer into a thin liquid film on a rotating heated disk is described. Deionized water was introduced at the center of a heated. horizontal disk with a constant film thickness and uniform radial velocity. Radial distribution of the disk surface temperatures was measured using a thermocouple/slip ring arrangement. Experiments were performed for a range of liquid flow rates between 3.01pm and 15.01pm. The angular speed of the disk was varied from 0 rpm to 500 rpm. The local heat transfer coefficient was determined based on the heat flux supplied to the disk and the temperature difference between the measured disk surface temperature and the liquid entrance temperature onto the disk. The local heat transfer coefficient was seen to increase with increasing flow rate as well as increasing angular velocity of the disk. Effect of rotation on heat transfer was largest for the lower liquid flow rates with the effect gradually decreasing with increasing liquid flow rates. Semi-empirical correlations are presented in this study for the local and average Nusselt numbers.

  7. Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate

    NASA Technical Reports Server (NTRS)

    Collings, E. W.; Markworth, A. J.; Mccoy, J. K.; Saunders, J. H.

    1990-01-01

    Results are presented of a study of the splat-quench solidification of small, freely falling liquid drops of the alloy Nitronic 40W, which were allowed to impact on a solid, planar, horizontal substrate. The principal variable was the substrate material, with substrates of copper, alumina and fused quartz being used. The shapes of the solidified splats were correlated with a simplified model for the energetics of the splatting process and with the thermal conductivity of the substrate. The measured results are qualitatively in agreement with theoretical predictions, and suggestions are offered for a more comprehensive model of splat-quench solidification. A relationship between sessile droplet diameter and parent wire diameter is also presented and discussed.

  8. Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate

    NASA Technical Reports Server (NTRS)

    Collings, E. W.; Markworth, A. J.; Mccoy, J. K.; Saunders, J. H.

    1990-01-01

    Results are presented of a study of the splat-quench solidification of small, freely falling liquid drops of the alloy Nitronic 40W, which were allowed to impact on a solid, planar, horizontal substrate. The principal variable was the substrate material, with substrates of copper, alumina and fused quartz being used. The shapes of the solidified splats were correlated with a simplified model for the energetics of the splatting process and with the thermal conductivity of the substrate. The measured results are qualitatively in agreement with theoretical predictions, and suggestions are offered for a more comprehensive model of splat-quench solidification. A relationship between sessile droplet diameter and parent wire diameter is also presented and discussed.

  9. Ionic liquid-based single drop microextraction of ultra-trace copper in food and water samples before spectrophotometric determination.

    PubMed

    Wen, Xiaodong; Deng, Qingwen; Guo, Jie

    2011-09-01

    In this work, room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]PF6) was used as extractant in single drop microextraction (SDME). The traditionally volatile organic extractants were substituted by this green reagent, which changed SDME preconcentration into environmentally friendly method, relatively. After this pretreatment, ultra-trace copper in water and food samples could be accurately detected by spectrophotometer. This study was focused on the improvement of the analytical performance of spectrophotometric determination, expanding its applications. The influence factors relevant to IL-SDME, such as absorption spectra of complex, drop volume of RTIL, stirring rate and time, concentration of chelating agent, pH, and salt effect were studied systematically. Under the optimal conditions, the limit of detection (LOD) was 0.15 μg L(-1) with an enhancement factor (EF) of 33. The proposed method was green, simple, rapid, sensitive, and cost-efficient. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A new coupling of ionic liquid based-single drop microextraction with tungsten coil electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Wen, Xiaodong; Deng, Qingwen; Wang, Jiwei; Yang, Shengchun; Zhao, Xia

    2013-03-01

    In this work, an improved method of ionic liquid based-single drop microextraction (IL-SDME) preconcentration was firstly coupled with tungsten coil electrothermal atomic absorption spectrometry (W-coil ET-AAS) detection. The new coupling was developed and applied for the determination of ultra-trace cadmium. Experimental parameters influencing the performance of IL-SDME as well as instrumental conditions were studied systematically, including IL-drop volume, chelating agent concentration, pH, stirring rate and time, heating program of W-coil ET-AAS, flow rate of carrier gas. Under the optimal conditions, the limit of detection (LOD) for cadmium was 0.015 μg L-1 (sampling amount on W-coil was 10 μL). The sensitivity enhancement factor was 42, while the improvement factor of LOD was 33. The established method was applied to determine cadmium in standard reference materials of rice and real water samples successfully. The developed IL-SDME-W-coil ET-AAS coupling represents a simple, green and highly sensitive method for cadmium determination.

  11. Constraining spacetime nonmetricity with neutron spin rotation in liquid 4He

    NASA Astrophysics Data System (ADS)

    Lehnert, Ralf; Snow, W. M.; Xiao, Zhi; Xu, Rui

    2017-09-01

    General spacetime nonmetricity coupled to neutrons is studied. In this context, it is shown that certain nonmetricity components can generate a rotation of the neutron's spin. Available data on this effect obtained from slow-neutron propagation in liquid helium are used to constrain isotropic nonmetricity components at the level of 10-22 GeV. These results represent the first limit on the nonmetricity ζ (6) 2S000 parameter as well as the first measurement of nonmetricity inside matter.

  12. Usefulness of a rotation-revolution mixer for mixing powder-liquid reline material.

    PubMed

    Yamaga, Yoshio; Kanatani, Mitsugu; Nomura, Shuichi

    2015-01-01

    The purpose of this study was to evaluate the distribution of bubbles, degree of mixing, flowability and mechanical strength of powder-liquid reline material by manually and with a rotation-revolution (planetary) mixer, and to determine the usefulness of a rotation-revolution mixer for this application. Powder-liquid reline material (Mild Rebaron, GC, Tokyo, Japan) was mixed with a powder to liquid ratio of 1:0.62 according to the manufacturer's instruction. Two methods were used to mix it: mixed by manually ("manual-mixing") and automatically with a rotation-revolution mixer (Super Rakuneru Fine, GC, Tokyo, Japan; "automatic-mixing"). Disc-shaped specimens, 30 mm in diameter and 1.0mm in thickness, were used to observe the distribution of bubbles in at 10× magnifications. Flowability tests were carried out according to the JIS T6521 for denture base hard reline materials. A three point bending test was carried out by a universal testing machine. Elastic modulus and flexural stress at the proportional limit were calculated. A median of 4 bubbles and inhomogeneous were observed in manual-mixed specimens. However, no bubbles and homogeneous were observed in automatic-mixed specimens. Flowability was within the JIS range in all mixing conditions and did not differ significantly across conditions. The elastic modulus was the same for manual-mixed and automatic-mixed specimens. On the other hand, the flexural stress at the proportional limit differed significantly between manual-mixed and automatic-mixed specimens. The results confirm that rotation-revolution mixer is useful for mixing powder-liquid reline material. Automatic-mixing may be recommended for clinical practice. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. Relaxation of rotational angular momentum of polar diatomic molecules in simple liquids

    SciTech Connect

    Padilla, A.; Perez, J.

    2007-03-15

    The relaxation processes of rotational angular momentum of polar diatomic molecules diluted in simple liquids are analyzed by applying a non-Markovian relaxation theory to the study of the binary time autocorrelation function of the angular momentum. This non-Markovian theory was previously applied to the study of the infrared and Raman spectroscopy, and also to the analysis of the rotational energy relaxation processes. We have obtained non-Markovian evolution equations for the two-time j-level angular momentum correlation components involved in the angular momentum correlation function. In these equations, the time-dependent angular momentum transfer rates and the pure orientational angular transfer rates are given in terms of the binary time autocorrelation function of the diatomic-solvent anisotropic interaction. The non-Markovian evolution equations converge to Markovian ones in the long time limit, reaching the angular momentum transfer rates in the usual time-independent form. Alternative time scales for the angular relaxation processes, relative to the individual rotational processes as well as to the global decay correlations, are introduced and analyzed. The theory is applied to the study of the angular momentum relaxation processes of HCl diluted in liquid SF{sub 6}, a system for which rotational energy relaxation and infrared and Raman spectroscopy was previously analyzed in the scope of the same theory.

  14. Oscillation-induced sand dunes in a liquid-filled rotating cylinder

    NASA Astrophysics Data System (ADS)

    Dyakova, Veronika; Kozlov, Victor; Polezhaev, Denis

    2016-12-01

    The dynamics of granular medium in a liquid-filled horizontal cylinder with a time-varying rotation rate is experimentally studied. When the cylinder is purely rotated, the granular medium develops an annular layer near the cylindrical wall. The interface between fluid and sand is smooth and axisymmetric. The time variation of the rotation rate initiates the azimuthal oscillation of the liquid in the cylinder's frame of reference and provokes the onset of quasisteady relief in the form of regular dunes. The stability of the axisymmetric sand surface and dynamics of regular dunes are examined. It is found that the ripple formation is provoked by the quasisteady instability of the Stokes boundary layer. In the range of high Reynolds numbers, the ripple formation occurs at a constant critical Shields number θc≃0.05 . The spatial period of the relief is not sensitive to the fluid viscosity and granule diameter; it is determined by the amplitude of oscillation and ratio between the oscillation frequency and mean rotation rate. Long-term experiments show that there are forward and backward azimuthal drifts of dunes. An initial analysis of the issues related to the dune migration is provided.

  15. Coalescence of a Drop inside another Drop

    NASA Astrophysics Data System (ADS)

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur

    2016-11-01

    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  16. Light-induced rotation of dye-doped liquid crystal droplets.

    PubMed

    Manzo, C; Paparo, D; Marrucci, L; Jánossy, I

    2006-05-01

    We investigate both theoretically and experimentally the rotational dynamics of micrometric droplets of dye-doped and pure liquid crystal induced by circularly and elliptically polarized laser light. The droplets are dispersed in water and trapped in the focus of the laser beam. Since the optical torque acting on the molecular director is known to be strongly enhanced in light-absorbing dye-doped materials, the question arises whether a similar enhancement takes place also for the overall optical torque acting on the whole droplets. We searched for such enhancement by measuring and comparing the rotation speed of dye-doped droplets induced by a laser beam having a wavelength either inside or outside the dye absorption band, and also comparing it with the rotation of pure liquid crystal droplets. No enhancement was found, confirming that photoinduced dye effects are only associated with an internal exchange of angular momentum between orientational and translational degrees of freedom of matter. Our result provides also direct experimental proof of the existence of a photoinduced stress tensor in the illuminated dye-doped liquid crystal. Finally, peculiar photoinduced dynamical effects are predicted to occur in droplets in which the molecular director is not rigidly locked to the flow, but so far they could not be observed.

  17. How to reduce resistance to movement of alkane liquid drops across tilted surfaces without relying on surface roughening and perfluorination.

    PubMed

    Urata, Chihiro; Masheder, Benjamin; Cheng, Dalton F; Hozumi, Atsushi

    2012-12-21

    Alkylsilane-derived monolayer-covered surfaces generally display a reasonably good level of hydrophobicity but poor oleophobicity. Here, we demonstrate that the physical attributes of alkylsilane-derived surfaces (liquid-like or solid-like) are dependent on the alkyl chain length and density, and these factors subsequently have significant influence upon the dynamic dewetting behavior toward alkanes (C(n)H(2n+2), where n = 7-16). In this study, we prepared and characterized hybrid films through a simple sol-gel process based on the cohydrolysis and co-condensation of a mixture of a range of alkyltriethoxysilanes (C(n)H(2n+1)Si(OEt)(3), where n = 3, 6, 8, 10, 12, 14, 16, and 18) and tetramethoxysilane (TMOS). Surprisingly, when the carbon number (C(n)) of alkyl chain was 10 and below, the produced hybrid films were all smooth, highly transparent, and showed negligible contact angle (CA) hysteresis. On these hybrid surfaces, 5 μL drops of alkanes (n-hexadecane, n-dodecane, and n-decane) could move easily at low tilt angles (<5°) without pinning. On the other hand, when the C(n) exceeded 12, both transparency and mobility of probe liquids significantly worsened. In the former case, TMOS molecules played key roles in both forming continuous films (as a binder) and improving flexibility of alkyl chains (as a molecular spacer), resulting in the smooth liquid-like surfaces. Silylation of the hybrid film and subsequent dynamic CA measurements proved the presence of silanol groups on the outermost surfaces and demonstrated that the dynamic dewettability of hybrid films worsened as packing densities increased. Additionally, solvent effects (high affinity) between the alkyl chains and alkane liquids imparted a more liquid-like character to the surface. Thanks to these simple physical effects, the resistance to the alkane droplet motion across tilted surfaces was markedly reduced. With the longer carbon chains, the chain mobility was strictly inhibited by mutual interactions

  18. Drop Tower Experiments on Non-isothermal Reorientation of Cryogenic Liquids

    NASA Astrophysics Data System (ADS)

    Kulev, Nikolai; Dreyer, Michael

    2010-10-01

    Capillary driven surface oscillations of liquid argon (Tsat = 87.3 K at 1,013 hPa) have been investigated in a partly filled right circular cylinder under non-isothermal boundary conditions. The oscillations take place during the reorientation from the normal gravity surface position towards a new position upon step reduction of gravity. The situation is similar to the end of thrust in a rocket tank when the cold propellant moves along the warmer tank wall driven by capillary forces. The aim was to investigate the influence of the temperature difference between the slightly subcooled cryogenic liquid and the superheated cylinder wall on the oscillations and their characteristics in a single-component, two-phase system. Axial wall temperature gradients of averaged 0.15 K/mm - 1.93 K/mm above the normal gravity surface position were implemented. A general dependence of the reorientation behavior on the gradient value was observed, concerning the apparent contact line behavior, the frequency and damping of the oscillations of the free surface center point, and the apparent contact angle. The behavior of the ullage pressure was found to follow the behavior of the contact line.

  19. Drop Tower Setup to Study the Diffusion-driven Growth of a Foam Ball in Supersaturated Liquids in Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Vega-Martínez, Patricia; Rodríguez-Rodríguez, Javier; van der Meer, Devaraj; Sperl, Matthias

    2017-08-01

    The diffusion-driven growth of a foam ball is a phenomenon that appears in many manufacturing process as well as in a variety of geological phenomena. Usually these processes are greatly affected by gravity, as foam is much lighter than the surrounding liquid. However, the growth of the foam free of gravity effects is still very relevant, as it is connected to manufacturing in space and to the formation of rocks in meteorites and other small celestial bodies. The aim of this research is to investigate experimentally the growth of a bubble cloud growing in a gas-supersaturated liquid in microgravity conditions. Here, we describe the experiments carried out in the drop tower of the Center of Applied Space Technology and Microgravity (ZARM). In few words, a foam seed is formed with spark-induced cavitation in carbonated water, whose time evolution is recorded with two high-speed cameras. Our preliminary results shed some light on how the size of the foam ball scales with time, in particular at times much longer than what could be studied in normal conditions, i.e. on the surface of the Earth, where the dynamics of the foam is already dominated by gravity after several milliseconds.

  20. Drop Tower Setup to Study the Diffusion-driven Growth of a Foam Ball in Supersaturated Liquids in Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Vega-Martínez, Patricia; Rodríguez-Rodríguez, Javier; van der Meer, Devaraj; Sperl, Matthias

    2017-05-01

    The diffusion-driven growth of a foam ball is a phenomenon that appears in many manufacturing process as well as in a variety of geological phenomena. Usually these processes are greatly affected by gravity, as foam is much lighter than the surrounding liquid. However, the growth of the foam free of gravity effects is still very relevant, as it is connected to manufacturing in space and to the formation of rocks in meteorites and other small celestial bodies. The aim of this research is to investigate experimentally the growth of a bubble cloud growing in a gas-supersaturated liquid in microgravity conditions. Here, we describe the experiments carried out in the drop tower of the Center of Applied Space Technology and Microgravity (ZARM). In few words, a foam seed is formed with spark-induced cavitation in carbonated water, whose time evolution is recorded with two high-speed cameras. Our preliminary results shed some light on how the size of the foam ball scales with time, in particular at times much longer than what could be studied in normal conditions, i.e. on the surface of the Earth, where the dynamics of the foam is already dominated by gravity after several milliseconds.

  1. Special topics reports for the reference tandem mirror fusion breeder: liquid metal MHD pressure drop effects in the packed bed blanket. Vol. 1

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wong, C.P.C.

    1984-09-01

    Magnetohydrodynamic (MHD) effects which result from the use of liquid metal coolants in magnetic fusion reactors include the modification of flow profiles (including the suppression of turbulence) and increases in the primary loop pressure drop and the hydrostatic pressure at the first wall of the blanket. In the reference fission-suppressed tandem mirror fusion breeder design concept, flow profile modification is a relatively minor concern, but the MHD pressure drop in flowing the liquid lithium coolant through an annular packed bed of beryllium/thorium pebbles is directly related to the required first wall structure thickness. As such, it is a major concern which directly impacts fissile breeding efficiency. Consequently, an improved model for the packed bed pressure drop has been developed. By considering spacial averages of electric fields, currents, and fluid flow velocities the general equations have been reduced to simple expressions for the pressure drop. The averaging approach results in expressions for the pressure drop involving a constant which reflects details of the flow around the pebbles. Such details are difficult to assess analytically, and the constant may eventually have to be evaluated by experiment. However, an energy approach has been used in this study to bound the possible values of the constant, and thus the pressure drop. In anticipation that an experimental facility might be established to evaluate the undetermined constant as well as to address other uncertainties, a survey of existing facilities is presented.

  2. Coupling of translational and rotational motion in chiral liquids in electromagnetic and circularly polarised electric fields.

    PubMed

    English, Niall J; Kusalik, Peter G; Woods, Sarah A

    2012-03-07

    Non-equilibrium molecular dynamics simulations of R and S enantiomers of 1,1-chlorofluoroethane, both for pure liquids and racemic mixtures, have been performed at 298 K in the absence and presence of both electromagnetic (e/m) and circularly polarised electric (CP) fields of varying frequency (100-2200 GHz) and intensity (0.025-0.2 V Å(-1) (rms)). Significant non-thermal field effects were noted in the coupling of rotational and translational motion; for instance, in microwave and far-infrared (MW/IR) e/m fields, marked increases in rotational and translational diffusion vis-à-vis the zero-field case took place at 0.025-0.1 V Å(-1) (rms), with a reduction in translational diffusion vis-à-vis the zero-field case above 0.1 V Å(-1) (rms) above 100 GHz. This was due to enhanced direct coupling of rotational motion with the more intense e/m field at the ideal intrinsic rotational coupling frequency (approximately 700 GHz) leading to such rapidly oscillating rotational motion that extent of translational motion was effectively reduced. In the case of CP fields, rotational and translational diffusion was also enhanced for all intensities, particularly at approximately 700 GHz. For both MW/IR and CP fields, non-linear field effects were evident above around 0.1 V Å(-1) (rms) intensity, in terms of enhancements in translational and rotational motion. Simulation of 90-10 mol. % liquid mixtures of a Lennard-Jones solvent with R and S enantiomer-solutes in MW/IR and CP fields led to more limited promotion of rotational and translational diffusion, due primarily to increased frictional effects. For both e/m and CP fields, examination of the laboratory- and inertial-frame auto- and cross-correlation functions of velocity and angular velocity demonstrated the development of explicit coupling with the external fields at the applied frequencies, especially so in the more intense fields where nonlinear effects come into play. For racemic mixtures, elements of the laboratory

  3. Liquid crystal chiroptical polarization rotators for the near-UV region: theory, materials, and device applications

    NASA Astrophysics Data System (ADS)

    Saulnier, D.; Taylor, B.; Marshall, K. L.; Kessler, T. J.; Jacobs, S. D.

    2013-09-01

    The helical structure of a chiral-nematic liquid crystal (CLC) material produces a number of interesting optical properties, including selective reflection and optical rotatory power. To take advantage of the high optical rotation near the selective reflection peak for applications in the UV, either large concentrations of chiral components or those possessing very large helical twisting powers (HTP's) are necessary. It is difficult to find chiral twisting agents with high HTP that do not degrade the UV transmission. We report what we believe to be the first experimental observation of extraordinarily high optical rotation (<30°/μm) in the near UV for a long-pitch (13.8-μm) CLC mixture composed of the low-birefringence nematic host ZLI-1646 doped with a low concentration (e.g., 1 wt%) of the chiral dopant CB 15. This experimental finding is verified theoretically using a mathematical model developed by Belyakov, which improves on de Vries' original model for optical rotation far from the selective reflection peak by taking into account the nonlinearity of optical rotatory power as a function of liquid crystal (LC) layer thickness. Using this model, the optical rotation at λ = 355 nm for the 1% CB 15/ZLI-1646 mixture is determined computationally, with the results in agreement with experimental data obtained by evaluating a series of wedged cells using an areal mapping, Hinds Exicor 450XT Mueller Matrix Polarimeter. This finding now opens a path to novel LC optics for numerous near-UV applications. One such envisioned application for this class of materials would be UV distributed polarization rotators (UV-DPR's) for largeaperture, high-peak-power lasers.

  4. A SURVEY OF THE PARAMETER SPACE OF THE COMPRESSIBLE LIQUID DROP MODEL AS APPLIED TO THE NEUTRON STAR INNER CRUST

    SciTech Connect

    Newton, W. G.; Gearheart, M.; Li Baoan

    2013-01-15

    We present a systematic survey of the range of predictions of the neutron star inner crust composition, crust-core transition densities and pressures, and density range of the nuclear 'pasta' phases at the bottom of the crust provided by the compressible liquid drop model in light of the current experimental and theoretical constraints on model parameters. Using a Skyrme-like model for nuclear matter, we construct baseline sequences of crust models by consistently varying the density dependence of the bulk symmetry energy at nuclear saturation density, L, under two conditions: (1) that the magnitude of the symmetry energy at saturation density J is held constant, and (2) J correlates with L under the constraint that the pure neutron matter (PNM) equation of state (EoS) satisfies the results of ab initio calculations at low densities. Such baseline crust models facilitate consistent exploration of the L dependence of crustal properties. The remaining surface energy and symmetric nuclear matter parameters are systematically varied around the baseline, and different functional forms of the PNM EoS at sub-saturation densities implemented, to estimate theoretical 'error bars' for the baseline predictions. Inner crust composition and transition densities are shown to be most sensitive to the surface energy at very low proton fractions and to the behavior of the sub-saturation PNM EoS. Recent calculations of the energies of neutron drops suggest that the low-proton-fraction surface energy might be higher than predicted in Skyrme-like models, which our study suggests may result in a greatly reduced volume of pasta in the crust than conventionally predicted.

  5. Rotations

    Treesearch

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  6. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    PubMed

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley.

  7. Indirect spectrophotometric determination of ultra trace amounts of selenium based on dispersive liquid-liquid microextraction-solidified floating organic drop.

    PubMed

    Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Nozohor, Mahnaz

    2013-12-01

    A novel dispersive liquid-liquid microextraction-solidified floating organic drop (DLLME-SFOD) method combined with fiber optic-linear array detection spectrophotometry has been developed for the indirect determination of selenium. The method is based on the oxidation of the I(-) to iodine by inorganic Se(IV). The produced I2 reacts with the excess of I(-) ions in acidic media to give triiodide ions. The I3(-) is then extracted into 1-undecanol by DLLME-SFOD upon the formation of an ion pair with cetyltrimethylammonium cation. The extracted ion pair is determined by measuring its absorption at 360 nm. The absorbance signal is proportional to the selenium concentration in the aqueous phase. Under optimum conditions, the method provided an enrichment factor of 250 with a detection limit of 16.0 μg L(-1) and a linear dynamic range of 40.0-1000.0 μg L(-1). The relative standard deviation was found to be 2.1% (n=7) at 100.0 μg L(-1) concentration level. The method was successfully applied to th e determination of selenium in water samples and selenium plus tablet. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    PubMed

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r(2): 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  9. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.

    PubMed

    Karadaş, Cennet; Kara, Derya

    2017-04-01

    A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL(-1) for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.

  10. Preconcentration of organochlorine pesticides in aqueous samples by dispersive liquid-liquid microextraction based on solidification of floating organic drop after SPE with multiwalled carbon nanotubes.

    PubMed

    Mirzaei, Mohammad; Rakh, Mojgan

    2014-01-01

    SPE joined with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) as a novel technique combined with GC with electron-capture detection has been developed as a preconcentration technique for the determination of organochlorine pesticides (OCPs) in water samples. Aqueous samples were loaded onto multiwalled carbon nanotubes as sorbent. After the elution of the desired compounds from the sorbent by using acetone, the DLLME-SFO technique was performed on the obtained solution. Variables affecting the performance of both steps such as sample solution flow rate, breakthrough volume, type and volume of the elution, type and volume of extraction solvent and salt addition were studied and optimized. The new method provided an ultra enrichment factor (8280-28221) for nine OCPs. The calibration curves were linear in the range of 0.5-1000 ng/L, and the LODs ranged from 0.1-0.39 ng/L. The RSD, for 0.01 μg/L of OCPs, was in the range of 1.39-13.50% (n = 7). The recoveries of method in water samples were 70-113%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Determination of boron in water samples by dispersive liquid-liquid microextraction based on the solidification of a floating organic drop coupled with a fluorimetric method.

    PubMed

    Peng, Guilong; He, Qiang; Li, Haifang; Mmereki, Daniel; Lu, Ying; Zheng, Yongzan; Zhong, Zhihui; Lin, Jin-Ming

    2016-04-07

    In this work, a new, rapid and reliable method for the determination of boron in water samples by dispersive liquid-liquid microextraction based on the solidification of a floating organic drop (DLLME-SFO) prior to fluorescence spectra analysis was developed. As a result of its complexation with boric acid, the method relies on the enhancement of the fluorescence (λex = 350 nm, λem = 373 nm) of chromotropic acid. The influences of DLLME-SFO parameters, including the extraction solvent type and its volume, pH, the disperser solvent type and its volume, and salt effects were investigated. Under the optimized conditions, the limit of detection was 0.11 ng L(-1), with a preconcentration factor of 86 times. The calibration curve was linear in the range of 0-40 nM. The proposed method has also been successfully applied to analyze real water samples and the relative recoveries of water samples ranged from 86.9 to 93.2%.

  12. Solid-Phase Extraction Followed by Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop for the Determination of Parabens.

    PubMed

    Hashemi, Beshare; Shamsipur, Mojtaba; Fattahi, Nazir

    2015-09-01

    A dispersive liquid-liquid microextraction based on solidification of floating organic drop method combined with solid-phase extraction (500-mg C18 sorbent) was developed for preconcentration and determination of some parabens. The experimental parameters influencing the extraction efficiency such as the type of extraction and disperser solvents, as well as their volumes, breakthrough volume, flow rate and salt addition were studied and optimized. The optimum experimental conditions found included: sample volume, 100 mL; KCl concentration, 1% (w/v); extraction solvent (1-undecanol) volume, 20 µL and disperser solvent (acetone) volume, 250 µL. Under the optimum experimental conditions, calibration graphs were linear in the range of 1-200 µg L(-1) with limits of detection ranged from 0.3 to 1.7 µg L(-1). The relative standard deviations were in the range of 1.2-3.1% (n = 5). The enrichment factors and absolute recoveries of parabens in different matrices were 245-1886 and 9.0-69.8%, respectively. The method was applied to the simultaneous determination of parabens in different matrices. The relative recoveries from water, shampoo and mouth rinse samples, which have been spiked at different levels of parabens, were 87.83-112.25%, 82.80-108.40% and 90.10-97.60%, respectively. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Indirect spectrophotometric determination of ultra trace amounts of selenium based on dispersive liquid-liquid microextraction-solidified floating organic drop

    NASA Astrophysics Data System (ADS)

    Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Nozohor, Mahnaz

    2013-12-01

    A novel dispersive liquid-liquid microextraction-solidified floating organic drop (DLLME-SFOD) method combined with fiber optic-linear array detection spectrophotometry has been developed for the indirect determination of selenium. The method is based on the oxidation of the I- to iodine by inorganic Se(IV). The produced I2 reacts with the excess of I- ions in acidic media to give triiodide ions. The I3- is then extracted into 1-undecanol by DLLME-SFOD upon the formation of an ion pair with cetyltrimethylammonium cation. The extracted ion pair is determined by measuring its absorption at 360 nm. The absorbance signal is proportional to the selenium concentration in the aqueous phase. Under optimum conditions, the method provided an enrichment factor of 250 with a detection limit of 16.0 μg L-1 and a linear dynamic range of 40.0-1000.0 μg L-1. The relative standard deviation was found to be 2.1% (n = 7) at 100.0 μg L-1 concentration level. The method was successfully applied to the determination of selenium in water samples and selenium plus tablet.

  14. Separation/preconcentration and determination of quercetin in food samples by dispersive liquid-liquid microextraction based on solidification of floating organic drop -flow injection spectrophotometry.

    PubMed

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Amirkavei, Mooud

    2015-02-01

    A new dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFOD)-flow injection spectrophotometry (FI) method for the separation and preconcentration of trace amounts of quercetin was developed. 1-Undecanol and methanol was used as the extraction and disperser solvent, respectively. The factors influencing the extraction by DLLME-SFOD such as the volume of the extraction and disperser solvents, pH and concentration of salt were optimized. The optimal conditions were found to be; volume of the extraction solvent, 80 μL; the volume of the disperser solvent, 100 μL; and the pH of the sample, 3. The linear dynamic range and detection limit were 5.0 × 10(-8)-5.0 × 10(-7) mol L(-1) and 1 × 10(-8) mol L(-1), respectively. The relative standard deviation (R.S.D.) at 6.1 × 10(-8) mol L(-1) level of quercetin (n = 10) was found to be 2.8 %. The method was successfully applied to the determination of quercetin in the apple, grape, onion and tomato samples. Figureᅟ

  15. Anode-cathode voltage drop of a rotating arc in an auto-expansion circuit-breaker filled with SF6-N2 mixtures

    SciTech Connect

    Beauvois, V.; Legros, W.; Scarpa, P.

    1995-12-31

    In auto-expansion circuit-breakers, the power dissipated by the arc itself heats the surrounding gas, inducing a pressure build up in the {open_quotes}upstream volume{close_quotes} and giving rise to a gas flow which blows the extinguishing arc. Moreover, in the studied apparatus, a magnetic field, due to the current flowing in a coil, provides arc radial stability and leads to arc rotation which efficiently reduces electrode erosion. In such a circuit-breaker, it is obvious that arc-gas and arc-electrode interactions are essential and govern. the energy balance in the plasma region. This paper deals more specifically with the phenomena occurring at the arc-electrode interfaces. It relates results of experiments carried out to determine the anode-cathode voltage drop when the apparatus is filled with different SF6-N2 mixtures.

  16. Controlling the Mobility of the Fluid Interface of Moving Gas Bubbles or Liquid Drops by Using Micellar Solutions of Surfactants

    NASA Technical Reports Server (NTRS)

    Maldarelli, Charles; Papageorgiou, Demetrios

    1998-01-01

    Microgravity processes must rely on mechanisms other than buoyancy to move bubbles or droplets from one region to another in a continuous liquid phase. One suggested method is thermocapillary migration in which a temperature gradient is applied to the continuous phase. A significant and as yet unresolved impediment to the use of thermocapillary migration to direct bubble or drop motion is that these migrations can be significantly retarded by the adsorption onto the fluid particle surface of surface active impurities unavoidably present in the continuous or (if the particle is a liquid) droplet phases. The focus of our research was to develop a theory for remobilizing fluid particle interfaces retarded by a surfactant impurity in an effort to make more viable the use of thermocapillary migrations for the management of bubbles and drops in microgravity. We postulated that a surfactant at high bulk concentration which kinetically exchanges rapidly with the surface can restore interface mobility. The scaling arguments along with a discussion of the previous literature is reviewed in the context of the scaling framework. The specific objectives of the research were twofold. The first was to prove the remobilization theory by studying a model problem. As the mechanism for remobilization is independent of the force which drives the particle, the fluid particle shape and the presence of fluid inertia, we chose the simplest model consisting of a spherical bubble rising steadily by buoyancy in creeping flow. We solved the hydrodynamic and surfactant transport equations for rapid kinetic exchange to demonstrate that as the concentration increases, the Marangoni retardation at first increases (the low k behavior) and then decreases (the high k behavior). The second objective was to develop a method to determine the kinetic rate constants of a surfactant molecule, since this information is necessary to select surfactants which will exchange rapidly enough relative to the

  17. Controlling the Mobility of the Fluid Interface of Moving Gas Bubbles or Liquid Drops by Using Micellar Solutions of Surfactants

    NASA Technical Reports Server (NTRS)

    Maldarelli, Charles; Papageorgiou, Demetrios

    1998-01-01

    Microgravity processes must rely on mechanisms other than buoyancy to move bubbles or droplets from one region to another in a continuous liquid phase. One suggested method is thermocapillary migration in which a temperature gradient is applied to the continuous phase. A significant and as yet unresolved impediment to the use of thermocapillary migration to direct bubble or drop motion is that these migrations can be significantly retarded by the adsorption onto the fluid particle surface of surface active impurities unavoidably present in the continuous or (if the particle is a liquid) droplet phases. The focus of our research was to develop a theory for remobilizing fluid particle interfaces retarded by a surfactant impurity in an effort to make more viable the use of thermocapillary migrations for the management of bubbles and drops in microgravity. We postulated that a surfactant at high bulk concentration which kinetically exchanges rapidly with the surface can restore interface mobility. The scaling arguments along with a discussion of the previous literature is reviewed in the context of the scaling framework. The specific objectives of the research were twofold. The first was to prove the remobilization theory by studying a model problem. As the mechanism for remobilization is independent of the force which drives the particle, the fluid particle shape and the presence of fluid inertia, we chose the simplest model consisting of a spherical bubble rising steadily by buoyancy in creeping flow. We solved the hydrodynamic and surfactant transport equations for rapid kinetic exchange to demonstrate that as the concentration increases, the Marangoni retardation at first increases (the low k behavior) and then decreases (the high k behavior). The second objective was to develop a method to determine the kinetic rate constants of a surfactant molecule, since this information is necessary to select surfactants which will exchange rapidly enough relative to the

  18. Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples.

    PubMed

    Vidal, Lorena; Chisvert, Alberto; Canals, Antonio; Salvador, Amparo

    2010-04-15

    A user-friendly and inexpensive ionic liquid-based single-drop microextraction (IL-SDME) procedure has been developed to preconcentrate trace amounts of six typical UV filters extensively used in cosmetic products (i.e., 2-hydroxy-4-methoxybenzophenone, isoamyl 4-methoxycinnamate, 3-(4'-methylbenzylidene)camphor, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 4-dimethylaminobenzoate and 2-ethylhexyl 4-methoxycinnamate) from surface water samples prior to analysis by liquid chromatography-ultraviolet spectrophotometry detection (LC-UV). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the SDME procedure, which were later optimized by means of a circumscribed central composite design. The studied variables were drop volume, sample volume, agitation speed, ionic strength, extraction time and ethanol quantity. Owing to particularities, ionic liquid type and pH of the sample were optimized separately. Under optimized experimental conditions (i.e., 10 microL of 1-hexyl-3-methylimidazolium hexafluorophosphate, 20 mL of sample containing 1% (v/v) ethanol and NaCl free adjusted to pH 2, 37 min extraction time and 1300 rpm agitation speed) enrichment factors up to ca. 100-fold were obtained depending on the target analyte. The method gave good levels of repeatability with relative standard deviations varying between 2.8 and 8.8% (n=6). Limits of detection were found in the low microg L(-1) range, varying between 0.06 and 3.0 microg L(-1) depending on the target analyte. Recovery studies from different types of surface water samples collected during the winter period, which were analysed and confirmed free of all target analytes, ranged between 92 and 115%, showing that the matrix had a negligible effect upon extraction. Finally, the proposed method was applied to the analysis of different water samples (taken from two beaches, two swimming pools and a

  19. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  20. A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids.

    PubMed

    Araque, Juan C; Daly, Ryan P; Margulis, Claudio J

    2016-05-28

    When solutes are small compared to the size of the ions in an ionic liquid, energetic heterogeneities associated with charge enhanced (stiff) and charge depleted (soft) nanoenvironments are sampled. In a recent article [J. C. Araque et al., J. Phys. Chem. B 119(23), 7015-7029 (2015)], we explored large deviations from Stokes-Einstein translational diffusion caused by such a heterogeneity. The current article is set to explore the effect of soft and stiff solvent environments (i.e., structure) on OH-bond rotations in the case of water and small alcohols in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (Im1,2 (+)NTf2 (-)). Is solute rotational dynamics heterogeneous? If so, are solute rotations and translations coupled in the sense that stiff and soft solvent environments hinder or speed up both types of dynamics? For the systems studied here, there appears to be a clear connection between translations, rotations, and stiff/soft solvent environments. We also discuss interesting asymmetries of the correlation between solutes with anions and cations.

  1. A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids

    NASA Astrophysics Data System (ADS)

    Araque, Juan C.; Daly, Ryan P.; Margulis, Claudio J.

    2016-05-01

    When solutes are small compared to the size of the ions in an ionic liquid, energetic heterogeneities associated with charge enhanced (stiff) and charge depleted (soft) nanoenvironments are sampled. In a recent article [J. C. Araque et al., J. Phys. Chem. B 119(23), 7015-7029 (2015)], we explored large deviations from Stokes-Einstein translational diffusion caused by such a heterogeneity. The current article is set to explore the effect of soft and stiff solvent environments (i.e., structure) on OH-bond rotations in the case of water and small alcohols in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([" separators="Im1,2 + ][" separators="NTf2- ]). Is solute rotational dynamics heterogeneous? If so, are solute rotations and translations coupled in the sense that stiff and soft solvent environments hinder or speed up both types of dynamics? For the systems studied here, there appears to be a clear connection between translations, rotations, and stiff/soft solvent environments. We also discuss interesting asymmetries of the correlation between solutes with anions and cations.

  2. Capabilities and limitations of dispersive liquid-liquid microextraction with solidification of floating organic drop for the extraction of organic pollutants from water samples.

    PubMed

    Vera-Avila, Luz E; Rojo-Portillo, Tania; Covarrubias-Herrera, Rosario; Peña-Alvarez, Araceli

    2013-12-17

    Dispersive liquid-liquid microextraction with solidification of floating organic drop (DLLME-SFO) is one of the most interesting sample preparation techniques developed in recent years. Although several applications have been reported, the potentiality and limitations of this simple and rapid extraction technique have not been made sufficiently explicit. In this work, the extraction efficiency of DLLME-SFO for pollutants from different chemical families was determined. Studied compounds include: 10 polycyclic aromatic hydrocarbons, 5 pesticides (chlorophenoxy herbicides and DDT), 8 phenols and 6 sulfonamides, thus, covering a large range of polarity and hydrophobicity (LogKow 0-7, overall). After optimization of extraction conditions using 1-dodecanol as extractant, the procedure was applied for extraction of each family from 10-mL spiked water samples, only adjusting sample pH as required. Absolute recoveries for pollutants with LogKow 3-7 were >70% and recovery values within this group (18 compounds) were independent of structure or hydrophobicity; the precision of recovery was very acceptable (RSD<12%) and linear behavior was observed in the studied concentration range (r(2)>0.995). Extraction recoveries for pollutants with LogKow 1.46-2.8 were in the range 13-62%, directly depending on individual LogKow values; however, good linearity (r(2)>0.993) and precision (RSD<6.5%) were also demonstrated for these polar solutes, despite recovery level. DLLME-SFO with 1-dodecanol completely failed for extraction of compounds with LogKow≤1 (sulfa drugs), other more polar extraction solvents (ionic liquids) should be explored for highly hydrophilic pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.

    PubMed

    Chang, Yu-Cheng; Jen, Tai-Hsiang; Ting, Chih-Hung; Huang, Yi-Pai

    2014-02-10

    A 2D/3D switchable and rotatable autostereoscopic display using a high-resistance liquid-crystal (Hi-R LC) lens array is investigated in this paper. Using high-resistance layers in an LC cell, a gradient electric-field distribution can be formed, which can provide a better lens-like shape of the refractive-index distribution. The advantages of the Hi-R LC lens array are its 2D/3D switchability, rotatability (in the horizontal and vertical directions), low driving voltage (~2 volts) and fast response (~0.6 second). In addition, the Hi-R LC lens array requires only a very simple fabrication process.

  4. The flow of a thin liquid film on a stationary and rotating disk. II - Theoretical prediction

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1990-01-01

    The existing theoretical models are improved and a systematic procedure to compute the free surface flow of a thin liquid film is suggested. The solutions for axisymmetric radial flow on a stationary horizontal disk and for the disk rotating around its axis are presented. The theoretical predictions are compared with the experimental data presented in Part I of this report. The analysis shows results for both supercritical and subcritical flows and the flow structure in the vicinity of a hydraulic jump which isolates these two flow types. The detailed flow structure in a hydraulic jump was computed and shown to contain regions of separation including a 'surface roller'. The effects of surface tension are found to be important near the outer edge of the disk where the fluid experiences a free fall. At other locations, the surface tension is negligible. For a rotating disk, the frictional resistance in the angular direction is found to be as important as that in the radial direction.

  5. Drop coalescence studies

    NASA Technical Reports Server (NTRS)

    Anikumar, A. V.; Wang, T. G.

    1990-01-01

    The objective of this experimental study is to understand the detailed mechanics of the coalescence of liquid drops. The experiments are being conducted in an immiscible acoustic levitator with degassed water as the host medium. Typically, a quasineutrally buoyant drop of silicon oil mixed with bromobenzene is levitated close to the velocity node of the levitator. A second drop of the same liquid is introduced, and as it slowly seeks levitation position, the drops coalesce. Coalescence is delayed until the host film between drops is completely drained. Following coalescence, the excess surface energy in the coalesced drop is dissipated through shape oscillations. The final events of film rupture followed by drop coalescence are rapid and are photographically studied with high-speed video (1000 fps). The laser-induced fluorescence technique is used to visualize the dynamics of host film drainage. The details of the coalescence mechanics are presented.

  6. A New Open-Source Nuclear Equation of State Framework based on the Liquid-Drop Model with Skyrme Interactions

    NASA Astrophysics Data System (ADS)

    da Silva Schneider, Andre; Roberts, Luke; Ott, Christian

    2017-01-01

    The equation of state (EOS) of dense matter is an essential ingredient for numerical simulations of many astrophysical phenomena. We implement a modular open-source Fortran 90 code to construct the EOS of hot dense matter for astrophysical applications. For high density matter we use a non-relativistic liquid-drop description of nuclei that includes surface effects in a single nucleus approximation (SNA). The model is based on the work of Lattimer and Swesty and has been generalized to accommodate most Skyrme parametrizations available in the literature. Low density matter is described as an ensemble of nuclei in nuclear statistical equilibrium (NSE). The transition between the SNA and NSE regimes is performed via a continuous function that smoothly blends their Helmholtz free energy. To account for the existence of 2 solar mass neutron stars, we extend the formalism to allow for a stiffening of the EOS at densities above 3 times nuclear saturation density, where the properties of matter are presently poorly constrained. We study how different Skyrme parametrizations affect the EOS, neutron star mass-radius relationships, and the spherically symmetric collapse and post-bounce supernova evolution of massive stars.

  7. A New Open-Source Nuclear Equation of State Framework based on the Liquid-Drop Model with Skyrme Interactions

    NASA Astrophysics Data System (ADS)

    da Silva Schneider, Andre; Roberts, Luke F.; Ott, Christian D.

    2016-09-01

    The equation of state (EoS) of dense matter is an essential ingredient for numerical simulations of many astrophysical phenomena. We implement a modular open-source Fortran 90 code to construct EoS of hot dense matter for astrophysical applications. For high density matter we use a non-relativistic liquid-drop description of nuclei that includes surface effects in a single nucleus approximation (SNA). The model is based on the work of Lattimer and Swesty and has been generalized to accommodate most Skyrme parametrizations available in the literature. Low density matter is described as an ensemble of nuclei in nuclear statistical equilibrium (NSE). The transition between the two regimes is performed via a continuous function that smoothly blends their Helmholtz free energy. To account for the existence of 2 solar mass neutron stars, we extend the formalism to allow for a stiffening of the EoS at densities above 3 times nuclear saturation density, where the properties of matter are presently poorly constrained. We study how different Skyrme parametrizations affect the EoS, neutron star mass-radius relationships, and the spherically symmetric collapse and post-bounce supernova evolution of massive stars.

  8. Operating characteristics of rotating beds

    SciTech Connect

    Keyvani, M.; Gardner, N.C.

    1988-01-01

    Vapor-liquid contacting in high gravitational fields offers prospects for significant reductions in the physical size, capital, and operating costs of packed towers. Pressure drops, power requirements, mass transfer coefficients and liquid residence time distributions are reported for a rotating bed separator. The beds studied were rigid, foamed aluminum, with specific surface areas ranging from 650 to 3000 m{sup 2}/m{sup 2}. Gravitational fields were varied from 50 to 300g.

  9. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane has been attached to the tank to lift and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  10. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift and rotate the tank before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  11. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. The tank has been lifted and rotated by crane and lowered back onto the flatbed truck for transport to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  12. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. Construction workers check lines as a crane is attached to the tank to lift and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  13. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift the tank and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  14. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift and rotate the tank before delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  15. Multipulse polarisation selective spectroscopy of rotational and vibrational responses of molecules in a liquid

    SciTech Connect

    Nikiforov, V G

    2013-02-28

    The amplitude control of time-resolved optical responses in a liquid is theoretically analysed under nonresonant irradiation of the system by a train of femtosecond pulses with parallel and orthogonal polarisations. The control parameters, specifying the excitation scenarios, are the duration of pulses, their relative intensities, polarisation, and the delays between the pulses. It is shown that the choice of specific excitation scenarios transfers the system into a state in which only one response is detected from a set of responses of coherent intramolecular Raman active vibrational modes, coherent molecular librations and orientational rotations. (laser spectroscopy)

  16. Single-drop liquid-phase microextraction for the determination of hypericin, pseudohypericin and hyperforin in biological fluids by high performance liquid chromatography.

    PubMed

    Gioti, Eleni M; Skalkos, Dimitris C; Fiamegos, Yiannis C; Stalikas, Constantine D

    2005-11-04

    The analysis of hypericin, pseudohypericin (collectively called in this study hypericins) and hyperforin in biological fluids is reported using single-drop liquid-phase microextraction in conjunction with HPLC-UV-fluorescence detection. A new option for analysis of the active principle constituents in biological samples is proposed, reducing the steps required prior to analysis. There are several parameters which determine the mass transfer such as the extraction solvent, drop and sample volumes, extraction time and temperature, pH and ionic strength, stirring rate and depth of needle tip in the bulk solution. These parameters were chosen to optimize the performance in the current study. The method was validated with respect to precision, accuracy and specificity. The intra-day precision values were below 2.3% for the high concentration level of control samples and 6.2% for the low level. The respective inter-day precision values were calculated to be below 4.4 and 7.1%, respectively, for the two concentration levels. Accuracy of the method, calculated as relative error, ranged from -2.6 to 7.0%. It was demonstrated that as long as the extraction procedure is consistently applied, quantitative analysis is performed accurately and reproducibly in human urine and plasma samples. Limits of quantitation (LOQs) in urine were calculated to be 3, 6 and 12 ng/ml for pseudohypericin, hypericin and hyperforin, respectively. Slightly higher limits were measured in plasma, i.e. 5, 12 and 20 ng/ml, for the respective analytes.

  17. Rotational dynamics of coumarin-153 and 4-aminophthalimide in 1-ethyl-3-methylimidazolium alkylsulfate ionic liquids: effect of alkyl chain length on the rotational dynamics.

    PubMed

    Das, Sudhir Kumar; Sarkar, Moloy

    2012-01-12

    Rotational dynamics of two neutral organic solutes, coumarin-153 (C-153) and 4-aminophthalimide (AP), with only the latter having hydrogen-bond-donating ability, has been investigated in a series of 1-ethyl-3-methylimidazolium alkyl sulfate ionic liquids as a function of temperature. The ionic liquids differ only in the length of the linear alkyl side chain (alkyl = ethyl, butyl, hexyl, and octyl) on the anionic moiety. The present study has been undertaken to examine the role of alkyl side chains on the rotational dynamics of the two solutes in these ionic liquids. Analysis of the results using Stokes-Einstein-Debye hydrodynamic theory indicates that the rotational dynamics of C-153 lies between the stick and slip boundary condition in the ethyl analogue and finally reaches subslip condition as in case of the octyl substituent. The observed rotational behavior of C-153 has been explained on the basis of an increase in the size of the solvent, which offers lower friction for solute rotation. On the other hand, AP shows superstick behavior in the ethyl system and exceeds the stick limit in the octyl derivative. Superstick behavior of AP has been attributed to the specific hydrogen-bonding interaction between AP and the sulfate moiety. Proton NMR investigation confirms the hydrogen-bonding interaction between the N-H hydrogen of AP and the ionic liquid. The decrease in rotational coupling constant values for AP with increasing length of alkyl side chains has been attributed to the decrease in the solute-solvent-specific interaction with an increase in the alkyl side chain length on the sulfate moiety.

  18. Muscle activity response to external moment during single-leg drop landing in young basketball players: the importance of biceps femoris in reducing internal rotation of knee during landing.

    PubMed

    Fujii, Meguru; Sato, Haruhiko; Takahira, Naonobu

    2012-01-01

    Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL) injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring) were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001). When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes. Key pointsLower activity of the external rotator muscle of the knee, which inhibits internal rotation of the knee, may be the reason why females tend to show a large internal rotation of the knee during drop landing.Externally applied internal rotation moment of

  19. Headspace in-drop derivatization of carbonyl compounds for their analysis by high-performance liquid chromatography-diode array detection.

    PubMed

    Pillai, Aradhana K K V; Gautam, Khileshwari; Jain, Archana; Verma, Krishna K

    2009-01-26

    A simple and rapid method has been reported for the determination of carbonyl compounds involving sample preparation by headspace single drop microextraction using 1-butanol as extraction solvent containing 2,4-dinitrophenylhydrazine for hydrazone formation, and direct transfer of the drop into the injector for high-performance liquid chromatography with diode array detection. An angle-cut polytetrafluoroethylene sleeve, 3mm x 0.5mm, was fixed at the tip of the syringe needle and this allowed the use of 7 microL drop of solvent drop for extraction and derivatization. The procedure has been optimized with respect to suitable solvent for headspace drop formation, drop volume, concentration of reagent, sample temperature, reaction time, and headspace-to-sample volume ratio. The method has been validated when rectilinear relationship was obtained between the amount of analyte and peak area ratio of hydrazones in the range 0.01-15 mg L(-1), the correlation coefficient over 0.996-0.999, and the limit of detection in the range 1.7-24.1 microg L(-1). Spiked real samples have been analyzed with adequate accuracy, and application has been demonstrated of the method for analysis of carbonyl compounds formed as oxidation products.

  20. Transient current response of iron-nickel-chromium alloy rotating cylindrical electrodes scribed with a dropped stylus

    SciTech Connect

    Odegard, C.A.; Bronson, A.

    1997-10-01

    The scribing technique was used to investigate dissolution and repassivation kinetics of three iron-nickel-chromium (Fe-Ni-Cr) electrodes immersed in a 0.01 M potassium chloride (KCl) + 0.01 M sulfuric acid (H{sub 2}SO{sub 4}) electrolyte. The study related the extent of surface deformation with the electrochemical response, as a result of a Vickers diamond impacting a rotating cylindrical electrode (RCE). The transient current response and transient impact force (F{sub imp}) of the stylus were measured simultaneously. For a given alloy, the scratch current density (i{sub s}) was observed to remain unchanged with respect to F{sub imp} of the stylus from 44 N to 432 N. Activation charge density (q{sub act}) was observed to remain constant with F{sub imp}, whereas the repassivation charge density (q{sub rep}) increased with increasing F{sub imp}. Surface deformation of the alloys was discussed according to the principles of microindentation of alloys, which showed that electrochemical responses for the alloys corresponded with the plastically deformed zone associated with the scratch. Alloy composition affected i{sub s}, q{sub act}, and q{sub rep} for the F{sub imp} values measured.

  1. Instant freezing of impacting wax drops

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Alexandre; Virot, Emmanuel; Rubinstein, Shmuel

    2015-11-01

    We present the impact of hot liquid drops of wax on surfaces whose temperature is below the solidifying temperature of the drops. During the fall the drops remain mostly liquid, but upon impact, their temperature quickly decreases resulting in the solidification of the drop. Depending on the impact energy, drops size and the temperature difference between the drop and the surface this results in plethora of solid shapes: simple lenses, triangular drops, spherical caps and popped popcorn shapes.

  2. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection.

    PubMed

    Leong, Mei-I; Huang, Shang-Da

    2008-11-21

    A simple dispersive liquid-liquid microextraction (DLLME) method based on solidification of a floating organic drop (DLLME-SFO) technique combined with gas chromatography/electron-capture detection (GC/ECD) or gas chromatography/mass spectrometry (GC/MS) has been developed. The proposed method is simple, low in cost, and of high precision. It overcomes the most important problem in DLLME, the high-toxic solvent used. Halogenated organic compounds (HOCs) in water samples were determined as the model compounds. The parameters optimized for the DLLME-SFO technique were as follows: A mixture of 0.5 mL acetone, containing 10 microL 2-dodecanol (2-DD-OH), was rapidly injected by syringe into the 5 mL water sample. After centrifugation, the fine 2-DD-OH droplets (8+/-0.5 microL) were floated at the top of the screwcap test tube. The test tube was then cooled in an ice bath. After 5 min the 2-DD-OH solvent had solidified and was then transferred into a conical vial; it melted quickly at room temperature and 3 microL (for GC/ECD) or 2 microL (for GC/MS) of it was injected into a gas chromatograph for analysis. The limit of detection (LOD) for this technique was 0.005-0.05microgL(-1) for GC/ECD and was 0.005-0.047 microgL(-1) for GC/MS, respectively. The linear range of the calibration curve of DLLME-SFO was from 0.01 to 500 microgL(-1) with a coefficient of estimation (r2)>0.996 for GC/ECD and was from 0.02 to 500 microgL(-1) with a coefficient of estimation (r2)>0.996 for GC/MS.

  3. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop for extraction of organochlorine pesticides in water samples.

    PubMed

    Leong, Mei-I; Huang, Shang-Da

    2009-11-06

    A new simple and rapid dispersive liquid-liquid microextraction method has been developed for the extraction and analysis of organochlorine pesticides (OCPs) in water samples. The method is based on the solidification of a floating organic drop (DLLME-SFO) and is combined with gas chromatography/electron capture detection (GC/ECD). Very little solvent is required in this method. The disperser solvent (200microL acetonitrile) containing 10microL hexadecane (HEX) is rapidly injected by a syringe into the 5.0mL water sample. After centrifugation, the fine HEX droplets (6+/-0.5microL) float at the top of the screw-cap test tube. The test tube is then cooled in an ice bath. After 5min, the HEX solvent solidifies and is then transferred into a conical vial, where it melts quickly at room temperature, and 1microL of it is injected into a gas chromatograph for analysis. Under optimum conditions, the enrichment factors and extraction recoveries are high and range between 37-872 and 82.9-102.5%, respectively. The linear range is wide (0.025-20microgL(-1)), and the limits of detection are between 0.011 and 0.11microgL(-1) for most of the analytes. The relative standard deviation (RSD) for 1microgL(-1) of OCPs in water was in the range of 5.8-8.8%. The performance of the method was gauged by analyzing samples of lake and tap water.

  4. Identification of dominant flow structures in rapidly rotating convection of liquid metals using Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Horn, S.; Schmid, P. J.; Aurnou, J. M.

    2016-12-01

    The Earth's metal core acts as a dynamo whose efficiency in generating and maintaining the magnetic field is essentially determined by the rotation rate and the convective motions occurring in its outer liquid part. For the description of the primary physics in the outer core the idealized system of rotating Rayleigh-Bénard convection is often invoked, with the majority of studies considering only working fluids with Prandtl numbers of Pr ≳ 1. However, liquid metals are characterized by distinctly smaller Prandtl numbers which in turn result in an inherently different type of convection. Here, we will present results from direct numerical simulations of rapidly rotating convection in a fluid with Pr ≈ 0.025 in cylindrical containers and Ekman numbers as low as 5 × 10-6. In this system, the Coriolis force is the source of two types of inertial modes, the so-called wall modes, that also exist at moderate Prandtl numbers, and cylinder-filling oscillatory modes, that are a unique feature of small Prandtl number convection. The obtained flow fields were analyzed using the Dynamic Mode Decomposition (DMD). This technique allows to extract and identify the structures that govern the dynamics of the system as well as their corresponding frequencies. We have investigated both the regime where the flow is purely oscillatory and the regime where wall modes and oscillatory modes co-exist. In the purely oscillatory regime, high and low frequency oscillatory modes characterize the flow. When both types of modes are present, the DMD reveals that the wall-attached modes dominate the flow dynamics. They precess with a relatively low frequency in retrograde direction. Nonetheless, also in this case, high frequency oscillations have a significant contribution.

  5. Low-density solvent-based dispersive liquid-liquid microextraction combined with single-drop microextraction for the fast determination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Li, Xiaoyi; Xue, Aifang; Chen, Hao; Li, Shengqing

    2013-03-08

    A new format of fast three-phase microextraction by combining low-density solvent-based dispersive liquid-liquid microextraction (DLLME) and single-drop microextraction (SDME) was for the first time developed for the determination of chlorophenols in environmental water samples. The extraction procedure includes a 2 min DLLME pre-extraction and a 10 min SDME back-extraction. A portion of low-density solvent (toluene) was used as organic phase and injected into the aqueous sample (donor phase) with methanol as disperser. The analytes were pre-extracted into the organic phase within 2 min. A thin layer of the organic phase formed on the top of the aqueous phase by a 2 min centrifugation. Then a drop of acceptor solution was introduced into the upper layer and SDME was carried out for the back-extraction. The stirring step typically involved in SDME and LLLME is avoided with the benefit of the high speed and efficiency of DLLME pre-extraction. After extraction, the acceptor drop was withdrawn and directly injected into a high performance liquid chromatography instrument with ultraviolet detection for analysis. Five chlorophenols, 4-chlorophenol, 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol, were selected as model compounds for developing and evaluating the method. Factors affecting extraction efficiency were studied, including the organic solvent, the disperser solvent, the composition of donor phase and acceptor phase, the volume of acceptor microdrop, and the extraction time. At optimal conditions, the method showed low detection limit (0.016-0.084 μg/L) for the five chlorophenols, good linearity (from 0.2-250 to 1.0-250 μg/L, depending on the analytes) and repeatability (RSD below 8.2, n=5). The simple, fast, and efficient feature of the proposed method was demonstrated by the analysis of chlorophenols in environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Ionic liquid-based single drop microextraction combined with electrothermal atomic absorption spectrometry for the determination of manganese in water samples.

    PubMed

    Manzoori, Jamshid L; Amjadi, Mohammad; Abulhassani, Jafar

    2009-02-15

    Room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C(4)MIM][PF(6)], was used as an alternative to volatile organic solvents in single drop microextraction-electrothermal atomic absorption spectrometry (SDME-ETAAS). Manganese was extracted from aqueous solution into a drop of the ionic liquid after complextaion with 1-(2-thiazolylazo)-2-naphthol (TAN) and the drop was directly injected into the graphite furnace. Several variables affecting microextraction efficiency and ETAAS signal, such as pyrolysis and atomization temperature, pH, TAN concentration, extraction time, drop volume and stirring rate were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enhancement factor were 0.024 microg L(-1) and 30.3, respectively. The relative standard deviation (RSD) for five replicate determinations of 0.5 microg L(-1) Mn(II) was 5.5%. The developed method was validated by the analysis of a certified reference material (NIST SRM 1643e) and applied successfully to the determination of manganese in several natural water samples.

  7. Development of simultaneous measurement system of birefringence, optical rotational power, and transmission spectra for chiral liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Feng, Zhengyu; Ishikawa, Ken

    2016-05-01

    A novel experimental setup used to measure the important optical properties of liquid crystal materials is proposed. The setup allows us to measure electric-field-induced birefringence, optical rotational power, and transmission spectra consecutively. This system can be widely applied to characterize liquid crystal materials including blue phases, ferroelectric liquid crystals, and other chiral phases. We adopted this system to study the phase transition behavior of a V-shape switching ferroelectric liquid crystal mixture and made an important correction of experimental results previously reported by Sandhya et al. [ Europhys. Lett. 90, 56005 (2010)]. This finding proves the advantage of this system compared with the measurement method using individual systems.

  8. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    NASA Technical Reports Server (NTRS)

    Basu, S.; Cetegen, B. M.

    2005-01-01

    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

  9. Computational and experimental investigation of the drag reduction and the components of pressure drop in horizontal slug flow using liquids of different viscosities

    SciTech Connect

    Daas, Mutaz; Bleyle, Derek

    2006-03-01

    Computational and experimental investigation in 10-cm ID horizontal pipes have been carried out utilizing carbon dioxide as the gas phase and two types of oil with different viscosities; namely 0.0025Pas and 0.05Pas, as the liquid phase. The influence of oil viscosity on the magnitude of total pressure drop and each of its components as well as the effectiveness of a drag reducing additive (DRA, CDR WS 500M flow improver) in decreasing the pressure loss was investigated in two-phase oil-gas slug flow. The effects of changing oil viscosity on the contribution of frictional and accelerational components to total pressure drop in slug flow were also examined and analyzed. Computations of accelerational and frictional components of pressure drop were performed. The accelerational component of pressure drop was dominant in the 0.0025Pas oil while the frictional component had significant contributions in the 0.05Pas oil. Despite the fact that the magnitude of drag reduction was higher in the 0.05Pas oil, the DRA was more effective in reducing the total pressure drop and its components in the 0.0025Pas oil. (author)

  10. Liquid-metal flow in a finite-length cylinder with a high-frequency rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Witkowski, L. Martin; Marty, P.; Walker, J. S.

    2001-06-01

    A liquid-metal flow driven by a rotating magnetic field in a finite-length cylinder is studied numerically as a function of the field frequency. In the high-frequency case, the magnetic field is expelled from the liquid-metal except in a skin-depth layer along the side and top walls of the cylinder. In the corner region, where the skin-depth layers intersect, the body force exhibits a large positive and negative azimuthal component as well as inward radial and axial components which are rotational. The flows for various frequencies are compared to the low-frequency flow.

  11. Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal

    SciTech Connect

    Basu, Rajratan Kinnamon, Daniel; Garvey, Alfred

    2015-05-18

    A nematic liquid crystal (LC) is doped with dilute concentrations of pristine monolayer graphene (GP) flakes, and the LC + GP hybrids are found to exhibit a dramatic increase in the dielectric anisotropy. Electric field-dependent conductance studies reveal that the graphene flakes follow the nematic director that mechanically rotates on increasing an applied electric field. Further studies show that the π–π electron stacking, between the graphene's honeycomb structure and the LC's benzene rings, stabilizes pseudo-nematic domains that collectively amplify the dielectric anisotropy by improving the orientational order parameter in the nematic phase. These anisotropic domains interact with the external electric field, resulting in a nonzero dielectric anisotropy in the isotropic phase as well. The enhancement in dielectric anisotropy, due to the LC–graphene coupling, is found to have subsequent positive impacts on the LC's orientational threshold field and elasticity that allows the nematic director to respond quicker on switching the electric field off.

  12. The motion of a thin liquid layer on the outer surface of a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Morad, A. M.; Zhukov, M. Yu.

    2015-01-01

    We derive the shallow water equations describing the motion of a thin liquid film on the outer surface of a rotating cylinder. These equations are an analogue of the modified Boussinesq equations describing shallow water flows with constant vorticity. The standard multi-scale methods are employed to construct asymptotic equations in the long-wave approximation. These asymptotic equations are analyzed using the hodograph method. It is found that for the particular case of a dispersionless irrotational flow, the equations describing flows on the outer surface of a cylinder reduce to elliptic equations. Numerical evaluation of the exact solutions obtained shows that the asymptotic equations possess a rich variety of solutions representing various wave patterns.

  13. Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Guervilly, Céline; Cardin, Philippe

    2016-12-01

    We study nonlinear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals ($Pr\\in[10^{-2},10^{-1}]$). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than $10^{-6}$, which is continuous at the onset (supercritical bifurcation) and consists of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of $10^{-8}$. On the strong branch, the Reynolds number of the flow is greater than $10^3$, and a strong zonal flow with multiple jets develops, even close to the nonlinear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis ($Ek=10^{-6}$, $Pr=10^{-2}$). Nonlinear oscillations are observed near the onset of convection for $Ek=10^{-7}$ and $Pr=10^{-1}$.

  14. Subcritical thermal convection of liquid metals in a rotating sphere using a quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Cardin, P.; Guervilly, C.

    2016-12-01

    We study non-linear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals (10-2-1). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than 10-6, which is continuous at the onset (supercritical bifurcation) and consists of the interaction of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of 10-8. On the strong branch, the Reynolds number of the flow is greater than 1000, and a strong zonal flow with multiple jets develops, even close to the non-linear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis (E = 10-6, Pr =10-2). Non-linear oscillations are observed near the onset of convection for E = 10-7 and Pr = 10-1.

  15. Electric field induced rotation of polymer cholesteric liquid crystal flakes: mechanisms and applications

    NASA Astrophysics Data System (ADS)

    Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.; Lambropoulos, John C.

    2002-12-01

    Electric fields can induce motion of polymer cholesteric liquid crystal (pCLC) flakes suspended in a fluid medium. The platelet-shaped pCLC flakes with a Grandjean texture show strong selective reflection when lying flat in the plane of a conventional cell. As their orientation with respect to normally incident light changes, their selective reflection color shifts toward the blue and diminishes until the flakes are no longer easily visible beyond 7-12° of rotation. Reproducibility and control of motion has been observed in moderately conductive host fluid. Flakes in such hosts do not respond to a DC electric field, but they rotate 90° in an AC field within a given frequency band. The response times and frequency regions for motion depend partially on the field magnitude, the dielectric properties of the host fluid and the flake geometry. We observe flakes reorienting in less than 500 ms in an electric field of 0.17 Vrms/μm, while sub-second reorientation is seen in fields as low as 5x10-2 Vrms/μm. This response time is comparable with typical electronic-paper applications, but with a significantly lower electric field. Displays using pCLC flakes would not require backlighting, sheet polarizers, color filters or alignment layers. Numerous additional applications for pCLC flakes are envisioned, including filters, polarizers, and spatial light modulators.

  16. Trace analysis of three antihistamines in human urine by on-line single drop liquid-liquid-liquid microextraction coupled to sweeping micellar electrokinetic chromatography and its application to pharmacokinetic study.

    PubMed

    Gao, Wenhua; Chen, Yunsheng; Chen, Gaopan; Xi, Jing; Chen, Yaowen; Yang, Jianying; Xu, Ning

    2012-09-01

    A rapid and efficient dual preconcentration method of on-line single drop liquid-liquid-liquid microextraction (SD-LLLME) coupled to sweeping micellar electrokinetic chromatography (MEKC) was developed for trace analysis of three antihistamines (mizolastine, chlorpheniramine and pheniramine) in human urine. Three analytes were firstly extracted from donor phase (4 mL urine sample) adjusted to alkaline condition (0.5 M NaOH). The unionized analytes were subsequently extracted into a drop of n-octanol layered over the urine sample, and then into a microdrop of acceptor phase (100 mM H(3)PO(4)) suspended from a capillary inlet. The enriched acceptor phase was on-line injected into capillary with a height difference and then analyzed directly by sweeping MEKC. Good linear relationships were obtained for all analytes in a range of 6.25 × 10(-6) to 2.5 × 10(-4)g/L with correlation coefficients (r) higher than 0.987. The proposed method achieved limits of detections (LOD) varied from 1.2 × 10(-7) to 9.5 × 10(-7)g/L based on a signal-to-noise of 3 (S/N=3) with 751- to 1372-fold increases in detection sensitivity for analytes, and it was successfully applied to the pharmacokinetic study of three antihistamines in human urine after an oral administration. The results demonstrated that this method was a promising combination for the rapid trace analysis of antihistamines in human urine with the advantages of operation simplicity, high enrichment factor and little solvent consumption.

  17. The flow and hydrodynamic stability of a liquid film on a rotating disc

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Sung; Kim, Moon-Uhn

    2009-06-01

    The flow of a liquid film on a rotating disc is investigated in the case where a liquid is supplied at a constant flow rate. We propose thin film equations by the integral method with a simple approach to satisfy the boundary conditions on a disc and a free surface, and the results are compared with those of the Navier-Stokes equations. The radial film velocity is assumed to be a quartic profile in our analysis, whereas it was assumed to be a quadratic one, neglecting the inertia force so that the boundary conditions were not completely satisfied, in the analysis of Sisoev et al (2003 J. Fluid Mech. 229 531-54). The basic flow and its stability are analyzed using the thin film equations even in the region where the inertia force is not negligible. A local stability analysis of the flow is conducted using the linearized disturbance equations and correctly predicts Needham's simple instability criterion. The present thin film equations give a good approximation of the Navier-Stokes equations.

  18. Characterization for Cassie-Wenzel wetting transition based on the force response in the process of squeezing liquid drops by two parallel superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jian

    2016-06-01

    Application of superhydrophobic surfaces is partly limited by the escaping of the entrapped air beneath the liquid sitting on the superhydrophobic surfaces, i.e., the so-called Cassie-Wenzel wetting transition. Here, to characterize this wetting transition, a linear force response relation with certain abnormal systematic deflection showing the wetting transition information is constructed for the process of squeezing the test liquid drop by two parallel structured (superhydrophobic) surfaces. The linear force response relation is validated by replotting the experimental data from the former work. And then the wetting transition information is investigated on a numerically generated force response curve with certain errors by taking into account the liquid pressure variation during the wetting transition. Results show that the wetting transition can cause an obvious bulge on the linear force response curve. We believe that this method has a potential application in characterizing the robustness of superhydrophobic surfaces.

  19. Experiments on the Flow of a Thin Liquid Film Over a Horizontal Stationary and Rotating Disk Surface

    NASA Technical Reports Server (NTRS)

    Ozar, B.; Cetegen, B. M.; Faghri, A.

    2003-01-01

    Experiments on characterization of thin liquid films flowing over stationary and rotating disk surfaces are described. The thin liquid film was created by introducing deionized water from a flow collar at the center of an aluminum disk with a known initial film thickness and uniform radial velocity. Radial film thickness distribution was measured using a non-intrusive laser light interface reflection technique that enabled the measurement of the instantaneous film thickness over a finite segment of the disk. Experiments were performed for a range of flow rates between 3.01pm and 15.01pm, corresponding to Reynolds numbers based on the liquid inlet gap height and velocity between 238 and 1,188. The angular speed of the disk was varied from 0 rpm to 300 rpm. When the disk was stationary, a circular hydraulic jump was present in the liquid film. The liquid-film thickness in the subcritical region (down-stream of the hydraulic jump) was an order of magnitude greater than that in the supercritical region (upstream of the hydraulic jump) which was of the order of 0.3 mm. As the Reynolds number increased, the hydraulic jump migrated toward the edge of the disk. In the case of rotation, the liquid-film thickness exhibited a maximum on the disk surface. The liquid-film inertia and friction influenced the inner region where the film thickness progressively increased. The outer region where the film thickness decreased was primarily affected by the centrifugal forces. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. At high rotational speeds, spiral waves were observed on the liquid film. It was also determined that the angle of the waves which form on the liquid surface was a function of the ratio of local radial to tangential velocity.

  20. Sensitive Determination of Cd in Small-Volume Samples by Miniaturized Liquid Drop Anode Atmospheric Pressure Glow Discharge Optical Emission Spectrometry.

    PubMed

    Jamroz, Piotr; Greda, Krzysztof; Dzimitrowicz, Anna; Swiderski, Krzysztof; Pohl, Pawel

    2017-06-06

    A novel liquid drop anode (LDA) direct current atmospheric pressure glow discharge (dc-APGD) system was applied for direct determination of Cd in liquid microsamples (50 μL) by optical emission spectrometry (OES). The microdischarge was generated in open-to-air atmosphere between a solid pin type tungsten cathode and a liquid drop placed on a graphite disk anode. The arrangement of the graphite disk placed on a PTFE chip platform as well as the solid pin type cathode was simple and robust. The limit of detection (LOD) of Cd for the developed LDA-APGD-OES method was 0.20-0.40 μg L(-1), while precision (as the relative standard deviation for the repeated measurements) was within 2-5%. By using the liquid drop of 50 μL, the linearity range of 1-1000 μg L(-1) was achieved. The effect of addition of the low-molecular weight (LMW) organic compounds, easily ionized elements (EIEs), i.e., Ca, K, Mg, and Na, as well as the foreign ions (Al, Cu, Fe, Mn, Zn) to the solution on the in situ atomization and excitation processes occurred during operation of the LDA-APGD system, and the response of Cd was studied. Validation of the proposed method was demonstrated by analysis of Lobster hepatopancreas (TORT-2), pig kidney (ERM-BB186), and groundwater (ERM-CA615) certified reference materials (CRMs) and recoveries of Cd from water samples spiked with 25 μg L(-1) of Cd. Very good agreement between the found and certified values of Cd in the CRMs (the recoveries were within the range of 96.3-99.6%) indicated trueness of the method and its reliability for determination of traces of Cd. In the case of the spiked water samples, the recoveries obtained were in the range from 95.2 to 99.5%.

  1. Comprehensive quantitative analysis of Chinese patent drug YinHuang drop pill by ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry.

    PubMed

    Wong, Tin-Long; An, Ya-Qi; Yan, Bing-Chao; Yue, Rui-Qi; Zhang, Tian-Bo; Ho, Hing-Man; Ren, Tian-Jing; Fung, Hau-Yee; Ma, Dik-Lung; Leung, Chung-Hang; Liu, Zhong-Liang; Pu, Jian-Xin; Han, Quan-Bin; Sun, Han-Dong

    2016-06-05

    YinHuang drop pill (YHDP) is a new preparation, derived from the traditional YinHuang (YH) decoction. Since drop pills are one of the newly developed forms of Chinese patent drugs, not much research has been done regarding the quality and efficacy. This study aims to establish a comprehensive quantitative analysis of the chemical profile of YHDP. ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify 34 non-sugar small molecules including 15 flavonoids, 9 phenolic acids, 5 saponins, 1 iridoid, and 4 iridoid glycosides in YHDP samples, and 26 of them were quantitatively determined. Sugar composition of YHDP in terms of fructose, glucose and sucrose was examined via a high performance liquid chromatography-evaporative light scattering detector on an amide column (HPLC-NH2P-ELSD). Macromolecules were examined by high performance gel permeation chromatography coupled with ELSD (HPGPC-ELSD). The content of the drop pill's skeleton component PEG-4000 was also quantified via ultra-high performance liquid chromatography coupled with charged aerosol detector (UHPLC-CAD). The results showed that up to 73% (w/w) of YHDP could be quantitatively determined. Small molecules accounted for approximately 5%, PEG-4000 represented 68%, while no sugars or macromolecules were found. Furthermore, YHDP showed no significant differences in terms of daily dosage, compared to YinHuang granules and YinHuang oral liquid; however, it has a higher small molecules content compared to YinHuang lozenge.

  2. Ultra-trace determination of lead in water and food samples by using ionic liquid-based single drop microextraction-electrothermal atomic absorption spectrometry.

    PubMed

    Manzoori, Jamshid L; Amjadi, Mohammad; Abulhassani, Jafar

    2009-06-30

    An improved single drop microextraction procedure was developed for the preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry. Ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6], was used as an alternative to volatile organic solvents for extraction. Lead was complexed with ammonium pyrroldinedithiocarbamate (APDC) and extracted into a 7-microL ionic liquid drop. The extracted complex was directly injected into the graphite furnace. Several variables affecting microextraction efficiency and ETAAS signal, such as pyrolysis and atomization temperature, pH, APDC concentration, extraction time, drop volume and stirring rate were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enhancement factor were 0.015 microg L(-1) and 76, respectively. The relative standard deviation (RSD) for five replicate determinations of 0.2 microg L(-1) Pb was 5.2%. The developed method was validated by the analysis of certified reference materials and applied successfully to the determination of lead in several real samples.

  3. Two-phase flow boiling frictional pressure drop of liquid nitrogen in horizontal circular mini-tubes: Experimental investigation and comparison with correlations

    NASA Astrophysics Data System (ADS)

    Chen, Xingya; Chen, Shuangtao; Chen, Jun; Li, Jiapeng; Liu, Xiufang; Chen, Liang; Hou, Yu

    2017-04-01

    The two-phase flow boiling characteristics of liquid nitrogen (LN2) in horizontal circular mini-tubes were experimentally studied. Experiments were performed in a wide range of flow conditions, e.g. inlet pressure from 0.17 to 0.35 MPa, mass flux from 140 to 330 kg/m2 s, heat flux from 0.5 to 69.4 kW/m2 and tube diameters of 2.92 mm and 3.96 mm. The influences of mass flux, heat flux, and inlet pressure on the pressure drop were discussed. The results indicated that the pressure drop increases with the increasing mass flux and heat flux but decreases with the increasing inlet pressure. But the influence of heat flux on the frictional pressure drop of LN2 was weaker than mass flux and inlet pressure. The frictional pressure drop of two-phase flow of LN2 was compared with homogeneous model and several semi-empirical correlations. An improved correlation based on the Lockhart-Martinelli model, which used coefficient C as a function of Reynolds number and Weber number was proposed.

  4. Mechanics of liquid helium in a partially filled rotating dewar in low gravity with application to Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Schafer, C. F.; Lowry, S. A.

    1983-01-01

    The Gravity Probe-B spacecraft is composed largely of a liquid helium dewar containing an experiment package. It is shown that an unsymmetric liquid helium distribution in the dewar can cause unacceptably high forces, gravitational and gravity gradient forces, at the experiment location. It is further shown that for the planned spacecraft configuration and operational parameters, it is very likely that the liquid helium distribution in the dewar will be unsymmetric. The required symmetry can be attained by using higher operational spacecraft rotation rates.

  5. Influence of the fluid structure on the binding potential: Comparing liquid drop profiles from density functional theory with results from mesoscopic theory

    NASA Astrophysics Data System (ADS)

    Hughes, Adam P.; Thiele, Uwe; Archer, Andrew J.

    2017-02-01

    For a film of liquid on a solid surface, the binding potential g(h) gives the free energy as a function of the film thickness h and also the closely related (structural) disjoining pressure Π =-∂g /∂h . The wetting behaviour of the liquid is encoded in the binding potential and the equilibrium film thickness corresponds to the value at the minimum of g(h). Here, the method we developed in the work of Hughes et al. [J. Chem. Phys. 142, 074702 (2015)], and applied with a simple discrete lattice-gas model, is used with continuum density functional theory (DFT) to calculate the binding potential for a Lennard-Jones fluid and other simple liquids. The DFT used is based on fundamental measure theory and so incorporates the influence of the layered packing of molecules at the surface and the corresponding oscillatory density profile. The binding potential is frequently input in mesoscale models from which liquid drop shapes and even dynamics can be calculated. Here we show that the equilibrium droplet profiles calculated using the mesoscale theory are in good agreement with the profiles calculated directly from the microscopic DFT. For liquids composed of particles where the range of the attraction is much less than the diameter of the particles, we find that at low temperatures g(h) decays in an oscillatory fashion with increasing h, leading to highly structured terraced liquid droplets.

  6. Influence of the fluid structure on the binding potential: Comparing liquid drop profiles from density functional theory with results from mesoscopic theory.

    PubMed

    Hughes, Adam P; Thiele, Uwe; Archer, Andrew J

    2017-02-14

    For a film of liquid on a solid surface, the binding potential g(h) gives the free energy as a function of the film thickness h and also the closely related (structural) disjoining pressure Π=-∂g/∂h. The wetting behaviour of the liquid is encoded in the binding potential and the equilibrium film thickness corresponds to the value at the minimum of g(h). Here, the method we developed in the work of Hughes et al. [J. Chem. Phys. 142, 074702 (2015)], and applied with a simple discrete lattice-gas model, is used with continuum density functional theory (DFT) to calculate the binding potential for a Lennard-Jones fluid and other simple liquids. The DFT used is based on fundamental measure theory and so incorporates the influence of the layered packing of molecules at the surface and the corresponding oscillatory density profile. The binding potential is frequently input in mesoscale models from which liquid drop shapes and even dynamics can be calculated. Here we show that the equilibrium droplet profiles calculated using the mesoscale theory are in good agreement with the profiles calculated directly from the microscopic DFT. For liquids composed of particles where the range of the attraction is much less than the diameter of the particles, we find that at low temperatures g(h) decays in an oscillatory fashion with increasing h, leading to highly structured terraced liquid droplets.

  7. Conditions for Barrel and Clam-Shell Liquid Drops to Move on Bio-inspired Conical Wires.

    PubMed

    Luo, Cheng; Wang, Xiang

    2017-08-29

    It has been reported that, in a foggy environment, water drops with either barrel or clam-shell shapes are capable of self-running on conical wire-like structures, such as cactus spines, spider silk, and water striders' legs. On the other hand, the corresponding moving mechanisms are still not quite understood. For instance, it is unclear under what conditions clam-shell drops would move from the tip towards the root on a conical wire. In this work, based on the balance of forces, we derive conditions for a drop to self-transport towards or away from the root. We find that, although barrel and clam-shell drops have different shapes, these conditions are applicable to both of them, which thus provide good guidelines for developing artificial fog collectors. Furthermore, based on the derived conditions, we interpret drop movements on both hydrophilic and hydrophobic wires, with the support of experimental results on cactus spines. Finally, our results indicate that not all the cacti are able to harvest water from fog.

  8. Investigation of wetting characteristics of liquid iron on dense MgAION-based ceramics by X-ray sessile drop technique

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Matsushita, T.; Seetharaman, S.; Li, W. C.

    2006-06-01

    The wetting characteristics of liquid iron on dense MgAION-based composite ceramics were investigated using X-ray sessile drop technique. The contact angles were measured on substrates of different composites as functions of temperature and varying partial pressures of oxygen. The results with pure argon gas showed that contact angles kept almost constant in the temperature range 1823 to 1873 K. The contact angle was found to show a slight increase with increasing boron nitride (BN) content in MgAION-BN composites. These are attributed to the higher contact angle between BN substrate and liquid iron drop compared with that obtained for MgAION substrate. When the CO-CO2-Ar gas mixtures were introduced into the system, the contact angle showed an initial quick decrease followed by a slow decrease and then a period of nearly constant contact angle at a given temperature corresponding to the steady-state condition. Even in this case, BN seemed to cause an increase in the equilibrium contact angle. The equilibrium contact angle was found to decrease with increasing temperature. XRD results indicated that the substrate was oxidized and the oxidation products combined with FeO formed by the oxidation of the iron drop to from FeAl2O4 and Mg1-xFex) These were likely to form a ternary FeO-Al2O3-MgO slag or a quaternary slag by combining with B2O3. An interesting observation is that the iron drop moved away from the original site, probably due to the Marangoni effect.

  9. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a rotating disk

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.

    1992-01-01

    The results of a numerical simulation of the flow field and associated heat transfer coefficient are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation has been performed for different flow rates and rotational velocities using a three-dimensional boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an interative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow was dominated by inertia near the entrance and close to the free surface, and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhanced the heat transfer coefficient by a significant amount.

  10. Quantitative scheme for full-field polarization rotating fluorescence microscopy using a liquid crystal variable retarder

    NASA Astrophysics Data System (ADS)

    Lesoine, John F.; Youn Lee, Ji; Krogmeier, Jeffrey R.; Kang, Hyeonggon; Clarke, Matthew L.; Chang, Robert; Sackett, Dan L.; Nossal, Ralph; Hwang, Jeeseong

    2012-05-01

    We present a quantitative scheme for full-field polarization rotating fluorescence microscopy. A quarter-wave plate, in combination with a liquid crystal variable retarder, provides a tunable method to rotate polarization states of light prior to its being coupled into a fluorescence microscope. A calibration of the polarization properties of the incident light is performed in order to correct for elliptical polarization states. This calibration allows the response of the sample to linear polarization states of light to be recovered. Three known polarization states of light can be used to determine the average fluorescent dipole orientations in the presence of a spatially varying dc offset or background polarization-invariant fluorescence signal. To demonstrate the capabilities of this device, we measured a series of full-field fluorescence polarization images from fluorescent analogs incorporated in the lipid membrane of Burkitts lymphoma CA46 cells. The fluorescent lipid-like analogs used in this study are molecules that are labeled by either a DiI (1,1'-Dioctadecyl 3,3,3',3'-Tetramethylindocarbocyanine) fluorophore in its head group or a Bodipy (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) molecule in its acyl chain. A spatially varying contrast in the normalized amplitude was observed on the cell surface, where the orientation of the DiI molecules is tangential to the cell membrane. The internally labeled cellular structures showed zero response to changes in linear polarization, and the net linear polarization amplitude for these regions was zero. This instrument provides a low cost calibrated method that may be coupled to existing fluorescence microscopes to perform investigations of cellular processes that involve a change in molecular orientations.

  11. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Dynamics of formation of the liquid-drop phase of laser erosion jets near the surfaces of metal targets

    NASA Astrophysics Data System (ADS)

    Goncharov, V. K.; Kontsevoi, V. L.; Puzyrev, M. V.

    1995-03-01

    An investigation was made of laser erosion jets formed at 0.1-1.5 mm above the surfaces of Pb, Co, Ni, Sn, and Zn targets. A neodymium laser emitting rectangular pulses of 400 μs duration and of energy up to 400 J was used. The diameters, as well as the number density and volume fraction of the metal particles present in the jet, were measured. An analysis of the results showed that the metal liquid drops broke up near the surface and experienced additional evaporation because of their motion opposite to the laser beam.

  12. Dissociation of doubly charged clusters of lithium acetate: Asymmetric fission and breakdown of the liquid drop model: Dissociation of doubly charged clusters of lithium acetate

    SciTech Connect

    Shukla, Anil

    2016-06-08

    Unimolecular and collision-induced dissociation of doubly charged lithium acetate clusters, (CH3COOLi)nLi22+, demonstrated that Coulomb fission via charge separation is the dominant dissociation process with no contribution from the neutral evaporation processes for all such ions from the critical limit to larger cluster ions, although latter process have normally been observed in all earlier studies. These results are clearly in disagreement with the Rayleigh’s liquid drop model that has been used successfully to predict the critical size and explain the fragmentation behavior of multiply charged clusters.

  13. A new extended diffusion model for rotational motion of symmetric-top molecules in the liquid phase

    NASA Astrophysics Data System (ADS)

    Lascombe, J.; Besnard, M.; Maraval, P.

    1982-11-01

    In this paper, we present first a model called partially relaxed rotation model (PRR), to treat the reorientation motion of a symmetric top which rotates freely around its molecular axis with a tumbling motion relaxed according to a characteristic time τ 1. We show that this model can easily be extended to develop a 2τ model where both tumbling and spinning motion around the molecular axis are relaxed with a second characteristic time τ 2. As limiting cases one can obtain from the 2τ model, the Gordon-McClung and PRR models. Next, we illustrate the PPR and 2τ models by calculating Raman and infrared rotational spectral densities of liquid cyclopropane at room temperature. We also discuss in the PRR model the influence of the characteristic relaxation time τ 1, on the Raman rotational profile Î21( overlineν) Finally, we emphasize on the example of room-temperature liquid cyclopropane, the advantage of the PRR model to treat a E″ degenerated Raman profile with negligible Coriolis vibrational-rotational interaction. bl

  14. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties

    PubMed Central

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-01-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid–liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid–liquid materials. PMID:27185930

  15. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties

    NASA Astrophysics Data System (ADS)

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  16. Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid.

    PubMed

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad

    2017-01-25

    A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L(-1), respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%.

  17. Drop-on-demand sample introduction system coupled with the flowing atmospheric-pressure afterglow for direct molecular analysis of complex liquid microvolume samples.

    PubMed

    Schaper, J Niklas; Pfeuffer, Kevin P; Shelley, Jacob T; Bings, Nicolas H; Hieftje, Gary M

    2012-11-06

    One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed "drop-on-demand" (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (∼17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 μg/mL, without sample pretreatment, were obtained.

  18. Local heat transfer measurement with liquid crystals on rotating surfaces including non-axisymmetric cases

    NASA Technical Reports Server (NTRS)

    Metzger, D. E.; Kim, Y. K.

    1993-01-01

    An overview and summary of test methods and results are given for the problem of measuring local heat transfer on rotating surfaces that model gas turbine engine disks. Disk cavity situations generically similar to those encountered in the high pressure stage disk cooling are considered, with cooling air supplied both at or near the wheel centerline as well as through single or multiple jets impinging outboard on the wheel near the blade attachment region. In some situations provision has been made for ingestion into the disk-cavity from the gas path region radially outboard of the disk. Local heat transfer rates in all cases are determined from the color display from a thin coating of encapsulated liquid crystals sprayed onto the disk, in conjunction with use of a video camera and computer vision system. For cases with axisymmetric disk surfaces, the coated surfaces are illuminated and viewed continuously, and detailed radial distributions of local Nusselt number are obtained. For non-axisymmetric disk surfaces, such as encountered in the vicinity of bolt heads, the disk is illuminated with stroboscopic light, and a method has been developed and used to synchronize the computer frame grabber with the illumination.

  19. Dynamic ultrasonic nebulisation extraction coupled with headspace ionic liquid-based single-drop microextraction for the analysis of the essential oil in Forsythia suspensa.

    PubMed

    Yang, Jinjuan; Wei, Hongmin; Teng, Xiane; Zhang, Hanqi; Shi, Yuhua

    2014-01-01

    Ionic liquids have attracted much attention as an extraction solvent instead of traditional organic solvent in single-drop microextraction. However, non-volatile ionic liquids are difficult to couple with gas chromatography. Thus, the following injection system for the determination of organic compounds is described. To establish an environmentally friendly, simple, and effective extraction method for preparation and analysis of the essential oil from aromatic plants. The dynamic ultrasonic nebulisation extraction was coupled with headspace ionic liquid-based single-drop microextraction(UNE-HS/IL/SDME)for the extraction of essential oils from Forsythia suspense fruits. After 13 min of extraction for 50 mg sample, the extracts in ionic liquid were evaporated rapidly in the gas chromatography injector through a thermal desorption unit (5 s). The traditional extraction method was carried out for comparative study. The optimum conditions were: 3 μL of 1-methyl-3-octylimidazolium hexafluorophosphate was selected as the extraction solvent, the sample amount was 50 mg, the flow rate of purging gas was 200 mL/min, the extraction time was 13 min, the injection volume was 2 μL, and the thermal desorption temperature and time were 240 °C and 5 s respectively. Comparing with hydrodistillation (HD), the proposed method was environment friendly and efficient. The proposed method is environmentally friendly, time saving, with high efficiency and low consumption. It would extend the application range of the HS/SDME and would be useful especially for aromatic plants analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Effect of Soluble Surfactants on the Kinetics of Thinning of Liquid Bridges during Drops Formation and on Size of Satellite Droplets.

    PubMed

    Kovalchuk, Nina M; Nowak, Emilia; Simmons, Mark J H

    2016-05-24

    The results of an experimental study on thinning and breakage of liquid bridges during detachment of a drop from the tip of a capillary are presented for a series of surfactant solutions (including cationic, anionic, and nonionic surfactants) over a broad range of molecular masses, values of critical micelle concentration, and concentrations. The used experimental protocol revealed that the kinetics of the bridge thinning depends much more on the dynamics of adsorption at the surface of the drop before it destabilizes, rather than on the depletion of surfactant from the surface of the thinning bridge due to its stretching as the instability develops. The kinetics of the bridge thinning and the size of satellite droplets formed after the bridge breakage depend considerably on the surfactant concentration and the value of critical micelle concentration. It is proposed that the dynamic surface tension on the time scale of the drop formation can be used as an effective surface tension for the description of the bridge kinetics over the broad range of experimental conditions used.

  1. Rosettes, Engrailed Edges, and Star-Shaped Patterns: Between Rediscovery and Forgetfulness in the Early Accounts of Vibrating Liquid Drops Floating over Hot Surfaces.

    PubMed

    Stewart, Seán M

    2017-07-17

    Small drops of liquid brought into contact with very hot surfaces float above it as beautiful, slightly flattened spheroids without coming to the boil. An example of film boiling, drops that are sessile can often suddenly and quite unexpectedly start to oscillate forming highly symmetric patterns of surprising pulchritude. The rim of these oscillating drops take on "star-shaped" patterns with many different modes of vibration possible. Still an object of study today, their discovery, early accounts, rediscovery and ensuing controversies over claims of priority, before quietly slipping away from the collective memory of the scientific community to become all but forgotten makes for a compelling story in the early history of film boiling. The episode serves not only as a valuable reminder of the importance the history of science can play in highlighting past achievements that would otherwise remain unknown to the modern practitioner. It also provides an example of how external pressures and personal ambition can often influence the work of a scientist in their pursuit of self-recognition and acclaim amongst their peers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  3. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  4. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel

    SciTech Connect

    Wongwises, Somchai; Pipathattakul, Manop

    2006-03-01

    Two-phase flow pattern, pressure drop and void fraction in horizontal and inclined upward air-water two-phase flow in a mini-gap annular channel are experimentally studied. A concentric annular test section at the length of 880mm with an outer diameter of 12.5mm and inner diameter of 8mm is used in the experiments. The flow phenomena, which are plug flow, slug flow, annular flow, annular/slug flow, bubbly/plug flow, bubbly/slug-plug flow, churn flow, dispersed bubbly flow and slug/bubbly flow, are observed and recorded by high-speed camera. A slug flow pattern is found only in the horizontal channel while slug/bubbly flow patterns are observed only in inclined channels. When the inclination angle is increased, the onset of transition from the plug flow region to the slug flow region (for the horizontal channel) and from the plug flow region to slug/bubbly flow region (for inclined channels) shift to a lower value of superficial air velocity. Small shifts are found for the transition line between the dispersed bubbly flow and the bubbly/plug flow, the bubbly/plug flow and the bubbly/slug-plug flow, and the bubbly/plug flow and the plug flow. The rest of the transition lines shift to a higher value of superficial air velocity. Considering the effect of flow pattern on the pressure drop in the horizontal tube at low liquid velocity, the occurrence of slug flow stops the rise of pressure drop for a short while, before rising again after the air velocity has increased. However, the pressure does not rise abruptly in the tubes with {theta}=30{sup o} and 60{sup o} when the slug/bubbly flow occurs. At low gas and liquid velocity, the pressure drop increases, when the inclination angles changes from horizontal to 30{sup o} and 60{sup o}. Void fraction increases with increasing gas velocity and decreases with increasing liquid velocity. After increasing the inclination angle from horizontal to {theta}=30{sup o} and 60{sup o}, the void fraction appears to be similar, with a

  5. Summary report for ITER Task-T19: MHD pressure drop and heat transfer study for liquid metal systems

    SciTech Connect

    Reed, C.B.; Hua, T.Q.; Natesan, K.; Kirillov, I.R.; Vitkovski, I.V.; Anisimov, A.M.

    1995-03-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To begin experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, a new test section was prepared. Aluminum oxide was chosen as the first candidate insulating material because it may be used in combination with NaK in the ITER vacuum vessel and/or the divertor. Details on the methods used to produce the aluminum oxide layer as well as the microstructures of the coating and the aluminide sublayer are presented and discussed. The overall MHD pressure drop, local MHD pressure gradient, local transverse MHD pressure difference, and surface voltage distributions in both the circumferential and the axial directions are reported and discussed. The positive results obtained here for high-temperature NaK have two beneficial implications for ITER. First, since NaK may be used in the vacuum vessel and/or the divertor, these results support the design approach of using electrically insulating coatings to substantially reduce MHD pressure drop. Secondly, while Al{sub 2}O{sub 3}/SS is not the same coating/base material combination which would be used in the advanced blanket, this work nonetheless shows that it is possible to produce a viable insulating coating which is stable in contact with a high temperature alkali metal coolant.

  6. [On-line coupling of ionic liquid-based single-drop microextraction and capillary electrophoresis for determination of three bromophenols in water samples].

    PubMed

    Zhang, Wenhui; Jiang, Tingfu; Lu, Zhihua; Wang, Yuanhong

    2013-07-01

    An ionic liquid-based single-drop microextraction (IL-SDME) procedure using IL as an extractant on-line coupled to capillary electrophoresis (CE) is proposed. The method is capable of quantifying trace amounts of bromophenols in water samples. The extraction parameters such as extraction solvent, extraction time, ionic liquid single-drop volume, ionic strength and organic solvent were systematically investigated. For the SDME of the three bromophenols, a [C4MIM] [ PF6,] microdrop was exposed for 8 min to the aqueous sample with 10% (w/w) NaCI and then was directly injected into a capillary column for analysis. Under the optimal conditions, good linear relationships were obtained in the concentration range of 1 - 100 mg/L with the correlation coefficients of 0. 993 9 - 0. 998 8 for the bromophenols. The detection limits of the three bromophenols were 0. 3 mg/L. The RSDs of peak areas of the standards were 5. 21%- 6.47% (n =6). And the enrichment factors for the three bromophenols were 115.8, 327.0 and 569. 8. The proposed method was applied to the determination of the three bromophenols in tap, river and lake waters with the recoveries of the three bromophenols in the range of 87.8% - 96.7%. The method is suitable for the quantification of bromophenols in water samples.

  7. Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: Proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals.

    PubMed

    Chatzimitakos, Theodoros; Binellas, Charalampos; Maidatsi, Katerina; Stalikas, Constantine

    2016-03-03

    The use of magnetic ionic liquids (MILs) is in constant growth due to their switchable properties in the presence of an external magnetic field along with the outstanding properties of ionic liquids. In this study, a novel stirring-assisted drop-breakup microextraction (SADBME) approach is put forward, based on the synthesis and utilization of methyltrioctylammonium tetrachloroferrate (N8 8,8,1[FeCl4]), as a MIL. The proposed procedure complies with the principles of the green chemistry, since it uses low volumes of easily synthesized ILs-based magnetic extracting phases avoiding the use of toxic solvents. To demonstrate its applicability, the proposed microextraction procedure is studied in conjunction with HPLC for the determination of selected phenols and acidic pharmaceuticals in aqueous matrices, taking into account the main experimental variables involved. The results obtained are accurate and highly reproducible, thus making it a good alternative approach for routine analysis of phenols and acidic pharmaceuticals. The low-cost approach is straightforward, environmentally safe and exhibits high enrichment factors and absolute extraction percentages and satisfactory recoveries. To the best of our knowledge, this is the first time that a MIL is used for analytical purposes in a practical, efficient and environmentally friendly drop-breakup microextraction approach for small molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Experimental study of the boiling mechanism of a liquid film flowing on the surface of a rotating disc

    SciTech Connect

    Kolokotsa, D.; Yanniotis, S.

    2010-11-15

    The boiling mechanism of a liquid film formed on the surface of a smooth horizontal rotating disc was studied using de-ionised water at 2 l/min flow rate, boiling under vacuum at 40 C and 5-10 C wall superheat. Visualization experiments were carried out and video films were taken for rotational speeds from 0 to 1000 rpm. It was observed that nucleate flow boiling prevails in the case of 0 rpm (stationary disc). Nucleate boiling was also observed at 100 and 200 rpm with the number of bubbles and the diameter of the bubbles decreasing as the rotational speed was increasing. At 600 and 1000 rpm rotational speeds, vapor bubbles were not observed. The results of visual observation were in agreement with bubble growth analysis which showed that at heat flux values of 40 kW/m{sup 2}, conditions for bubble growth are favorable at low rotational speeds (<200 rpm) but are unfavorable at high rotational speeds (1000 rpm). (author)

  9. The motion of bubbles inside drops in containerless processing

    NASA Technical Reports Server (NTRS)

    Shankar, N.; Annamalai, P.; Cole, R.; Subramanian, R. S.

    1982-01-01

    A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory.

  10. Dynamics of solvation and rotational relaxation of Coumarin 153 in ionic liquid confined nanometer-sized microemulsions.

    PubMed

    Chakrabarty, Debdeep; Seth, Debabrata; Chakraborty, Anjan; Sarkar, Nilmoni

    2005-03-31

    The effects of confinement of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on solvation dynamics and rotational relaxation of Coumarin 153 (C-153) in Triton X-100/cyclohexane microemulsions have been explored using steady-state and picosecond time-resolved emission spectroscopy. The steady-state and rotational relaxation data indicate that C-153 molecules are incorporated in the core of the microemulsions. The average rotational relaxation time increases with increase in w ([bmim][BF(4)]/[TX-100]) values. The solvent relaxation in the core of the microemulsion occurs on two different time scales and is almost insensitive to the increase in w values. The solvent relaxation is retarded in the pool of the microemulsions compared to the neat solvent. Though, the retardation is very small compared to several-fold retardation of the solvation time of the conventional solvent inside the pool of the microemulsions.

  11. Three-dimensional analysis of thermo-mechanically rotating cholesteric liquid crystal droplets under a temperature gradient

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Kuroda, M.; Sano, M.

    2015-02-01

    We studied the rotational motion of cholesteric liquid crystal droplets under a temperature gradient (the Lehmann effect). We found that different surface treatments, planar and homeotropic anchoring, provided three types of droplets with different textures and geometries. The rotational velocity of these droplets depends differently on their size. Determining the three-dimensional structures of these droplets by the fluorescence confocal polarizing microscopy, we propose a phenomenological equation to explain the rotational behavior of these droplets. This result shows that the description by the Ericksen-Leslie theory should be valid in the bulk of the droplet, but we need to take into account the surface torque induced by temperature gradient to fully understand the Lehmann effect.

  12. Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field.

    PubMed

    Seilmayer, Martin; Galindo, Vladimir; Gerbeth, Gunter; Gundrum, Thomas; Stefani, Frank; Gellert, Marcus; Rüdiger, Günther; Schultz, Manfred; Hollerbach, Rainer

    2014-07-11

    The azimuthal version of the magnetorotational instability (MRI) is a nonaxisymmetric instability of a hydrodynamically stable differentially rotating flow under the influence of a purely or predominantly azimuthal magnetic field. It may be of considerable importance for destabilizing accretion disks, and plays a central role in the concept of the MRI dynamo. We report the results of a liquid metal Taylor-Couette experiment that shows the occurrence of an azimuthal MRI in the expected range of Hartmann numbers.

  13. Container-scale hydrodynamic and magnetohydrodynamic modes in liquid metal rotating convection experiments with and without an imposed magnetic field

    NASA Astrophysics Data System (ADS)

    Ribeiro, A.

    2015-12-01

    Thermal convection, constrained by rapid rotation and/or large-scale magnetic fields, is observed almost everywhere in the universe: stars, galaxies, and planetary interiors. However, little is known about the essential behaviors of turbulent convection in liquid metals and even less is known about the essential dynamics of planetary cores and stellar convection zones inuenced by background rotation and imposed magnetic fields. To address this decit, we present novel results of a mixed laboratory-numerical investigation of Rayleigh-Benard convection in a cylindrical cavity subject to rotation and/or an imposed magnetic field, using the liquid metal gallium as the working fluid. A broad variety of cell-sized modes are observed experimentally and captured numerically and these modes can be either? steady, oscillatory, or precessing. This work shows that the convection-driven cell-sized modes that can develop in liquid metals are remarkably different from the canonical flows that develop in the fluids used in present day dynamo models.

  14. Ground Based Studies of Thermocapillary Flows in Levitated Drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1996-01-01

    Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.

  15. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  16. Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: Impact of optical rotation

    SciTech Connect

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Sluckin, T. J.; Cook, G.; Evans, D. R.

    2014-03-14

    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters.

  17. Orientational dynamics of a ferronematic liquid crystal in a rotating magnetic field

    SciTech Connect

    Boychuk, A. N. Zakhlevnykh, A. N.; Makarov, D. V.

    2015-09-15

    The behavior of the orientational structure of a ferronematic in a rotating uniform magnetic field is investigated using the continual theory. The time-dependent system of equations describing the dynamics of the ferronematic is derived. The dependences of the angles of rotation of the director and of the magnetization of the ferronematic on the velocity of field rotation are determined for various values of the material parameters. Two regimes (synchronous and asynchronous) of rotation of the ferronematic structure are detected. In the synchronous regime, the director rotates with the frequency of the magnetic field and a constant phase delay. The asynchronous regime is characterized by a time-dependent phase delay. The dependence of the critical angular velocity of magnetic field rotation, which determines the boundary between the synchronous and asynchronous regimes, on the magnetic field strength is derived.

  18. Comparison of short-range-order in liquid- and rotator-phase states of a simple molecular liquid: A reverse Monte Carlo and molecular dynamics analysis of neutron diffraction data

    SciTech Connect

    Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor; Bermejo, Francisco Javier; Cuello, Gabriel Julio

    2007-10-01

    The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases.

  19. Determination of the steroid hormone levels in water samples by dispersive liquid-liquid microextraction with solidification of a floating organic drop followed by high-performance liquid chromatography.

    PubMed

    Chang, Chu-Chi; Huang, Shang-Da

    2010-03-03

    In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 microg L(-1). The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 microg L(-1) for E1, 3 microg L(-1) for E2, 4 microg L(-1) for EE2 and 9 microg L(-1) for E3) and 89% to 102% for tap water (which was spiked with 6 microg L(-1) for E1, 5 microg L(-1) for E2, 6 microg L(-1) for EE2 and 10 microg L(-1) for E3). The detection limits of the method ranged from 0.8 to 2.7 microg L(-1) for spiked river water and 1.4 to 3.1 microg L(-1) for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.

  20. Ionic-liquid-assisted microwave distillation coupled with headspace single-drop microextraction followed by GC-MS for the rapid analysis of essential oil in Dryopteris fragrans.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Zhao, Chun-Jian; Fu, Yu-Jie; Ma, Wei

    2013-12-01

    A rapid, green and effective miniaturized sample preparation technique, ionic-liquid-assisted microwave distillation coupled with headspace single-drop microextraction was developed for the extraction of essential oil from dried Dryopteris fragrans. 1-Ethyl-3-methylimidazolium acetate was the optimal ionic liquid as the destruction agent of plant cell walls and microwave absorption was medium. n-Heptadecane (2.0 μL) was adopted as the suspended microdrop solvent in the headspace for the extraction and concentration of essential oil. The optimal parameters of the proposed method were an irradiation power of 300 W, sample mass of 0.9 g, mass ratio of ionic liquids to sample of 2.8, extraction temperature of 79°C, and extraction time of 3.6 min. In comparison to the previous reports, the proposed technique could equally monitor all the essential oil components with no significant differences in a simple way, which was more rapid and required a much lower amount of sample.

  1. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-04

    Simplicity, effectiveness, swiftness, and environmental friendliness - these are the typical requirements for the state of the art development of green analytical techniques. Liquid phase microextraction (LPME) stands for a family of elegant sample pretreatment and analyte preconcentration techniques preserving these principles in numerous applications. By using only fractions of solvent and sample compared to classical liquid-liquid extraction, the extraction kinetics, the preconcentration factor, and the cost efficiency can be increased. Moreover, significant improvements can be made by automation, which is still a hot topic in analytical chemistry. This review surveys comprehensively and in two parts the developments of automation of non-dispersive LPME methodologies performed in static and dynamic modes. Their advantages and limitations and the reported analytical performances are discussed and put into perspective with the corresponding manual procedures. The automation strategies, techniques, and their operation advantages as well as their potentials are further described and discussed. In this first part, an introduction to LPME and their static and dynamic operation modes as well as their automation methodologies is given. The LPME techniques are classified according to the different approaches of protection of the extraction solvent using either a tip-like (needle/tube/rod) support (drop-based approaches), a wall support (film-based approaches), or microfluidic devices. In the second part, the LPME techniques based on porous supports for the extraction solvent such as membranes and porous media are overviewed. An outlook on future demands and perspectives in this promising area of analytical chemistry is finally given.

  2. Liquid meniscus oscillation and drop ejection by ac voltage, pulsed dc voltage, and superimposing dc to ac voltages.

    PubMed

    Tran, Si Bui Quang; Byun, Doyoung; Nguyen, Vu Dat; Kang, Tae Sam

    2009-08-01

    The electrohydrodynamic (EHD) spraying technique has been utilized in applications such as inkjet printing and mass spectrometry technologies. In this paper, the role of electrical potential signals in jetting and on the oscillation of the meniscus is evaluated. The jetting and the meniscus oscillation behavior are experimentally investigated under ac voltage, ac voltage superimposed on dc voltage, and pulsed dc voltage. Based on this in-depth study of the meniscus behavior under various signals, the optimal signal is implemented to an EHD inkjet head for drop-on-demand operation. For applied ac voltage and ac voltage superimposed on dc voltage, the jetting phenomenon is a dynamic process due to sequential opposite sign signals. The jetting occurs at the end of the oscillation cycle, where the meniscus oscillates upward and arrives at its highest position.

  3. Liquid meniscus oscillation and drop ejection by ac voltage, pulsed dc voltage, and superimposing dc to ac voltages

    NASA Astrophysics Data System (ADS)

    Tran, Si Bui Quang; Byun, Doyoung; Nguyen, Vu Dat; Kang, Tae Sam

    2009-08-01

    The electrohydrodynamic (EHD) spraying technique has been utilized in applications such as inkjet printing and mass spectrometry technologies. In this paper, the role of electrical potential signals in jetting and on the oscillation of the meniscus is evaluated. The jetting and the meniscus oscillation behavior are experimentally investigated under ac voltage, ac voltage superimposed on dc voltage, and pulsed dc voltage. Based on this in-depth study of the meniscus behavior under various signals, the optimal signal is implemented to an EHD inkjet head for drop-on-demand operation. For applied ac voltage and ac voltage superimposed on dc voltage, the jetting phenomenon is a dynamic process due to sequential opposite sign signals. The jetting occurs at the end of the oscillation cycle, where the meniscus oscillates upward and arrives at its highest position.

  4. Determining heterocyclic aromatic amines in aqueous samples: A novel dispersive liquid-liquid micro-extraction method based on solidification of floating organic drop and ultrasound assisted back extraction followed by UPLC-MS/MS.

    PubMed

    Canales, Romina; Guiñez, María; Bazán, Cristian; Reta, Mario; Cerutti, Soledad

    2017-11-01

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ultrasound assisted back extraction for the determination of four heterocyclic aromatic amines in natural water samples prior ultra high-performance liquid chromatography-tandem mass spectrometry was developed. The analytes were extracted from the water samples by a dispersive liquid-liquid microextraction procedure based on solidification of floating organic drop, which was performed by a mixture composed by a less dense than water extraction solvent, 1-undecanol, and a dispersive solvent, methanol. After that, a novel ultrasound assisted back extraction step was performed in order to make the clean-up/enrichment procedure compatible with the detection requirements. Under optimum conditions, linearity ranged from 2.2 to 50ngmL(-1), with enrichment factors from 130 to 136-folds. Thus limits of detection between 0.7 and 2.9ngmL(-1) were obtained. Precision of the method was evaluated in terms of repeatability, relative standard deviations varied from 4.3% to 6.7%. Relative recoveries ranged from 92% to 106% for all analytes. The satisfactory performance demonstrated that the proposed methodology has a strong potential for application in the multi-residue analysis of heterocyclic aromatic amines present in complex environmental matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Drop shaped zinc oxide quantum dots and their self-assembly into dendritic nanostructures: Liquid assisted pulsed laser ablation and characterizations

    NASA Astrophysics Data System (ADS)

    Singh, Subhash C.; Gopal, Ram

    2012-01-01

    Complex nanostructures and nano-assemblies have exhibited their potential application in the fabrication of future molecular machines and molecular devices. Liquid phase pulsed laser ablation is an easy, versatile, environmental friendly and rapidly growing method for the synthesis of nanostructured materials. Nanosecond pulsed laser ablation of zinc rod placed on the bottom of glass vessel containing methanol is used to produce colloidal solution of drop shaped zinc oxide quantum dots and their self-assembly into various dendritic nanostructures. UV-vis absorption, diffuse reflectance, transmission electron microscopy, and photoluminescence spectroscopy techniques are used for the optical, microscopic, structural and defect diagnosis of obtained colloidal quantum dots and their nano-assemblies. The average length, width and aspect ratio of drop shaped zinc oxide quantum dots are 6 ± 2.4 nm, 3.5 ± 1.4 nm and 1.69 ± 0.4 nm, respectively. Careful investigation of assemblies shows that most of them have linear growth, i.e. growth in longitudinal direction is higher as compared to the transverse direction with three types of classifications as (i) linear axis symmetrical branching, (ii) linear axis asymmetrical branching and (iii) curvilinear axis asymmetrical branching. Photoluminescence spectrum has emission peaks in UV, violet, blue and green spectral region corresponding to the excitonic and various defect related emissions.

  6. On-line coupling of ionic liquid-based single-drop microextraction with capillary electrophoresis for sensitive detection of phenols.

    PubMed

    Wang, Qing; Qiu, Hongdeng; Li, Jing; Liu, Xia; Jiang, Shengxiang

    2010-08-13

    An ionic liquid-based single-drop microextraction (IL-SDME) procedure using IL as an extractant on-line coupled to capillary electrophoresis (CE) is proposed. The method is capable of quantifying trace amounts of phenols in environmental water samples. For the SDME of three phenols, a 2.40 nL IL microdrop was exposed for 10 min to the aqueous sample and then was directly injected into the capillary column for analysis. Extraction parameters such as the extraction time, the IL single-drop volume, pH of the sample solution, ionic strength, volume of the sample solution and the extraction temperature were systematically investigated. Detection limits to three phenols were less than 0.05 microg mL(-1), and their calibration curves were all linear (R(2) > or = 0.9994) in the range from 0.05 to 50 microg mL(-1). And enrichment factors for three phenols were 156, 107 and 257 without agitation, respectively. This method was then utilized to analyze two real environmental samples from Yellow River and tap water, obtaining satisfactory results. Compared with the usual SDME for CE, IL-SDME-CE is a simple, low-cost, fast and environmentally friendly preconcentration technique.

  7. Tetradecyl(trihexyl)phosphonium chloride ionic liquid single-drop microextraction for electrothermal atomic absorption spectrometric determination of lead in water samples.

    PubMed

    Martinis, Estefanía M; Bertón, Paula; Altamirano, Jorgelina C; Hakala, Ullastiina; Wuilloud, Rodolfo G

    2010-03-15

    A highly efficient single-drop microextraction (SDME) procedure using a low-cost room temperature ionic liquid (RTIL), i.e., tetradecyl(trihexyl)phosphonium chloride (CYPHOS IL 101), for Pb determination at trace levels in real water samples was developed. Lead was chelated with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent and extracted into a 4 microL microdrop of CYPHOS IL 101. The RTIL drop was directly injected into the graphite furnace of the electrothermal atomic absorption spectrometer (ETAAS). Under optimal microextraction conditions, a preconcentration factor of 32 was achieved with only 1.5 mL of sample resulting in a phase-volume ratio of 375. The limit of detection (LOD) obtained was 3.2 ng L(-1) and the relative standard deviation (RSD) for 10 replicates at 0.5 microg L(-1) Pb(2+) concentration level was 4.9%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 4.5 microg L(-1) with a correlation coefficient of 0.9996. The accuracy of the methodology was evaluated by analysis of a certified reference material (CRM). The method was successfully applied to the determination of Pb in tap, mineral, well and river water samples. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  9. Pool impacts of Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  10. Dynamics of glass-forming liquids. VIII. Dielectric signature of probe rotation and bulk dynamics in branched alkanes.

    PubMed

    Shahriari, Shervin; Mandanici, Andrea; Wang, Li-Min; Richert, Ranko

    2004-11-08

    We have measured the dielectric relaxation of several glass forming branched alkanes with very low dielectric loss in the frequency range 50 Hz-20 kHz. The molecular liquids of this study are 3-methylpentane, 3-methylheptane, 4-methylheptane, 2,3-dimethylpentane, and 2,4,6-trimethylheptane. All liquids display asymmetric loss peaks typical of supercooled liquids and slow beta relaxations of similar amplitudes. As an unusual feature, deliberate doping with 2-ethyl-1-hexanol, 5-methyl-2-hexanol, 2-methyl-1-butanol, 1-propanol, or 2-methyltetrahydrofuran at the 1 wt % level generates additional relaxation peaks at frequencies below those of the alpha relaxation. The relaxation times of these sub-alpha-peaks increase systematically with the size of the dopant molecules. Because these features are spectrally separate from the bulk dynamics, the rotational behavior and effective dipole moments of the probes can be studied in detail. For the alcohol guest molecules, the large relative rotational time scales and small effective dipole moments are indicative of hydrogen bonded clusters instead of individual molecules.

  11. Gas-liquid pipe flow under microgravity conditions: influence of tube diameter on flow patterns and pressure drops

    NASA Astrophysics Data System (ADS)

    Colin, C.; Fabre, J.

    1995-08-01

    Gas-liquid flow experiments have been performed in small tubes of 19 mm, 10 mm and 6 mm diameter, during parabolic flights, for a range of superficial liquid velocities from 0.1 to 2 m/s and superficial gas velocities from 0.05 m/s to 10 m/s. Results are compared to those previously obtained by Colin et al., /1/, in a 40 mm i.d. tube. The flow patterns identified are: bubbly flow, slug flow and a pattern halfway between slug and annular flows. The main difference between the experiments in small tubes and the previous ones, concerns the transition between bubbly flow and slug flow, the role of coalescence and the wall friction factor. Coalescence is shown to play a major role in the transition from bubbly to slug flow. In particular at small Reynolds number coalescence seems to be partly inhibited. Single-phase flow correlations for wall shear stress underestimate the wall friction factor in the intermediate range of Reynolds number between laminar and turbulent flow.

  12. A dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop combined with HPLC for the determination of lovastatin and simvastatin in rat urine.

    PubMed

    Zhao, Longshan; Zhao, Pan; Wang, Linli; Ma, Xiaowei; Hou, Xiaohong; Li, Famei

    2014-06-01

    A dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with HPLC was developed for the determination of lovastatin and simvastatin in rat urine for the first time. 1-Dodecanol and methanol were used as the extraction and disperser solvents, respectively. Several important parameters influencing the micro-extraction efficiency were studied and systematically optimized, including the type and volume of extraction solvent and disperser solvent, extraction time, pH and salt concentration. The analytes were separated on a Kromasil C18 column at 30°C with a mobile phase of methanol and 0.2% acetic acid in water (83:17, v/v) and detected at 238 nm. Under the optimal conditions, the maximum number of enrichment factors for both analytes was 27. The linear ranges were 20.08-1004 and 20.00-1000 µg/L with the correlation coefficients ranging from 0.9990 to 0.9994 for lovastatin and simvastatin, respectively. The volume of organic solvent consumed in extraction was <0.3 mL, and the extraction time was 10 min. The newly developed environment-friendly sample pretreatment method will be a good alternative to conventional techniques, such as solid-phase extraction, liquid-liquid extraction and protein precipitation, for the HPLC determination of lovastatin and simvastatin in biological samples. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Direct determination of 2,4,6-tricholoroanisole in wines by single-drop ionic liquid microextraction coupled with multicapillary column separation and ion mobility spectrometry detection.

    PubMed

    Márquez-Sillero, Isabel; Cárdenas, Soledad; Valcárcel, Miguel

    2011-10-21

    This article evaluates the capability of single drop ionic liquid microextraction coupled with multicapillary column (MCC) and ion mobility spectrometry (IMS) for the determination of 2,4,6-trichloroanisole (2,4,6-TCA) in wines. The proposed methodology permits the direct analysis of the samples without any additional treatment other than dilution. This is achieved thanks to the selectivity provided by the ionic liquid selected as extractant, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide, as well as the response of the analyte in the IMS working in negative ionization mode. Moreover, the multicapillary column avoids the interference of ethanol in the ion mobility spectra. The analysis of the sample takes ca. 35 min to be completed. The limit of detection was low as 0.01 ng L(-1) using 2 mL of wine sample. Different calibration curves were constructed using aqueous standards, red and white wines, being the signals comparable, with an RSD similar to the method variability. Finally, a set of samples of different nature and packed in different containers were analysed. It was found than those with cork stoppers presented the highest concentration of 2,4,6-TCA. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Rapid analysis of Fructus forsythiae essential oil by ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction followed by gas chromatography-mass spectrometry.

    PubMed

    Jiao, Jiao; Ma, Dan-Hui; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Fu, Yu-Jie; Ma, Wei

    2013-12-04

    A rapid, green and effective miniaturized sample preparation and analytical technique, i.e. ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction (ILAMD-HS-SDME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for the analysis of essential oil (EO) in Fructus forsythiae. In this work, ionic liquids (ILs) were not only used as the absorption medium of microwave irradiation but also as the destruction agent of plant cell walls. 1-Ethyl-3-methylimidazolium acetate ([C2mim]OAc) was chosen as the optimal ILs. Moreover, n-heptadecane (2.0 μL) was selected as the appropriate suspended solvent for the extraction and concentration of EO. Extraction conditions of the proposed method were optimized using the relative peak area of EO constituents as the index, and the optimal operational parameters were obtained as follows: irradiation power (300 W), sample mass (0.7 g), mass ratio of ILs to sample (2.4), temperature (78°C) and time (3.4 min). In comparison to previous reports, the proposed method was faster and required smaller sample amount but could equally monitor all EO constituents with no significant differences. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Peng, Zeng-Hui; Liu, Yong-Gang; Zheng, Zhi-Gang; Xuan, Li

    2009-10-01

    Fully atomistic molecular dynamics (MD) simulations at 293, 303 and 313 K have been performed for the four-component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orientational time correlation functions (TCFs) were calculated from MD trajectories. The rotational viscosity coefficients (RVCs) of the mixture were calculated using the Nemtsov-Zakharov and Fialkowski methods based on statistical-mechanical approaches. Temperature dependences of RVC and density were discussed in detail. Reasonable agreement between the simulated and experimental values was found.

  16. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  17. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  18. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  19. Determination of musk fragrances in sewage sludge by pressurized liquid extraction coupled to automated ionic liquid-based headspace single-drop microextraction followed by GC-MS/MS.

    PubMed

    Vallecillos, Laura; Borrull, Francesc; Pocurull, Eva

    2012-10-01

    A method for the quantitative determination of ten musk fragrances extensively used in personal care products from sewage sludge was developed by using a pressurized liquid extraction (PLE) followed by an automated ionic liquid-based headspace single-drop microextraction and gas chromatography-tandem mass spectrometry. The influence of main factors on the efficiency of PLE was studied. For all musks, the highest recovery values were achieved using 1 g of pretreated sewage sludge, H(2) O/methanol (1:1) as an extraction solvent, a temperature of 80°C, a pressure of 1500 psi, an extraction time of 5 min, 2 cycles, a 100% flush volume, a purge time of 120 s, and 1 g Florisil as in-cell clean-up extraction sorbent. The use and optimization of an in-cell clean-up sorbent was necessary to remove fatty interferents of the PLE extract that make the subsequent ionic liquid-based headspace single-drop microextraction difficult. Validation parameters, namely LODs and LOQs, ranged from 0.5-1.5 to 2.5-5 ng/g, respectively. Good levels of intra- and interday repeatabilities were obtained analyzing sewage sludge samples spiked at 10 ng/g (n = 3, RSDs < 10%). The method applicability was tested with sewage sludge from different wastewater treatment plants. The analysis revealed the presence of all the polycyclic musks studied at concentrations higher than the LOQs, ranging from 6 to 530 ng/g. However, the nitro musk concentrations were below the LOQs or, in the case of musk xylene, was not detected. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Azimi, Neda; Rahimi, Masoud

    2017-01-01

    Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe3O4 nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (KLa) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of KLa and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002-0.01 (w/v) on KLa and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of KLa (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008-0.01 (w/v).