Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor
NASA Astrophysics Data System (ADS)
Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.
2016-06-01
Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.
Owen, Whitney H.
1980-01-01
A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayadev, T.S.
1976-02-01
The application of induction generators in Wind Energy Conversion Systems (WECS) is described. The conventional induction generator, which is an induction machine with a squirrel cage rotor, had been used in large wind power plants in Europe, but has not caught much attention until now by designers of large systems in this country. The induction generator with a squirrel cage rotor is described and useful design techniques to build induction generators for wind energy application are outlined. The Double Output Induction Generator (DOIG) - so called because power is fed into the grid from the stator, as well as themore » rotor is described. It is a wound rotor induction machine with power electronics to convert rotor slip frequency power to that of line frequency.« less
Hybrid-secondary uncluttered induction machine
Hsu, John S.
2001-01-01
An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.
NASA Astrophysics Data System (ADS)
Toporkov, D. M.; Vialcev, G. B.
2017-10-01
The implementation of parallel branches is a commonly used manufacturing method of the realizing of fractional slot concentrated windings in electrical machines. If the rotor eccentricity is enabled in a machine with parallel branches, the equalizing currents can arise. The simulation approach of the equalizing currents in parallel branches of an electrical machine winding based on magnetic field calculation by using Finite Elements Method is discussed in the paper. The high accuracy of the model is provided by the dynamic improvement of the inductances in the differential equation system describing a machine. The pre-computed table flux linkage functions are used for that. The functions are the dependences of the flux linkage of parallel branches on the branches currents and rotor position angle. The functions permit to calculate self-inductances and mutual inductances by partial derivative. The calculated results obtained for the electric machine specimen are presented. The results received show that the adverse combination of design solutions and the rotor eccentricity leads to a high value of the equalizing currents and windings heating. Additional torque ripples also arise. The additional ripples harmonic content is not similar to the cogging torque or ripples caused by the rotor eccentricity.
Offline detection of broken rotor bars in AC induction motors
NASA Astrophysics Data System (ADS)
Powers, Craig Stephen
ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.
NASA Astrophysics Data System (ADS)
Laithwaite, E. R.; Kuznetsov, S. B.
1980-09-01
A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.
NASA Astrophysics Data System (ADS)
Petrovic, Goran; Kilic, Tomislav; Terzic, Bozo
2009-04-01
In this paper a sensorless speed detection method of induction squirrel-cage machines is presented. This method is based on frequency determination of the stator neutral point voltage primary slot harmonic, which is dependent on rotor speed. In order to prove method in steady state and dynamic conditions the simulation and experimental study was carried out. For theoretical investigation the mathematical model of squirrel cage induction machines, which takes into consideration actual geometry and windings layout, is used. Speed-related harmonics that arise from rotor slotting are analyzed using digital signal processing and DFT algorithm with Hanning window. The performance of the method is demonstrated over a wide range of load conditions.
Optimal Control of Induction Machines to Minimize Transient Energy Losses
NASA Astrophysics Data System (ADS)
Plathottam, Siby Jose
Induction machines are electromechanical energy conversion devices comprised of a stator and a rotor. Torque is generated due to the interaction between the rotating magnetic field from the stator, and the current induced in the rotor conductors. Their speed and torque output can be precisely controlled by manipulating the magnitude, frequency, and phase of the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high efficiency have made them ubiquitous component of nearly every industrial application. Thus, even a small improvement in their energy efficient tend to give a large amount of electrical energy savings over the lifetime of the machine. Hence, increasing energy efficiency (reducing energy losses) in induction machines is a constrained optimization problem that has attracted attention from researchers. The energy conversion efficiency of induction machines depends on both the speed-torque operating point, as well as the input voltage waveform. It also depends on whether the machine is in the transient or steady state. Maximizing energy efficiency during steady state is a Static Optimization problem, that has been extensively studied, with commercial solutions available. On the other hand, improving energy efficiency during transients is a Dynamic Optimization problem that is sparsely studied. This dissertation exclusively focuses on improving energy efficiency during transients. This dissertation treats the transient energy loss minimization problem as an optimal control problem which consists of a dynamic model of the machine, and a cost functional. The rotor field oriented current fed model of the induction machine is selected as the dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost functional is proposed that assigns a cost to both the energy losses in the induction machine, as well as the deviations from desired speed-torque-magnetic flux setpoints. Using Pontryagin's minimum principle, a set of necessary conditions that must be satisfied by the optimal control trajectories are derived. The conditions are in the form a two-point boundary value problem, that can be solved numerically. The conjugate gradient method that was modified using the Hestenes-Stiefel formula was used to obtain the numerical solution of both the control and state trajectories. Using the distinctive shape of the numerical trajectories as inspiration, analytical expressions were derived for the state, and control trajectories. It was shown that the trajectory could be fully described by finding the solution of a one-dimensional optimization problem. The sensitivity of both the optimal trajectory and the optimal energy efficiency to different induction machine parameters were analyzed. A non-iterative solution that can use feedback for generating optimal control trajectories in real time was explored. It was found that an artificial neural network could be trained using the numerical solutions and made to emulate the optimal control trajectories with a high degree of accuracy. Hence a neural network along with a supervisory logic was implemented and used in a real-time simulation to control the Finite Element Method model of the induction machine. The results were compared with three other control regimes and the optimal control system was found to have the highest energy efficiency for the same drive cycle.
Wireless Monitoring of Induction Machine Rotor Physical Variables
Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; de Paiva, José Alvaro
2017-01-01
With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor’s shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor. PMID:29156564
Wireless Monitoring of Induction Machine Rotor Physical Variables.
Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; Cipriano Maniçoba, Glauco George; Salazar, Andrés Ortiz; de Paiva, José Alvaro
2017-11-18
With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.
Contributions a l'etude et a l'application industrielle de la machine asynchrone
NASA Astrophysics Data System (ADS)
Ouhrouche, Mohand-Ameziane
The work presented in this thesis, done in the Electrical Drives Laboratory of Electrical and Computer Engineering Department, deals with the industrial applications of a three-phase induction machine (electrical drives and electricity generation). This thesis, characterized by its multidisciplinary content, has two major parts. The first one deals with the on-line and off-line parametric identification of the induction machine model necessary to achieve accurate vector control strategy. The second part, which is a resume of a research work sponsored by Hydro-Quebec, deals with the application of an induction machine in Asynchronous Non Utility Generators units (ANUG). As it is shown in the following, major scientific contributions are made in both two parts. In the first part of our research work, we propose a new speed sensorless vector control strategy for an induction machine, which is adaptive to the rotor resistance variations. The proposed control strategy is based on the Extended Kalman Filter approach and a decoupling controller which takes into account the rotor resistance variations. The consideration of coupled electrical and mechanical modes leads to a fifth order nonlinear model of the induction machine. The load torque is taken as a function of the rotor angular speed. The Extended Kalman Filter, based on the process's nonlinear (bilinear) model, estimate simultaneously the rotor resistance, angular speed and the flux vector from the startup to the steady state equilibrium point. The machine-converter-control system is implemented in MATLAB/SIMULINK environment and the obtained results confirm the robustness of the proposed scheme. As in the electrical drives erea, the induction machine is now widely used by small to medium power Non Utility Generator units (NUG) to produce electricity. In Quebec, these NUGs units are integrated into the Hydro-Quebec 25 kV distribution system via transformer which exhibit nonlinear characteristics. We have shown by using the ElectroMagnetic Program (EMTP) that, in some islanding scenarios, i.e. that the NUG unit is disconnected from the power grid, in addition to frequency variations, appearence of high an abnormal overvoltages, ferroresonance should occur. As a consequence, normal protective devices could fail to securely operate, which could cause serious damages to the equipment and the maintenance staff. This result, established for the first time , can be useful to improve the reliability of the NUGs units and is considered important by the power engineering community. This has led to a publication in the John Wiley & Sons Encyclopedia of Electrical and Electronics Engineering which will be available in February 1999 ( http://www.engr.wisc.edu/ ece/ece).
NASA Astrophysics Data System (ADS)
Rimbawati; Azis Hutasuhut, Abdul; Irsan Pasaribu, Faisal; Cholish; Muharnif
2017-09-01
There is an electric machine that can operate as a generator either single-phase or three-phase in almost every household and industry today. This electric engine cannot be labeled as a generator but can be functioned as a generator. The machine that is mentioned is “squirrel cage motors” or it is well-known as induction motor that can be found in water pumps, washing machines, fans, blowers and other industrial machines. The induction motor can be functioned as a generator when the rotational speed of the rotor is made larger than the speed of the rotary field. In this regard, this study aims to modify the remains of 3-phase induction motor to be a permanent generator. Data of research based conducted on the river flow of Rumah Sumbul Village, STM Hulu district of Deli Serdang. The method of this research is by changing rotor and stator winding on a 3 phase induction motor, so it can produce a generator with rotation speed of 500 rpm. Based on the research, it can be concluded that the output voltage generator has occurred a voltage drop 10% between before and after loading for Star circuit and 2% for Delta circuit.
Signal injection as a fault detection technique.
Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi
2011-01-01
Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies.
Signal Injection as a Fault Detection Technique
Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi
2011-01-01
Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801
Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.
2015-01-01
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677
Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A
2015-06-29
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.
Asynchronous machine rotor speed estimation using a tabulated numerical approach
NASA Astrophysics Data System (ADS)
Nguyen, Huu Phuc; De Miras, Jérôme; Charara, Ali; Eltabach, Mario; Bonnet, Stéphane
2017-12-01
This paper proposes a new method to estimate the rotor speed of the asynchronous machine by looking at the estimation problem as a nonlinear optimal control problem. The behavior of the nonlinear plant model is approximated off-line as a prediction map using a numerical one-step time discretization obtained from simulations. At each time-step, the speed of the induction machine is selected satisfying the dynamic fitting problem between the plant output and the predicted output, leading the system to adopt its dynamical behavior. Thanks to the limitation of the prediction horizon to a single time-step, the execution time of the algorithm can be completely bounded. It can thus easily be implemented and embedded into a real-time system to observe the speed of the real induction motor. Simulation results show the performance and robustness of the proposed estimator.
Structural Design Optimization of Doubly-Fed Induction Generators Using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L
2017-11-13
A wind turbine with a larger rotor swept area can generate more electricity, however, this increases costs disproportionately for manufacturing, transportation, and installation. This poster presents analytical models for optimizing doubly-fed induction generators (DFIGs), with the objective of reducing the costs and mass of wind turbine drivetrains. The structural design for the induction machine includes models for the casing, stator, rotor, and high-speed shaft developed within the DFIG module in the National Renewable Energy Laboratory's wind turbine sizing tool, GeneratorSE. The mechanical integrity of the machine is verified by examining stresses, structural deflections, and modal properties. The optimization results aremore » then validated using finite element analysis (FEA). The results suggest that our analytical model correlates with the FEA in some areas, such as radial deflection, differing by less than 20 percent. But the analytical model requires further development for axial deflections, torsional deflections, and stress calculations.« less
Inductive displacement sensors with a notch filter for an active magnetic bearing system.
Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum
2014-07-15
Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.
Superconducting Electric Machine with Permanent Magnets and Bulk HTS Elements
NASA Astrophysics Data System (ADS)
Levin, A. V.; Vasich, P. S.; Dezhin, D. S.; Kovalev, L. K.; Kovalev, K. L.; Poltavets, V. N.; Penkin, V. T.
Theoretical methods of calculating of two-dimensional magnetic fields, inductive parameters and output characteristics of the new type of high-temperature superconducting (HTS) synchronous motors with a composite rotor are presented. The composite rotor has the structure containing HTS flat elements, permanent magnets and ferromagnetic materials. The developed calculation model takes into account the concentrations and physical properties of these rotor elements. The simulation results of experimental HTS motor with a composite rotor are presented. The application of new type of HTS motor in different constructions of industrial high dynamic drivers is discussed.
NASA Astrophysics Data System (ADS)
Gyftakis, Konstantinos N.; Marques Cardoso, Antonio J.; Antonino-Daviu, Jose A.
2017-09-01
The Park's Vector Approach (PVA), together with its variations, has been one of the most widespread diagnostic methods for electrical machines and drives. Regarding the broken rotor bars fault diagnosis in induction motors, the common practice is to rely on the width increase of the Park's Vector (PV) ring and then apply some more sophisticated signal processing methods. It is shown in this paper that this method can be unreliable and is strongly dependent on the magnetic poles and rotor slot numbers. To overcome this constraint, the novel Filtered Park's/Extended Park's Vector Approach (FPVA/FEPVA) is introduced. The investigation is carried out with FEM simulations and experimental testing. The results prove to satisfyingly coincide, whereas the proposed advanced FPVA method is desirably reliable.
Investigation of Combined Motor/Magnetic Bearings for Flywheel Energy Storage Systems
NASA Technical Reports Server (NTRS)
Hofmann, Heath
2003-01-01
Dr. Hofmann's work in the summer of 2003 consisted of two separate projects. In the first part of the summer, Dr. Hofmann prepared and collected information regarding rotor losses in synchronous machines; in particular, machines with low rotor losses operating in vacuum and supported by magnetic bearings, such as the motor/generator for flywheel energy storage systems. This work culminated in a presentation at NASA Glenn Research Center on this topic. In the second part, Dr. Hofmann investigated an approach to flywheel energy storage where the phases of the flywheel motor/generator are connected in parallel with the phases of an induction machine driving a mechanical actuator. With this approach, additional power electronics for driving the flywheel unit are not required. Simulations of the connection of a flywheel energy storage system to a model of an electromechanical actuator testbed at NASA Glenn were performed that validated the proposed approach. A proof-of-concept experiment using the D1 flywheel unit at NASA Glenn and a Sundstrand induction machine connected to a dynamometer was successfully conducted.
Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha
2014-09-01
This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Real time PI-backstepping induction machine drive with efficiency optimization.
Farhani, Fethi; Ben Regaya, Chiheb; Zaafouri, Abderrahmen; Chaari, Abdelkader
2017-09-01
This paper describes a robust and efficient speed control of a three phase induction machine (IM) subjected to load disturbances. First, a Multiple-Input Multiple-Output (MIMO) PI-Backstepping controller is proposed for a robust and highly accurate tracking of the mechanical speed and rotor flux. Asymptotic stability of the control scheme is proven by Lyapunov Stability Theory. Second, an active online optimization algorithm is used to optimize the efficiency of the drive system. The efficiency improvement approach consists of adjusting the rotor flux with respect to the load torque in order to minimize total losses in the IM. A dSPACE DS1104 R&D board is used to implement the proposed solution. The experimental results released on 3kW squirrel cage IM, show that the reference speed as well as the rotor flux are rapidly achieved with a fast transient response and without overshoot. A good load disturbances rejection response and IM parameters variation are fairly handled. The improvement of drive system efficiency reaches up to 180% at light load. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Ameid, Tarek; Menacer, Arezki; Talhaoui, Hicham; Azzoug, Youness
2018-05-03
This paper presents a methodology for the broken rotor bars fault detection is considered when the rotor speed varies continuously and the induction machine is controlled by Field-Oriented Control (FOC). The rotor fault detection is obtained by analyzing a several mechanical and electrical quantities (i.e., rotor speed, stator phase current and output signal of the speed regulator) by the Discrete Wavelet Transform (DWT) in variable speed drives. The severity of the fault is obtained by stored energy calculation for active power signal. Hence, it can be a useful solution as fault indicator. The FOC is implemented in order to preserve a good performance speed control; to compensate the broken rotor bars effect in the mechanical speed and to ensure the operation continuity and to investigate the fault effect in the variable speed. The effectiveness of the technique is evaluated in simulation and in a real-time implementation by using Matlab/Simulink with the real-time interface (RTI) based on dSpace 1104 board. Copyright © 2018. Published by Elsevier Ltd.
Naderi, Peyman
2016-09-01
The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Belqorchi, Abdelghafour
Forty years after Watson and Manchur conducted the Stand-Still Frequency Response (SSFR) test on a large turbogenerator, the applicability of this technic on a powerful salient pole synchronous generator has yet to be confirmed. The scientific literature on the subject is rare and very few have attempted to compare SSFR parameter results with those deduced by classical tests. The validity of SSFR on large salient pole machines has still to be proven. The present work aims in participating to fill this knowledge gap. It can be used to build a database of measurements highly needed to draw the validity of the technic. Also, the author hopes to demonstrate the potential of SSFR model to represent the machine, not only in cases of weak disturbances but also strong ones such as instantaneous three-phase short-circuit faults. The difficulties raised by previous searchers are: The lack of accuracy in very low frequency measurements; The difficulty in rotor positioning, according to d and q axes, in case of salient pole machines; The measurement current level influence on magnetizing inductances, in axes-d and; The rotation impact on damper circuits for some rotors design. Aware of the above difficulties, the author conducted an SSFR test on a large salient pole machine (285 MVA). The generator under test has laminated non isolated rotor and an integral slot number. The damper windings in adjacent poles are connected together, via the polar core and the rotor rim. Finally, the damping circuit is unaffected by rotation. To improve the measurement accuracy, in very low frequencies, the most precise frequency response analyser available on the market was used. Besides, the frequency responses of the signals conditioning modules (i.e., isolation, amplification...) were accounted for to correct the four measured SSFR transfer functions. Immunization against noise and use of instrumentation in their optimum range, were other technics rigorously applied. Magnetizing inductances, being influenced by the measurement current magnitude, the latter was maintained constant in the range 1mHz-20Hz. Other problems such as the rotation impact on damper circuits or the difficulty of rotor positioning are eliminated or attenuated by the intrinsic characteristics of the machine. Regarding the data analysis, the Maximum Likelihood Estimation (MLE) method was used to determine the third and second order equivalent circuit from SSFR measurements. In d-axis, the approaches of adjustment to two and three transfer functions (Ld(s), sG(s) and Lafo(s)) were explored. The second order model, derived from (Ld( s) and G(s)), was used to deduce the machine standard parameters. The latter were compared with the values given by the manufacturer and by conventional on-site tests: Instantaneous three-phase short-circuit, Dalton-Cameron and the d-axis transient time constant at open stator (T'do). The comparison showed the good accuracy of SSFR values. Subsequently, a machine model was built in EMTP-RV based on SSFR standard parameters. The model was able to reproduce stator and rotor currents measured during instantaneous three-phase short-circuit test. Some adjustments, to SSFR parameters, were needed to reproduce stator voltage and rotor current acquired during load rejection d-axis test. It is worthwhile noting that the load rejection d-axis test, recently added to IEEE 115-2009 annex, must be modified to take into account the saturation and excitation impedance impact on deduced parameters. Regarding this issue, some suggestions are proposed by the author. The obtained SSFR results, contribute to raise confidence on SSFR application on large salient pole machines. In addition, it shows the aptitude of the SSFR model to represent the machine in both cases of weak and strong disturbances, at least on machines similar the one studied. Index Terms: Salient pole, frequency response, SSFR, equivalent circuit, operational inductance.
Detection of broken rotor bar faults in induction motor at low load using neural network.
Bessam, B; Menacer, A; Boumehraz, M; Cherif, H
2016-09-01
The knowledge of the broken rotor bars characteristic frequencies and amplitudes has a great importance for all related diagnostic methods. The monitoring of motor faults requires a high resolution spectrum to separate different frequency components. The Discrete Fourier Transform (DFT) has been widely used to achieve these requirements. However, at low slip this technique cannot give good results. As a solution for these problems, this paper proposes an efficient technique based on a neural network approach and Hilbert transform (HT) for broken rotor bar diagnosis in induction machines at low load. The Hilbert transform is used to extract the stator current envelope (SCE). Two features are selected from the (SCE) spectrum (the amplitude and frequency of the harmonic). These features will be used as input for neural network. The results obtained are astonishing and it is capable to detect the correct number of broken rotor bars under different load conditions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
380 kW synchronous machine with HTS rotor windings--development at Siemens and first test results
NASA Astrophysics Data System (ADS)
Nick, W.; Nerowski, G.; Neumüller, H.-W.; Frank, M.; van Hasselt, P.; Frauenhofer, J.; Steinmeyer, F.
2002-08-01
Applying HTS conductors in the rotor of synchronous machines allows the design of future motors or generators that are lighter, more compact and feature an improved coefficient of performance. To address these goals a project collaboration was installed within Siemens, including Automation & Drives, Large Drives as a leading supplier of electrical machines, Corporate Technology as a competence center for superconducting technology, and other partners. The main task of the project was to demonstrate the feasibility of basic concepts. The rotor was built from racetrack coils of Bi-2223 HTS tape conductor, these were assembled on a core and fixed by a bandage of glass-fibre composite. Rotor coil cooling is performed by thermal conduction, one end of the motor shaft is hollow to give access for the cooling system. Two cooling systems were designed and operated successfully: firstly an open circuit using cold gaseous helium from a storage vessel, but also a closed circuit system based on a cryogenerator. To take advantage of the increased rotor induction levels the stator winding was designed as an air gap winding. This was manufactured and fitted in a standard motor housing. After assembling of the whole system in a test facility with a DC machine load experiments have been started to prove the validity of our design, including operation with both cooling systems and driving the stator from the grid as well as by a power inverter.
Electronically commutated motors for vehicle applications
NASA Astrophysics Data System (ADS)
Echolds, E. F.
1980-02-01
Two permanent magnet electronically commutated motors for electric vehicle traction are discussed. One, based on existing technology, produces 23 kW (peak) at 26,000 rpm, and 11 kW continuous at 18,000 rpm. The motor has a conventional design: a four-pole permanent magnet rotor and a three-phase stator similar to those used on ordinary induction motors. The other, advanced technology motor, is rated at 27 kW (peak) at 14,000 rpm, and 11 kW continuous at 10,500 rpm. The machine employs a permanent magnet rotor and a novel ironless stator design in an axial air gap, homopolar configuration. Comparison of the new motors with conventional brush type machines indicates potential for substantial cost savings.
Analysis and design of asymmetrical reluctance machine
NASA Astrophysics Data System (ADS)
Harianto, Cahya A.
Over the past few decades the induction machine has been chosen for many applications due to its structural simplicity and low manufacturing cost. However, modest torque density and control challenges have motivated researchers to find alternative machines. The permanent magnet synchronous machine has been viewed as one of the alternatives because it features higher torque density for a given loss than the induction machine. However, the assembly and permanent magnet material cost, along with safety under fault conditions, have been concerns for this class of machine. An alternative machine type, namely the asymmetrical reluctance machine, is proposed in this work. Since the proposed machine is of the reluctance machine type, it possesses desirable feature, such as near absence of rotor losses, low assembly cost, low no-load rotational losses, modest torque ripple, and rather benign fault conditions. Through theoretical analysis performed herein, it is shown that this machine has a higher torque density for a given loss than typical reluctance machines, although not as high as the permanent magnet machines. Thus, the asymmetrical reluctance machine is a viable and advantageous machine alternative where the use of permanent magnet machines are undesirable.
Investigation of a less rare-earth permanent-magnet machine with the consequent pole rotor
NASA Astrophysics Data System (ADS)
Bai, Jingang; Liu, Jiaqi; Wang, Mingqiao; Zheng, Ping; Liu, Yong; Gao, Haibo; Xiao, Lijun
2018-05-01
Due to the rising price of rare-earth materials, permanent-magnet (PM) machines in different applications have a trend of reducing the use of rare-earth materials. Since iron-core poles replace half of PM poles in the consequent pole (CP) rotor, the PM machine with CP rotor can be a promising candidate for less rare-earth PM machine. Additionally, the investigation of CP rotor in special electrical machines, like hybrid excitation permanent-magnet PM machine, bearingless motor, etc., has verified the application feasibility of CP rotor. Therefore, this paper focuses on design and performance of PM machines when traditional PM machine uses the CP rotor. In the CP rotor, all the PMs are of the same polarity and they are inserted into the rotor core. Since the fundamental PM flux density depends on the ratio of PM pole to iron-core pole, the combination rule between them is investigated by analytical and finite-element methods. On this basis, to comprehensively analyze and evaluate PM machine with CP rotor, four typical schemes, i.e., integer-slot machines with CP rotor and surface-mounted PM (SPM) rotor, fractional-slot machines with CP rotor and SPM rotor, are designed to investigate the performance of PM machine with CP rotor, including electromagnetic performance, anti-demagnetization capacity and cost.
Superconductivity for Electromagnetic Guns
1984-03-01
greater than that for a pulsed homopolar machine when the time constant is less than 0.1 sec (ref 32) (See fig. 18). Since the energy density in a...transferred from the capacitor to the induct- or. If the capacitor is replaced by a homopolar machine, then, as is well-known, the kinetic energy of the...rotor plays the role of an "electrical" capacitance and the two arrangements (capacitance and homopolar ) are functionally equivalent. Group 3. In
Block-Module Electric Machines of Alternating Current
NASA Astrophysics Data System (ADS)
Zabora, I.
2018-03-01
The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).
Energy harvesting using AC machines with high effective pole count
NASA Astrophysics Data System (ADS)
Geiger, Richard Theodore
In this thesis, ways to improve the power conversion of rotating generators at low rotor speeds in energy harvesting applications were investigated. One method is to increase the pole count, which increases the generator back-emf without also increasing the I2R losses, thereby increasing both torque density and conversion efficiency. One machine topology that has a high effective pole count is a hybrid "stepper" machine. However, the large self inductance of these machines decreases their power factor and hence the maximum power that can be delivered to a load. This effect can be cancelled by the addition of capacitors in series with the stepper windings. A circuit was designed and implemented to automatically vary the series capacitance over the entire speed range investigated. The addition of the series capacitors improved the power output of the stepper machine by up to 700%. At low rotor speeds, with the addition of series capacitance, the power output of the hybrid "stepper" was more than 200% that of a similarly sized PMDC brushed motor. Finally, in this thesis a hybrid lumped parameter / finite element model was used to investigate the impact of number, shape and size of the rotor and stator teeth on machine performance. A typical off-the-shelf hybrid stepper machine has significant cogging torque by design. This cogging torque is a major problem in most small energy harvesting applications. In this thesis it was shown that the cogging and ripple torque can be dramatically reduced. These findings confirm that high-pole-count topologies, and specifically the hybrid stepper configuration, are an attractive choice for energy harvesting applications.
State reference design and saturated control of doubly-fed induction generators under voltage dips
NASA Astrophysics Data System (ADS)
Tilli, Andrea; Conficoni, Christian; Hashemi, Ahmad
2017-04-01
In this paper, the stator/rotor currents control problem of doubly-fed induction generator under faulty line voltage is carried out. Common grid faults cause a steep decline in the line voltage profile, commonly denoted as voltage dip. This point is critical for such kind of machines, having their stator windings directly connected to the grid. In this respect, solid methodological nonlinear control theory arguments are exploited and applied to design a novel controller, whose main goal is to improve the system behaviour during voltage dips, endowing it with low voltage ride through capability, a fundamental feature required by modern Grid Codes. The proposed solution exploits both feedforward and feedback actions. The feedforward part relies on suitable reference trajectories for the system internal dynamics, which are designed to prevent large oscillations in the rotor currents and command voltages, excited by line perturbations. The feedback part uses state measurements and is designed according to Linear Matrix Inequalities (LMI) based saturated control techniques to further reduce oscillations, while explicitly accounting for the system constraints. Numerical simulations verify the benefits of the internal dynamics trajectory planning, and the saturated state feedback action, in crucially improving the Doubly-Fed Induction Machine response under severe grid faults.
Design and analysis of a novel doubly salient permanent- magnet generator
NASA Astrophysics Data System (ADS)
Sarlioglu, Bulent
Improvements in permanent magnets and power electronics technologies have made it possible to devise different configurations of electrical machines which were not previously possible to implement. In this dissertation, a novel Doubly Salient Permanent Magnet (DSPM) generator has been designed, analyzed, and tested. The DSPM generator has four stator poles and six rotor poles. Two high density permanent magnets are located in the stator yoke. Since there are no windings or permanent magnets in the rotor, the DSPM generator has several advantages: the rotor has low inertia, no copper loss, no PM attachments, no brushes, and no slip rings. This type of rotor can be manufactured easily, and can be run at very high speeds as in the case of a switched reluctance machine. Compared to induction and switched reluctance machines, the DSPM generator can produce more power from the same geometry. Moreover, the efficiency of the DSPM generator is higher, since there is no copper loss associated with excitation of the machine. Another advantage of the DSPM generator is that the output AC voltage can easily be rectified by a diode bridge rectifier, while in the case of the switched reluctance machine one needs to use active semiconductor switches for power generation. If greater utilization and control of power production capability are desired, the AC output of the DSPM generator can be rectified using an active converter. In this dissertation, a novel doubly salient permanent magnet generator is introduced. First, the theory of the DSPM generator is given. Later, this novel generator is investigated using conventional magnetic circuits, nonlinear finite element analysis, and simulations with first order approximations and nonlinear modeling. It is compared with other generators. Static and no-load testing of the prototype DSPM generator are presented, and generator performance is evaluated with various power electronic circuits.
A solid-state controller for a wind-driven slip-ring induction generator
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.; Leary, B. G.
1984-08-01
The three-phase induction generator appears to become the preferred choice for wind-powered systems operated in parallel with existing power systems. A problem arises in connection with the useful operating speed range of the squirrel-cage machine, which is relatively narrow, as, for instance, in the range from 1 to 1.15. Efficient extraction of energy from a wind turbine, on the other hand, requires a speed range, perhaps as large as 1 to 3. One approach for 'matching' the generator to the turbine for the extraction of maximum power at any usable wind speed involves the use of a slip-ring induction machine. The power demand of the slip-ring machine can be matched to the available output from the wind turbine by modifying the speed-torque characteristics of the generator. A description is presented of a simple electronic rotor resistance controller which can optimize the power taken from a wind turbine over the full speed range.
Method and system for controlling a permanent magnet machine
Walters, James E.
2003-05-20
Method and system for controlling the start of a permanent magnet machine are provided. The method allows to assign a parameter value indicative of an estimated initial rotor position of the machine. The method further allows to energize the machine with a level of current being sufficiently high to start rotor motion in a desired direction in the event the initial rotor position estimate is sufficiently close to the actual rotor position of the machine. A sensing action allows to sense whether any incremental changes in rotor position occur in response to the energizing action. In the event no changes in rotor position are sensed, the method allows to incrementally adjust the estimated rotor position by a first set of angular values until changes in rotor position are sensed. In the event changes in rotor position are sensed, the method allows to provide a rotor alignment signal as rotor motion continues. The alignment signal allows to align the estimated rotor position relative to the actual rotor position. This alignment action allows for operating the machine over a wide speed range.
Electrical machines and assemblies including a yokeless stator with modular lamination stacks
Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose
2010-04-06
An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo
2017-05-01
Since permanent magnets (PM) are stacked between the adjacent stator teeth and there are no windings or PMs on the rotor, flux-switching permanent magnet machine (FSPMM) owns the merits of good flux concentrating and robust rotor structure. Compared with the traditional PM machines, FSPMM can provide higher torque density and better thermal dissipation ability. Combined with the soft magnetic composite (SMC) material and ferrite magnets, this paper proposes a new 3D-flux FSPMM (3DFFSPMM). The topology and operation principle are introduced. It can be found that the designed new 3DFFSPMM has many merits over than the traditional FSPMM for it can utilize the advantages of SMC material. Moreover, the PM flux of this new motor can be regulated by using the mechanical method. 3D finite element method (FEM) is used to calculate the magnetic field and parameters of the motor, such as flux density, inductance, PM flux linkage and efficiency map. The demagnetization analysis of the ferrite magnet is also addressed to ensure the safety operation of the proposed motor.
NASA Astrophysics Data System (ADS)
Oumaamar, Mohamed El Kamel; Maouche, Yassine; Boucherma, Mohamed; Khezzar, Abdelmalek
2017-02-01
The mixed eccentricity fault detection in a squirrel cage induction motor has been thoroughly investigated. However, a few papers have been related to pure static eccentricity fault and the authors focused on the RSH harmonics presented in stator current. The main objective of this paper is to present an alternative method based on the analysis of line neutral voltage taking place between the supply and the stator neutrals in order to detect air-gap static eccentricity, and to highlight the classification of all RSH harmonics in line neutral voltage. The model of squirrel cage induction machine relies on the rotor geometry and winding layout. Such developed model is used to analyze the impact of the pure static air-gap eccentricity by predicting the related frequencies in the line neutral voltage spectrum. The results show that the line neutral voltage spectrum are more sensitive to the air-gap static eccentricity fault compared to stator current one. The theoretical analysis and simulated results are confirmed by experiments.
Active Vibration Control of Hydrodynamic Journal Bearings
NASA Astrophysics Data System (ADS)
Tůma, J.; Šimek, J.; Škuta, J.; Los, J.; Zavadil, J.
Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. It is assumed that the journal vibration is measured by a pair of proximity probes. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. The active vibration control was tested with the use of a test rig, which consists of a rotor supported by two controllable journal bearings and driven by an inductive motor up to 23,000 rpm. As it was proved by experiments the active vibration control extends considerably the range of the rotor operational speed.
Permanent-magnet-less machine having an enclosed air gap
Hsu, John S [Oak Ridge, TN
2012-02-07
A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).
Permanent-magnet-less machine having an enclosed air gap
Hsu, John S.
2013-03-05
A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).
System and method for smoothing a salient rotor in electrical machines
Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.
2016-12-13
An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.
Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
Qu, Ronghai; Lipo, Thomas A.
2005-08-02
The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.
A New Apparatus for Measuring the Temperature at Machine Parts Rotating at High Speeds
NASA Technical Reports Server (NTRS)
Gnam, E.
1945-01-01
After a brief survey of the available methods for measuring the temperatures of machine parts at high speed, in particular turbine blades and rotors, an apparatus is described which is constructed on the principle of induction. Transmission of the measuring current by sliding contacts therefore is avoided. Up-to-date experiments show that it is possible to give the apparatus a high degree of sensitivity and accuracy. In comparison with sliding contact types, the present apparatus shows the important advantage that it operates for any length of time without wear, and that the contact difficulties, particularly occurring at high sliding speeds,are avoided.
Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Lorenz, Robert D.
2001-01-01
A new, deadbeat type of direct torque control is proposed, analyzed, and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.
Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Lorenz, Robert D.
2003-01-01
A new, deadbeat type of direct torque control is proposed, analyzed and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.
Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines. Revision 1
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Lorenz, Robert D.
2002-01-01
A new, deadbeat type of direct torque control is proposed, analyzed, and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.
Kelledes, William L.; St. John, Don K.
1992-01-01
The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.
Utilization of rotor kinetic energy storage for hybrid vehicles
Hsu, John S [Oak Ridge, TN
2011-05-03
A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.
Topologies for three-phase wound-field salient rotor switched-flux machines for HEV applications
NASA Astrophysics Data System (ADS)
Khan, Faisal; Sulaiman, Erwan; Ahmad, Md Zarafi; Husin, Zhafir Aizat; Mazlan, Mohamed Mubin Aizat
2015-05-01
Wound-field switched-flux machines (WFSFM) have an intrinsic simplicity and high speed that make them well suited to many hybrid electric vehicle (HEV) applications. However, overlap armature and field windings raised the copper losses in these machines. Furthermore, in previous design segmented-rotor is used which made the rotor less robust. To overcome these problems, this paper presents novel topologies for three-phase wound-field switched-flux machines. Both armature and field winding are located on the stator and rotor is composed of only stack of iron. Non-overlap armature and field windings and toothed-rotor are the clear advantages of these topologies as the copper losses gets reduce and rotor becomes more robust. Design feasibility and performance analysis of 12 slots and different rotor pole numbers are examined on the basis of coil arrangement test, peak armature flux linkage, back emf, cogging torque and average torque by using Finite Element Analysis(FEA).
Stator for a rotating electrical machine having multiple control windings
Shah, Manoj R.; Lewandowski, Chad R.
2001-07-17
A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.
Electric machine for hybrid motor vehicle
Hsu, John Sheungchun
2007-09-18
A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.
Control coil arrangement for a rotating machine rotor
Shah, Manoj R.; Lewandowsk, Chad R.
2001-07-31
A rotating machine (e.g., a turbine, motor or generator) is provided wherein a fixed solenoid or other coil configuration is disposed adjacent to one or both ends of the active portion of the machine rotor for producing an axially directed flux in the active portion so as to provide planar axial control at single or multiple locations for rotor balance, levitation, centering, torque and thrust action. Permanent magnets can be used to produce an axial bias magnetic field. The rotor can include magnetic disks disposed in opposed, facing relation to the coil configuration.
Dovetail spoke internal permanent magnet machine
Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY
2011-08-23
An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.
Method and system for controlling start of a permanent magnet machine
Walters, James E.; Krefta, Ronald John
2003-10-28
Method and system for controlling a permanent magnet machine are provided. The method provides a sensor assembly for sensing rotor sector position relative to a plurality of angular sectors. The method further provides a sensor for sensing angular increments in rotor position. The method allows starting the machine in a brushless direct current mode of operation using a calculated initial rotor position based on an initial angular sector position information from the sensor assembly. Upon determining a transition from the initial angular sector to the next angular sector, the method allows switching to a sinusoidal mode of operation using rotor position based on rotor position information from the incremental sensor.
Passive magnetic bearing for a motor-generator
Post, Richard F [Walnut Creek, CA
2006-07-18
Conductive lap windings are interleaved with conventional loops in the stator of a motor-generator. The rotor provides magnetic induction lines that, when rotated, cut across the lap windings and the loops. When the rotor is laterally displaced from its equilibrium axis of rotation, its magnetic lines of induction induce a current in the interleaved lap windings. The induced current interacts with the magnetic lines of induction of the rotor in accordance with Lenz's law to generate a radial force that returns the rotor to its equilibrium axis of rotation.
Hybrid-secondary uncluttered permanent magnet machine and method
Hsu, John S.
2005-12-20
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
Active vibrations control of journal bearings with the use of piezoactuators
NASA Astrophysics Data System (ADS)
Tůma, Jiří; Šimek, Jiří; Škuta, Jaromír; Los, Jaroslav
2013-04-01
Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The controllable journal bearing is a part of a test rig, which consists of a rotor driven by an inductive motor up to 23,000 rpm. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. The journal vibration is measured by a pair of proximity probes. The control system enables run-up, coast-down and steady-state rotation. A real-time simulator dSpace encloses the control loop. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. As it was proved by experiments the active vibration control extends considerably the range of the operational speed.
High speed internal permanent magnet machine and method of manufacturing the same
Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY
2011-09-13
An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.
NASA Astrophysics Data System (ADS)
Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.
2017-08-01
This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.
Grumman WS33 wind system: prototype construction and testing, Phase II technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, F.M.; Henton, P.; King, P.W.
1980-11-01
The prototype fabrication and testing of the 8 kW small wind energy conversion system are reported. The turbine is a three-bladed, down-wind machine designed to interface directly with an electrical utility network. The machine as finally fabricated is rated at 15 kW at 24 mpH and peak power of 18 kW at 35 mph. Utility compatible electrical power is generated in winds between a cut-in speed of 9 mph and a cut-out speed of 35 mph by using the torque characteristics of the unit's induction generator combined with the rotor aerodynamics to maintain essentially constant speed. Inspection procedures, pre-delivery testing,more » and a cost analysis are included.« less
Method for providing slip energy control in permanent magnet electrical machines
Hsu, John S.
2006-11-14
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
Simplified Hybrid-Secondary Uncluttered Machine And Method
Hsu, John S [Oak Ridge, TN
2005-05-10
An electric machine (40, 40') has a stator (43) and a rotor (46) and a primary air gap (48) has secondary coils (47c, 47d) separated from the rotor (46) by a secondary air gap (49) so as to induce a slip current in the secondary coils (47c, 47d). The rotor (46, 76) has magnetic brushes (A, B, C, D) or wires (80) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments. A method of providing a slip energy controller is also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi
2016-06-21
An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice directionmore » from the respective orifices to the inner wall.« less
Complete analytical solution of electromagnetic field problem of high-speed spinning ball
NASA Astrophysics Data System (ADS)
Reichert, T.; Nussbaumer, T.; Kolar, J. W.
2012-11-01
In this article, a small sphere spinning in a rotating magnetic field is analyzed in terms of the resulting magnetic flux density distribution and the current density distribution inside the ball. From these densities, the motor torque and the eddy current losses can be calculated. An analytical model is derived, and its results are compared to a 3D finite element analysis. The model gives insight into the torque and loss characteristics of a solid rotor induction machine setup, which aims at rotating the sphere beyond 25 Mrpm.
NASA Astrophysics Data System (ADS)
Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.
2017-08-01
Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.
Homopolar machine for reversible energy storage and transfer systems
Stillwagon, Roy E.
1978-01-01
A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.
Homopolar machine for reversible energy storage and transfer systems
Stillwagon, Roy E.
1981-01-01
A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.
Caution: Precision Error in Blade Alignment Results in Faulty Unsteady CFD Simulation
NASA Astrophysics Data System (ADS)
Lewis, Bryan; Cimbala, John; Wouden, Alex
2012-11-01
Turbomachinery components experience unsteady loads at several frequencies. The rotor frequency corresponds to the time for one rotor blade to rotate between two stator vanes, and is normally dominant for rotor torque oscillations. The guide vane frequency corresponds to the time for two rotor blades to pass by one guide vane. The machine frequency corresponds to the machine RPM. Oscillations at the machine frequency are always present due to minor blade misalignments and imperfections resulting from manufacturing defects. However, machine frequency oscillations should not be present in CFD simulations if the mesh is free of both blade misalignment and surface imperfections. The flow through a Francis hydroturbine was modeled with unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD simulations and a dynamic rotating grid. Spectral analysis of the unsteady torque on the rotor blades revealed a large component at the machine frequency. Close examination showed that one blade was displaced by 0 .0001° due to round-off errors during mesh generation. A second mesh without blade misalignment was then created. Subsequently, large machine frequency oscillations were not observed for this mesh. These results highlight the effect of minor geometry imperfections on CFD solutions. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.
Disc-geometry homopolar synchronous machine
NASA Astrophysics Data System (ADS)
Evans, P. D.; Eastham, J. F.
1980-09-01
Results of an experimental and theoretical investigation of a disc-geometry homopolar synchronous machine with field excitation on the primary side are presented. The unlaminated mild-steel rotor contains no windings and is brushless. The prototype machine produces approximately 7.5 kW of mechanical output at 3000 rev/min, with a product of power factor and efficiency greater than 0.7. The construction of the stator core is unusual and incorporates both laminated and unlaminated portions. The magnetic circuit is also arranged to minimize the axial force between the stator and rotor. A novel rotor design which achieves a reduced quadrature-axis reactance is shown experimentally to be superior to the conventional homopolar rotor.
Voltage THD Improvement for an Outer Rotor Permanent Magnet Synchronous Machine
NASA Astrophysics Data System (ADS)
de la Cruz, Javier; Ramirez, Juan M.; Leyva, Luis
2013-08-01
This article deals with the design of an outer rotor Permanent Magnet Synchronous Machines (PMSM) driven by wind turbines. The Voltage Total Harmonic Distortion (VTHD) is especially addressed, under design parameters' handling, i.e., the geometry of the stator, the polar arc percentage, the air gap, the skew angle in rotor poles, the pole length and the core steel class. Seventy-six cases are simulated and the results provide information useful for designing this kind of machines. The study is conducted on a 5 kW PMSM.
Torque ripple reduction in electric machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi
An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machinemore » is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.« less
2013-05-01
an 18 inch gap diameter has roughly a 2 foot outer diameter 2 “ Brushless Permanent...require PMs include wound rotor DC (brush and brushless ), Variable or Switched reluctance (VR or SR) machines and squirrel cage induction motors...Trades have identified Brushless DC PM and SR machines are of primary interest. Both motors can use sensorless commutation methods. A VR resolver can
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna
2017-08-01
Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
High-Strength Undiffused Brushless (HSUB) Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Tolbert, Leon M; Lee, Seong T
2007-01-01
This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air gap flux. The PM in the rotor prevents magnetic flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce.more » A high-strength machine is thus obtained. The air gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less
NASA Astrophysics Data System (ADS)
Xu, Xueping; Han, Qinkai; Chu, Fulei
2018-03-01
The electromagnetic vibration of electrical machines with an eccentric rotor has been extensively investigated. However, magnetic saturation was often neglected. Moreover, the rub impact between the rotor and stator is inevitable when the amplitude of the rotor vibration exceeds the air-gap. This paper aims to propose a general electromagnetic excitation model for electrical machines. First, a general model which takes the magnetic saturation and rub impact into consideration is proposed and validated by the finite element method and reference. The dynamic equations of a Jeffcott rotor system with electromagnetic excitation and mass imbalance are presented. Then, the effects of pole-pair number and rubbing parameters on vibration amplitude are studied and approaches restraining the amplitude are put forward. Finally, the influences of mass eccentricity, resultant magnetomotive force (MMF), stiffness coefficient, damping coefficient, contact stiffness and friction coefficient on the stability of the rotor system are investigated through the Floquet theory, respectively. The amplitude jumping phenomenon is observed in a synchronous generator for different pole-pair numbers. The changes of design parameters can alter the stability states of the rotor system and the range of parameter values forms the zone of stability, which lays helpful suggestions for the design and application of the electrical machines.
Cooling system for rotating machine
Gerstler, William Dwight [Niskayuna, NY; El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Alexander, James Pellegrino [Ballston Lake, NY; Quirion, Owen Scott [Clifton Park, NY; Palafox, Pepe [Schenectady, NY; Shen, Xiaochun [Schenectady, NY; Salasoo, Lembit [Schenectady, NY
2011-08-09
An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.
NASA Astrophysics Data System (ADS)
Marčič, T.; Štumberger, B.; Štumberger, G.; Hadžiselimović, M.; Zagradišnik, I.
The electromechanical characteristics of induction motors depend on the used stator and rotor slot combination. The correlation between the usage of different stator and rotor slot number combinations, magnetic flux density distributions, no-load iron losses and rated load winding over-temperatures for a specific induction motor is presented. The motor's magnetic field was analyzed by traces of the magnetic flux density vector, obtained by FEM. Post-processing of FE magnetic field solution was used for posterior iron loss calculation of the motor iron loss at no-load. The examined motor stator lamination had 36 semi-closed slots and the rotor laminations had 28, 33, 34, 44 and 46 semi-closed slots.
Influence of rubbing on rotor dynamics, part 1
NASA Technical Reports Server (NTRS)
Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.
1989-01-01
The results of analytical and experimental research on rotor-to-stationary element rubbing in rotating machines are presented. A characterization of physical phenomena associated with rubbing, as well as a literature survey on the subject of rub is given. The experimental results were obtained from two rubbing rotor rigs: one, which dynamically simulates the space shuttle main engine high pressure fuel turbopump (HPFTP), and the second one, much simpler, a two-mode rotor rig, designed for more generic studies on rotor-to-stator rubbing. Two areas were studied: generic rotor-to-stator rub-related dynamic phenomena affecting rotating machine behavior and applications to the space shuttle HPFTP. An outline of application of dynamic stiffness methodology for identification of rotor/bearing system modal parameters is given. The mathematical model of rotor/bearing/seal system under rub condition is given. The computer program was developed to calculate rotor responses. Compared with experimental results the computed results prove an adequacy of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, G.C.
1991-03-01
In this paper general equations for the asynchronous squirrel-cage motor which contain the influence of space harmonics and the mutual slotting are derived by using among others the power-invariant symmetrical component transformation and a time-dependent transformation with which, under certain circumstances, the rotor-position angle can be removed from the coefficient matrix. The developed models implemented in a machine-independent computer program form powerful tools, with which the influence of space harmonics in relation to the geometric data of specific motors can be analyzed for steady-state and transient performances.
Axial gap rotating electrical machine
None
2016-02-23
Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.
High-Strength Undiffused Brushless (HSUB) Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Lee, Seong T; Tolbert, Leon M
2008-01-01
This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air-gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air-gap flux. The PM in the rotor prevents magnetic-flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce. A high-strength machinemore » is thus obtained. The air-gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less
NASA Astrophysics Data System (ADS)
Ben Regaya, Chiheb; Farhani, Fethi; Zaafouri, Abderrahmen; Chaari, Abdelkader
2018-02-01
This paper presents a new adaptive Backstepping technique to handle the induction motor (IM) rotor resistance tracking problem. The proposed solution leads to improve the robustness of the control system. Given the presence of static error when estimating the rotor resistance with classical methods, and the sensitivity to the load torque variation at low speed, a new Backstepping observer enhanced with an integral action of the tracking errors is presented, which can be established in two steps. The first one consists to estimate the rotor flux using a Backstepping observer. The second step, defines the adaptation mechanism of the rotor resistance based on the estimated rotor-flux. The asymptotic stability of the observer is proven by Lyapunov theory. To validate the proposed solution, a simulation and experimental benchmarking of a 3 kW induction motor are presented and analyzed. The obtained results show the effectiveness of the proposed solution compared to the model reference adaptive system (MRAS) rotor resistance observer presented in other recent works.
CFD simulation of a screw compressor including leakage flows and rotor heating
NASA Astrophysics Data System (ADS)
Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed
2015-08-01
Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.
Hall effect sensors embedded within two-pole toothless stator assembly
NASA Technical Reports Server (NTRS)
Denk, Joseph (Inventor); Grant, Richard J. (Inventor)
1994-01-01
A two-pole toothless PM machine employs Hall effect sensors to indicate the position of the machine's rotor relative to power windings in the machine's stator. The Hall effect sensors are located in the main magnetic air gap underneath the power windings. The main magnetic air gap is defined by an outer magnetic surface of the rotor and an inner surface of the stator's flux collector ring.
NASA Astrophysics Data System (ADS)
Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo
Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.
Method for manufacturing a rotor having superconducting coils
Driscoll, David I.; Shoykhet, Boris A.
2001-01-01
A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong T; Burress, Timothy A; Tolbert, Leon M
2009-01-01
This paper introduces a new method for calculating the power factor and output torque by considering the cross saturation between direct-axis (d-axis) and quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux atmore » high speed, which was developed for the traction motor of a hybrid electric vehicle. The conventional two-axis IPMSM model was modified to include the cross-saturation effect by adding the cross-coupled inductance terms Ldq and Lqd. By the advantage of the excited structure of the experimental IPMSM, the analyzing works were performed under two conditions, the highest and lowest excited conditions. Therefore, it is possible to investigate the cross-saturation effect when a machine has higher magnetic flux from its rotor. The following is a summary of conclusions that may be drawn from this work: (1) Considering cross saturation of an IPMSM offers more accurate expected values of motor parameters in output torque calculation, especially when negative d-axis current is high; (2) A less saturated synchronous machine could be more affected by the cross-coupled saturation effect; (3) Both cross-coupled inductances, L{sub qd} and L{sub dq}, are mainly governed by d-axis current rather than q-axis current; (4) The modified torque equation, can be used for the dynamic model of an IPMSM for developing a better control model or control strategy; and (5) It is possible that the brushless field excitation structure has a common magnetic flux path on both d- and q-axis, and as a result, the reluctance torque of the machine could be reduced.« less
NASA Astrophysics Data System (ADS)
Amezquita-Sanchez, Juan P.; Valtierra-Rodriguez, Martin; Perez-Ramirez, Carlos A.; Camarena-Martinez, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.
2017-07-01
Squirrel-cage induction motors (SCIMs) are key machines in many industrial applications. In this regard, the monitoring of their operating condition aiming at avoiding damage and reducing economical losses has become a demanding task for industry. In the literature, several techniques and methodologies to detect faults that affect the integrity and performance of SCIMs have been proposed. However, they have only been focused on analyzing either the start-up transient or the steady-state operation regimes, two common operating scenarios in real practice. In this work, a novel methodology for broken rotor bar (BRB) detection in SCIMs during both start-up and steady-state operation regimes is proposed. It consists of two main steps. In the first one, the analysis of three-axis vibration signals using fractal dimension (FD) theory is carried out. Since different FD-based algorithms can give different results, three algorithms named Katz’ FD, Higuchi’s FD, and box dimension, are tested. In the second step, a fuzzy logic system for each regime is presented for automatic diagnosis. To validate the proposal, a motor with different damage levels has been tested: one with a partially BRB, a second with one fully BRB, and the third with two BRBs. The obtained results demonstrate the proposed effectiveness.
New Technique of High-Performance Torque Control Developed for Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2003-01-01
Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a method to clearly visualize the solution. The graphical technique allows a more insightful understanding of the operation of the machine under various conditions.
System and method for heating ferrite magnet motors for low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly.more » The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.« less
Method and radial gap machine for high strength undiffused brushless operation
Hsu, John S.
2006-10-31
A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). A method of non-diffused flux enhancement and flux weakening for a radial gap machine is also disclosed.
System and method for heating ferrite magnet motors for low temperatures
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
2017-07-04
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.
Assessment of Advanced Logistics Delivery System (ALDS) Launch Systems Concepts
2004-10-01
highest force vs. rotor weight required, allows much higher magnetic field generation than the linear induction or linear permanent magnet motors , and...provides the highest force vs. rotor weight required, allows much higher magnetic generation than the linear induction or linear permanent magnet motors , and
KRUMMEN, DAVID E.; HAYASE, JUSTIN; VAMPOLA, STEPHEN P.; HO, GORDON; SCHRICKER, AMIR A.; LALANI, GAUTAM G.; BAYKANER, TINA; COE, TAYLOR M.; CLOPTON, PAUL; RAPPEL, WOUTER-JAN; OMENS, JEFFREY H.; NARAYAN, SANJIV M.
2016-01-01
Introduction Recent work has suggested a role for organized sources in sustaining ventricular fibrillation (VF). We assessed whether ablation of rotor substrate could modulate VF inducibility in canines, and used this proof-of-concept as a foundation to suppress antiarrhythmic drug-refractory clinical VF in a patient with structural heart disease. Methods and Results In 9 dogs, we introduced 64-electrode basket catheters into one or both ventricles, used rapid pacing at a recorded induction threshold to initiate VF, and then defibrillated after 18±8 seconds. Endocardial rotor sites were identified from basket recordings using phase mapping, and ablation was performed at nonrotor (sham) locations (7 ± 2 minutes) and then at rotor sites (8 ± 2 minutes, P = 0.10 vs. sham); the induction threshold was remeasured after each. Sham ablation did not alter canine VF induction threshold (preablation 150 ± 16 milliseconds, postablation 144 ± 16 milliseconds, P = 0.54). However, rotor site ablation rendered VF noninducible in 6/9 animals (P = 0.041), and increased VF induction threshold in the remaining 3. Clinical proof-of-concept was performed in a patient with repetitive ICD shocks due to VF refractory to antiarrhythmic drugs. Following biventricular basket insertion, VF was induced and then defibrillated. Mapping identified 4 rotors localized at borderzone tissue, and rotor site ablation (6.3 ± 1.5 minutes/site) rendered VF noninducible. The VF burden fell from 7 ICD shocks in 8 months preablation to zero ICD therapies at 1 year, without antiarrhythmic medications. Conclusions Targeted rotor substrate ablation suppressed VF in an experimental model and a patient with refractory VF. Further studies are warranted on the efficacy of VF source modulation. PMID:26179310
Lu, Shuangzan; Huang, Min; Qin, Zhihui; Yu, Yinghui; Guo, Qinmin; Cao, Gengyu
2018-08-03
Molecular rotors, motors and gears play important roles in artificial molecular machines, in which rotor and motor matrices are highly desirable for large-scale bottom-up fabrication of molecular machines. Here we demonstrate the fabrication of a highly ordered molecular rotor matrix by depositing nonplanar dipolar titanyl phthalocyanine (TiOPc, C 32 H 16 N 8 OTi) molecules on a Moiré patterned dipolar FeO/Pt(111) substrate. TiOPc molecules with O atoms pointing outwards from the substrate (upward) or towards the substrate (downward) are alternatively adsorbed on the fcc sites by strong lateral confinement. The adsorbed molecules, i.e. two kinds of molecular rotors, show different scanning tunneling microscopy images, thermal stabilities and rotational characteristics. Density functional theory calculations clarify that TiOPc molecules anchoring upwards with high adsorption energies correspond to low-rotational-rate rotors, while those anchoring downwards with low adsorption energies correspond to high-rotational-rate rotors. A robust rotor matrix fully occupied by low-rate rotors is fabricated by depositing molecules on the substrate at elevated temperature. Such a paradigm opens up a promising route to fabricate functional molecular rotor matrices, driven motor matrices and even gear groups on solid substrates.
Electromechanical converters for electric vehicles
NASA Astrophysics Data System (ADS)
Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Rujanschi, N.
2018-01-01
The paper presents the analysis of various constructive schemes of synchronous electromechanical converters with permanent magnets fixed on the rotor and asynchronous with the short-circuit rotor. Various electrical stator winding schemes have also been compared, demonstrating the efficiency of copper utilization in toroidal windings. The electromagnetic calculus of the axial machine has particularities compared to the cylindrical machine, in the paper is presented the method of correlating the geometry of the cylindrical and axial machines. In this case the method and recommendations used in the design of such machines may be used.
Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun
2015-09-29
An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.
Topping turbine (103-JAT) rotor instability in 1150-STPD Kellogg ammonia plants
NASA Technical Reports Server (NTRS)
Thomas, R.
1985-01-01
In two of Agrico's three plants, instabilities in the rotor/bearing system have been an ongoing problem. On occasion plant rates, i.e., machine speed, have been restricted in order to limit the exhaust and shaft relative vibration on the 103-JAT to a maximum value of 89 micrometer (0.0035) peak to peak. The purpose is to acquaint one with Agrico's experiences with exhaust end vibration and rotor instabilities on the 103-JAT topping turbine. The final conclusions arrived at were based on: (1) field acquired data both during steady state and transient conditions; (2) computer modeling of the rotor/bearing system; and (3) vibration data taken from a control rotor during a series of test runs in a high speed balancing machine from 0 to 110% of operating speed.
NASA Astrophysics Data System (ADS)
Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal
2015-05-01
In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.
Combined passive bearing element/generator motor
Post, Richard F.
2000-01-01
An electric machine includes a cylindrical rotor made up of an array of permanent magnets that provide a N-pole magnetic field of even order (where N=4, 6, 8, etc.). This array of permanent magnets has bars of identical permanent magnets made of dipole elements where the bars are assembled in a circle. A stator inserted down the axis of the dipole field is made of two sets of windings that are electrically orthogonal to each other, where one set of windings provides stabilization of the stator and the other set of windings couples to the array of permanent magnets and acts as the windings of a generator/motor. The rotor and the stator are horizontally disposed, and the rotor is on the outside of said stator. The electric machine may also include two rings of ferromagnetic material. One of these rings would be located at each end of the rotor. Two levitator pole assemblies are attached to a support member that is external to the electric machine. These levitator pole assemblies interact attractively with the rings of ferromagnetic material to produce a levitating force upon the rotor.
NASA Astrophysics Data System (ADS)
Varney, Philip; Green, Itzhak
2017-11-01
Rotor cracks represent an uncommon but serious threat to rotating machines and must be detected early to avoid catastrophic machine failure. An important aspect of analyzing rotor cracks is understanding their influence on the rotor stability. It is well-known that the extent of rotor instability versus shaft speed is exacerbated by deeper cracks. Consequently, crack propagation can eventually result in an unstable response even if the shaft speed remains constant. Most previous investigations of crack-induced rotor instability concern simple Jeffcott rotors. This work advances the state-of-the-art by (a) providing a novel inertial-frame model of an overhung rotor, and (b) assessing the stability of the cracked overhung rotor using Floquet stability analysis. The rotor Floquet stability analysis is performed for both an open crack and a breathing crack, and conclusions are drawn regarding the importance of appropriately selecting the crack model. The rotor stability is analyzed versus crack depth, external viscous damping ratio, and rotor inertia. In general, this work concludes that the onset of instability occurs at lower shaft speeds for thick rotors, lower viscous damping ratios, and deeper cracks. In addition, when comparing commensurate cracks, the breathing crack is shown to induce more regions of instability than the open crack, though the open crack generally predicts an unstable response for shallower cracks than the breathing crack. Keywords: rotordynamics, stability, rotor cracks.
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.
Design of a Modular E-Core Flux Concentrating Axial Flux Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal
2015-09-02
In this paper a novel E-Core axial flux machine is proposed. The machine has a double stator-single rotor configuration with flux concentrating ferrite magnets, and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single phase and a three-phase version of the E-Core machine. Case study for a 1.1 kW, 400 rpm machine for both the single phase and three-phase axial flux machine is presented. The results are verifiedmore » through 3D finite element analysis.« less
Non-symmetric approach to single-screw expander and compressor modeling
NASA Astrophysics Data System (ADS)
Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.
2017-08-01
Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.
NASA Astrophysics Data System (ADS)
Šedivý, Dominik; Ferfecki, Petr; Fialová, Simona
2018-06-01
This article presents the evaluation of force effects on squeeze film damper rotor. The rotor is placed eccentrically and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were measured by using computational modeling. Damper was filled with magnetorheological fluid. Viscosity of this non-Newtonian fluid is given using Bingham rheology model. Yield stress is not constant and it is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width between rotor and stator. The simulations were made in finite volume method based solver. The motion of the inner ring of squeeze film damper was carried out by dynamic mesh. Numerical solution was solved for five different initial eccentricities and angular velocities of rotor motion.
NASA Astrophysics Data System (ADS)
Martsynkovskyy, V. A.; Deineka, A.; Kovalenko, V.
2017-08-01
The article presents forced axial vibrations of the rotor with an automatic unloading machine in an oxidizer pump. A feature of the design is the use in the autoloading system of slotted throttles with mutually inverse throttling. Their conductivity is determined by a numerical experiment in the ANSYS CFX software package.
Rotary internal combustion engine with integrated supercharged fuel-air induction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southard, A.A.
This patent describes an improved method of operating a rotary internal combustion engine of the type wherein a multicusped rotor rotatable upon a rotatable eccentric rotates within a cavity bounded by a wall of lobed trochoidal configuration. The rotor cusps have sealing engagement separating and defining operating chambers in the cavity about the rotor between adjacent pairs of cusps. Such chambers are angularly spaced about and orbit the center of the cavity as the rotor rotates while each chamber alternately expands and contracts in volume. The method comprises cylindrically operating each chamber through a sequence of six phases that aremore » synchronized with three successive increases and decreases in the volume of such chamber, with the first four phases being an internal combustion engine power cycle comprising an air intake phase, a compression phase, a combustion phase and an exhaust phase. The fifth phase comprises inducting air into the chamber, and the sixth phase comprises compressing the inducted air in such chamber and passing such inducted and compressed air through an elongated transfer zone.« less
Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive
NASA Astrophysics Data System (ADS)
Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid
2018-05-01
The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.
Self-assembling fluidic machines
NASA Astrophysics Data System (ADS)
Grzybowski, Bartosz A.; Radkowski, Michal; Campbell, Christopher J.; Lee, Jessamine Ng; Whitesides, George M.
2004-03-01
This letter describes dynamic self-assembly of two-component rotors floating at the interface between liquid and air into simple, reconfigurable mechanical systems ("machines"). The rotors are powered by an external, rotating magnetic field, and their positions within the interface are controlled by: (i) repulsive hydrodynamic interactions between them and (ii) by localized magnetic fields produced by an array of small electromagnets located below the plane of the interface. The mechanical functions of the machines depend on the spatiotemporal sequence of activation of the electromagnets.
Rotor apparatus for high strength undiffused brushless electric machine
Hsu, John S [Oak Ridge, TN
2006-01-24
A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). Improvements of a laminated rotor, an end pole structure, and an arrangement of the PM elements for providing an arrangement of the flux paths from the auxiliary field coil assemblies are also disclosed.
Mathematic study of the rotor motion with a pendulum selfbalancing device
NASA Astrophysics Data System (ADS)
Ivkina, O. P.; Ziyakaev, G. R.; Pashkov, E. N.
2016-09-01
The rotary machines used in manufacturing may become unbalanced leading to vibration. In some cases, the problem may be solved by installing self-balancing devices (SBDs). Certain factors, however, exhibit a pronounced effect on the efficiency of these devices. The objective of the research comprised of establishing the most beneficial spatial position of pendulums to minimize the necessary time to repair the rotor unbalance. The mathematical research of the motion of a rotor with pendulum SBDs in the situation of their misalignment was undertaken. This objective was achieved by using the Lagrange equations of the second type. The analysis identified limiting cases of location of the rotor unbalance vector and the vector of housing's unbalance relative to each other, as well as the minimum capacity of the pendulum. When determining pendulums ’ parameters during the SBD design process, it is necessary to take into account the rotor unbalance and the unbalance of the machine body, which is caused by the misalignment of rotor axis and pendulum's axis of rotation.
Modelling high frequency phenomena in the rotor of induction motors under no-load test conditions
NASA Astrophysics Data System (ADS)
Boglietti, Aldo; Bottauscio, Oriano; Chiampi, Mario; Lazzari, Mario
2003-01-01
The paper aims to deep the electromagnetic phenomena in the rotor of induction motors produced during the no-load test by the high-order harmonics of the spatial distribution of magnetic flux. The analysis is carried out by a flux driven finite element procedure, which can take into account the hysteresis of magnetic material, the induced currents in rotor cage and the eddy currents in the laminations. The computed results, including losses and local waveforms of electrical and magnetic quantities, are finally discussed.
NASA Astrophysics Data System (ADS)
Zheng, Ping; Liu, Jiaqi; Bai, Jingang; Song, Zhiyi; Liu, Yong
2017-05-01
The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM), composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs). In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM) is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.
NASA Technical Reports Server (NTRS)
Muszynska, A.
1985-01-01
The operation of rotor rigs used to demonstrate various instability phenomena occurring in rotating machines is described. The instability phenomena demonstrated included oil whirl/whip antiswirl, rub, loose rotating parts, water-lubricated bearing instabilities, and cracked shaft. The rotor rigs were also used to show corrective measures for preventing instabilities. Vibrational response data from the rigs were taken with modern, computerized instrumentation. The rotor nonsynchronous perturbation rig demonstrated modal identification techniques for rotor/bearing systems. Computer-aided data acquisition and presentation, using the dynamic stiffness method, makes it possible to identify rotor and bearing parameters for low modes. The shaft mode demonstrator presented the amplified modal shape line of the shaft excited by inertia forces of unbalance (synchronous perturbation). The first three bending modes of the shaft can be demonstrated. The user-friendly software, Orbits, presented a simulation of rotor precessional motion that is characteristic of various instability phenomena. The data presentation demonstration used data measured on a turbine driven compressor train as an example of how computer aided data acquisition and presentation assists in identifying rotating machine malfunctions.
The Oregon State University wind studies. [economic feasibility of windpowered generators
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1973-01-01
The economic feasibility of commercial use of wind generated power in selected areas of Oregon is assessed. A number of machines for generating power have been examined. These include the Savonius rotor, translators, conventional wind turbines, the circulation controlled rotor and the vertical axis winged turbine. Of these machines, the conventional wind turbine and the vertical axis winged turbine show the greatest promise on the basis of the power developed per unit of rotor blade area. Attention has been focused on the structural and fatigue analysis of rotors since the economics of rotary winged, wind generated power depends upon low cost, long lifetime rotors. Analysis of energy storage systems and tower design has also been undertaken. An economic means of energy storage has not been found to date. Tower design studies have produced cost estimates that are in general agreement with the cost of the updated Putnam 110-foot tower.
Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Kascak, Peter E.
2002-01-01
This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.
Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.
2017-04-01
In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.
Bailey, H. Sterling; Chomyszak, Stephen M.
2007-01-16
The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through meshing surfaces without the need for external gearing by modifying the function of one or the other of the rotors from that of "fluid moving" to that of "valving" thereby reducing the pressure loads and associated inefficiencies at the interface of the meshing surfaces. The inventions described herein relate to these improvements.
Forward and reverse control system for induction motors
Wright, J.T.
1987-09-15
A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.
NASA Astrophysics Data System (ADS)
Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.
2017-08-01
The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.
Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid
NASA Astrophysics Data System (ADS)
Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová
2017-09-01
This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.
Hybrid excited claw pole generator with skewed and non-skewed permanent magnets
NASA Astrophysics Data System (ADS)
Wardach, Marcin
2017-12-01
This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.
Isogeometric analysis and harmonic stator-rotor coupling for simulating electric machines
NASA Astrophysics Data System (ADS)
Bontinck, Zeger; Corno, Jacopo; Schöps, Sebastian; De Gersem, Herbert
2018-06-01
This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example.
175Hp contrarotating homopolar motor design report
NASA Astrophysics Data System (ADS)
Cannell, Michael J.; Drake, John L.; McConnell, Richard A.; Martino, William R.
1994-06-01
A normally conducting contrarotating homopolar motor has been designed and constructed. The reaction torque, in the outer rotor, from the inner rotor is utilized to produce true contrarotation. The machine utilizes liquid cooled conductors, high performance liquid metal current collectors, and ferrous conductors in the active region. The basic machine output is 175 hp at + or - 1,200 rpm with an input of 4 volts and 35,000 amps.
A block-based algorithm for the solution of compressible flows in rotor-stator combinations
NASA Technical Reports Server (NTRS)
Akay, H. U.; Ecer, A.; Beskok, A.
1990-01-01
A block-based solution algorithm is developed for the solution of compressible flows in rotor-stator combinations. The method allows concurrent solution of multiple solution blocks in parallel machines. It also allows a time averaged interaction at the stator-rotor interfaces. Numerical results are presented to illustrate the performance of the algorithm. The effect of the interaction between the stator and rotor is evaluated.
Contact dynamic phenomena in rotating machines: Active/passive considerations
NASA Astrophysics Data System (ADS)
Keogh, Patrick S.
2012-05-01
There are machine operating regimes in which rotor/stator interactions may lead to problematic rotor dynamic behavior. For example, dynamic heat sources arising from seals, bearings and other rubbing stator components may cause rotor thermal bend instability. In active magnetic bearing (AMB) systems, the rotor may experience forward and backward whirl rubs with touchdown bearings (TDBs). In abnormal cases, rotor transient and bounce interactions with such bearings may involve highly localized and short duration contacts. This paper discusses certain contact phenomena that may occur in passive and active systems. For example, the rub induced spiral behavior arises from a combination of unbalance and a thermal input that moves slowly around the rotor, typically in passive rotor-bearing systems. However, the instability can be regarded as if arising from a closed-loop feedback system. Hence it is possible to analyze the phenomenon using techniques that have been developed for active control systems. Rotors levitated by AMBs are truly active, but there are fundamental issues that may arise when contact with TDBs occurs. AMB control and contact interactions are discussed together with the benefits for making the TDB an active element. The reason for this lies in the potential ability to control the contact dynamics and associated mechanical and thermal stresses. A prototype system is described.
Driving and controlling molecular surface rotors with a terahertz electric field.
Neumann, Jan; Gottschalk, Kay E; Astumian, R Dean
2012-06-26
Great progress has been made in the design and synthesis of molecular motors and rotors. Loosely inspired by biomolecular machines such as kinesin and the FoF1 ATPsynthase, these molecules are hoped to provide elements for construction of more elaborate structures that can carry out tasks at the nanoscale corresponding to the tasks accomplished by elementary machines in the macroscopic world. Most of the molecular motors synthesized to date suffer from the drawback that they operate relatively slowly (less than kHz). Here we show by molecular dynamics studies of a diethyl sulfide rotor on a gold(111) surface that a high-frequency oscillating electric field normal to the surface can drive directed rotation at GHz frequencies. The maximum directed rotation rate is 10(10) rotations per second, significantly faster than the rotation of previously reported directional molecular rotors. Understanding the fundamental basis of directed motion of surface rotors is essential for the further development of efficient externally driven artificial rotors. Our results represent a step toward the design of a surface-bound molecular rotary motor with a tunable rotation frequency and direction.
Structural Considerations of a 20MW Multi-Rotor Wind Energy System
NASA Astrophysics Data System (ADS)
Jamieson, P.; Branney, M.
2014-12-01
The drive to upscale offshore wind turbines relates especially to possiblereductions in O&M and electrical interconnection costs per MW of installed capacity.Even with best current technologies, designs with rated capacity above about 3 MW are less cost effective exfactory per rated MW(turbine system costs) than smaller machines.Very large offshore wind turbines are thereforejustifiedprimarily by overall offshore project economics. Furthermore, continuing progress in materials and structures has been essential to avoid severe penalties in the power/mass ratio of large multi-MW machines.The multi-rotor concept employs many small rotors to maximise energy capture area withminimum systemvolume. Previous work has indicated that this can enablea very large reduction in the total weight and cost of rotors and drive trains compared to an equivalent large single rotor system.Thus the multi rotor concept may enable rated capacities of 20 MW or more at a single maintenancesite. Establishing the cost benefit of a multi rotor system requires examination of solutions for the support structure and yawing, ensuring aerodynamic losses from rotor interaction are not significant and that overall logistics, with much increased part count (more reliable components) and less consequence of single failuresare favourable. This paper addresses the viability of a support structure in respect of structural concept and likely weight as one necessary step in exploring the potential of the multi rotor concept.
NASA Astrophysics Data System (ADS)
Pristup, A. G.; Toporkov, D. M.
2017-10-01
The results of the investigation of the cogging torque in permanent magnet synchronous machines, which is caused by the stator slotting and the rotor eccentricity, are presented in the paper. A new design of the machine has been developed in the course of the investigation, and the value of the cogging torque in this construction is less considerably compared to other constructions. In contrast to the available methods of the cogging torque reduction, the solution suggested not only decreases the level of the cogging torque but also has negligibly small influence on characteristics of the machine with the rotor eccentricity which is typical of the mass production and long-term usage.
NASA Technical Reports Server (NTRS)
Gazella, Matthew R.; Takakura, Tamuto; Sutliff, Daniel L.; Bozak, Richard F.; Tester, Brian J.
2017-01-01
Over the last 15 years, over-the-rotor acoustic treatments have been evaluated by NASA with varying success. Recently, NASA has been developing the next generation of over-the-rotor acoustic treatments for fan noise reduction. The NASA Glenn Research Centers Advanced Noise Control Fan was used as a Low Technology Readiness Level test bed. A rapid prototyped in-duct array consisting of 50 microphones was employed, and used to correlate the in-duct analysis to the far-field acoustic levels and to validate an existing beam-former method. The goal of this testing was to improve the Technology Readiness Level of various over-the-rotor acoustic treatments by advancing the understanding of the physical mechanisms and projecting the far-field acoustic benefit.
Effect of Dimension and Shape of Magnet on the Performance AC Generator with Translation Motion
NASA Astrophysics Data System (ADS)
Indriani, A.; Dimas, S.; Hendra
2018-02-01
The development of power plants using the renewable energy sources is very rapid. Renewable energy sources used solar energy, wind energy, ocean wave energy and other energy. All of these renewable energy sources require a processing device or a change of motion system to become electrical energy. One processing device is a generator which have work principle of converting motion (mechanical) energy into electrical energy with rotary shaft, blade and other motion components. Generator consists of several types of rotation motion and linear motion (translational). The generator have components such as rotor, stator and anchor. In the rotor and stator having magnet and winding coil as an electric generating part of the electric motion force. Working principle of AC generator with linear motion (translation) also apply the principle of Faraday that is using magnetic induction which change iron magnet to produce magnetic flux. Magnetic flux is captured by the stator to be converted into electrical energy. Linear motion generators consist of linear induction machine, wound synchronous machine field, and permanent magnet synchronous [1]. Performance of synchronous generator of translation motion is influenced by magnet type, magnetic shape, coil winding, magnetic and coil spacing and others. In this paper focus on the neodymium magnet with varying shapes, number of coil windings and gap of magnetic distances. This generator work by using pneumatic mechanism (PLTGL) for power plants system. Result testing of performance AC generator translation motion obtained that maximum voltage, current and power are 63 Volt for diameter winding coil 0.15 mm, number of winding coil 13000 and distance of magnet 20 mm. For effect shape of magnet, maximum voltage happen on rectangle magnet 30x20x5 mm with 4.64 Volt. Voltage and power on effect of diameter winding coil is 14.63 V and 17.82 W at the diameter winding coil 0.7 and number of winding coil is 1260 with the distance of magnet 25 mm.
Mechanical model development of rolling bearing-rotor systems: A review
NASA Astrophysics Data System (ADS)
Cao, Hongrui; Niu, Linkai; Xi, Songtao; Chen, Xuefeng
2018-03-01
The rolling bearing rotor (RBR) system is the kernel of many rotating machines, which affects the performance of the whole machine. Over the past decades, extensive research work has been carried out to investigate the dynamic behavior of RBR systems. However, to the best of the authors' knowledge, no comprehensive review on RBR modelling has been reported yet. To address this gap in the literature, this paper reviews and critically discusses the current progress of mechanical model development of RBR systems, and identifies future trends for research. Firstly, five kinds of rolling bearing models, i.e., the lumped-parameter model, the quasi-static model, the quasi-dynamic model, the dynamic model, and the finite element (FE) model are summarized. Then, the coupled modelling between bearing models and various rotor models including De Laval/Jeffcott rotor, rigid rotor, transfer matrix method (TMM) models and FE models are presented. Finally, the paper discusses the key challenges of previous works and provides new insights into understanding of RBR systems for their advanced future engineering applications.
Strong, Ductile Rotor For Cryogenic Flowmeters
NASA Technical Reports Server (NTRS)
Royals, W. T.
1993-01-01
Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; ...
2018-03-12
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Energy optimization for a wind DFIG with flywheel energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr; Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla; Bouchafaa, Farid, E-mail: fbouchafa@gmail.com
2016-07-25
The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; anmore » induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.« less
Wind-energy recovery by a static Scherbius induction generator
NASA Astrophysics Data System (ADS)
Smith, G. A.; Nigim, K. A.
1981-11-01
The paper describes a technique for controlling a doubly fed induction generator driven by a windmill, or other form of variable-speed prime mover, to provide power generation into the national grid system. The secondary circuit of the generator is supplied at a variable frequency from a current source inverter which for test purposes is rated to allow energy recovery, from a simulated windmill, from maximum speed to standstill. To overcome the stability problems normally associated with doubly fed machines a novel signal generator, which is locked in phase with the rotor EMF, controls the secondary power to provide operation over a wide range of subsynchronous and supersynchronous speeds. Consideration of power flow enables the VA rating of the secondary power source to be determined as a function of the gear ratio and online operating range of the system. A simple current source model is used to predict performance which is compared with experimental results. The results indicate a viable system, and suggestions for further work are proposed.
NASA Technical Reports Server (NTRS)
Muszynska, Agnes; Bently, Donald E.
1991-01-01
Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.
Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal
2015-08-24
In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitatingmore » simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.« less
Dynamic characteristic of electromechanical coupling effects in motor-gear system
NASA Astrophysics Data System (ADS)
Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.
2018-06-01
Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.
Experimental setup for the measurement of induction motor cage currents
NASA Astrophysics Data System (ADS)
Bottauscio, Oriano; Chiampi, Mario; Donadio, Lorenzo; Zucca, Mauro
2005-04-01
An experimental setup for measurement of the currents flowing in the rotor bars of induction motors during synchronous no-load tests is described in the paper. The experimental verification of the high-frequency phenomena in the rotor cage is fundamental for a deep insight of the additional loss estimation by numerical methods. The attention is mainly focused on the analysis and design of the transducers developed for the cage current measurement.
Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Shahab, Azin
In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.
Wind energy converter GROWIAN 2
NASA Astrophysics Data System (ADS)
Braun, D.; Kloeppel, V.; Marsch, G.; Meggle, R.; Mehlhose, R.; Schoebe, B.; Wennekers, R.
1984-04-01
Multi MW wind energy conversion systems in the rotor class of 135 m diam are described. A variable-speed horizontal-axis downwind machine with a one-bladed teetering rotor and a guyed soft steel tower was investigated and a 1 to 3 scaled demonstrator with a rotor diameter of 48 m was built. The demonstrator will undergo a 2 year verification test program.
Rotor internal friction instability
NASA Technical Reports Server (NTRS)
Bently, D. E.; Muszynska, A.
1985-01-01
Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.
Torque Production in a Halbach Machine
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.; Vrnak, Daniel R.
2006-01-01
The NASA John H. Glenn Research Center initiated the investigation of torque production in a Halbach machine for the Levitated Ducted Fan (LDF) Project to obtain empirical data in determining the feasibility of using a Halbach motor for the project. LDF is a breakthrough technology for "Electric Flight" with the development of a clean, quiet, electric propulsor system. Benefits include zero emissions, decreased dependence on fossil fuels, increased efficiency, increased reliability, reduced maintenance, and decreased operating noise levels. A commercial permanent magnet brushless motor rotor was tested with a custom stator. An innovative rotor utilizing a Halbach array was designed and developed to fit directly into the same stator. The magnets are oriented at 90deg to the adjacent magnet, which cancels the magnetic field on the inside of the rotor and strengthens the field on the outside of the rotor. A direct comparison of the commercial rotor and the Halbach rotor was made. In addition, various test models were designed and developed to validate the basic principles described, and the theoretical work that was performed. The report concludes that a Halbach array based motor can provide significant improvements in electric motor performance and reliability.
NASA Astrophysics Data System (ADS)
Gu, Fengshou; Yesilyurt, Isa; Li, Yuhua; Harris, Georgina; Ball, Andrew
2006-08-01
In order to discriminate small changes for early fault diagnosis of rotating machines, condition monitoring demands that the measurement of instantaneous angular speed (IAS) of the machines be as accurate as possible. This paper develops the theoretical basis and practical implementation of IAS data acquisition and IAS estimation when noise influence is included. IAS data is modelled as a frequency modulated signal of which the signal-to-noise ratio can be improved by using a high-resolution encoder. From this signal model and analysis, optimal configurations for IAS data collection are addressed for high accuracy IAS measurement. Simultaneously, a method based on analytic signal concept and fast Fourier transform is also developed for efficient and accurate estimation of IAS. Finally, a fault diagnosis is carried out on an electric induction motor driving system using IAS measurement. The diagnosis results show that using a high-resolution encoder and a long data stream can achieve noise reduction by more than 10 dB in the frequency range of interest, validating the model and algorithm developed. Moreover, the results demonstrate that IAS measurement outperforms conventional vibration in diagnosis of incipient faults of motor rotor bar defects and shaft misalignment.
Closed Brayton Cycle (CBC) Power Generation from an Electric Systems Perspective
NASA Astrophysics Data System (ADS)
Halsey, David G.; Fox, David A.
2006-01-01
Several forms of closed cycle heat engines exist to produce electrical energy suitable for space exploration or planetary surface applications. These engines include Stirling and Closed Brayton Cycle (CBC). Of these two, CBC has often been cited as providing the best balance of mass and efficiency for deep space or planetary power systems. Combined with an alternator on the same shaft, the hermetically sealed system provides the potential for long life and reliable operation. There is also a list of choices for the type of alternator. Choices include wound rotor machines, induction machines, switched reluctance machines, and permanent magnet generators (PMGs). In trades involving size, mass and efficiency the PMG is a favorable solution. This paper will discuss the consequences of using a CBC-PMG source for an electrical power system, and the system parameters that must be defined and controlled to provide a stable, useful power source. Considerations of voltage, frequency (including DC), and power quality will be discussed. Load interactions and constraints for various power types will also be addressed. Control of the CBC-PMG system during steady state operation and startup is also a factor.s
Permanent magnet machine with windings having strand transposition
Qu, Ronghai; Jansen, Patrick Lee
2009-04-21
This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.
Rapid fabrication of flight worthy composite parts
NASA Astrophysics Data System (ADS)
Jouin, Pierre H.; Heigl, John C.; Youtsey, Timothy L.
A 3D surfaced-model representation of aircraft composite structural components can be used to generate machining paths in a system which reduces paperwork and errors, and enhances accuracy and speed. Illustrative cases are presented for the use of such a system in the design and production of the Longbow radar housing, the fabrication of the flight test hardware for the 'no tail-rotor' helicopter control system, and the machining of a honeycomb core structure for a composite helicopter rotor blade.
Rotor for a line start permanent magnet machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melfi, Mike; Schiferl, Rich; Umans, Stephen
A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distancemore » that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.« less
NASA Astrophysics Data System (ADS)
Abd-el-Malek, Mina; Abdelsalam, Ahmed K.; Hassan, Ola E.
2017-09-01
Robustness, low running cost and reduced maintenance lead Induction Motors (IMs) to pioneerly penetrate the industrial drive system fields. Broken rotor bars (BRBs) can be considered as an important fault that needs to be early assessed to minimize the maintenance cost and labor time. The majority of recent BRBs' fault diagnostic techniques focus on differentiating between healthy and faulty rotor cage. In this paper, a new technique is proposed for detecting the location of the broken bar in the rotor. The proposed technique relies on monitoring certain statistical parameters estimated from the analysis of the start-up stator current envelope. The envelope of the signal is obtained using Hilbert Transformation (HT). The proposed technique offers non-invasive, fast computational and accurate location diagnostic process. Various simulation scenarios are presented that validate the effectiveness of the proposed technique.
Gayen, P K; Chatterjee, D; Goswami, S K
2016-05-01
In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Artificial Dipolar Molecular Rotors
NASA Astrophysics Data System (ADS)
Horansky, R. D.; Magnera, T. F.; Price, J. C.; Michl, J.
Rotors are present in almost every macroscopic machine, converting rotational motion into energy of other forms, or converting other forms of energy into rotation. Rotation may be transmitted via belts or gears, converted into linear motion by various linkages, or used to drive propellers to produce fluid motion. Examples of macroscopic rotors include engines which couple to combustible energy sources, windmills which couple to air flows, and most generators of electricity. A key feature of these objects is the presence of a part with rotational freedom relative to a stationary frame. In this chapter we discuss the miniaturization of rotary machines all the way to the molecular scale, where chemical groups form the rotary and stationary parts. For a recent review of molecules with rotary and stationary parts see [1].
Macroscopic balance model for wave rotors
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.
FEM analysis of an single stator dual PM rotors axial synchronous machine
NASA Astrophysics Data System (ADS)
Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.
2017-01-01
The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors. The proposed topologies, the magneto-motive force analysis and quasi 3D-FEM analysis are the core of the paper.
A Novel Transverse Flux Machine for Vehicle Traction Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Zhao; Ahmed, Adeeb; Husain, Iqbal
2015-10-05
A novel transverse flux machine topology for electric vehicle traction application using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to Halbach-array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from Finite Element Analysis (FEA) show the motor achieved comparable torquemore » density to conventional rare-earth permanent magnet machines. This machine is a viable candidate for direct drive applications with low cost and high torque density.« less
Method and machine for high strength undiffused brushless operation
Hsu, John S.
2003-06-03
A brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34), the rotor (32) having pairs of rotor pole portions (22b, 22c, 32f, 32l) disposed at least partly around the axis of rotation (32p) and facing the main air gap (24b, 24c, 34), at least one stationary winding (20b, 20c, 33b) separated from the rotor (22b, 22c, 32) by a secondary air gap (23b, 23c, 35) so as to induce a rotor-side flux in the rotor (22b, 22c, 32) which controls a resultant flux in the main air gap (24b, 24c, 34). PM material (27b, 27c) is disposed in spaces between the rotor pole portions (22b, 22c, 32f, 32l) to inhibit the rotor-side flux from leaking from said pole portions (22b, 22c, 32f, 32l) prior to reaching the main air gap (24b, 24c, 34). By selecting the direction of current in the stationary winding (20b, 20c, 33b) both flux enhancement and flux weakening are provided for the main air gap (24b, 24c, 34). The stationary windings (31a, 33b) which are used for both primary and secondary excitation allow for easier adaptation to cooling systems as described. A method of non-diffused flux enhancement and flux weakening is also disclosed.
Nanomodified composite magnetic materials and their molding technologies
NASA Astrophysics Data System (ADS)
Timoshkov, I.; Gao, Q.; Govor, G.; Sakova, A.; Timoshkov, V.; Vetcher, A.
2018-05-01
Advanced electro-magnetic machines and systems require new materials with improved properties. Heterogeneous 3D nanomodified soft magnetic materials could be efficiently applied. Multistage technology of iron particle surface nanomodification by sequential oxidation and Si-organic coatings will be reported. The thickness of layers is 0.5-5 nm. Compaction and annealing are the final steps of magnetic parts and components shaping. The soft magnetic composite material shows the features: resistivity is controlled by insulating coating thickness and equals up to ρ =10-4 Ωṡm for metallic state and ρ =104 Ωṡm for insulator state, maximum magnetic permeability is μm = 2500 and μm = 300 respectively, induction is up to Bm=2.1 T. These properties of composite soft magnetic material allow applying for transformers, throttles, stator-rotor of high-efficient and powerful electric machines in 10 kHz-1MGz frequency range. For microsystems and microcomponents application, good opportunity to improve their reliability is the use of nanocomposite materials. Electroplating technology of nanocomposite magnetic materials into the ultra-thick micromolds will be presented. Co-deposition of the soft magnetic alloys with inert hard nanoparticles allows obtaining materials with magnetic permeability up to μm=104, magnetic induction of Bs=(0.62-1.3) T. Such LIGA-like technology will be applied in MEMS to produce high reliable devices with advanced physical properties.
Substantially parallel flux uncluttered rotor machines
Hsu, John S.
2012-12-11
A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator
Analysis of the mechanical stresses on a squirrel cage induction motor by the finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, C.H.; Nicolas, A.
1999-05-01
The mechanical deformations and stresses have been analyzed by the Finite Element Method (FEM) in 3 dimensions on the rotor bars of a small squirrel cage induction motor. The authors considered the magnetic forces and the centrifugal forces as sources which provoked the deformations and stresses on the rotor bars. The mechanical calculations have been performed after doing the electromagnetic Finite Element modeling on the motor in steady states with various slip conditions.
NASA Astrophysics Data System (ADS)
Zhang, Shuping; Zhao, Chen; Tan, Weipu
2017-05-01
The majority important load of industrial area is mainly composed of induction motor, it is more common that induction motor becomes sluggishness and even tripping due to the lose of power supply or other malfunction in the practical work. In this paper, space vector method is used to establish a reduced order model of induction motor, and then study the changes of motor electromagnetic after losing electricity. Based on motion equations of the rotor and magnetic flux conservation principle, it uses mathematical methods to deduce the expression of rotor current, rotor flux, the stator flux and the residual voltage of stator side. In addition, relying on thermal power plants, it uses the actual data of power plants, takes DIgsilent software to simulate the residual voltage of motor after losing electricity. analyses the influence on the residual voltage with the changes of the moment of inertia, load ratio, initial size of slip and the load characteristic of induction motor. By analysis of these, it has a more detailed understanding about the changes of residual voltage in practical application, in additional, it is more beneficial to put into standby power supply safely and effectively, moreover, reduce the influence of the input process to the whole system.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.
1975-01-01
Experimental tests were conducted to demonstrate the ability of the influence coefficient method to achieve precise balance of flexible rotors of virtually any design for operation through virtually any speed range. Various practical aspects of flexible-rotor balancing were investigated. Tests were made on a laboratory quality machine having a 122 cm (48 in.) long rotor weighing 50 kg (110 lb) and covering a speed range up to 18000 rpm. The balancing method was in every instance effective, practical, and economical and permitted safe rotor operation over the full speed range covering four rotor bending critical speeds. Improved correction weight removal methods for rotor balancing were investigated. Material removal from a rotating disk was demonstrated through application of a commercially available laser.
Wind-tunnel Tests of a Cyclogiro Rotor
NASA Technical Reports Server (NTRS)
Wheatley, John B; Windler, Ray
1935-01-01
During an extensive study of all types of rotating wings, the NACA examined the cyclogiro rotor and made an aerodynamic analysis of that system (reference 1). The examination disclosed that such a machine had sufficient promise to justify an experimental investigation; a model with a diameter and span of 8 feet was therefore constructed and tested in the 20-foot wind tunnel during 1934. The experimental work included tests of the effect of the motion upon the rotor forces during the static-lift and forward-flight conditions at several rotor speeds and the determination of the relations between the forces generated by the rotor and the power required by it.
Hsu, John S.
2010-05-18
A method and apparatus in which a stator (11) and a rotor (12) define a primary air gap (20) for receiving AC flux and at least one source (23, 40), and preferably two sources (23, 24, 40) of DC excitation are positioned for inducing DC flux at opposite ends of the rotor (12). Portions of PM material (17, 17a) are provided as boundaries separating PM rotor pole portions from each other and from reluctance poles. The PM poles (18) and the reluctance poles (19) can be formed with poles of one polarity having enlarged flux paths in relation to flux paths for pole portions of an opposite polarity, the enlarged flux paths communicating with a core of the rotor (12) so as to increase reluctance torque produced by the electric machine. Reluctance torque is increased by providing asymmetrical pole faces. The DC excitation can also use asymmetric poles and asymmetric excitation sources. Several embodiments are disclosed with additional variations.
Modernization of gas-turbine engines with high-frequency induction motors
NASA Astrophysics Data System (ADS)
Abramovich, B. N.; Sychev, Yu A.; Kuznetsov, P. A.
2018-03-01
Main tendencies of growth of electric energy consumption in general and mining industries were analyzed in the paper. A key role of electric drive in this process was designated. A review about advantages and disadvantages of unregulated gearboxes with mechanical units that are commonly used in domestically produced gas-turbine engines was made. This review allows one to propose different gas-turbine engines modernization schemes with the help of PWM-driven high-frequency induction motors. Induction motors with the double rotor winding were examined. A simulation of high-frequency induction motors with double rotor windings in Matlab-Simulink software was carried out based on equivalent circuit parameters. Obtained characteristics of new motors were compared with serially produced analogues. After the simulation, results were implemented in the real prototype.
Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Z.; Ahmed, A.; Husain, I.
2015-04-02
A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achievedmore » comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.« less
Krummen, David E.; Hayase, Justin; Morris, David J.; Ho, Jeffrey; Smetak, Miriam R.; Clopton, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.
2014-01-01
Objective We mapped human ventricular fibrillation (VF) to define mechanistic differences between episodes requiring defibrillation versus those that spontaneously terminate. Background VF is a leading cause of mortality, yet episodes may also self-terminate. We hypothesized that the initial maintenance of human VF is dependent upon the formation and stability of VF rotors. Methods We enrolled 26 consecutive patients (age 64±10 years, n=13 with LV dysfunction) during ablation procedures for ventricular arrhythmias, using 64-electrode basket catheters in both ventricles to map VF prior to prompt defibrillation per IRB-approved protocol. Fifty-two inductions were attempted and 36 VF episodes were observed. Phase analysis was applied to identify bi-ventricular rotors in the first 10 seconds or until VF terminated, whichever came first (11.4±2.9 seconds to defibrillator charging). Results Rotors were present in 16 of 19 patients with VF, and in all patients with sustained VF. Sustained, but not self-limiting VF, was characterized by greater rotor stability: (1) rotors were present in 68±17% of cycles in sustained versus 11±18% of cycles in self-limiting VF (p<0.001); with (2) maximum continuous rotations greater in sustained (17±11, range 7–48) versus self-limiting VF (1.1±1.4, range 0–4, p<0.001). Additionally, biventricular rotor locations in sustained VF were conserved across multiple inductions (7/7 patients, p=0.025). Conclusions In patients with and without structural heart disease, the formation of stable rotors identifies individuals whose VF requires defibrillation from those in whom VF spontaneously self-terminates. Future work should define the mechanisms that stabilize rotors and evaluate whether rotor modulation may reduce subsequent VF risk. PMID:24794115
NASA Astrophysics Data System (ADS)
Roth, Bradley J.; Krassowska, Wanda
1998-03-01
This review examines the initiation of reentry in cardiac muscle by strong electric shocks. Specifically, it concentrates on the mechanisms by which electric shocks change the transmembrane potential of the cardiac membrane and create the physiological substrate required by the critical point theory for the initiation of rotors. The mechanisms examined include (1) direct polarization of the tissue by the stimulating current, as described by the one-dimensional cable model and its two- and three-dimensional extensions, (2) the presence of virtual anodes and cathodes, as described by the bidomain model with unequal anisotropy ratios of the intra- and extracellular spaces, (3) polarization of the tissue due to changing orientation of cardiac fibers, and (4) polarization of individual cells or groups of cells by the electric field ("sawtooth potential"). The importance of these mechanisms in the initiation of reentry is examined in two case studies: the induction of rotors using successive stimulation with a unipolar electrode, and the induction of rotors using cross-field stimulation. These cases reveal that the mechanism by which a unipolar stimulation induces arrhythmias can be explained in the framework of the bidomain model with unequal anisotropy ratios. In contrast, none of the examined mechanisms provide an adequate explanation for the induction of rotors by cross-field stimulation. Hence, this study emphasizes the need for further experimental and theoretical work directed toward explaining the mechanism of field stimulation.
Light and short arc rubs in rotating machines: Experimental tests and modelling
NASA Astrophysics Data System (ADS)
Pennacchi, P.; Bachschmid, N.; Tanzi, E.
2009-10-01
Rotor-to-stator rub is a non-linear phenomenon which has been analyzed many times in rotordynamics literature, but very often these studies are devoted simply to highlight non-linearities, using very simple rotors, rather than to present reliable models. However, rotor-to-stator rub is actually one of the most common faults during the operation of rotating machinery. The frequency of its occurrence is increasing due to the trend of reducing the radial clearance between the seal and the rotor in modern turbine units, pumps and compressors in order to increase efficiency. Often the rub occurs between rotor and seals and the analysis of the phenomenon cannot set aside the consideration of the different relative stiffness. This paper presents some experimental results obtained by means of a test rig in which rub conditions of real machines are reproduced. In particular short arc rubs are considered and the shaft is stiffer than the obstacle. Then a model, suitable to be employed for real rotating machinery, is presented and the simulations obtained are compared with the experimental results. The model is able to reproduce the behaviour of the test rig.
Corner separation and the onset of stall in an axial compressor
NASA Astrophysics Data System (ADS)
Thiam, Aicha; Whittlesey, Robert; Wark, Candace; Williams, David
2007-11-01
Axial compressor performance is limited by the onset of stall between the diffusing passageways of the rotors and stators. The flow physics responsible for the stall depends on the blade geometry of the machine, and in this experiment stall develops from a blade-hub corner separation. The 1.5 stage axial compressor consists of inlet guide vanes, a rotor and stator section. Separate motors drive the downstream fan and rotor, which makes it possible to change the compressor pressure ratio and flow coefficient by changing either the wheel speed or the bulk flow rate through the machine. Detailed maps of the flow behind the stators and in front of the rotors were obtained using a Kulite stagnation pressure probe. Mean pressure measurements show the growth of the corner flow separation and divergence of the ``through flow'' toward the outer casing. Spectra show a sensitivity of the separated region to small amplitude external disturbances, in this case originating from the downstream fan. The onset of rotating stall appears as the first subharmonic of the rotor frequency, 0.5 fr, then shifts to a slightly lower frequency 0.45 fr as the flow coefficient is decreased.
Numerical Simulation of Fluid Flow in a Simple Rotor/Stator Pair
1991-06-01
describes a series of numerical experiments dealing with rotor/stator interactions in hydroturbines . The means of analysis was a nonconforming sliding...science and industry is the improvement of the efficiency of the hydroturbine . Numerical flow analysis is essential in order to properly conduct this...evaluation. The hydroturbine is typically modeled as an infinite series of rotor/stator pairs. Figure 1 is an illustration of an axial-flow machine with
NASA Astrophysics Data System (ADS)
Zapoměl, J.; Ferfecki, P.
2016-09-01
A frequently used technological solution for minimization of undesirable effects caused by vibration of rotating machines consists in placing damping devices in the rotor supports. The application of magnetorheological squeeze film dampers enables their optimum performance to be achieved in a wide range of rotating speeds by adapting their damping effect to the current operating conditions. The damping force, which is produced by squeezing the layer of magnetorheological oil, can be controlled by changing magnetic flux passing through the lubricant. The force acting between the rotor and its frame is transmitted through the rolling element bearing, the lubricating layer and the squirrel spring. The loading of the bearing produces a time variable friction moment, energy losses, uneven rotor running, and has an influence on the rotor service life and the current fluctuation in electric circuits. The carried out research consisted in the development of a mathematical model of a magnetorheological squeeze film damper, its implementation into the computational models of rotor systems, and in performing the study on the dependence of the energy losses and variation of the friction moment on the damping force and its control. The new and computationally stable mathematical model of a magnetorheological squeeze film damper, its implementation in the computational models of rigid rotors and learning more on the energy losses generated in the rotor supports in dependence on the damping effect are the principal contributions of this paper. The results of the computational simulations prove that a suitable control of the damping force enables the energy losses to be reduced in a wide velocity range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
NASA Astrophysics Data System (ADS)
Vogelsberg, Cortnie Sue
Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently strong to direct an assembly of molecular machines, 3) the relative flexibility of the crystal environment proximate to a dynamic component may have a significant effect on its function, and, 4) molecular machines, which possess both solid-state photochemical reactivity and dynamics may show complex reaction kinetics if the correlation time of the dynamic process and the lifetime of the excited state occur on the same time scale and the dynamic moiety inherently participates as a reaction intermediate. The study of periodic mesoporous organosilica with hierarchical order probed molecular dynamics within 2D layers of molecular rotors, organized in only one dimension and with ca. 50% exposed to the mesopore free volume. From their study, it was discovered that: 1) molecular rotors, which comprise the layers of the mesopore walls, form a 2D rotational glass, 2) rotator dynamics within the 2D rotational glass undergo a transition to a 2D rotational fluid, and, 3) a 2D rotational glass transition may be exploited to develop hyper-sensitive thermally activated molecular machines. The study of a metal-organic framework assembled from molecular rotors probed dynamics in a periodic three-dimensional free-volume environment, without the presence of close contacts. From the study of this solid-state material, it was determined that: 1) the intrinsic electronic barrier is one of the few factors, which may affect functional dynamics in a true free-volume environment, and, 2) molecular machines with dynamic barriers <
NASA Astrophysics Data System (ADS)
Tresser, Shachar; Dolev, Amit; Bucher, Izhak
2018-02-01
High-speed machinery is often designed to pass several "critical speeds", where vibration levels can be very high. To reduce vibrations, rotors usually undergo a mass balancing process, where the machine is rotated at its full speed range, during which the dynamic response near critical speeds can be measured. High sensitivity, which is required for a successful balancing process, is achieved near the critical speeds, where a single deflection mode shape becomes dominant, and is excited by the projection of the imbalance on it. The requirement to rotate the machine at high speeds is an obstacle in many cases, where it is impossible to perform measurements at high speeds, due to harsh conditions such as high temperatures and inaccessibility (e.g., jet engines). This paper proposes a novel balancing method of flexible rotors, which does not require the machine to be rotated at high speeds. With this method, the rotor is spun at low speeds, while subjecting it to a set of externally controlled forces. The external forces comprise a set of tuned, response dependent, parametric excitations, and nonlinear stiffness terms. The parametric excitation can isolate any desired mode, while keeping the response directly linked to the imbalance. A software controlled nonlinear stiffness term limits the response, hence preventing the rotor to become unstable. These forces warrant sufficient sensitivity required to detect the projection of the imbalance on any desired mode without rotating the machine at high speeds. Analytical, numerical and experimental results are shown to validate and demonstrate the method.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.
1972-01-01
The practical aspects of balancing real, flexible rotors were investigated through inclusion of rotor out-of-roundness data at the measurement probe locations. The computer program was demonstrated to be fully capable of handling out-of-roundness data in the investigation. Testing was performed predominantly with a machine having a 41-inch long, 126-pound rotor. This rotor was operated over a speed range encompassing three rotor-bearing system critical speeds. Both balancing procedures were evaluated for several different conditions of initial rotor unbalance. Safe (and slow) passage through all the critical speeds was obtained after two or three balancing runs in most cases. The Least Squares procedure was found to be generally equivalent in capability to the Exact Point-Speed procedure for the configurations studies. (U)
NASA Astrophysics Data System (ADS)
Othman, Syed Muhammad Naufal bin Syed; Sulaiman, Erwan bin; Husin, Zhafir Aizat; Khan, Faisal; Mazlan, Mohamed Mubin Aizat
2015-05-01
This paper proposes an initial design of 12 slot, 10 pole outer-rotor field-excitation flux switching motor (FEFSM) with two different rotor width based from 2 different formula to design the rotor width. Hence, initial design include the three coil test to determine the U, W, V-phase, the flux strengthening and weakening, flux at various armature coil and field-excitation coil current, and finally the torque at various JA and JE. As for the materials, the stator and rotor consists of steel sheets made of electromagnetic steels, copper for armature coils and field excitation coils as the only field for magnetic flux source. There will be some design specification and restriction on outer-rotor FEFSM based on 2D-Finite Element Analysis will be applied to design the proposed machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif
In this paper, a nonlinear analytical model based on the Magnetic Equivalent Circuit (MEC) method is developed for a double-sided E-Core Transverse Flux Machine (TFM). The proposed TFM has a cylindrical rotor, sandwiched between E-core stators on both sides. Ferrite magnets are used in the rotor with flux concentrating design to attain high airgap flux density, better magnet utilization, and higher torque density. The MEC model was developed using a series-parallel combination of flux tubes to estimate the reluctance network for different parts of the machine including air gaps, permanent magnets, and the stator and rotor ferromagnetic materials, in amore » two-dimensional (2-D) frame. An iterative Gauss-Siedel method is integrated with the MEC model to capture the effects of magnetic saturation. A single phase, 1 kW, 400 rpm E-Core TFM is analytically modeled and its results for flux linkage, no-load EMF, and generated torque, are verified with Finite Element Analysis (FEA). The analytical model significantly reduces the computation time while estimating results with less than 10 percent error.« less
ELECTROMAGNETIC AND ELECTROSTATIC GENERATORS: ANNOTATED BIBLIOGRAPHY.
generator with split poles, ultrasonic-frequency generator, unipolar generator, single-phase micromotors , synchronous motor, asynchronous motor...asymmetrical rotor, magnetic circuit, dc micromotors , circuit for the automatic control of synchronized induction motors, induction torque micromotors , electric
Experimental and analytical investigation of fan flow interaction with downstream struts
NASA Technical Reports Server (NTRS)
Olsen, T. L.; Ng, W. F.; Obrien, W. F., Jr.
1985-01-01
An investigation which was designed to provide insight into the fundamental aspects of fan rotor-downstream strut interaction was undertaken. High response, miniature pressure transducers were embedded in the rotor blades of an experimental fan rig. Five downstream struts were placed at several downstream locations in the discharge flow annulus of the single-stage machine. Significant interaction of the rotor blade surface pressures with the flow disturbance produced by the downstream struts was measured. Several numerical procedures for calculating the quasi-steady rotor response due to downstream flow obstructions were developed. A preliminary comparison of experimental and calculated fluctuating blade pressures on the rotor blades shows general agreement between the experimental and calculated values.
Retention system and method for the blades of a rotary machine
Pedersen, Poul D.; Glynn, Christopher C.; Walker, Roger C.
2002-01-01
A retention system and method for the blades of a rotary machine for preventing forward or aft axial movement of the rotor blades includes a circumferential hub slot formed about a circumference of the machine hub. The rotor blades have machined therein a blade retention slot which is aligned with the circumferential hub slot when the blades are received in correspondingly shaped openings in the hub. At least one ring segment is secured in the blade retention slots and the circumferential hub slot to retain the blades from axial movement. A key assembly is used to secure the ring segments in the aligned slots via a hook portion receiving the ring segments and a threaded portion that is driven radially outwardly by a nut. A cap may be provided to provide a redundant back-up load path for the centrifugal loads on the key. Alternatively, the key assembly may be formed in the blade dovetail.
Combination spindle-drive system for high precision machining
Gerth, Howard L.
1977-07-26
A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.
Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.; Stephenson, William A.
1988-07-01
Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.
BLADED IMPELLER FOR TURBOBLOWERS
Baumann, K.
1949-10-01
A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.
NASA Astrophysics Data System (ADS)
Kumano, Teruhisa
As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.
El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI
2012-07-17
An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.
Etude analytique du fonctionnement des moteurs à réluctance alimentés à fréquence variable
NASA Astrophysics Data System (ADS)
Sargos, F. M.; Gudefin, E. J.; Zaskalicky, P.
1995-03-01
In switched reluctance motors fed by a constant voltage source (like a battery) at high frequencies, the current becomes unpredictable and often cannot reach a given reference value, because of the variation of the inductances with the rotor position ; the “motional” m.m.f. generates commutation troubles which increase with the frequency. An optimal control as well as an approximate design of the motor require a quick and simple calculation of currents, powers and losses ; now, in principle, the non-linear electrical equation needs a numerical resolution, whose results cannot be extrapolated. By linearizing this equation by intervals, the method proposed here allows to express analytically, in any case, the phase currents, the torque and the copper losses, when the feeding voltage itself is constant by intervals. The model neglects saturation, but a simple adjustment of the inductance (chosen ad libitum) allows to deal with it. The calculation is immediate and perfectly accurate as long as the machine parameters themselves are well defined. Some results are given as examples for two usual feeding modes. Dans les machines à réluctance alimentées à haute fréquence par une source à tension constante, comme une batterie, le courant varie de manière difficilement prévisible, à cause de la variation des inductances avec la position du rotor, et souvent ne parvient pas à s'établir à une valeur de consigne imposée ; la f.é.m. “motionnelle” engendre des difficultés de communication qui s'aggravent avec l'augmentation de fréquence jusqu'à empêcher le fonctionnement. Tant pour optimiser la commande que pour dimensionner approximativement un moteur ; on doit pouvoir calculer simplement et rapidement le courant et la puissance ; or l'équation électrique, non linéaire, doit en principe être résolue numériquement et les résultats ne sont pratiquement pas extrapolables. En linéarisant par intervalles cette équation, la méthode proposée ici permer d'exprimer analytiquement et dans tous les cas les courants de phase, la puissance fournie et les pertes Joule, lorsque la tension aux bornes de l'enroulement est constante par morceaux. Le modèle utilisé néglige la saturation ; mais il est possible de tenir compte de celle-ci par des ajustements, facilement calculables, de la courbe d'inductance, quelle que soit son allure. Les calculs sont immédiats et parfaitement précis pour autant que les paramètres soient bien définis. Quelques résultats sont donnés à titre d'exemple, pour deux modes d'alimentation usuels.
Variable geometry Darrieus wind machine
NASA Astrophysics Data System (ADS)
Pytlinski, J. T.; Serrano, D.
1983-08-01
A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.
Field Telemetry of Blade-rotor Coupled Torsional Vibration at Matuura Power Station Number 1 Unit
NASA Technical Reports Server (NTRS)
Isii, Kuniyoshi; Murakami, Hideaki; Otawara, Yasuhiko; Okabe, Akira
1991-01-01
The quasi-modal reduction technique and finite element model (FEM) were used to construct an analytical model for the blade-rotor coupled torsional vibration of a steam turbine generator of the Matuura Power Station. A single rotor test was executed in order to evaluate umbrella vibration characteristics. Based on the single rotor test results and the quasi-modal procedure, the total rotor system was analyzed to predict coupled torsional frequencies. Finally, field measurement of the vibration of the last stage buckets was made, which confirmed that the double synchronous resonance was 124.2 Hz, meaning that the machine can be safely operated. The measured eigen values are very close to the predicted value. The single rotor test and this analytical procedure thus proved to be a valid technique to estimate coupled torsional vibration.
Slot Optimization Design of Induction Motor for Electric Vehicle
NASA Astrophysics Data System (ADS)
Shen, Yiming; Zhu, Changqing; Wang, Xiuhe
2018-01-01
Slot design of induction motor has a great influence on its performance. The RMxprt module based on magnetic circuit method can be used to analyze the influence of rotor slot type on motor characteristics and optimize slot parameters. In this paper, the authors take an induction motor of electric vehicle for a typical example. The first step of the design is to optimize the rotor slot by RMxprt, and then compare the main performance of the motor before and after the optimization through Ansoft Maxwell 2D. After that, the combination of optimum slot type and the optimum parameters are obtained. The results show that the power factor and the starting torque of the optimized motor have been improved significantly. Furthermore, the electric vehicle works at a better running status after the optimization.
16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Burress, Timothy A; Lee, Seong T
2008-01-01
This paper introduces a high speed brushless field excitation (BFE) machine that offers high torque per ampere (A) per core length at low speed and weakened flux at high speed. Lower core losses at high speeds, are attained by reducing the field excitation. Safety and reliability are increased by weakening the field when a winding short-circuit fault occurs. For a high-speed motor the bridges that link the rotor punching segments together must be thickened for mechanical integrity; BFE can ensure sufficient rotor flux when needed. Projected efficiency map including losses of the excitation coils confirms the advantage of this technology.
Statistical Capability Study of a Helical Grinding Machine Producing Screw Rotors
NASA Astrophysics Data System (ADS)
Holmes, C. S.; Headley, M.; Hart, P. W.
2017-08-01
Screw compressors depend for their efficiency and reliability on the accuracy of the rotors, and therefore on the machinery used in their production. The machinery has evolved over more than half a century in response to customer demands for production accuracy, efficiency, and flexibility, and is now at a high level on all three criteria. Production equipment and processes must be capable of maintaining accuracy over a production run, and this must be assessed statistically under strictly controlled conditions. This paper gives numerical data from such a study of an innovative machine tool and shows that it is possible to meet the demanding statistical capability requirements.
Lightweight MgB2 superconducting 10 MW wind generator
NASA Astrophysics Data System (ADS)
Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.
2016-02-01
The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.
Chen, Quan; Li, Yaoyu; Seem, John E
2015-09-01
This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Simley, Eric; Y Pao, Lucy; Gebraad, Pieter; Churchfield, Matthew
2014-06-01
Several sources of error exist in lidar measurements for feedforward control of wind turbines including the ability to detect only radial velocities, spatial averaging, and wind evolution. This paper investigates another potential source of error: the upstream induction zone. The induction zone can directly affect lidar measurements and presents an opportunity for further decorrelation between upstream wind and the wind that interacts with the rotor. The impact of the induction zone is investigated using the combined CFD and aeroelastic code SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind disturbances are found using a wind speed estimator and turbine outputs. Lidar performance in the absence of an induction zone is determined by simulating lidar measurements and the turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the original turbine location in the SOWFA wind field. Results indicate that while measurement quality strongly depends on the amount of wind evolution, the induction zone has little effect. However, the optimal lidar preview distance and circular scan radius change slightly due to the presence of the induction zone.
Impact of wind generator infed on dynamic performance of a power system
NASA Astrophysics Data System (ADS)
Alam, Md. Ahsanul
Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by supporting STATCOM with bulk energy storage devices. Two types of energy storage system (ESS) have been considered---battery energy storage system, and supercapacitor based energy storage system. A decoupled P -- Q control strategy has been implemented on STATCOM/ESS. It is observed that wind generators when supported by STATCOM/ESS can achieve significant withstand capability in the presence of grid fault of reasonable duration. It experiences almost negligible rotor speed variation, maintains constant terminal voltage, and resumes delivery of smoothed (almost transient free) power to the grid immediately after the fault is cleared. Keywords: Wind energy, induction generator, dynamic performance of wind generators, energy storage system, decoupled P -- Q control, multimachine system.
Power method for calculating the far acoustic field of the helicopter lift rotor
NASA Astrophysics Data System (ADS)
Samokhin, V. F.
2011-05-01
A semiempirical method for calculating the far acoustic field of the lift rotor of a helicopter operating in the regime of oblique flow over it is described. The basic parametric relations for the acoustic radiation power of rotor noise components have been obtained on the basis of the Lamb idea that vortex-free motion arises under the action of a periodic force on an infinitely small volume of the medium. All sources of lift rotor noise are subdivided into two groups pertaining, respectively, to the inductive and profile parts of the total power supplied to the rotor. A comparison has been made between the results of calculation of the harmonic components of lift rotor noise made on the basis of the power method and the experimental data for the Mi-28 helicopter.
NASA Astrophysics Data System (ADS)
Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.
2017-09-01
One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.
Rotor compound concept for designing an industrial HTS synchronous motor
NASA Astrophysics Data System (ADS)
Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.
2013-06-01
Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.
Hybrid renewable energy system using doubly-fed induction generator and multilevel inverter
NASA Astrophysics Data System (ADS)
Ahmed, Eshita
The proposed hybrid system generates AC power by combining solar and wind energy converted by a doubly-fed induction generator (DFIG). The DFIG, driven by a wind turbine, needs rotor excitation so the stator can supply a load or the grid. In a variable-speed wind energy system, the stator voltage and its frequency vary with wind speed, and in order to keep them constant, variable-voltage and variable-frequency rotor excitation is to be provided. A power conversion unit supplies the rotor, drawing power either from AC mains or from a PV panel depending on their availability. It consists of a multilevel inverter which gives lower harmonic distortion in the stator voltage. Maximum power point tracking techniques have been implemented for both wind and solar power. The complete hybrid renewable energy system is implemented in a PSIM-Simulink interface and the wind energy conversion portion is realized in hardware using dSPACE controller board.
The Design and its Verification of the Double Rotor Double Cage Induction Motor
NASA Astrophysics Data System (ADS)
Sinha, Sumita; Deb, Nirmal K.; Biswas, Sujit K.
2017-02-01
The concept of a double rotor motor presented earlier and its equivalent circuit has been developed, showing a non-linear parameter content. The two rotors (which are recommended to be double cage type for development of high starting torque) can run with equal or unequal speed independently, depending on their individual loading. This paper presents the elaborate design procedure, step-by-step, for the double rotor double cage motor and verifies the designed data with that obtained from three separate tests (compared to two for conventional motor) on a prototype, such that optimum performance can be obtained from the motor.
DOE-RCT-0003641 Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Edward; Lesster, Ted
2014-07-30
This program studied novel concepts for an Axial Flux Reluctance Machine to capture energy from marine hydrokinetic sources and compared their attributes to a Radial Flux Reluctance Machine which was designed under a prior Department of Energy program for the same application. Detailed electromagnetic and mechanical analyses were performed to determine the validity of the concept and to provide a direct comparison with the existing conventional Radial Flux Switched Reluctance Machine designed during the Advanced Wave Energy Conversion Project, DE-EE0003641. The alternate design changed the machine topology so that the flux that is switched flows axially rather than radially andmore » the poles themselves are long radially, as opposed to the radial flux machine that has pole pieces that are long axially. It appeared possible to build an axial flux machine that should be considerably more compact than the radial machine. In an “apples to apples” comparison, the same rules with regard to generating magnetic force and the fundamental limitations of flux density hold, so that at the heart of the machine the same torque equations hold. The differences are in the mechanical configuration that limits or enhances the change of permeance with rotor position, in the amount of permeable iron required to channel the flux via the pole pieces to the air-gaps, and in the sizing and complexity of the electrical winding. Accordingly it was anticipated that the magnetic component weight would be similar but that better use of space would result in a shorter machine with accompanying reduction in housing and support structure. For the comparison the pole count was kept the same at 28 though it was also expected that the radial tapering of the slots between pole pieces would permit a higher pole count machine, enabling the generation of greater power at a given speed in some future design. The baseline Radial Flux Machine design was established during the previous DOE program. Its characteristics were tabulated for use in comparing to the Axial Flux Machine. Three basic conceptual designs for the Axial Flux Machine were considered: (1) a machine with a single coil at the inner diameter of the machine, (2) a machine with a single coil at the outside diameter of the machine, and (3) a machine with a coil around each tooth. Slight variations of these basic configurations were considered during the study. Analysis was performed on these configurations to determine the best candidate design to advance to preliminary design, based on size, weight, performance, cost and manufacturability. The configuration selected as the most promising was the multi-pole machine with a coil around each tooth. This configuration provided the least complexity with respect to the mechanical configuration and manufacturing, which would yield the highest reliability and lowest cost machine of the three options. A preliminary design was performed on this selected configuration. For this first ever axial design of the multi rotor configuration the 'apples to apples' comparison was based on using the same length of rotor pole as the axial length of rotor pole in the radial machine and making the mean radius of the rotor in the axial machine the same as the air gap radius in the radial machine. The tooth to slot ratio at the mean radius of the axial machine was the same as the tooth to slot ratio of the radial machine. The comparison between the original radial flux machine and the new axial flux machine indicates that for the same torque, the axial flux machine diameter will be 27% greater, but it will have 30% of the length, and 76% of the weight. Based on these results, it is concluded that an axial flux reluctance machine presents a viable option for large generators to be used for the capture of wave energy. In the analysis of Task 4, below, it is pointed out that our selection of dimensional similarity for the 'apples to apples' comparison did not produce an optimum axial flux design. There is torque capability to spare, implying we could reduce the magnetic structure, but the winding area, constrained by the pole separation at the inner pole radius has a higher resistance than desirable, implying we need more room for copper. The recommendation is to proceed via one cycle of optimization and review to correct this unbalance and then proceed to a detailed design phase to produce manufacturing drawings, followed by the construction of a prototype to test the performance of the machine against predicted results.« less
Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.
1983-01-01
The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.
Parametric instabilities of rotor-support systems with application to industrial ventilators
NASA Technical Reports Server (NTRS)
Parszewski, Z.; Krodkiemski, T.; Marynowski, K.
1980-01-01
Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.
Development of testing machine for tunnel inspection using multi-rotor UAV
NASA Astrophysics Data System (ADS)
Iwamoto, Tatsuya; Enaka, Tomoya; Tada, Keijirou
2017-05-01
Many concrete structures are deteriorating to dangerous levels throughout Japan. These concrete structures need to be inspected regularly to be sure that they are safe enough to be used. The inspection method for these concrete structures is typically the impact acoustic method. In the impact acoustic method, the worker taps the surface of the concrete with a hammer. Thus, it is necessary to set up scaffolding to access tunnel walls for inspection. Alternatively, aerial work platforms can be used. However, setting up scaffolding and aerial work platforms is not economical with regard to time or money. Therefore, we developed a testing machine using a multirotor UAV for tunnel inspection. This test machine flies by a plurality of rotors, and it is pushed along a concrete wall and moved by using rubber crawlers. The impact acoustic method is used in this testing machine. This testing machine has a hammer to make an impact, and a microphone to acquire the impact sound. The impact sound is converted into an electrical signal and is wirelessly transmitted to the computer. At the same time, the position of the testing machine is measured by image processing using a camera. The weight and dimensions of the testing machine are approximately 1.25 kg and 500 mm by 500 mm by 250 mm, respectively.
Labyrinth seal forces on a whirling rotor
NASA Technical Reports Server (NTRS)
Wright, D. V.
1983-01-01
An experimental investigation of air labyrinth seal forces on a subsynchronously whirling model rotor is described and test results are given for diverging, converging, and straight two-strip seals. The effects of pressure drop, provide basic experimental data needed in the development of design methods for predicting and preventing self-excited whirl of turbine rotors and other machines having labyrinth seals. The total dynamic seal forces on the whirling model rotor are measured accurately by means of an active damping and stiffness system that is adjusted to obtain neutral whirl stability of the model rotor system. In addition, the whirling pressure pattern in the seal annulus is measured for a few test conditions and the corresponding pressure forces on the rotor are compared with the total measured forces. This comparison shows that either radial and axial pressure gradients in the seal annulus or drag forces on the rotor are significant. Comparisons made between the measured seal forces and theoretical results show that present theory is inadequate.
Permanent magnet energy conversion machine with magnet mounting arrangement
Hsu, John S.; Adams, Donald J.
1999-01-01
A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.
Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance
NASA Astrophysics Data System (ADS)
Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju
2016-10-01
This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.
Emotional Learning Based Intelligent Controllers for Rotor Flux Oriented Control of Induction Motor
NASA Astrophysics Data System (ADS)
Abdollahi, Rohollah; Farhangi, Reza; Yarahmadi, Ali
2014-08-01
This paper presents design and evaluation of a novel approach based on emotional learning to improve the speed control system of rotor flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critics stress is reduced. The comparative simulation results show that the proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the high performance industrial drive applications.
Advanced electric motor technology flux mapping
NASA Technical Reports Server (NTRS)
Doane, George B., III; Campbell, Warren; Dean, Garvin
1993-01-01
Design of electric motors which fulfill the needs of Thrust Vector Control (TVC) actuators used in large rocket propelled launch vehicles is covered. To accomplish this end the methodology of design is laid out in some detail. In addition a point design of a motor to fulfill the requirements of a certain actuator specified by MSFC is accomplished and reported upon. In the course of this design great stress has been placed on ridding the actuator of internally generated heat. To conduct the heat out of the motor use is made of the unique properties of the in house MSFC designed driving electronics. This property is that as along as they are operated in a quasi-linear mode the electronics nullify the effects of armature inductance as far as the phase of the armature current versus the rotor position is concerned. Actually the additional inductance due to the extended end turns in this design is of benefit because in the shorted armature failure mode the armature current in the fault (caused by the rotor flux sweeping past the armature) is diminished at a given rotor speed when compared to a more conventional motor with lower inductance. The magnetic circuit is analyzed using electromagnetic finite element methods.
Dynamic characteristics of motor-gear system under load saltations and voltage transients
NASA Astrophysics Data System (ADS)
Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.
2018-02-01
In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.
Repetitive switching for an electromagnetic rail gun
NASA Astrophysics Data System (ADS)
Gruden, J. M.
1983-12-01
Previous testing on a repetitive opening switch for inductive energy storage has proved the feasibility of the rotary switch concept. The concept consists of a rotating copper disk (rotor) with a pie-shaped insulator section and brushes which slide along each of the rotor surfaces. While on top of the copper surface, the brushes and rotor conduct current allowing the energy storage inductor to charge. When the brushes slide onto the insulator section, the current cannot pass through the rotor and is diverted into the load. This study investigates two new brush designs and a rotor modification designed to improve the current commutating capabilities of the switch. One brush design (fringe fiber) employs carbon fibers on the leading and trailing edge of the brush to increase the resistive commutating action as the switch opens and closes. The other brush design uses fingers to conduct current to the rotor surface, effectively increasing the number of brush contact points. The rotor modification was the placement of tungsten inserts at the copper-insulator interfaces.
Support vector machines-based fault diagnosis for turbo-pump rotor
NASA Astrophysics Data System (ADS)
Yuan, Sheng-Fa; Chu, Fu-Lei
2006-05-01
Most artificial intelligence methods used in fault diagnosis are based on empirical risk minimisation principle and have poor generalisation when fault samples are few. Support vector machines (SVM) is a new general machine-learning tool based on structural risk minimisation principle that exhibits good generalisation even when fault samples are few. Fault diagnosis based on SVM is discussed. Since basic SVM is originally designed for two-class classification, while most of fault diagnosis problems are multi-class cases, a new multi-class classification of SVM named 'one to others' algorithm is presented to solve the multi-class recognition problems. It is a binary tree classifier composed of several two-class classifiers organised by fault priority, which is simple, and has little repeated training amount, and the rate of training and recognition is expedited. The effectiveness of the method is verified by the application to the fault diagnosis for turbo pump rotor.
Deflection Shape Reconstructions of a Rotating Five-blade Helicopter Rotor from TLDV Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fioretti, A.; Castellini, P.; Tomasini, E. P.
2010-05-28
Helicopters are aircraft machines which are subjected to high level of vibrations, mainly due to spinning rotors. These are made of two or more blades attached by hinges to a central hub, which can make the dynamic behaviour difficult to study. However, they share some common dynamic properties with the ones expected in bladed discs, thereby the analytical modelling of rotors can be performed using some assumptions as the ones adopted for the bladed discs. This paper presents results of a vibrations study performed on a scaled helicopter rotor model which was rotating at a fix rotational speed and excitedmore » by an air jet. A simplified analytical model of that rotor was also produced to help the identifications of the vibration patterns measured using a single point tracking-SLDV measurement method.« less
Computer-Aided Teaching Using MATLAB/Simulink for Enhancing an IM Course With Laboratory Tests
ERIC Educational Resources Information Center
Bentounsi, A.; Djeghloud, H.; Benalla, H.; Birem, T.; Amiar, H.
2011-01-01
This paper describes an automatic procedure using MATLAB software to plot the circle diagram for two induction motors (IMs), with wound and squirrel-cage rotors, from no-load and blocked-rotor tests. The advantage of this approach is that it avoids the need for a direct load test in predetermining the IM characteristics under reduced power.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Don-Ha; Woo, Byung-Chul; Sun, Jong-Ho
2008-04-01
A new method for detecting eccentricity and broken rotor bar conditions in a squirrel-cage induction motor is proposed. Air-gap flux variation analysis is done using search coils, which are inserted at stator slots. Using this method, the leakage flux in radial direction can be directly detected. Using finite element method, the air-gap flux variation is accurately modeled and analyzed. From the results of the simulation, a motor under normal condition shows maximum magnetic flux density of 1.3 T. On the other hand, the eccentric air-gap condition displays about 1.1 T at 60 deg. and 1.6 T at 240 deg. Amore » difference of flux density is 0.5 T in the abnormal condition, whereas no difference is detected in the normal motor. In the broken rotor bar conditions, the flux densities at 65 deg. and 155 deg. are about 0.4 T and 0.8 T, respectively. These simulation results are coincided with those of experiment. Consequently, the measurement of the magnetic flux at air gap is one of effective ways to discriminate the faulted conditions of the eccentricity and broken rotor bars.« less
Stable Adaptive Inertial Control of a Doubly-Fed Induction Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Moses; Muljadi, Eduard; Hur, Kyeon
2016-11-01
This paper proposes a stable adaptive inertial control scheme of a doubly-fed induction generator. The proposed power reference is defined in two sections: the deceleration period and the acceleration period. The power reference in the deceleration period consists of a constant and the reference for maximum power point tracking (MPPT) operation. The latter contributes to preventing a second frequency dip (SFD) in this period because its reduction rate is large at the early stage of an event but quickly decreases with time. To improve the frequency nadir (FN), the constant value is set to be proportional to the rotor speedmore » prior to an event. The reference ensures that the rotor speed converges to a stable operating region. To accelerate the rotor speed while causing a small SFD, when the rotor speed converges, the power reference is reduced by a small amount and maintained until it meets the MPPT reference. The results show that the scheme causes a small SFD while improving the FN and the rate of change of frequency in any wind conditions, even in a grid that has a high penetration of wind power.« less
A new Wankel-type compressor and vacuum pump
NASA Astrophysics Data System (ADS)
Garside, D. W.
2017-08-01
When the Wankel principles were first published in the early 1950s most of the initial work was aimed at developing a compressor . At that time many of the characteristics appeared to promise a superior machine than hitherto known. However, all the early designs resulted in a high value for the minimum clearance volume (CV) and this problem was never overcome. Knowledge now gained from the development and manufacture of the Wankel engine has enabled the evolution of a new compressor concept where the rotor flank, radially very close-fitting over its central area, provides gas sealing with the housing bore. The rotor has an increased radial clearance towards the apices which makes the machine practical to manufacture. The ‘nesting’ of the rotor flank with the housing bore at the end of the exhaust stroke results in an extremely small CV. This machine promises to possess an exceptional combination of all the attributes which are important in achieving high energy efficiency in positive-displacement compressors and vacuum pumps: - near-zero CV - low mechanical friction losses - low internal gas leakage (assisted via oil flooding) - high volumetric efficiency. In addition it is compact, lightweight, vibration-free, consists of few components, and can be built in any chamber size. The Paper discusses the features and characteristics of the design.
Design improvement of permanent magnet flux switching motor with dual rotor structure
NASA Astrophysics Data System (ADS)
Soomro, H. A.; Sulaiman, E.; Kumar, R.; Rahim, N. S.
2017-08-01
This paper presents design enhancement to reduce permanent magnet (PM) volume for 7S-6P-7S dual rotor permanent magnet flux-switching machines (DRPMFSM) for electric vehicle application. In recent years, Permanent magnet flux switching (PMFS) motor and a new member of brushless permanent magnet machine are prominently used for the electric vehicle. Though, more volume of Rare-Earth Permanent Magnet (REPM) is used to increase the cost and weight of these motors. Thus, to overcome the issue, new configuration of 7S-6P- 7S dual rotor permanent magnet flux-switching machine (DRPMFSM) has been proposed and investigated in this paper. Initially proposed 7S-6P-7S DRPMFSM has been optimized using “deterministic optimization” to reduce the volume of PM and to attain optimum performances. In addition, the performances of initial and optimized DRPMFSM have been compared such that back-emf, cogging torque, average torque, torque and power vs speed performances, losses and efficiency have been analysed by 2D-finite element analysis (FEA) using the JMAG- Designer software ver. 14.1. Consequently, the final design 7S-6P-7S DRPMFSM has achieved the efficiency of 83.91% at reduced PM volume than initial design to confirm the better efficient motor for HEVs applications.
Identification of dynamic characteristics of flexible rotors as dynamic inverse problem
NASA Technical Reports Server (NTRS)
Roisman, W. P.; Vajingortin, L. D.
1991-01-01
The problem of dynamic and balancing of flexible rotors were considered, which were set and solved as the problem of the identification of flexible rotor systems, which is the same as the inverse problem of the oscillation theory dealing with the task of the identifying the outside influences and system parameters on the basis of the known laws of motion. This approach to the problem allows the disclosure the picture of disbalances throughout the rotor-under-test (which traditional methods of flexible rotor balancing, based on natural oscillations, could not provide), and identify dynamic characteristics of the system, which correspond to a selected mathematical model. Eventually, various methods of balancing were developed depending on the special features of the machines as to their design, technology, and operation specifications. Also, theoretical and practical methods are given for the flexible rotor balancing at far from critical rotation frequencies, which does not necessarily require the knowledge forms of oscillation, dissipation, and elasticity and inertia characteristics, and to use testing masses.
Demonstration of Lenz's Law with an Induction Motor
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2005-01-01
The interaction of a conductor with a time-dependent magnetic field is an important topic of electromagnetic theory. A computerized classroom demonstration shows how the eddy currents induced in the rotor of an induction motor cause its rotation or braking. Both phenomena are directly related to Lenz's law.
Demonstration of LenzÂ's law with an induction motor
NASA Astrophysics Data System (ADS)
Kraftmakher, Yaakov
2005-03-01
The interaction of a conductor with a time-dependent magnetic field is an important topic of electromagnetic theory. A computerized classroom demonstration shows how the eddy currents induced in the rotor of an induction motor cause its rotation or braking. Both phenomena are directly related to Lenz’s law.
Engine Evaluation of Advanced Technology Control Components
1976-08-01
producer turbine rotor blades. This is a very desirable control feature, because protecting turbine blades from overtemperature is particularly...centrifugal boost stage operating back to back on a common drive shaft that is direct driven through the alter- nator rotor shaft. The main stage is an...computation makes this simple dynamic pumping machine possible. The pen- alty of this simple design is lower overall efficiency as com- pared to a
Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed
2016-03-01
This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.
2007-01-01
Analysis and experimental measurement of the electromagnet force loads on the hybrid rotor in a novel bearingless switched-reluctance motor (BSRM) have been performed. A BSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The BSRM has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of stator poles. A second set of stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Analysis was done for nonrotating rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental results and the theoretical predictions was obtained with typical magnetic bearing derating factors applied to the predictions.
Vibration sensing in smart machine rotors using internal MEMS accelerometers
NASA Astrophysics Data System (ADS)
Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.
2016-09-01
This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.
Sealing intersecting vane machines
Martin, Jedd N.; Chomyszak, Stephen M.
2005-06-07
The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.
Sealing intersecting vane machines
Martin, Jedd N [Providence, RI; Chomyszak, Stephen M [Attleboro, MA
2007-06-05
The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.
The work studies the effect of magnetic circuit saturation on the synchronous inductive reactance of the armature. A practical method is given for...calculating synchronized parameters in saturating synchronized machines with additional clearances and machines with superconducting excitation windings.
Improved motors for utility applications: Volume 6, Squirrel-cage rotor analysis: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, J.W.; McCoy, R.M.
1986-11-01
An analysis of squirrel cage induction motor rotors was undertaken in response to an Industry Assessment Study finding 10% of motor failures to be rotor related. The analysis focuses on evaluating rotor design life. The evaluation combines state-of-the-art electromagnetic, thermal, and structural solution techniques into an integrated analysis and presents a simple summary. Finite element techniques are central tools in the analysis. The analysis is applied to a specific forced draft fan drive design. Fans as a category of application have a higher failure rate than other categories of power station auxiliary motor applications. Forced-draft fan drives are one ofmore » the major fan drives which accelerate a relatively high value of rotor load inertia. Various starting and operating conditions are studied for this forced-draft fan drive motor including a representative application duty cycle.« less
Turbulent wind at the equatorial segment of an operating Darrieus wind turbine blade
NASA Astrophysics Data System (ADS)
Connell, J. R.; Morris, V. R.
1989-09-01
Six turbulent wind time series, measured at equally spaced equator-height locations on a circle 3 m outside a 34-m Darrieus rotor, are analyzed to approximate the wind fluctuations experienced by the rotor. The flatwise lower root-bending stress of one blade was concurrently recorded. The wind data are analyzed in three ways: wind components that are radial and tangential to the rotation of a blade were rotationally sampled; induction and wake effects of the rotor were estimated from the six Eulerian time series; and turbulence spectra of both the measured wind and the modeled wind from the PNL theory of rotationally sampled turbulence. The wind and the rotor response are related by computing the spectral response function of the flatwise lower root-bending stress. Two bands of resonant response that surround the first and second flatwise modal frequencies shift with the rotor rotation rate.
Woolley, R.D.
1998-09-08
A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.
Woolley, Robert D.
1998-01-01
A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.
Dynamometer Research Facilities | Wind | NREL
drivetrains by replacing the rotor and blades of a turbine with a powerful motor. The National Renewable -horsepower variable-speed induction motor, with AC grid connections of 120, 240, and 480 volts (V) and a dynamometer features a 3,351-horsepower (hp), 415-amp AC induction motor with variable-frequency drive that
Brushless machine having ferromagnetic side plates and side magnets
Hsu, John S
2012-10-23
An apparatus is provided having a cylindrical stator and a rotor that is spaced from a stator to define an annular primary air gap that receives AC flux from the stator. The rotor has a plurality of longitudinal pole portions disposed parallel to the axis of rotation and alternating in polarity around a circumference of the rotor. Each longitudinal pole portion includes portions of permanent magnet (PM) material and at least one of the longitudinal pole portions has a first end and an opposing second end and a side magnet is disposed adjacent the first end and a side pole is disposed adjacent the second end.
Reducing Stator Current Harmonics for a Doubly-Fed Induction Generator Connected to a Distorted Grid
2013-09-01
electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...speed of the DFIG can be adjusted to optimize turbine efficiency for given wind conditions. A common method for controlling the operating speed is
System and method for cooling a superconducting rotary machine
Ackermann, Robert Adolf [Schenectady, NY; Laskaris, Evangelos Trifon [Schenectady, NY; Huang, Xianrui [Clifton Park, NY; Bray, James William [Niskayuna, NY
2011-08-09
A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.
High Energy Storage Flywheel Test Program.
1980-01-28
are used between the bearing stations and the rotor vacuum chamber. Steel liners are used to support the bearings and seals within the aluminum case...system is its set of flywheel rotors which are machined and assembled from vacuum-melt, forged and heat-treated low nickel alloy steel HP 9-4-30. Each...sits within an independently sealed vacuum chamber and is surrounded by a set of 4340 steel barrier rings which are supported by low dialectric
Flight Tests of the Wilford XOZ-1 Sea Gyroplane
NASA Technical Reports Server (NTRS)
Gustafson, Frederic B.
1941-01-01
During August 1939 a series of flight tests was made at Langley Field on the Wilford sea gyroplane, designated by the Navy as the XOZ-1. These tests were intended to permit rough evaluation of the stability and control characteristics of the machine, with particular reference to possible improvements in rigging which might be made in future machines with fixed wing and nonarticulated feathering control rotor, and to provide data on the bending and feathering motions of the rotor blades. The tests made in 1939 proved inadequate, chiefly because the machine as flown did not have sufficient propeller thrust to give it an appreciable speed range in steady flight. Further tests were therefore made in August 1940 after overhauling the engine and substituting a metal propeller for the wooded one first used. The range of speeds covered in steady flight was markedly extended. Steady-flight runs only were made in this series, since it was felt that takeoffs and landings had been covered sufficiently in the previous tests.
Method and system for determining induction motor speed
Parlos, Alexander G.; Bharadwaj, Raj M.
2004-03-30
A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.
Homopolar Transformer for Conversion of Electrical Energy
1998-10-13
electrical current Hows through a conductor situated in a magnetic field during rotation of the machine rotor. In L the case of a homopolar motor ...10, incorporated within a homopolar machine 12 corresponding for example to the motor or generator disclosed in U.S. Pat. No. 3,657,580 to Doyle. The...During operation of the homopolar machine 12 as a motor , a voltage source 16 connected to the stator terminals 26 and 28 causes a current to flow
Homopolar Transformer for Conversion of Electrical Energy
1997-08-14
machine rotor. In the case of a 14 homopolar motor , the current will develop a force perpendicular to the direction of its flow 15 through the conductor...reference numeral 10, incorporated within a homopolar 14 machine 12 corresponding for example to the motor or generator disclosed in U.S. Patent No...current flow. During 3 operation of the homopolar machine 12 as a motor , a voltage source 16 connected to the stator 5 terminals 26 and 28 causes a
NASA Astrophysics Data System (ADS)
Gündoğdu, Tayfun; Kömürgöz, Güven
2012-08-01
Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted.
Modeling and simulation of a hybrid ship power system
NASA Astrophysics Data System (ADS)
Doktorcik, Christopher J.
2011-12-01
Optimizing the performance of naval ship power systems requires integrated design and coordination of the respective subsystems (sources, converters, and loads). A significant challenge in the system-level integration is solving the Power Management Control Problem (PMCP). The PMCP entails deciding on subsystem power usages for achieving a trade-off between the error in tracking a desired position/velocity profile, minimizing fuel consumption, and ensuring stable system operation, while at the same time meeting performance limitations of each subsystem. As such, the PMCP naturally arises at a supervisory level of a ship's operation. In this research, several critical steps toward the solution of the PMCP for surface ships have been undertaken. First, new behavioral models have been developed for gas turbine engines, wound rotor synchronous machines, DC super-capacitors, induction machines, and ship propulsion systems. Conventional models describe system inputs and outputs in terms of physical variables such as voltage, current, torque, and force. In contrast, the behavioral models developed herein express system inputs and outputs in terms of power whenever possible. Additionally, the models have been configured to form a hybrid system-level power model (HSPM) of a proposed ship electrical architecture. Lastly, several simulation studies have been completed to expose the capabilities and limitations of the HSPM.
Aerodynamic seals for rotary machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir
2016-02-09
An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include amore » secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
Previous theoretical work has shown that when all loss mechanisms are neglected the constant power speed range (CPSR) of a brushless dc motor (BDCM) is infinite when the motor is driven by the dual-mode inverter control (DMIC) [1,2]. In a physical drive, losses, particularly speed-sensitive losses, will limit the CPSR to a finite value. In this paper we report the results of laboratory testing of a low-inductance, 7.5-hp BDCM driven by the DMIC. The speed rating of the test motor rotor limited the upper speed of the testing, and the results show that the CPSR of the test machine ismore » greater than 6:1 when driven by the DMIC. Current wave shape, peak, and rms values remained controlled and within rating over the entire speed range. The laboratory measurements allowed the speed-sensitive losses to be quantified and incorporated into computer simulation models, which then accurately reproduce the results of lab testing. The simulator shows that the limiting CPSR of the test motor is 8:1. These results confirm that the DMIC is capable of driving low-inductance BDCMs over the wide CPSR that would be required in electric vehicle applications.« less
Applications of Machine Learning and Rule Induction,
1995-02-15
An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic
WTG Energy Systems' Rotor: Steel at 80 Feet
NASA Technical Reports Server (NTRS)
Barrows, R. E.
1979-01-01
The design, specifications, and performance of the 80 foot diameter fixed pitch rotor operating on the MP1-200 wind turbine generator installed as part of the Island of Cuttyhunk's electric power utility grid system are described. This synchronous generating system rated 200 kilowatts at 28 mph wind velocity, and produces constant 60 Hz, 480 VAC current at +/- 1 percent accuracy throughout the machine's operating range. Future R & D requirements and suggestions are included with cost data.
Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2004-01-01
The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.
Superconductor Armature Winding for High Performance Electrical Machines
2016-12-05
Vol. 3, pp.489-507 [Kalsi1] S. S. Kalsi, ‘Superconducting Wind Turbine Generator Employing MgB2 Windings Both on Rotor and Stator’, IEEE Trans. on...Contract Number: N00014-‐14-‐1-‐0272 Contract Title: Superconductor armature winding for high performance electrical...an all-superconducting machine. Superconductor armature windings in electrical machines bring many design challenges that need to be addressed en
A One-Axis-Controlled Magnetic Bearing and Its Performance
NASA Astrophysics Data System (ADS)
Li, Lichuan; Shinshi, Tadahiko; Kuroki, Jiro; Shimokohbe, Akira
Magnetic bearings (MBs) are complex machines in which sensors and controllers must be used to stabilize the rotor. A standard MB requires active control of five motion axes, imposing significant complexity and high cost. In this paper we report a very simple MB and its experimental testing. In this MB, the rotor is stabilized by active control of only one motion axis. The other four motion axes are passively stabilized by permanent magnets and appropriate magnetic circuit design. In rotor radial translational motion, which is passively stabilized, a resonant frequency of 205Hz is achieved for a rotor mass of 11.5×10-3kg. This MB features virtually zero control current and zero rotor iron loss (hysteresis and eddy current losses). Although the rotational speed and accuracy are limited by the resonance of passively stabilized axes, the MB is still suitable for applications where cost is critical but performance is not, such as cooling fans and auxiliary support for aerodynamic bearings.
MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.
Najjar-Khodabakhsh, Abbas; Soltani, Jafar
2016-03-01
In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Skeist, S. Merrill; Baker, Richard H.
2005-10-11
An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Min; Muljadi, Eduard; Jang, Gilsoo
This paper proposes a disturbance-adaptive short-term frequency support scheme of a doubly fed induction generator (DFIG) that can improve the frequency-supporting capability while ensuring stable operation. In the proposed scheme, the output of the additional control loop is determined as the product of the frequency deviation and adaptive gain, which is modified depending on the rate of change of frequency (ROCOF) and rotor speed. To achieve these objectives, the adaptive gain is set to be high during the early stage of a disturbance, when the ROCOF and rotor speed are high. Until the frequency nadir (FN), the gain decreases withmore » the ROCOF and rotor speed. After the FN, the gain decreases only with the rotor speed. The simulation results demonstrate that the proposed scheme improves the FN and maximum ROCOF while ensuring the stable operation of a DFIG under various wind conditions irrespective of the disturbance conditions by adaptively changing the control gain with the ROCOF and rotor speed, even if the wind speed decreases and a consecutive disturbance occurs.« less
Ordered array of CoPc-vacancies filled with single-molecule rotors
NASA Astrophysics Data System (ADS)
Xie, Zheng-Bo; Wang, Ya-Li; Tao, Min-Long; Sun, Kai; Tu, Yu-Bing; Yuan, Hong-Kuan; Wang, Jun-Zhong
2018-05-01
We report the highly ordered array of CoPc-vacancies and the single-molecule rotors inside the vacancies. When CoPc molecules are deposited on Cd(0001) at low-temperature, three types of molecular vacancies appeared randomly in the CoPc monolayer. Annealing the sample to higher temperature leads to the spontaneous phase separation and self-organized arrangement of the vacancies. Highly ordered arrays of two-molecule vacancies and single-molecule vacancies have been obtained. In particular, there is a rotating CoPc molecule inside each single-molecule vacancy, which constitutes the array of single-molecule rotors. These results provide a new routine to fabricate the nano-machines on a large scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
1954-11-01
small Pelton air turbine in Fig. U supplies this power and provides a speed control for the rotor. The engine consists of a rotor which runs betwen...inherent in existing gas turbine power plants are circumvented by using intermittent flow in which the components are either alternately exposed to...investigators, wave processes while imperfectly understood, seemed very attractiveo The first successful heat machine which used waves was the gas turbine
The Effects of Rotation on Boundary Layers in Turbomachine Rotors
NASA Technical Reports Server (NTRS)
Johnston, J. P.
1974-01-01
The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.
A 10-MJ compact homopolar generator
NASA Astrophysics Data System (ADS)
McKee, B. D.; McNab, I. R.
1986-11-01
The design and initial testing of a lightweight (5 kJ/kg) iron-cored homopolar generator is described. The machine employs an external power supply to motor up to operating speed (12,500 rpm) at which point 10 MJ of energy is stored in the steel rotor. Copper-graphite brushes in the stator, actuated by pneumatic actuators, make contact with the rotor surface and permit the inertial energy to be transferred to a load circuit at current levels up to 1.5 MA and voltages up to 60 V.
Film riding seals for rotary machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidkar, Rahul Anil; Sarawate, Neelesh Nandkumar; Wolfe, Christopher Edward
A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further,more » the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.« less
High Performance Magnetic Bearings for Aero Applications
NASA Technical Reports Server (NTRS)
Allaire, P. E.; Knospe, C. R.; Williams, R. D.; Lewis, D. W.; Barrett, L. E.; Maslen, E. H.; Humphris, R. R.
1997-01-01
Several previous annual reports were written and numerous papers published on the topics for this grant. That work is not repeated here in this final report. Only the work completed in the final year of the grant is presented in this final report. This final year effort concentrated on power loss measurements in magnetic bearing rotors. The effect of rotor power losses in magnetic bearings are very important for many applications. In some cases, these losses must be minimized to maximize the length of time the rotating machine can operate on a fixed energy or power supply. Examples include aircraft gas turbine engines, space devices, or energy storage flywheels. In other applications, the heating caused by the magnetic bearing must be removed. Excessive heating can be a significant problem in machines as diverse as large compressors, electric motors, textile spindles, and artificial heart pumps.
Nondestructive Evaluation Methodologies Developed for Certifying Composite Flywheels
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Konno, Kevin E.; Martin, Richard E.; Thompson, Richard
2001-01-01
Manufacturing readiness of composite rotors and certification of flywheels depend in part on the maturity of nondestructive evaluation (NDE) technology for process optimization and quality assurance, respectively. At the NASA Glenn Research Center, the capabilities and limitations of x-ray-computed tomography and radiography, as well as advanced ultrasonics were established on NDE ring and rotor standards with electrical discharge machining (EDM) notches and drilled holes. Also, intentionally seeded delamination, tow break, and insert of bagging material were introduced in hydroburst-rings to study the NDE detection capabilities of such anomalies and their effect on the damage tolerance and safe life margins of subscale rings and rotors. Examples of possible occurring flaws or anomalies in composite rings as detected by NDE and validated by destructive metallography are shown. The general NDE approach to ensure the quality of composite rotors and to help in the certification of flywheels is briefly outlined.
NASA Astrophysics Data System (ADS)
Song, Z.; Guo, P.; Liu, Y.
2014-03-01
The influence of unbalanced magnetic pull (UMP) and hydraulic seal force on the vibration of large rotor-bearing systems is studied. The UMP caused by rotor eccentricity imposes important effects on rotating machinery, especially for large generators such as water turbine generator sets, because these machines operate above their first critical speed in some instances and are supported by oil film bearings. A magnetic stiffness matrix for studying the effects of the UMP is proposed. The magnetic stiffness matrix can be generated by decomposing the expression of air gap magnetic field energy. Two vibration models are constructed using the Lagrange equation. The difference between the two models lies in the boundary support condition: one has rigid support and the other has elastic bearing support. The influence of the magnetic stiffness and elastic support on the critical speed of the rotor is studied using Lyapunov nonlinear vibration stability theory. The vibration amplitude of the rotor is calculated, taking the magnetic stiffness and horizontal centrifugal force into account. The unbalanced hydraulic seal force is produced because of the asymmetry of seal clearance. This imbalance is one of the factors that causes self-excited vibration in rotating machinery, and is as important as the UMP for large water turbine generator sets. The rotor-bearing system is supported by an oil film journal bearing, whose characteristic also impose considerable influence on vibration. On the basis of the above-mentioned conditions, a three-dimensional finite element model of the rotating system that includes the oil film journal bearing is constructed. The effect of the UMP and unbalanced hydraulic seal force is considered in the construction, and studied in relation to the magnetic parameters, seal parameters, journal bearing stiffness, and outer diameter of the rotating machine critical speed. Conclusions may benefit the dynamic design and optimized operation of large rotating machinery.
Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.
2008-01-01
Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.
In-process, non-destructive multimodal dynamic testing of high-speed composite rotors
NASA Astrophysics Data System (ADS)
Kuschmierz, Robert; Filippatos, Angelos; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgern W.; Fischer, Andreas
2014-03-01
Fibre reinforced plastic (FRP) rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency, lifetime and loading limits. Due to complex rotor structures, high anisotropy and non-linear behavior of FRP under dynamic loads, an in-process measurement system is necessary to monitor and to investigate the evolution of damages under real operation conditions. A non-invasive, optical laser Doppler distance sensor measurement system is applied to determine the biaxial deformation of a bladed FRP rotor with micron uncertainty as well as the tangential blade vibrations at surface speeds above 300 m/s. The laser Doppler distance sensor is applicable under vacuum conditions. Measurements at varying loading conditions are used to determine elastic and plastic deformations. Furthermore they allow to determine hysteresis, fatigue, Eigenfrequency shifts and loading limits. The deformation measurements show a highly anisotropic and nonlinear behavior and offer a deeper understanding of the damage evolution in FRP rotors. The experimental results are used to validate and to calibrate a simulation model of the deformation. The simulation combines finite element analysis and a damage mechanics model. The combination of simulation and measurement system enables the monitoring and prediction of damage evolutions of FRP rotors in process.
NASA Astrophysics Data System (ADS)
Sizov, Gennadi Y.
In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.
Non-equilibrium quantum heat machines
NASA Astrophysics Data System (ADS)
Alicki, Robert; Gelbwaser-Klimovsky, David
2015-11-01
Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.
Mathematical model of simple spalling formation during coal cutting with extracting machine
NASA Astrophysics Data System (ADS)
Gabov, V. V.; Zadkov, D. A.
2018-05-01
A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.
Controlled clockwise and anticlockwise rotational switching of a molecular motor.
Perera, U G E; Ample, F; Kersell, H; Zhang, Y; Vives, G; Echeverria, J; Grisolia, M; Rapenne, G; Joachim, C; Hla, S-W
2013-01-01
The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.
NASA Astrophysics Data System (ADS)
Guo, Liyan; Xia, Changliang; Wang, Huimin; Wang, Zhiqiang; Shi, Tingna
2018-05-01
As is well known, the armature current will be ahead of the back electromotive force (back-EMF) under load condition of the interior permanent magnet (PM) machine. This kind of advanced armature current will produce a demagnetizing field, which may make irreversible demagnetization appeared in PMs easily. To estimate the working points of PMs more accurately and take demagnetization under consideration in the early design stage of a machine, an improved equivalent magnetic network model is established in this paper. Each PM under each magnetic pole is segmented, and the networks in the rotor pole shoe are refined, which makes a more precise model of the flux path in the rotor pole shoe possible. The working point of each PM under each magnetic pole can be calculated accurately by the established improved equivalent magnetic network model. Meanwhile, the calculated results are compared with those calculated by FEM. And the effects of d-axis component and q-axis component of armature current, air-gap length and flux barrier size on working points of PMs are analyzed by the improved equivalent magnetic network model.
A magnetic damper for first mode vibration reduction in multimass flexible rotors
NASA Technical Reports Server (NTRS)
Kasarda, M. E. F.; Allaire, P. E.; Humphris, R. R.; Barrett, L. E.
1989-01-01
Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good.
NASA Astrophysics Data System (ADS)
Boussetoua, Mohammed
During winter, the climate in the northern region is known for its icing and freezing conditions. However, emergency services often use helicopters to reach isolated locations. The difficult situations, generally experiences in the North particularly in Quebec, may prevent rescuers to intervene. The main reason preventing such operations is the lack of a de-icing system in the small helicopter blades. The overall objective of the project is research, development, design and manufacture of a system composed of an on-board rotating low speed generator and heating elements. It consumes a part of the power supplied by the turbine through the axis of the main rotor of the small aircraft and converts it to electrical power to be used by the heating elements. This innovation will allow to fly safely everywhere throughout the year protect the lives of the users even in the worst weather conditions. Firstly, the research focuses on the identification of problems related to the use of protection systems against the hoarfrost on main rotor blades of different aircrafts during flight. In this phase, we specifically focused on the difficulties encountered by the aircraft companies using the existing and operational systems for protection against hoarfrost. Main rotor blades are difficult to protect on helicopters. Several systems were considered by the helicopter manufacturers, such as electrothermal systems, pneumatic systems or using anti-icing fluids. In the current state of technological knowledge, all helicopters that have been certified to fly in icing conditions use electrothermal systems for protection against hoarfrost on their main rotor Small helicopters addressed by this work, are forbidden to fly in icing conditions due to lack of energy source to operate these systems. The electrothermal system has been considered for this thesis work to protect the main rotor blades of small aircraft in-flight. The second part of this thesis is based on the source of power feeding the hearting system. In recent years, numerous research studies have started on the development of electromechanical system converters for various applications, such as transport by road, rail or aviation. The development of new low-speed, low-weight electric machines and their very high degree of compactness has become a very promising alternative. This project strongly interests many industries in the field of air transport. The transverse flux machine is considered as a compact structure having better mass power compared to other electrical machines. The design of transverse flux machine was the subject of an electromagnetic study. Also, the analytical study helped to determine the overall dimensions of the machine. The study was followed by a validation phase of the analytical model using numerical simulations. These two studies were intended to determine changes in the characteristics of the transverse flux machine according to the different geometric dimensions of its active parts. From the calculations made using analytical and numerical models, a prototype of the transverse flux machine (600 W, 320 RPM) was designed and manufactured in the AMIL laboratory at the Universite du Quebec a Chicoutimi (UQAC). A bench test was conducted to compare the theoretical and experimental results. The measurements obtained on this prototype were compared with the theoretical results. This phase of the study demonstrates with satisfaction, the reliability of the theoretical models developed. Finally, a new configuration of this machine has been proposed. Numerical simulation results of this structure are particularly encouraging and require further investigations. For logistical and financial reasons, the prototype of this configuration has not been manufactured. (Abstract shortened by UMI.)
Planar rotational magnetic micromotors with integrated shaft encoder and magnetic rotor levitation
NASA Technical Reports Server (NTRS)
Guckel, Henry; Christenson, T. R.; Skrobis, K. J.; Klein, J.; Karnowsky, M.
1994-01-01
Deep x-ray lithography and electroplating may be combined to form a fabrication tool for micromechanical devices with large structural heights, to 500 micron, and extreme edge acuities, less than 0.1 micron-run-out per 100 micron of height. This process concept which originated in Germany as LIGA may be further extended by adding surface micromachining. This extension permits the fabrication of precision metal and plastic parts which may be assembled into three-dimensional micromechanical components and systems. The processing tool may be used to fabricate devices from ferromagnetic material such as nickel and nickel-iron alloys. These materials when properly heat treated exhibit acceptable magnetic behavior for current to flux conversion and marginal behavior for permanent magnet applications. The tool and materials have been tested via planar, magnetic, rotational micromotor fabrication. Three phase reluctance machines of the 6:4 configuration with 280 micron diameter rotors have been tested and analyzed. Stable rotational speeds to 34,000 rpm with output torques above 10 x 10(exp -9) N-m have been obtained. The behavior is monitored with integrated shaft encoders which are photodiodes which measure the rotor response. Magnetic levitation of the rotor via reluctance forces has been achieved and has reduced frictional torque losses to less than 1 percent of the available torque. The results indicate that high speed limits of these actuators are related to torque ripple. Hysteresis motors with magnetic bearings are under consideration and will produce high speed rotational machines with excellent sensor application potential.
Westinghouse programs in pulsed homopolar power supplies
NASA Technical Reports Server (NTRS)
Litz, D. C.; Mullan, E.
1984-01-01
This document details Westinghouse's ongoing study of homopolar machines since 1929 with the major effort occurring in the early 1970's to the present. The effort has enabled Westinghouse to develop expertise in the technology required for the design, fabrication and testing of such machines. This includes electrical design, electromagnetic analysis, current collection, mechanical design, advanced cooling, stress analysis, transient rotor performance, bearing analysis and seal technology. Westinghouse is using this capability to explore the use of homopolar machines as pulsed power supplies for future systems in both military and commercial applications.
NASA Astrophysics Data System (ADS)
Asy'ari, Hasyim; Sarjito, Prasetio, Septian Heri
2017-04-01
The aim of the research work describe in this paper was to design and optimize a permanent magnet linear generator for renewable energy power plants. It is cover of first stage of designing stator and rotor permanent magnet linear generator. Stator design involves determining dimensions, number of slots, diameter of wire, and the number of winding in each slot. The design of the rotor includes rotor manufacture of PVC pipe material, 10 pieces of permanent magnet type ferrite 271 mikroweber, and resin. The second stage was to assemble the stator and rotor that has been done in the first stage to be a permanent magnet linear generator. The third stage was to install a permanent magnet linear generator with induction motors. Further stage was to test performance of a permanent magnet linear generator by utilizing of induction motor as a prime mover experimentally. In this study, permanent magnet linear generator with a rotor consists of five pairs of permanent magnets. The stator consists of 6 slots of the stator frame, each slot mounted stator coil of 200, 300, 400, 500, and 800 windings, and dimensions of wire used was 0.4 mm. The stator frame was made from acrylic. Results of the experiment that, permanent magnet linear generator when no load was able to generate a DC voltage of 14.5 volts at 300 rpm, and at the output of the linear generator when it is connected to the DC fan as a load only generated of 6.7 volts. It concludes that permanent magnet linear generator output can be used as an input device hybrid system. Data obtained from this experiment in laboratory scale can be developed in a larger scale by varying the type of magnet being used, the number of windings, and the speed used to generate more power.
NASA Technical Reports Server (NTRS)
1979-01-01
The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.
High speed operation of permanent magnet machines
NASA Astrophysics Data System (ADS)
El-Refaie, Ayman M.
This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been investigated. A 6kW, 36slot/30pole prototype SPM machine has been designed and built. Experimental measurements have been used to verify the analytical and FEA results. These test results have demonstrated that wide constant-power speed range can be achieved. Other important machine features such as the near-sinusoidal back-emf, high efficiency, and low cogging torque have also been demonstrated.
Induced electric fields in workers near low-frequency induction heating machines.
Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter
2014-04-01
Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace. © 2013 Wiley Periodicals, Inc.
Neural-net Processed Electronic Holography for Rotating Machines
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2003-01-01
This report presents the results of an R&D effort to apply neural-net processed electronic holography to NDE of rotors. Electronic holography was used to generate characteristic patterns or mode shapes of vibrating rotors and rotor components. Artificial neural networks were trained to identify damage-induced changes in the characteristic patterns. The development and optimization of a neural-net training method were the most significant contributions of this work, and the training method and its optimization are discussed in detail. A second positive result was the assembly and testing of a fiber-optic holocamera. A major disappointment was the inadequacy of the high-speed-holography hardware selected for this effort, but the use of scaled holograms to match the low effective resolution of an image intensifier was one interesting attempt to compensate. This report also discusses in some detail the physics and environmental requirements for rotor electronic holography. The major conclusions were that neural-net and electronic-holography inspections of stationary components in the laboratory and the field are quite practical and worthy of continuing development, but that electronic holography of moving rotors is still an expensive high-risk endeavor.
The response of rotating machinery to external random vibration
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1974-01-01
A high-speed turbogenerator employing gas-lubricated hydrodynamic journal and thrust bearings was subjected to external random vibrations for the purpose of assessing bearing performance in a dynamic environment. The pivoted-pad type journal bearings and the step-sector thrust bearing supported a turbine-driven rotor weighing approximately twenty-one pounds at a nominal operating speed of 36,000 rpm. The response amplitudes of both the rigid-supported and flexible-supported bearing pads, the gimballed thrust bearing, and the rotor relative to the machine casing were measured with capacitance type displacement probes. Random vibrations were applied by means of a large electrodynamic shaker at input levels ranging between 0.5 g (rms) and 1.5 g (rms). Vibrations were applied both along and perpendicular to the rotor axis. Response measurements were analyzed for amplitude distribution and power spectral density. Experimental results compare well with calculations of amplitude power spectral density made for the case where the vibrations were applied along the rotor axis. In this case, the rotor-bearing system was treated as a linear, three-mass model.
Yang, Dejian; Kang, Moses; Muljadi, Eduard; ...
2017-11-14
This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG)-based wind turbine generator (WTG) for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so thatmore » the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyewon; Hwang, Min; Muljadi, Eduard
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dejian; Kang, Moses; Muljadi, Eduard
This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG)-based wind turbine generator (WTG) for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so thatmore » the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.« less
Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...
2017-04-18
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Comparison of Tone Mode Measurements for a Forward Swept and Baseline Rotor Fan
NASA Technical Reports Server (NTRS)
Heidelberg, Laurence J.
2003-01-01
A forward swept fan, designated the Quite High Speed Fan (QHSF), was tested in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel to investigate its noise reduction relative to a baseline fan of the same aerodynamic performance. The design objective of the QHSF was a 6 dB reduction in Effective Perceived Noise Level relative to the baseline fan at the takeoff condition. The design noise reduction was to be a result of lower levels of multiple pure tone noise due to the forward swept rotor, and lower rotor/stator interaction tone noise from a leaned stator. Although the design 6 dB reduction was observed in far-field measurements, the induct mode measurements revealed the reasons for goals. All of the noise reduction was from the blade passing tone and its harmonics and most of this was unexpectedly from rotor/strut interaction modes. The reason for large differences in rotor/strut noise sources could not be determined with certainty. The reductions in the multiple pure tone noise for the forward swept rotor were not observed. this reduction were not the ones related to the design
NASA Astrophysics Data System (ADS)
Xu, Peifeng; Shi, Kai; Sun, Yuxin; Zhua, Huangqiu
2017-05-01
Dual rotor permanent magnet (DRPM) wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF), cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA). The results show that the slot and pole number combinations have an important impact on the generator properties.
Axial flux machine, stator and fabrication method
Carl, Ralph James
2004-03-16
An axial flux machine comprises: a soft magnetic composite stator extension positioned in parallel with a rotor disk and having slots; soft magnetic composite pole pieces attached to the stator extension and facing a permanent magnet on the rotor disk, each comprising a protrusion situated within a respective one of the slots, each protrusion shaped so as to facilitate orientation of the respective pole piece with respect to the stator extension; electrical coils, each wrapped around a respective one of the pole pieces. In another embodiment the soft magnetic composite pole pieces each comprise a base portion around with the electrical coils are wound and a trapezoidal shield portion a plurality of heights with a first height in a first region being longer than a second height in a second region, the second region being closer to a pole-to-pole gap than the first region.
Design, fabrication, and performance of foil journal bearing for the brayton rotating unit
NASA Technical Reports Server (NTRS)
Licht, L.; Branger, M.
1973-01-01
Foil bearings were designed and manufactured to replace pivoted-shoe journal bearings in an existing Brayton Cycle turbo-alternator-compressor. The design of this unconventional rotor support was accomplished within the constraints and space limitations imposed by the present machine, and the substitution of foil bearings was effected without changes or modification other machine components. A housing and a test rig were constructed to incorporate the new foil-bearing support into a unified assemble with an air-driven rotor and the gimbal-mounted thrust bearing, seals, and shrouds of an actual Brayton Rotating Unit. The foil bearing required no external pressure source, and stable self-acting rotation was achieved at all speeds up to 43,200 rpm. Excellent wipe-wear characteristics of the foil bearing permitted well over 1000 start-stop cycles with no deterioriation of performance in the entire speed range.
Halbach array DC motor/generator
Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.
1998-01-06
A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.
Halbach array DC motor/generator
Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.
1998-01-01
A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.
Electro-dynamic machine, system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Wen; Ramanan, Varagur
One embodiment is a unique Vernier machine comprising a rotor and a stator. The rotor comprises a back portion and a plurality of permanent magnets. The stator comprises a plurality of ferromagnetic arm structures, a plurality of ferromagnetic pole structures extending from each of the ferromagnetic arm structures in a direction toward the permanent magnets, and a plurality of conductive windings disposed about respective ones of the plurality of ferromagnetic arm structures. The ferromagnetic pole structures are structured to collect magnetic flux from the permanent magnets. The ferromagnetic pole structures of each of said ferromagnetic arm structures are spaced apartmore » from one another according to a non-uniform pattern such that the ferromagnetic pole structures of a given ferromagnetic arm structure have substantially the same angular position relative to the permanent magnets radially opposite from the ferromagnetic pole structures of the given ferromagnetic arm structure.« less
Preliminary design of a 100 kW turbine generator
NASA Technical Reports Server (NTRS)
Puthoff, R. L.; Sirocky, P. J.
1974-01-01
The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level.
NASA Astrophysics Data System (ADS)
Grinyok, A.; Boychuk, I.; Perelygin, D.; Dantsevich, I.
2018-03-01
A complex method of the simulation and production design of open rotor propellers was studied. An end-to-end diagram was proposed for the evaluating, designing and experimental testing the optimal geometry of the propeller surface, for the machine control path generation as well as for simulating the cutting zone force condition and its relationship with the treatment accuracy which was defined by the propeller elastic deformation. The simulation data provided the realization of the combined automated path control of the cutting tool.
In-process, non-destructive, dynamic testing of high-speed polymer composite rotors
NASA Astrophysics Data System (ADS)
Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas
2015-03-01
Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.
NASA Astrophysics Data System (ADS)
Jivkov, Venelin S.; Zahariev, Evtim V.
2016-12-01
The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process. Nonlinear and transitional effects are analyzed and compared to the analytical results. External excitations, as wave propagation and earthquakes, are discussed. Finite elements in relative and absolute coordinates are applied to model the flexible column and the high speed rotating machine. Generalized Newton - Euler dynamics equations are used to derive the precise dynamics equations. Examples of simulation of the system vibrations and nonstationary behaviour are presented.
Influence of the conservative rotor loads on the near wake of a wind turbine
NASA Astrophysics Data System (ADS)
Herráez, I.; Micallef, D.; van Kuik, G. A. M.
2017-05-01
The presence of conservative forces on rotor blades is neglected in the blade element theory and all the numerical methods derived from it (like e.g. the blade element momentum theory and the actuator line technique). This might seem a reasonable simplification of the real flow of rotor blades, since conservative loads, by definition, do not contribute to the power conversion. However, conservative loads originating from the chordwise bound vorticity might affect the tip vortex trajectory, as we discussed in a previous work. In that work we also hypothesized that this effect, in turn, could influence the wake induction and correspondingly the rotor performance. In the current work we extend a standard actuator line model in order to account for the conservative loads at the blade tip. This allows to isolate the influence of conservative forces from other effects. The comparison of numerical results with and without conservative loads enables to confirm qualitatively their relevance for the near wake and the rotor performance. However, an accurate quantitative assessment of the effect still remains out of reach due to the inherent uncertainty of the numerical model.
Aerodynamic analysis of the Darrieus rotor including secondary effects
NASA Astrophysics Data System (ADS)
Paraschivoiu, I.; Delclaux, F.; Fraunie, P.; Beguier, C.
1983-10-01
An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the azimuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/circular-arc shape).
Effect of at-the-source noise reduction on performance and weights of a tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Gibs, J.; Stepniewski, W. Z.; Spencer, R.
1975-01-01
Reduction of far-field acoustic signature through modification of basic design parameters (tip speed, number of blades, disc loading and rotor blade area) was examined, using a tilt-rotor flight research aircraft as a baseline configuration. Of those design parameters, tip speed appeared as the most important. Next, preliminary design of two aircraft was performed, postulating the following reduction of noise level from that of the baseline machine, at 500 feet from the spot of OGE hover. In one aircraft, the PNL was lowered by 10 PNdB and in the other, OASPL decreased by 10 dB. The resulting weight and performance penalties were examined. Then, PNL and EPNL aspects of terminal operation were compared for the baseline and quieter aircraft.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.
2000-01-01
The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.
Huang, Liya; Wu, Zhong; Wang, Kan
2018-06-07
The high-precision speed control of gimbal servo systems is the key to generating high-precision torque for control moment gyroscopes (CMGs) in spacecrafts. However, the control performance of gimbal servo systems may be degraded significantly by disturbances, especially a dynamic imbalance disturbance with the same frequency as the high-speed rotor. For assembled CMGs, it is very difficult to measure the rotor imbalance directly by using a dynamic balancing machine. In this paper, a gimbal disturbance observer is proposed to estimate the dynamic imbalance of the rotor assembled in the CMG. First, a third-order dynamical system is established to describe the disturbance dynamics of the gimbal servo system, in which the rotor dynamic imbalance torque along the gimbal axis and the other disturbances are modeled to be periodic and bounded, respectively. Then, the gimbal disturbance observer is designed for the third-order dynamical system by using the total disturbance as a virtual measurement. Since the virtual measurement is derived from the inverse dynamics of the gimbal servo system, the information of the rotor dynamic imbalance can be obtained indirectly only using the measurements of gimbal speed and three-phase currents. Semi-physical experimental results demonstrate the effectiveness of the observer by using a CMG simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukami, Tadashi; Imamura, Michinori; Kaburaki, Yuichi
1995-12-31
A new single-phase capacitor self-excited induction generator with self-regulating feature is presented. The new generator consists of a squirrel cage three-phase induction machine and three capacitors connected in series and parallel with a single phase load. The voltage regulation of this generator is very small due to the effect of the three capacitors. Moreover, since a Y-connected stator winding is employed, the waveform of the output voltage becomes sinusoidal. In this paper the system configuration and the operating principle of the new generator are explained, and the basic characteristics are also investigated by means of a simple analysis and experimentsmore » with a laboratory machine.« less
Hsu, John S [Oak Ridge, TN
2005-12-06
A method and apparatus in which a rotor (11) and a stator (17) define a radial air gap (20) for receiving AC flux and at least one, and preferably two, DC excitation assemblies (23, 24) are positioned at opposite ends of the rotor (20) to define secondary air gaps (21, 22). Portions of PM material (14a, 14b) are provided as boundaries separating the rotor pole portions (12a, 12b) of opposite polarity from other portions of the rotor (11) and from each other to define PM poles (12a, 12b) for conveying the DC flux to or from the primary air gap (20) and for inhibiting flux from leaking from the pole portions prior to reaching the primary air gap (20). The portions of PM material (14a, 14b) are spaced from each other so as to include reluctance poles (15) of ferromagnetic material between the PM poles (12a, 12b) to interact with the AC flux in the primary-air gap (20).
NASA Technical Reports Server (NTRS)
Beatty, R. F.; Hine, M. J.
1986-01-01
The high pressure turbomachinery of the Space Shuttle Main Engine has the highest power-to-weight ratio of any operational machine known. Subsynchronous rotor whirl of the high pressure oxygen turbopump occurred in development testing at full-power level (109 percent thrust). The means by which the turbopump was successfully uprated is presented herein. The subsynchronous motion was determined to be driven by impeller destabilizing forces in combination with low net damping and bearing degradation. The degradation resulted from ball wear due primarily to an excessive loading condition of operating too near the lightly damped rotor second critical speed while under a large static load and, secondarily, from reverse bearing loading or loss of internal clearance and coolant during simulated flight conditions. The rotor response was reduced by stiffening the shaft and supports, optimizing the stiffness and damping of annular seals, and increasing the bearing deadband. The uprated oxygen turbopump configuration was verified by converting the pump and bearing support into a load cell for the purpose of systematically quantifying the load reduction benefits relative to baseline turbopumps. The damped second critical speed margin and the load sharing have been substantially improved which has resulted in reduced bearing loads for improved service life of the machine at full-power level.
Stress analysis of bolted joints under centrifugal force
NASA Astrophysics Data System (ADS)
Imura, Makoto; Iizuka, Motonobu; Nakae, Shigeki; Mori, Takeshi; Koyama, Takayuki
2014-06-01
Our objective is to develop a long-life rotary machine for synchronous generators and motors. To do this, it is necessary to design a high-strength bolted joint, which is responsible for fixing a salient pole on a rotor shaft. While the rotary machine is in operation, not only centrifugal force but also moment are loaded on a bolted joint, because a point of load is eccentric to a centre of a bolt. We tried to apply the theory proposed in VDI2230-Blatt1 to evaluate the bolted joint under eccentric force, estimate limited centrifugal force, which is the cause of partial separation between the pole and the rotor shaft, and then evaluate additional tension of a bolt after the partial separation has occurred. We analyzed the bolted joint by FEM, and defined load introduction factor in that case. Additionally, we investigated the effect of the variation of bolt preload on the partial separation. We did a full scale experiment with a prototype rotor to reveal the variation of bolt preload against tightening torque. After that, we verified limited centrifugal force and the strength of the bolted joint by the VDI2230-Blatt1 theory and FEM considering the variation of bolt preload. Finally, we could design a high-strength bolted joint verified by the theoretical study and FEM analysis.
NASA Technical Reports Server (NTRS)
Kerr, Andrew W.
1989-01-01
Programs related to rotorcraft aeromechanics and man-machine integration are discussed which will support advanced army rotorcraft design. In aeromechanics, recent advances in computational fluid dynamics will be used to characterize the complex unsteady flowfields of rotorcraft, and a second-generation comprehensive helicopter analysis system will be used along with models of aerodynamics, engines, and control systems to study the structural dynamics of rotor/body configurations. The man-machine integration program includes the development of advanced cockpit design technology and the evaluation of cockpit and mission equipment concepts in a real-time full-combat environment.
Method and device for determining bond separation strength using induction heating
NASA Technical Reports Server (NTRS)
Coultrip, Robert H. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Phillips, W. Morris (Inventor); Fox, Robert L. (Inventor)
1994-01-01
An induction heating device includes an induction heating gun which includes a housing, a U-shaped pole piece having two spaced apart opposite ends defining a gap there between, the U-shaped pole piece being mounted in one end of the housing, and a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil. A power source is connected to the tank circuit. A pull test machine is provided having a stationary chuck and a movable chuck, the two chucks holding two test pieces bonded together at a bond region. The heating gun is mounted on the pull test machine in close proximity to the bond region of the two test pieces, whereby when the tank circuit is energized, the two test pieces are heated by induction heating while a tension load is applied to the two test pieces by the pull test machine to determine separation strength of the bond region.
Cogging Torque Minimization in Transverse Flux Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
2017-02-16
This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less
NASA Astrophysics Data System (ADS)
Ohara, Masaki; Noguchi, Toshihiko
This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.
Hussey, John H.; Rose, John Scott; Meystrik, Jeffrey J.; White, Kent Lee
2001-01-23
A laminated rotor for an induction motor has a plurality of ferro-magnetic laminations mounted axially on a rotor shaft. Each of the plurality of laminations has a central aperture in the shape of a polygon with sides of equal length. The laminations are alternatingly rotated 180.degree. from one another so that the straight sides of the polygon shaped apertures are misaligned. As a circular rotor shaft is press fit into a stack of laminations, the point of maximum interference occurs at the midpoints of the sides of the polygon (i.e., at the smallest radius of the central apertures of the laminations). Because the laminates are alternatingly rotated, the laminate material at the points of maximum interference yields relatively easily into the vertices (i.e., the greatest radius of the central aperture) of the polygonal central aperture of the next lamination as the shaft is inserted into the stack of laminations. Because of this yielding process, the amount of force required to insert the shaft is reduced, and a tighter fit is achieved.
Auralization of Tonal Rotor Noise Components of a Quadcopter Flyover
NASA Technical Reports Server (NTRS)
Christian, Andrew W.; Boyd, David D.; Zawodny, Nikolas S.; Rizzi, Stephen A.
2015-01-01
The capabilities offered by small unmanned vertical lift aerial vehicles, for example, quadcopters, continue to captivate entrepreneurs across the private, public, and civil sectors. As this industry rapidly expands, the public will be exposed to these devices (and to the noise these devices generate) with increasing frequency and proximity. Accordingly, an assessment of the human response to these machines will be needed shortly by decision makers in many facets of this burgeoning industry, from hardware manufacturers all the way to government regulators. One factor of this response is that of the annoyance to the noise that is generated by these devices. This paper presents work currently being pursued by NASA toward this goal. First, physics-based (CFD) predictions are performed on a single isolated rotor typical of these devices. The result of these predictions are time records of the discrete tonal components of the rotor noise. These time records are calculated for a number of points that appear on a lattice of locations spread over the lower hemisphere of the rotor. The source noise is then generated by interpolating between these time records. The sound from four rotors are combined and simulated-propagation techniques are used to produce complete flyover auralizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less
Ball-and-Socket-Bearing Wear Test
NASA Technical Reports Server (NTRS)
Graham, W. G.
1984-01-01
Series of experiments to measure wear life of spherical bearing summarized. Report designed to establish clearance, contour, finish, and lubricant parameters for highly-loaded, compact plain spherical bearing. Information useful in design of bearings for helicopter control linkages, business machines, nuclear reactor, and rotor bearings.
NASA Astrophysics Data System (ADS)
Vishwakarma, Vinod
Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model (ROM) of a bladed rotor. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data of blades' geometries and sector analyses using ANSYS. For the first time ROM of a geometrically mistuned industrial scale rotor (Transonic rotor) with large size of Finite Element (FE) model is generated using MMDA. Two methods for estimating mass and stiffness mistuning matrices are used a) exact computation from sector FE analysis, b) estimates based on POD mistuning parameters. Modal characteristics such as mistuned natural frequencies, mode shapes and forced harmonic response are obtained from ROM for various cases, and results are compared with full rotor ANSYS analysis and other ROM methods such as Subset of Nominal Modes (SNM) and Fundamental Model of Mistuning (FMM). Accuracy of MMDA ROM is demonstrated with variations in number of POD features and geometric mistuning parameters. It is shown for the aforementioned case b) that the high accuracy of ROM studied in previous work with Academic rotor does not directly translate to the Transonic rotor. Reasons for such mismatch in results are investigated and attributed to higher mistuning in Transonic rotor. Alternate solutions such as estimation of sensitivities via least squares, and interpolation of mass and stiffness matrices on manifolds are developed, and their results are discussed. Statistics such as mean and standard deviations of forced harmonic response peak amplitude are obtained from random permutations, and are shown to have similar results as those of Monte Carlo simulations. These statistics are obtained and compared for 3 degree of freedom (DOF) lumped parameter model (LPM) of rotor, Academic rotor and Transonic rotor. A state -- estimator based on MMDA ROM and Kalman filter is also developed for offline or online estimation of harmonic forcing function from measurements of forced response. Forcing function is estimated for synchronous excitation of 3DOF rotor model, Academic rotor and Transonic rotor from measurement of response at few nodes. For asynchronous excitation forcing function is estimated only for 3DOF rotor model and Academic rotor from measurement of response. The impact of number of measurement locations and accuracy of ROM on the estimation of forcing function is discussed. iv.
Evaluation of shuttle turbopump bearings
NASA Technical Reports Server (NTRS)
Dufrane, K. F.; Kannel, J. W.
1978-01-01
Because the high pressure turbopumps used on the space shuttle main engine (SSME) are high speed machines and rotor dynamics analysis of these units is very complicated, it was considered necessary to verify calculated turbomachinery shaft bearing loads by analysis of ball bearing load tracks. This report presents the methods used and the results of load track analysis on one set of bearings removed from a high pressure liquid oxygen turbopump which had been subjected to SSME static firing tests. This type of analysis was found useful in determining bearing operating conditions and for verifying rotor dynamics computer models.
10. Credit USAF, 1945. Original housed in the Muroc Flight ...
10. Credit USAF, 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of jet engine rotor balancing machine with engine rotor in place for balancing operations. Original caption reads "Balancing bucket wheel of jet engine, Muroc Flight Test Base, Oct. 1945"; personnel not identified. Location where photograph was taken not determined, but presumed to be in shops of Building 4505. - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA
Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment
NASA Technical Reports Server (NTRS)
Thaller, R. E.; Ozimek, D. W.
1979-01-01
The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.
1974-11-01
IBM System 360 Scientific Subroutine Package (GH2O-O205- 4), Version 3, page 36 (International Business Machines Corporation, New York), September...CO en c mm c \\A a C ITP u. r* O" ^ ’-4 ■O h- INI X a IX. 2 < tL. < h- -J r-i m fM •—• O h- rvj (/l c < u. c r -j O -J \\r A <*\\ r.. ir rH O o 0* a 2
Determination of the Optimal Position of Pendulums of an Active Self-balancing Device
NASA Astrophysics Data System (ADS)
Ziyakaev, G. R.; Kazakova, O. A.; Yankov, V. V.; Ivkina, O. P.
2017-04-01
The demand of the modern manufacturing industry for machines with high motion speed leads to increased load and vibration activity of the main elements of rotor systems. Vibration reduces operating life of bearings, has adversary effects on human organism, and can cause accidents. One way to compensate for a rotating rotor's imbalance is the use of active self-balancing devices. The aim of this work is to determine the position of their pendulums, in which the imbalance is minimized. As a result of the study, a formula for determining the angle of the pendulums was obtained.
Simplified aerodynamic analysis of the cyclogiro rotating wing system
NASA Technical Reports Server (NTRS)
Wheatley, John B
1930-01-01
A simplified aerodynamic theory of the cyclogiro rotating wing is presented herein. In addition, examples have been calculated showing the effect on the rotor characteristics of varying the design parameters of the rotor. A performance prediction, on the basis of the theory here developed, is appended, showing the performance to be expected of a machine employing this system of sustentation. The aerodynamic principles of the cyclogiro are sound; hovering flight, vertical climb, and a reasonable forward speed may be obtained with a normal expenditure of power. Auto rotation in a gliding descent is available in the event of a power-plant failure.
Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings
NASA Astrophysics Data System (ADS)
Dakel, Mzaki; Baguet, Sébastien; Dufour, Régis
2014-05-01
The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.
Fluid flow dynamics in MAS systems
NASA Astrophysics Data System (ADS)
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
NASA Astrophysics Data System (ADS)
Wang, X.; Holmes, C. S.
2015-08-01
When grinding helical components, errors occur at the beginning and end of the contact path between the component and grinding wheel. This is due to the forces on the component changing as the grinding wheel comes into and out-of full contact with the component. In addition, shaft bending may add depth changes which vary along the length. This may result in an interrupted contact line and increased noise from the rotors. Using on-board scanning, software has been developed to calculate a compensated grinding path, which includes the adjustments of head angle, work rotation and infeed. This grinding path compensates not only lead errors, but also reduces the profile errors as well. The program has been tested in rotor production and the results are shown.
NASA Astrophysics Data System (ADS)
Österlind, Tomas; Kari, Leif; Nicolescu, Cornel Mihai
2017-02-01
Rotor vibration and stationary displacement patterns observed in rotating machineries subject to local harmonic excitation are analysed for improved understanding and dynamic characterization. The analysis stresses the importance of coordinate transformation between rotating and stationary frame of reference for accurate results and estimation of dynamic properties. A generic method which can be used for various rotor applications such as machine tool spindle and turbo machinery vibration is presented. The phenomenon shares similarities with stationary waves in rotating disks though focuses on vibration in shafts. The paper further proposes a graphical tool, the displacement map, which can be used for selection of stable rotational speed for rotating machinery. The results are validated through simulation of dynamic response of a milling cutter, which is a typical example of a variable speed rotor operating under different load conditions.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2010-01-12
A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Pressure actuated film riding seals for turbo machinery
Bidkar, Rahul Anil; Thatte, Azam Mihir; Gibson, Nathan Evan McCurdy; Giametta, Andrew Paul
2015-08-25
A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the sealing device segments includes a stator interface element, a shoe plate having an extended portion having one or more labyrinth teeth facing the rotor and a load bearing portion, wherein the shoe plate is configured to generate an aerodynamic force between the shoe plate and the rotor. The sealing device segment further includes a secondary seal configured to be in contact with the stator interface element at a radially outer end and configured to be in contact with an elevated nose section of the extended portion of the shoe plate on a radially inner end; and multiple flexible elements attached to the shoe plate and to the stator interface element.
NASA Astrophysics Data System (ADS)
Rybczyński, Józef
2011-02-01
This paper presents the results of computer simulation of bearing misalignment defects in a power turbogenerator. This malfunction is typical for great multi-rotor and multi-bearing rotating machines and very common in power turbo-sets. Necessary calculations were carried out by the computer code system MESWIR, developed and used at the IFFM in Gdansk for calculating dynamics of rotors supported on oil bearings. The results are presented in the form of a set of journal and bush trajectories of all turbo-set bearings. Our analysis focuses on the vibrational effects of displacing the two most vulnerable machine bearings in horizontal and vertical directions by the maximum acceptable range calculated with regard to bearing vibration criterion. This assumption required preliminary assessment of the maximum values for the permissible bearing dislocations. We show the relations between the attributes of the particular bearing trajectories and the bearing displacements in relation to their base design position. The shape and dimensions of bearing trajectories are interpreted based on the theory of hydrodynamic lubrication of oil bearings. It was shown that the relative journal trajectories and absolute bush trajectories carry much important information about the dynamic state of the machine, indicating also the way in which bearings are loaded. Therefore, trajectories can be a source of information about the position and direction of bearing misalignments. This article indicates the potential of using trajectory patterns for diagnosing misalignment defects in rotating machines and suggests including sets of trajectory patterns to the knowledge base of a machine diagnostic system.
8. Credit USAF, ca. 1945. Original housed in the Muroc ...
8. Credit USAF, ca. 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of concrete base for jet engine rotor balancing machine. Location where photograph was taken not determined, but presumed to be in shops of Building 4505 which had a sizeable machine shop. - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA
Electric propulsion using the permanent magnet synchronous motor without rotor position transducers
NASA Astrophysics Data System (ADS)
Batzel, Todd Douglas
The permanent magnet synchronous motor (PMSM) is increasingly playing an important role in electric propulsion systems due to its many advantages over competing technologies. For successful operation of the PMSM, rotor position and speed information is required. A resolver or encoder attached to the shaft of the machine usually provides this information. Many applications, however, cannot tolerate the use of the position sensor because of space and weight limitations, reliability concerns, or packaging issues. Thus, there has been an intense interest in the development of a so-called position sensorless drive, where the PMSM stator itself is used as the rotor position sensor. In this work, a sensorless electric drive is developed for various undersea propulsion applications, where the rotor position sensor is often undesirable due to the harsh operating environment as well as space and weight limitations. In this work, an observer is developed which enables sensorless operation of the PMSM over a wide speed range. In addition, a method is presented for estimating the standstill rotor angle, an operating condition at which the rotor position observers are typically ill conditioned. In this work two design methodologies are applied to the sensorless electric drive application, including a model-based and a neural network-based approach. Implementation issues for the sensorless electric drive are discussed, and experimental results are presented in order to demonstrate the effectiveness of the proposed techniques to the sensorless PMSM.
Fluid-structure interaction modeling of wind turbines: simulating the full machine
NASA Astrophysics Data System (ADS)
Hsu, Ming-Chen; Bazilevs, Yuri
2012-12-01
In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.
A Double-Sided Linear Primary Permanent Magnet Vernier Machine
2015-01-01
The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250
A double-sided linear primary permanent magnet vernier machine.
Du, Yi; Zou, Chunhua; Liu, Xianxing
2015-01-01
The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.
Amey, David L.; Degner, Michael W.
2002-01-01
A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.
Vibration-Based Method Developed to Detect Cracks in Rotors During Acceleration Through Resonance
NASA Technical Reports Server (NTRS)
Sawicki, Jerzy T.; Baaklini, George Y.; Gyekenyesi, Andrew L.
2004-01-01
In recent years, there has been an increasing interest in developing rotating machinery shaft crack-detection methodologies and online techniques. Shaft crack problems present a significant safety and loss hazard in nearly every application of modern turbomachinery. In many cases, the rotors of modern machines are rapidly accelerated from rest to operating speed, to reduce the excessive vibrations at the critical speeds. The vibration monitoring during startup or shutdown has been receiving growing attention (ref. 1), especially for machines such as aircraft engines, which are subjected to frequent starts and stops, as well as high speeds and acceleration rates. It has been recognized that the presence of angular acceleration strongly affects the rotor's maximum response to unbalance and the speed at which it occurs. Unfortunately, conventional nondestructive evaluation (NDE) methods have unacceptable limits in terms of their application for online crack detection. Some of these techniques are time consuming and inconvenient for turbomachinery service testing. Almost all of these techniques require that the vicinity of the damage be known in advance, and they can provide only local information, with no indication of the structural strength at a component or system level. In addition, the effectiveness of these experimental techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the use of vibration monitoring along with vibration analysis has been receiving increasing attention.
Development of a gas pressure bonded four-pole alternator rotor
NASA Technical Reports Server (NTRS)
Lessmann, G. G.; Bryant, W. A.
1972-01-01
Methods were developed for fabrication of a solid four pole alternator rotor by hot isostatic pressure welding. The rotor blanks welded in this program had complex geometrical mating interfaces and were of considerable bulk, being approximately 3-1/2 inches (0.089 meters) in diameter and 14 inches (0.356 meters) long. Magnetic end pieces were machined from AlSl 4340 steel, while the non-magnetic central section was of Inconel 718. Excellent welds were produced which were shown to be responsive to post weld heat treatments which substantially improved joint strength. Prior to welding the rotors, test specimens of complex geometry were welded to demonstrate that complex surfaces with intentional mechanical misfit could be readily joined using HIP welding. This preliminary work demonstrated not only that interface compliance is achieved during welding but that welding pressure is developed in these thick sections sufficient to produce sound joints. Integral weld-heat treatment cycles were developed that permitted the attainment of magnetic properties while minimizing residual stress associated with the allotropic transformation of 4340 steel.
NASA Technical Reports Server (NTRS)
Schmied, J.; Pradetto, J. C.
1994-01-01
The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.
Simulation of 3-D viscous compressible flow in multistage turbomachinery by finite element methods
NASA Astrophysics Data System (ADS)
Sleiman, Mohamad
1999-11-01
The flow in a multistage turbomachinery blade row is compressible, viscous, and unsteady. Complex flow features such as boundary layers, wake migration from upstream blade rows, shocks, tip leakage jets, and vortices interact together as the flow convects through the stages. These interactions contribute significantly to the aerodynamic losses of the system and degrade the performance of the machine. The unsteadiness also leads to blade vibration and a shortening of its life. It is therefore difficult to optimize the design of a blade row, whether aerodynamically or structurally, in isolation, without accounting for the effects of the upstream and downstream rows. The effects of axial spacing, blade count, clocking (relative position of follow-up rotors with respect to wakes shed by upstream ones), and levels of unsteadiness may have a significance on performance and durability. In this Thesis, finite element formulations for the simulation of multistage turbomachinery are presented in terms of the Reynolds-averaged Navier-Stokes equations for three-dimensional steady or unsteady, viscous, compressible, turbulent flows. Three methodologies are presented and compared. First, a steady multistage analysis using a a-mixing- plane model has been implemented and has been validated against engine data. For axial machines, it has been found that the mixing plane simulation methods match very well the experimental data. However, the results for a centrifugal stage, consisting of an impeller followed by a vane diffuser of equal pitch, show flagrant inconsistency with engine performance data, indicating that the mixing plane method has been found to be inappropriate for centrifugal machines. Following these findings, a more complete unsteady multistage model has been devised for a configuration with equal number of rotor and stator blades (equal pitches). Non-matching grids are used at the rotor-stator interface and an implicit interpolation procedure devised to ensure continuity of fluxes across. This permits the rotor and stator equations to be solved in a fully- coupled manner, allowing larger time steps in attaining a time-periodic solution. This equal pitch approach has been validated on the complex geometry of a centrifugal stage. Finally, for a stage configuration with unequal pitches, the time-inclined method, developed by Giles (1991) for 2-D viscous compressible flow, has been extended to 3-D and formulated in terms of the physical solution vector U, rather than Q, a non-physical one. The method has been evaluated for unsteady flow through a rotor blade passage of the power turbine of a turboprop.
Film riding seal assembly for turbomachinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidkar, Rahul Anil; Giametta, Andrew Paul; Gibson, Nathan Evan McCurdy
2016-06-07
An aerodynamic seal assembly for a rotary machine includes multiple sealing segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward load-bearing section and an aft load-bearing section configured to generate an aerodynamic force between the shoe plate and the rotor. The shoe plate includes at least one labyrinth teeth facing the rotor and positioned between the forward load-bearing section and the aft load-bearing section. The sealing segment also includes at least one spring connected to a pedestal located about midway of an axial length of the shoemore » plate and to a stator interface element. Further, the sealing segment includes a rigid segmented secondary seal attached to the stator interface element at one first end and in contact with the pedestal of the shoe plate at one second end.« less
Acoustic pressures emanating from a turbomachine stage
NASA Technical Reports Server (NTRS)
Ramachandra, S. M.
1984-01-01
A knowledge of the acoustic energy emission of each blade row of a turbomachine is useful for estimating the overall noise level of the machine and for determining its discrete frequency noise content. Because of the close spacing between the rotor and stator of a compressor stage, the strong aerodynamic interactions between them have to be included in obtaining the resultant flow field. A three dimensional theory for determining the discrete frequency noise content of an axial compressor consisting of a rotor and a stator each with a finite number of blades are outlined. The lifting surface theory and the linearized equation of an ideal, nonsteady compressible fluid motion are used for thin blades of arbitrary cross section. The combined pressure field at a point of the fluid is constructed by linear addition of the rotor and stator solutions together with an interference factor obtained by matching them for net zero vorticity behind the stage.
A surface-bound molecule that undergoes optically biased Brownian rotation.
Hutchison, James A; Uji-i, Hiroshi; Deres, Ania; Vosch, Tom; Rocha, Susana; Müller, Sibylle; Bastian, Andreas A; Enderlein, Jörg; Nourouzi, Hassan; Li, Chen; Herrmann, Andreas; Müllen, Klaus; De Schryver, Frans; Hofkens, Johan
2014-02-01
Developing molecular systems with functions analogous to those of macroscopic machine components, such as rotors, gyroscopes and valves, is a long-standing goal of nanotechnology. However, macroscopic analogies go only so far in predicting function in nanoscale environments, where friction dominates over inertia. In some instances, ratchet mechanisms have been used to bias the ever-present random, thermally driven (Brownian) motion and drive molecular diffusion in desired directions. Here, we visualize the motions of surface-bound molecular rotors using defocused fluorescence imaging, and observe the transition from hindered to free Brownian rotation by tuning medium viscosity. We show that the otherwise random rotations can be biased by the polarization of the excitation light field, even though the associated optical torque is insufficient to overcome thermal fluctuations. The biased rotation is attributed instead to a fluctuating-friction mechanism in which photoexcitation of the rotor strongly inhibits its diffusion rate.
The NASA-LeRC wind turbine sound prediction code
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1981-01-01
Since regular operation of the DOE/NASA MOD-1 wind turbine began in October 1979 about 10 nearby households have complained of noise from the machine. Development of the NASA-LeRC with turbine sound prediction code began in May 1980 as part of an effort to understand and reduce the noise generated by MOD-1. Tone sound levels predicted with this code are in generally good agreement with measured data taken in the vicinity MOD-1 wind turbine (less than 2 rotor diameters). Comparison in the far field indicates that propagation effects due to terrain and atmospheric conditions may be amplifying the actual sound levels by about 6 dB. Parametric analysis using the code has shown that the predominant contributions to MOD-1 rotor noise are: (1) the velocity deficit in the wake of the support tower; (2) the high rotor speed; and (3) off column operation.
Rotor-to-stator rub vibration in centrifugal compressor
NASA Technical Reports Server (NTRS)
Gao, J. J.; Qi, Q. M.
1985-01-01
One example of excessive vibration encountered during loading of a centrifugal compressor train (H type compressor with HP casing) is discussed. An investigation was made of the effects of the dynamic load on the bearing stiffness and the rotor-bearing system critical speed. The high vibration occurred at a "threshold load," but the machine didn't run smoothly due to rubs even when it had passed through the threshold load. The acquisition and discussion of the data taken in the field as well as a description of the case history which utilizes background information to identify the malfunction conditions is presented. The analysis shows that the failures, including full reverse precession rub and exact one half subharmonic vibration, were caused by the oversize bearings and displacement of the rotor center due to foundation deformation and misalignment between gear shafts, etc. The corrective actions taken to alleviate excessive vibration and the problems which remain to be solved are also presented.
Application of numerical grid generation for improved CFD analysis of multiphase screw machines
NASA Astrophysics Data System (ADS)
Rane, S.; Kovačević, A.
2017-08-01
Algebraic grid generation is widely used for discretization of the working domain of twin screw machines. Algebraic grid generation is fast and has good control over the placement of grid nodes. However, the desired qualities of grid which should be able to handle multiphase flows such as oil injection, may be difficult to achieve at times. In order to obtain fast solution of multiphase screw machines, it is important to further improve the quality and robustness of the computational grid. In this paper, a deforming grid of a twin screw machine is generated using algebraic transfinite interpolation to produce initial mesh upon which an elliptic partial differential equations (PDE) of the Poisson’s form is solved numerically to produce smooth final computational mesh. The quality of numerical cells and their distribution obtained by the differential method is greatly improved. In addition, a similar procedure was introduced to fully smoothen the transition of the partitioning rack curve between the rotors thus improving continuous movement of grid nodes and in turn improve robustness and speed of the Computational Fluid Dynamic (CFD) solver. Analysis of an oil injected twin screw compressor is presented to compare the improvements in grid quality factors in the regions of importance such as interlobe space, radial tip and the core of the rotor. The proposed method that combines algebraic and differential grid generation offer significant improvement in grid quality and robustness of numerical solution.
Steady-state, lumped-parameter model for capacitor-run, single-phase induction motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1996-01-01
This paper documents a technique for deriving a steady-state, lumped-parameter model for capacitor-run, single-phase induction motors. The objective of this model is to predict motor performance parameters such as torque, loss distribution, and efficiency as a function of applied voltage and motor speed as well as the temperatures of the stator windings and of the rotor. The model includes representations of both the main and auxiliary windings (including arbitrary external impedances) and also the effects of core and rotational losses. The technique can be easily implemented and the resultant model can be used in a wide variety of analyses tomore » investigate motor performance as a function of load, speed, and winding and rotor temperatures. The technique is based upon a coupled-circuit representation of the induction motor. A notable feature of the model is the technique used for representing core loss. In equivalent-circuit representations of transformers and induction motors, core loss is typically represented by a core-loss resistance in shunt with the magnetizing inductance. In order to maintain the coupled-circuit viewpoint adopted in this paper, this technique was modified slightly; core loss is represented by a set of core-loss resistances connected to the ``secondaries`` of a set of windings which perfectly couple to the air-gap flux of the motor. An example of the technique is presented based upon a 3.5 kW, single-phase, capacitor-run motor and the validity of the technique is demonstrated by comparing predicted and measured motor performance.« less
Baseline acoustic levels of the NASA Active Noise Control Fan rig
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Heidelberg, Laurence J.; Elliott, David M.; Nallasamy, M.
1996-01-01
Extensive measurements of the spinning acoustic mode structure in the NASA 48 inch Active Noise Control Fan (ANCF) test rig have been taken. A continuously rotating microphone rake system with a least-squares data reduction technique was employed to measure these modes in the inlet and exhaust. Farfield directivity patterns in an anechoic environment were also measured at matched corrected rotor speeds. Several vane counts and spacings were tested over a range of rotor speeds. The Eversman finite element radiation code was run with the measured in-duct modes as input and the computed farfield results were compared to the experimentally measured directivity pattern. The experimental data show that inlet spinning mode measurements can be made very accurately. Exhaust mode measurements may have wake interference, but the least-squares reduction does a good job of rejecting the non-acoustic pressure. The Eversman radiation code accurately extrapolates the farfield levels and directivity pattern when all in-duct modes are included.
Skeist, S. Merrill; Baker, Richard H.
2006-01-10
An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao
2015-07-01
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).
NASA Technical Reports Server (NTRS)
Kuznetsov, Stephen; Marriott, Darin
2008-01-01
Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.
Lyapunov exponent for aging process in induction motor
NASA Astrophysics Data System (ADS)
Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat
2012-09-01
Nonlinear systems like electrical circuits and systems, mechanics, optics and even incidents in nature may pass through various bifurcations and steady states like equilibrium point, periodic, quasi-periodic, chaotic states. Although chaotic phenomena are widely observed in physical systems, it can not be predicted because of the nature of the system. On the other hand, it is known that, chaos is strictly dependent on initial conditions of the system [1-3]. There are several methods in order to define the chaos. Phase portraits, Poincaré maps, Lyapunov Exponents are the most common techniques. Lyapunov Exponents are the theoretical indicator of the chaos, named after the Russian mathematician Aleksandr Lyapunov (1857-1918). Lyapunov Exponents stand for the average exponential divergence or convergence of nearby system states, meaning estimating the quantitive measure of the chaotic attractor. Negative numbers of the exponents stand for a stable system whereas zero stands for quasi-periodic systems. On the other hand, at least if one of the exponents is positive, this situation is an indicator of the chaos. For estimating the exponents, the system should be modeled by differential equation but even in that case mathematical calculation of Lyapunov Exponents are not very practical and evaluation of these values requires a long signal duration [4-7]. For experimental data sets, it is not always possible to acquire the differential equations. There are several different methods in literature for determining the Lyapunov Exponents of the system [4, 5]. Induction motors are the most important tools for many industrial processes because they are cheap, robust, efficient and reliable. In order to have healthy processes in industrial applications, the conditions of the machines should be monitored and the different working conditions should be addressed correctly. To the best of our knowledge, researches related to Lyapunov exponents and electrical motors are mostly focused on the controlling the mechanical parameters of the electrical machines. Brushless DC motor (BLDCM) and the other general purpose permanent magnet (PM) motors are the most widely examined motors [1, 8, 9]. But the researches, about Lyapunov Exponent, subjected to the induction motors are mostly focused on the control theory of the motors. Flux estimation of rotor, external load disturbances and speed tracking and vector control position system are the main research areas for induction motors [10, 11, 12-14]. For all the data sets which can be collected from an induction motor, vibration data have the key role for understanding the mechanical behaviours like aging, bearing damage and stator insulation damage [15-18]. In this paper aging of an induction motor is investigated by using the vibration signals. The signals consist of new and aged motor data. These data are examined by their 2 dimensional phase portraits and the geometric interpretation is applied for detecting the Lyapunov Exponents. These values are compared in order to define the character and state estimation of the aging processes.
Current Status of an Organic Rankine Cycle Engine Development Program
NASA Technical Reports Server (NTRS)
Barber, R. E.
1984-01-01
The steps taken to achieve improved bearing life in the organic Rankine cycle (ORC) engine being developed for use on solar parabolic dishes are presented. A summary of test results is given. Dynamic tests on the machine shaft and rotors of the ORC engine are also discussed.
Permanent-Magnet Meissner Bearing
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1994-01-01
Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.
16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, J.S.; Burress, T.A.; Lee, S.T.
2007-10-31
The reluctance interior permanent magnet (RIPM) motor is currently used by many leading auto manufacturers for hybrid vehicles. The power density for this type of motor is high compared with that of induction motors and switched reluctance motors. The primary drawback of the RIPM motor is the permanent magnet (PM) because during high-speed operation, the fixed PM produces a huge back electromotive force (emf) that must be reduced before the current will pass through the stator windings. This reduction in back-emf is accomplished with a significant direct-axis (d-axis) demagnetization current, which opposes the PM's flux to reduce the flux seenmore » by the stator wires. This may lower the power factor and efficiency of the motor and raise the requirement on the alternate current (ac) power supply; consequently, bigger inverter switching components, thicker motor winding conductors, and heavier cables are required. The direct current (dc) link capacitor is also affected when it must accommodate heavier harmonic currents. It is commonly agreed that, for synchronous machines, the power factor can be optimized by varying the field excitation to minimize the current. The field produced by the PM is fixed and cannot be adjusted. What can be adjusted is reactive current to the d-axis of the stator winding, which consumes reactive power but does not always help to improve the power factor. The objective of this project is to avoid the primary drawbacks of the RIPM motor by introducing brushless field excitation (BFE). This offers both high torque per ampere (A) per core length at low speed by using flux, which is enhanced by increasing current to a fixed excitation coil, and flux, which is weakened at high speed by reducing current to the excitation coil. If field weakening is used, the dc/dc boost converter used in a conventional RIPM motor may be eliminated to reduce system costs. However, BFE supports a drive system with a dc/dc boost converter, because it can further extend the constant power speed range of the drive system and adjust the field for power factor and efficiency gains. Lower core losses at low torque regions, especially at high speeds, are attained by reducing the field excitation. Safety and reliability are increased by weakening the field when a winding short-circuit fault occurs, preventing damage to the motor. For a high-speed motor operating at 16,000-revolutions per minute (rpm), mechanical stress is a challenge. Bridges that link the rotor punching segments together must be thickened for mechanical integrity; consequently, increased rotor flux leakage significantly lowers motor performance. This barrier can be overcome by BFE to ensure sufficient rotor flux when needed.« less
Design and application of electromechanical actuators for deep space missions
NASA Technical Reports Server (NTRS)
Haskew, Tim A.; Wander, John
1994-01-01
This progress report documents research and development efforts performed from August 16, 1993 through February 15, 1994 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions.' Following the executive summary are four report sections: Motor Selection, Tests Stand Development, Health Monitoring and Fault Management, and Experiment Planning. Three specific motor types have been considered as prime movers for TVC EMA applications: the brushless dc motor, the permanent magnet synchronous motor, and the induction motor. The fundamental finding was that, in general, the primary performance issues were energy efficiency and thermal dissipation (rotor heating). In terms of all other issues, the three motor types were found to compare quite equally. Among the design changes made to the test stand since the last progress report is the addition of more mounting holes in the side beams. These additional holes allow the movable end beam to be attached in a greater number of positions than previously. With this change the movable end beam can move from full forward to full back in three inch increments. Specific mathematical details on the approach that have been employed for health monitoring and fault management (HMFM) have been reported previously. This approach is based on and adaptive Kalman filter strategy. In general, a bank of filters can be implemented for each primary fault type. Presently under consideration for the brushless dc machine are the following faults: armature winding open-circuits, armature winding short-circuits (phase-to-phase and phase-to-ground), bearing degradation, and rotor flux weakening. The mechanically oriented experiments include transient loading experiments, transverse loading experiment, friction experiment, motor performance experiment, and HMFM experiment.
Turbofan noise generation. Volume 1: Analysis
NASA Astrophysics Data System (ADS)
Ventres, C. S.; Theobald, M. A.; Mark, W. D.
1982-07-01
Computer programs were developed which calculate the in-duct acoustic modes excited by a fan/stator stae operating at subsonic tip speed. Three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotors blades; and (3) sound generated by the stator vanes interacting with the mean velocity deficit wakes of the rotor blades. The fan/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. Turbulence drawn into or generated within the inlet duct is modeled as nonhomogeneous and anisotropic random fluid motion, superimposed upon a uniform axial mean flow, and convected with that flow. Equations for the duct mode amplitudes, or expected values of the amplitudes, are derived.
Turbofan noise generation. Volume 1: Analysis
NASA Technical Reports Server (NTRS)
Ventres, C. S.; Theobald, M. A.; Mark, W. D.
1982-01-01
Computer programs were developed which calculate the in-duct acoustic modes excited by a fan/stator stae operating at subsonic tip speed. Three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotors blades; and (3) sound generated by the stator vanes interacting with the mean velocity deficit wakes of the rotor blades. The fan/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. Turbulence drawn into or generated within the inlet duct is modeled as nonhomogeneous and anisotropic random fluid motion, superimposed upon a uniform axial mean flow, and convected with that flow. Equations for the duct mode amplitudes, or expected values of the amplitudes, are derived.
Aerodynamic design of the National Rotor Testbed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Christopher Lee
2015-10-01
A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbinemore » in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.« less
Accurate load prediction by BEM with airfoil data from 3D RANS simulations
NASA Astrophysics Data System (ADS)
Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger
2016-09-01
In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.
Vibration of high-voltage electric machines with rotors on rolling bearings
NASA Astrophysics Data System (ADS)
Shekyan, H. G.; Gevorgyan, A. V.
2018-04-01
The paper presents an investigation of vibrational activity of electric machines due to high-harmonic vibrational loadings. It is shown that the vibrational loadings experienced by bearings may result in the interruption of their normal operation and even take them out of action. Therefore, the values of the vibrational speed-up leading to high harmonics are factors determining the admissible dynamic loading on the bearings. In the paper, an attempt is made to consider the factors which result in origination of high harmonics and to illustrate methods for their smoothing.
DOE/NASA Mod-0 100KW wind turbine test results
NASA Technical Reports Server (NTRS)
Glasgow, J. C.
1978-01-01
The Wind Turbine demonstrates the capability of automatic unattended operation, including startup, achieving synchronism, and shutdown as dictated by wind conditions. During the course of these operations, a wealth of engineering data was generated. Some of the data which is associated with rotor and machine dynamics problems encountered, and the machine modifications incorporated as a solution are presented. These include high blade loads due to tower shadow, excessive nacelle yawing motion, and power oscillations. The results of efforts to correlate measured wind velocity with power output and wind turbine loads are also discussed.
Variable-Force Eddy-Current Damper
NASA Technical Reports Server (NTRS)
Cunningham, R. E.
1986-01-01
Variable damping achieved without problems of containing viscous fluids. Eddy-current damping obtained by moving copper or aluminum conductors through magnetic fields. Position of magnet carrier determines amount of field engagement and, therefore, amount of damping. Three advantages of concept: Magnitudes of stiffness and damping continously varied from maximum to zero without bringing rotor or shaft to stop; used in rotating machines not having viscous fluids available such as lubricating oils; produces sizable damping forces in machines that pump liquid hydrogen at - 246 degrees C and liquid oxygen at - 183 degrees C and are compact in size.
Xue, Mei; Wang, Kang L.
2012-01-01
The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the observed switching effects to be the result of the redox-induced ligand rotation around the copper metal center and this attribution of switching is consistent with the observed temperature dependence of the switching behavior as well as the proposed energy diagram of the device. The observed resistance switching shows the potential for future non-volatile memories and logic devices applications. This review will discuss the progress and provide a perspective of molecular motion for nanoelectronics and other applications.
Yang, Kamie K; Lewis, Ian H
2014-06-15
Various equipment malfunctions of anesthesia gas delivery systems have been previously reported. Our profession increasingly uses technology as a means to prevent these errors. We report a case of a near-total anesthesia circuit obstruction that went undetected before the induction of anesthesia despite the use of automated machine check technology. This case highlights that automated machine check modules can fail to detect severe equipment failure and demonstrates how, even in this era of expanding technology, manual checks still remain essential components of safe care.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange's equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange’s equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation. PMID:25993472
NASA Astrophysics Data System (ADS)
Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan
2018-07-01
Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.
Harmonic reduction of Direct Torque Control of six-phase induction motor.
Taheri, A
2016-07-01
In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Dong, Jinqiao; Li, Xu; Zhang, Kang; Di Yuan, Yi; Wang, Yuxiang; Zhai, Linzhi; Liu, Guoliang; Yuan, Daqiang; Jiang, Jianwen; Zhao, Dan
2018-03-21
Despite the rapid development of molecular rotors over the past decade, it still remains a huge challenge to understand their confined behavior in ultrathin two-dimensional (2D) nanomaterials for molecular recognition. Here, we report an all-carbon, 2D π-conjugated aromatic polymer, named NUS-25, containing flexible tetraphenylethylene (TPE) units as aggregation-induced emission (AIE) molecular rotors. NUS-25 bulk powder can be easily exfoliated into micrometer-sized lamellar freestanding nanosheets with a thickness of 2-5 nm. The dynamic behavior of the TPE rotors is partially restricted through noncovalent interactions in the ultrathin 2D nanosheets, which is proved by comparative experimental studies including AIE characteristics, size-selective molecular recognition, and theoretical calculations of rotary energy barrier. Because of the partially restricted TPE rotors, NUS-25 nanosheets are highly fluorescent. This property allows NUS-25 nanosheets to be used as a chemical sensor for the specific detection of acenaphthylene among a series of polycyclic aromatic hydrocarbons (PAHs) via fluorescent quenching mechanism. Further investigations show that NUS-25 nanosheets have much higher sensitivity and selectivity than their stacked bulk powder and other similar polymers containing dynamic TPE rotors. The highly efficient molecular recognition can be attributed to the photoinduced electron transfer (PET) from NUS-25 nanosheets to acenaphthylene, which is investigated by time-resolved photoluminescence measurements (TRPL), excitation and emission spectra, and density functional theory (DFT) calculations. Our findings demonstrate that confinement of AIE molecular rotors in 2D nanomaterials can enhance the molecular recognition. We anticipate that the material design strategy demonstrated in this study will inspire the development of other ultrathin 2D nanomaterials equipped with smart molecular machines for various applications.
Steps in the bacterial flagellar motor.
Mora, Thierry; Yu, Howard; Sowa, Yoshiyuki; Wingreen, Ned S
2009-10-01
The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps. Here we propose a simple physical model, based on the storage of energy in protein springs, that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. We also predict a sublinear speed versus torque relationship for fixed load at low torque, and a peak in rotor diffusion as a function of torque. Our model provides a comprehensive framework for understanding and analyzing stepping behavior in the bacterial flagellar motor and proposes novel, testable predictions. More broadly, the storage of energy in protein springs by the flagellar motor may provide useful general insights into the design of highly efficient molecular machines.
NASA Astrophysics Data System (ADS)
Nondahl, T. A.; Richter, E.
1980-09-01
A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.
Energy saving concepts relating to induction generators
NASA Technical Reports Server (NTRS)
Nola, F. J.
1980-01-01
Energy saving concepts relating to induction generators are presented. The first describes a regenerative scheme using an induction generator as a variable load for prime movers under test is described. A method for reducing losses in induction machines used specifically as wind driven generators is also described.
Variable speed induction motor operation from a 20-kHz power bus
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1989-01-01
Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.
Variable speed induction motor operation from a 20-kHz power bus
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1989-01-01
Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.
NASA Astrophysics Data System (ADS)
Bougherara, Salim; Golea, Amar; Benchouia, M. Toufik
2018-05-01
This paper is addressed to a comparative study of the vector control of a three phase induction motor based on two mathematical models. The first one is the conventional model based on the assumptions that the saturation and the iron losses are neglected; the second model fully accounts for both the fundamental iron loss and main flux saturation with and without compensation. A rotor resistance identifier is developed, so the compensation of its variation is achieved. The induction motor should be fed through a three levels inverter. The simulation results show the performances of the vector control based on the both models.
NASA Astrophysics Data System (ADS)
Hekmati, Arsalan; Aliahmadi, Mehdi
2016-12-01
High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.
Aeroacoustic Analysis of Turbofan Noise Generation
NASA Technical Reports Server (NTRS)
Meyer, Harold D.; Envia, Edmane
1996-01-01
This report provides an updated version of analytical documentation for the V072 Rotor Wake/Stator Interaction Code. It presents the theoretical derivation of the equations used in the code and, where necessary, it documents the enhancements and changes made to the original code since its first release. V072 is a package of FORTRAN computer programs which calculate the in-duct acoustic modes excited by a fan/stator stage operating in a subsonic mean flow. Sound is generated by the stator vanes interacting with the mean wakes of the rotor blades. In this updated version, only the tonal noise produced at the blade passing frequency and its harmonics, is described. The broadband noise component analysis, which was part of the original report, is not included here. The code provides outputs of modal pressure and power amplitudes generated by the rotor-wake/stator interaction. The rotor/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. The amplitude of each propagating mode is computed and summed to obtain the harmonics of sound power flux within the duct for both upstream and downstream propagating modes.
NASA Astrophysics Data System (ADS)
Cai, Guowei; Liu, Cheng; Yang, Deyou
2013-11-01
The doubly fed induction generators (DFIG) have been recognized as the dominant technology used in wind power generation systems with the rapid development of wind power. However, continuous operation of DFIG may cause a serious wind turbine generators tripping accident, due to destructive over-current in the rotor winding which is caused by the power system fault or inefficient fault ride-through (FRT) strategy. A new rotor current control scheme in the rotor-side converter (RSC) ispresented to enhance FRT capacities of grid-connected DFIG. Due to the strongly nonlinear nature of DFIG and insensitive to DFIG parameter's variations, a novel sliding mode controller was designed. The controller combines extended state observer (ESO) with sliding model variable structure control theory. The simulation is carried out to verify the effectiveness of the proposed control approach under various types of grid disturbances. It is shown that the proposed controller provides enhanced transient features than the classic proportional-integral control. The proposed control method can effectively reduce over-current in the RSC, and the transient pulse value of electromagnetic torque is too large under power grid fault.
A novel control strategy for enhancing the LVRT and voltage support capabilities of DFIG
NASA Astrophysics Data System (ADS)
Shen, Yangwu; Zhang, Bin; Liang, Liqing; Cui, Ting
2018-02-01
A novel integrated control strategy is proposed in this paper to enhance the low voltage ride through capacity for the double-fed induction generator by equipping an energy storage system. The energy storage system is installed into the DC-link capacitor of the DFIG and used to control the DC-link voltage during normal or transient operations. The energy storage device will absorb or compensate the power difference between the captured wind power and the power injected to the grid during the normal and transient period, and the grid side converter can be free from maintaining the voltage stability of the DC-link capacitor. Thus, the grid-side converter is changed to reactive power support while the rotor-side converter is used to control the maximum power production during normal operation. The grid-side converter and rotor-side converter will act as reactive power sources to further enhance the voltage support capability of double-fed induction generator during the transient period. Numerical Simulation are performed to validate the effectiveness of the proposed control designs.
Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun
2018-03-01
This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.
Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis
NASA Astrophysics Data System (ADS)
Pietrowski, Wojciech; Górny, Konrad
2017-12-01
Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P W
1989-06-01
As part of US Department of Energy-sponsored research on wind energy, a Mod-O wind turbine was used to drive a variable-speed, wound-rotor, induction generator. Energy resulting from the slip frequency voltage in the generator rotor was rectified to dc, inverted back to utility frequency ac, and injected into the power line. Spurious changing frequencies displayed in the generator output by a spectrum analyzer are caused by ripple on the dc link. No resonances of any of these moving frequencies were seen in spite of the presence of a bank of power factor correcting capacitors. 5 figs.
Optimization of rotor shaft shrink fit method for motor using "Robust design"
NASA Astrophysics Data System (ADS)
Toma, Eiji
2018-01-01
This research is collaborative investigation with the general-purpose motor manufacturer. To review construction method in production process, we applied the parameter design method of quality engineering and tried to approach the optimization of construction method. Conventionally, press-fitting method has been adopted in process of fitting rotor core and shaft which is main component of motor, but quality defects such as core shaft deflection occurred at the time of press fitting. In this research, as a result of optimization design of "shrink fitting method by high-frequency induction heating" devised as a new construction method, its construction method was feasible, and it was possible to extract the optimum processing condition.
A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
NASA Astrophysics Data System (ADS)
Wang, Aimeng; Guo, Jiayu
2017-12-01
A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.
French wind generator systems. [as auxiliary power sources for electrical networks
NASA Technical Reports Server (NTRS)
Noel, J. M.
1973-01-01
The experimental design of a wind driven generator with a rated power of 800 kilovolt amperes and capable of being connected to the main electrical network is reported. The rotor is a three bladed propeller; each blade is twisted but the fixed pitch is adjustable. The asynchronous 800-kilovolt ampere generator is driven by the propeller through a gearbox. A dissipating resistor regulates the machine under no-load conditions. The first propeller on the machine lasted 18 months; replacement of the rigid propeller with a flexible structure resulted in breakdown due to flutter effects.
Mechanical Design Handbook for Elastomers
NASA Technical Reports Server (NTRS)
Darlow, M.; Zorzi, E.
1986-01-01
Mechanical Design Handbook for Elastomers reviews state of art in elastomer-damper technology with particular emphasis on applications of highspeed rotor dampers. Self-contained reference but includes some theoretical discussion to help reader understand how and why dampers used for rotating machines. Handbook presents step-by-step procedure for design of elastomer dampers and detailed examples of actual elastomer damper applications.
Direct Torque Control of a Three-Phase Voltage Source Inverter-Fed Induction Machine
2013-12-01
factors, FOC acquires all advantages of DC machine control and frees itself from the mechanical commutation drawbacks. Furthermore, FOC leads to high...of three-phase induction motor using microcontroller,” S.R.M Engineering College, Tamil Nadu, India , June/July 2006. [5] Texas Instruments Europe...loop. Direct flux control is possible through the constant magnetic field orientation achieved through commutator action. These two primary factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
NASA Astrophysics Data System (ADS)
Breton, S.-P.; Shen, W. Z.; Ivanell, S.
2017-05-01
Experimental data acquired in the New MEXICO experiment on a yawed 4.5m diameter rotor model turbine are used here to validate the actuator line (AL) and actuator disc (AD) models implemented in the Large Eddy Simulation code EllipSys3D in terms of loading and velocity field. Even without modelling the geometry of the hub and nacelle, the AL and AD models produce similar results that are generally in good agreement with the experimental data under the various configurations considered. As expected, the AL model does better at capturing the induction effects from the individual blade tip vortices, while the AD model can reproduce the averaged features of the flow. The importance of using high quality airfoil data (including 3D corrections) as well as a fine grid resolution is highlighted by the results obtained. Overall, it is found that both models can satisfactorily predict the 3D velocity field and blade loading of the New MEXICO rotor under yawed inflow.
Equivalent model of a dually-fed machine for electric drive control systems
NASA Astrophysics Data System (ADS)
Ostrovlyanchik, I. Yu; Popolzin, I. Yu
2018-05-01
The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.
Analytical Model-Based Design Optimization of a Transverse Flux Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
Doubly fed induction generator wind turbines with fuzzy controller: a survey.
Sathiyanarayanan, J S; Kumar, A Senthil
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.
Development of a dual-field heteropoplar power converter
NASA Technical Reports Server (NTRS)
Eisenhaure, D. B.; Johnson, B.; Bliamptis, T.; St. George, E.
1981-01-01
The design and testing of a 400 watt, dual phase, dual rotor, field modulated inductor alternator is described. The system is designed for use as a flywheel to ac utility line or flywheel to dc bus (electric vehicle) power converter. The machine is unique in that it uses dual rotors and separately controlled fields to produce output current and voltage which are in phase with each other. Having the voltage and current in phase allows the power electronics to be made of simple low cost components. Based on analytical predictions and experimental results, development of a complete 22 kilowatt (30 Hp) power conversion system is recommended. This system would include power electronics and controls and would replace the inductor alternator with an improved electromagnetic conversion system.
Rotor and bearing system for a turbomachine
Lubell, Daniel; Weissert, Dennis
2006-09-26
A rotor and bearing system for a turbomachine. The turbomachine includes a drive shaft, an impeller positioned on the drive shaft, and a turbine positioned on the drive shaft proximate to the impeller. The bearing system comprises one gas journal bearing supporting the drive shaft between the impeller and the turbine. The area between the impeller and the turbine is an area of increased heat along the drive shaft in comparison to other locations along the drive shaft. The section of the drive shaft positioned between impeller and the turbine is also a section of the drive shaft that experiences increased stressed and load in the turbomachine. The inventive bearing machine system positions only one radial bearing in this area of increased stress and load.
Theoretical and experimental power from large horizontal-axis wind turbines
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Janetzke, D. C.
1982-01-01
A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip-speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-0 (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.
Performance testing of a high frequency link converter for Space Station power distribution system
NASA Technical Reports Server (NTRS)
Sul, S. K.; Alan, I.; Lipo, T. A.
1989-01-01
The testing of a brassboard version of a 20-kHz high-frequency ac voltage link prototype converter dynamics for Space Station application is presented. The converter is based on a three-phase six-pulse bridge concept. The testing includes details of the operation of the converter when it is driving an induction machine source/load. By adapting a field orientation controller (FOC) to the converter, four-quadrant operation of the induction machine from the converter has been achieved. Circuit modifications carried out to improve the performance of the converter are described. The performance of two 400-Hz induction machines powered by the converter with simple V/f regulation mode is reported. The testing and performance results for the converter utilizing the FOC, which provides the capability for rapid torque changes, speed reversal, and four-quadrant operation, are reported.
NASA Astrophysics Data System (ADS)
Permiakov, V.; Pulnikov, A.; Dupré, L.; De Wulf, M.; Melkebeek, J.
2003-05-01
In this article, the magnetic properties of nonoriented electrical steel under sinusoidal and distorted excitations are investigated for the whole range of unidirectional mechanical stresses. The distorted flux obtained from the tooth tip of 3 kW induction machine at no-load test was put into the measurement system. The total losses increase for compressive stress both under sinusoidal and distorted excitations. For tensile elastic stresses, the total losses first decrease and then increase in a very similar way for both excitations. In contrast, the difference between total losses under sinusoidal and distorted magnetic fluxes becomes smaller with increase of the plastic strain. This work is a serious step toward complete characterization of the magnetic properties of electrical steel in the teeth area of induction machines. A deeper insight of that problem can improve the design of induction machines and other electromagnetic devices.
Burriel-Valencia, Jordi; Martinez-Roman, Javier; Sapena-Bano, Angel
2018-01-01
The aim of this paper is to introduce a new methodology for the fault diagnosis of induction machines working in the transient regime, when time-frequency analysis tools are used. The proposed method relies on the use of the optimized Slepian window for performing the short time Fourier transform (STFT) of the stator current signal. It is shown that for a given sequence length of finite duration, the Slepian window has the maximum concentration of energy, greater than can be reached with a gated Gaussian window, which is usually used as the analysis window. In this paper, the use and optimization of the Slepian window for fault diagnosis of induction machines is theoretically introduced and experimentally validated through the test of a 3.15-MW induction motor with broken bars during the start-up transient. The theoretical analysis and the experimental results show that the use of the Slepian window can highlight the fault components in the current’s spectrogram with a significant reduction of the required computational resources. PMID:29316650
Burriel-Valencia, Jordi; Puche-Panadero, Ruben; Martinez-Roman, Javier; Sapena-Bano, Angel; Pineda-Sanchez, Manuel
2018-01-06
The aim of this paper is to introduce a new methodology for the fault diagnosis of induction machines working in the transient regime, when time-frequency analysis tools are used. The proposed method relies on the use of the optimized Slepian window for performing the short time Fourier transform (STFT) of the stator current signal. It is shown that for a given sequence length of finite duration, the Slepian window has the maximum concentration of energy, greater than can be reached with a gated Gaussian window, which is usually used as the analysis window. In this paper, the use and optimization of the Slepian window for fault diagnosis of induction machines is theoretically introduced and experimentally validated through the test of a 3.15-MW induction motor with broken bars during the start-up transient. The theoretical analysis and the experimental results show that the use of the Slepian window can highlight the fault components in the current's spectrogram with a significant reduction of the required computational resources.
NASA Astrophysics Data System (ADS)
Husin, Zhafir Aizat; Sulaiman, Erwan; Khan, Faisal; Mazlan, Mohamed Mubin Aizat; Othman, Syed Muhammad Naufal Syed
2015-05-01
This paper presents a new structure of 12slot-14pole field excitation flux switching motor (FEFSM) as an alternative candidate of non-Permanent Magnet (PM) machine for HEV drives. Design study, performance analysis and optimization of field excitation flux switching machine with non-rare-earth magnet for hybrid electric vehicle drive applications is done. The stator of projected machine consists of iron core made of electromagnetic steels, armature coils and field excitation coils as the only field mmf source. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. The design target is a machine with the maximum torque, power and power density, more than 210Nm, 123kW and 3.5kW/kg, respectively, which competes with interior permanent magnet synchronous machine used in existing hybrid electric vehicle. Some design feasibility studies on FEFSM based on 2D-FEA and deterministic optimization method will be applied to design the proposed machine.
Chiles, J A; Severinghaus, A E
1938-06-30
1. An ultracentrifuge is described in which the rotor is driven by a compressed air turbine, and is spun in an evacuated chamber to minimize friction and heating. The rotating parts are supported by a cushion of air in an air bearing. 2. The centrifuge rotor holds 10 test tubes inclined at 45 degrees to the axis, and has a capacity of 55 cc. It is operated at a maximum speed of 51,000 R.P.M., which develops at the top of the fluid column in the test tubes a centrifugal field of over 100,000 times gravity, and at the bottom of the fluid column a field of over 200,000 times gravity. 3. By means of a reverse turbine, the rotor can be brought to a stop from full speed in a relatively short time. 4. A precession damping device is described, which effectively damps the precession and wobbling of the rotor that usually occurs at certain speeds in machines of this type. 5. A relatively long section of shaft is used between the centrifuge rotor and lower bearings. This prevents vibrations from being appreciably transmitted through the shaft to the lower bearings and driving mechanism, and results in a negligible wear on the bearings. 6. The driving mechanism is designed so that the positions of its parts are adjustable, and so that the driving mechanism may be dismantled without disturbing these adjustments.
Vortex conception of rotor and mutual effect of screw/propellers
NASA Technical Reports Server (NTRS)
Lepilkin, A. M.
1986-01-01
A vortex theory of screw/propellers with variable circulation according to the blade and its azimuth is proposed, the problem is formulated and circulation is expanded in a Fourier series. Equations are given for inductive velocities in space for crews, including those with an infinitely large number of blades and expansion of the inductive velocity by blade azimuth of a second screw. Multiparameter improper integrals are given as a combination of elliptical integrals and elementary functions, and it is shown how to reduce elliptical integrals of the third kind with a complex parameter to integrals with a real parameter.
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.
This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.
A Lyapunov based approach to energy maximization in renewable energy technologies
NASA Astrophysics Data System (ADS)
Iyasere, Erhun
This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.
Acoustic sensor for real-time control for the inductive heating process
Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.
2003-09-30
Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.
Measurement of aeroacoustic noise generated on wind turbine blades modified by trailing edge brushes
NASA Astrophysics Data System (ADS)
Asheim, Michael J.
As wind technology becomes a larger portion of the energy production picture, the problematic interactions between the machines and society will continue to become more pronounced. Of these problems, wind turbine noise is one of the most important to the future of wind turbine development. This study looks at the effect trailing edge brushes mounted on the 2 bladed Controls Advance Research Turbine (CART 2), located at the National Wind Technology Center, have on the overall acoustic and aerodynamic performance of the blades. The use of trailing edge brushes reduced the aeroacoustic noise by 1.0 to 5.0 dB over the baseline blade, depending on wind speed. This acoustic performance comes at a cost to the aerodynamic performance of the blades. The aerodynamic performance indicators, such as turbine power and root bending moments show that increased drag due to the brushes is the main contributor to the reduction in power production. An economic analysis also investigated how to best use noise mitigation devices to optimize acoustic, power performance and loads of a 600 kW baseline turbine, such as the CART 2. The analysis shows that the use of up a noise mitigation device of 4 dB is best used by increasing the rotor diameter and the power rating of the machine, from a 43.3 m diameter, 600 kW machine to a 68.8 m diameter, 886.7 kW machine. This increase resulted in an annual energy production increase of 414% when using a Rayleigh wind distribution with at a mean annual wind speed of 8.5 m/s. This is a reduction of cost of energy from 0.0463 per kWh to 0.0422 kWh. This reduction in energy production costs helps to explain the continuing trend of turbine machine growth in both rotor diameter and power rating.
Design of a 100 kVA high temperature superconducting demonstration synchronous generator
NASA Astrophysics Data System (ADS)
Al-Mosawi, M. K.; Beduz, C.; Goddard, K.; Sykulski, J. K.; Yang, Y.; Xu, B.; Ship, K. S.; Stoll, R.; Stephen, N. G.
2002-08-01
The paper presents the main features of a 100 kVA high temperature superconducting (HTS) demonstrator generator, which is designed and being built at the University of Southampton. The generator is a 2-pole synchronous machine with a conventional 3-phase stator and a HTS rotor operating in the temperature range 57-77 K using either liquid nitrogen down to 65 K or liquid air down to 57 K. Liquid air has not been used before in the refrigeration of HTS devices but has recently been commercialised by BOC as a safe alternative to nitrogen for use in freezing of food. The generator will use an existing stator with a bore of 330 mm. The rotor is designed with a magnetic core (invar) to reduce the magnetising current and the field in the coils. For ease of manufacture, a hybrid salient pole construction is used, and the superconducting winding consists of twelve 50-turn identical flat coils. Magnetic invar rings will be used between adjacent HTS coils of the winding to divert the normal component of the magnetic field away from the Bi2223 superconducting tapes. To avoid excessive eddy-current losses in the rotor pole faces, a cold copper screen will be placed around the rotor core to exclude ac magnetic fields.
Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Delgado, Irebert R.
2009-01-01
The baseline non-contacting finger seal is a NASA patented design. The primary difference between it and Gul Aroras design patented by AlliedSignal is that there are no lift pads on the high pressure fingers. The baseline non-contacting finger seal is comprised of a back plate, aft spacer, aft (or low pressure) finger element, forward (or high pressure) finger element, forward spacer, and front plate. The components are held together with 20 flat head screws. A typical seal would have a back plate of approximately the same thickness as the front plate and would be riveted together. The thicker back plate allows use of threaded fasteners so that different finger elements can be tested without having to replace all the individual seal components. The finger elements are essentially washers made of thin sheet stock with multiple curved slots machined around the inner diameter to form the fingers. They are clocked so that the fingers of one cover the slots of the other. The aft finger element fingers have axial extensions or "lift pads" at the seal id that are concentric to the rotor. The fingers act as cantilever beams and flex in response to rotor dynamic motion and radial growth of the rotor due to centrifugal or thermal forces.
WT - WIND TUNNEL PERFORMANCE ANALYSIS
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1994-01-01
WT was developed to calculate fan rotor power requirements and output thrust for a closed loop wind tunnel. The program uses blade element theory to calculate aerodynamic forces along the blade using airfoil lift and drag characteristics at an appropriate blade aspect ratio. A tip loss model is also used which reduces the lift coefficient to zero for the outer three percent of the blade radius. The application of momentum theory is not used to determine the axial velocity at the rotor plane. Unlike a propeller, the wind tunnel rotor is prevented from producing an increase in velocity in the slipstream. Instead, velocities at the rotor plane are used as input. Other input for WT includes rotational speed, rotor geometry, and airfoil characteristics. Inputs for rotor blade geometry include blade radius, hub radius, number of blades, and pitch angle. Airfoil aerodynamic inputs include angle at zero lift coefficient, positive stall angle, drag coefficient at zero lift coefficient, and drag coefficient at stall. WT is written in APL2 using IBM's APL2 interpreter for IBM PC series and compatible computers running MS-DOS. WT requires a CGA or better color monitor for display. It also requires 640K of RAM and MS-DOS v3.1 or later for execution. Both an MS-DOS executable and the source code are provided on the distribution medium. The standard distribution medium for WT is a 5.25 inch 360K MS-DOS format diskette in PKZIP format. The utility to unarchive the files, PKUNZIP, is also included. WT was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation. PKUNZIP is a registered trademark of PKWare, Inc.
1981-09-01
The expres- sions for the rotor torque for a Darrieus machine can be found in Reference 4.16. The Darrieus wind turbine offers the following... turbine generators, wind -driven turbines , power conditioning, wind power, energy conservation, windmills, economic ana \\sis. 20 ABS 1"ACT (Conti,on... turbines , power conditioning requirements, siting requirements, and the economics of wind power under different conditions. Three examples are given to
Turbine rotor-stator leaf seal and related method
Herron, William Lee; Butkiewicz, Jeffrey John
2003-01-01
A seal assembly for installation between rotating and stationary components of a machine includes a first plurality of leaf spring segments secured to the stationary component in a circumferential array surrounding the rotating component, the leaf spring segments each having a radial mounting portion and a substantially axial sealing portion, the plurality of leaf spring segments shingled in a circumferential direction.
Manufacturing techniques for Gravity Probe B gyroscopes
NASA Technical Reports Server (NTRS)
Rasquin, J. R.
1978-01-01
Additional and improved techniques for the manufacture of Gravity Probe B gyroscopes are reported. Improvements discussed include the redesign of the housings, new techniques for indentation of the electrode surfaces, and a new rotor ball lapping machine. These three items represent a significant improvement in operation of the gyroscope and also make possible the fabrication of a gyroscope which will meet flight requirements.
Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles
NASA Technical Reports Server (NTRS)
Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.
1983-01-01
A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.
Oil-Free Rotor Support Technologies for Long Life, Closed Cycle Brayton Turbines
NASA Technical Reports Server (NTRS)
Lucero, John M.; DellaCorte, Christopher
2004-01-01
The goal of this study is to provide technological support to ensure successful life and operation of a 50-300 kW dynamic power conversion system specifically with response to the rotor support system. By utilizing technical expertise in tribology, bearings, rotordynamic, solid lubricant coatings and extensive test facilities, valuable input for mission success is provided. A discussion of the history of closed cycle Brayton turboalternators (TA) will be included. This includes the 2 kW Mini-Brayton Rotating Unit (Mini-BRU), the 10kW Brayton Rotating Unit (BRU) and the 125 kW turboalternator-compressor (TAC) designed in mid 1970's. Also included is the development of air-cycle machines and terrestrial oil-free gas turbine power systems in the form of microturbines, specifically Capstone microturbines. A short discussion of the self-acting compliant surface hydrodynamic fluid film bearings, or foil bearings, will follow, including a short history of the load capacity advances, the NASA coatings advancements as well as design model advances. Successes in terrestrial based machines will be noted and NASA tribology and bearing research test facilities will be described. Finally, implementation of a four step integration process will be included in the discussion.
NASA Astrophysics Data System (ADS)
Kasim, Muhammad; Irasari, Pudji; Hikmawan, M. Fathul; Widiyanto, Puji; Wirtayasa, Ketut
2017-02-01
The axial flux permanent magnet generator (AFPMG) has been widely used especially for electricity generation. The effect of the air gap variation on the characteristic and performances of single rotor - single stator AFPMG has been described in this paper. Effect of air gap length on the magnetic flux distribution, starting torque and MMF has been investigated. The two dimensional finite element magnetic method has been deployed to model and simulated the characteristics of the machine which is based on the Maxwell equation. The analysis has been done for two different air gap lengths which were 2 mm and 4 mm using 2D FEMM 4.2 software at no load condition. The increasing of air gap length reduces the air-gap flux density. For air gap 2 mm, the maximum value of the flux density was 1.04 T while 0.73 T occured for air gap 4 mm.. Based on the experiment result, the increasing air gap also reduced the starting torque of the machine with 39.2 Nm for air gap 2 mm and this value decreased into 34.2 Nm when the air gap increased to 4 mm. Meanwhile, the MMF that was generated by AFPMG decreased around 22% at 50 Hz due to the reduction of magnetic flux induced on stator windings. Overall, the research result showed that the variation of air gap has significant effect on the machine characteristics.
NASA Astrophysics Data System (ADS)
Liu, Yifang; Wang, Zhijie; Li, Renfu; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu; Liu, Sanming
2017-05-01
When the grid voltage drop, over current of transient rotor and over voltage may damage the power electronic devices. The attenuation of electromagnetic torque will lead to speed up. This paper proposes an improved feed-forward control strategy and its application in the PWM converter. When the PWM converter on voltage drops, bus voltage will be more stable. So over current problems of the DFIG rotor side can be reduced, and it also can improve voltage regulation speed of the DC bus voltage and reduce the oscillation amplitude. Furthermore, the stability of doubly fed wind generator system can be improved. The simulation results verify the validity of the modified control strategy.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.
2010-01-01
An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.
Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed
2016-07-01
Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori
This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.
Straight-bladed Darrieus wind turbines - A protagonist's view
NASA Astrophysics Data System (ADS)
Migliore, P. G.
The technology development and market penetration of Darrieus and propeller-type wind turbines is addressed. Important characteristics of competing configurations are compared, and it is claimed that aerodynamic efficiency is not a distinguishing feature. Advantages of the Darrieus machine include omni-directionality and self-limitation, but propeller types require less rotor length per unit swept area. It is argued that the straight-bladed Darrieus is much simpler than the curved-bladed and should be capable of comparable aerodynamic efficiency. Some of the problems of structural design, as well as blade induced drag losses and support-arm counter torque, diminish rapidly as machine size is increased. Taper ratio has similar beneficial effects.
Direct control of air gap flux in permanent magnet machines
Hsu, John S.
2000-01-01
A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.
NASA Technical Reports Server (NTRS)
Bose, Bimal K.; Kim, Min-Huei
1995-01-01
The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.
Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey
Sathiyanarayanan, J. S.; Senthil Kumar, A.
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677
Flap-lag-torsional dynamics of helicopter rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Crespodasilva, M. R. M.
1986-01-01
A perturbation/numerical methodology to analyze the flap-lead/lag motion of a centrally hinged spring restrained rotor blade that is valid for both hover and for forward flight was developed. The derivation of the nonlinear differential equations of motion and the analysis of the stability of the steady state response of the blade were conducted entirely in a Symbolics 3670 Machine using MACSYMA to perform all the lengthy symbolic manipulations. It also includes generation of the fortran codes and plots of the results. The Floquet theory was also applied to the differential equations of motion in order to compare results with those obtained from the perturbation analysis. The results obtained from the perturbation methodology and from Floquet theory were found to be very close to each other, which demonstrates the usefullness of the perturbation methodology. Another problem under study consisted in the analysis of the influence of higher order terms in the response and stability of a flexible rotor blade in forward flight using Computerized Symbolic Manipulation and a perturbation technique to bypass the Floquet theory. The derivation of the partial differential equations of motion is presented.
Radial magnetic bearings: An overview
NASA Astrophysics Data System (ADS)
Zhang, Weiyu; Zhu, Huangqiu
Radial magnetic bearings (RMBs) are one of the most commonly used magnetic bearings. They are used widely in the field of ultra-high speed and ultra-precise numerical control machine tools, bearingless motors, high speed flywheels, artificial heart pumps, and molecular pumps, and they are being strengthened and extended in various important areas. In this paper, a comprehensive overview is given of different bearing topologies of RMBs with different stator poles that differ in their construction, the driving mode of electromagnets, power consumption, cost, magnetic circuits, and symmetry. RMBs with different poles and couplings between the two bearing axes in the radial direction responsible for cross-coupling generation are compared. In addition, different shaped rotors are compared, as the performances of magnetic bearing-rotor systems are of great concern to rotor constructions. Furthermore, the parameter design methods, the mathematical models and control strategies of the RMBs are described in detail. From the comparison of topologies, models and control methods for RMBs, the advantages, disadvantages and utilizable perspectives are also analyzed. Moreover, several possible development trends of the RMBs are discussed.
Why have hydrostatic bearings been avoided as a stabilizing element for rotating machines
NASA Technical Reports Server (NTRS)
Bently, D. E.; Muszynska, A.
1985-01-01
The advantages are discussed of hydrostatic, high pressure bearings as providers of higher margin of stability to the rotor/bearing systems. It is apparent that deliberate use of hydrostatic bearing high pressure lubricated (any gas or liquid) can easily be used to build higher stability margin into rotating machinery, in spite of the thirty years bias against high pressure lubrication. Since this supply pressure is controllable (the Direct Dynamic Stiffness at lower eccentricity is also controllable) so that within some rotor system limits, the stability margin and dynamic response of the rotor system is more readily controllable. It may be possible to take advantage of this effect in the various seals, as well as the bearings, to assist with stability margin and dynamic response of rotating machinery. The stability of the bearing can be additionally improved by taking advantage of the anti-swirling concept. The high pressure fluid supply inlets should be located tangentially at the bearing circumference and directed against rotation. The incoming fluid flow creates stability by reducing the swirling rate.
Control Code for Bearingless Switched-Reluctance Motor
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.
2007-01-01
A computer program has been devised for controlling a machine that is an integral combination of magnetic bearings and a switched-reluctance motor. The motor contains an eight-pole stator and a hybrid rotor, which has both (1) a circular lamination stack for levitation and (2) a six-pole lamination stack for rotation. The program computes drive and levitation currents for the stator windings with real-time feedback control. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. This version is executable in a control-loop time of 40 s on a Pentium (or equivalent) processor that operates at a clock speed of 400 MHz. The program can be expanded, by addition of logic blocks, to enable control of position along additional axes. The code enables adjustment of operational parameters (e.g., motor speed and stiffness, and damping parameters of magnetic bearings) through computer keyboard key presses.
An AC-electromagnetic bearing for flywheel energy storage in space
NASA Technical Reports Server (NTRS)
Nikolajsen, Jorgen L.
1993-01-01
A repulsive type AC-electromagnetic bearing was developed and tested. It was conceived on the basis of the so-called Magnetic River suspension for high-speed trains. The appearance of the bearing is similar to the traditional DC-type electromagnetic bearing but the operating principle is different. The magnets are fed with alternating current instead of direct current and the rotor is fitted with a conducting sleeve (e.g. aluminum) instead of a ferromagnetic sleeve. The repulsion is due to induction of eddy-currents in the conducting sleeve. The bearing is inherently stable and requires no feedback control. It provides support in five degrees of freedom such that a short rotor may be fully supported by a single bearing. These capabilities were demonstrated experimentally. On the down side, the load carrying capacity and the damping obtained so far were quite low compared to the DC-type bearing. Also, significant heating of the conducting sleeve was experienced. The AC-bearing is essentially a modified induction motor and there are strong indications that it can be run both as a motor and as a generator with no commutator requirements. It is therefore considered to be a good candidate for support of energy storage flywheels in space.
Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines
NASA Astrophysics Data System (ADS)
Migliore, P. G.
1983-08-01
The aerodynamic efficiency of Darrieus wind turbines as effected by blade airfoil geometry was investigated. Analysis was limited to curved-bladed machines having rotor solidities of 7-21 percent and operating at a Reynolds number of 3 x 10 to the 6th. Ten different airfoils, having thickness-to-chord ratios of 12, 15, and 18 percent, were studied. Performance estimates were made using a blade element/momentum theory approach. Results indicated that NACA 6-series airfoils yield peak power coefficients as great as NACA 4-digit airfoils and have broader and flatter power coefficient-tip speed ratio curves. Sample calculations for an NACA 63(2)-015 airfoil showed an annual energy output increase of 17-27 percent, depending on rotor solidity, compared to an NACA 0015 airfoil.
Advanced radial inflow turbine rotor program: Design and dynamic testing
NASA Technical Reports Server (NTRS)
Rodgers, C.
1976-01-01
The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).
Variable speed generator application on the MOD-5A 7.3 mW wind turbine generator
NASA Technical Reports Server (NTRS)
Barton, Robert S.
1995-01-01
This paper describes the application of a Scherbiustat type variable speed subsystem in the MOD-5A Wind Turbine Generator. As designed by General Electric Company, Advanced Energy Programs Department, under contract DEN3-153 with NASA Lewis Research Center and DOE, the MOD-5A utilizes the subsystem for both starting assistance in a motoring mode and generation in a controlled airgap torque mode. Reactive power control is also provided. The Scherbiustat type arrangement of a wound rotor machine with a cycloconverter in the rotor circuit was selected after an evaluation of variable speed technologies that followed a system evaluation of drivetrain cost and risk. The paper describes the evaluation factors considered, the results of the evaluations and summarizes operating strategy and performance simulations.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2011-06-14
A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2012-02-21
A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Zink rotary kiln seal: Cam followers. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, D.L.
1994-12-09
The CIF will treat hazardous and mixed low-level radioactive waste in a rotary kiln and secondary combustion chamber. A high efficiency air pollution control system follows the secondary chamber. The rotary kiln is designed with a gas seal at each end of its rotating barrel which provides a barrier between the interior of the kiln and outside air. The internal pressure of the rotary kiln will be maintained below atmospheric pressure, so exterior air passing the seals is forced into the kiln`s interior. Positive pressure may be applied in the seal labyrinth, adding a barrier to flow. Both CIF sealsmore » will be covered entirely with exhaust hoods, drawing air over the outside of the seal and into a HEPA filtered exhaust system. Cam follower misalignment on a John Zink rotary kiln seal caused damage to the seal`s rotor. The misalignment was quantified, corrected, and checked to verify straightness. The primary purpose of the correction was to allow seal testing 1 to continue, but the information is applicable to the Consolidated Incineration Facility (CIF) since two large seals of similar design will be installed there. Cam follower straightness was off as much as 3.5{degrees}, causing followers to run untrue on the rotor. High contact forces resulted, removing flakes of metal from the rotor surface. The misalignment caused weight bearing followers on one side of the seal to back out of their threaded mounts. The root cause was poor machining of the follower mounting holes. Correction was accomplished by relieving the holes and installing machined spacers and retaining nuts. Cam followers on the CIF`s Zink seals should be inspected for straightness before the seals are installed.« less
Mechanical discrete simulator of the electro-mechanical lift with n:1 roping
NASA Astrophysics Data System (ADS)
Alonso, F. J.; Herrera, I.
2016-05-01
The design process of new products in lift engineering is a difficult task due to, mainly, the complexity and slenderness of the lift system, demanding a predictive tool for the lift mechanics. A mechanical ad-hoc discrete simulator, as an alternative to ‘general purpose’ mechanical simulators is proposed. Firstly, the synthesis and experimentation process that has led to establish a suitable model capable of simulating accurately the response of the electromechanical lift is discussed. Then, the equations of motion are derived. The model comprises a discrete system of 5 vertically displaceable masses (car, counterweight, car frame, passengers/loads and lift drive), an inertial mass of the assembly tension pulley-rotor shaft which can rotate about the machine axis and 6 mechanical connectors with 1:1 suspension layout. The model is extended to any n:1 roping lift by setting 6 equivalent mechanical components (suspension systems for car and counterweight, lift drive silent blocks, tension pulley-lift drive stator and passengers/load equivalent spring-damper) by inductive inference from 1:1 and generalized 2:1 roping system. The application to simulate real elevator systems is proposed by numeric time integration of the governing equations using the Kutta-Meden algorithm and implemented in a computer program for ad-hoc elevator simulation called ElevaCAD.
NASA Astrophysics Data System (ADS)
Uhlig, K.; Spickenheuer, A.; Bittrich, L.; Heinrich, G.
2013-05-01
Increasing the rotational frequency of bladed rotors used in turbomachinery leads to their increased efficiency and performance. Especially for turbomolecular pumps, this would allow either higher compression rates or smaller pump dimensions. The maximal rotational frequency is focused on the structural strength of the construction and the material used. Due to their high density, specific strength, and stiffness in the fiber direction, carbon-fiberreinforced plastics (CFRPs) seem to be ideal for such an application. The highly orthotropic material behavior of CFRPs demands new approaches in terms of their manufacturing and dimensioning. As a new approach, a rotor with 17 blades in a blade-integrated disk construction (BLISK) made of a CFRP, allowing a 35% higher burst speed than a bladed rotor made of a high-strength aluminum alloy, was developed. An appropriate fiber layout has to reflect the rotational symmetry, which demands either a radial or tangential fiber orientation. Therefore, the Tailored Fiber Placement (TFP) technology was used, which allows a high flexibility for the fiber layout. For consolidation, resin infiltration was performed using a modified vacuum-assisted process, and the final geometry was generated employing a milling machine. A radius-dependent layer setup of tangential and radial fibers was chosen to maximize the burst speed by using an adapted finite-element analysis. Additionally, a numerical modal analysis and a numerical failure analysis were performed. Finally, the theoretical results were verified on manufactured rotors by an experimental modal analysis and burst tests, where experimental data showed a good coincidence with numerical results.
Torque shudder protection device and method
King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.
1997-01-01
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.
Torque shudder protection device and method
King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.
1997-03-11
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.
Proceedings of the Workshop on Change of Representation and Problem Reformulation
NASA Technical Reports Server (NTRS)
Lowry, Michael R.
1992-01-01
The proceedings of the third Workshop on Change of representation and Problem Reformulation is presented. In contrast to the first two workshops, this workshop was focused on analytic or knowledge-based approaches, as opposed to statistical or empirical approaches called 'constructive induction'. The organizing committee believes that there is a potential for combining analytic and inductive approaches at a future date. However, it became apparent at the previous two workshops that the communities pursuing these different approaches are currently interested in largely non-overlapping issues. The constructive induction community has been holding its own workshops, principally in conjunction with the machine learning conference. While this workshop is more focused on analytic approaches, the organizing committee has made an effort to include more application domains. We have greatly expanded from the origins in the machine learning community. Participants in this workshop come from the full spectrum of AI application domains including planning, qualitative physics, software engineering, knowledge representation, and machine learning.
Pole-phase modulated toroidal winding for an induction machine
Miller, John Michael; Ostovic, Vlado
1999-11-02
A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.
Optimization of Magnet Arrangement in Double-Layer Interior Permanent-Magnet Motors
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi; Kitayuguchi, Kazuya
The arrangement of permanent magnets in double-layer interior permanent-magnet motors is optimized for variable-speed applications. First, the arrangement of magnets is decided by automatic optimization. Next, the superiority of the optimized motor is discussed by the d- and q-axis equivalent circuits that consider the magnetic saturation of the rotor core. Finally, experimental verification is carried out by using a prototype motor. It is confirmed that the maximum torque of the optimized motor under both low speed and high speed conditions are higher than those of conventional motors because of relatively large q-axis inductance and small d-axis inductance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paap, G.C.
1991-03-01
From general equations which describe the transient electromechanical behavior of the asynchronous squirrel-cage motor, and which include the influence of space harmonics and mutual slotting, simplified models are derived and compared. The models derived are demonstrated in examples where special attention is paid to the influence of the place of the harmonics in the mutual inductance matrix and the influence of mutual slotting. Further, the steady-state equations are derived and the back-transformation for the stator and rotor currents is given. One example is compared with the result of measurements.
High-efficiency induction motor drives using type-2 fuzzy logic
NASA Astrophysics Data System (ADS)
Khemis, A.; Benlaloui, I.; Drid, S.; Chrifi-Alaoui, L.; Khamari, D.; Menacer, A.
2018-03-01
In this work we propose to develop an algorithm for improving the efficiency of an induction motor using type-2 fuzzy logic. Vector control is used to control this motor due to the high performances of this strategy. The type-2 fuzzy logic regulators are developed to obtain the optimal rotor flux for each torque load by minimizing the copper losses. We have compared the performances of our fuzzy type-2 algorithm with the type-1 fuzzy one proposed in the literature. The proposed algorithm is tested with success on the dSPACE DS1104 system even if there is parameters variance.
Momentum considerations on the New MEXICO experiment
NASA Astrophysics Data System (ADS)
Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.
2016-09-01
The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi
2015-08-24
This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solversmore » that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.« less
Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi
2015-09-02
This paper presents a nonlinear analytical model of a novel double sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets (PM), stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry which makes it a good alternative for evaluating prospective designs of TFM as compared tomore » finite element solvers which are numerically intensive and require more computation time. A single phase, 1 kW, 400 rpm machine is analytically modeled and its resulting flux distribution, no-load EMF and torque, verified with Finite Element Analysis (FEA). The results are found to be in agreement with less than 5% error, while reducing the computation time by 25 times.« less
User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program
NASA Technical Reports Server (NTRS)
Culver, E. M.; Mccolgan, C. J.
1993-01-01
This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.
User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program
NASA Astrophysics Data System (ADS)
Culver, E. M.; McColgan, C. J.
1993-04-01
This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.
A fully superconducting bearing system for flywheel applications
NASA Astrophysics Data System (ADS)
Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.
2016-06-01
A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.
Integration of a wave rotor to an ultra-micro gas turbine (UmuGT)
NASA Astrophysics Data System (ADS)
Iancu, Florin
2005-12-01
Wave rotor technology has shown a significant potential for performance improvement of thermodynamic cycles. The wave rotor is an unsteady flow machine that utilizes shock waves to transfer energy from a high energy fluid to a low energy fluid, increasing both the temperature and the pressure of the low energy fluid. Used initially as a high pressure stage for a gas turbine locomotive engine, the wave rotor was commercialized only as a supercharging device for internal combustion engines, but recently there is a stronger research effort on implementing wave rotors as topping units or pressure gain combustors for gas turbines. At the same time, Ultra Micro Gas Turbines (UmuGT) are expected to be a next generation of power source for applications from propulsion to power generation, from aerospace industry to electronic industry. Starting in 1995, with the MIT "Micro Gas Turbine" project, the mechanical engineering research world has explored more and more the idea of "Power MEMS". Microfabricated turbomachinery like turbines, compressors, pumps, but also electric generators, heat exchangers, internal combustion engines and rocket engines have been on the focus list of researchers for the past 10 years. The reason is simple: the output power is proportional to the mass flow rate of the working fluid through the engine, or the cross-sectional area while the mass or volume of the engine is proportional to the cube of the characteristic length, thus the power density tends to increase at small scales (Power/Mass=L -1). This is the so-called "cube square law". This work investigates the possibilities of incorporating a wave rotor to an UmuGT and discusses the advantages of wave rotor as topping units for gas turbines, especially at microscale. Based on documented wave rotor efficiencies at larger scale and subsidized by both, a gasdynamic model that includes wall friction, and a CFD model, the wave rotor compression efficiency at microfabrication scale could be estimated at about 70%, which is much higher than the obtained efficiency obtained for centrifugal compressors in a microfabricated gas turbine. This dissertation also proposes several designs of ultra-micro wave rotors, including the novel concept of a radial-flow configuration. It describes a new and simplified design procedure as well as numerical simulations of these wave rotors. Results are obtained using FLUENT, a Computational Fluid Dynamics (CFD) commercial code. The vast information about the unsteady processes occurring during simulation is visualized. Last, two designs for experimental tests have been created, one for a micro shock tube and one for the ultra-micro wave rotor. Theoretical and numerical results encourage the idea that at microscale, compression by shock waves may be more efficient than by conventional centrifugal compressors, thus making the ultra-micro wave rotor (UmuWR) a feasible idea for enhancing (upgrading) UmuGT.
Intrusion Detection Systems with Live Knowledge System
2016-05-31
Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR, which is a machine-learning based RDR...propose novel approach that uses Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR...detection model by applying Induct RDR approach. The proposed induct RDR ( Ripple Down Rules) approach allows to acquire the phishing detection
Low-Speed Fan Noise Reduction With Trailing Edge Blowing
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Tweedt, Daniel L.; Fite, E. Brian; Envia, Edmane
2002-01-01
An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on analytical codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof- of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5 to 2.0 percent. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone power levels (PWL) in the inlet and exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8 and 19.4 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, and 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements illustrate the physics behind the noise reduction.
NASA Astrophysics Data System (ADS)
Zipprian, Daniel
2012-03-01
The idea behind a hydro electric generator is to have a large potential well of water that you can be controlled to be able to convert into kinetic energy. The kinetic energy is from the flow of water which is directed towards some kind of turbine. In turn the kinetic energy is turned into mechanical energy. The turning of the turbine rotates the rotor part of the generator, and the stator remains stationary. Induction is caused when the rotor is rotating around the stator. This is caused when a magnetic field interacts with a wire causing the electrons inside the wire to face in the same direction. Once the magnetic field begins to move the electrons start to flow through the wire creating current. For this to work the direction of the magnetic field has to be perpendicular to the direction of the coils of wires. For my design I plan to funnel the flow of water into a nozzle which will be aimed towards my turbine. The turbine with be connected to a shaft that will be connected to my rotor. The rotor I designed uses a brake router for the surface to hold me magnets. The system will be vertical, with the rotor as the highest part on the generator and the turbine at the bottom. The magnets will be facing downwards with the magnetic field going in a vertical direction. The stator of my generator will be the coils which will sit on top of a metal ring that have the ability to rise or low to match the height of the brake router.
Guidelines for reducing dynamic loads in two-bladed teetering-hub downwind wind turbines
NASA Astrophysics Data System (ADS)
Wright, A. D.; Bir, G. S.; Butterfield, C. D.
1995-06-01
A major goal of the federal Wind Energy Program is the rapid development and validation of structural models to determine loads and response for a wide variety of different wind turbine configurations operating under extreme conditions. Such codes are crucial to the successful design of future advanced wind turbines. In previous papers the authors described steps they took to develop a model of a two-bladed teetering-hub downwind wind turbine using ADAMS (Automatic Dynamic Analysis of Mechanical Systems), as well as comparison of model predictions to test data. In this paper they show the use of this analytical model to study the influence of various turbine parameters on predicted system loads. They concentrate their study on turbine response in the frequency range of six to ten times the rotor rotational frequency (6P to 10P). Their goal is to identify the most important parameters which influence the response of this type of machine in this frequency range and give turbine designers some general design guidelines for designing two-bladed teetering-hub machines to be less susceptible to vibration. They study the effects of such parameters as blade edgewise and flapwise stiffness, tower top stiffness, blade tip-brake mass, low-speed shaft stiffness, nacelle mass momenta of inertia, and rotor speed. They show which parameters can be varied in order to make the turbine less responsive to such atmospheric inputs as wind shear and tower shadow. They then give designers a set of design guidelines in order to show how these machines can be designed to be less responsive to these inputs.
Heat engine generator control system
Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.
1998-05-12
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.
Heat engine generator control system
Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph
1998-01-01
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.
Approach to Computer Implementation of Mathematical Model of 3-Phase Induction Motor
NASA Astrophysics Data System (ADS)
Pustovetov, M. Yu
2018-03-01
This article discusses the development of the computer model of an induction motor based on the mathematical model in a three-phase stator reference frame. It uses an approach that allows combining during preparation of the computer model dual methods: means of visual programming circuitry (in the form of electrical schematics) and logical one (in the form of block diagrams). The approach enables easy integration of the model of an induction motor as part of more complex models of electrical complexes and systems. The developed computer model gives the user access to the beginning and the end of a winding of each of the three phases of the stator and rotor. This property is particularly important when considering the asymmetric modes of operation or when powered by the special circuitry of semiconductor converters.
NASA Astrophysics Data System (ADS)
Bottasso, C. L.; Croce, A.; Riboldi, C. E. D.
2014-06-01
The paper presents a novel approach for the synthesis of the open-loop pitch profile during emergency shutdowns. The problem is of interest in the design of wind turbines, as such maneuvers often generate design driving loads on some of the machine components. The pitch profile synthesis is formulated as a constrained optimal control problem, solved numerically using a direct single shooting approach. A cost function expressing a compromise between load reduction and rotor overspeed is minimized with respect to the unknown blade pitch profile. Constraints may include a load reduction not-to-exceed the next dominating loads, a not-to-be-exceeded maximum rotor speed, and a maximum achievable blade pitch rate. Cost function and constraints are computed over a possibly large number of operating conditions, defined so as to cover as well as possible the operating situations encountered in the lifetime of the machine. All such conditions are simulated by using a high-fidelity aeroservoelastic model of the wind turbine, ensuring the accuracy of the evaluation of all relevant parameters. The paper demonstrates the capabilities of the novel proposed formulation, by optimizing the pitch profile of a multi-MW wind turbine. Results show that the procedure can reliably identify optimal pitch profiles that reduce design-driving loads, in a fully automated way.
Design of a Bearingless Blood Pump
NASA Technical Reports Server (NTRS)
Barletta, Natale; Schoeb, Reto
1996-01-01
In the field of open heart surgery, centrifugal blood pumps have major advantages over roller pumps. The main drawbacks to centrifugal pumps are however problems with the bearings and with the sealing of the rotor shaft. In this paper we present a concept for a simple, compact and cost effective solution for a blood pump with a totally magnetically suspended impeller. It is based on the new technology of the 'Bearingless Motor' and is therefore called the 'Bearingless Blood Pump.' A single bearingless slice motor is at the same time a motor and a bearing system and is able to stabilize the six degrees of freedom of the pump impeller in a very simple way. Three degrees of freedom are stabilized actively (the rotation and the radial displacement of the motor slice). The axial and the angular displacement are stabilized passively. The pump itself (without the motor-stator and the control electronics) is built very simply. It consists of two parts only: the impeller with the integrated machine rotor and the housing. So the part which gets in contact with blood and has therefore to be disposable, is cheap. Fabricated in quantities, it will cost less than $10 and will therefore be affordable for the use in a heart-lung-machine.
Numerical analysis method for linear induction machines.
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1972-01-01
A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.
NASA Astrophysics Data System (ADS)
Berdanier, Reid Adam
The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of measurements collected at these part-speed and off-design conditions provides a unique data set for calibrating computational models and predictive algorithms. Further investigations with detailed steady total pressure traverses provide additional insight to tip leakage flow effects on stator performance. A series of data on the 100% corrected speedline further characterize the tip leakage flow using time-resolved measurements from a combination of instrumentation techniques. An array of high-frequency-response piezoresistive pressure transducers installed over the rotors allows quantification of tip leakage flow trajectories. These data, along with measurements from a fast-response total pressure probe downstream of the rotors, evaluate the development of tip leakage flows and assess the corresponding effects of upstream stator wakes. Finally, thermal anemometry measurements collected using the single slanted hot-wire technique evaluate three-dimensional velocity components throughout the compressor. These data facilitate calculations of several flow metrics, including a blockage parameter and phase-locked streamwise vorticity.
Background and system description of the Mod 1 wind turbine generator
NASA Technical Reports Server (NTRS)
Ernst, E. H.
1978-01-01
The Mod-1 wind turbine considered is a large utility-class machine, operating in the high wind regime, which has the potential for generation of utility grade power at costs competitive with other alternative energy sources. A Mod-1 wind turbine generator (WTG) description is presented, taking into account the two variable-pitch steel blades of the rotor, the drive train, power generation/control, the Nacelle structure, and the yaw drive. The major surface elements of the WTG are the ground enclosure, the back-up battery system, the step-up transformer, elements of the data system, cabling, area lighting, and tower foundation. The final system weight (rotor, Nacelle, and tower) is expected to be about 650,000 pounds. The WTG will be capable of delivering 1800 kW to the utility grid in a wind-speed above 25 mph.
Lubricating system for thermal medium delivery parts in a gas turbine
Mashey, Thomas Charles
2002-01-01
Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.
Two phase gap cooling of an electrical machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoykhet, Boris A.
2016-10-04
An electro-dynamic machine has a rotor and stator with a gap therebetween. The machine has a frame defining a hollow interior with end cavities on axially opposite ends of the frame. A gas circulating system has an inlet that supplies high pressure gas to the frame interior and an outlet to collect gas passing therethrough. A liquid coolant circulating system has an inlet that supplies coolant to the frame interior and an outlet that collects coolant passing therethrough. The coolant inlet and gas inlet are generally located on the frame in a manner to allow coolant from the coolant inletmore » to flow with gas from the gas inlet to the gap. The coolant outlet and gas outlet are generally located on the frame in a manner to allow the coolant to be separated from the gas with the separated coolant and gas collected for circulation through their respective circulating systems.« less
A Comprehensive Review of Permanent Magnet Transverse Flux Machines for Direct Drive Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Husain, Tausif; Hasan, Iftekhar
The use of direct drive machines in renewable and industrial applications are increasing at a rapid rate. Transverse flux machines (TFM) are ideally suited for direct drive applications due to their high torque density. In this paper, a comprehensive review of the permanent magnet (PM) TFMs for direct drive applications is presented. The paper introduces TFMs and their operating principle and then reviews the different type of TFMs proposed in the literature. The TFMs are categorized according to the number of stator sides, types of stator cores and magnet arrangement in the rotor. The review covers different design topologies, materialsmore » used for manufacturing, structural and thermal analysis, modeling and design optimization and cogging torque minimization in TFMs. The paper also reviews various applications and comparisons for TFMs that have been presented in the literature.« less
Very-Low-Cost, Rugged Vacuum System
NASA Technical Reports Server (NTRS)
Kline-Schoder, Robert; Sorensen, Paul; Passow, Christian; Bilski, Steve
2013-01-01
NASA, DoD, DHS, and commercial industry have a need for miniaturized, rugged, low-cost vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other miniature analytical instruments. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was created based on a very small, rugged, and inexpensive- to-manufacture molecular drag pump (MDP). The MDP is enabled by the development of a miniature, veryhigh- speed, rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. Such a pump represents an order-of-magnitude reduction in mass, volume, and cost over current, commercially available, state-ofthe- art vacuum pumps. The vacuum system consists of the MDP coupled to a ruggedized rough pump (for terrestrial applications or for planets with substantial atmospheres). The rotor in the MDP consists of a simple smooth cylinder of aluminum spinning at approximately 200,000 RPM inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the motor. The compressed gas then flows down channels in the motor housing to the exhaust port of the pump. The exhaust port of the pump is connected to a diaphragm or scroll pump. This pump delivers very high performance in a very small envelope. The design was simplified so that a smaller compression ratio, easier manufacturing process, and enhanced ruggedness can be achieved at the lowest possible cost. The machining of the rotor and stators is very simple compared to that necessary to fabricate TMP (turbo molecular pump) rotor and stator blades. Also, the symmetry of the rotor is such that dynamic balancing of the rotor is greatly simplified. Finally, because of the simplified design, the number of parts in the unit is cut by nearly a factor of three. In fact, there are only five parts, not counting the motor and off-the-shelf screws and O-rings. This reduces the amount of machining and also makes fit-up much simpler while allowing the maintenance of close tolerances.
Design, fabrication and characterization of LTCC-based electromagnetic microgenerators
NASA Astrophysics Data System (ADS)
Gierczak, M.; Markowski, P.; Dziedzic, A.
2016-02-01
Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.
The Physics and Physical Chemistry of Molecular Machines.
Astumian, R Dean; Mukherjee, Shayantani; Warshel, Arieh
2016-06-17
The concept of a "power stroke"-a free-energy releasing conformational change-appears in almost every textbook that deals with the molecular details of muscle, the flagellar rotor, and many other biomolecular machines. Here, it is shown by using the constraints of microscopic reversibility that the power stroke model is incorrect as an explanation of how chemical energy is used by a molecular machine to do mechanical work. Instead, chemically driven molecular machines operating under thermodynamic constraints imposed by the reactant and product concentrations in the bulk function as information ratchets in which the directionality and stopping torque or stopping force are controlled entirely by the gating of the chemical reaction that provides the fuel for the machine. The gating of the chemical free energy occurs through chemical state dependent conformational changes of the molecular machine that, in turn, are capable of generating directional mechanical motions. In strong contrast to this general conclusion for molecular machines driven by catalysis of a chemical reaction, a power stroke may be (and often is) an essential component for a molecular machine driven by external modulation of pH or redox potential or by light. This difference between optical and chemical driving properties arises from the fundamental symmetry difference between the physics of optical processes, governed by the Bose-Einstein relations, and the constraints of microscopic reversibility for thermally activated processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demerdash, N.A.; Nehl, T.W.; Nyamusa, T.A.
1985-08-01
Effects of high momentary overloads on the samarium-cobalt and strontium-ferrite permanent magnets and the magnetic field in electronically commutated brushless dc machines, as well as their impact on the associated machine parameters were studied. The effect of overload on the machine parameters, and subsequently on the machine system performance was also investigated. This was accomplished through the combined use of finite element analysis of the magnetic field in such machines, perturbation of the magnetic energies to determine machine inductances, and dynamic simulation of the performance of brushless dc machines, when energized from voltage source inverters. These effects were investigated throughmore » application of the above methods to two equivalent 15 hp brushless dc motors, one of which was built with samarium-cobalt magnets, while the other was built with strontium- ferrite magnets. For momentary overloads as high as 4.5 p.u. magnet flux reductions of 29% and 42% of the no load flux were obtained in the samarium-cobalt and strontiumferrite machines, respectively. Corresponding reductions in the line to line armature inductances of 52% and 46% of the no load values were reported for the samarium-cobalt and strontium-ferrite cases, respectively. The overload affected the profiles and magnitudes of armature induced back emfs. Subsequently, the effects of overload on machine parameters were found to have significant impact on the performance of the machine systems, where findings indicate that the samarium-cobalt unit is more suited for higher overload duties than the strontium-ferrite machine.« less
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo
2016-05-01
In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.
Flow and pressure characteristics within a screw compressor
NASA Astrophysics Data System (ADS)
Guerrato, D.; Nouri, J. M.; Stosic, N.; Arcoumanis, C.
2007-10-01
The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90°C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5° was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2Vp in mean (where Vp is the axial pitched velocity) for male rotor and 5.4Vp for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs.
Mapping the Geometric Evolution of Protein Folding Motor.
Jerath, Gaurav; Hazam, Prakash Kishore; Shekhar, Shashi; Ramakrishnan, Vibin
2016-01-01
Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent for particular secondary structure type. Further, we found that combination of rotor geometries of each amino acid is unique which partly explains how different amino acid sequence combinations have unique structural evolution and functional adaptation. Quantification of these amino acid rotor preferences, resulted in the generation of 3 substitution matrices, which later on plugged in the BLAST tool, for evaluating their efficiency in aligning sequences. We have employed BLOSUM62 and PAM30 as standard for primary evaluation. Generation of substitution matrices is a logical extension of the conceptual framework we attempted to build during the development of this work. Optimization of matrices following the conventional routines and possible application with biologically relevant data sets are beyond the scope of this manuscript, though it is a part of the larger project design.
Study on magnetic force of electromagnetic levitation circular knitting machine
NASA Astrophysics Data System (ADS)
Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.
2018-06-01
The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.
NASA Astrophysics Data System (ADS)
Wallace, Brian D.
A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind-system generator. Through the change of load impedance on the wind generator, the research facility has the ability to modify the rotational speed of the wind turbines, allowing the rotors to perform closer to their optimum tip-speed. Comparisons between field test data and performance predictions show that the aero-electro-mechanical analysis was able to predict differences in power production and rotational speed which result from changes in the system load impedance.
NASA Technical Reports Server (NTRS)
Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David
2007-01-01
This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.
NASA Astrophysics Data System (ADS)
Fay, R.; Kreuzer, D.; Liebich, R.; Wiedemann, T.; Werner, S.
2018-07-01
Brush seals are an efficient alternative for labyrinth seals in turbomachinery. Brush seals show on the one hand a better leakage reduction in relation to their axial length and hence allow a shorter design of the machinery. On the other hand, the particularly small gap between bristles and the engine shaft increases the risk of rotor-stator-contact. The flexible brush seals induces basically light-rubs that in some cases might lead to spiral vibrations and thermal mechanical instabilities. Spiral vibrations are caused by a thermal deflection of the rotor induced by a heat flow into the shaft. To predict areas of instabilites during the design process a tool was developed at the Berlin Institute of Technology. The model combines a rotor dynamic model and a thermal model. The thermal system is reduced using a stationary solution, so that the final system, on which the stability analysis is performed, is comparable to the established Kellenberger model. The paper presents the numerical model for the predictions of unstable regions depending on rotational speed. This is illustrated by means of an example of an axial compressor manufactured by MAN Diesel & Turbo.
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin
2017-11-01
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.
Four quadrant control of induction motors
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1991-01-01
Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.
Improved Speed Control System for the 87,000 HP Wind Tunnel Drive
NASA Technical Reports Server (NTRS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
Improved speed control system for the 87,000 HP wind tunnel drive
NASA Astrophysics Data System (ADS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
Flux-Based Deadbeat Control of Induction-Motor Torque
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Lorenz, Robert D.
2003-01-01
An improved method and prior methods of deadbeat direct torque control involve the use of pulse-width modulation (PWM) of applied voltages. The prior methods are based on the use of stator flux and stator current as state variables, leading to mathematical solutions of control equations in forms that do not lend themselves to clear visualization of solution spaces. In contrast, the use of rotor and stator fluxes as the state variables in the present improved method lends itself to graphical representations that aid in understanding possible solutions under various operating conditions. In addition, the present improved method incorporates the superposition of high-frequency carrier signals for use in a motor-self-sensing technique for estimating the rotor shaft angle at any speed (including low or even zero speed) without need for additional shaft-angle-measuring sensors.
DIRECT SIMULATION OF A-C MACHINERY.
show the application of the simulation to both induction and synchronous machines. The fundamental space harmonic only, the fundamental and third ... space harmonic only, or all the space harmonics are considered. The report concludes that: (1) Successful direct simulation of the 2-phase induction
2014-03-01
documents (e.g., articles, books ). C ita tio n A n a ly sis Scientometrics The analysis, quantification, and measurement of science. The...the development of mechanical devices for cryptology around the early 1900s. These devices, known as rotor machines, drastically increased the...similar study, Fernandez-Alles and Ramos-Rodriguez (2009) argued that since human resources management was dominated by published books instead of journal
Boeing 18-Inch Fan Rig Broadband Noise Test
NASA Technical Reports Server (NTRS)
Ganz, Ulrich W.; Joppa, Paul D.; Patten, Timothy J.; Scharpf, Daniel F.
1998-01-01
The purposes of the subject test were to identify and quantify the mechanisms by which fan broadband noise is produced, and to assess the validity of such theoretical models of those mechanisms as may be available. The test was conducted with the Boeing 18-inch fan rig in the Boeing Low-Speed Aeroacoustic Facility (LSAF). The rig was designed to be particularly clean and geometrically simple to facilitate theoretical modeling and to minimize sources of interfering noise. The inlet is cylindrical and is equipped with a boundary layer suction system. The fan is typical of modern high-by-pass ratio designs but is capable of operating with or without fan exit guide vanes (stators), and there is only a single flow stream. Fan loading and tip clearance are adjustable. Instrumentation included measurements of fan performance, the unsteady flow field incident on the fan and stators, and far-field and in-duct acoustic fields. The acoustic results were manipulated to estimate the noise generated by different sources. Significant fan broadband noise was found to come from the rotor self-noise as measured with clean inflow and no boundary layer. The rotor tip clearance affected rotor self-noise somewhat. The interaction of the rotor with inlet boundary layer turbulence is also a significant source, and is strongly affected by rotor tip clearance. High level noise can be generated by a high-order nonuniform rotating at a fraction of the fan speed, at least when tip clearance and loading are both large. Stator-generated noise is the loudest of the significant sources, by a small margin, at least on this rig. Stator noise is significantly affected by propagation through the fan.
NASA Technical Reports Server (NTRS)
Hamilton, H. B.; Strangas, E.
1980-01-01
The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.
Variable-frequency synchronous motor drives for electric vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chalmers, B.J.; Musaba, L.; Gosden, D.F.
1996-07-01
The performance capability envelope of a variable-frequency, permanent-magnet synchronous motor drive with field weakening is dependent upon the product of maximum current and direct-axis inductance. To obtain a performance characteristic suitable for a typical electric vehicle drive, in which short-term increase of current is applied, it is necessary to design an optimum value of direct-axis inductance. The paper presents an analysis of a hybrid motor design which uses a two-part rotor construction comprising a surface-magnet part and an axially laminated reluctance part. This arrangement combines the properties of all other types of synchronous motor and offers a greater choice ofmore » design variables. It is shown that the desired form of performance may be achieved when the high-inductance axis of the reluctance part is arranged to lead the magnet axis by 90{degree} (elec.).« less
Variable-frequency synchronous motor drives for electric vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chalmers, B.J.; Musaba, L.; Gosden, D.F.
1995-12-31
The performance capability envelope of a variable-frequency, permanent-magnet synchronous motor drive with field weakening is dependent upon the product of maximum current and direct-axis inductance. To obtain a performance characteristic suitable for a typical electric vehicle drive, in which short-term increase of current is applied, it is necessary to design an optimum value of direct-axis inductance. The paper presents an analysis of a hybrid motor design which uses a two-part rotor construction comprising a surface-magnet part and an axially-laminated reluctance part. This arrangement combines the properties of all other types of synchronous motor and offers a greater choice of designmore » variables. It is shown that the desired form of performance may be achieved when the high-inductance axis of the reluctance part is arranged to lead the magnet axis by 90{degree} (elec.).« less
Pinch current limitation effect in plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Saw, S. H.; INTI International University College, 71800 Nilai
The Lee model couples the electrical circuit with plasma focus dynamics, thermodynamics, and radiation. It is used to design and simulate experiments. A beam-target mechanism is incorporated, resulting in realistic neutron yield scaling with pinch current and increasing its versatility for investigating all Mather-type machines. Recent runs indicate a previously unsuspected 'pinch current limitation' effect. The pinch current does not increase beyond a certain value however low the static inductance is reduced to. The results indicate that decreasing the present static inductance of the PF1000 machine will neither increase the pinch current nor the neutron yield, contrary to expectations.
Design and market considerations for axial flux superconducting electric machine design
NASA Astrophysics Data System (ADS)
Ainslie, M. D.; George, A.; Shaw, R.; Dawson, L.; Winfield, A.; Steketee, M.; Stockley, S.
2014-05-01
In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.
Vibration analysis of paper machine's asymmetric tube roll supported by spherical roller bearings
NASA Astrophysics Data System (ADS)
Heikkinen, Janne E.; Ghalamchi, Behnam; Viitala, Raine; Sopanen, Jussi; Juhanko, Jari; Mikkola, Aki; Kuosmanen, Petri
2018-05-01
This paper presents a simulation method that is used to study subcritical vibrations of a tube roll in a paper machine. This study employs asymmetric 3D beam elements based on the Timoshenko beam theory. An asymmetric beam model accounts for varying stiffness and mass distributions. Additionally, a detailed rolling element bearing model defines the excitations arising from the set of spherical roller bearings at both ends of the rotor. The results obtained from the simulation model are compared against the results from the measurements. The results indicate that the waviness of the bearing rolling surfaces contributes significantly to the subcritical vibrations while the asymmetric properties of the tube roll have only a fractional effect on the studied vibrations.
Measurement and prediction of broadband noise from large horizontal axis wind turbine generators
NASA Technical Reports Server (NTRS)
Grosveld, F. W.; Shepherd, K. P.; Hubbard, H. H.
1995-01-01
A method is presented for predicting the broadband noise spectra of large wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. Spectra are predicted for several large machines including the proposed MOD-5B. Measured data are presented for the MOD-2, the WTS-4, the MOD-OA, and the U.S. Windpower Inc. machines. Good agreement is shown between the predicted and measured far field noise spectra.